WorldWideScience

Sample records for active mri implants

  1. On the Procedures for the Demonstration of the RF Safety of Active and Passive Implants in MRI Environments

    Eugenia CABOT; Maria CABANES-SEMPERE; Niels KUSTER

    2016-01-01

    As a diagnostic method, magnetic resonance imaging (MRI) is not allowed to be used in patients with medical implants, including both active implants (such as cardiac deifbrillators or deep brain stimulators) and passive implants (such as orthopedics implants and support). MRI imaging scanning can produce magnetic ifelds, which will produce concentrated electromagnetic induction on metal edges of the implants, such as electrodes. The magnetic ifeld can also signiifcantly increase the temperature of surrounding tissues. Besides, the currents and voltage produced by active implants when exposed to MRI scanning can lead to damage and malfunction of pulse generators. Therefore, patients with medical implants cannot receive MRI as a diagnostic method. This safety protocol prevents a large group of patients from receiving MRI diagnosis. This leads to the conclusion that the safety evaluation of implants under MRI environment requires the combination of accurate data analysis and experimental techniques so as to establish the standard testing program.

  2. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots

    Grönemeyer Dietrich HW

    2006-05-01

    Full Text Available Abstract Background Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example. The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach ¼ of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to. Methods First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging

  3. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-01

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  4. Metallic artifact in MRI after removal of orthopedic implants

    Objective: The aim of the present study was to evaluate the metallic artifacts in MRI of the orthopedic patients after removal of metallic implants. Subjects and methods: From March to August 2009, 40 orthopedic patients operated for removal of orthopedic metallic implants were studied by post-operative MRI from the site of removal of implants. A grading scale of 0–3 was assigned for artifact in MR images whereby 0 was considered no artifact; and I–III were considered mild, moderate, and severe metallic artifacts, respectively. These grading records were correlated with other variables including the type, size, number, and composition of metallic devices; and the site and duration of orthopedic devices stay in the body. Results: Metallic susceptibly artifacts were detected in MRI of 18 of 40 cases (45%). Screws and pins in removed hardware were the most important factors for causing artifacts in MRI. The artifacts were found more frequently in the patients who had more screws and pins in the removed implants. Gender, age, site of implantation of the device, length of the hardware, composition of the metallic implants (stainless steel versus titanium), and duration of implantation of the hardware exerted no effect in producing metallic artifacts after removal of implants. Short TE sequences of MRI (such as T1 weighted) showed fewer artifacts. Conclusion: Susceptibility of metallic artifacts is a frequent phenomenon in MRI of patients upon removal of metallic orthopedic implants.

  5. MR implant labelling and its use in clinical MRI practice

    Before a magnetic resonance imaging (MRI) examination, implants in patients must be cleared for MR safety in order to exclude the risk of possible severe injuries and implant malfunction in an MR environment. The general contraindication for measurements of patients with implants still applies; however, in the recent past a way has been found to legally circumvent this contraindication. For this purpose special conditions are required: explicit implant identification and the original manufacturer's labelling are necessary, the required conditions for conditionally MR safe implants must be assured and a risk-benefit analysis with appropriate explanation to the patient has to be performed. This process can be very complex as the implants are often poorly documented and detailed information on the implant MR labelling is also often outdated or not easy to interpret. This article provides information about legal and normative principles of MR measurement of patients with implants. The possible physical interactions with implants will be briefly dealt with as well as possible strategies for better identification and investigation of implants and MR labelling. General approaches for minimizing the risk will be discussed using some examples. The second part deals with the content of MR implant labelling and the current test standards. Furthermore, the additional information from the operating instructions of the MR scanner that are necessary for the interpretation of the MR implant labelling, will be explained. The article concludes with an explanation of the current pattern for MR labelling of implants from the U.S. Food and Drug Administration (FDA) and an exemplary application. (orig.)

  6. Focused tight dressing does not prevent cochlear implant magnet migration under 1.5 Tesla MRI

    CUDA, D.; A. MURRI; Succo, G.

    2013-01-01

    SUMMARY We report a retrospective case of inner magnet migration, which occurred after 1.5 Tesla MRI scanning in an adult recipient of a bilateral cochlear implant (CI) despite a focused head dressing. The patient, bilaterally implanted with Nucleus 5 CIs (Cochlear LTD, Sydney, Australia), underwent a 1.5 Tesla cholangio-MRI scan for biliary duct pathology. In subsequent days, a focal skin alteration appeared over the left inner coil. Plain skull radiographs showed partial magnet migration on...

  7. Correlation between MRI results and intraoperative findings in patients with silicone breast implants

    Lindenblatt N

    2014-07-01

    Full Text Available Nicole Lindenblatt,1 Karem El-Rabadi,2 Thomas H Helbich,2 Heinrich Czembirek,3 Maria Deutinger,4 Heike Benditte-Klepetko5 1Division of Plastic and Hand Surgery, Department of Surgery, University Hospital Zurich, Zurich, Switzerland; 2Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna - General Hospital Vienna, 3Department of Radiology, Hospital Wiener Privatklinik, 4Department of Plastic and Reconstructive Surgery, Hospital Rudolfstiftung, Vienna, Austria; 5Department of Plastic and Reconstructive Surgery, Erasmus Medical Center, Rotterdam, the Netherlands Background: Silicone gel breast implants may silently rupture without detection. This has been the main reason for magnetic resonance imaging (MRI of the augmented or reconstructed breast. The aim of the present study was to investigate the accuracy of MRI for implant rupture. Methods: Fifty consecutive patients with 85 silicone gel implants were included in the study. The mean age of the patients was 51 (range 21–72 years, with a mean duration of implantation of 3.8 (range 1–28 years. All patients underwent clinical examination and breast MRI. Intraoperative implant rupture was diagnosed by the operating surgeon. Results: Nineteen of the 50 patients suffered from clinical symptoms. An implant rupture was diagnosed by MRI in 22 of 85 implants (26%. In seven of 17 removed implants (41%, the intraoperative diagnosis corresponded with the positive MRI result. However, only 57% of these patients were symptomatic. Ultrasound imaging of the harvested implants showed signs of interrupted inner layers of the implant despite integrity of the outer shell. By microsurgical separation of the different layers of the implant shell, we were able to reproduce this phenomenon and to produce signs of implant rupture on MRI. Conclusion: Our results show that rupture of only the inner layers of the implant shell with integrity of

  8. MRI evaluation of post-mastectomy irradiated breast implants: prevalence and analysis of complications

    Aim: To evaluate the effect of post-mastectomy radiation therapy (RT) on breast implants as detected by magnetic resonance imaging (MRI) searching for short-term complications. Materials and methods: One hundred and forty patients (total of 144 implants) were evaluated by MRI; 80 (group 1) had undergone RT, whereas the remaining 60 patients (group 2) underwent mastectomy with implant reconstruction without RT. Two radiologists evaluated MRI images searching for implant rupture signs, sub-capsular seromas, capsular contracture, soft-tissue oedema, peri-implant fluid collections. Implant ruptures were classified as severe complications; seromas and capsular contractures as moderate complications; oedema and fluid collections as mild complications. The prevalence of MRI findings in the two groups was calculated and compared by unpaired t-test. Cohen's kappa statistics was used to assess interobserver agreement. Results: Sixty-nine out of 144 (48%) implants presented pathological findings at MRI with complication rates of 47.5 and 48.4 for groups 1 and 2, respectively. Two (5%) severe complications, 10 (26%) moderate complications, and 26 (69%) mild complications occurred in group 1 and surgical treatment was performed in 10 cases. Two (6%) severe complications, seven (23%) moderate complications, and 22 (71%) mild complications occurred in group 2 and surgical treatment was performed in eight cases. No significant difference between the two groups was found (p>0.1). Almost perfect agreement between the two radiologists was found for MRI image detection (k=0.86). Conclusion: RT does not seem to cause a significant effect on breast implants in terms of complication rate in patients undergoing implant-based breast reconstruction. One-stage immediate implant-based breast reconstruction performed at the same time as mastectomy could be proposed. -- Highlights: •RT could increase complication rates of implant-based breast reconstruction (IBR). •No general consensus

  9. Allogenic implantable rat model of hepatocellular carcinoma and its MRI-properties

    Objective: By using allogenic implantable techniques, to establish an ideal ACI-rat model of hepatocellular carcinoma suitable for interventional therapy and magnetic resonance imaging (MRI). Methods: Morris Hepatoma 3924 A was implanted subcutaneously on the back of a male ACI-rat. 13 days later, the subcutaneous growing solid tumor was explanted from the donor animal and minced into small cubes of about 1 mm3 volume. Afterwards, the solid tumor fragments were inserted into the subcapsular pocket of the liver in 12 male ACI-rat. After 14 days of this allogenic implantation, MRI was performed for analyzing the tumor growth and its characters. The tumor preparations were taken out for pathological examination. Results: An isolated and solitary liver tumor was found in all 12 animals on MRI (14 days post implantation), none of them had metastases or ascites. Tumor size was (0.090 +- 0.008) cm3. The tumors were hypointense on T1WI and hyperintense on T2WI. No central tumor necrosis or hemorrhage was observed by the pathological examination of the sections. The tumor was supplied with plenty of blood vessels. Conclusion: The above-described method is easy to operate and reproduce. Ideal rate of implantation, appropriate tumor growth rate, the absence of metastases and ascites, and optimal effects of MRI for observing the tumor pattern made this tumor model highly suitable for the study of interventional therapy

  10. Cerebral activity mapped by functional MRI

    Functional magnetic resonance imaging (fMRI) is a method to noninvasively measure the changes in cerebral activation during sensitive, cognitive or motor activity. fMRI detects activity by subtraction of states of activity and rest. During activity the signal is increased presumably due to a decrease of deoxyhemoglobin in the capillary and venous structures. Using a full field visual stimulation by flashlight goggles, a signal increase of 3% was detected in the primary visual cortex (V1). Different sequences and postprocessing algorythms will be discussed. Data from the primary cortical areas suggest a high reproducability of the experiments. Successfull experiments highly depend on cooperation of subjects. Despite success in experiments fMRI still has to be established for clinical purposes. (orig.)

  11. MRI screening for silicone breast implant rupture: accuracy, inter- and intraobserver variability using explantation results as reference standard

    Maijers, M.C.; Ritt, M.J.P.F. [VU University Medical Centre, Department of Plastic, Reconstructive and Hand Surgery, De Boelelaan 1117, PO Box 7057, Amsterdam (Netherlands); Niessen, F.B. [VU University Medical Centre, Department of Plastic, Reconstructive and Hand Surgery, De Boelelaan 1117, PO Box 7057, Amsterdam (Netherlands); Jan van Goyen Clinic, Department of Plastic Surgery, Amsterdam (Netherlands); Veldhuizen, J.F.H. [MRI Centre, Amsterdam (Netherlands); Manoliu, R.A. [MRI Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Radiology, Amsterdam (Netherlands)

    2014-06-15

    The recall of Poly Implant Prothese (PIP) silicone breast implants in 2010 resulted in large numbers of asymptomatic women with implants who underwent magnetic resonance imaging (MRI) screening. This study's aim was to assess the accuracy and interobserver variability of MRI screening in the detection of rupture and extracapsular silicone leakage. A prospective study included 107 women with 214 PIP implants who underwent explantation preceded by MRI. In 2013, two radiologists blinded for previous MRI findings or outcome at surgery, independently re-evaluated all MRI examinations. A structured protocol described the MRI findings. The ex vivo findings served as reference standard. In 208 of the 214 explanted prostheses, radiologists agreed independently about the condition of the implants. In five of the six cases they disagreed (2.6 %), but subsequently reached consensus. A sensitivity of 93 %, specificity of 93 %, positive predictive value of 77 % and negative predictive value of 98 % was found. The interobserver agreement was excellent (kappa value of 0.92). MRI has a high accuracy in diagnosing rupture in silicone breast implants. Considering the high kappa value of interobserver agreement, MRI appears to be a consistent diagnostic test. A simple, uniform classification, may improve communication between radiologist and plastic surgeon. (orig.)

  12. MRI screening for silicone breast implant rupture: accuracy, inter- and intraobserver variability using explantation results as reference standard

    The recall of Poly Implant Prothese (PIP) silicone breast implants in 2010 resulted in large numbers of asymptomatic women with implants who underwent magnetic resonance imaging (MRI) screening. This study's aim was to assess the accuracy and interobserver variability of MRI screening in the detection of rupture and extracapsular silicone leakage. A prospective study included 107 women with 214 PIP implants who underwent explantation preceded by MRI. In 2013, two radiologists blinded for previous MRI findings or outcome at surgery, independently re-evaluated all MRI examinations. A structured protocol described the MRI findings. The ex vivo findings served as reference standard. In 208 of the 214 explanted prostheses, radiologists agreed independently about the condition of the implants. In five of the six cases they disagreed (2.6 %), but subsequently reached consensus. A sensitivity of 93 %, specificity of 93 %, positive predictive value of 77 % and negative predictive value of 98 % was found. The interobserver agreement was excellent (kappa value of 0.92). MRI has a high accuracy in diagnosing rupture in silicone breast implants. Considering the high kappa value of interobserver agreement, MRI appears to be a consistent diagnostic test. A simple, uniform classification, may improve communication between radiologist and plastic surgeon. (orig.)

