WorldWideScience

Sample records for active noise reduction

  1. Active3 noise reduction

    Noise reduction is a problem being encountered in a variety of applications, such as environmental noise cancellation, signal recovery and separation. Passive noise reduction is done with the help of absorbers. Active noise reduction includes the transmission of phase inverted signals for the cancellation. This paper is about a threefold active approach to noise reduction. It includes the separation of a combined source, which consists of both a noise and a signal part. With the help of interaction with the source by scanning it and recording its response, modeling as a nonlinear dynamical system is achieved. The analysis includes phase space analysis and global radial basis functions as tools for the prediction used in a subsequent cancellation procedure. Examples are given which include noise reduction of speech. copyright 1996 American Institute of Physics

  2. Active road noise reduction

    Vraničar, Primož

    2012-01-01

    Theoretical principle of noise cancellation can be realized in the ideal studio conditions, but when the experiment is put into actual space and realized, we can see that the sound only partly cancels itself, on some frequencies more and on some less. However, in construction engineering we are not only dealing with certain frequencies but with frequency spectrums, if not with the whole frequency field. It is relatively hard to control the noise in traffic. We are dealing with a larger freque...

  3. Active Noise Control for Vehicle Exhaust Noise Reduction

    李克强; 杨殿阁; 郑四发; 连小珉; 田中丈晴

    2003-01-01

    An active noise control (ANC) method was developed for exhaust noise reduction for medium-duty diesel trucks. A modified variable step size least mean squares (LMS) algorithm was used for the controller in a variable environment that considered the vehicle's acceleration characteristics. The variable step size time-based synchronized filtered-x LMS method (SFX-TB) used an adaptive algorithm that was more efficient than the conventional filtered-x LMS algorithm. The simulation and the experimental tests show that the control trackability and stability provided by the algorithm during acceleration enable the ANC system to effectively reduce the vehicle exhaust noise.

  4. Active Fluid Borne Noise Reduction for Aviation Hydraulic Pumps

    Waitschat, Arne; Thielecke, Frank; Behr, Robert M.; Heise, Ulrich

    2016-01-01

    The aviation environment holds challenging application constraints for efficient hydraulic system noise reduction devices. Besides strong limits on component weight and size, high safety and reliability standards demand simple solutions. Hence, basic silencers like inline expansion chambers and Helmholtz-Resonators are state-of-the-art aboard commercial aircrafts. Unfortunately, they do not meet today’s noise attenuation aims regarding passenger comfort and equipment durability. Significant a...

  5. Voice communications in the cockpit noise environment: The role of active noise reduction

    Wheeler, Peter David

    The topic of voice communications in the cockpit noise environment of modern fast-jet aircraft and helicopters is addressed, and in particular, research undertaken in support of the development of a system for reducing the noise level at the operators' ear is described by acoustic cancellation within the ear defender, known as active noise reduction (ANR). The internal noise spectra of today's high performance fast-jet aircraft and military helicopters is described, and the complex interaction of acoustic noise transmission, speech, and microphone noise pick-up, which produces the total acoustic environment at the aircrews' ears, is discussed. Means of mathematically modelling the audio channel, quantifying the components identified above, and identifying areas of shortfall in performance are derived, leading to a procedure for the development of attenuation requirements, described as the communications audit. A model of the electroacoustic characteristics of the ANR ear defender assembly is presented and the sound field distribution within the ear defender/ear cavity, and its effect upon cancellation performance, is discussed. The extensive laboratory and flight testing of the ANR system that was undertaken is reviewed, paying particular attention to the measurement and analysis techniques employed in such testing. Finally, the performance characteristics of ANR are discussed and compared with the requirements previously established. Design limitations placed upon the system by the constraints of its area of application are described, and the scope for future improvements is considered.

  6. Reduction of helicopter blade-vortex interaction noise by active rotor control technology

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Philippe, Jean J.; Prieur, Jean; Brooks, Thomas F.

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade-vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations.

  7. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  8. Application of an active device for helicopter noise reduction in JAXA

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada [Japan Aerospace Exploration Agency (JAXA), 7-44-1 Jindaiji Higashi-machi, Chofu, Tokyo 182-8522 (Japan)], E-mail: ssaito@chofu.jaxa.jp

    2010-02-15

    Important issues in noise problems for current helicopters are described. An active tab (AT) was developed as a new active device for noise/vibration reduction under research cooperation between Japan Aerospace Exploration Agency (JAXA) and Kawada Industries, Inc. The wind tunnel test was conducted in order to investigate the effectiveness of the AT on the aeroacoustic characteristics of a helicopter. From the wind tunnel test, the capability of reducing blade vortex interaction (BVI) noise by an AT was verified. A new control law using instantaneous pressure change on a blade during BVI phenomena was introduced and applied to the wind tunnel testing. This new control law shows reasonable controllability for helicopter noise reduction. Furthermore, in order to analyze noise characteristics, the advanced computational fluid dynamics (CFD) code named JAXA{sub o}v3d was developed in JAXA and extended to include CFD-CSD (computational structure dynamics) coupling by using the beam theory for blade deformation. (invited paper)

  9. Application of an active device for helicopter noise reduction in JAXA

    Important issues in noise problems for current helicopters are described. An active tab (AT) was developed as a new active device for noise/vibration reduction under research cooperation between Japan Aerospace Exploration Agency (JAXA) and Kawada Industries, Inc. The wind tunnel test was conducted in order to investigate the effectiveness of the AT on the aeroacoustic characteristics of a helicopter. From the wind tunnel test, the capability of reducing blade vortex interaction (BVI) noise by an AT was verified. A new control law using instantaneous pressure change on a blade during BVI phenomena was introduced and applied to the wind tunnel testing. This new control law shows reasonable controllability for helicopter noise reduction. Furthermore, in order to analyze noise characteristics, the advanced computational fluid dynamics (CFD) code named JAXAov3d was developed in JAXA and extended to include CFD-CSD (computational structure dynamics) coupling by using the beam theory for blade deformation. (invited paper)

  10. INVITED PAPER: Application of an active device for helicopter noise reduction in JAXA

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada

    2010-02-01

    Important issues in noise problems for current helicopters are described. An active tab (AT) was developed as a new active device for noise/vibration reduction under research cooperation between Japan Aerospace Exploration Agency (JAXA) and Kawada Industries, Inc. The wind tunnel test was conducted in order to investigate the effectiveness of the AT on the aeroacoustic characteristics of a helicopter. From the wind tunnel test, the capability of reducing blade vortex interaction (BVI) noise by an AT was verified. A new control law using instantaneous pressure change on a blade during BVI phenomena was introduced and applied to the wind tunnel testing. This new control law shows reasonable controllability for helicopter noise reduction. Furthermore, in order to analyze noise characteristics, the advanced computational fluid dynamics (CFD) code named JAXA_ov3d was developed in JAXA and extended to include CFD-CSD (computational structure dynamics) coupling by using the beam theory for blade deformation.

  11. Hybrid feedforward-feedback active noise reduction for hearing protection and communication.

    Ray, Laura R; Solbeck, Jason A; Streeter, Alexander D; Collier, Robert D

    2006-10-01

    A hybrid active noise reduction (ANR) architecture is presented and validated for a circumaural earcup and a communication earplug. The hybrid system combines source-independent feedback ANR with a Lyapunov-tuned leaky LMS filter (LyLMS) improving gain stability margins over feedforward ANR alone. In flat plate testing, the earcup demonstrates an overall C-weighted total noise reduction of 40 dB and 30-32 dB, respectively, for 50-800 Hz sum-of-tones noise and for aircraft or helicopter cockpit noise, improving low frequency (noise reduction provided by the ANR earplug of 46-48 dB for sum-of-tones 80-2000 Hz and 40-41 dB from 63 to 3000 Hz for UH-60 helicopter noise, with negligible degradation in attenuation during speech communication. For both hearing protectors, a stability metric improves by a factor of 2 to several orders of magnitude through hybrid ANR. PMID:17069300

  12. Comparison of speech intelligibility in cockpit noise using SPH-4 flight helmet with and without active noise reduction

    Chan, Jeffrey W.; Simpson, Carol A.

    1990-01-01

    Active Noise Reduction (ANR) is a new technology which can reduce the level of aircraft cockpit noise that reaches the pilot's ear while simultaneously improving the signal to noise ratio for voice communications and other information bearing sound signals in the cockpit. A miniature, ear-cup mounted ANR system was tested to determine whether speech intelligibility is better for helicopter pilots using ANR compared to a control condition of ANR turned off. Two signal to noise ratios (S/N), representative of actual cockpit conditions, were used for the ratio of the speech to cockpit noise sound pressure levels. Speech intelligibility was significantly better with ANR compared to no ANR for both S/N conditions. Variability of speech intelligibility among pilots was also significantly less with ANR. When the stock helmet was used with ANR turned off, the average PB Word speech intelligibility score was below the Normally Acceptable level. In comparison, it was above that level with ANR on in both S/N levels.

  13. Active reduction of the dominant clear tone component of the noise pollution from power plant chimneys

    An investigation of a system for active reduction of an irritating dominant clear tone emitted as a part of the noise pollution from a power plant chimney is described. Experiments were carried out on a scale model with diameters 3-4 times less than the actual chimney. Reduction of 25-30 decibels was achieved in relation to the clear tone in the frequency range in connection with which it could be expected that the noise-muffling system would work. The system was also seen to be able to follow the expected variation in the noise signals and to be stable during a longer period of time. The theories on which the experiment was based, the experimental setup and measurement methods and results are presented. (AB)

  14. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  15. The use of active vibration control for the reduction of ICE interior noise

    Schirmacher, R. [Mueller-BBM GmbH - Beratende Ingenieure fuer Akustik, Planegg (Germany)

    2001-07-01

    First generation ICE high speed trains show a disturbing low frequency noise of about 100 Hz audible inside the coaches. It is excited by unround wheels, propagates via the bogie to the body of the coach and is finally radiated as airborne sound. A mixed concept of active suspension at the bogie in connection with adaptive residual noise minimisation inside the passenger compartment is successfully applied to the problem. A prototype system utilizing piezo ceramic actuators was installed and tested on the rolling rig of Deutsche Bahn in Munich. The noise level reductions at single harmonics were more than 12 dB averaged over the whole compartment and more than 20 dB at single seats. Measurement results and practical experiences with the system are reported. (orig.)

  16. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  17. An active structural acoustic control approach for the reduction of the structure-borne road noise

    Douville, Hugo; Berry, Alain; Masson, Patrice

    2002-11-01

    The reduction of the structure-borne road noise generated inside the cabin of an automobile is investigated using an Active Structural Acoustic Control (ASAC) approach. First, a laboratory test bench consisting of a wheel/suspension/lower suspension A-arm assembly has been developed in order to identify the vibroacoustic transfer paths (up to 250 Hz) for realistic road noise excitation of the wheel. Frequency Response Function (FRF) measurements between the excitation/control actuators and each suspension/chassis linkage are used to characterize the different transfer paths that transmit energy through the chassis of the car. Second, a FE/BE model (Finite/Boundary Elements) was developed to simulate the acoustic field of an automobile cab interior. This model is used to predict the acoustic field inside the cabin as a response to the measured forces applied on the suspension/chassis linkages. Finally, an experimental implementation of ASAC is presented. The control approach relies on the use of inertial actuators to modify the vibration behavior of the suspension and the automotive chassis such that its noise radiation efficiency is decreased. The implemented algorithm consists of a MIMO (Multiple-Input-Multiple-Output) feedforward configuration with a filtered-X LMS algorithm using an advanced reference signal (width FIR filters) using the Simulink/Dspace environment for control prototyping.

  18. Simultaneous BVI noise and vibration reduction in rotorcraft using actively-controlled flaps and including performance considerations

    Patt, Daniel A.

    This work presents the development and application of an active control approach for reduction of both vibration and noise induced by helicopter rotor blade vortex interaction (BVI). Control is implemented through single or dual actively controlled flaps (ACFs) on each blade. Low-speed helicopter flight is prone to severe BVI, resulting in elevated vibration and noise levels. Existing research has suggested that when some form of active control is used to reduce vibration, noise will increase and vice versa. The present research achieves simultaneous reduction of noise and vibration, and also investigates the physical sources of the observed reduction. The initial portion of this work focused on developing a tool for simulating helicopter noise and vibrations in the BVI flight regime. A method for predicting compressible unsteady blade surface pressure distribution on rotor blades was developed and combined with an enhanced free-wake model and an acoustic prediction tool with provisions for blade flexibility. These elements were incorporated within an aeroelastic analysis featuring fully coupled flap-lag-torsional blade dynamics. Subsequently, control algorithms were developed that were effective for reducing noise and vibration even in the nonlinear BVI flight regime; saturation limits were incorporated constraining flap deflections to specified limits. The resulting simulation was also validated with a wide range of experimental data, achieving excellent correlation. Finally, a number of active control studies were performed. Multi-component vibration reductions of 40--80% could be achieved, while incurring a small noise penalty. Noise was reduced using an onboard feedback microphone; reductions of 4--10 dB on the advancing side were observed on a plane beneath the rotor when using dual flaps. Finally, simultaneous noise and vibration reduction was studied. A reduction of about 5 dB in noise on the advancing side combined with a 60% reduction in vibration was

  19. Active Noice Reduction headset

    Fransson, Henrik

    2009-01-01

    Conventional (passive) headsets used in propeller aircrafts are reasonably good at attenuating mid to high frequency noise, but fail to achieve good attenuation in the low frequency region (below approximately 300 Hz). Active Noise Reduction (ANR) improves the low frequency attenuation by introducing an anti-noise signal creating destructive interference thus decreasing the residual noise level. The aim of this thesis is to develop and implement a digital narrowband active noise reduction hea...

  20. Technology approach to aero engine noise reduction

    Neise, W.; Enghardt, L. [Deutsches Zentrum fur Luft-und Raumfahrt -DLR, Institute of Propulsion Technology, Turbulence Research Div., Berlin (Germany)

    2003-07-01

    Transportation noise is one of the most pressing environmental problems of modern societies. Aircraft noise is second only to road traffic noise in drawing complaints from the public about noise pollution. Therefore intensive research efforts are necessary on the national levels as well as the European level to reduce the noise load around airports. The most effective and economical way to reach this goal is noise reduction at the source. The aero engines of today's transport aircraft are the dominant noise sources for most flight conditions, although air-frame noise does play an important role for landing aircraft. In this paper noise reduction studies for aero engines are described in which DLR are involved. The topics discussed are low noise fan design, active noise control using wall-flush loudspeakers as secondary sources, ANC using active stators as secondary sources, ANC using flow induced secondary sources at the rotor tips, reduction of low-pressure turbine noise, and flight tests for validation of add-on noise reduction devices. (authors)

  1. Adaptive Noise Reduction System

    Ivana Ropuš

    2013-01-01

    Full Text Available Noise is an all-present environment pollutant, considered to be one of the greatest contemporary pollutants. World-wide, co-ordinated actions are conducted in order to develop systems which minimise the noise influence onto society.In this article we argue that novel approach to suppression of influence of noise is useful. Furthermore, we argue that the efficient approach is formulation of the efficient, broadly applicable, ubiquituous, adaptive noise-protection system. The approach combines the natural noise-protection form based on plants with the artificially formed coatings.Elements of the system are discussed, its formation and maintenance analysed and perspectives conjectured.

  2. Aeroacoustic Prediction and Noise Reduction

    Delfs, Jan Werner

    2011-01-01

    An overview is given about aeroacoustic prediction and noise reduction technology from the field of aircraft noise. The simulation philosophy of the prediction methods is related to real world application, i.e. high Reynolds number flows, typical for aircraft. Noise reduction concepts are studied in two ways i) through a silent by design approach and b) by add-on treatments for existing aircraft components. Challenges are identified for future research.

  3. Control strategies for aircraft airframe noise reduction

    Li Yong; Wang Xunnian; Zhang Dejiu

    2013-01-01

    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  4. Efficient laser noise reduction by locking to an actively stabilized fiber interferometer with 10 km arm imbalance

    Li, Dawei; Li, Shanglin; Li, Zhengbin; Zhao, Jianye

    2016-01-01

    We report a laser noise reduction method by locking it to an actively stabilized fiber-based Mach Zehnder interferometer with 10 km optical fiber to achieve large arm imbalance. An acousto optic modulator is used for interferometer stabilization and heterodyne detection. The out-of-loop frequency noise is reduced by more than 90 dB for Fourier frequency at 1 Hz. This structure presents an efficient laser noise reduction method both at high Fourier frequency and low Fourier frequency. The signal of stabilized laser is transferred via a 10 km fiber link with a fractional frequency stability of 1.12 times 10-16 at 1 s. Compared with the fractional frequency stability of that when the interferometer is not stabilized, more than one order of magnitude is improved.

  5. Probabilistic noise reduction

    Hansen, James A.; Smith, Leonard A

    2011-01-01

    State estimation is an important factor in the production of accurate forecasts. Great effort isexpended in reducing the noise inherent in observations, to produce a ‘‘best’’ estimate of thetrue system state. But noisy observations necessitate a probabilistic, not a deterministic,approach to state estimation. A state’s probabilistic description is rarely Gaussian, and requiresinformation beyond variance magnitude; the correct distribution is restricted by the underlyingstructure of the system...

  6. Noise reduction experience at Hughes Helicopter, Inc.

    Janakiram, D. S.

    1982-01-01

    Noise reduction is mostly limited to light helicopters whose noise signature is dominated by their tail rotors. It is primarily hardware oriented. Well known noise reduction techniques such as reduction of rotor speeds with an accompanying increase in solidity to maintain performance, engine noise reduction with the use of exhaust mufflers, and acoustic blanketing of transmission and engine compartment are used. The concept of blade phasing as a means of reducing tail rotor noise is also used. Engine noise (exhaust noise), power train noise and airframe noise becomes important at low rotor tip speeds and means must be found to reduce these noise sources if further noise reductions are desired. The use of a special test rig aids in isolating the various noise sources and arriving at the penalties (performance or payload) involved in quieting them. Significant noise reduction are achieved for the light helicopter with minimum performance or weight penalties because of the dominance of a single noise source (the tail rotor).

  7. A High Performance Approach to Local Active Noise Reduction in Noisy Cabins Project

    National Aeronautics and Space Administration — Spacecraft cabin is noisy and uncomfortable. Sometimes, the noise level can exceed 80 dBA. There are 2 challenges to meet the above needs. One is to generate an...

  8. Noise reduction of dental drill noise

    Rotter, KRGR; Atherton, MA; Kaymak, E; Millar, BJ

    2008-01-01

    Dental drills produce a characteristic noise that is uncomfortable for patients and is also known to be harmful to dentists under prolonged exposure. It is therefore desirable to protect the patient and dentist whilst allowing two-way communication, which will require a headphone - type system. Re-establishing good communication between the dentist and patient will be achieved through a combination of three noise cancellation technologies, namely, Passive Noise Control (PNC), Adaptive Filteri...

  9. Active control of the noise

    The problems of acoustic noise are more and more preponderant in the measure in that the amount of equipment and industrial machinery is increased such as fans, transformers, compressors etc. the use of devices passive mechanics for the reduction of the noise is effective and very appreciated because its effects embrace a wide range of acoustic frequency. However, to low frequencies, such devices become too big and expensive besides that present a tendency to do not effective. The control of active noise, CAN, using the electronic generation anti-noise, constitutes an interesting solution to the problem because their operation principle allows achieving an appreciable reduction of the noise by means of the use of compact devices. The traditional techniques for the control of acoustic noise like barriers and silenced to attenuate it, are classified as passive and their works has been accepted as norm as for the treatment of problems of noise it refers. Such techniques are considered in general very effective in the attenuation of noise of wide band. However, for low frequency, the required passive structures are too big and expensive; also, their effectiveness diminishes flagrantly, that which makes them impractical in many applications. The active suppression is profiled like a practical alternative for the reduction of acoustic noise. The idea in the active treatment of the noise it contemplates the use of a device electro-acoustic, like a speaker for example that it cancels to the noise by the generation of sounds of Same width and of contrary phase (anti-noise). The cancellation phenomenon is carried out when the ant-noise combines acoustically with the noise, what is in the cancellation of both sounds. The effectiveness of the cancellation of the primary source of noise depends on the precision with which the width and the phase of the generated ant-noise are controlled. The active control of noise, ANC (activates noise control), it is being investigated for

  10. Feedback Control for Noise Reduction Program

    Tucker, Jerry H.

    2002-12-01

    As part of Langley Research Center's continuing noise reduction program, an active noise control system (ANC) is being developed to suppress noise inside an aircraft cabin. This interior noise reduction system consists of the following major components: 1. Several accelerometers. 2. An input amplifier. 3. A digital signal processor (DSP) system that includes an analog to digital converter (ADC) and a digital to analog converter (DAC). 4. A high voltage power amplifier. 5. PZT actuators. 6. Power supply and distribution. The accelerometers detect interior panel vibrations. The accelerometer signals are fed to the input amplifier where they are conditioned prior to being sent to the ADC. The DSP receives the digitized signals form the ADC, processes these signals, and sends the result to the DAC. The DAC's analog output is used as input to the high voltage power amplifier. The power amplifier drives the PZT actuators to cancel noise form 50 to 1,300 Hz. The specific area of concern for this work was development of a DSP system that could be used for an actual flight demonstration. It was decided to base the system on a commercially available DSP board, the Spectrum Digital eZdsp. This was complicated by the fact that the ADC and DAC capabilities available on the eZdsp board were not sufficient to meet the system specification. Designing and fabricating a special ADC and DAC daughter card for the eZdsp circumvented this problem. The DSP system hardware has been successfully tested and is currently being integrated into the complete noise reduction system. This work has been completed in collaboration with another ASEE Fellow, Dr.William Edmonson from Hampton University and was conducted under the direction of the principle investigator, Dr. Qamar A. Shams of the Instrumentation Systems Development Branch, as part of a continuing noise reduction program.