  13. Preliminary MRI study on hemodynamics after prosthetic cardiac valve implantation

    Objective: To assess the function of prosthetic valve by magnetic resonance imaging (MRI), and to measure the blood velocity downstream of prosthetic valve and three-dimensional surface profiles so as to provide the original materials for appearance and development of thrombi-embolic complications in the long time follow-up. Methods: Twenty-seven cases with prosthetic aortic valve were examined and the blood velocity was measured by using MRI. The diseased heart valves were replaced with two prosthetic valves in 20 cases, and replaced with single prosthetic valve in 7 cases. The axial velocity components were measured at three positions near the valve including half, one, and two diameter downstream in the ascending aorta. Two and three-dimensional surface profile reconstruction were analyzed by using flow analysis software and Matlab 6.5 software. Results: In 16 cases with prosthetic aortic valve replacement with two leaflets prosthetic valves, the velocity profiles downstream of the valve prosthetic reflecting the valve design was nearly three velocity, jets of the two major orifices and the central slit between the two leaflets. In 4 cases with prosthetic aortic valve replace with Sorin two leaflets prosthetic valve, the velocity profiles downstream was nearly two velocity jets of the two major orifices. In 20 cases replaced with two leaflets prosthetic valves, blood velocity profiles were skewed with highest velocities. Seven cases with single leaflet showed single velocity jets of the major orifices at peak systole. Retrograde velocities occurred in part of the lateral orifice regions in 26 cases. Three-dimensional surface profiles downstream of the prosthetic aortic valve reflected the valve design. The blood velocity profiles with prosthetic aortic valve in the one diameter downstream in the ascending aorta clearly showed the valve design. Conclusion: MRI is a non-invasive, direct, and in-vivo method of choice to assess the valvular function and is the

  14. Using bimodal MRI/fluorescence imaging to identify host angiogenic response to implants.

    Berdichevski, Alexandra; Simaan Yameen, Haneen; Dafni, Hagit; Neeman, Michal; Seliktar, Dror

    2015-04-21

    Therapies that promote angiogenesis have been successfully applied using various combinations of proangiogenic factors together with a biodegradable delivery vehicle. In this study we used bimodal noninvasive monitoring to show that the host response to a proangiogenic biomaterial can be drastically affected by the mode of implantation and the surface area-to-volume ratio of the implant material. Fluorescence/MRI probes were covalently conjugated to VEGF-bearing biodegradable PEG-fibrinogen hydrogel implants and used to document the in vivo degradation and liberation of bioactive constituents in an s.c. rat implantation model. The hydrogel biodegradation and angiogenic host response with three types of VEGF-bearing implant configurations were compared: preformed cylindrical plugs, preformed injectable microbeads, and hydrogel precursor, injected and polymerized in situ. Although all three were made with identical amounts of precursor constituents, the MRI data revealed that in situ polymerized hydrogels were fully degraded within 2 wk; microbead degradation was more moderate, and plugs degraded significantly more slowly than the other configurations. The presence of hydrogel degradation products containing the fluorescent label in the surrounding tissues revealed a distinct biphasic release profile for each type of implant configuration. The purported in vivo VEGF release profile from the microbeads resulted in highly vascularized s.c. tissue containing up to 16-fold more capillaries in comparison with controls. These findings demonstrate that the configuration of an implant can play an important role not only in the degradation and resorption properties of the materials, but also in consequent host angiogenic response. PMID:25825771

  15. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    Amro, H; Chetty, I; Gordon, J; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.

  16. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation

  17. Pictorial review of MRI/CT Scan in congenital temporal bone anomalies, in patients for cochlear implant

    High-resolution CT scan (HRCT) and MRI are routinely performed prior to cochlear implant surgery. These modalities help assess the status of the inner ear structures. A few patients have significant anomalies, which need to be assessed and understood in detail. We present a pictorial essay of these anomalies and described our HRCT and MRI techniques in patients being imaged prior to surgery

  18. Spontaneous fMRI activity during resting wakefulness and sleep

    Duyn, Jeff

    2011-01-01

    Functional MRI (fMRI) studies performed during both waking rest and sleep show that the brain is continually active in distinct patterns that appear to reflect its underlying functional connectivity. In this review, potential sources that contribute to spontaneous fMRI activity will be discussed.

  19. The role of endorectal coil MRI in patient selection and treatment planning for prostate seed implants

    Purpose: To assess the role of endorectal coil magnetic resonance imaging (MRI) staging for patients undergoing seed implantation (SI) with or without external beam radiotherapy (EBRT). Methods and Materials: Between October 1994 and December 1998, 390 patients underwent prostate SI (98% Pd-103, 2% I-125). Seventy-six percent of patients had a prostate serum antigen (PSA) 20. Ten percent of patients had a Gleason score (GS) of 4-5, 54% had GS 6, 29% had GS 7, and 7% had GS ≥ 8. Monotherapy was employed in 46% of patients, and the remaining 54% received combined EBRT and SI. Three hundred twenty-seven were staged by high-resolution phased array pelvic coil, or in most cases, an endorectal coil MRI. The MRI findings were used to guide stage-appropriate treatment recommendations, and to assist in the preplanning and optimization of seed distributions. The criteria utilized to determine MRI-based stage were founded on the reported literature from the University of Pennsylvania. All MRI studies were reviewed by C.A., D.B., or W.H., who were unaware of clinical stage at the time of their review. The biopsy report was available to them as the only clinical correlate. Results: Of the 327 patients staged by MRI, 70% were upstaged from the digital rectal examination-based clinical stage; 26% of T1, T2 patients were upstaged to T3. Perineural invasion and the percentage of positive cores predicted for T3 MRI stage (p 3 intermediate-risk group patients treated by combined therapy with a previous study of T3 intermediate-risk group treated by radical prostatectomy (RP) at the University of Pennsylvania. Our 36-month PSA FFP was 94% compared with 21% for the previous study's RP patients. Conclusion: MRI is a valuable staging procedure for prostate cancer patients treated by SI. PSA FFP results appear to be improved by MRI staging. MRI T3 disease can be treated more effectively by SI + EBRT than by RP

  20. Passive and active middle ear implants

    Beutner, Dirk

    2009-01-01

    Full Text Available Besides eradication of chronic middle ear disease, the reconstruction of the sound conduction apparatus is a major goal of modern ear microsurgery. The material of choice in cases of partial ossicular replacement prosthesis is the autogenous ossicle. In the event of more extensive destruction of the ossicular chain diverse alloplastic materials, e.g. metals, ceramics, plastics or composits are used for total reconstruction. Their specialised role in conducting sound energy within a half-open implant bed sets high demands on the biocompatibility as well as the acoustic-mechanic properties of the prosthesis. Recently, sophisticated titanium middle ear implants allowing individual adaptation to anatomical variations are widely used for this procedure. However, despite modern developments, hearing restoration with passive implants often faces its limitations due to tubal-middle-ear dysfunction. Here, implantable hearing aids, successfully used in cases of sensorineural hearing loss, offer a promising alternative. This article reviews the actual state of affairs of passive and active middle ear implants.

  1. MRI of the labyrinth with volume rendering for cochlear implants candidates

    We demonstrated three-dimensional models of the labyrinth by volume rendering (VR) in preoperative assessment for cochlear implantation. MRI data sets were acquired in selected subjects using three-dimensional-fast spin echo sequences (3D-FSE). We produced the three-dimensional models of the labyrinth from axial heavily T2-weighted images. The three-dimensional models distinguished the scala tympani and scala vestibuli and provided multidirectional images. The optimal threshold three-dimensional models clearly showed the focal region of signal loss in the cochlear turns (47.1%) and the presence of inner ear anomalies (17.3%) in our series of patients. This study was concluded that these three-dimensional models by VR provide the oto-surgeon with precise, detailed, and easily interpreted information about the cochlear turns for cochlear implants candidates. (author)

  2. Pre-Implant Assessment for Optimal LV Lead Placement in CRT: ECG, Echo, or MRI?

    Matthew J. Singleton; David D. Spragg.

    2015-08-01

    Full Text Available ABSTRACT Cardiac resynchronization therapy (CRT improves cardiac function in many patients with ventricular dyssynchrony. The optimal use of imaging for pre-implantation assessment remains a subject of debate. Here, we review the literature to date on the utility of echocardiography and cardiac MR, as well as conventional ECG, in choosing the best site for LV lead implantation. Prior to the use of imaging for pre-implantation evaluation, LV leads were placed empirically, based on average responses from population-level studies. Subsequently, patient-specific approaches have been used to maximize response. Both echocardiography and cardiac MR allow determination of areas of latest mechanical activation. Some studies have found improved response when pacing is applied at or near the site of latest mechanical activation. Similarly, both echocardiography and cardiac MR provide information about the location of any myocardial scar, which should be avoided when placing the LV lead due to variable conduction and high capture thresholds. Alternative approaches include targeting the region of latest electrical activation via measurement of the QLV interval and methods based on intraoperative hemodynamic measurements. Each of these modalities offers complementary insights into LV lead placement, so future directions include multimodality pre-implantation evaluation, studies of which are ongoing. Emerging technologies such as leadless implantable pacemakers may free implanting electrophysiologists from the constraints of the coronary sinus, making this information more useful and making non-response to CRT increasingly rare.

  3. MRI-Based Multiscale Model for Electromagnetic Analysis in the Human Head with Implanted DBS

    Maria Ida Iacono

    2013-01-01

    Full Text Available Deep brain stimulation (DBS is an established procedure for the treatment of movement and affective disorders. Patients with DBS may benefit from magnetic resonance imaging (MRI to evaluate injuries or comorbidities. However, the MRI radio-frequency (RF energy may cause excessive tissue heating particularly near the electrode. This paper studies how the accuracy of numerical modeling of the RF field inside a DBS patient varies with spatial resolution and corresponding anatomical detail of the volume surrounding the electrodes. A multiscale model (MS was created by an atlas-based segmentation using a 1 mm3 head model (mRes refined in the basal ganglia by a 200 μm2 ex-vivo dataset. Four DBS electrodes targeting the left globus pallidus internus were modeled. Electromagnetic simulations at 128 MHz showed that the peak of the electric field of the MS doubled (18.7 kV/m versus 9.33 kV/m and shifted 6.4 mm compared to the mRes model. Additionally, the MS had a sixfold increase over the mRes model in peak-specific absorption rate (SAR of 43.9 kW/kg versus 7 kW/kg. The results suggest that submillimetric resolution and improved anatomical detail in the model may increase the accuracy of computed electric field and local SAR around the tip of the implant.

  4. Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice Activations

    Coez, A.; Zilbovicius, M. [CEA, Serv Hosp Frederic Joliot, INSERM, Res Unit Neuroimaging and Psychiat, U797, IFR49, F-91406 Orsay (France); Zilbovicius, M.; Syrota, A.; Samson, Y. [CEA, DSV, DRM, Serv Hosp Frederic Joliot, F-91406 Orsay (France); Bizaguet, E. [Lab Correct Audit, Paris (France); Coez, A. [Univ Paris Sud 11, Paris (France); Ferrary, E.; Bouccara, D.; Mosnier, I.; Sterkers, O. [INSERM, Unit M 867, Paris (France); Ambert-Dahan, E. [Hop Beaujon, Serv ORL Chirurg Cervicofaciale, AP-HP, Clichy (France); Ferrary, E.; Bouccara, D.; Mosnier, I.; Sterkers, O. [Inst Fed Rech Claude Bernard Physiol et Pathol, IFR02, Paris (France); Samson, Y. [Hop La Pitie Salpetriere, Serv Urgences Cerebro-vasc, AP-HP, Paris (France); Samson, Y. [Univ Paris 06, Paris (France); Sterkers, O. [Univ Denis Diderot Paris 7, Paris (France)

    2008-07-01

    Cochlear implants may improve the medical and social prognosis of profound deafness. Nevertheless, some patients have experienced poor results without any clear explanations. One correlate may be an alteration in cortical voice processing. To test this hypothesis, we studied the activation of human temporal voice areas (TVA) using a well-standardized PET paradigm adapted from previous functional MRI (fMRI) studies. Methods: A PET H{sub 2}{sup 15}O activation study was performed on 3 groups of adult volunteers: normal-hearing control subjects (n 6) and cochlear-implanted post-lingually deaf patients with {>=}2 y of cochlear implant experience, with intelligibility scores in the 'Lafon monosyllabic task' {>=}80% (Good group; n 6) or {<=}20% (Poor group; n 6). Relative cerebral blood flow was measured in 3 conditions: rest, passive listening to human voice, and non-voice stimuli. Results: Compared with silence, the activations induced by non-voice stimuli were bilaterally located in the superior temporal regions in all groups. However these activations were significantly and similarly reduced in both cochlear implant groups, whereas control subjects showed supplementary activations. Compared with non-voice, the voice stimuli induced bilateral activation of the TVA along the superior temporal sulcus (STS) in both the control and the Good groups. In contrast, these activations were not detected in the Poor group, which showed only left unilateral middle STS activation. Conclusion: These results suggest that PET is an adequate method to explore cochlear implant benefits and that this benefit could be linked to the activation of the TVA. (authors)

  5. Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice Activations

    Cochlear implants may improve the medical and social prognosis of profound deafness. Nevertheless, some patients have experienced poor results without any clear explanations. One correlate may be an alteration in cortical voice processing. To test this hypothesis, we studied the activation of human temporal voice areas (TVA) using a well-standardized PET paradigm adapted from previous functional MRI (fMRI) studies. Methods: A PET H215O activation study was performed on 3 groups of adult volunteers: normal-hearing control subjects (n 6) and cochlear-implanted post-lingually deaf patients with ≥2 y of cochlear implant experience, with intelligibility scores in the 'Lafon monosyllabic task' ≥80% (Good group; n 6) or ≤20% (Poor group; n 6). Relative cerebral blood flow was measured in 3 conditions: rest, passive listening to human voice, and non-voice stimuli. Results: Compared with silence, the activations induced by non-voice stimuli were bilaterally located in the superior temporal regions in all groups. However these activations were significantly and similarly reduced in both cochlear implant groups, whereas control subjects showed supplementary activations. Compared with non-voice, the voice stimuli induced bilateral activation of the TVA along the superior temporal sulcus (STS) in both the control and the Good groups. In contrast, these activations were not detected in the Poor group, which showed only left unilateral middle STS activation. Conclusion: These results suggest that PET is an adequate method to explore cochlear implant benefits and that this benefit could be linked to the activation of the TVA. (authors)

  6. fMRI activation detection with EEG priors

    Kalus, Stefanie; Sämann, Philipp; Czisch, Michael; Fahrmeir, Ludwig

    2013-01-01

    The purpose of brain mapping techniques is to advance the understanding of the relationship between structure and function in the human brain in so-called activation studies. In this work, an advanced statistical model for combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings is developed to fuse complementary information about the location of neuronal activity. More precisely, a new Bayesian method is proposed for enhancing fMRI activation detecti...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... Examples include but are not limited to: artificial heart valves implanted drug infusion ports artificial limbs or ... imaging based on the electrical activity of the heart, such as electrocardiography (EKG). MRI generally is not ...

  8. Anomalous activation of shallow B+ implants in Ge

    Yates, B.R.; Darby, B.L.; Rudawski, N.G.;

    2011-01-01

    The electrical activation of B+ implantation at 2 keV to doses of 5.0×1013-5.0×1015 cm-2 in crystalline and pre-amorphized Ge following annealing at 400 °C for 1.0 h was studied using micro Hall effect measurements. Preamorphization improved activation for all samples with the samples implanted t...

  9. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips

    Gill Amreeta

    2012-01-01

    Full Text Available Abstract Purpose Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. Methods A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Results Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration. Heating was not substantial (highest temperature change, ≤ 1.6°C. Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. Conclusions The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.

  10. Activation Detection in fMRI Using Jeffrey Divergence

    Seghouane, Abd-Krim

    2009-12-01

    A statistical test for detecting activated pixels in functional MRI (fMRI) data is proposed. For the derivation of this test, the fMRI time series measured at each voxel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. The test is based on comparing the dimension of the voxels fMRI time series fitted data models with and without controlled activation-baseline pattern. The Jeffrey divergence is used for this comparison. The test has the advantage of not requiring a level of significance or a threshold to be provided.

  11. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  12. An Introduction to Cochlear Implant Technology, Activation, and Programming.

    Moore, Jan A.; Teagle, Holly F. B.

    2002-01-01

    This article provides information about the hardware components and speech-processing strategies of cochlear implant systems. The use of assistive listening devices with cochlear implants is also discussed. A brief description of surgical procedures and the initial activation of the device are also presented, along with programming considerations.…

  13. Fast and direct detection of neuronal activation with diffusion MRI

    Over the last 30 years functional neuroimaging has emerged as a revolutionary path to study the brain and the mind. This has been possible because of significant advances mainly in two imaging modalities, namely Positron Emission Tomograph y (PET) and Magnetic Resonance Imaging (MRI). Amazingly, although those two modalities are based on radically different physical approaches (detection of 1 3 radioactivity for the first one and nuclear magnetization for the second), both allo w brain activation images to be obtained through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the same principle that neuronal activation and blood flow are coupled through metabolism: Blood flow increases locally in activated brain regions. In the case of PET one uses H2O radioactive water which is produced by using a cyclotron and injected to the subject vasculature. In activated brain regions the increase in blood flow leads to a local increase in the tissue radioactive water content detected and localized by the PE T camera. With MRI the hydrogen nuclei of brain endogenous water molecules are magnetized by a strong external magnetic field. In activated regions the increase in blood flow results in an increase of blood oxygenation which induces a slight perturbation of the magnetization relaxation properties of the water molecules around blood vessels detected by the MRI scanner (so called 'BOLD' effect). I n both approaches water is, thus, merely an indirect means to look at changes in cerebral blood flow which accompany brain activation, and although PET and BOLD f MRI have been extremely successful for the functional neuroimaging community, present well known limitations. While the coupling between neuronal activation, metabolism and blood flow has been verified in most instances including BOLD f MRI, the degree and the mechanism of coupling remains largely debated (Magistratt, Pellerin, Mangia) and may fail in some pathological

  14. Investigation of fMRI activation in the internal capsule

    Brewer Kimberley D

    2011-06-01

    Full Text Available Abstract Background Functional magnetic resonance imaging (fMRI in white matter has long been considered controversial. Recently, this viewpoint has been challenged by an emerging body of evidence demonstrating white matter activation in the corpus callosum. The current study aimed to determine whether white matter activation could be detected outside of the corpus callosum, in the internal capsule. Data were acquired from a 4 T MRI using a specialized asymmetric spin echo spiral sequence. A motor task was selected to elicit activation in the posterior limb of the internal capsule. Results White matter fMRI activation was examined at the individual and group levels. Analyses revealed that activation was present in the posterior limb of the internal capsule in 80% of participants. These results provide further support for white matter fMRI activation. Conclusions The ability to visualize functionally active tracts has strong implications for the basic scientific study of connectivity and the clinical assessment of white matter disease.

  15. Thymoma of the left thymic lobe with a contralateral small pleural implant successfully detected with diffusion-weighted MRI.

    Priola, Adriano Massimiliano; Priola, Sandro Massimo

    2015-01-01

    Thymoma is the most common primary neoplasm of the anterior mediastinum. At diagnosis, up to 40% of patients present with advanced disease. Because advanced thymomas receive neoadjuvant chemotherapy, diagnostic imaging is crucial to plan the correct treatment. For characterizing thymomas, CT is the first choice modality, whereas 18F-FDG/PET is reserved for questionable cases and MRI is not routinely employed. Hereby, we describe a case of thymoma with a single contralateral pleural implant in a 30-year-old woman. The small pleural thickening detected at CT was correctly interpreted as pleural seeding related to thymoma at diffusion-weighted (DW)-MRI after a negative 18F-FDG/PET scan, and was subsequently confirmed at surgery. Precise diagnosis and accurate preoperative staging are crucial in managing thymic epithelial tumours in order to design the appropriate treatment and improve prognosis. Indeed, when stage IVa for pleural seeding is diagnosed preoperatively, a multimodality approach including primary chemotherapy followed by surgery and postoperative radiotherapy/chemotherapy is recommended. This is the first report that used DW-MRI for the characterization of pleural seeding in thymoma and demonstrates that DW-MRI could be useful for the correct pre-operatory staging in thymoma patients, especially in cases with indeterminate pleural thickenings at CT, in order to define the correct management. PMID:25702681

  16. Magnet discolation - An increasing and serious complication following MRI in patients with chochlear implants; Magnetdiskolation - eine zunehmende und folgenreiche Komplikation nach MRT bei Patienten mit Cochlea Implantat

    Hassepass, F.; Staubenau, V.; Arndt, S.; Beck, R.; Grauvogel, T.; Aschendorff, A. [Univ. Medical Center Freiburg (Germany). Dept. of Otorhinolaryngology-Head and Neck Surgery; Bulla, S. [Univ. Medical Center Freiburg (Germany). Dept. of Diagnostic Radiology

    2014-07-15

    Cochlear implantation (CI) represents the gold standard in the treatment of children born deaf and postlingually deafened adults. Initial magnetic resonance imaging (MRI) was contraindicated in CI users. Meanwhile, there are specific recommendations concerning MRI compatibility depending on the type of CI system and the device manufacturer. Some CI systems are even approved for MRI with the internal magnet left in place. The aim of this study was to analyze all magnet revision surgeries in CI patients at one CI center and the relationship to MRI scans over time. Between 2000 and 2013, a total of 2027 CIs were implanted. The number of magnet dislocation (MD) surgeries and their causes was assessed retrospectively. In total 12 cases of MD resulting from an MRI scan (0.59 %) were observed, accounting for 52.2 % of all magnetic revision surgeries. As per the labeling, it was considered safe to leave the internal magnet in place during MRI while following specific manufacturer recommendations: MRI intensity of 1.5 Tesla (T) and compression head bandage during examination. A compression head bandage in a 1.5 T MRI unit does not safely prevent MD and the related serious complications in CI recipients. We recommend a Stenvers view radiograph after MRI with the internal magnet in place for early identification of MD, at least in the case of pain during or after MRI examination. MRI in CI patients should be indicated with restraint and patients should be explicitly informed about the possible risks. Recommendations regarding MRI compatibility and the handling of CI patients issued with MRI for the most common CI systems are summarized.

  17. Brain activation studies with PET and functional MRI

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H215O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H215O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  18. MRI

    ... the test, tell your provider if you have: Artificial heart valves Brain aneurysm clips Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not ... artificial joints Vascular stents Worked with sheet metal in ...

  19. Decoding subjective mental states from fMRI activity patterns

    In recent years, functional magnetic resonance imaging (fMRI) decoding has emerged as a powerful tool to read out detailed stimulus features from multi-voxel brain activity patterns. Moreover, the method has been extended to perform a primitive form of 'mind-reading,' by applying a decoder 'objectively' trained using stimulus features to more 'subjective' conditions. In this paper, we first introduce basic procedures for fMRI decoding based on machine learning techniques. Second, we discuss the source of information used for decoding, in particular, the possibility of extracting information from subvoxel neural structures. We next introduce two experimental designs for decoding subjective mental states: the 'objective-to-subjective design' and the 'subjective-to-subjective design.' Then, we illustrate recent studies on the decoding of a variety of mental states, such as, attention, awareness, decision making, memory, and mental imagery. Finally, we discuss the challenges and new directions of fMRI decoding. (author)

  20. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips

    Gill Amreeta; Shellock Frank G

    2012-01-01

    Abstract Purpose Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. Methods A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Tradit...

  1. MRI of the heart following implantation of a left ventricular apico-aortic conduit; Kernspintomografie zur umfassenden Untersuchung des Herzens nach Implantation von linksventrikulaeren apikoaortalen Conduits

    Ruhl, K.M.; Katoh, M.; Guenther, R.W.; Krombach, G.A. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Langebartels, G.; Autschbach, R. [Technische Hochschule Aachen (Germany). Klinik fuer Thorax-, Herz- und Gefaesschirurgie

    2007-06-15

    Purpose: To investigate the potential of ECG-triggered MRI for the evaluation of postoperative anatomy and function of the heart and conduit following implantation of a left-ventricular apico-aortic conduit. Materials and Methods: 5 patients (2 female, 3 male, mean age 72.5 years) were examined using a 1.5 Tesla whole-body MRI (Gyroscan Intera, Philips Medical Systems, Best, The Netherlands) following apico-aortic conduit surgery due to severe aortic valve stenosis. The reason for performing conduit implantation instead of aortic valve replacement was the risk of injuring a bypass graft from prior coronary artery bypass surgery. Cine steady-state-free-precession (SSFP) sequences were used to assess ventricular function, navigator-gated 3D-SSFP and breath-hold, time-resolved contrast-enhanced MR angiography was used to display the postoperative anatomy, and 2D-gradient echo sequences with an inversion pulse to suppress the signal of the healthy myocardium were used to evaluate potential myocardial scarring. Flow sensitive gradient echo sequences were performed to determine the blood flow in the conduit. Results: In all patients the apico-aortic conduit proved to be open with a maximum flow velocity of 126 (+ 43) cm/s. The postoperative anatomy was able to be evaluated in all patients and perioperative myocardial infarction was able to be ruled out. The mean ejection fraction of the left ventricle was 44.2 + 6.2 % with a mean volume of 80 + 20.6 ml per heart beat. (orig.)