  11. Active noise reduction at the rear axle drive; Aktive Geraeuschminderung am Hinterachsgetriebe

    Eulert, Sebastian; Luehrs, Georg [Volkswagen AG, Kassel (Germany); Braeunig, Jan; Bucht, Andre; Kunze, Holger [Fraunhofer-Institut fuer Werkzeugmaschinen und Umformtechnik, Dresden (Germany)

    2011-07-01

    In this article we present the results of a research project of Volkswagen AG and Fraunhofer IWU. It shows new approaches in the development of active mass dampers for transmission applications. The proposed active controlled system enables to reduce the interior sound pressure level of the rear axle gear mesh order by more than 5 dB. By detailed pre-examination of the drivetrain vibrations and transfer paths we gained new insights into the phenomenon of rear axle gear whine. In order to develop solutions to realise the damping of the vibrations we designed and constructed a test bench which consists of the main components of the rear axle unit and its bearings. The vibration phenomenon was replicated by synthetic excitation. Thus we could acquire an adequate control concept combined with a corresponding actuator and experimentally established control parameters. Validations on an experimental vehicle under synthetic excitation and finally under real driving conditions adduced the evidence for the functionality of the proposed system. (orig.)

  12. Television noise-reduction device

    Stamps, J. C.; Gordon, B. L.

    1973-01-01

    System greatly improves signal-to-noise ratio with little or no loss in picture resolution. By storage of luminance component, which is summed with chrominance component, system performs mathematical integration of basically-repetitive television signals. Integration of signals over interval of their repetition causes little change in original signals and eliminates random noise.

  13. Active Noise Control in Forest Machines

    Forsgren, Fredrik

    2011-01-01

    Achieving a low noise level is of great interest to the forest machine industry. Traditionally this is obtained by using passive noise reduction, i.e. by using materials for sound isolation and sound absorption. Especially designs to attenuate low frequency noise tend to be bulky and impractical from an installation point of view. An alternative solution to the problem is to use active noise control (ANC). The basic principle of ANC is to generate an anti-noise signal designed to destructivel...

  14. A study of the performance of an Olson type active noise controller and the possibility of the reduction of cabin noise

    Keith, S. E.; Scholaert, H. S. B.

    1981-03-01

    Designed to reduce sound levels by means of an electronic transducing system, the active noise controller is a basic feedback control system composed of a speaker, microphone, amplifier and control unit. Because the scheme can be effective in reducing low frequency noise, it is of particular interest to aircraft manufacturers since attenuation of low frequency noise to increase passenger comfort can be at once costly and cumbersome when conventional sound absorption methods are employed. Olson and May's pioneering work in the 1950's in developing an electronic sound absorber which appeared to be successful over small volumes in a unidirectional sound field is re-examined as well as more recent developments in an effort to test their suitability to the aircraft industry. The results suggest only limited possible use for all systems studied.

  15. Fish Hatchery Noise Levels and Noise Reduction Techniques.

    Barnes, M E; Hewitt, C R; Parker, T M

    2015-07-01

    This study examined occupational noise within two rearing facilities at a production fish hatchery and evaluated two simple noise reduction techniques. Ambient noise levels in the hatchery tank room ranged from 50 dB in the absence of flowing water to over 73 dB when water was flowing to all 35 tanks under typical hatchery operating procedures. Covering the open standpipes did not significantly reduce noise levels. However, placing partial tank covers over the top of the tanks above the water inlet significantly reduced noise levels, both with and without the use of standpipe covers. Noise levels in the salmon building rose from 43.2 dB without any flowing water to 77.5 dB with water flowing to all six in-ground tanks. Significant noise reductions were observed when the tanks were completely covered or with standpipe covers. Decibel levels showed the greatest reduction when the tanks and standpipes were both covered. These results indicate that occupational noise levels in aquaculture environments may be reduced through the use of simple and relatively inexpensive techniques. PMID:26373216

  16. A study of helicopter interior noise reduction

    Howlett, J. T.; Clevenson, S. A.

    1975-01-01

    The interior noise levels of existing helicopters are discussed along with an ongoing experimental program directed towards reducing these levels. Results of several noise and vibration measurements on Langley Research Center's Civil Helicopter Research Aircraft are presented, including measurements taken before and after installation of an acoustically-treated cabin. The predominant noise source in this helicopter is the first stage planetary gear-clash in the main gear box, both before and after installation of the acoustically treated cabin. Noise reductions of up to 20 db in some octave bands may be required in order to obtain interior noise levels comparable to commercial jet transports.

  17. REDUCTION OF LINT CLEANER NOISE

    The standard, fan-type doffing brush cylinders in three Continental Eagle Model 24D lint cleaners were replaced with experimental solid-wound brush cylinders at a commercial gin in Marked Tree, AR, in order to evaluate their capability to reduce noise and to survive in the rigorous commercial enviro...

  18. Active noise cancellation algorithms for impulsive noise

    Li, Peng; Yu, Xun

    2012-01-01

    Impulsive noise is an important challenge for the practical implementation of active noise control (ANC) systems. The advantages and disadvantages of popular filtered-X least mean square (FXLMS) ANC algorithm and nonlinear filtered-X least mean M-estimate (FXLMM) algorithm are discussed in this paper. A new modified FXLMM algorithm is also proposed to achieve better performance in controlling impulsive noise. Computer simulations and experiments are carried out for all three algorithms and th...

  19. Flap Edge Noise Reduction Fins

    Khorrami, Mehdi R. (Inventor); Choudhan, Meelan M. (Inventor)

    2015-01-01

    A flap of the type that is movably connected to an aircraft wing to provide control of an aircraft in flight includes opposite ends, wherein at least a first opposite end includes a plurality of substantially rigid, laterally extending protrusions that are spaced apart to form a plurality of fluidly interconnected passageways. The passageways have openings adjacent to upper and lower sides of the flap, and the passageways include a plurality of bends such that high pressure fluid flows from a high pressure region to a low pressure region to provide a boundary condition that inhibits noise resulting from airflow around the end of the flap.

  20. Ground Bounce Noise Reduction in Vlsi Circuits

    Vipin Kumar Sharma; Umesh Dutta

    2015-01-01

    : Scaling of devices in CMOS technology leads to increase in parameter like Ground bounce noise, Leakage current, average power dissipation and short channel effect. FinFET are the promising substitute to replace CMOS. Ground bounce noise is produced when power gating circuit goes from SLEEP to ACTIVE mode transition. FinFET based designs are compared with MOSFET based designs on basis of different parameter like Ground bounce noise, leakage current and average power dissipation. ...

  1. Noise reduction in spatially coupled microchip lasers

    Noise reduction effects in two spatially coupled Nd:YVO4 microchip lasers are studied theoretically in the case of similar intensity pump beams. We demonstrate that the synchronization phenomena commonly observed in spatially coupled unstable lasers applies to the quantum-noise-driven dynamics in steady-state stable lasers. We observe a complete suppression of the relaxation oscillation peaks in the intensity difference noise spectrum, and this is well described by linearized rate equations. The influence of both gain and index guiding is considered, together with that of relative frequency detuning

  2. Advanced digital signal processing and noise reduction

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  3. Acoustically swept rotor. [helicopter noise reduction

    Schmitz, F. H.; Boxwell, D. A.; Vause, R. (Inventor)

    1979-01-01

    Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field.

  4. Ground Bounce Noise Reduction in Vlsi Circuits

    Vipin Kumar Sharma

    2015-12-01

    Full Text Available : Scaling of devices in CMOS technology leads to increase in parameter like Ground bounce noise, Leakage current, average power dissipation and short channel effect. FinFET are the promising substitute to replace CMOS. Ground bounce noise is produced when power gating circuit goes from SLEEP to ACTIVE mode transition. FinFET based designs are compared with MOSFET based designs on basis of different parameter like Ground bounce noise, leakage current and average power dissipation. HSPICE is the software tool used for simulation and circuit design.

  5. High-Temperature Liners for Broadband Noise Reduction Project

    National Aeronautics and Space Administration — Core noise will become a larger component of engine noise overall, as more efficient design trends of fan and jet noise reduction technologies are implemented. The...

  6. NASA/AHS rotorcraft noise reduction program - NASA Langley Acoustics Division contributions

    Martin, Ruth M.

    1989-01-01

    An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

  7. Simple noise reduction for diffusion weighted images.

    Konishi, Yuto; Kanazawa, Yuki; Usuda, Takatoshi; Matsumoto, Yuki; Hayashi, Hiroaki; Matsuda, Tsuyoshi; Ueno, Junji; Harada, Masafumi

    2016-07-01

    Our purpose in this study was to reduce the noise in order to improve the SNR of Dw images with high b-value by using two correction schemes. This study was performed with use of phantoms made from water and sucrose at different concentrations, which were 10, 30, and 50 weight percent (wt%). In noise reduction for Dw imaging of the phantoms, we compared two correction schemes that are based on the Rician distribution and the Gaussian distribution. The highest error values for each concentration with use of the Rician distribution scheme were 7.3 % for 10 wt%, 2.4 % for 30 wt%, and 0.1 % for 50 wt%. The highest error values for each concentration with use of the Gaussian distribution scheme were 20.3 % for 10 wt%, 11.6 % for 30 wt%, and 3.4 % for 50 wt%. In Dw imaging, the noise reduction makes it possible to apply the correction scheme of Rician distribution. PMID:26984734

  8. Active Noise Reduction Versus Passive Designs in Communication Headsets: Speech Intelligibility and Pilot Performance Effects in an Instrument Flight Simulation

    Valimont, Robert Brian

    2006-01-01

    Researchers have long known that general aviation (GA) aircraft exhibit some of the most intense and potentially damaging sound environments to a pilotâ s hearing. Yet, another potentially more ominous result of this noise-intense environment is the masking of the radio communications. Radio communications must remain intelligible, as they are imperative to the safe and efficient functioning of the airspace, especially the airspace surrounding our busiest airports, Class B and Class C. Howev...

  9. Noise reduction performance of thermobonded nonwovens

    Carvalho, R.; Rana, S.; Fangueiro, Raúl; Soutinho, Hélder Filipe Cunha

    2012-01-01

    Acoustic insulation is an important requirement for the human life today, since noise affects the efficiency of day-to-day activities and even cause various health problems Materials based on fibrous structures show very good acoustic insulation properties, which however strongly depends on the type of structures used. The present paper reports the qualitative analysis of the acoustic insulation behavior of various thermo-bonded nonwoven fabrics. The results showed that the acoust...

  10. The NASA/AHS Rotorcraft Noise Reduction Program

    Childress, Otis S., Jr.

    1988-01-01

    Research of the NASA/AHS noise reduction program is discussed, stressing work in four areas: noise prediction, testing and data base, noise reduction, and criteria development. A program called ROTONET has been developed, using a code structure divided into four main parts; main- and tail-rotor blade geometry, rotor performance, noise calculations, and noise propagation. Wind tunnel tests on individual rotors, and flight tests on a helicopter built specifically to generate a broadband main rotor noise data base have been conducted. In the field of noise reduction, researchers have performed analytical evaluations of low noise rotor concepts, and small-scale wind tunnel evaluations of noise reduction concepts. Under the supervision of the FAA, the program in conducting tests to develop criteria for helicopters and heliports.

  11. Noise Reduction Potential of Cellular Metals

    Björn Hinze

    2012-06-01

    Full Text Available Rising numbers of flights and aircrafts cause increasing aircraft noise, resulting in the development of various approaches to change this trend. One approach is the application of metallic liners in the hot gas path of aero-engines. At temperatures of up to 600 °C only metallic or ceramic structures can be used. Due to fatigue loading and the notch effect of the pores, mechanical properties of porous metals are superior to the ones of ceramic structures. Consequently, cellular metals like metallic foams, sintered metals, or sintered metal felts are most promising materials. However, acoustic absorption depends highly on pore morphology and porosity. Therefore, both parameters must be characterized precisely to analyze the correlation between morphology and noise reduction performance. The objective of this study is to analyze the relationship between pore morphology and acoustic absorption performance. The absorber materials are characterized using image processing based on two dimensional microscopy images. The sound absorption properties are measured using an impedance tube. Finally, the correlation of acoustic behavior, pore morphology, and porosity is outlined.

  12. Recent advances in active control of aircraft cabin noise

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  13. Chain reconfiguration in active noise

    Samanta, Nairhita; Chakrabarti, Rajarshi

    2016-05-01

    In a typical single molecule experiment, the dynamics of an unfolded protein is studied by determining the reconfiguration time using long-range Förster resonance energy transfer, where the reconfiguration time is the characteristic decay time of the position correlation between two residues of the protein. In this paper we theoretically calculate the reconfiguration time for a single flexible polymer in the presence of active noise. The study suggests that though the mean square displacement grows faster, the chain reconfiguration is always slower in the presence of long-lived active noise with exponential temporal correlation. Similar behavior is observed for a worm-like semi-flexible chain and a Zimm chain. However it is primarily the characteristic correlation time of the active noise and not the strength that controls the increase in the reconfiguration time. In brief, such active noise makes the polymer move faster but the correlation loss between the monomers becomes slow.

  14. Chain reconfiguration in active noise

    In a typical single molecule experiment, the dynamics of an unfolded protein is studied by determining the reconfiguration time using long-range Förster resonance energy transfer, where the reconfiguration time is the characteristic decay time of the position correlation between two residues of the protein. In this paper we theoretically calculate the reconfiguration time for a single flexible polymer in the presence of active noise. The study suggests that though the mean square displacement grows faster, the chain reconfiguration is always slower in the presence of long-lived active noise with exponential temporal correlation. Similar behavior is observed for a worm-like semi-flexible chain and a Zimm chain. However it is primarily the characteristic correlation time of the active noise and not the strength that controls the increase in the reconfiguration time. In brief, such active noise makes the polymer move faster but the correlation loss between the monomers becomes slow. (paper)

  15. Noise Reduction with Microphone Arrays for Speaker Identification

    Cohen, Z

    2011-12-22

    Reducing acoustic noise in audio recordings is an ongoing problem that plagues many applications. This noise is hard to reduce because of interfering sources and non-stationary behavior of the overall background noise. Many single channel noise reduction algorithms exist but are limited in that the more the noise is reduced; the more the signal of interest is distorted due to the fact that the signal and noise overlap in frequency. Specifically acoustic background noise causes problems in the area of speaker identification. Recording a speaker in the presence of acoustic noise ultimately limits the performance and confidence of speaker identification algorithms. In situations where it is impossible to control the environment where the speech sample is taken, noise reduction filtering algorithms need to be developed to clean the recorded speech of background noise. Because single channel noise reduction algorithms would distort the speech signal, the overall challenge of this project was to see if spatial information provided by microphone arrays could be exploited to aid in speaker identification. The goals are: (1) Test the feasibility of using microphone arrays to reduce background noise in speech recordings; (2) Characterize and compare different multichannel noise reduction algorithms; (3) Provide recommendations for using these multichannel algorithms; and (4) Ultimately answer the question - Can the use of microphone arrays aid in speaker identification?

  16. Identification and Reduction of Turbomachinery Noise Project

    National Aeronautics and Space Administration — Communities near airports are often exposed to high noise levels due to low flying aircraft in the takeoff and landing phases of flight. Propulsion source noise is...

  17. Noise Reduction in an Undergraduate Library.

    Bird, Charles P.; Puglisi, Dawn D.

    1984-01-01

    Reports on program initiated to reduce noise in undergraduate library through combination of space reallocation, rule changes, and staff monitoring of noise. Objective and subjective measures of noise (sound-level readings, preintervention and postintervention questionnaires) and results of intervention program are discussed. Memo distributed on…

  18. A Study of Speckle Noise Reduction Filters

    Jyoti Jaybhay

    2015-06-01

    Full Text Available Ultrasound images and SAR i.e. synthetic aperture radar images are usually corrupted because of speckle noise also called as granular noise. It is quite a tedious task to remove such noise and analyze those corrupted images. Till now many researchers worked to remove speckle noise using frequency domain methods, temporal methods, and adaptive methods. Different filters have been developed as Mean and Median filters, Statistic Lee filter, Statistic Kuan filter, Frost filter, Srad filter. This paper reviews filters used to remove speckle noise.

  19. Interior noise reduction in a large civil helicopter

    Howlett, J. T.; Clevenson, S. A.; Rypf, J. A.; Snyder, W. J.

    1977-01-01

    The results of an evaluation of the effectiveness of current noise reduction technology in attaining acceptable levels of interior noise in a large (about 20,000 kg) passenger-carrying helicopter are presented. The helicopter studied is a modified CH-53A with a specially designed, acoustically treated passenger cabin. The acoustic treatment reduced the average A-weighted interior noise levels from 115 db to 87 db. The study suggests selected improvements in the acoustic treatment which could result in additional reduction in cabin noise levels. The resulting levels would be only slightly greater than the interior noise levels of current narrow-body jet transports.

  20. Supersonic Jet Noise: Main Sources and Reduction Methodologies

    Mohammadreza Azimi; Fathollah Ommi

    2014-01-01

    The large velocity ratio and the presence of Shocks in the exhaust plume from low bypass engines or supersonic jetliners cause jet noise to be dominant component of overall aircraft noise, and therefore is an important issue in design of the next generation of civil supersonic transport. Jet noise reduction technology also has application in the design of highperformance tactical aircraft. Jet noise is of particular concern on aircraft carriers where it is necessary for deck crew to ...

  1. Identification and Reduction of Turbomachinery Noise Project

    National Aeronautics and Space Administration — Noise has become a primary consideration in the design and development of many products, particulary in aerospace, automotive and consumer product industries....

  2. An Assessment of Psychological Noise Reduction by Landscape Plants

    Fan Yang

    2011-04-01

    Full Text Available The emphasis in the term ‘Green Transportation’ is on the word ‘green’. Green transportation focuses on the construction of a slow transport system with a visually pleasing, easy and secure trip environment composed of urban parks, green roadside spaces and some other space that is full of landscape plants. This trip environment encourages residents to make trip choices that reduce fuel consumption and pollution and is one of the most important ways of popularizing green transportation. To study the psychological benefits provided by urban parks and other landscape environments, we combined a subjective approach (a questionnaire with an objective quantitative approach (emotional tests using an electroencephalogram; EEG. Using a questionnaire survey, we found that 90% of the subjects believed that landscape plants contribute to noise reduction and that 55% overrated the plants’ actual ability to attenuate noise. Two videos (showing a traffic scene and a plant scene were shown to 40 participants on video glasses. We detected and recorded EEG values with a portable electroencephalograph, and a comparison between the results of the two groups revealed that there was a highly significant asymmetry between the EEG activity of the vegetation scene and traffic scene groups. The results suggest that the emotions aroused by noise and visual stimuli are manifested in the synchronization of beta frequency band and the desynchronization of alpha frequency band, indicating that landscape plants can moderate or buffer the effects of noise. These findings indicate that landscape plants provide excess noise attenuating effects through subjects’ emotional processing, which we term ‘psychological noise reduction’.

  3. Reduction of Bumblebee Noise Generated by GSM

    Han Su Kyi

    2014-09-01

    Full Text Available This research work presents a method for reducing a bumblebee noise generated by a GSM system. Global smart phone penetration has been very swift and 2nd generation, 3rd generation and 4th generation communication technology are commercially used in the world. GSM technology uses a channel access method that combines frequency division multiple access (FDMA and time division multiple access (TDMA. There are four commercial frequency bands. GSM technology has a burst structure by a TDMA method. And hence, the GSM technology has a disadvantage; radiation noise is generated from an antenna propagation signal of the smart phone, and consequently, the voice quality of the smart phone is degraded. This noise is commonly known as bumblebee noise, buzz noise or TDMA noise. There have been several studies to reduce the noise since a release of GSM technology in a commercial market. Those studies mainly focused on designing infinite impulse response (IIR notch filters by the signal processing technology or on data burst transmission schemes.

  4. Musical noise reduction using an adaptive filter

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  5. Complex diffusion process for noise reduction

    Nadernejad, Ehsan; Barari, A.

    2014-01-01

    on signals are like geometric heat flow, in which heat transfers from a warm environment to a cooler one, until temperatures of the two environments are balanced. In this model, sudden variations in a signal not explained by PDEs are considered as noise. Results of our study show that CDPs are very......Signal de-noising and restoration is an essential step for many signal processing algorithms and applications. One of the most common problems is the removal of some interesting structures in the signal during the restoration process. The capability of methods based on partial differential...... equations (PDEs) in image restoration and de-noising prompted many researchers to search for an improvement in the technique. In this paper, a new method is presented for signal de-noising, based on PDEs and Schrodinger equations, named as complex diffusion process (CDP). This method assumes that variations...

  6. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  7. A differential magnetoelectric heterostructure: Internal noise reduction and external noise cancellation

    Wang, Yaojin; Li, Jiefang; Viehland, D.

    2015-12-01

    A differential heterostructure design which has a capability to reduce the internal noise and reject the external vibration noise for Metglas magnetostrictive foils/Pb(Zr, Ti)O3 piezofiber based-magnetoelectric (ME) laminated composite has been studied. The internal noise reduction is equivalent to that offered by sensor array stacks, and the external noise cancellation is based on a differential method (i.e., ME signal is in-phase but vibration noise is anti-phase). The ability of the structure to reduce the internal noise, and cancel the external vibration noise by a 10-fold attenuation factor, allows for practical applications of these sensors in real-world environments where contamination of magnetic signals by external vibrational noise increases the equivalent magnetic noise.

  8. Supersonic Jet Noise: Main Sources and Reduction Methodologies

    Mohammadreza Azimi

    2014-07-01

    Full Text Available The large velocity ratio and the presence of Shocks in the exhaust plume from low bypass engines or supersonic jetliners cause jet noise to be dominant component of overall aircraft noise, and therefore is an important issue in design of the next generation of civil supersonic transport. Jet noise reduction technology also has application in the design of highperformance tactical aircraft. Jet noise is of particular concern on aircraft carriers where it is necessary for deck crew to be in relatively close proximity to the aircraft at takeoff and landing. In this paper, a brief discussion about supersonic jet noise sources and a review of the main passive technologies employed for the reduction of supersonic jet noise are presented.

  9. Wind Noise Reduction in a Non-Porous Subsurface Windscreen

    Zuckerwar, Allan J.; Shams, Qamar A.; Knight, H. Keith

    2012-01-01

    Measurements of wind noise reduction were conducted on a box-shaped, subsurface windscreen made of closed cell polyurethane foam. The windscreen was installed in the ground with the lid flush with the ground surface. The wind was generated by means of a fan, situated on the ground, and the wind speed was measured at the center of the windscreen lid with an ultrasonic anemometer. The wind speed was controlled by moving the fan to selected distances from the windscreen. The wind noise was measured on a PCB Piezotronics 3†electret microphone. Wind noise spectra were measured with the microphone exposed directly to the wind (atop the windscreen lid) and with the microphone installed inside the windscreen. The difference between the two spectra comprises the wind noise reduction. At wind speeds of 3, 5, and 7 m/s, the wind noise reduction is typically 15 dB over the frequency range of 0.1-20 Hz.

  10. Speckle Noise Reduction in Medical Ultrasound Images

    Faouzi Benzarti

    2012-03-01

    Full Text Available Ultrasound imaging is an incontestable vital tool for diagnosis, it provides in non-invasive manner the internal structure of the body to detect eventually diseases or abnormalities tissues. Unfortunately, the presence of speckle noise in these images affects edges and fine details which limit the contrast resolution and make diagnostic more difficult. In this paper, we propose a denoising approach which combines logarithmic transformation and a non linear diffusion tensor. Since speckle noise is multiplicative and nonwhite process, the logarithmic transformation is a reasonable choice to convert signal-dependent or pure multiplicative noise to an additive one. The key idea from using diffusion tensor is to adapt the flow diffusion towards the local orientation by applying anisotropic diffusion along the coherent structure direction of interesting features in the image. To illustrate the effective performance of our algorithm, we present some experimental results on synthetically and real echographic images.

  11. Adaptive feedback active noise control

    Kuo, Sen M.; Vijayan, Dipa

    Feedforward active noise control (ANC) systems use a reference sensor that senses a reference input to the controller. This signal is assumed to be unaffected by the secondary source and is a good measure of the undesired noise to be cancelled by the system. The reference sensor may be acoustic (e.g., microphone) or non-acoustic (e.g., tachometer, optical transducer). An obvious problem when using acoustic sensors is that the reference signal may be corrupted by the canceling signal generated by the secondary source. This problem is known as acoustic feedback. One way of avoiding this is by using a feedback active noise control (FANC) system which dispenses with the reference sensor. The FANC technique originally proposed by Olson and May employs a high gain negative feedback amplifier. This system suffered from the drawback that the error microphone had to be placed very close to the loudspeaker. The operation of the system was restricted to low frequency range and suffered from instability due to the possibility of positive feedback. Feedback systems employing adaptive filtering techniques for active noise control were developed. This paper presents the FANC system modeled as an adaptive prediction scheme.

  12. Noise reduction in AC-coupled amplifiers

    Serrano Finetti, Roberto Ernesto; Pallàs Areny, Ramon

    2014-01-01

    AC-coupled amplifiers are noisier than dc-coupled amplifiers because of the thermal noise of the resistor(s) in the ac-coupling network and the increased contribution of the amplifier input noise current i(n). Both contributions, however, diminish if the corner frequency f(c) of the high-pass filter observed by the signal is lowered, the cost being a longer transient response. At the same time, the presence of large resistors in the ac-coupling network suggests that the use of FET-input ampli...

  13. Revolutionary Concepts for Helicopter Noise Reduction: SILENT Program

    Edwards, Bryan; Cox, Charles; Booth, Earl R., Jr. (Technical Monitor)

    2002-01-01

    As part of a NASA initiative to reduce helicopter main rotor noise, a Phase 1 study has been performed of candidate noise reduction concepts. Both conventional and novel design technologies have been analyzed that reduce the community impact of helicopter operations. In this study the noise reduction potential and design implications are assessed for conventional means of noise reduction, e.g., tip speed reduction, tip shapes and airfoil tailoring, and for two innovative design concepts: modulated blade spacing and x-force control. Main rotor designs that incorporate modulated blade spacing are shown to have reduced peak noise levels in most flight operations. X-force control alters the helicopter's force balance whereby the miss distance between main rotor blades and shed vortices can be controlled. This control provides a high potential to mitigate BVI noise radiation. Each concept is evaluated using best practice design and analysis methods, achieving the study's aim to significantly reduce noise with minimal performance degradation and no vibration increase. It is concluded that a SILENT main rotor design, incorporating the modulated blade spacing concept, offers significantly reduced noise levels and the potential of a breakthrough in how a helicopter's sound is perceived and judged. The SILENT rotor represents a definite advancement in the state-of-the-art and is selected as the design concept for demonstration in Phase 2. A Phase 2 Implementation Plan is developed for whirl cage and wind tunnel evaluations of a scaled model SILENT rotor.

  14. Staff Solutions for Noise Reduction in the Workplace

    Connor, Alison; Ortiz, Elizabeth

    2009-01-01

    Setting: A comprehensive noise-reduction project was initiated in response to low patient-satisfaction scores on an inpatient neuroscience unit at St Luke's Hospital and Health Network. The effects of noise on the health of patients and staff provided additional rationale for the project.

  15. Noise Reduction Methods for Weighing Lysimeters

    Mechanical vibration of the grass and crop weighing lysimeters, located at the University of California West Side Field Research and Extension Station at Five Points, CA generated noise in lysimeter mass measurements and reduced the quality of evapotranspiration (ET) data. Two filtering methods for ...

  16. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  17. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  18. Development of Active Noise Control System for Quieting Transformer Noise

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  19. Active Noise Control in Propeller Aircraft

    Johansson, Sven; Claesson, Ingvar

    2001-01-01

    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper addresses same design aspects for multiple-reference active noise control systems based on th...

  20. Noise Reduction of Fractional Source in Cryogenic Current Comparator Bridge

    C. Jassadajin

    2013-10-01

    Full Text Available In this work, a resistance measurement is done at both high accuracy and precision using Cryogenic Current Comparator (CCC bridge system [1]. A CCC bridge circuit consists of three parts: coil, current source and detector parts. There are electronic components in the current source of the system. They generate thermal noise in the measurement system. This paper shows the noise reduction in a fractional source of CCC Bridge which is a ramp generator. The bridge receives the voltage signal, which is supplied to a CCC coil to achieve the magnetic flux balance condition inside the superconductorshield, from a null detector. By analysing the noise of the circuit in the fractional part and improving the circuit, it can minimize the noise to obtain a better output of the fractional source for improved accurate and more stability. Finally, the noise can be reduced for a designed bandwidth, a unity noise gain and minimized input resistance in the circuit.

  1. Gravitation and the noise needed in objective reduction models

    Adler, Stephen L

    2014-01-01

    I briefly recall intersections of my research interests with those of John Bell. I then argue that the noise needed in theories of objective state vector reduction most likely comes from a fluctuating complex part in the classical spacetime metric, that is, state vector reduction is driven by {\\it complex number valued} "spacetime foam".

  2. Noise reduction algorithm for glueball correlators

    Majumdar, Pushan, E-mail: tppm@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata (India); Mathur, Nilmani, E-mail: nilmani@theory.tifr.res.in [Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai (India); Mondal, Sourav, E-mail: tpsm5@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata (India)

    2014-09-07

    We present an error reduction method for obtaining glueball correlators from Monte Carlo simulations of SU(3) lattice gauge theory. We explore the scalar and tensor channels at three different lattice spacings. Using this method we can follow glueball correlators to temporal separations even up to 1 fermi. We estimate the improvement over the naive method and compare our results with existing computations.

  3. Noise reduction algorithm for glueball correlators

    Pushan Majumdar

    2014-09-01

    Full Text Available We present an error reduction method for obtaining glueball correlators from Monte Carlo simulations of SU(3 lattice gauge theory. We explore the scalar and tensor channels at three different lattice spacings. Using this method we can follow glueball correlators to temporal separations even up to 1 fermi. We estimate the improvement over the naive method and compare our results with existing computations.

  4. Low-frequency noise reduction of lightweight airframe structures

    Getline, G. L.

    1976-01-01

    The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.

  5. Noise Reduction of Fractional Source in Cryogenic Current Comparator Bridge

    C. Jassadajin; Kurupakorn, C.; N. Khumthukthit; A. Pruksanubal

    2013-01-01

    In this work, a resistance measurement is done at both high accuracy and precision using Cryogenic Current Comparator (CCC) bridge system [1]. A CCC bridge circuit consists of three parts: coil, current source and detector parts. There are electronic components in the current source of the system. They generate thermal noise in the measurement system. This paper shows the noise reduction in a fractional source of CCC Bridge which is a ramp generator. The bridge receives the voltage signal, wh...

  6. Noise Reduction for CFA Image Sensors Exploiting HVS Behaviour

    Angelo Bosco; Sebastiano Battiato; Arcangelo Bruna; Rosetta Rizzo

    2009-01-01

    This paper presents a spatial noise reduction technique designed to work on CFA (Color Filtering Array) data acquired by CCD/CMOS image sensors. The overall processing preserves image details using some heuristics related to the HVS (Human Visual System); estimates of local texture degree and noise levels are computed to regulate the filter smoothing capability. Experimental results confirm the effectiveness of the proposed technique. The method is also suitable for implementation in low powe...

  7. Active compressor engine silencer reduces exhaust noise

    An active industrial silencer on a compressor engine at a Tenneco Gas station has reduced low-frequency 'rumbling' noise by 8 dB during trials while lowering backpressure about 90$. This 8 dB reduction of the piston firing frequency corresponds to a more than 80% decrease in emitted acoustic power. The silencing unit, installed on one of six engines at the station near Eden, N.Y., continues in operation. Based on the results, the manufacturer is identifying additional compressor sites for further tests. This paper reviews this project

  8. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  9. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting

    Michael Guidash

    2016-04-01

    Full Text Available Recent activity in photon counting CMOS image sensors (CIS has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e− read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor.

  10. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting.

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-01-01

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e(-) read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor. PMID:27070625

  11. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-01-01

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e− read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor. PMID:27070625

  12. Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition

    Kang-Ming Chang

    2010-06-01

    Full Text Available A novel noise filtering algorithm based on ensemble empirical mode decomposition (EEMD is proposed to remove artifacts in electrocardiogram (ECG traces. Three noise patterns with different power—50 Hz, EMG, and base line wander – were embedded into simulated and real ECG signals. Traditional IIR filter, Wiener filter, empirical mode decomposition (EMD and EEMD were used to compare filtering performance. Mean square error between clean and filtered ECGs was used as filtering performance indexes. Results showed that high noise reduction is the major advantage of the EEMD based filter, especially on arrhythmia ECGs.

  13. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  14. Active Control of Fan Noise

    Nobuhiko YAMASAKI; Hirotoshi TAJIMA

    2008-01-01

    In the wake-rotor interaction fan noise, a number of the interacting modes at the blade passing frequency (BPF)and its harmonics are generated which are prescribed by the number of stator and rotor blades etc. In the present study, the dominant mode is tried to be suppressed by the secondary sound from the loudspeaker actuators. One of the novel features of the present system is the adoption of the control board with the Field Programmable Gate Array (FPGA) hardware and the LabVIEW software to synchronize the circumferentially installed loudspeaker actuators with the relative location of rotational blades under arbitrary fan rotational speeds. The experiments were conducted under the conditions of three rotational speeds of 2004, 3150, and 4002 [rpm]. The reduction in the sound pressure level (SPL) was observed for all three rotational speeds. The sound pressure level at the BPF was reduced approximately 13 [dB] for 2004 [rpm] case, but not so large reduction was attained for other cases probably due to the inefficiency of the loudspeaker actuators at high frequencies

  15. Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test

    Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz

    1995-01-01

    This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.

  16. A Landing Gear Noise Reduction Study Based on Computational Simulations

    Khorrami, Mehdi R.; Lockard, David P.

    2006-01-01

    Landing gear is one of the more prominent airframe noise sources. Techniques that diminish gear noise and suppress its radiation to the ground are highly desirable. Using a hybrid computational approach, this paper investigates the noise reduction potential of devices added to a simplified main landing gear model without small scale geometric details. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from surface pressure data provided by unsteady CFD calculations. Because of the simplified nature of the model, most of the flow unsteadiness is restricted to low frequencies. The wheels, gear boxes, and oleo appear to be the primary sources of unsteadiness at these frequencies. The addition of fairings around the gear boxes and wheels, and the attachment of a splitter plate on the downstream side of the oleo significantly reduces the noise over a wide range of frequencies, but a dramatic increase in noise is observed at one frequency. The increased flow velocities, a consequence of the more streamlined bodies, appear to generate extra unsteadiness around other parts giving rise to the additional noise. Nonetheless, the calculations demonstrate the capability of the devices to improve overall landing gear noise.

  17. The Effects of Digital Noise Reduction on the Acceptance of Background Noise

    Mueller, H. Gustav; Weber, Jennifer; Hornsby, Benjamin W.Y.

    2006-01-01

    Modern hearing aids commonly employ digital noise reduction (DNR) algorithms. The potential benefit of these algorithms is to provide improved speech understanding in noise or, at the least, to provide relaxed listening or increased ease of listening. In this study, 22 adults were fitted with 16-channel wide-dynamic-range compression hearing aids containing DNR processing. The DNR includes both modulation-based and Wiener-filter-type algorithms working simultaneously. Both speech intelligibil...

  18. Content-dependent block noise reduction for mobile displays

    Kim, Ga-Hee; Lee, Yoon-Gyoo; Kim, Han-Eol; Kim, Choon-Woo

    2012-01-01

    Number of pixels on mobile displays is rapidly increasing. Recently, mobile displays with more than one million pixels have been introduced into markets. However, most of multimedia contents to be displayed on mobile displays have much smaller pixel counts. For example, number of pixels for a T-DMB(terrestrial digital multimedia broadcasting) sequence is 320x240. When enlargement is applied to input sequence, perceived image quality would be degraded. Increase in visibility of block noise is one of the major reasons for image quality degradation on mobile displays. This paper presents a simple and computationally efficient method to reduce visibility of block noise on enlarged multimedia sequences. In proposed method, a simple low pass filtering is selectively applied to the pixels of block noises for reduction of block noise visibility as well as faithful reproduction of image details.

  19. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  20. Noise reduction in gravitational wave interferometers using feedback

    Vitali, David; Punturo, Michele; Mancini, Stefano; Amico, Paolo; Tombesi, Paolo

    2003-01-01

    We show that the quantum locking scheme recently proposed by Courty {\\it et al.} [Phys. Rev. Lett. {\\bf 90}, 083601 (2003)] for the reduction of back action noise is able to significantly improve the sensitivity of the next generation of gravitational wave interferometers.

  1. Active Control of Aerodynamic Noise Sources

    Reynolds, Gregory A.

    2001-01-01

    Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.

  2. Aeroacoustic Evaluation of Flap and Landing Gear Noise Reduction Concepts

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.; Ravetta, Patricio A.

    2014-01-01

    Aeroacoustic measurements for a semi-span, 18% scale, high-fidelity Gulfstream aircraft model are presented. The model was used as a test bed to conduct detailed studies of flap and main landing gear noise sources and to determine the effectiveness of numerous noise mitigation concepts. Using a traversing microphone array in the flyover direction, an extensive set of acoustic data was obtained in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the information was acquired with the model in a landing configuration with the flap deflected 39 deg and the main landing gear alternately installed and removed. Data were obtained at Mach numbers of 0.16, 0.20, and 0.24 over directivity angles between 56 deg and 116 deg, with 90 deg representing the overhead direction. Measured acoustic spectra showed that several of the tested flap noise reduction concepts decrease the sound pressure levels by 2 - 4 dB over the entire frequency range at all directivity angles. Slightly lower levels of noise reduction from the main landing gear were obtained through the simultaneous application of various gear devices. Measured aerodynamic forces indicated that the tested gear/flap noise abatement technologies have a negligible impact on the aerodynamic performance of the aircraft model.

  3. Noise Reduction with Optimal Variable Span Linear Filters

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2016-01-01

    In this paper, the problem of noise reduction is addressed as a linear filtering problem in a novel way by using concepts from subspace-based enhancement methods, resulting in variable span linear filters. This is done by forming the filter coefficients as linear combinations of a number of eigen......In this paper, the problem of noise reduction is addressed as a linear filtering problem in a novel way by using concepts from subspace-based enhancement methods, resulting in variable span linear filters. This is done by forming the filter coefficients as linear combinations of a number...... included in forming the filter. Using these concepts, a number of different filter designs are considered, like minimum distortion, Wiener, maximum SNR, and tradeoff filters. Interestingly, all these can be expressed as special cases of variable span filters. We also derive expressions for the speech...... distortion and noise reduction of the various filter designs. Moreover, we consider an alternative approach, wherein the filter is designed for extracting an estimate of the noise signal, which can then be extracted from the observed signals, which is referred to as the indirect approach. Simulations...

  4. Low frequency noise reduction using stiff light composite panels

    DENG Yongchang; LIN Weizheng

    2003-01-01

    The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.

  5. Noise Reduction for CFA Image Sensors Exploiting HVS Behaviour

    Angelo Bosco

    2009-03-01

    Full Text Available This paper presents a spatial noise reduction technique designed to work on CFA (Color Filtering Array data acquired by CCD/CMOS image sensors. The overall processing preserves image details using some heuristics related to the HVS (Human Visual System; estimates of local texture degree and noise levels are computed to regulate the filter smoothing capability. Experimental results confirm the effectiveness of the proposed technique. The method is also suitable for implementation in low power mobile devices with imaging capabilities such as camera phones and PDAs.

  6. Objective Measures of Listening Effort: Effects of Background Noise and Noise Reduction

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-01-01

    Purpose: This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. Method: To address this, the hypothesis…

  7. Portable Low-Frequency Noise Reduction Device for Both Small Open and Closed Spaces

    Chao Wang

    2016-01-01

    Full Text Available Noise pollution has been given more attention due to its negative impacts on human health and disease. The portable low-frequency noise reduction device we developed in this research can provide an effective way for solving low-frequency noise pollution problem in the small space. This work describes the design principle and the prototype structures for two versions of V1.5 and V2.0 and builds the noise test systems for small spaces, respectively. These devices, installed on the outer surface of the small spaces, can automatically identify the noise spectrum and implement noise reduction by means of the active noise control (ANC technology. The testing results indicate that the noise can be reduced 12 dB in the range of 250 Hz~400 Hz for the small closed space while, for the small open space, the best effect of 5.88 dB occurs in the optimal frequency of 450 Hz. These effects will be weakened with the increasing distance away from the source and show the obvious axisymmetric distribution in the inverted cone space.

  8. Implementation of Adaptive Filter Structures on a Fixed Point Signal Processor for Acoustical Noise Reduction

    Chunduri, Krishna Chaitanya; Gutti, Chalapathi

    2005-01-01

    The problem of controlling the noise level in the environment has been the focus of a tremendous amount of research over the years. Active Noise Cancellation (ANC) is one such approach that has been proposed for reduction of steady state noise. ANC refers to an electromechanical or electro acoustic technique of canceling an acoustic disturbance to yield a quieter environment. The basic principle of ANC is to introduce a canceling “anti-noise” signal that has the same amplitude but the exact o...

  9. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2014-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  10. Reduction of coating thermal noise by using an etalon

    Somiya, Kentaro; Gurkovsky, Alexey G; Hild, Stefan; Nawrodt, Ronny; Vyatchanin, Sergey P

    2011-01-01

    Reduction of coating thermal noise is a key issue in precise measurements with an optical interferometer. A good example of such a measurement device is a gravitational-wave detector, where each mirror is coated by a few tens of quarter-wavelength dielectric layers to achieve high reflectivity while the thermal-noise level increases with the number of layers. One way to realize the reduction of coating thermal noise, recently proposed by Khalili, is the mechanical separation of the first few layers from the rest so that a major part of the fluctuations contributes only little to the phase shift of the reflected light. Using an etalon, a Fabry-Perot optical resonator of a monolithic cavity, with a few coating layers on the front and significantly more on the back surface is a way to realize such a system without too much complexity, and in this paper we perform a thermal-noise analysis of an etalon using the Fluctuation-dissipation theorem with probes on both sides of a finite-size cylindrical mirror.

  11. USB noise reduction by nozzle and flap modifications

    Hayden, R. E.