  2. Prevention of Cutaneous Tissue Contracture During Removal of Craniofacial Implant Superstructures for CT and MRI Studies

    Maureen Sullivan

    2010-04-01

    Full Text Available Objectives: Head and neck cancer patients who have lost facial parts following surgical intervention frequently require craniofacial implant retained facial prostheses for restoration. Many craniofacial implant patients require computed tomography and magnetic resonance imaging scans as part of their long-term follow-up care. Consequently removal of implant superstructures and peri-abutment tissue management is required for those studies. The purpose of the present paper was to describe a method for eliminating cranial imaging artifacts in patients with craniofacial implants.Material and Methods: Three patients wearing extraoral implant retained facial prostheses needing either computed tomography or magnetic resonance imaging studies were discussed. Peri-implant soft tissues contracture after removal of percutaneous craniofacial implant abutments during computed tomography and magnetic resonance imaging studies was prevented using a method proposed by authors. The procedure involves temporary removal of the supra-implant components prior to imaging and filling of the tissue openings with polyvinyl siloxane dental impression material.Results: Immediately after filling of the tissue openings with polyvinyl siloxane dental impression material patients were sent for the imaging studies, and were asked to return for removal of the silicone plugs and reconnection of all superstructure hardware after imaging procedures were complete. The silicone plugs were easily removed with a dental explorer. The percutaneous abutments were immediately replaced and screwed into the implants which were at the bone level.Conclusions: Presented herein method eliminates the source of artifacts and prevents contracture of percutaneous tissues upon removal of the implant abutments during imaging.

  3. Optimization of scan time in MRI for total hip prostheses. SEMAC tailoring for prosthetic implants containing different types of metals

    Deligianni, X. [University of Basel Hospital, Basel (Switzerland). Div. of Radiological Physics; Merian Iselin Klinik, Basel (Switzerland). Inst. of Radiology; Bieri, O. [University of Basel Hospital, Basel (Switzerland). Div. of Radiological Physics; Elke, R. [Orthomerian, Basel (Switzerland); Wischer, T.; Egelhof, T. [Merian Iselin Klinik, Basel (Switzerland). Inst. of Radiology

    2015-12-15

    Magnetic resonance imaging (MRI) of soft tissues after total hip arthroplasty is of clinical interest for the diagnosis of various pathologies that are usually invisible with other imaging modalities. As a result, considerable effort has been put into the development of metal artifact reduction MRI strategies, such as slice encoding for metal artifact correction (SEMAC). Generally, the degree of metal artifact reduction with SEMAC directly relates to the overall time spent for acquisition, but there is no specific consensus about the most efficient sequence setup depending on the implant material. The aim of this article is to suggest material-tailored SEMAC protocol settings. Five of the most common total hip prostheses (1. Revision prosthesis (S-Rom), 2. Titanium alloy, 3. Mueller type (CoNiCRMo alloy), 4. Old Charnley prosthesis (Exeter/Stryker), 5. MS-30 stem (stainless-steel)) were scanned on a 1.5 T MRI clinical scanner with a SEMAC sequence with a range of artifact-resolving slice encoding steps (SES: 2 - 23) along the slice direction (yielding a total variable scan time ranging from 1 to 10 min). The reduction of the artifact volume in comparison with maximal artifact suppression was evaluated both quantitatively and qualitatively in order to establish a recommended number of steps for each case. The number of SES that reduced the artifact volume below approximately 300 mm{sup 3} ranged from 3 to 13, depending on the material. Our results showed that although 3 SES steps can be sufficient for artifact reduction for titanium prostheses, at least 11 SES should be used for prostheses made of materials such as certain alloys of stainless steel. Tailoring SES to the implant material and to the desired degree of metal artifact reduction represents a simple tool for workflow optimization of SEMAC imaging near total hip arthroplasty in a clinical setting.

  4. Optimization of scan time in MRI for total hip prostheses. SEMAC tailoring for prosthetic implants containing different types of metals

    Magnetic resonance imaging (MRI) of soft tissues after total hip arthroplasty is of clinical interest for the diagnosis of various pathologies that are usually invisible with other imaging modalities. As a result, considerable effort has been put into the development of metal artifact reduction MRI strategies, such as slice encoding for metal artifact correction (SEMAC). Generally, the degree of metal artifact reduction with SEMAC directly relates to the overall time spent for acquisition, but there is no specific consensus about the most efficient sequence setup depending on the implant material. The aim of this article is to suggest material-tailored SEMAC protocol settings. Five of the most common total hip prostheses (1. Revision prosthesis (S-Rom), 2. Titanium alloy, 3. Mueller type (CoNiCRMo alloy), 4. Old Charnley prosthesis (Exeter/Stryker), 5. MS-30 stem (stainless-steel)) were scanned on a 1.5 T MRI clinical scanner with a SEMAC sequence with a range of artifact-resolving slice encoding steps (SES: 2 - 23) along the slice direction (yielding a total variable scan time ranging from 1 to 10 min). The reduction of the artifact volume in comparison with maximal artifact suppression was evaluated both quantitatively and qualitatively in order to establish a recommended number of steps for each case. The number of SES that reduced the artifact volume below approximately 300 mm3 ranged from 3 to 13, depending on the material. Our results showed that although 3 SES steps can be sufficient for artifact reduction for titanium prostheses, at least 11 SES should be used for prostheses made of materials such as certain alloys of stainless steel. Tailoring SES to the implant material and to the desired degree of metal artifact reduction represents a simple tool for workflow optimization of SEMAC imaging near total hip arthroplasty in a clinical setting.

  5. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices

    Joshua Kahan; Anastasia Papadaki; Mark White; Laura Mancini; Tarek Yousry; Ludvic Zrinzo; Patricia Limousin; Marwan Hariz; Tom Foltynie; John Thornton

    2015-01-01

    Background Deep brain stimulation (DBS) is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips – which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit co...

  6. Ventricular Assist Device implant (AB 5000 prototype cannula: In vitro assessment of MRI issues at 3-Tesla

    Valencerina Samuel

    2008-05-01

    Full Text Available Abstract Purpose To evaluate MRI issues at 3-Tesla for a ventricular assist device (VAD. Methods The AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached (Abiomed, Inc., Danvers, MA was evaluated for magnetic field interactions, heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the device in a gelled-saline-filled, head/torso phantom using a transmit/received RF body coil while performing MRI at a whole body averaged SAR of 3-W/kg for 15-min. Artifacts were assessed for the main metallic component of this VAD (atrial cannula using T1-weighted, spin echo and gradient echo pulse sequences. Results The AB5000 Ventricle with the prototype In-Flow Cannula and Out-Flow Cannula attached showed relatively minor magnetic field interactions that will not cause movement in situ. Heating was not excessive (highest temperature change, +0.8°C. Artifacts may create issues for diagnostic imaging if the area of interest is in the same area or close to the implanted metallic component of this VAD (i.e., the venous cannula. Conclusion The results of this investigation demonstrated that it would be acceptable for a patient with this VAD (AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached to undergo MRI at 3-Tesla or less. Notably, it is likely that the operation console for this device requires positioning a suitable distance (beyond the 100 Gauss line or in the MR control room from the 3-Tesla MR system to ensure proper function of the VAD.

  7. MRI Brain Activation During Instruction of Dyslexic Children

    J Gordon Millichap

    2003-08-01

    Full Text Available Ten children with dyslexia and 11 normal readers performed tasks of phoneme mapping (assigning sounds to letters and morpheme mapping (relating suffixed words to their roots during fMRI scanning, before and after 28 hours of comprehensive reading instruction, in a study of the effects of reading instruction on brain activation in children with dyslexia at University of Washington, Seattle, WA.

  8. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    Zhao, Zhao; Vemuri, Rajitha N. P.; Alford, T. L., E-mail: TA@asu.edu [School of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); David Theodore, N. [CHD-Fab, Freescale Semiconductor Inc., 1300 N. Alma School Rd., Chandler, Arizona 85224 (United States); Lu, Wei; Lau, S. S. [Department of Electrical Engineering, University of California, San Diego, California 92093 (United States); Lanz, A. [Department of Mathematics, Norfolk State University, Norfolk, Virginia 23504 (United States)

    2013-12-28

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P{sup +} implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  9. Safe use of MRI in people with cardiac implantable electronic devices.

    Lowe, Martin D; Plummer, Christopher J; Manisty, Charlotte H; Linker, Nicholas J

    2015-12-01

    MR scanning in patients with cardiac implantable electronic devices (CIEDs) was formerly felt to be contraindicated, but an increasing number of patients have an implanted MR conditional device, allowing them to safely undergo MR scanning, provided the manufacturer's guidance is adhered to. In addition, some patients with non-MR conditional devices may undergo MR scanning if no other imaging modality is deemed suitable and there is a clear clinical indication for scanning which outweighs the potential risk. The following guidance has been formulated by the British Heart Rhythm Society and endorsed by the British Cardiovascular Society and others. It describes protocols that should be followed for patients with CIEDs undergoing MR scanning. The recommendations, principles and conclusions are supported by the Royal College of Radiologists. PMID:26420818

  10. Brain Activity Associated with Emoticons: An fMRI Study

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  11. Spatial heterogeneity analysis of brain activation in fMRI

    Lalit Gupta

    2014-01-01

    Full Text Available In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD activation maps appear more (diffusively distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness, complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix, and gappiness between activated regions (lacunarity. To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70% and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.

  12. Defining active sacroiliitis on MRI for classification of axial spondyloarthritis

    Lambert, Robert G W; Bakker, Pauline A C; van der Heijde, Désirée;

    2016-01-01

    OBJECTIVES: To review and update the existing definition of a positive MRI for classification of axial spondyloarthritis (SpA). METHODS: The Assessment in SpondyloArthritis International Society (ASAS) MRI working group conducted a consensus exercise to review the definition of a positive MRI for...

  13. Locomotive micro-implant with active electromagnetic propulsion.

    Pivonka, Daniel; Poon, Ada S Y; Meng, Teresa H

    2009-01-01

    An active locomotive technique requiring only an external power source and a static magnetic field is presented, and its operation is analyzed and simulated. For a modest static MRI magnetic field of 1 T, the results show that a 1-mm cube achieves roughly 3 cm/sec of lateral motion using less than 20.4 microW of power. Current-carrying wires generate the forces, resulting in highly controllable motion. Existing solutions trade off size and power: passive solutions are small but impractical, and mechanical solutions are inefficient and large. The presented solution captures the advantages of both systems, and has much better scalability. PMID:19964695

  14. Bilateral use of Active Middle Ear Implants: Speech Discrimination Results in Noise

    Wolf-Magele, A; Koci, V; Sprinzl, G; Zorowka, P; Riechelmann, H.; Schnabl, J

    2016-01-01

    Background: Binaural sound reception has advantages over unilateral perception, including better localization and sound quality as well as speech and tone reception in both quiet and noisy environments. Up to now, most active middle ear implant (AMEI) users have been unilaterally implanted, but patient demand for an implant on the other side is increasing.Material & Methods: Ten bilaterally-AMEI implanted native German-speaking adults were included in the study. The Oldenburg sentence test...

  15. Functional MRI study of cerebral cortical activation during volitional swallowing

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  16. Functional MRI study of cerebral cortical activation during volitional swallowing

    Wakasa, Toru; Aiga, Hideki; Yanagi, Yoshinobu; Kawai, Noriko; Sugimoto, Tomosada; Kuboki, Takuo; Kishi, Kanji [Okayama Univ. (Japan). Graduate School of Medicine and Dentistry

    2002-12-01

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  17. MRI manifestations of lumbar active inflammation in ankylosing spondylitis

    Objective: To study the MRI manifestations of lumbar active inflammation in ankylosing spondylitis (AS), and its relationship with CT grade of sacroiliitis. Methods: 64 cases of AS accepted lumbar MR scan with sagittal STIR/SPIR and T1-weighted fat suppressed sequences after administration of GD-DTPA. MR manifestations of lumbar active inflammation including active spondylitis, spondylodiskitis, arthritis of the facet joints and enthesitis were studied. Spondylitis was especially analyzed by Berlin method. 40 cases accepted CT scan of sacroiliac joints simultaneously, classed by modified New York criteria. Correlation: analysis was made between lumbar involvement and Berlin method. Results: There were 42 cases of active spondylitis, 6 of spondylodiskitis, 37 of arthritis of the facet joints, 32 of enthesitis in all 64 cases. The positive rate of lumbar involvement in AS was 85.9%. Positive rate of Spondylitis was 65.6%. L1/2 was 34.4%, which accounted for the most in all lumbar vertebral units, but there was not statistically significance between L1/2 and other Vertebral Units (P>0.05). The mean score of L5/S1 was 1.23, which was the highest in vertebral units involved, and there was statistically significance between L5/S1 and T12/L1, L1/2, L2/ 3 (P0.05) between lumbar active inflammation and the CT grades of sacroiliitis. Conclusions: Lumbar involvement of AS is common, mostly manifested as spondylitis, arthritis of the facet joints and enthesitis, with spondylodiskitis the least. In spondylitis, L1/2 is the most. There maybe no correlation between lumbar involvement and degree of spondylitis and grade of sacroiliitis. (authors)

  18. MRI grading method for active and chronic spinal changes in spondyloarthritis

    Madsen, K.B. [Department of Radiology, Aarhus University Hospital, Aarhus Sygehus (Denmark); Jurik, A.G., E-mail: anne.jurik@aarhus.rm.d [Department of Radiology, Aarhus University Hospital, Aarhus Sygehus (Denmark)

    2010-01-15

    Aim: To describe a magnetic resonance imaging (MRI) grading method for both active and chronic spondyloarthritis (SpA) changes in the spine, to test its validity, and compare chronic MRI scores with findings obtained by radiography. Material and methods: A total of 91 patients (41 males; 50 females) with back pain fulfilling the European Spondylarthropathy Study Group (ESSG) criteria for SpA were examined using MRI and radiography of the spine. The mean age was 36.7 years (range 16-51 years) and symptom duration was between 3 and 27 years. The MRI images were assessed for signs of disease activity (bone marrow oedema at the vertebral plates and costo-vertebral joints) and chronic structural changes [syndesmophytes/vertebral fusion, erosion, and fatty marrow deposition (FMD)]. The interobserver agreement was analysed based on 37 examinations. Radiographs were assessed for the presence of shiny corners, vertebral squaring, syndesmophytes/fusion, and erosion. Results: The interobserver agreement for the assessed MRI abnormalities was acceptable, with kappa values between 0.62 and 0.77. A total of 56 patients had SpA-related spinal abnormalities as depicted using MRI. The total chronic MRI score was not significantly related to the radiographic score, mainly because syndesmophytes were difficult to detect by MRI and FMD was only visualized by MRI. However, FMD was significantly related to the total radiographic score and vertebral squaring. Conclusion: The described MRI grading method was reliable for assessing both disease activity and chronic changes. MRI is promising for estimating chronic changes, but cervical radiography may still be needed. FMD seems to be an important sign of chronicity.