    1976-01-01

    The development of concepts for reducing upper surface blown flap noise at the source through flap modifications and special nozzles is reviewed. In particular, recent results obtained on the aerodynamic and acoustic performance of flaps with porous surfaces near the trailing edge and multi-slotted nozzles are reviewed. Considerable reduction (6-10 db) of the characteristic low frequency peak is shown. The aerodynamic performance is compared with conventional systems, and prospects for future improvements are discussed.

  12. Recruitment-of-loudness effects of attenuative noise reduction algorithms

    Whitmal, Nathaniel; Vosoughi, Azadeh

    2002-05-01

    Hearing-impaired listeners have greater difficulty understanding speech in noise than normal-hearing listeners do. As a result, hearing aid users are often challenged by the inability of their hearing aids to improve intelligibility in noise. Several investigators have addressed this problem by using well-known signal processing methods (e.g., spectral subtraction, Wiener filtering) to enhance noise-corrupted speech. Unfortunately, these methods have failed to provide significant improvements in intelligibility. One possible explanation is the level-dependent nature of the attenuation that the algorithms impose on the speech. In the cases described above, this attenuation resembles the piecewise-linear input-output characteristic observed in certain recruitment-of-loudness simulators. The purpose of this study was to compare the intelligibility of processed speech with that expected for recruitment-of-loudness simulation. Trials of the CUNY Nonsense Syllable Test were conducted with 12 normal-hearing listeners, using syllables that were mixed with additive noise at SNRs of 6, 12, and 18 dB. Input-output characteristics for the signals were measured and used to determine the effective threshold shift imposed by the algorithms. Comparisons of measured intelligibility scores with articulation index-based intelligibility predictions indicate that the behavior of such noise reduction algorithms can be successfully modeled as a form of mild sensorineural hearing loss.

  13. Noise reduction of punch press mechanical clutch engagement

    CHEN Wei; SUN Chang-qing; LI Yun-liang

    2005-01-01

    Among the noises of the punch press, blanking noise and engaging noise of the clutch should be paid most attention to. The latter is generated by the engagement impacts of the rotating key on the spline bush. In order to absorb the pressing energy and reduce the noise radiated, polyurethane cushions were added to the spline bush keyways and the clutch running noise reduction has reached 10.7 dB(A). Considering such factors as the running characteristics of the punch press clutch, the demand for cushioning performance and the demand of the clutch temperature field for damping materials, the temperature field of the rigid clutch spline bush was simulated to find out whether the temperature of polyurethane go beyond its critical application temperature, using the finite element method. According to the characteristic that the deforming memory alloy can restore the remembered shape with the temperature rising, the actual temperature of the spline bush was measured. Consequently, the theoretical temperature turned out to be close to the measured temperature.

  14. Noise, Worker Perception, and Worker Concentration in Timber Harvesting Activity

    Efi Yuliati Yovi

    2012-01-01

    Full Text Available Timber harvesting activities are unquestionably related with high risk of work accidents and health disorders.Such activities were not only burdened the workers with heavy physical workloads due to uneasy workingenvironment, and massive work materials and tools, but also physiopsychologically burdened workers as theywere imposed with both mechanical and acoustic vibrations (noise produced by the chainsaw. However,  it is acommon practice that most of the workers still ignored the importance of the use of noise reduction devices suchas earmuff or ear plug.  This study was aimed to reveal the factual effects of noise on work concentration of theworkers to provide a scientific basis in supporting efforts in improving workers’ attitude.  The results confirmedthat chainsaw might produce noise during operation.  Noise intensities received by both right and left ears werenot significantly different, indicating that left-handed and normal workers received similar degree of noise inboth side of ears. Further, results also showed that there was a significant difference on the perception and workconcentration of chainsaw operators versus sedentary people to the noise.  These findings proved that hearingability of chainsaw operators had declined due to frequent noise exposure.Keywords: timber harvesting, physio-psychological disorder, noise, chainsaw

  15. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  16. Environmental noise alters gastric myoelectrical activity: Effect of age

    James S Castle; Jin-Hong Xing; Mark R Warner; Mark A Korsten

    2007-01-01

    AIM: To evaluate the effect of age and acoustic stress on gastric myoelectrical activity (GMA) and autonomic nervous system function,METHODS: Twenty-one male subjects (age range 22-71years, mean 44 years) were recruited and exposed, in random order, to three auditory stimuli (Hospital noise,conversation babble and traffic noise) after a 20-min baseline. All periods lasted 20 min and were interspersed with a 10 min of recovery. GMA was obtained using a Synectics Microdigitrapper. Autonomic nerve function was assessed by monitoring blood pressure and heart rate using an automatic recording device.RESULTS: Dominant power tended to decrease with increase of age (P<0.05). The overall percentage of three cycle per minute (CPM) activity decreased during exposure to hospital noise (12.0%, P < 0.05), traffic noise (13.9%, P < 0.05), and conversation babble(7.1%). The subjects in the younger group (< 50 years)showed a consistent reduction in the percentage of 3CPM activity during hospital noise (22.9%, P < 0.05),traffic noise (19.0%, P < 0.05), and conversation babble(15.5%). These observations were accompanied by a significant increase in bradygastria: hospital noise (P< 0.05) and traffic noise (P < 0.05). In contrast, the subjects over 50 years of age did not exhibit a significant decrease in 3 CPM activity. Regardless of age, noise did not alter blood pressure or heart rate.CONCLUSION: GMA changes with age. Loud noise can alter GMA, especially in younger individuals. Our data indicate that even short-term exposure to noise may alter the contractility of the stomach.

  17. Minimizing noise in fiberglass aquaculture tanks: Noise reduction potential of various retrofits

    Davidson, J.; Frankel, A.S.; Ellison, W.T.; Summerfelt, S.; Popper, A.N.; Mazik, P.; Bebak, J.

    2007-01-01

    Equipment used in intensive aquaculture systems, such as pumps and blowers can produce underwater sound levels and frequencies within the range of fish hearing. The impacts of underwater noise on fish are not well known, but limited research suggests that subjecting fish to noise could result in impairment of the auditory system, reduced growth rates, and increased stress. Consequently, reducing sound in fish tanks could result in advantages for cultured species and increased productivity for the aquaculture industry. The objective of this study was to evaluate the noise reduction potential of various retrofits to fiberglass fish culture tanks. The following structural changes were applied to tanks to reduce underwater noise: (1) inlet piping was suspended to avoid contact with the tank, (2) effluent piping was disconnected from a common drain line, (3) effluent piping was insulated beneath tanks, and (4) tanks were elevated on cement blocks and seated on insulated padding. Four combinations of the aforementioned structural changes were evaluated in duplicate and two tanks were left unchanged as controls. Control tanks had sound levels of 120.6 dB re 1 ??Pa. Each retrofit contributed to a reduction of underwater sound. As structural changes were combined, a cumulative reduction in sound level was observed. Tanks designed with a combination of retrofits had sound levels of 108.6 dB re 1 ??Pa, a four-fold reduction in sound pressure level. Sound frequency spectra indicated that the greatest sound reductions occurred between 2 and 100 Hz and demonstrated that nearby pumps and blowers created tonal frequencies that were transmitted into the tanks. The tank modifications used during this study were simple and inexpensive and could be applied to existing systems or considered when designing aquaculture facilities. ?? 2007 Elsevier B.V. All rights reserved.

  18. Research on the application of active sound barriers for the transformer noise abatement

    Hu Sheng

    2016-01-01

    Full Text Available Sound barriers are a type of measure most commonly used in the noise abatement of transformers. In the noise abatement project of substations, the design of sound barriers is restrained by the portal frames which are used to hold up outgoing lines from the main transformers, which impacts the noise reduction effect. If active sound barriers are utilized in these places, the noise diffraction of sound barriers can be effectively reduced. At a 110kV Substation, an experiment using a 15-channel active sound barrier has been carried out. The result of the experiment shows that the mean noise reduction value (MNRV of the noise measuring points at the substation boundary are 1.5 dB (A. The effect of the active noise control system is impacted by the layout of the active noise control system, the acoustic environment on site and the spectral characteristic of the target area.

  19. Feasibility of noise reduction by a modification in ICU environment.

    Luetz, A; Weiss, B; Penzel, T; Fietze, I; Glos, M; Wernecke, K D; Bluemke, B; Dehn, A M; Willemeit, T; Finke, A; Spies, C

    2016-07-01

    Noise is a proven cause of wakefulness and qualitative sleep disturbance in critically ill patients. A sound pressure level reduction can improve sleep quality, but there are no studies showing the feasibility of such a noise reduction in the intensive care unit (ICU) setting. Considering all available evidence, we redesigned two ICU rooms with the aim of investigating the physiological and clinical impact of a healing environment, including a noise reduction and day-night variations of sound level. Within an experimental design, we recorded 96 h of sound-pressure levels in standard ICU rooms and the modified ICU rooms. In addition, we performed a sound source observation by human observers. Our results show that we reduced A-weighted equivalent sound pressure levels and maximum sound pressure levels with our architectural interventions. During night-time, the modification led to a significant decrease in 50 dB threshold overruns from 65.5% to 39.9% (door side) and from 50% to 10.5% (window side). Sound peaks of more than 60 decibels were significantly reduced from 62.0% to 26.7% (door side) and 59.3% to 30.3% (window side). Time-series analysis of linear trends revealed a significantly more distinct day-night pattern in the modified rooms with lower sound levels during night-times. Observed sound sources during night revealed four times as many talking events in the standard room compared to the modified room. In summary, we show that it is feasible to reduce sound pressure levels using architectural modifications. PMID:27243942

  20. Arousal from sleep - The physiological and subjective effects of a 15 dB/A/ reduction in aircraft flyover noise

    Levere, T. E.; Davis, N.

    1977-01-01

    The present research was concerned with whether or not a 15 dB(A) reduction in overall noise level would lessen the sleep disturbing properties of jet aircraft flyover noise and, if less disturbing, whether this would be subjectively appreciated by the sleeping individual. The results indicate that a reduction of 15 dB (A) does result in less sleep disruption but only during sleep characterized by fast-wave electroencephalographic activity. During sleep characterized by slow-wave electroencephalographic activity, such a reduction in the sleep-disturbing properties of jet aircraft noise has little effect. Moreover, even when effective during fast-wave sleep, the decreased arousal produced by the lower noise levels is not subjectively appreciated by the individual in terms of his estimate of the quality of his night's sleep. Thus, reducing the overall noise level of jet aircraft flyovers by some 15 dB(A), is, at best, minimally beneficial to sleep.

  1. The cost of applying current helicopter external noise reduction methods while maintaining realistic vehicle performance

    Bowes, M. A.

    1978-01-01

    Analytical methods were developed and/or adopted for calculating helicopter component noise, and these methods were incorporated into a unified total vehicle noise calculation model. Analytical methods were also developed for calculating the effects of noise reduction methodology on helicopter design, performance, and cost. These methods were used to calculate changes in noise, design, performance, and cost due to the incorporation of engine and main rotor noise reduction methods. All noise reduction techniques were evaluated in the context of an established mission performance criterion which included consideration of hovering ceiling, forward flight range/speed/payload, and rotor stall margin. The results indicate that small, but meaningful, reductions in helicopter noise can be obtained by treating the turbine engine exhaust duct. Furthermore, these reductions do not result in excessive life cycle cost penalties. Currently available main rotor noise reduction methodology, however, is shown to be inadequate and excessively costly.

  2. Column-Parallel Correlated Multiple Sampling Circuits for CMOS Image Sensors and Their Noise Reduction Effects

    Shoji Kawahito; Shinya Itoh; Satoshi Aoyama; Sungho Suh

    2010-01-01

    For low-noise complementary metal-oxide-semiconductor (CMOS) image sensors, the reduction of pixel source follower noises is becoming very important. Column-parallel high-gain readout circuits are useful for low-noise CMOS image sensors. This paper presents column-parallel high-gain signal readout circuits, correlated multiple sampling (CMS) circuits and their noise reduction effects. In the CMS, the gain of the noise cancelling is controlled by the number of samplings. It has a similar effec...

  3. Reduction of airfoil trailing edge noise by trailing edge blowing

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length

  4. Low Delay Noise Reduction and Dereverberation for Hearing Aids

    Heinrich W. Löllmann

    2009-01-01

    Full Text Available A new system for single-channel speech enhancement is proposed which achieves a joint suppression of late reverberant speech and background noise with a low signal delay and low computational complexity. It is based on a generalized spectral subtraction rule which depends on the variances of the late reverberant speech and background noise. The calculation of the spectral variances of the late reverberant speech requires an estimate of the reverberation time (RT which is accomplished by a maximum likelihood (ML approach. The enhancement with this blind RT estimation achieves almost the same speech quality as by using the actual RT. In comparison to commonly used post-filters in hearing aids which only perform a noise reduction, a significantly better objective and subjective speech quality is achieved. The proposed system performs time-domain filtering with coefficients adapted in the non-uniform (Bark-scaled frequency-domain. This allows to achieve a high speech quality with low signal delay which is important for speech enhancement in hearing aids or related applications such as hands-free communication systems.

  5. Digital Image Processing for Noise Reduction in Medical Ultrasonics

    Loupas, Thanasis

    Available from UMI in association with The British Library. Requires signed TDF. The purpose of this project was to investigate the application of digital image processing techniques as a means of reducing noise in medical ultrasonic imaging. Ultrasonic images suffer primarily from a type of acoustic noise, known as speckle, which is generally regarded as a major source of image quality degradation. The origin of speckle, its statistical properties as well as methods suggested to eliminate this artifact were reviewed. A simple model which can characterize the statistics of speckle on displays was also developed. A large number of digital noise reduction techniques was investigated. These include frame averaging techniques performed by commercially available devices and spatial filters implemented in software. Among the latter, some filters have been proposed in the scientific literature for ultrasonic, laser and microwave speckle or general noise suppression and the rest are original, developed specifically to suppress ultrasonic speckle. Particular emphasis was placed on adaptive techniques which adjust the processing performed at each point according to the local image content. In this way, they manage to suppress speckle with negligible loss of genuine image detail. Apart from preserving the diagnostically significant features of a scan another requirement a technique must satisfy before it is accepted in routine clinical practice is real-time operation. A spatial filter capable of satisfying both these requirements was designed and built in hardware using low-cost and readily available components. The possibility of incorporating all the necessary filter circuitry into a single VLSI chip was also investigated. In order to establish the effectiveness and usefulness of speckle suppression, a representative sample from the techniques examined here was applied to a large number of abdominal scans and their effect on image quality was evaluated. Finally, further

  6. Noise reduction technologies implemented in head-worn preprocessors for improving cochlear implant performance in reverberant noise fields.

    Chung, King; Nelson, Lance; Teske, Melissa

    2012-09-01

    The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. PMID:22750449

  7. Activation for Poverty Reduction

    Morgandi, Matteo; Posadas, Josefina; Damerau, Tomas

    2014-01-01

    Since the peak of the economic crisis, poverty reduction in Armenia has made limited progress, with poverty rates moving from 34.1 percent in 2009 to 32 percent in 2013. This slow pace has been mirrored by the limited progress of the labor market (LM), particularly in terms of job-creation. In 2013, about 36 percent of people worked in the agricultural sector, and about half of all workers earned wages through informal jobs. These conditions highlight the need to have a robust ...

  8. Two-Microphone Noise Reduction Using Spatial Information-Based Spectral Amplitude Estimation

    Li, Kai; Guo, Yanmeng; Fu, Qiang; Li, Junfeng; Yan, Yonghong

    Traditional two-microphone noise reduction algorithms to deal with highly nonstationary directional noises generally use the direction of arrival or phase difference information. The performance of these algorithms deteriorate when diffuse noises coexist with nonstationary directional noises in realistic adverse environments. In this paper, we present a two-channel noise reduction algorithm using a spatial information-based speech estimator and a spatial-information-controlled soft-decision noise estimator to improve the noise reduction performance in realistic non-stationary noisy environments. A target presence probability estimator based on Bayes rules using both phase difference and magnitude squared coherence is proposed for soft-decision of noise estimation, so that they can share complementary advantages when both directional noises and diffuse noises are present. Performances of the proposed two-microphone noise reduction algorithm are evaluated by noise reduction, log-spectral distance (LSD) and word recognition rate (WRR) of a distant-talking ASR system in a real room's noisy environment. Experimental results show that the proposed algorithm achieves better noises suppression without further distorting the desired signal components over the comparative dual-channel noise reduction algorithms.

  9. CMOS image sensor noise reduction method for image signal processor in digital cameras and camera phones

    Yoo, Youngjin; Lee, SeongDeok; Choe, Wonhee; Kim, Chang-Yong

    2007-02-01

    Digital images captured from CMOS image sensors suffer Gaussian noise and impulsive noise. To efficiently reduce the noise in Image Signal Processor (ISP), we analyze noise feature for imaging pipeline of ISP where noise reduction algorithm is performed. The Gaussian noise reduction and impulsive noise reduction method are proposed for proper ISP implementation in Bayer domain. The proposed method takes advantage of the analyzed noise feature to calculate noise reduction filter coefficients. Thus, noise is adaptively reduced according to the scene environment. Since noise is amplified and characteristic of noise varies while the image sensor signal undergoes several image processing steps, it is better to remove noise in earlier stage on imaging pipeline of ISP. Thus, noise reduction is carried out in Bayer domain on imaging pipeline of ISP. The method is tested on imaging pipeline of ISP and images captured from Samsung 2M CMOS image sensor test module. The experimental results show that the proposed method removes noise while effectively preserves edges.

  10. Noise reduction by magnetostatic coupling in geomagnetic-field sensors

    Zhao, Chong-Jun; Li, Min; Li, Jian-Wei [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Ding, Lei [School of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Teng, Jiao, E-mail: cjzhao.ustb@gmail.com [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Guang-Hua [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2014-11-15

    A new magnetoresistive (MR) thin film with a structure of “antiferromagnetic layer/pinned soft magnetic layer/non-magnetic MgO spacer layer/sensitive NiFe layer” was designed. The barber-pole MR elements with a Wheatstone bridge circuit were fabricated using photolithographic methods. The testing results show that, in comparison to the element with a typical structure of Ta/NiFe/Ta, the fabricated MR element shows significant reduction in the Barkhausen noise and the 1/f noise and good magnetic stability while maintaining high magnetic field sensitivity. This element with improved signals can be attributed to the magnetostatic coupling between the pinned soft magnetic layer and the sensitive NiFe layer, which can act as a small stabilizing field, leading to the coherent rotation of magnetic moment in the sensitive NiFe layer. - Highlights: • A new MR film with the structure of “IrMn/NiFe/MgO/NiFe” was designed. • The elements with a Wheatstone bridge circuit were fabricated using photolithography. • A reduced noisy and good magnetic stable signal was achieved. • The magnetostatic coupling can act as a small stabilizing field. • Coherent rotation of the magnetic moment happened in the sensing NiFe layer.

  11. Emergent Adaptive Noise Reduction from Communal Cooperation of Sensor Grid

    Jones, Kennie H.; Jones, Michael G.; Nark, Douglas M.; Lodding, Kenneth N.

    2010-01-01

    In the last decade, the realization of small, inexpensive, and powerful devices with sensors, computers, and wireless communication has promised the development of massive sized sensor networks with dense deployments over large areas capable of high fidelity situational assessments. However, most management models have been based on centralized control and research has concentrated on methods for passing data from sensor devices to the central controller. Most implementations have been small but, as it is not scalable, this methodology is insufficient for massive deployments. Here, a specific application of a large sensor network for adaptive noise reduction demonstrates a new paradigm where communities of sensor/computer devices assess local conditions and make local decisions from which emerges a global behaviour. This approach obviates many of the problems of centralized control as it is not prone to single point of failure and is more scalable, efficient, robust, and fault tolerant

  12. Wake Management Strategies for Reduction of Turbomachinery Fan Noise

    Waitz, Ian A.

    1998-01-01

    The primary objective of our work was to evaluate and test several wake management schemes for the reduction of turbomachinery fan noise. Throughout the course of this work we relied on several tools. These include 1) Two-dimensional steady boundary-layer and wake analyses using MISES (a thin-shear layer Navier-Stokes code), 2) Two-dimensional unsteady wake-stator interaction simulations using UNSFLO, 3) Three-dimensional, steady Navier-Stokes rotor simulations using NEWT, 4) Internal blade passage design using quasi-one-dimensional passage flow models developed at MIT, 5) Acoustic modeling using LINSUB, 6) Acoustic modeling using VO72, 7) Experiments in a low-speed cascade wind-tunnel, and 8) ADP fan rig tests in the MIT Blowdown Compressor.

  13. Image fusion approach with noise reduction using Genetic algorithm

    Gehad Mohamed Taher

    2013-12-01

    Full Text Available Image fusion is becoming a challenging field as for its importance to different applications, Multi focus image fusion is a type of image fusion that is used in medical fields, surveillances, and military issues to get the image all in focus from multi images every one is in focus in a different part, and for making the input images more accurate before making the fusing process we use Genetic Algorithm (GA for image de-noising as a preprocessing process. In our research paper we introduce a new approach that begin with image de-noising using GA and then apply the curvelet transform for image decomposition to get a multi focus image fusion image that is focused in all of its parts. The results show that Curvelet transform had been proven to be effective at detecting image activity along curves, and increasing the quality of the obtained fused images. And applying the mean fusion rule for fusing multi-focus images gives accurate results than PCA, contrast and mode fusion rule, Also, GA shows more accurate results in image de-noising after comparing it to contourlet transform.

  14. High-frequency jet nozzle actuators for noise reduction

    Davis, Christopher L.; Calkins, Frederick T.; Butler, George W.

    2003-08-01

    Rules governing airport noise levels are becoming more restrictive and will soon affect the operation of commercial air traffic. Sound produced by jet engine exhaust, particularly during takeoff, is a major contributor to the community noise problem. The noise spectrum is broadband in character and is produced by turbulent mixing of primary, secondary, and ambient streams of the jet engine exhaust. As a potential approach to controlling the noise levels, piezoelectric bimorph actuators have been tailored to enhance the mixing of a single jet with its quiescent environment. The actuators are located at the edge of the nozzle and protrude into the exhaust stream. Several actuator configurations were considered to target two excitation frequencies, 250 Hz and 900 Hz, closely coupled to the naturally unstable frequencies of the mixing process. The piezoelectric actuators were constructed of 10 mil thick d31 poled wafer PZT-5A material bonded to either 10 or 20 mil thick spring steel substrates. Linear analytical beam models and NASTRAN finite element models were used to predict and assess the dynamic performance of the actuators. Experimental mechanical and electrical performance measurements were used to validate the models. A 3 inch diameter nozzle was fitted with actuators and tested in the Boeing Quiet Air Facility with the jet velocity varied from 50 to 1000 ft/s. Performance was evaluated using near-field and far-field acoustic data, flow visualization, and actuator health data. The overall sound pressure level produced from the 3 inch diameter jet illustrates the effect of both static and active actuators.

  15. Passive Techniques for Fan Noise Reduction in New Turbofan Engines: Review

    M.Gorj-Bandpy; M. Azimi

    2013-01-01

    Among the various environmental concerns, the aircraft noise item has been constantly growing in importance over the past years. Measures for its reduction at the source as well its mitigation around airports must take into account aspects of medicine and technical design as well as legal and land use planning aspects. Fan noise is one of the principal noise sources in turbofan aero-engines. In this paper a review of the main technologies employed for the reduction of fan noise turbo...

  16. Analytical Comparison of Noise Reduction Filters for Image Restoration Using SNR Estimation

    Poorna Banerjee Dasgupta

    2014-01-01

    Noise removal from images is a part of image restoration in which we try to reconstruct or recover an image that has been degraded by using a priori knowledge of the degradation phenomenon. Noises present in images can be of various types with their characteristic Probability Distribution Functions (PDF). Noise removal techniques depend on the kind of noise present in the image rather than on the image itself. This paper explores the effects of applying noise reduction filters having similar ...

  17. NOISE REDUCTION SCHEDULING METHOD IN A SHOP FLOOR AND ITS CASE STUDY

    Liu Fei; Cao Huajun; Zhang Hua; Yuan Chuanping

    2003-01-01

    Noise reduction in a shop floor is one of the important parts of green manufacturing. In a shop floor, machine tools are the main noise sources in a shop floor. A new approach is discovered by investigation that the noise can be obviously reduced in a shop floor by optimizing the scheduling between work pieces and machine tools. Based on the discovery, a new method of noise reduction is proposed. A noise reduction scheduling model in a shop floor is established, and the application of the model is also discussed. A case is studied, which shows that the method and model are practical.

  18. Experimental investigation of the noise reduction of supersonic exhaust jets with fluidic inserts

    Powers, Russell William Walter

    The noise produced by the supersonic, high temperature jets that exhaust from military aircraft is becoming a hazard to naval personnel and a disturbance to communities near military bases. Methods to reduce the noise produced from these jets in a practical full-scale environment are difficult. The development and analysis of distributed nozzle blowing for the reduction of radiated noise from supersonic jets is described. Model scale experiments of jets that simulate the exhaust jets from typical low-bypass ratio military jet aircraft engines during takeoff are performed. Fluidic inserts are created that use distributed blowing in the divergent section of the nozzle to simulate mechanical, hardwall corrugations, while having the advantage of being an active control method. This research focuses on model scale experiments to better understand the fluidic insert noise reduction method. Distributed blowing within the divergent section of the military-style convergent divergent nozzle alters the shock structure of the jet in addition to creating streamwise vorticity for the reduction of mixing noise. Enhancements to the fluidic insert design have been performed along with experiments over a large number of injection parameters and core jet conditions. Primarily military-style round nozzles have been used, with preliminary measurements of hardwall corrugations and fluidic inserts in rectangular nozzle geometries also performed. It has been shown that the noise reduction of the fluidic inserts is most heavily dependent upon the momentum flux ratio between the injector and core jet. Maximum reductions of approximately 5.5 dB OASPL have been observed with practical mass flow rates and injection pressures. The first measurements with fluidic inserts in the presence of a forward flight stream have been performed. Optimal noise reduction occurs at similar injector parameters in the presence of forward flight. Fluidic inserts in the presence of a forward flight stream were

  19. Synthetic Stimuli for the Steady-State Verification of Modulation-Based Noise Reduction Systems

    Jesko G. Lamm

    2009-01-01

    Full Text Available Hearing instrument verification involves measuring the performance of noise reduction systems. Synthetic stimuli are proposed as test signals, because they can be tailored to the parameter space of the noise reduction system under test. The article presents stimuli targeted at steady-state measurements in modulation-based noise reduction systems. It shows possible applications of these stimuli and measurement results obtained with an exemplary hearing instrument.

  20. Active Flow Effectors for Noise and Separation Control

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  1. Noise reduction of high-power supercontinuum sources by back seeding

    Moselund, Peter Morten; Frosz, Michael Henoch; Thomsen, Carsten L.; Bang, Ole

    2009-01-01

    We investigate noise reduction in seeded supercontinuum generation at powers above the supercontinuum generation threshold and show that seeding of supercontinuum is also beneficial at high pump powers.

  2. Aero-Acoustics of Modern Transonic Fans—Fan Noise Reduction from Its Sources

    L. Xu; J.D. Denton

    2003-01-01

    The noise of aerodynamics nature from modern transonic fan is examined from its sources with the perspective of noise reduction through aero-acoustics design using advanced Computational Fluid Dynamics (CFD) tools.In particular the problems associated with the forward propagating noise in the front is addressed. It is identified that the shock wave spillage from the leading edge near the fan tip is the main source of the tone noise. Two different approaches have been studied to reduce the forward arc tone noise and two state-of-art transonic fans are designed using the strategies developed. The following rig tests show that while the fans exhibit other noise problems,the primary goals of noise reduction have been achieved through both fans and the novel noise reduction concept vindicated.

  3. Noise Reduction in Magnetic Resonance Images using Wave Atom Shrinkage

    J.Rajeesh, R.S.Moni, S.Palanikumar, T.Gopalakrishnan

    2010-06-01

    Full Text Available De-noising is always a challenging problem in magnetic resonance imaging andimportant for clinical diagnosis and computerized analysis, such as tissueclassification and segmentation. It is well known that the noise in magneticresonance imaging has a Rician distribution. Unlike additive Gaussian noise,Rician noise is signal dependent, and separating signal from noise is a difficulttask. An efficient method for enhancement of noisy magnetic resonance imageusing wave atom shrinkage is proposed. The reconstructed MRI data have highSignal to Noise Ratio (SNR compared to the curvelet and wavelet domain denoisingapproaches.

  4. Active control of road booming noise in automotive interiors.

    Oh, Shi-Hwan; Kim, Hyoun-suk; Park, Youngjin

    2002-01-01

    An active feedforward control system has been developed to reduce the road booming noise that has strong nonlinear characteristics. Four acceleration transducers were attached to the suspension system to detect reference vibration and two loudspeakers were used to attenuate the noise near the headrests of two front seats. A leaky constraint multiple filtered-X LMS algorithm with an IIR-based filter that has fast convergence speed and frequency selective controllability was proposed to increase the control efficiency in computing power and memory usage. During the test drive on the rough asphalt and turtle-back road at a constant speed of 60 km/h, we were able to achieve a reduction of around 6 dB of A-weighted sound pressure level in the road booming noise range with the proposed algorithm, which could not be obtained with the conventional multiple filtered-X LMS algorithm. PMID:11831793

  5. Flap Side Edge Liners for Airframe Noise Reduction

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  6. Nature-Inspired Airfoils for Environmental Noise Reduction

    Han, Suyeong; Kyung, Richard

    2013-11-01

    Recently, study on the insects' flapping flight became one of the challenging research subjects in the field of environmental engineering and aeronautics because of its potential applicability to intelligent micro-robots capable of autonomous flight and the next generation aerial-vehicles. In order to uncover its curious unsteady characteristics, many researchers have conducted experimental and computational studies on the unsteady aerodynamics of insects' flapping flight. In the present work, the unsteady flow physics around insect wings are conducted by utilizing numerical and computational simulation. The e-AIRS [6] (e-Science Aerospace Integrated Research System) gives a balanced service between computational and experimental aerodynamics, along with integrated research process of these two research activities. This paper presents the wing motions and their aerodynamics with a two dimensional approach to reduce environmental noise during the airflight. Also this paper shows an optimal phase angle, where the thrust is maximized at the position of minimized drag, which occurs when noise is minimized. Aside from the two-dimensional approach, stroke angles and phase angles of the airfoils are set as parameters, to determine which motion yields the best aerodynamic characteristics.

  7. Numerical Studies on a Rotor with Distributed Suction for Noise Reduction

    Minimizing the flow-induced noise is an important issue in the design of modern onshore wind turbines. There is a number of proven passive means to reduce the aeroacoustic noise, such as the implementation of serrations, porous trailing edges or the aeroacoustic airfoil design. The noise emission can be further reduced by active flow control techniques. In the present study the impact of distributed boundary layer suction on the noise emission of an airfoil and a complete rotor is investigated. Aerodynamic and aeroacoustic wind tunnel tests were performed for the NACA 64-418 airfoil and supplemented by numerical calculations. The aeroacoustic analyses have been conducted by means of the institute's Rnoise prediction scheme. The 2D studies have shown that noise reductions of 5 dB can be achieved by suction at moderate mass flow rates. To study the impact of three-dimensional effects numerical investigations have been conducted on the example of the generic NREL 5MW rotor with suction applied in the outer part of the blade. The predictions for the complete rotor provided smaller benefits compared to those for the isolated airfoil, mainly because the examined suction configurations were not optimized with respect to the extent of the suction patch and suction distribution

  8. Comparison of measured and predicted airfoil self-noise with application to wind turbine noise reduction

    In the ongoing JOULE-III project 'Development of Design Tools for Reduced Aerodynamic Noise Wind Turbines (DRAW)', prediction codes for inflow-turbulence (IT) noise and turbulent boundary layer trailing-edge (TE) noise, are developed and validated. It is shown that the differences in IT noise radiation between airfoils having a different shape, are correctly predicted. The first, preliminary comparison made between predicted and measured TE noise spectra yields satisfactory results. 17 refs

  9. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  10. A Flexible Speech Distortion Weighted Multi-Channel Wiener Filter for Noise Reduction in Hearing Aids

    Ngo, K.; Moonen, M.; Jensen, Søren Holdt;

    2011-01-01

    In this paper, a multi-channel noise reduction algorithm is presented based on a Speech Distortion Weighted Multi-channel Wiener Filter (SDW-MWF) approach that incorporates a flexible weighting factor. A typical SDW-MWF uses a fixed weighting factor to trade-off between noise reduction and speech......-only and a speech+noise state, a solution is introduced that allows for a more flexible trade-off between noise reduction and speech distortion. Experimental results with hearing aid scenarios demonstrate that the proposed SDW-MWF incorporating the flexible weighting factor improves the signal...

  11. Noise reduction of high-power supercontinuum sources by back seeding

    Moselund, Peter Morten; Frosz, Michael Henoch; Thomsen, Carsten L.;

    2009-01-01

    We investigate noise reduction in seeded supercontinuum generation at powers above the supercontinuum generation threshold and show that seeding of supercontinuum is also beneficial at high pump powers.......We investigate noise reduction in seeded supercontinuum generation at powers above the supercontinuum generation threshold and show that seeding of supercontinuum is also beneficial at high pump powers....

  12. Acoustical and Perceptual Comparison of Noise Reduction and Compression in Hearing Aids

    Brons, Inge; Houben, Rolph; Dreschler, Wouter A.

    2015-01-01

    Purpose: Noise reduction and dynamic-range compression are generally applied together in hearing aids but may have opposite effects on amplification. This study evaluated the acoustical and perceptual effects of separate and combined processing of noise reduction and compression. Design: Recordings of the output of 4 hearing aids for speech in…

  13. Dispersion cancellation and non-classical noise reduction for large photon-number states

    Fitch, M. J.; Franson, J. D.

    2002-01-01

    Nonlocal dispersion cancellation is generalized to frequency-entangled states with large photon number N. We show that the same entangled states can simultaneously exhibit a factor of 1/sqrt(N) reduction in noise below the classical shot noise limit in precise timing applications, as was previously suggested by Giovannetti, Lloyd and Maccone (Nature v412 (2001) p417). The quantum-mechanical noise reduction can be destroyed by a relatively small amount of uncompensated dispersion and entangled...

  14. Evaluation of the sparse coding shrinkage noise reduction algorithm for the hearing impaired

    Sang, Jinqiu

    2012-01-01

    Although there are numerous single-channel noise reduction strategies to improve speech perception in a noisy environment, most of them can only improve speech quality but not improve speech intelligibility for normal hearing (NH) or hearing impaired (HI) listeners. Exceptions that can improve speech intelligibility currently are only those that require a priori statistics of speech or noise. Most of the noise reduction algorithms in hearing aids are adopted directly from the algorithms for N...

  15. Railway noise reduction by the application of CHFC material on the rail

    Altenbaher, Brigita; Darja GOLTNIK; Rosi, Bojan

    2015-01-01

    Traffic is the most widespread source of environmental noise. Railway noise has become increasingly common in urban areas in the past few decades. Therefore environmental requirements for railway operations regarding noise are becoming very strict and will become even tighter in future. In the present paper we present actual track-based field test performed on Slovenian Railways. The significant noise reduction (up to 30dBA) was achieved by the application of CHFC material on the rail using C...

  16. Noise reduction of circular sawing machines, influence of tooth shape and number of teeth

    Huber, H.; Muenz, U. V.

    1982-03-01

    While cutting, circular sawing machines create a noise level of 97 to 106 dB(A). The tooth geometry and the dimensions of a silent saw are investigated as well as noise damping measurements on the machines. After alteration of tools and machines the noise level measurements were performed. By decrease of tooth height and number of teeth and by damping of machine parts, noise level reductions of about 10 dB(A) were achieved.

  17. Active noise cancellation in hearing devices

    2013-01-01

    Disclosed is a hearing device system comprising at least one hearing aid circuitry and at least one active noise cancellation unit, the at least one hearing aid circuitry comprises at least one input transducer adapted to convert a first audio signal to an electric audio signal; a signal processor...... connected to the at least one input transducer and adapted to process said electric audio signal by at least partially correcting for a hearing loss of a user; an output transducer adapted to generate from at least said processed electric audio signal a sound pressure in an ear canal of the user, whereby...... addition to said generated sound pressure, wherein the hearing device system further comprises a combiner unit adapted to combine the processed electric audio signal with the active noise cancellation signal, to obtain a combined signal and to provide the combined signal to the output transducer....

  18. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved...

  19. Active noise control for high frequencies

    Kaymak, E; Atherton, MA; Rotter, KRG; Millar, B.

    2006-01-01

    There are many applications that can benefit from Active Noise Control (ANC) such as in aircraft cabins and air conditioning ducts, i.e. in situations where technology interferes with human hearing in a harmful way or disrupts communication. Headsets with analogue ANC circuits have been used in the armed forces for attenuating frequencies below 1 kHz, which when combined with passive filtering offers protection across the whole frequency range of human hearing. A dental surgery is also a nois...

  20. Noise-based tube current reduction method with iterative reconstruction for reduction of radiation exposure in coronary CT angiography

    Purpose: To investigate the potential of noise-based tube current reduction method with iterative reconstruction to reduce radiation exposure while achieving consistent image quality in coronary CT angiography (CCTA). Materials and methods: 294 patients underwent CCTA on a 64-detector row CT equipped with iterative reconstruction. 102 patients with fixed tube current were assigned to Group 1, which was used to establish noise-based tube current modulation formulas, where tube current was modulated by the noise of test bolus image. 192 patients with noise-based tube current were randomly assigned to Group 2 and Group 3. Filtered back projection was applied for Group 2 and iterative reconstruction for Group 3. Qualitative image quality was assessed with a 5 point score. Image noise, signal intensity, volume CT dose index, and dose-length product were measured. Results: The noise-based tube current modulation formulas were established through regression analysis using image noise measurements in Group 1. Image noise was precisely maintained at the target value of 35.00 HU with small interquartile ranges for Group 2 (34.17–35.08 HU) and Group 3 (34.34–35.03 HU), while it was from 28.41 to 36.49 HU for Group 1. All images in the three groups were acceptable for diagnosis. A relative 14% and 41% reduction in effective dose for Group 2 and Group 3 were observed compared with Group 1. Conclusion: Adequate image quality could be maintained at a desired and consistent noise level with overall 14% dose reduction using noise-based tube current reduction method. The use of iterative reconstruction further achieved approximately 40% reduction in effective dose

  1. Noise Reduction in the Time Domain using Joint Diagonalization

    Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    A new filter design based on joint diagonalization of the clean speech and noise covariance matrices is proposed. First, an estimate of the noise is found by filtering the observed signal. The filter for this is generated by a weighted sum of the eigenvectors from the joint diagonalization. Second...

  2. Stochastic noise reduction upon complexification: positively correlated birth-death type systems.

    Rooman, Marianne; Albert, Jaroslav; Duerinckx, Mitia

    2014-08-01

    Cell systems consist of a huge number of various molecules that display specific patterns of interactions, which have a determining influence on the cell׳s functioning. In general, such complexity is seen to increase with the complexity of the organism, with a concomitant increase of the accuracy and specificity of the cellular processes. The question thus arises how the complexification of systems - modeled here by simple interacting birth-death type processes - can lead to a reduction of the noise - described by the variance of the number of molecules. To gain understanding of this issue, we investigated the difference between a single system containing molecules that are produced and degraded, and the same system - with the same average number of molecules - connected to a buffer. We modeled these systems using Itō stochastic differential equations in discrete time, as they allow straightforward analytical developments. In general, when the molecules in the system and the buffer are positively correlated, the variance on the number of molecules in the system is found to decrease compared to the equivalent system without a buffer. Only buffers that are too noisy themselves tend to increase the noise in the main system. We tested this result on two model cases, in which the system and the buffer contain proteins in their active and inactive state, or protein monomers and homodimers. We found that in the second test case, where the interconversion terms are non-linear in the number of molecules, the noise reduction is much more pronounced; it reaches up to 20% reduction of the Fano factor with the parameter values tested in numerical simulations on an unperturbed birth-death model. We extended our analysis to two arbitrary interconnected systems, and found that the sum of the noise levels in the two systems generally decreases upon interconnection if the molecules they contain are positively correlated. PMID:24632443

  3. Meeting 2006, outdoor noise directive (OND) noise levels for a diesel engine driven air compressor: A case study in noise reduction

    Rowe, David F.

    2005-09-01

    In January 2006, the noise limits for many products in the European Union will drop by 2-3 dBA, as directed by 2000/14/EC ``Noise Emission in the Environment by Equipment Used Outdoors,'' commonly called the ``Outdoor Noise Directive,'' or ``OND.'' Air compressors are among the products addressed by this directive. At Ingersoll-Rand, significant effort has been directed at meeting the challenge of reducing noise on a variety of diesel engine driven air compressor platforms, ranging from 15 to 350 kW diesel engine power ratings. This paper presents a case study of the noise reduction on a 750 cfm (21 m3/min) air compressor operating at 300 psig (21 bar), to meet the 2006 OND noise limit of 100 LwA.

  4. Scope for active noise abatement in vehicle diesel engines

    Summerauer, I.; Boesch, N.

    1984-04-01

    Noise reduction measures must be directed to the engine, the exhaust system, and the cooling system (fan) all of which contribute approximately 90% of the sound energy emitted from commercial diesel trucks. The noise generation processes were visualized and limiting conditions fixed by law were considered in establishing criteria for active solar noise abatement measures. A more effective silencer and better vibration damping on the surface of the silencer and exhaust pipes can reduce noise from the exhaust system. Acoustic emission generated by the fan and air flow can be reduced by decreasing flow velocity or by turning on the fan only when a full cooling output is required (10% of the time). Active measures are needed on the engine itself either at the point of the solid-borne sound transmission or at the point of the solid-borne vibrations. The predominant effect is on the engine casing; oil sump; air suction pipe or air charge line; the flywheel casing; and the clutch housing.

  5. Survey of techniques for reduction of wind turbine blade trailing edge noise.

    Barone, Matthew Franklin

    2011-08-01

    Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

  6. Column-Parallel Correlated Multiple Sampling Circuits for CMOS Image Sensors and Their Noise Reduction Effects

    Shoji Kawahito

    2010-10-01

    Full Text Available For low-noise complementary metal-oxide-semiconductor (CMOS image sensors, the reduction of pixel source follower noises is becoming very important. Column-parallel high-gain readout circuits are useful for low-noise CMOS image sensors. This paper presents column-parallel high-gain signal readout circuits, correlated multiple sampling (CMS circuits and their noise reduction effects. In the CMS, the gain of the noise cancelling is controlled by the number of samplings. It has a similar effect to that of an amplified CDS for the thermal noise but is a little more effective for 1/f and RTS noises. Two types of the CMS with simple integration and folding integration are proposed. In the folding integration, the output signal swing is suppressed by a negative feedback using a comparator and one-bit D-to-A converter. The CMS circuit using the folding integration technique allows to realize a very low-noise level while maintaining a wide dynamic range. The noise reduction effects of their circuits have been investigated with a noise analysis and an implementation of a 1Mpixel pinned photodiode CMOS image sensor. Using 16 samplings, dynamic range of 59.4 dB and noise level of 1.9 e- for the simple integration CMS and 75 dB and 2.2 e- for the folding integration CMS, respectively, are obtained.