  19. MR implant labelling and its use in clinical MRI practice; MR-Implantatkennzeichnungen und ihre Anwendung in der klinischen MRT-Praxis

    Muehlenweg, M. [Krankenhaus Martha-Maria Halle-Doelau, Institut fuer Radiologie, Halle (Saale) (Germany); Schaefers, G. [MR:comp GmbH, Gelsenkirchen (Germany)

    2015-08-15

    Before a magnetic resonance imaging (MRI) examination, implants in patients must be cleared for MR safety in order to exclude the risk of possible severe injuries and implant malfunction in an MR environment. The general contraindication for measurements of patients with implants still applies; however, in the recent past a way has been found to legally circumvent this contraindication. For this purpose special conditions are required: explicit implant identification and the original manufacturer's labelling are necessary, the required conditions for conditionally MR safe implants must be assured and a risk-benefit analysis with appropriate explanation to the patient has to be performed. This process can be very complex as the implants are often poorly documented and detailed information on the implant MR labelling is also often outdated or not easy to interpret. This article provides information about legal and normative principles of MR measurement of patients with implants. The possible physical interactions with implants will be briefly dealt with as well as possible strategies for better identification and investigation of implants and MR labelling. General approaches for minimizing the risk will be discussed using some examples. The second part deals with the content of MR implant labelling and the current test standards. Furthermore, the additional information from the operating instructions of the MR scanner that are necessary for the interpretation of the MR implant labelling, will be explained. The article concludes with an explanation of the current pattern for MR labelling of implants from the U.S. Food and Drug Administration (FDA) and an exemplary application. (orig.) [German] Implantate in Patienten muessen vor einer MR-Untersuchung auf MR-Sicherheit abgeklaert werden, um moegliche z. T. schwere Verletzungen und Implantatfehlfunktionen in einer MR-Umgebung weitestgehend auszuschliessen. Es gilt unveraendert die generelle Kontraindikation von

  20. Assessing the sensitivity of diffusion MRI to detect neuronal activity directly.

    Bai, Ruiliang; Stewart, Craig V; Plenz, Dietmar; Basser, Peter J

    2016-03-22

    Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity. PMID:26941239

  1. Whole-Body MRI versus PET in assessment of multiple myeloma disease activity.

    Shortt, Conor P

    2009-04-01

    The purpose of this study was to compare FDG PET; whole-body MRI; and the reference standard, bone marrow aspiration and biopsy, to determine the best imaging technique for assessment of disease activity in multiple myeloma.

  2. Functional MRI activation in white matter during the Symbol Digit Modalities Test

    Jodie Reanna Gawryluk; Erin Lindsay Mazerolle; Steven eBeyea; Ryan eD'Arcy

    2014-01-01

    Background: Recent evidence shows that functional magnetic resonance imaging (fMRI) can detect activation in white matter (WM). Such advances have important implications for understanding WM dysfunction. A key step in linking neuroimaging advances to the evaluation of clinical disorders is to examine whether WM activation can be detected at the individual level during clinical tests associated with WM function. We used an adapted Symbol Digit Modalities Test (SDMT) in a 4T fMRI study of healt...

  3. Neural Changes following Behavioral Activation for a Depressed Breast Cancer Patient: A Functional MRI Case Study

    Gawrysiak, Michael J.; John P. Carvalho; Rogers, Baxter P.; Nicholas, Christopher R. N.; Dougherty, John H.; Hopko, Derek R.

    2012-01-01

    Functional neuroimaging is an innovative but at this stage underutilized method to assess the efficacy of psychotherapy for depression. Functional magnetic resonance imaging (fMRI) was used in this case study to examine changes in brain activity in a depressed breast cancer patient receiving an 8-session Behavioral Activation Treatment for Depression (BATD), based on the work of Hopko and Lejuez (2007). A music listening paradigm was used during fMRI brain scans to assess reward responsivenes...

  4. SU-E-J-214: MR Protocol Development to Visualize Sirius MRI Markers in Prostate Brachytherapy Patients for MR-Based Post-Implant Dosimetry

    Lim, T; Wang, J; Frank, S; Stafford, R; Bruno, T; Bathala, T; Mahmood, U; Pugh, T; Ibbott, G; Kudchadker, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGR sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3

  5. SU-E-J-214: MR Protocol Development to Visualize Sirius MRI Markers in Prostate Brachytherapy Patients for MR-Based Post-Implant Dosimetry

    Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGR sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3

  6. A Novel Operative Procedure for Pelvic Organ Prolapse Utilizing a MRI-Visible Mesh Implant: Safety and Outcome of Modified Laparoscopic Bilateral Sacropexy

    Ralf Joukhadar

    2015-01-01

    Full Text Available Introduction. Sacropexy is a generally applied treatment of prolapse, yet there are known possible complications of it. An essential need exists for better alloplastic materials. Methods. Between April 2013 and June 2014, we performed a modified laparoscopic bilateral sacropexy (MLBS in 10 patients using a MRI-visible PVDF mesh implant. Selected patients had prolapse POP-Q stages II-III and concomitant OAB. We studied surgery-related morbidity, anatomical and functional outcome, and mesh-visibility in MRI. Mean follow-up was 7.4 months. Results. Concomitant colporrhaphy was conducted in 1/10 patients. Anatomical success was defined as POP-Q stage 0-I. Apical success rate was 100% and remained stable. A recurrent cystocele was seen in 1/10 patients during follow-up without need for intervention. Out of 6 (6/10 patients with preoperative SUI, 5/6 were healed and 1/6 persisted. De-novo SUI was seen in 1/10 patients. Complications requiring a relaparoscopy were seen in 2/10 patients. 8/10 patients with OAB were relieved postoperatively. The first in-human magnetic resonance visualization of a prolapse mesh implant was performed and showed good quality of visualization. Conclusion. MLBS is a feasible and safe procedure with favorable anatomical and functional outcome and good concomitant healing rates of SUI and OAB. Prospective data and larger samples are required.

  7. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study

    Okujava Michael

    2001-11-01

    Full Text Available Abstract Background and Purpose It is not known whether carbamazepine (CBZ; a drug widely used in neurology and psychiatry influences the blood oxygenation level dependent (BOLD contrast changes induced by neuronal activation and measured by functional MRI (fMRI. We aimed to investigate the influence of CBZ on memory induced activation of the mesial temporal lobes in patients with symptomatic temporal lobe epilepsy (TLE. Material and Methods Twenty-one individual patients with refractory symptomatic TLE with different CBZ serum levels and 20 healthy controls were studied using BOLD fMRI. Mesial temporal lobe (MTL activation was induced by a task that is based on the retrieval of individually familiar visuo-spatial knowledge. The extent of significant MTL fMRI activation was measured and correlated with the CBZ serum level. Results In TLE patients, the extent of significant fMRI activation over both MTL was negatively correlated to the CBZ serum level (Spearman r = -0.654, P Conclusions In TLE patients, carbamazepine reduces the fMRI-detectable changes within the mesial temporal lobes as induced by effortful memory retrieval. FMRI appears to be suitable to study the effects of chronic drug treatment in patients with epilepsy.

  8. Test-retest reliability of fMRI brain activity during memory-encoding

    David J Brandt

    2013-12-01

    Full Text Available The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL. Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals. Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC, describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45. Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks.

  9. A graphical simulator for active learning of MRI basics

    Wilhjelm, Jens E.; Duun-Henriksen, Jonas; Hanson, Lars G.

    2014-01-01

    This paper presents a MATLAB-based graphical user interface (GUI) for simulation of a simple magnetic resonance imaging (MRI) scanner that the student can operate and obtain results with. It is intended for the students in an introductory course in medical imaging and provides the students with a...

  10. The Responses of Preschoolers with Cochlear Implants to Musical Activities: A Multiple Case Study

    Schraer-Joiner, Lyn E.; Chen-Hafteck, Lily

    2009-01-01

    The purpose of this study was to investigate the musical experiences of preschool cochlear implant users. Research objectives were to examine: (1) musical, social and emotional responses to activities; and (2) whether length of experience with the implant influenced responses. Participants were three prelingually deafened children, age 4,…

  11. Ventricular Assist Device implant (AB 5000) prototype cannula: In vitro assessment of MRI issues at 3-Tesla

    Valencerina Samuel; Shellock Frank G

    2008-01-01

    Abstract Purpose To evaluate MRI issues at 3-Tesla for a ventricular assist device (VAD). Methods The AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached (Abiomed, Inc., Danvers, MA) was evaluated for magnetic field interactions, heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the device in a gelled-saline-filled, head/torso phantom using a transmit/received RF body coil while performing MRI at a whole body averaged ...

  12. Brain Activity During a Motor Learning Task: An fMRI and Skin Conductance Study

    MacIntosh, Bradley J.; Mraz, Richard; McIlroy, William E.; Graham, Simon J.

    2016-01-01

    Measuring electrodermal activity (EDA) during fMRI is an effective means of studying the influence of task-related arousal, inferred from autonomic nervous system activity, on brain activation patterns. The goals of this study were: (1) to measure reliable EDA from healthy individuals during fMRI involving an effortful unilateral motor task, (2) to explore how EDA recordings can be used to augment fMRI data analysis. In addition to conventional hemodynamic modeling, skin conductance time series data were used as model waveforms to generate activation images from fMRI data. Activations from the EDA model produced significantly different brain regions from those obtained with a standard hemodynamic model, primarily in the insula and cingulate cortices. Onsets of the EDA changes were synchronous with the hemodynamic model, but EDA data showed additional transient features, such as a decrease in amplitude with time, and helped to provide behavioral evidence suggesting task difficulty decreased with movement repetition. Univariate statistics also confirmed that several brain regions showed early versus late session effects. Partial least squares (PLS) multivariate analysis of EDA and fMRI data provided complimentary, additional insight on how the motor network varied over the course of a single fMRI session. Brain regions identified in this manner included the insula, cingulate gyrus, pre- and postcentral gyri, putamen and parietal cortices. These results suggest that recording EDA during motor fMRI experiments provides complementary information that can be used to improve the fMRI analysis, particularly when behavioral or task effects are difficult to model a priori. PMID:17318835

  13. Signal intensity, clinical activity and cross-sectional areas on MRI scans in thyroid eye disease

    The signal intensity from inflamed extra-ocular muscles on short tau inversion recovery (STIR)-sequence magnetic resonance imaging (MRI) is known to correlate with clinical scores of thyroid eye disease (TED) severity. Twenty-one patients who had undergone repeated MRI scanning for TED were studied retrospectively. Signal intensity of extra-ocular muscles (from STIR-sequence MRI) and cross-sectional area (from STIR and T1 MRI) were correlated with Mourits' clinical activity score (CAS). The area of highest signal intensity within the most inflamed extra-ocular muscle, and the average cross-sectional signal intensity of the most inflamed extra-ocular muscle reliably correlated with CAS, and this was maintained as disease activity changed over time. In contrast, isolated measures of muscle cross-sectional area did not correlate with CAS. The extra-ocular muscle cross-sectional area calculated from STIR-sequence MR images was greater than that measured on T1 images. This suggests that muscle area from STIR-sequence MRI may also detect peri-muscular inflammation. We conclude that the peak signal intensity from the most inflamed extra-ocular muscle remains the most reliable correlate of clinical disease activity obtained from these images. STIR-sequence MRI scans provide a number of useful measures of disease activity in TED

  14. Artifact Influence of ITI Implants on 3.0 T MRI Examination%ITI种植体在3.0T MRI检查中的伪影影响

    王成洁; 武丽春; 康华; 林庆

    2012-01-01

    Objective To investigate the artifact influence of ITI implants with different volumes on 3.0T MRI. Methods Two ITI implants with the same diameter but different length are fixed on skin surface of the bilateral mandibular, then these volunteers are detected by MRI. The magnetic field intensity is 3.0 T, and TSE/EPI sequence is used. Results Both of implants produce artifacts on the MRI, which could affect image qualities of local area. And the implant with larger volume has bigger artifact. Conclusion Under MRI examination, the ITI implants with pure titanium has certain influence on imagings of surrounding soft tissues. And the areas of the artifacts are relate to implant volume.%目的 探索不同体积ITI种植体在3.0T磁共振成像(MRI)检查中的伪影影响.方法 将同一直径不同长度的两枚ITI种植体分别固定在志愿者两侧下颌骨皮肤表面,做MRI测试.磁共振仪磁场强度为3.0 T,采用TSE/EPI序列.结果 两枚种植体都能在MRI检查中产生伪影,影响局部区域成像质量,其中体积较大的种植体产生的伪影更大.结论 纯钛ITI种植体在MRI检查中,对其周围软组织成像有一定影响,并且伪影面积大小与种植体体积有关.