  7. Reduction of Radiographic Quantum Noise Using Adaptive Weighted Median Filter

    Images are easily corrupted by noise during the data transmission, data capture and data processing. A technical method of noise analyzing and adaptive filtering for reducing of quantum noise in radiography is presented. By adjusting the characteristics of the filter according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in reading. We have proposed adaptive weighted median(AWM) filters based on local statistics. We show two ways of realizing the AWM filters. One is a simple type of AWM filter, whose weights are given by a simple non-linear function of three local characteristics. The other is the AWM filter which is constructed by homogeneous factor(HF). Homogeneous factor(HF) from the quantum noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the detection systems with various inner statistical properties is proposed. We show by the experimented that the performances of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region. The proposed algorithms were implemented by visual C++ language on a IBM-PC Pentium 550 for testing purposes, the effects and results of the noise filtering were proposed by comparing with images of the other existing filtering methods

  8. Quantitative appraisal for noise reduction in digital holographic phase imaging.

    Montresor, Silvio; Picart, Pascal

    2016-06-27

    This paper discusses on a quantitative comparison of the performances of different advanced algorithms for phase data de-noising. In order to quantify the performances, several criteria are proposed: the gain in the signal-to-noise ratio, the Q index, the standard deviation of the phase error, and the signal to distortion ratio. The proposed methodology to investigate de-noising algorithms is based on the use of a realistic simulation of noise-corrupted phase data. A database including 25 fringe patterns divided into 5 patterns and 5 different signal-to-noise ratios was generated to evaluate the selected de-noising algorithms. A total of 34 algorithms divided into different families were evaluated. Quantitative appraisal leads to ranking within the considered criteria. A fairly good correlation between the signal-to-noise ratio gain and the quality index has been observed. There exists an anti-correlation between the phase error and the quality index which indicates that the phase errors are mainly structural distortions in the fringe pattern. Experimental results are thoroughly discussed in the paper. PMID:27410587

  9. Noise reduction for centrifugal fan with non-isometric forward-swept blade impeller

    Jianfeng MA; Datong QI; Yijun MAO

    2008-01-01

    To reduce the noise of the T9-19No.4A centri-fugal fan, whose impeller has equidistant forward-swept blades, two new impellers with different blade spacing were designed and an experimental study was conducted. Both the fan's aerodynamic performance and noise were measured when the two redesigned impellers were com-pared with the original ones. The test results are discussed in detail and the effect of the noise reduction method for a centrifugal fan using impellers with non-isometric for-ward-swept blades was analyzed, which can serve as a reference for researches on reduction of fan noise.

  10. Passive Techniques for Fan Noise Reduction in New Turbofan Engines: Review

    M.Gorj-Bandpy

    2013-03-01

    Full Text Available Among the various environmental concerns, the aircraft noise item has been constantly growing in importance over the past years. Measures for its reduction at the source as well its mitigation around airports must take into account aspects of medicine and technical design as well as legal and land use planning aspects. Fan noise is one of the principal noise sources in turbofan aero-engines. In this paper a review of the main technologies employed for the reduction of fan noise turbofan engines is presented.

  11. Analysis of Beamformer Directed Single-Channel Noise Reduction System for Hearing Aid Applications

    Jensen, Jesper; Pedersen, Michael Syskind

    We study multi-microphone noise reduction systems consisting of a beamformer and a single-channel (SC) noise reduction stage. In particular, we present and analyse a maximum likelihood (ML) method for jointly estimating the target and noise power spectral densities (psd's) entering the SC filter....... locations. In a hearing aid context, we analyze the performance of the estimators as a function of target angle-of-arrival and frequency. Finally, we demonstrate the advantage of the proposed method in a hearing aid situation with a target speaker in large-crowd noise....

  12. Noise Reduction in High-Throughput Gene Perturbation Screens

    Motivation: Accurate interpretation of perturbation screens is essential for a successful functional investigation. However, the screened phenotypes are often distorted by noise, and their analysis requires specialized statistical analysis tools. The number and scope of statistical methods available...

  13. Reduction of HCCI combustion noise through piston crown design

    Pedersen, Troels Dyhr; Schramm, Jesper

    2010-01-01

    further reduced with another piston crown where eight cylindrical volumes were drilled into the piston crown, so that the cylinder liner was not exposed directly to the combustion. A configuration with seven hemispherical volumes was less silent in operation, but still better than the flat piston crown......Seven shapes of piston crowns have been evaluated for their ability to reduce HCCI knock and transmission of combustion noise to the engine. The performance of each piston crown was evaluated with measurements of cylinder pressure, engine vibration and acoustic sound pressure measured one meter...... compression volume into four smaller volumes placed between the perimeter of the piston and the cylinder liner increased the noise to a higher level than that generated with a flat piston crown. This was due to resonance between the four volumes. Using eight volumes instead decreased the noise. The noise was...

  14. Performance Analysis of Noise Reduction Technologies in Brain MRI Image

    Sheela.V.K

    2016-02-01

    Full Text Available Rapid advancement in icon-based analysis for the treatment of diseases which are affected on internal organs of human body drives medical imaging processing into an important technique among various methods of psychoanalysis. Among all the available imaging modalities magnetic resonance imaging techniques are extensively used for the analysis and discussion of diseases in soft tissue. MRI image provides insight into the anatomical structure within the body. Accuracy of the construction of the target within the body depends upon the overall imaging process. The quality of MRI image determines the effectiveness in feature extraction, analysis, recognition and quantitative measurements. The primary factors which decrease the visibility of the structure are blurring effect and noises. This leads to the need of removal of noise from MRI images as a function of the preprocessing technique in image processing; usually noise filters are employed for this function. In this paper analyzes the operation of different noise filters.

  15. Adaptive noise reduction for fiber optic gyroscopes in borehole applications

    Yan, Tingyang; Zhang, Chunxi; Gao, Shuang; Ma, Zongfeng

    2006-11-01

    Fiber Optic Gyroscopes (FOGs) have been investigated and proposed as alternative sensors to magnetometers in borehole surveying applications due to their compactness, ruggedness, low cost and high environmental insensitivity. However, FOGs are subject to high measurement noise from various sources, which deteriorates the performance and quality of FOGs, thus the overall system accuracy is limited. To improve the accuracy of the surveying system, adaptive filtering techniques are utilized to reduce the noise level at the output of the FOG. A Forward Linear Prediction (FLP) filter based on Normalized Least-Mean-Square (NLMS) adaptive algorithm was designed and evaluated using kinematic data. Results show that the FLP filter can suppress the FOG noise to a certain degree and a satisfactory signal-to-noise ratio improvement can be achieved using this method.

  16. Reduction of noise and bias in randomly sampled power spectra

    Buchhave, Preben; Velte, Clara Marika

    2015-01-01

    modifications of the ideal Poisson sample rate caused by dead time effects and correlations between velocity and sample rate. The noise and dead time effects for finite records are shown to tend to previous results for infinite time records and ensemble averages. For finite records, we show that the measured...... sampling function can be used to correct the spectra for noise and dead time effects by a deconvolution process. We also describe a novel version of a power spectral estimator based on a fast slotted autocovariance algorithm.......We consider the origin of noise and distortion in power spectral estimates of randomly sampled data, specifically velocity data measured with a burst-mode laser Doppler anemometer. The analysis guides us to new ways of reducing noise and removing spectral bias, e.g., distortions caused by...

  17. Noise reduction of a Libbrecht--Hall style current driver

    Seck, Christopher M; Cook, Eryn C; Odom, Brian C; Steck, Daniel A

    2016-01-01

    The Libbrecht--Hall circuit is a well-known, low-noise current driver for narrow-linewidth diode lasers. An important feature of the circuit is a current limit to protect the laser diode. As the current approaches the maximum limit, however, the noise in the laser current increases dramatically. This paper documents this behavior and explores simple circuit modifications to alleviate this issue.

  18. Single and Multiple Microphone Noise Reduction Strategies in Cochlear Implants

    Kokkinakis, Kostas; Azimi, Behnam; Hu, Yi; Friedland, David R.

    2012-01-01

    To restore hearing sensation, cochlear implants deliver electrical pulses to the auditory nerve by relying on sophisticated signal processing algorithms that convert acoustic inputs to electrical stimuli. Although individuals fitted with cochlear implants perform well in quiet, in the presence of background noise, the speech intelligibility of cochlear implant listeners is more susceptible to background noise than that of normal hearing listeners. Traditionally, to increase performance in noi...

  19. Noise reduction of a Libbrecht-Hall style current driver

    Seck, Christopher M.; Martin, Paul J.; Cook, Eryn C.; Odom, Brian C.; Steck, Daniel A.

    2016-06-01

    The Libbrecht-Hall circuit is a well-known, low-noise current driver for narrow-linewidth diode lasers. An important feature of the circuit is a current limit to protect the laser diode. As the current approaches the maximum limit, however, the noise in the laser current increases dramatically. This paper documents this behavior and explores simple circuit modifications to alleviate this issue.

  20. Railway noise reduction by the application of CHFC material on the rail

    Brigita ALTENBAHER

    2015-06-01

    Full Text Available Traffic is the most widespread source of environmental noise. Railway noise has become increasingly common in urban areas in the past few decades. Therefore environmental requirements for railway operations regarding noise are becoming very strict and will become even tighter in future. In the present paper we present actual track-based field test performed on Slovenian Railways. The significant noise reduction (up to 30dBA was achieved by the application of CHFC material on the rail using CL-E1 top anti noise system.

  1. Numerical prediction of underwater noise reduction during offshore pile driving by a Small Bubble Curtain

    Göttsche, Klaus Marco; Juhl, Peter Møller; Steinhagen, Ulrich

    2013-01-01

    Small Bubble Curtains are an effective technique to reduce the underwater noise being emitted during offshore pile driving. In order to protect the marine fauna, noise reduction becomes even more important, since the increasing contribution of offshore wind energy leads to a rising number......, a method is presented in order to predict the rate of noise attenuation achieved by a Small Bubble Curtain. For this purpose, the bubble distribution is determined with Computational Fluid Dynamics. The noise radiation during pile driving is simulated by Finite Element Analysis and an Effective Medium...... a flexible and efficient noise prediction tool....

  2. Wind turbine noise reduction. An indicative cost estimation

    Since the 1st of January 2011 new rules apply for wind turbine noise. The rules include a different calculation method and different noise limits, intended for new wind turbines. In order to tackle noise annoyance from existing wind turbines the government is considering to set up a abatement operation, for which a cost estimate is given in this study. At an abatement limit of 47 decibel Lden (Level day-evening-night) approximately 450 dwellings would be eligible for noise remediation. The costs of this operation are estimated at 4.9 million euro. However, in many of these cases the wind turbine is probably owned by the respective residents. It is possible that public funds for noise remediation will not be allocated to the owners of dwellings that directly profit from the turbines. If these cases are excluded, the abatement operation would cover 165 to 275 dwellings with estimated costs for remediation of 1.6 to 2.6 million euro. A tentative cost-benefit analysis suggests that noise remediation will be cost effective in most situations. This means that the benefits of reduced annoyance or sleep disturbance are in balance with the cost of remediation. Only for the small group of wind turbines that are in use for over fifteen years, remediation will not be cost effective. These wind turbines are nearing the end of their lifespan and are therefore ignored in the above estimates.

  3. Patient radiation dose reduction using an X-ray imaging noise reduction technology for cardiac angiography and intervention.

    Nakamura, Shigeru; Kobayashi, Tomoko; Funatsu, Atsushi; Okada, Tadahisa; Mauti, Maria; Waizumi, Yuki; Yamada, Shinichi

    2016-05-01

    Coronary angiography and intervention can expose patients to high radiation dose. This retrospective study quantifies the patient dose reduction due to the introduction of a novel X-ray imaging noise reduction technology using advanced real-time image noise reduction algorithms and optimized acquisition chain for fluoroscopy and exposure in interventional cardiology. Patient, procedure and radiation dose data were retrospectively collected in the period August 2012-August 2013 for 883 patients treated with the image noise reduction technology (referred as "new system"). The same data were collected for 1083 patients in the period April 2011-July 2012 with a system using state-of-the-art image processing and reference acquisition chain (referred as "reference system"). Procedures were divided into diagnostic (CAG) and intervention (PCI). Acquisition parameters such as fluoroscopy time, volume of contrast medium, number of exposure images and number of stored fluoroscopy images were collected to classify procedure complexity. The procedural dose reduction was investigated separately for three main cardiologists. The new system provides significant dose reduction compared to the reference system. Median DAP values decreased for all procedures (p imaging technology combining advanced real-time image noise reduction algorithms and anatomy-specific optimized fluoroscopy and cine acquisition chain provides 66 % patient dose reduction in interventional cardiology. PMID:25840815

  4. Active Control of Fan Noise-Feasibility Study. Volume 1; Flyover System Noise Studies

    Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.

    1994-01-01

    A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.

  5. Minimizing noise in fiberglass aquaculture tanks: Noise reduction potential of various retrofits

    Equipment used in intensive aquaculture systems, such as pumps and blowers can produce underwater sound levels and frequencies within the range of fish hearing. The impacts of underwater noise on fish are not well known, but limited research suggests that subjecting fish to noise could result in imp...

  6. Experiments to Determine Neighborhood Reactions to Light Airplanes With and Without External Noise Reduction

    Elwell, Fred S

    1953-01-01

    The work reported was part of a program of experimentation with external noise reduction on light airplanes. This particular study was in effect a byproduct survey conceived to utilize already available equipment and personnel to further the findings of the original research and to determine reactions in populated neighborhoods to light aircraft with and without noise-reduction equipment. The findings indicate that at the 10 sites within and about metropolitan Boston the degree of noise reduction previously found to be aerodynamically and structurally feasible did eliminate substantially all neighborhood objections to noise per se. The evidence clearly suggests that, when the noise nuisance is minimized to the extent found feasible, the number and severity of other objections also diminish -- evidently because the flight operations are noticed less when heard less.

  7. SAR imaging technique for reduction of sidelobes and noise

    Nguyen, Lam

    2009-05-01

    Multiplicative noise poses a big challenge for SAR imaging system, in which energy from the sidelobes of large RCS man-made and natural clutter objects spread throughout the resulting SAR imagery. Detection of small RCS targets is very difficult since their signatures might be obscured or even embedded in this multiplicative noise floor that is proportional to the RCS of surrounding clutter objects. ARL has developed a Recursive Sidelobe Minimization (RSM) technique that is combined with the standard backprojection image formation algorithm to suppress the multiplicative noise floor in the resulting SAR imagery. In this paper, we present the Recursive Sidelobe Minimization (RSM) technique. Although the technique is originally developed and tested using data from the Army Research Lab (ARL) UWB Synchronous Impulse Reconstruction (SIRE) forward-looking radar, it is also applicable for other SAR data sets with different configurations.

  8. EXPERIMENTAL INVESTIGATION OF PARAMETERS EFFECTING THE NOISE REDUCTION IN HERMITICALLY SEALED RECIPROCATING COMPRESSOR

    G.Laxmaiah; Dr.P.Ravinder Reddy; M N S V Kiran Kumar

    2011-01-01

    Hermetic reciprocating compressors are most commonly used in the refrigeration industry. The main source of noise in refrigerating and air conditioning machinery is the compressor. Reduction of noise in compressors is a complex criterion as many factors such as Shell Thickness, Shell Material, Suction Port Area and Discharge Port Area etc. contribute its effect on the noise and they also interact in a complex manner. In this work a screening test is carried out to find the relative effect of ...

  9. Effects of directional microphone and adaptive multichannel noise reduction algorithm on cochlear implant performance

    Chung, K.; Zeng, F G; Acker, K N

    2006-01-01

    Although cochlear implant (CI) users have enjoyed good speech recognition in quiet, they still have difficulties understanding speech in noise. We conducted three experiments to determine whether a directional microphone and an adaptive multichannel noise reduction algorithm could enhance Cl performance in noise and whether Speech Transmission Index (STI) can be used to predict CI performance in various acoustic and signal processing conditions. In Experiment 1, CI users listened to speech in...

  10. Single-photoelectron noise reduction in scintillation detectors

    The 1994--95 search at SLAC for mulicharged particles used four 21 x 21 x 130-cm3 Bicron 408 scintillation counters to detect a signal at the single-photoelectron level. The competing noise requiring minimization was due to a combination of PM tube (8-inch Thorne EMI 9353KA) afterpulsing and ambient radiation-induced scintillator luminescence. A very slow decay (> 30 μs) component was observed and received particular attention. Efforts to reduce the SPE noise included photomultiplier tube base modifications, detector shielding and cooling, signal amplification, and veto procedures

  11. Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies

    Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.

    1996-01-01

    An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure

  12. A Two-Sensor Noise Reduction System: Applications for Hands-Free Car Kit

    Régine Le Bouquin-Jeannès

    2003-10-01

    Full Text Available This paper presents a two-microphone speech enhancer designed to remove noise in hands-free car kits. The algorithm, based on the magnitude squared coherence, uses speech correlation and noise decorrelation to separate speech from noise. The remaining correlated noise is reduced using cross-spectral subtraction. Particular attention is focused on the estimation of the different spectral densities (noise and noisy signals power spectral densities which are critical for the quality of the algorithm. We also propose a continuous noise estimation, avoiding the need of vocal activity detector. Results on recorded signals are provided, showing the superiority of the two-sensor approach to single microphone techniques.

  13. Distortion of interaural time cues by directional noise reduction systems in modern digital hearing aids

    Van den Bogaert, Tim; Wouters, Jan; Klasen, Thomas James; Moonen, Marc

    2005-01-01

    This paper discusses the distortion of interaural time information by modern digital hearing aids. It is shown that two popular noise reduction techniques, namely a directional microphone and an adaptive directional microphone, are very sensitive to intermicrophone mismatch which results in the distortion of interaural time information. This interaural information is crucial for sound localization and speech perception in noise.

  14. Optimised Sound Absorbing Trim Panels for the Reduction of Aircraft Cabin Noise

    Hannink, M.H.C.; Wijnant, Y.H.; Boer, de A.

    2004-01-01

    The EU project FACE (Friendly Aircraft Cabin Environment) aims to improve the environmental comfort in aircraft cabins. As part of this project, this paper focuses on the reduction of noise in aircraft cabins. For modern aircraft flying at cruise conditions, this cabin noise is known to be dominated

  15. Effective Jet Properties for the Prediction of Turbulent Mixing Noise Reduction by Water Injection

    Kandula, Max; Lonergan, Michael J.

    2007-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the control volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  16. Noise reduction in CdZnTe coplanar-grid detectors

    Luke, Paul N.; Lee, Julie S.; Amman, Mark; Yu, Kin M.

    2001-11-15

    Noise measurements on CdZnTe detectors show that the main sources of detector-related noise are shot noise due to bulk leakage current and 1/f noise due to the detector surfaces. The magnitude of surface leakage current appears to have little or no effect on the detector noise. Measurements on guard-ring devices fabricated using gold-evaporated contacts show that the contacts behave as Schottky barriers, and the bulk current at typical operating voltages is likely dependent on the contact properties rather than directly on the material's bulk resistivity. This also suggests that the level of shot noise is affected by the detector contacts and not necessarily by the material's bulk resistivity. A significant reduction in the noise of coplanar-grid detectors has been obtained using a modified contact fabrication process.

  17. Preserving binaural hearing of hearing impaired subjects with binaural noise reduction systems for hearing aids

    Van den Bogaert, Tim; Wouters, Jan; Moonen, Marc

    2009-01-01

    Hearing aid users experience great difficulty in understanding speech in noisy environments. This has led to the introduction of noise reduction algorithms in hearing aids. The development of these algorithms is typically done monaurally. However, the human auditory system is a binaural system, which compares and combines the signals received by both ears to perceive a sound source as a single entity in space. Providing two monaural, independently operating, noise reduction sys...

  18. Dvadasham (Dodeca Edge Filter for Impulse Noise, Gaussian Noise, Quantum Noise Reduction in Images (A Generic Image Filter

    Naveen R Chanukotimath

    2013-07-01

    Full Text Available All image processing techniques need to extract meaningful information from images. However, the noise generated during image acquisition and transmission degrades the human interpretation, or computer-aided analysis of these images. Therefore, denoising should be performed to improve the image quality for more accurate analysis and diagnosis, So we thought of designing a generic image filter that can be applicable to remove Impulse noise, Gaussian noise, Quantum noise. In this paper we propose a novel image denoising technique Dvadasham (Dodeca Edge Filter (DEF. We applied this filter on various images, obtained the results by measuring parameters like Standard Deviation, Homogeneity and compared it with the results of existing Fuzzy Filter. The results obtained with DEF are quite promising than Fuzzy Filter.

  19. Reduction of aircraft noise in civil air transport by optimization of flight tracks and takeoff and approach procedures

    Rottmann, Uwe

    1988-08-01

    Noise optimized design of operational flight procedures for effective noise pollution reduction is analyzed. Power cutback during certain stages of approach and takeoff, extension of distance between sound source and sound receiver, as well as diminution of sound impact time are optimized for specific flight procedures and routings. Five takeoff and three landing procedures are analyzed in acoustic effects. Sound immission is computed by NOISIMSIS (NOISe IMpact SImulation System), a simulation system especially created for this task, under consideration of aircraft type specified sound emission characteristics and performance data as well as different meteorological conditions. The investigations for the example of Frankfurt airport result in formulating a planning guideline with notes and impulses for activities in operational noise abatement.

  20. Danish activities concerning noise in the environment (A)

    Ingerslev, Fritz

    The paper describes the administrative activities and the distribution between federal and local authorities. The importance of having a federal agency with highly qualified employees who can establish a superior national noise abatement strategy is stressed. The federal authority should represent...... the country in international collaboration. It is claimed that noise abatement will be diffuse and weak, if it is not based on a national strategy. The discussion of noise in the environment covers: external industrial noise, road traffic noise, and air traffic noise. The principles on which the...

  1. Power Mapping and Noise Reduction for Financial Correlations

    The spectral properties of financial correlation matrices can show features known from completely random matrices. A major reason is noise originating from the finite lengths of the financial time series used to compute the correlation matrix elements. In recent years, various methods have been proposed to reduce this noise, i.e. to clean the correlation matrices. This is of direct practical relevance for risk management in portfolio optimization. In this contribution, we discuss in detail the power mapping, a new shrinkage method. We show that the relevant parameter is, to a certain extent, self-determined. Due to the 'hirality' and the normalization of the correlation matrix, the optimal shrinkage parameter is fixed. We apply the power mapping and the well-known filtering method to market data and compare them by optimizing stock portfolios. We address the role of constraints by excluding short selling in the optimization. (author)

  2. Active Noise Control of the Heavy Truck Interior Cab

    2008-01-01

    In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interior noise of this vehicle are analyzed. According to the spectrum analysis of acquired noise signal, it is found out that the main frequencies of interior noise are less than 800Hz. Then the least squares lattice (LSL) algorithm is used as signal processing algorithm of the controller and a closed-loop control DSP system, based on TMS 320VC5416, is developed. The residual signal at driver's ear is used as feedback signal. Lastly, the developed ANC system is loaded into the heavy truck cab, and controlling the noise at driver's ear for that truck at different driving speeds is attempted. The noise control test results indicate that the cab interior noise is reduced averagely by 0.9 dBA at different driving speeds.

  3. Speckle Noise Reduction via Nonconvex High Total Variation Approach

    Yulian Wu; Xiangchu Feng

    2015-01-01

    We address the problem of speckle noise removal. The classical total variation is extensively used in this field to solve such problem, but this method suffers from the staircase-like artifacts and the loss of image details. In order to resolve these problems, a nonconvex total generalized variation (TGV) regularization is used to preserve both edges and details of the images. The TGV regularization which is able to remove the staircase effect has strong theoretical guarantee by means of its ...

  4. Landing Gear Door Liners for Airframe Noise Reduction

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  5. Noise Reduction for Nonlinear Nonstationary Time Series Data using Averaging Intrinsic Mode Function

    Christofer Toumazou

    2013-07-01

    Full Text Available A novel noise filtering algorithm based on averaging Intrinsic Mode Function (aIMF, which is a derivation of Empirical Mode Decomposition (EMD, is proposed to remove white-Gaussian noise of foreign currency exchange rates that are nonlinear nonstationary times series signals. Noise patterns with different amplitudes and frequencies were randomly mixed into the five exchange rates. A number of filters, namely; Extended Kalman Filter (EKF, Wavelet Transform (WT, Particle Filter (PF and the averaging Intrinsic Mode Function (aIMF algorithm were used to compare filtering and smoothing performance. The aIMF algorithm demonstrated high noise reduction among the performance of these filters.

  6. Under Water Noise Reduction Using Wavelet and Savitzky-Golay

    Selva Balan

    2014-04-01

    Full Text Available A precise, linear indication of the depth of water in a specific part of water body is what always required. Presently there are a wide variety of ways to produ ce a signal that tracks the depth of water.The Ultrasonic signal is most commonly used f or the depth estimation. This signal is affected by various underwater noises which results in inaccurate depth estimation. The objective of this paper is to provide noise reducti on methods for underwater acoustic signal.In present work, the signal processing is done on the data collected using TC2122 dual frequency transducer along with the Navisound 415 echo sounde r. There are two signal processing techniques which are used: The first method is deno ising algorithm based on Stationary wavelet transform (SWTand second method is Savitzky-Golay filter. The results are evaluated based on the criteria of peak signal to noise ratio and 3D S urfer plots of the dam reservoir whose depth estimation has to be done.

  7. Noise Reduction Analysis of Radar Rainfall Using Chaotic Dynamics and Filtering Techniques

    Soojun Kim

    2014-01-01

    Full Text Available The aim of this study is to evaluate the filtering techniques which can remove the noise involved in the time series. For this, Logistic series which is chaotic series and radar rainfall series are used for the evaluation of low-pass filter (LF and Kalman filter (KF. The noise is added to Logistic series by considering noise level and the noise added series is filtered by LF and KF for the noise reduction. The analysis for the evaluation of LF and KF techniques is performed by the correlation coefficient, standard error, the attractor, and the BDS statistic from chaos theory. The analysis result for Logistic series clearly showed that KF is better tool than LF for removing the noise. Also, we used the radar rainfall series for evaluating the noise reduction capabilities of LF and KF. In this case, it was difficult to distinguish which filtering technique is better way for noise reduction when the typical statistics such as correlation coefficient and standard error were used. However, when the attractor and the BDS statistic were used for evaluating LF and KF, we could clearly identify that KF is better than LF.

  8. Reduction of Noise Generated from Lower Part of Shinkansen Cars by Sound Absorption

    Kurita, Takeshi; Kikuchi, Yoshiki; Yamada, Haruo; Ido, Atsushi; Murata, Kaoru; Akiyama, Satoru

    In order to reduce Shinkansen wayside noise at higher speeds, it is necessary to reduce not only pantograph noise but also noise from the lower part of cars. With the aim of absorbing noise from the lower part of the car through a process of multiple sound reflections between the car body and a noise barrier, we developed sound-absorbing panels for the lower part of the car bodies through acoustic tests using a full-scale cut car model and running tests using "FASTECH360S", a high-speed test train of JR-East. In order to assess which sound-absorption areas are more effective in reducing wayside noise coming from the lower part of the cars, we conducted running tests with the sound-absorbing and non-sound-absorbing panels in different layout configurations. As a result, we found that: 1) attaching sound-absorbing panels reduces wayside noise from FASTECH360S running at 320 km/h by approximately 0.9 dB at a point 25 meters from the track, 2) sound-absorbing panels installed to side skirts have the greatest noise reduction effect and 3) the sound-absorbing panels at the front and back ends of the bogie space and on the side beam contribute almost nothing to noise reduction.

  9. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    National Aeronautics and Space Administration — The objective of the proposed Phase II research effort is to develop heterogeneous (HG) blankets for improved sound reduction in aircraft structures. Phase I...

  10. Civil helicopter noise assessment study Boeing-Vertol model 347. [recommendations for reduction of helicopter noise levels

    Hinterkeuser, E. G.; Sternfeld, H., Jr.

    1974-01-01

    A study was conducted to forecast the noise restrictions which may be imposed on civil transport helicopters in the 1975-1985 time period. Certification and community acceptance criteria were predicted. A 50 passenger tandem rotor helicopter based on the Boeing-Vertol Model 347 was studied to determine the noise reductions required, and the means of achieving them. Some of the important study recommendations are: (1) certification limits should be equivalent to 95 EPNdb at data points located at 500 feet to each side of the touchdown/takeoff point, and 1000 feet from this point directly under the approach and departure flight path. (2) community acceptance should be measured as Equivalent Noise Level (Leq), based on dBA, with separate limits for day and night operations, and (3) in order to comply with the above guidelines, the Model 347 helicopter will require studies and tests leading to several modifications.

  11. Noise Reduction of an Ultrasonic System for the IRR2 Research Reactor Tank

    As part of the IRR2 reactor preventive maintenance, an ultrasonic scanning system was developed for inspection of the reactor tank wall. The design validation was carried out in a full-sized mock-up. An important issue tested in the mock-up experiments was the ultrasonic scanning system sensitivity to electromagnetic noise. Indeed, the system was approved only after the noise levels were found to be tolerable. However, when the Ultrasonic Inspection System was first operated in the IRR2 reactor, unacceptable noise levels were measured, i. e., system immunity to electromagnetic noise demonstrated in the mock-up testing proved to be irrelevant for the IRR2 reactor itself Various methods of noise reduction were attempted; consequently, noise interference was reduced to an acceptable level

  12. Studies of blade-vortex interaction noise reduction by rotor blade modification

    Brooks, Thomas F.

    1993-01-01

    Blade-vortex interaction (BVI) noise is one of the most objectionable types of helicopter noise. This impulsive blade-slap noise can be particularly intense during low-speed landing approach and maneuvers. Over the years, a number of flight and model rotor tests have examined blade tip modification and other blade design changes to reduce this noise. Many times these tests have produced conflicting results. In the present paper, a number of these studies are reviewed in light of the current understanding of the BVI noise problem. Results from one study in particular are used to help establish the noise reduction potential and to shed light on the role of blade design. Current blade studies and some new concepts under development are also described.

  13. Mobility and Noise Pollution. Noise-reduction Traditional Strategies and Green Mobility Ones

    Carmela Gargiulo; Rosario Aniello Romano

    2011-01-01

    The urbanized territories are quite complex environments in many ways, whose management requires, on the one hand, adequate skills to mediate among the different needs, often conflicting, and on the other hand a clear idea of the target to hit.One of these aspects is the need to ensure mobility in urban areas and, simultaneously, reduce noise levels below the values   that are compatible with the well-being of citizens.There are several sources of noise in an urban context  such as vehicle an...

  14. Prediction and reduction of aircraft noise in outdoor environments

    Tong, Bao N.

    This dissertation investigates the noise due to an en-route aircraft cruising at high altitudes. It offers an improved understanding into the combined effects of atmospheric propagation, ground reflection, and source motion on the impact of en-route aircraft noise. A numerical model has been developed to compute pressure time-histories due to a uniformly moving source above a flat ground surface in the presence of a horizontally stratified atmosphere. For a moving source at high elevations, contributions from a direct and specularly reflected wave are sufficient in predicting the sound field close to the ground. In the absence of wind effects, the predicted sound field from a single overhead flight trajectory can be used to interpolate pressure time histories at all other receiver locations via a simplified ray model for the incoherent sound field. This approach provides an efficient method for generating pressure time histories in a three-dimensional space for noise impact studies. A variety of different noise propagation methods are adapted to a uniformly moving source to evaluate the accuracy and efficiency of their predictions. The techniques include: analytical methods, the Fast Field Program (FFP), and asymptotic analysis methods (e.g., ray tracing and more advanced formulations). Source motion effects are introduced via either a retarded time analysis or a Lorentz transform approach depending on the complexity of the problem. The noise spectrum from a single emission frequency, moving source has broadband characteristics. This is a consequence of the Doppler shift which continuously modifies the perceived frequency of the source as it moves relative to a stationary observer on the ground. Thus, the instantaneous wavefronts must be considered in both the frequency dependent ground impedance model and the atmospheric absorption model. It can be shown that the Doppler factor is invariant along each ray path. This gives rise to a path dependent atmospheric

  15. Design of materials for noise reduction in aircraft engines

    Paun, F.; Gasser, St. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), Dept. of Metallic Materials and Processing, 92 - Chatillon (France); Leylekian, L. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), Dept. of Composite Systems and Materials, 92 - Chatillon (France)

    2003-01-01

    We would like to present in this paper, research that ONERA teams are making in the field of acoustic absorption materials at high temperatures. Some significant results are shown as well as some important findings for future investigation. Research performed in understanding the acoustic and mechanical behaviour of different classes of porous materials and developed processing methods will be described. Our interest was to demonstrate the feasibility of reducing noise produced by aeronautical turbo engines by means of appropriate passive acoustic treatments applied directly to the exhausters. (authors)

  16. Lead-Lag Control for Helicopter Vibration and Noise Reduction

    Gandhi, Farhan

    1995-01-01

    As a helicopter transitions from hover to forward flight, the main rotor blades experience an asymmetry in flow field around the azimuth, with the blade section tangential velocities increasing on the advancing side and decreasing on the retreating side. To compensate for the reduced dynamic pressure on the retreating side, the blade pitch angles over this part of the rotor disk are increased. Eventually, a high enough forward speed is attained to produce compressibility effects on the advancing side of the rotor disk and stall on the retreating side. The onset of these two phenomena drastically increases the rotor vibratory loads and power requirements, thereby effectively establishing a limit on the maximum achievable forward speed. The alleviation of compressibility and stall (and the associated decrease in vibratory loads and power) would potentially result in an increased maximum forward speed. In the past, several methods have been examined and implemented to reduce the vibratory hub loads. Some of these methods are aimed specifically at alleviating vibration at very high flight speeds and increasing the maximum flight speed, while others focus on vibration reduction within the conventional flight envelope. Among the later are several types passive as well as active schemes. Passive schemes include a variety of vibration absorbers such as mechanical springs, pendulums, and bifilar absorbers. These mechanism are easy to design and maintain, but incur significant weight and drag penalties. Among the popular active control schemes in consideration are Higher Harmonic Control (HHC) and Individual Blade Control (IBC). HHC uses a conventional swash plate to generate a multi-cyclic pitch input to the blade. This requires actuators capable of sufficiently high power and bandwidth, increasing the cost and weight of the aircraft. IBC places actuators in the rotating reference frame, requiring the use of slip rings capable of transferring enough power to the actuators

  17. Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors

    Assim Boukhayma

    2016-04-01

    Full Text Available This paper presents an overview of the read noise in CMOS image sensors (CISs based on four-transistors (4T pixels, column-level amplification and correlated multiple sampling. Starting from the input-referred noise analytical formula, process level optimizations, device choices and circuit techniques at the pixel and column level of the readout chain are derived and discussed. The noise reduction techniques that can be implemented at the column and pixel level are verified by transient noise simulations, measurement and results from recently-published low noise CIS. We show how recently-reported process refinement, leading to the reduction of the sense node capacitance, can be combined with an optimal in-pixel source follower design to reach a sub-0.3 \\(e^{-}_{rms}\\ read noise at room temperature. This paper also discusses the impact of technology scaling on the CIS read noise. It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both simulation results of the gate leakage current and 1/f noise data reported from different foundries and technology nodes are used.

  18. Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors

    Boukhayma, Assim; Peizerat, Arnaud; Enz, Christian

    2016-01-01

    This paper presents an overview of the read noise in CMOS image sensors (CISs) based on four-transistors (4T) pixels, column-level amplification and correlated multiple sampling. Starting from the input-referred noise analytical formula, process level optimizations, device choices and circuit techniques at the pixel and column level of the readout chain are derived and discussed. The noise reduction techniques that can be implemented at the column and pixel level are verified by transient noise simulations, measurement and results from recently-published low noise CIS. We show how recently-reported process refinement, leading to the reduction of the sense node capacitance, can be combined with an optimal in-pixel source follower design to reach a sub-0.3erms- read noise at room temperature. This paper also discusses the impact of technology scaling on the CIS read noise. It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS) transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both simulation results of the gate leakage current and 1/f noise data reported from different foundries and technology nodes are used.

  19. Noise reduction by the application of an air-bubble curtain in offshore pile driving

    Tsouvalas, A.; Metrikine, A. V.

    2016-06-01

    Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer

  20. Speckle Noise Reduction via Nonconvex High Total Variation Approach

    Yulian Wu

    2015-01-01

    Full Text Available We address the problem of speckle noise removal. The classical total variation is extensively used in this field to solve such problem, but this method suffers from the staircase-like artifacts and the loss of image details. In order to resolve these problems, a nonconvex total generalized variation (TGV regularization is used to preserve both edges and details of the images. The TGV regularization which is able to remove the staircase effect has strong theoretical guarantee by means of its high order smooth feature. Our method combines the merits of both the TGV method and the nonconvex variational method and avoids their main drawbacks. Furthermore, we develop an efficient algorithm for solving the nonconvex TGV-based optimization problem. We experimentally demonstrate the excellent performance of the technique, both visually and quantitatively.

  1. Noise reduction in muon tomography for detecting high density objects

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  2. Assessment of Soft Vane and Metal Foam Engine Noise Reduction Concepts

    Jones, Michael G.; Parrott, Tony L.; Sutliff, Daniel L.; Hughes, Chris

    2009-01-01

    Two innovative fan-noise reduction concepts developed by NASA are presented - soft vanes and over-the-rotor metal foam liners. Design methodologies are described for each concept. Soft vanes are outlet guide vanes with internal, resonant chambers that communicate with the exterior aeroacoustic environment via a porous surface. They provide acoustic absorption via viscous losses generated by interaction of unsteady flows with the internal solid structure. Over-the-rotor metal foam liners installed at or near the fan rotor axial plane provide rotor noise absorption. Both concepts also provide pressure-release surfaces that potentially inhibit noise generation. Several configurations for both concepts are evaluated with a normal incidence tube, and the results are used to guide designs for implementation in two NASA fan rigs. For soft vanes, approximately 1 to 2 dB of broadband inlet and aft-radiated fan noise reduction is achieved. For over-the-rotor metal foam liners, up to 3 dB of fan noise reduction is measured in the low-speed fan rig, but minimal reduction is measured in the high-speed fan rig. These metal foam liner results are compared with a static engine test, in which inlet sound power level reductions up to 5 dB were measured. Brief plans for further development are also provided.

  3. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    M.R. Mofakhami

    2008-01-01

    Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.

  4. High Bypass Ratio Jet Noise Reduction and Installation Effects Including Shielding Effectiveness

    Thomas, Russell H.; Czech, Michael J.; Doty, Michael J.

    2013-01-01

    An experimental investigation was performed to study the propulsion airframe aeroacoustic installation effects of a separate flow jet nozzle with a Hybrid Wing Body aircraft configuration where the engine is installed above the wing. Prior understanding of the jet noise shielding effectiveness was extended to a bypass ratio ten application as a function of nozzle configuration, chevron type, axial spacing, and installation effects from additional airframe components. Chevron types included fan chevrons that are uniform circumferentially around the fan nozzle and T-fan type chevrons that are asymmetrical circumferentially. In isolated testing without a pylon, uniform chevrons compared to T-fan chevrons showed slightly more low frequency reduction offset by more high frequency increase. Phased array localization shows that at this bypass ratio chevrons still move peak jet noise source locations upstream but not to nearly the extent, as a function of frequency, as for lower bypass ratio jets. For baseline nozzles without chevrons, the basic pylon effect has been greatly reduced compared to that seen for lower bypass ratio jets. Compared to Tfan chevrons without a pylon, the combination with a standard pylon results in more high frequency noise increase and an overall higher noise level. Shielded by an airframe surface 2.17 fan diameters from nozzle to airframe trailing edge, the T-fan chevron nozzle can produce reductions in jet noise of as much as 8 dB at high frequencies and upstream angles. Noise reduction from shielding decreases with decreasing frequency and with increasing angle from the jet inlet. Beyond an angle of 130 degrees there is almost no noise reduction from shielding. Increasing chevron immersion more than what is already an aggressive design is not advantageous for noise reduction. The addition of airframe control surfaces, including vertical stabilizers and elevon deflection, showed only a small overall impact. Based on the test results, the best

  5. Noise reduction in ultrasonic computerized tomography by preprocessing for projection data

    Norose, Yoko; Mizutani, Koichi; Wakatsuki, Naoto; Ebihara, Tadashi

    2015-07-01

    In this study, an ultrasonic computerized tomography (CT) using time-of-flights (TOFs) has been used for the nondestructive inspection of steel billets with high acoustic attenuation. One of the remaining problems of this method is noise in CT images, which makes it difficult to distinguish defects from noise. Conventionally, noise is suppressed by a low-pass filter (LPF) in the process of filtered back projection (FBP). However, it has been found that there is residual noise even after filtering. To cope with this problem, in this study, the noise observed in ultrasonic testing was examined. As a result, it was found that the TOF data used for CT processing contains impulse noise, which remains in the CT image even after filtering, owing to the existence of transducer directivity. To remove impulse noise selectively, we propose a noise reduction technique for ultrasonic CT for steel billet inspection, that is, preprocessing (outlier detection and removal) of TOF data. The performance of the proposed technique was evaluated experimentally. The obtained results suggest that the proposed technique can remove impulse noise selectively and markedly improve the quality of the CT image. Hence, the proposed technique can improve the performance of ultrasonic CT for steel billet inspection.

  6. Custom transistor layout design techniques for random telegraph signal noise reduction in CMOS image sensors

    Martin-Gonthier, Philippe; Havard, E.; Magnan, Pierre

    2010-01-01

    Interface and near oxide traps in small gate area MOS transistors (gate area ,1 mm2) lead to RTS noise which implies the emergence of noisy pixels in CMOS image sensors. To reduce this noise, two simple and efficient layout techniques of custom transistors have been imagined. These techniques have been successfully implemented in an image sensor test chip fabricated in a 0.35 mm CMOS image sensor process. Experimental results demonstrate a significant reduction of the noisy pixels for the ...

  7. Design of a Low-Power VLSI Macrocell for Nonlinear Adaptive Video Noise Reduction

    Fanucci Luca; Saponara Sergio; Terreni Pierangelo

    2004-01-01

    A VLSI macrocell for edge-preserving video noise reduction is proposed in the paper. It is based on a nonlinear rational filter enhanced by a noise estimator for blind and dynamic adaptation of the filtering parameters to the input signal statistics. The VLSI filter features a modular architecture allowing the extension of both mask size and filtering directions. Both spatial and spatiotemporal algorithms are supported. Simulation results with monochrome test videos prove its efficiency for ...