  15. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... implanted drug infusion ports artificial limbs or metallic joint prostheses implanted nerve stimulators metal pins, screws, plates, ... risk during MRI. However, a recently placed artificial joint may require the use of another imaging procedure. ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... metallic joint prostheses implanted nerve stimulators metal pins, screws, plates, stents or surgical staples In general, metal ... types of MRI machines. The presence of an implant or other metallic object sometimes makes it difficult ...

  18. Correlation of geomagnetic activity with implantable cardioverter defibrillator shocks and antitachycardia pacing

    Ebrille, E.; Konecny, T.; Konecny, D.; Špaček, R.; Jones, P.; Ambrož, Pavel; DeSimone, C.V.; Powel, B.D.; Hayes, D.L.; Friedman, P.A.; Asirvatham, S.J.

    2015-01-01

    Roč. 90, č. 2 (2015), s. 202-208. ISSN 0025-6196 Institutional support: RVO:67985815 Keywords : geomagnetic activity * implantable cardioverter defibrillator Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 6.262, year: 2014

  19. Functional MRI activation in white matter during the Symbol Digit Modalities Test

    Jodie Reanna Gawryluk

    2014-08-01

    Full Text Available Background: Recent evidence shows that functional magnetic resonance imaging (fMRI can detect activation in white matter (WM. Such advances have important implications for understanding WM dysfunction. A key step in linking neuroimaging advances to the evaluation of clinical disorders is to examine whether WM activation can be detected at the individual level during clinical tests associated with WM function. We used an adapted Symbol Digit Modalities Test (SDMT in a 4T fMRI study of healthy adults.Results: Results from 17 healthy individuals revealed WM activation in 88% of participants (15/17. The activation was in either the corpus callosum (anterior and/or posterior or internal capsule (left and/or right. Conclusions: The findings link advances in fMRI to an established clinical test of WM function. Future work should focus on evaluating patients with WM dysfunction.

  20. Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback

    Berman, Brian D.; Horovitz, Silvina G.; Hallett, Mark

    2013-01-01

    The capacity for subjects to learn to volitionally control localized brain activity using neurofeedback is actively being investigated. We aimed to investigate the ability of healthy volunteers to quickly learn to use visual feedback during real-time functional MRI (rtfMRI) to modulate brain activity within their anterior right insular cortex (RIC) localized during a blink suppression task, an approach of possible interest in the use of rtfMRI to reduce urges. The RIC region of interest (RIC-...

  1. Comparison of PET and fMRI activation patterns during declarative memory processes

    Aim: In this study neuronal correlates of encoding and retrieval in paired association learning were compared using two different neuroimaging methods: Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Methods: 6 right-handed normal male volunteers took part in the study. Each subject underwent six 0-15-butanol PET scans and an fMRI study comprising four single epochs on a different day. The subjects had to learn and retrieve 12 word pairs which were visually presented (highly imaginable words, not semantically related). Results: Mean recall accuracy was 93% in the PET as well as in the fMRI experiment. During encoding and retrieval we found anterior cingulate cortex activation, and bilateral prefrontal cortex activation in both imaging modalities. Furthermore, we demonstrate the importance of the precuneus in episodic memory. With PET the results demonstrate frontopolar activations whereas fMRI fails to show activations in this area probably due to susceptibility artifacts. In fMRI we found additionally parahippocampal activation and due to the whole-brain coverage cerebellar activation during encoding. The distance between the center-of-mass activations in both modalities was 7.2±6.5 mm. Conclusion: There is a preponderance of commonalities in the activation patterns yielded with fMRI and PET. However, there are also important differences. The decision to choose one or the other neuroimaging modality should among other aspects depend on the study design (single subject vs. group study) and the task of interest. (orig.)

  2. Serial MRI studies using gadolinium DTPA in active multiple sclerosis

    It has been suggested that blood brain barrier (BBB) impairment is a necessary early event in the pathogenesis of the multiple sclerosis (MS) lesions. To evaluate such an hypothesis in vivo would require: (1) serial imaging studies using a modality with high sensitivity for detecting plaques; (2) a contrast enhancing agent which demonstrates BBB impairment. A serial magnetic resonance imaging (MRI) study was undertaken of a group of MS patients using the contrast agent gadolinium-DTPA. As it has been suggested that T1 and T2 relaxation times are longer in acute than chronic MS lesions, these were also measured. 3 refs.; 1 figure

  3. Peroxisome proliferator activated receptor gamma loaded dental implant improves osteogenesis of rat mandible.

    Bhattarai, Govinda; Lee, Young-Hee; Yi, Ho-Keun

    2015-04-01

    Peroxisome proliferator activated receptor gamma (PPARγ) has been known for their anti-inflammatory effects. But the application of this molecule in implant-induced inflammation has not been clearly studied yet. Here, we determined in vivo anti-inflammatory and osteogenic effects of PPARγ coated dental implant in the rat mandible. We used chitosan gold nanoparticles (Ch-GNPs) as a non viral vector to carry PPARγ plasmid DNA. Ch-GNPs were conjugated with PPARγ plasmid DNA through a coacervation process. Conjugation was cast over titanium (Ti) implants (4.5 × 0.8 mm) by dipping, and implants were installed in rat mandibles. One, 2, 3, and 6 weeks post-implantation, mandibles were examined by microcomputed tomography (µCT), immunohistochemistry, hematoxylin & eosin, and tartrate resistance acid phosphatase (TRAP) staining. In vivo Ch-GNPs/PPARγcoated implants were associated with inhibition of implant induced inflammatory molecules interleukin-1β and receptor activator of nuclear factor kappa-B ligand and enhanced expression of osteogenic molecules like bone morphogenetic protein 2 and 7 (BMP-2/-7) by up-regulating anti-oxidant molecules heme oxygenase-1. µCT demonstrated that PPARγ overexpression increased the density and volume of newly formed bone surrounding the implants compared to control (n = 4; p TRAP positive cells. These results support the view that PPARγ overexpression diminishes inflammation and enhances osteogenesis around the dental implants. Thus, implant coated with anti-inflammatory molecules could have a significant utilization for the preparation of new biomaterials and may serve as prosthetic materials in patients suffering from inflammatory bone disease. PMID:24962969

  4. Cost Analysis of MRI Services in Iran: An Application of Activity Based Costing Technique

    Bayati

    2015-09-01

    Full Text Available Background Considerable development of MRI technology in diagnostic imaging, high cost of MRI technology and controversial issues concerning official charges (tariffs have been the main motivations to define and implement this study. Objectives The present study aimed to calculate the unit-cost of MRI services using activity-based costing (ABC as a modern cost accounting system and to fairly compare calculated unit-costs with official charges (tariffs. Materials and Methods We included both direct and indirect costs of MRI services delivered in fiscal year 2011 in Shiraz Shahid Faghihi hospital. Direct allocation method was used for distribution of overhead costs. We used micro-costing approach to calculate unit-cost of all different MRI services. Clinical cost data were retrieved from the hospital registering system. Straight-line method was used for depreciation cost estimation. To cope with uncertainty and to increase the robustness of study results, unit costs of 33 MRI services was calculated in terms of two scenarios. Results Total annual cost of MRI activity center (AC was calculated at USD 400,746 and USD 532,104 based on first and second scenarios, respectively. Ten percent of the total cost was allocated from supportive departments. The annual variable costs of MRI center were calculated at USD 295,904. Capital costs measured at USD 104,842 and USD 236, 200 resulted from the first and second scenario, respectively. Existing tariffs for more than half of MRI services were above the calculated costs. Conclusion As a public hospital, there are considerable limitations in both financial and administrative databases of Shahid Faghihi hospital. Labor cost has the greatest share of total annual cost of Shahid Faghihi hospital. The gap between unit costs and tariffs implies that the claim for extra budget from health providers may not be relevant for all services delivered by the studied MRI center. With some adjustments, ABC could be

  5. The Effect of Amorphization Conditions on the Measured Activation of Source Drain Extension Implants

    Un-patterned wafers were processed using low-dose Indium or medium-dose Germanium pre-amorphization implants (PAI) followed by p-type dopant implants of BF2 or carborane (CBH). The wafers were then annealed by RTA (spike), laser anneal (LSA) or combination of LSA and spike. Active dopant distributions calculated from SIMS and sheet resistance measurements compared favorably with those determined by differential Hall, which is a challenging technique for shallow profiles. The trends in B diffusion behavior and activation are discussed in relation to the different implant damage budgets, damage evolution during the anneals and presence of fluorine. In particular, for low thermal budget LSA only anneals, CBH implants appear to give higher activation than BF2 due to the absence of fluorine.

  6. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions

    JodieReannaGawryluk; RyanD'Arcy; ErinLindsayMazerolle

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in g...

  7. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group

    Rudwaleit, M; Jurik, A G; Hermann, K-G A;

    2009-01-01

    to reach consensus on which MRI findings are essential for the definition of sacroiliitis. METHODS: Ten doctors (two radiologists and eight rheumatologists) from the ASAS/OMERACT MRI working group reviewed and discussed in three workshops MR images depicting sacroiliitis associated with SpA and other...... relevant for sacroiliitis have been defined by consensus by a group of rheumatologists and radiologists. These definitions should help in applying correctly the imaging feature "active sacroiliitis by MRI" in the new ASAS classification criteria for axial SpA....

  8. Effect of Unpleasant Loud Noise on Hippocampal Activities during Picture Encoding: An fMRI Study

    Hirano, Yoshiyuki; Fujita, Masafumi; Watanabe, Kazuko; Niwa, Masami; Takahashi, Toru; Kanematsu, Masayuki; Ido, Yasushi; Tomida, Mihoko; Onozuka, Minoru

    2006-01-01

    The functional link between the amygdala and hippocampus in humans has not been well documented. We examined the effect of unpleasant loud noise on hippocampal and amygdaloid activities during picture encoding by means of fMRI, and on the correct response in humans. The noise reduced activity in the hippocampus during picture encoding, decreased…

  9. Pectus excavatum with delayed diagnosis of implant tear on MRI apparently causing recurrent postoperative seromas: A case report

    Iyer, Arti R.; Powell, Daniel K.; Irish, Robert D.; Math, Kevin R. [Mount Sinai Beth Israel Medical Center, Department of Radiology, New York, NY (United States)

    2015-08-15

    Seroma formation is the most common early postoperative complication after pectus excavatum repair, but later seromas are rare. While many seromas eventually resorb or decrease in size after aspiration, our case demonstrates recurrent seroma formation as a late complication of pectus excavatum repair in a patient with an implant tear. Postoperative seromas can result in prolonged chest wall pain, large chest wall masses, and increased mass effect on the heart with potential risk for resultant right ventricular outflow obstruction. This case report illustrates a solid silicone implant tear. Though rare, early recognition may help to decrease the likelihood of recurrent postoperative seromas. (orig.)

  10. Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI?

    Berko, Netanel S.; Levin, Terry L. [Montefiore Medical Center, Department of Radiology, Bronx, NY (United States); Hay, Arielle [Montefiore Medical Center, Department of Pediatrics, Division of Pediatric Rheumatology, Bronx, NY (United States); Miami Children' s Hospital, Department of Pediatrics, Miami, FL (United States); Sterba, Yonit; Wahezi, Dawn [Montefiore Medical Center, Department of Pediatrics, Division of Pediatric Rheumatology, Bronx, NY (United States)

    2015-09-15

    Juvenile idiopathic inflammatory myopathy is a rare yet potentially debilitating condition. MRI is used both for diagnosis and to assess response to treatment. No study has evaluated the performance of US elastography in the diagnosis of this condition in children. To assess the performance of compression-strain US elastography in detecting active myositis in children with clinically confirmed juvenile idiopathic inflammatory myopathy and to compare its efficacy to MRI. Children with juvenile idiopathic inflammatory myopathy underwent non-contrast MR imaging as well as compression-strain US elastography of the quadriceps muscles. Imaging findings from both modalities were compared to each other as well as to the clinical determination of active disease based on physical examination and laboratory data. Active myositis on MR was defined as increased muscle signal on T2-weighted images. Elastography images were defined as normal or abnormal based on a previously published numerical scale of muscle elastography in normal children. Muscle echogenicity was graded as normal or abnormal based on gray-scale sonographic images. Twenty-one studies were conducted in 18 pediatric patients (15 female, 3 male; age range 3-19 years). Active myositis was present on MRI in ten cases. There was a significant association between abnormal MRI and clinically active disease (P = 0.012). US elastography was abnormal in 4 of 10 cases with abnormal MRI and in 4 of 11 cases with normal MRI. There was no association between abnormal elastography and either MRI (P > 0.999) or clinically active disease (P > 0.999). Muscle echogenicity was normal in 11 patients; all 11 had normal elastography. Of the ten patients with increased muscle echogenicity, eight had abnormal elastography. There was a significant association between muscle echogenicity and US elastography (P < 0.001). The positive and negative predictive values for elastography in the determination of active myositis were 75% and 31

  11. Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI?

    Juvenile idiopathic inflammatory myopathy is a rare yet potentially debilitating condition. MRI is used both for diagnosis and to assess response to treatment. No study has evaluated the performance of US elastography in the diagnosis of this condition in children. To assess the performance of compression-strain US elastography in detecting active myositis in children with clinically confirmed juvenile idiopathic inflammatory myopathy and to compare its efficacy to MRI. Children with juvenile idiopathic inflammatory myopathy underwent non-contrast MR imaging as well as compression-strain US elastography of the quadriceps muscles. Imaging findings from both modalities were compared to each other as well as to the clinical determination of active disease based on physical examination and laboratory data. Active myositis on MR was defined as increased muscle signal on T2-weighted images. Elastography images were defined as normal or abnormal based on a previously published numerical scale of muscle elastography in normal children. Muscle echogenicity was graded as normal or abnormal based on gray-scale sonographic images. Twenty-one studies were conducted in 18 pediatric patients (15 female, 3 male; age range 3-19 years). Active myositis was present on MRI in ten cases. There was a significant association between abnormal MRI and clinically active disease (P = 0.012). US elastography was abnormal in 4 of 10 cases with abnormal MRI and in 4 of 11 cases with normal MRI. There was no association between abnormal elastography and either MRI (P > 0.999) or clinically active disease (P > 0.999). Muscle echogenicity was normal in 11 patients; all 11 had normal elastography. Of the ten patients with increased muscle echogenicity, eight had abnormal elastography. There was a significant association between muscle echogenicity and US elastography (P < 0.001). The positive and negative predictive values for elastography in the determination of active myositis were 75% and 31

  12. Evaluation of MRI artifacts caused by metallic dental implants and classification of the dental materials in use

    Starčuk jr., Zenon; Bartušek, Karel; Hubálková, H.; Bachorec, T.; Starčuková, Jana; Krupa, P.

    Bratislava: IMS SAS, 2005, s. 246-249. ISBN 80-967402-8-8. [International Conference on Measurement 2005 /5./. Smolenice (SK), 15.05.2005-19.05.2005] R&D Projects: GA MZd(CZ) NR8110 Keywords : magnetic resonance imaging * artifacts * metallic implants * dental alloys * magnetic susceptibility Subject RIV: FS - Medical Facilities ; Equipment

  13. Evaluation of MRI artifacts caused by metallic dental implants and classification of the dental materials in use

    Starčuk jr., Zenon; Bartušek, Karel; Hubálková, H.; Bachorec, T.; Starčuková, Jana; Krupa, P.

    2006-01-01

    Roč. 6, č. 2 (2006), s. 24-27. ISSN 1335-8871 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : magnetic resonance imaging * artifacts * metallic implants * dental alloys * magnetic susceptibility Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  14. Adhesion molecules levels in blood correlate with MRI activity and clinical activity in multiple sclerosis

    Research into pathogenesis of multiple sclerosis (MS) has prompted efforts to identify immunological markers associated with disease activity. Adhesion molecules ICAM-1 and VCAM-1 are associated with inflammatory mediated blood-brain barrier (BBB) dysfunction. In this study investigates the correlation between blood level of circulating ICAM-1 and VCAM-1 and magnetic resonance imaging (MRI) activity in different clinical phases of patients with MS. We show that RRMS and SPMS patients in clinically active phase with Gd-enhancing lesions in CNS had higher blood levels of cICAM-1 and cVCAM-1 compared these parameters levers of RRMS patients in remission stage. These results suggest that cICAM-1 and cVCAM-1 is a sensitive indicator of disease activity associated with BBB inflammatory dysfunction. Elevated blood level of cICAM-1 more strongly correlated with clinical activity and BBB damage, than cVCAM-1 and that could be used as biological marker of disease activity. Circulating VCAM-1 as an early indicator of BBB disturbance, may also serve as marker of beneficial activity in relapses phase of MS course. (authors)

  15. Morphological evaluation of the active tip of six types of orthodontic mini-implants

    Flávia Mitiko Fernandes Kitahara-Céia

    2013-04-01

    Full Text Available OBJECTIVE: To morphologically evaluate the active tip of six different types of self-drilling mini-implants for orthodontic anchorage. METHODS: Images of the active tips of the mini-implants were obtained with a Zeiss optical microscope, Stemi 200-C with magnification of 1.6X. The images of the surface were viewed with the Axio Vision program (Zeiss, Jena, Germany to calculate linear and angular measures. Mini-implant morphology and the details of tips and threads were also evaluated through Scanning Electronic Microscopy (SEM (JEOL, model JSM5800 LV - JEOL, Tokyo, Japan with magnifications of 90X and 70X, respectively. The evaluation of the mini-implant taper shape was assessed using to the formula: (b - a / (2 x D. RESULTS: The following variables were measured: (1 active tip width, (2 major diameter of external thread, (3 minor diameter of internal thread and taper of the mini-implant, (4 number of threads and lead of the screw, (5 angle of thread, (6 flank width and (7 pitch width. CONCLUSION: Mini-implants from different manufacturers presented active tips with different characteristics. Mechanical testing is necessary to cor-relate the analyzed characteristics aiming to determine the best performance.

  16. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant

    He, Shu; Zhou, Ping; Wang, Linxin; Xiong, Xiaoling; Zhang, Yifei; Deng, Yi; Wei, Shicheng

    2014-01-01

    Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine...

  17. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex

    Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  18. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  19. Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma

    Dutoit, Julie C., E-mail: Julie.Dutoit@UGent.be; Vanderkerken, Matthias A., E-mail: Matthias.Vanderkerken@UGent.be; Verstraete, Koenraad L., E-mail: Koenraad.Verstraete@UGent.be

    2013-09-15

    Purpose: To evaluate the significance of dynamic contrast enhanced MRI (DCE-MRI) and whole body MRI (WB-MRI) in the diagnosis, prognosis and assessment of therapy for patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Materials and methods: The retrospective study includes 219 patients providing 463 WB-MRI and DCE-MRI investigations for the subgroups MGUS (n = 70), MM active disease (n = 126; this includes 70 patients with new diagnosis of MM, according to the International Staging System (ISS): 41.4% ISS stage I, 20.0% ISS stage II, 7.1% ISS stage III, 31.4% insufficient for staging; and 56 patients with ‘(re-)active disease’: 16.07% relapse, 32.14% progressive disease and 51.79% stable disease) and MM remission (n = 23; 60.87% complete remission, 17.39% very good partial remission and 21.74% partial remission). Investigations of patients with hereditary multiple exostoses (n = 5), neurofibromatosis (n = 7) and healthy persons (n = 9) were added as control subjects (n = 21). WB-MRI evaluation was done by evaluating thirteen skeletal regions, providing a ‘skeletal score’. DCE-MRI images of the spine, were analyzed with regions-of-interest and time-intensity-curves (TIC). Results: All TIC parameters can significantly differentiate between the predefined subgroups (p < 0.001). One hundred days after autologous stem cell transplantation a 75% decrease of the slope wash-in value (p < 0.001) can be seen. A cubic regression trend between ‘skeletal score’ and slope wash-in (adj.R{sup 2} = 0.412) could demonstrate a significant increase bone marrow perfusion if MM affects more than 10 skeletal regions (p < 0.001), associated with a poorer prognosis (p < 0.001). Conclusion: DCE-MRI evaluation of the spine is useful for diagnosis of MM, follow-up after stem cell transplantation and evaluation of disease activity. A combined evaluation with WB-MRI and DCE-MRI provides additional micro-vascular information on the

  20. Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma

    Purpose: To evaluate the significance of dynamic contrast enhanced MRI (DCE-MRI) and whole body MRI (WB-MRI) in the diagnosis, prognosis and assessment of therapy for patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Materials and methods: The retrospective study includes 219 patients providing 463 WB-MRI and DCE-MRI investigations for the subgroups MGUS (n = 70), MM active disease (n = 126; this includes 70 patients with new diagnosis of MM, according to the International Staging System (ISS): 41.4% ISS stage I, 20.0% ISS stage II, 7.1% ISS stage III, 31.4% insufficient for staging; and 56 patients with ‘(re-)active disease’: 16.07% relapse, 32.14% progressive disease and 51.79% stable disease) and MM remission (n = 23; 60.87% complete remission, 17.39% very good partial remission and 21.74% partial remission). Investigations of patients with hereditary multiple exostoses (n = 5), neurofibromatosis (n = 7) and healthy persons (n = 9) were added as control subjects (n = 21). WB-MRI evaluation was done by evaluating thirteen skeletal regions, providing a ‘skeletal score’. DCE-MRI images of the spine, were analyzed with regions-of-interest and time-intensity-curves (TIC). Results: All TIC parameters can significantly differentiate between the predefined subgroups (p < 0.001). One hundred days after autologous stem cell transplantation a 75% decrease of the slope wash-in value (p < 0.001) can be seen. A cubic regression trend between ‘skeletal score’ and slope wash-in (adj.R2 = 0.412) could demonstrate a significant increase bone marrow perfusion if MM affects more than 10 skeletal regions (p < 0.001), associated with a poorer prognosis (p < 0.001). Conclusion: DCE-MRI evaluation of the spine is useful for diagnosis of MM, follow-up after stem cell transplantation and evaluation of disease activity. A combined evaluation with WB-MRI and DCE-MRI provides additional micro-vascular information on the

  1. Acupoints combination correlates with activation of cerebral areas A functional MRI study

    Xinsheng Lai; Yong Huang; Chunzhi Tang; Junjun Yang; Yanqi Zou; Junxian Wu; Yangjia Lu; Renyong Lin

    2011-01-01

    Acupoint combination is a method used for acupoint treatment of patients. Traditionally, acupoints are matched along the meridian distribution, which is a common rule in clinical practice, but the underlying mechanism remains unclear. Cerebral scans with functional magnetic resonance imaging (fMRI) have been used in the study of acupuncture and acupoint specifically. In this study,fMRI was used to detect the activation of the brain areas under different acupoints, matched along different meridians, to elucidate the acupoint combination via a modern medical approach. Forty healthy volunteers were randomly divided into the following groups: Waiguan point (SJ5), Waiguan (SJ5) + Zhigou (SJ6) (2 acupoints come from the same meridian), Waiguan (SJ 5) + Neiguan (PC 6)(2 acupoints come from 2 meridians with the relationship of interior-exterior), Waiguan (SJ 5) +Yanglingquan (GB 34) (2 acupoints come from 2 meridians with the same name-Shaoyang Meridian), and sham point groups (needling in different points on the right hand). A real-time cerebral fMRI scan was simultaneously performed. The cerebral activation rate, and the number and strength of different regions of interest ware compared among the groups. The fMRI cerebral imaging confirmed that there were some differences in the activation of cerebral areas by the needlings in SJ 5, and in combination with other acupoints. Needling at SJ 5 alone greatly activated the right cerebellum, while needling at both SJ 5 and different co-needling points activated different cerebral functional areas.

  2. Contrast-enhanced MRI compared with the physical examination in the evaluation of disease activity in juvenile idiopathic arthritis

    Hemke, Robert; Maas, Mario [Academic Medical Centre, University of Amsterdam, Department of Radiology, Amsterdam (Netherlands); Veenendaal, Mira van; Kuijpers, Taco W. [University of Amsterdam, Department of Paediatric Haematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Dolman, Koert M. [Department of Paediatric Rheumatology, Amsterdam (Netherlands); St. Lucas Andreas Hospital, Department of Paediatrics, Amsterdam (Netherlands); Rossum, Marion A.J. van; Berg, J.M. van den [University of Amsterdam, Department of Paediatric Haematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Department of Paediatric Rheumatology, Amsterdam (Netherlands)

    2014-02-15

    To assess the value of magnetic resonance imaging (MRI) in discriminating between active and inactive juvenile idiopathic arthritis (JIA) patients and to compare physical examination outcomes with MRI outcomes in the assessment of disease status in JIA patients. Consecutive JIA patients with knee involvement were prospectively studied using an open-bore MRI. Imaging findings from 146 JIA patients were analysed (59.6 % female; mean age, 12.9 years). Patients were classified as clinically active or inactive. MRI features were evaluated using the JAMRIS system, comprising validated scores for synovial hypertrophy, bone marrow oedema, cartilage lesions and bone erosions. Inter-reader reliability was good for all MRI features (intra-class correlation coefficient [ICC] = 0.87-0.94). No differences were found between the two groups regarding MRI scores of bone marrow oedema, cartilage lesions or bone erosions. Synovial hypertrophy scores differed significantly between groups (P = 0.016). Nonetheless, synovial hypertrophy was also present in 14 JIA patients (35.9 %) with clinically inactive disease. Of JIA patients considered clinically active, 48.6 % showed no signs of MRI-based synovitis. MRI can discriminate between clinically active and inactive JIA patients. However, physical examination is neither very sensitive nor specific in evaluating JIA disease activity compared with MRI. Subclinical synovitis was present in >35 % of presumed clinically inactive patients. (orig.)