  8. Using hearing aid directional microphones and noise reduction algorithms to enhance cochlear implant performance

    Chung, K; Zeng, F G; Waltzman, S

    2004-01-01

    Hearing aids and cochlear implants are two major hearing enhancement technologies but yet share little in research and development. The purpose of this study was to determine whether hearing aid directional microphones and noise reduction technologies could enhance cochlear implant users' speech understanding and ease of listening. Digital hearing aids serving as preprocessors were programmed to omni-directional microphone, directional microphone, and directional microphone plus noise reducti...

  9. ERA's Open Rotor Studies Including Shielding for Noise Reduction

    Van Zante, Dale; Thomas, Russell

    2012-01-01

    The Open Rotor is a modern version of the UnDucted Fan (UDF) that was flight tested in the late 1980's through a partnership between NASA and General Electric (GE). Tests were conducted in the 9' x 15' Low Speed Wind Tunnel and the 8' x 6' Supersonic Wind Tunnel starting in late 2009 and completed in early 2012. Aerodynamic and acoustic data were obtained for takeoff, approach and cruise simulations. GE was the primary partner, but other organizations were involved such as Boeing and Airbus who provided additional hardware for fuselage simulations. This test campaign provided the acoustic and performance characteristics for modern open rotor blades designs." NASA and GE conducted joint systems analysis to evaluate how well new blade designs would perform on a B737 class aircraft, and compared the results to an advanced higher bypass ratio turbofan." Acoustic shielding experiments were performed at NASA GRC and Boeing LSAF facilities to provide data for noise estimates of unconventional aircraft configurations with Open Rotor propulsion systems." The work was sponsored by NASA's aeronautics programs, including the Subsonic Fixed Wing (SFW) and the Environmentally Responsible Aviation (ERA) projects."

  10. CT urography in the urinary bladder: To compare excretory phase images using a low noise index and a high noise index with adaptive noise reduction filter

    Background: Although CT urography (CTU) is widely used for the evaluation of the entire urinary tract, the most important drawback is the radiation exposure. Purpose: To evaluate the effect of a noise reduction filter (NRF) using a phantom and to quantitatively and qualitatively compare excretory phase (EP) images using a low noise index (NI) with those using a high NI and postprocessing NRF (pNRF). Material and Methods: Each NI value was defined for a slice thickness of 5 mm, and reconstructed images with a slice thickness of 1.25 mm were assessed. Sixty patients who were at high risk of developing bladder tumors (BT) were divided into two groups according to whether their EP images were obtained using an NI of 9.88 (29 patients; group A) or an NI of 20 and pNRF (31 patients; group B). The CT dose index volume (CTDIvol) and the contrast-to-noise ratio (CNR) of the bladder with respect to the anterior pelvic fat were compared in both groups. Qualitative assessment of the urinary bladder for image noise, sharpness, streak artifacts, homogeneity, and the conspicuity of polypoid or sessile-shaped BTs with a short-axis diameter greater than 10 mm was performed using a 3-point scale. Results: The phantom study showed noise reduction of approximately 40% and 76% dose reduction between group A and group B. CTDIvol demonstrated a 73% reduction in group B (4.6 ± 1.1 mGy) compared with group A (16.9 ± 3.4 mGy). The CNR value was not significantly different (P = 0.60) between group A (16.1 ± 5.1) and group B (16.6 ± 7.6). Although group A was superior (P < 0.01) to group B with regard to image noise, other qualitative analyses did not show significant differences. Conclusion: EP images using a high NI and pNRF were quantitatively and qualitatively comparable to those using a low NI, except with regard to image noise

  11. Reset noise reduction through column-level feedback reset in CMOS image sensors

    A low reset noise CMOS image sensor (CIS) based on column-level feedback reset is proposed. A feedback loop was formed through an amplifier and a switch. A prototype CMOS image sensor was developed with a 0.18 μm CIS process. Through matching the noise bandwidth and the bandwidth of the amplifier, with the falling time period of the reset impulse 6 μs, experimental results show the reset noise level can experience up to 25 dB reduction. The proposed CMOS image sensor meets the demand of applications in high speed security surveillance systems, especially in low illumination. (semiconductor integrated circuits)

  12. Reset noise reduction through column-level feedback reset in CMOS image sensors*

    Li Binqiao; Xu Jiangtao; Xie Shuang; Sun Zhongyan

    2011-01-01

    A low reset noise CMOS image sensor (CIS) based on column-level feedback reset is proposed. A feedback loop was formed through an amplifier and a switch. A prototype CMOS image sensor was developed with a 0.18 μm CIS process. Through matching the noise bandwidth and the bandwidth of the amplifier, with the falling time period of the reset impulse 6μs, experimental results show the reset noise level can experience up to 25 dB reduction. The proposed CMOS image sensor meets the demand of applications in high speed security surveillance systems, especially in low illumination.

  13. Development of Novel Methods for the Reduction of Noise and Weight in Helicopter Transmissions

    Dimofte, Florin; Keith, Theo G., Jr.

    2003-01-01

    Over the 70-year evolution of the helicopter, man's understanding of vibration control has greatly increased. However, in spite of the increased performance, the extent of helicopter vibration problems has not significantly diminished. Crew vibration and noise remains important factors in the design of all current helicopters. With more complex and critical demands being placed on aircrews, it is essential that vibration and noise not impair their performance. A major source of helicopter cabin noise (which has been measured at a sound pressure level of over 100 dB) is the gearbox. Reduction of this noise has been a goal of NASA and the U.S. Army. Gear mesh noise is typically in the frequency range of 1000 to 3000 Hz, a range important for speech. A requirement for U.S. Army/NASA Advanced Rotorcraft Transmission project has been a 10-dB reduction compared to current designs. A combined analytical/experimental effort has been underway, since the end of the 80's, to study effects of design parameters on noise production. The noise generated by the gear mesh can be transmitted to the surrounding media through the bearings that support the gear shaft. Therefore, the use of fluid film bearings instead of rolling element bearings could reduce the transmission noise by 10 dB. In addition, the fluid film bearings that support the gear shaft can change the dynamics of the gear assembly by providing damping to the system and by being softer than rolling element bearings. Wave bearings can attenuate, and filter, the noise generated by a machine component due to the dynamic stiffness and damping coefficients. The attenuation ratio could be as large as 35-40 dB. The noise components at higher frequencies than a synchronous frequency can be almost eliminated.

  14. DFT-Domain Based Single-Microphone Noise Reduction for Speech Enhancement

    C. Hendriks, Richard; Gerkmann, Timo; Jensen, Jesper

    As speech processing devices like mobile phones, voice controlled devices, and hearing aids have increased in popularity, people expect them to work anywhere and at any time without user intervention. However, the presence of acoustical disturbances limits the use of these applications, degrades...... their performance, or causes the user difficulties in understanding the conversation or appreciating the device. A common way to reduce the effects of such disturbances is through the use of single-microphone noise reduction algorithms for speech enhancement. The field of single-microphone noise...... reduction for speech enhancement comprises a history of more than 30 years of research. In this survey, we wish to demonstrate the significant advances that have been made during the last decade in the field of discrete Fourier transform domain-based single-channel noise reduction for speech enhancement...

  15. Use of a plane jet for flow-induced noise reduction of tandem rods

    Kun, Zhao; Xi-xiang, Yang; Patrick, N. Okolo; Wei-hua, Zhang

    2016-06-01

    Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source. The use of a plane jet is proposed to reduce this flow-induced noise. Tandem rods with different gap widths were utilized as the test body. Both acoustic and aerodynamic tests were conducted in order to validate this technique. Acoustic test results proved that overall noise emission from tandem rods could be lowered and tonal noise could be removed with use of the plane jet. However, when the plane jet was turned on, in some frequency range it could be the subsequent main contributor instead of tandem rods to total noise emission whilst in some frequency range rods could still be the main contributor. Moreover, aerodynamic tests fundamentally studied explanations for the noise reduction. Specifically, not only impinging speed to rods but speed and turbulence level to the top edge of the rear rod could be diminished by the upstream plane jet. Consequently, the vortex shedding induced by the rear rod was reduced, which was confirmed by the speed, Reynolds stress as well as the velocity fluctuation spectral measured in its wake. This study confirmed the potential use of a plane jet towards landing gear noise reduction. Project partially supported by the European Union FP7 CleanSky Joint Technology Initiative “ALLEGRA” (Grant No. 308225).

  16. Active structural acoustic control of aircraft interior flow noise via the use of active trim panels

    Mahnken, Brian W.

    1996-01-01

    Modem jet aircraft interior noise can be categorized into two main types: tonal noise caused by engine imbalance or blade passage, and mid frequency broadband noise resulting from turbulent flow. This project addresses aircraft interior flow noise caused by a flow separation over the crown of the aircraft. The noise control approach is to mount piezoelectric actuators to the aircraft interior cockpit crown trim panel and use them to actively control aircraft interior noise with...

  17. Noise Reduction with Lobed Mixers: Nozzle-Length and Free-Jet Speed Effects

    Mengle, Vinod G.; Dalton, William N.; Bridges, James C.; Boyd, Kathy C.

    1997-01-01

    Acoustic test results are presented for 1/4th-scaled nozzles with internal lobed mixers used for reduction of subsonic jet noise of turbofan engines with bypass ratio above 5 and jet speeds up to 830 ft/s. One coaxial and three forced lobe mixers were tested with variations in lobe penetration, cut-outs in lobe-sidewall, lobe number and nozzle-length. Measured exit flow profiles and thrusts are used to assist the inferences from acoustic data. It is observed that lobed mixers reduce the low-frequency noise due to more uniformly mixed exit flow; but they may also increase the high-frequency noise at peak perceived noise (PNL) angle and angles upstream of it due to enhanced mixing inside the nozzle. Cut-outs and low lobe penetration reduce the annoying portion of the spectrum but lead to less uniform exit flow. Due to the dominance of internal duct noise in unscalloped, high-penetration mixers their noise is not reduced as much with increase in free-jet speed as that of coaxial or cut-out lobed mixers. The latter two mixers also show no change in PNL over the wide range of nozzle-lengths tested because most of their noise sources are outside the nozzle; whereas, the former show an increase in noise with decrease in nozzle-length.

  18. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    Ho, Jen-Hsuan; Berkhoff, Arthur

    2014-03-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural-acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.

  19. Experimental and numerical analysis on noise reduction in a multi-blade centrifugal fan

    Chen, X. J.; Y Cao, T.; Su, J.; Qin, G. L.

    2013-12-01

    In this work, analysis on noise source and reduction in a multi-blade centrifugal fan used for air-conditioners was carried out by experimental and numerical methods. Firstly, an experimental system using microphone mounted on volute surface for measuring surface pressure fluctuations of volute was designed and introduced, then surface pressure fluctuations of the whole volute for a multi-blade centrifugal fan were measured by this system, and the inlet noise for this fan was also obtained. And then, based on the experimental results, the aerodynamic noise source of the studied fan was analysed. The surface pressure fluctuations of the volute showed that there were largest surface pressure fluctuations near the volute tongue, and peaks appeared at the Blade Passing Frequency (BPF). The spectra of fan inlet noise showed that the peaks also appeared at BPF, and noise levels in a wide range of frequency were also larger. Secondly, the internal flow of the fan was simulated by commercial software under the same conditions with the experiment, and then the fluid flow and acoustic power field were obtained and discussed. The contours of acoustic power level showed that the larger noise was generated at the impeller area close to the outlet of scroll and at the volute tongue, which is same as that from experiment. Based on all of the results, we can find that the vortex noise is an important part of fan noise for the studied fan, and the rotation noise also cannot be neglected. Finally, several reduction methods that are thought to be effective based on experimental and numerical results were suggested.

  20. Experimental and numerical analysis on noise reduction in a multi-blade centrifugal fan

    In this work, analysis on noise source and reduction in a multi-blade centrifugal fan used for air-conditioners was carried out by experimental and numerical methods. Firstly, an experimental system using microphone mounted on volute surface for measuring surface pressure fluctuations of volute was designed and introduced, then surface pressure fluctuations of the whole volute for a multi-blade centrifugal fan were measured by this system, and the inlet noise for this fan was also obtained. And then, based on the experimental results, the aerodynamic noise source of the studied fan was analysed. The surface pressure fluctuations of the volute showed that there were largest surface pressure fluctuations near the volute tongue, and peaks appeared at the Blade Passing Frequency (BPF). The spectra of fan inlet noise showed that the peaks also appeared at BPF, and noise levels in a wide range of frequency were also larger. Secondly, the internal flow of the fan was simulated by commercial software under the same conditions with the experiment, and then the fluid flow and acoustic power field were obtained and discussed. The contours of acoustic power level showed that the larger noise was generated at the impeller area close to the outlet of scroll and at the volute tongue, which is same as that from experiment. Based on all of the results, we can find that the vortex noise is an important part of fan noise for the studied fan, and the rotation noise also cannot be neglected. Finally, several reduction methods that are thought to be effective based on experimental and numerical results were suggested

  1. Reduction of blade-vortex interaction noise using higher harmonic pitch control

    Brooks, Thomas F.; Booth, Earl R., Jr.; Jolly, J. Ralph, Jr.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1989-01-01

    An acoustics test using an aeroelastically scaled rotor was conducted to examine the effectiveness of higher harmonic blade pitch control for the reduction of impulsive blade-vortex interaction (BVI) noise. A four-bladed, 110 in. diameter, articulated rotor model was tested in a heavy gas (Freon-12) medium in Langley's Transonic Dynamics Tunnel. Noise and vibration measurements were made for a range of matched flight conditions, where prescribed (open-loop) higher harmonic pitch was superimposed on the normal (baseline) collective and cyclic trim pitch. For the inflow-microphone noise measurements, advantage was taken of the reverberance in the hard walled tunnel by using a sound power determination approach. Initial findings from on-line data processing for three of the test microphones are reported for a 4/rev (4P) collective pitch control for a range of input amplitudes and phases. By comparing these results to corresponding baseline (no control) conditions, significant noise reductions (4 to 5 dB) were found for low-speed descent conditions, where helicopter BVI noise is most intense. For other rotor flight conditions, the overall noise was found to increase. All cases show increased vibration levels.

  2. Reduction of blade-vortex interaction noise through higher harmonic pitch control

    Brooks, Thomas F.; Booth, Earl R., Jr.; Jolly, J. Ralph, Jr.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An acoustics test using an aeroelastically scaled rotor was conducted to examine the effectiveness of higher harmonic blade pitch control for the reduction of impulsive blade-vortex interaction (BVI) noise. A four-bladed, 110 in. diameter, articulated rotor model was tested in a heavy gas (Freon-12) medium in Langley's Transonic Dynamics Tunnel. Noise and vibration measurements were made for a range of matched flight conditions, where prescribed (open-loop) higher harmonic pitch was superimposed on the normal (baseline) collective and cyclic trim pitch. For the inflow-microphone noise measurements, advantage was taken of the reverberance in the hard walled tunnel by using a sound power determination approach. Initial findings from on-line data processing for three of the test microphones are reported for a 4/rev (4P) collective pitch control for a range of input amplitudes and phases. By comparing these results to corresponding baseline (no control) conditions, significant noise reductions (4 to 5 dB) were found for low-speed descent conditions, where helicopter BVI noise is most intense. For other rotor flight conditions, the overall noise was found to increase. All cases show increased vibration levels.

  3. Perception Neural Networks for Active Noise Control Systems

    Wang Xiaoli

    2012-11-01

    Full Text Available In a response to a growing demand for environments of 70dB or less noise levels, many industrial sectors have focused with some form of noise control system. Active noise control (ANC has proven to be the most effective technology. This paper mainly investigates application of neural network on self-adaptation system in active noise control (ANC. An active silencing control system is made which adopts a motional feedback loudspeaker as not a noise controlling source but a detecting sensor. The working fundamentals and the characteristics of the motional feedback loudspeaker are analyzed in detail. By analyzing each acoustical path, identification based adaptive linear neural network is built. This kind of identifying method can be achieved conveniently. The estimated result of each sound channel matches well with its real sound character, respectively.

  4. Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography

    Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Schmoll, Tilman; Sattmann, Harald; Leitgeb, Rainer A.; Hitzenberger, Christoph K.

    2011-07-01

    We present a high speed polarization sensitive spectral domain optical coherence tomography system based on polarization maintaining fibers and two high speed CMOS line scan cameras capable of retinal imaging with up to 128 k A-lines/s. This high imaging speed strongly reduces motion artifacts and therefore averaging of several B-scans is possible, which strongly reduces speckle noise and improves image quality. We present several methods for averaging retardation and optic axis orientation, the best one providing a 5 fold noise reduction. Furthermore, a novel scheme of calculating images of degree of polarization uniformity is presented. We quantitatively compare the noise reduction depending on the number of averaged frames and discuss the limits of frame numbers that can usefully be averaged.

  5. An experimental study of USB flap noise reduction through mean flow modification. [Upper Surface Blown

    Joshi, M. C.; Yu, J. C.

    1979-01-01

    The effect of mean flow modification on the noise production of upper surface blown flaps has been studied experimentally. Mean velocity profile at the nozzle exit was modified from the usual 'top-hat' shape to 'Gamma' and 'L'-shaped profiles. The 'L'-modification caused noise reduction around and above the peak frequency of the 'top-hat' spectrum when compared on an equal thrust per exit area basis. Modification to 'Gamma'-shaped profile resulted in a shift of the spectrum to lower frequencies and a lower overall noise reduction. These modifications alter the development of the large scale disturbances in the upper shear layer and trailing edge wake of the wall jet geometry.

  6. Reduction of gradient acoustic noise in MRI using SENSE-EPI.

    de Zwart, Jacco A; van Gelderen, Peter; Kellman, Peter; Duyn, Jeff H

    2002-08-01

    A new approach to reduce gradient acoustic noise levels in EPI experiments is presented. Using multichannel RF receive coils, combined with SENSE data acquisition and reconstruction, gradient slew-rates in single-shot EPI were reduced fourfold for rate-2 and ninefold for rate-3 SENSE. Multislice EPI experiments were performed on three different scanner platforms. With 3.4 mm in-plane resolution, measuring 6 slices per second (12 slices with 2000 ms TR), this resulted in average sound pressure level reductions of 11.3 dB(A) and 16.5 dB(A) for rate-2 and rate-3 SENSE, respectively. BOLD fMRI experiments, using visually paced finger-tapping paradigms, showed no detrimental effect of the acoustic noise reduction strategy on temporal noise levels and t scores. PMID:12202101

  7. Reduction of high-speed impulsive noise by blade planform modification of a model helicopter rotor

    Conner, D. A.; Hoad, D. R.

    1982-01-01

    The reduction of high speed impulsive noise for the UH-1H helicopter was investigated by using an advanced main rotor system. The advanced rotor system had a tapered blade planform compared with the rectangular planform of the standard rotor system. Models of both the advanced main rotor system and the UH-1H standard main rotor system were tested at 1/4 scale in the 4 by 7 Meter Tunnel. In plane acoustic measurements of the high speed impulsive noise demonstrated that the advanced rotor system on the UH-1H helicopter reduced the high speed impulsive noise by up to 20 dB, with a reduction in overall sound pressure level of up to 5 dB.

  8. Noise floor reduction of an Er:fiber laser-based photonic microwave generator

    Jiang, Haifeng; Quinlan, Franklyn; Fortier, Tara; Diddams, Scott A

    2011-01-01

    The generation of microwaves from optical signals suffers from thermal and shot noise inherent in the photodetection process. This problem is more acute at lower pulse repetition rates where photodiode saturation limits the achievable signal-to-noise ratio. In this paper, we demonstrate a 10-15 dB reduction in the 10 GHz phase noise floor by multiplication of the pulse repetition rate. Starting with a 250 MHz fundamentally mode-locked erbium(Er):fiber laser, we compare two different approaches to repetition rate multiplication: Fabry-Perot cavity filtering and a cascaded, unbalanced Mach-Zehnder fiber-based interferometer. These techniques reduce the phase noise floor on the 10 GHz photodetected harmonic to -158 dBc/Hz and -162 dBc/Hz, respectively, for Fourier frequencies higher than 100 kHz.

  9. Noise reduction and estimation in multiple micro-electro-mechanical inertial systems

    This research studies the reduction and the estimation of the noise level within a redundant configuration of low-cost (MEMS-type) inertial measurement units (IMUs). Firstly, independent observations between units and sensors are assumed and the theoretical decrease in the system noise level is analyzed in an experiment with four MEMS-IMU triads. Then, more complex scenarios are presented in which the noise level can vary in time and for each sensor. A statistical method employed for studying the volatility of financial markets (GARCH) is adapted and tested for the usage with inertial data. This paper demonstrates experimentally and through simulations the benefit of direct noise estimation in redundant IMU setups

  10. Experimental study on noise reduction effect of a muffler inserted in liquid transporting pipeline

    In order to reduce the noise of liquid transporting pipelines caused by the motion of the power unit, a kind of compact hydrodynamic muffler used in pipes with small diameters is proposed which achieves good vibration damping as well as hydrodynamic noise reduction. Based on the rubber damper tube, according to the structure characteristics, the muffler is composed of two main parts, the rubber damper tube and the inner noise reducing structure. Experiment on insertion loss of the muffler in stationary state is conducted. It is found that the rubber damper tube itself has a good performance at noise reducing at the frequency band considered here, total insertion loss values can reach 10 dB and the inner structures improve the performance of the muffler at low frequency band