  3. Contrast-enhanced MRI compared with the physical examination in the evaluation of disease activity in juvenile idiopathic arthritis

    To assess the value of magnetic resonance imaging (MRI) in discriminating between active and inactive juvenile idiopathic arthritis (JIA) patients and to compare physical examination outcomes with MRI outcomes in the assessment of disease status in JIA patients. Consecutive JIA patients with knee involvement were prospectively studied using an open-bore MRI. Imaging findings from 146 JIA patients were analysed (59.6 % female; mean age, 12.9 years). Patients were classified as clinically active or inactive. MRI features were evaluated using the JAMRIS system, comprising validated scores for synovial hypertrophy, bone marrow oedema, cartilage lesions and bone erosions. Inter-reader reliability was good for all MRI features (intra-class correlation coefficient [ICC] = 0.87-0.94). No differences were found between the two groups regarding MRI scores of bone marrow oedema, cartilage lesions or bone erosions. Synovial hypertrophy scores differed significantly between groups (P = 0.016). Nonetheless, synovial hypertrophy was also present in 14 JIA patients (35.9 %) with clinically inactive disease. Of JIA patients considered clinically active, 48.6 % showed no signs of MRI-based synovitis. MRI can discriminate between clinically active and inactive JIA patients. However, physical examination is neither very sensitive nor specific in evaluating JIA disease activity compared with MRI. Subclinical synovitis was present in >35 % of presumed clinically inactive patients. (orig.)

  4. EGF increases expression and activity of PAs in preimplantation rat embryos and their implantation rate

    Har-Vardi Iris

    2007-01-01

    Full Text Available Abstract Background Embryo implantation plays a major role in embryogenesis and the outcome of pregnancy. Plasminogen activators (PAs have been implicated in mammalian fertilization, early stages of development and embryo implantation. As in-vitro developing embryos resulted in lower implantation rate than those developed in-vivo we assume that a reduced PAs activity may be involved. In the present work we studied the effect of EGF on PAs activity, quantity and embryo implantation. Methods Zygotes were flushed from rat oviducts on day one of pregnancy and grown in-vitro in R1ECM supplemented with EGF (10 ng/ml and were grown up to the blastocyst stage. The control groups were grown in the same medium without EGF. The distribution and quantity of the PAs were examined using fluorescence immunohistochemistry followed by measurement of PAs activity using the chromogenic assay. Implantation rate was studied using the embryo donation model. Results PAs distribution in the embryos was the same in EGF treated and untreated embryos. Both PAs were localized in the blastocysts' trophectoderm, supporting the assumption that PAs play a role in the implantation process in rats. EGF increased the quantity of uPA at all stages studied but the 8-cell stage as compared with controls. The tissue type PA (tPA content was unaffected except the 8-cell stage, which was increased. The activity of uPA increased gradually towards the blastocyst stage and more so due to the presence of EGF. The activity of tPA did not vary with the advancing developmental stages although it was also increased by EGF. The presence of EGF during the preimplantation development doubled the rate of implantation of the treated group as compared with controls.

  5. Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis

    Villalobos, Joel; Fallon, James B.; Nayagam, David A. X.; Shivdasani, Mohit N.; Luu, Chi D.; Allen, Penelope J.; Shepherd, Robert K.; Williams, Chris E.

    2014-08-01

    Objective. The research goal is to develop a wide-field retinal stimulating array for prosthetic vision. This study aimed at evaluating the efficacy of a suprachoroidal electrode array in evoking visual cortex activity after long term implantation. Approach. A planar silicone based electrode array (8 mm × 19 mm) was implanted into the suprachoroidal space in cats (ntotal = 10). It consisted of 20 platinum stimulating electrodes (600 μm diameter) and a trans-scleral cable terminated in a subcutaneous connector. Three months after implantation (nchronic = 6), or immediately after implantation (nacute = 4), an electrophysiological study was performed. Electrode total impedance was measured from voltage transients using 500 μs, 1 mA pulses. Electrically evoked potentials (EEPs) and multi-unit activity were recorded from the visual cortex in response to monopolar retinal stimulation. Dynamic range and cortical activation spread were calculated from the multi-unit recordings. Main results. The mean electrode total impedance in vivo following 3 months was 12.5 ± 0.3 kΩ. EEPs were recorded for 98% of the electrodes. The median evoked potential threshold was 150 nC (charge density 53 μC cm-2). The lowest stimulation thresholds were found proximal to the area centralis. Mean thresholds from multiunit activity were lower for chronic (181 ± 14 nC) compared to acute (322 ± 20 nC) electrodes (P < 0.001), but there was no difference in dynamic range or cortical activation spread. Significance. Suprachoroidal stimulation threshold was lower in chronic than acute implantation and was within safe charge limits for platinum. Electrode-tissue impedance following chronic implantation was higher, indicating the need for sufficient compliance voltage (e.g. 12.8 V for mean impedance, threshold and dynamic range). The wide-field suprachoroidal array reliably activated the retina after chronic implantation.

  6. Cerebral activation during Chinese semantic associative task in Xinjiang' Uyghurs: a functional MRI study

    Objective: To explore the cerebral activation in Xinjiang' Uyghurs when performing a Chinese word tasks by the functional magnetic resonance image (fMRI). Methods: Twenty-one healthy Xinjiang' Uyghurs and 11 healthy Hans were scanned using functional magnetic resonance imaging (fMRI) on a 1.5 T MRI scanner with a single run. Different Chinese words were displayed in each block to avoid any practice effect. SPM5.0 software was used for image data processing. To evaluate the inter subject consistency of brain activations associated with Chinese character and word reading, we created penetrance maps by combining binary individual functional maps. Results: For Uyghur-Chinese bilingual subjects, activations related to generated a word that was semantically related to each stimulus. The results indicated that reading Chinese is characterized by extensive activity of the neural systems. Peak activations occurred in the left middle frontal cortex at Brodmann Areas (BA9 and BA47). The left temporal (BA37) cortices were also strongly activated. Other important activated areas included bilateral visual systems (BA17-19) and cerebellum. The location of peak activation in the left frontal regions was similar in Native Uyghurs and Hans. But the active areas in Uyghurs are more extensive than that of Hans. Conclusions: The location of peak activation in the left frontal regions was similar in Native Uyghurs and Hans. More brain areas were needed for Xinjiang' Uyghur speakers during processing Chinese words. (authors)

  7. Detection of Sulfatase Enzyme Activity with a CatalyCEST MRI Contrast Agent.

    Sinharay, Sanhita; Fernández-Cuervo, Gabriela; Acfalle, Jasmine P; Pagel, Mark D

    2016-05-01

    A chemical exchange saturation transfer (CEST) MRI contrast agent has been developed that detects sulfatase enzyme activity. The agent produces a CEST signal at δ=5.0 ppm before enzyme activity, and a second CEST signal appears at δ=9.0 ppm after the enzyme cleaves a sulfate group from the agent. The comparison of the two signals improved detection of sulfatase activity. PMID:26956002

  8. Intrinsic network activity in tinnitus investigated using functional MRI.

    Leaver, Amber M; Turesky, Ted K; Seydell-Greenwald, Anna; Morgan, Susan; Kim, Hung J; Rauschecker, Josef P

    2016-08-01

    Tinnitus is an increasingly common disorder in which patients experience phantom auditory sensations, usually ringing or buzzing in the ear. Tinnitus pathophysiology has been repeatedly shown to involve both auditory and non-auditory brain structures, making network-level studies of tinnitus critical. In this magnetic resonance imaging (MRI) study, two resting-state functional connectivity (RSFC) approaches were used to better understand functional network disturbances in tinnitus. First, we demonstrated tinnitus-related reductions in RSFC between specific brain regions and resting-state networks (RSNs), defined by independent components analysis (ICA) and chosen for their overlap with structures known to be affected in tinnitus. Then, we restricted ICA to data from tinnitus patients, and identified one RSN not apparent in control data. This tinnitus RSN included auditory-sensory regions like inferior colliculus and medial Heschl's gyrus, as well as classically non-auditory regions like the mediodorsal nucleus of the thalamus, striatum, lateral prefrontal, and orbitofrontal cortex. Notably, patients' reported tinnitus loudness was positively correlated with RSFC between the mediodorsal nucleus and the tinnitus RSN, indicating that this network may underlie the auditory-sensory experience of tinnitus. These data support the idea that tinnitus involves network dysfunction, and further stress the importance of communication between auditory-sensory and fronto-striatal circuits in tinnitus pathophysiology. Hum Brain Mapp 37:2717-2735, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27091485

  9. Detection of epileptic activity in fMRI without recording the EEG

    Lopes, R.; Lina, J. M.; Fahoum, F.; Gotman, J.

    2012-01-01

    EEG–fMRI localizes epileptic foci by detecting cerebral hemodynamic changes that are correlated to epileptic events visible in EEG. However, scalp EEG is insensitive to activity restricted to deep structures and recording the EEG in the scanner is complex and results in major artifacts that are difficult to remove.

  10. Abnormal fMRI Activation Pattern during Story Listening in Individuals with Down Syndrome

    Reynolds Losin, Elizabeth A.; Rivera, Susan M.; O'Hare, Elizabeth D.; Sowell, Elizabeth R.; Pinter, Joseph D.

    2009-01-01

    Down syndrome is characterized by disproportionately severe impairments of speech and language, yet little is known about the neural underpinnings of these deficits. We compared fMRI activation patterns during passive story listening in 9 young adults with Down syndrome and 9 approximately age-matched, typically developing controls. The typically…

  11. Motion or activity: their role in intra- and inter-subject variation in fMRI

    Lund, Torben E; Nørgaard, Minna D; Rostrup, Egill;

    2005-01-01

    MRI to pre-surgical planning because of a higher requirement for intra-subject precision. The purpose of this study was to investigate the impact of residual movement artefacts on intra-subject and inter-subject variability in the observed fMRI activation. Ten subjects were examined using three different...... Linear Model (GLM). The data were analysed with and without modeling the residual movement artefacts and the impact on inter-session variance was assessed using F-contrasts. Inclusion of motion parameters in the analysis significantly reduced both the intra-subject as well as the inter-subject-variance...

  12. Recent development in noninvasive brain activity measurement by functional magnetic resonance imaging (fMRI)

    fMRI (functional magnetic resonance imaging) is a non-invasive brain imaging technique with which the distribution of neural activity is estimated by measuring local blood flow changes. Blood-oxygenation-level-dependent (BOLD) method measures changes in the density of deoxidized hemoglobin in blood caused by blood flow changes, while other methods have been developed to measure the blood flow changes directly. Effort has been expended to realize a submillimeter spatial resolution by using higher static magnetic field. fMRI has been carried out with various mental tasks, and many important findings have been made on the localization of higher brain functions. (author)

  13. A system for implanting laboratory mice with light-activated microtransponders.

    Gruda, Maryann C; Pinto, Amanda; Craelius, Aaron; Davidowitz, Hanan; Kopacka, Wesley M; Li, Ji; Qian, Jay; Rodriguez, Efrain; Kuspiel, Edward; Mandecki, Wlodek

    2010-11-01

    The mouse is the most commonly used laboratory animal, accounting for up to 80% of all mammals used in research studies. Because rodents generally are group-housed, an efficient system of uniquely identifying individual animals for use in research studies, breeding, and proper colony management is required. Several temporary and permanent methods (for example, ear punching and toe clipping) are available for labeling research mice and other small animals, each with advantages and disadvantages. This report describes a new radiofrequency identification tagging method that uses 500-μm, light-activated microtransponders implanted subcutaneously into the ear or tail of mice. The preferred location for implanting is in the side of the tail, because implantation at this site was simple to perform and was associated with shorter implantation times (average, 53 versus 325 s) and a higher success rate (98% versus 50%) compared with the ear. The main benefits of using light-activated microtransponders over other identification methods, including other radiofrequency identification tags, is their small size, which minimizes stress to the animals during implantation and low cost due to their one-piece (monolithic) design. In addition, the implantation procedure uses a custom-designed 21-gauge needle injector and does not require anesthetization of the mice. We conclude that this method allows improved identification and management of laboratory mice. PMID:21205448

  14. Activation and thermal stability of ultra-shallow B+-implants in Ge

    Yates, B. R.; Darby, B. L.; Petersen, Dirch Hjorth;

    2012-01-01

    The activation and thermal stability of ultra-shallow B+ implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B+ implants in Ge was...... characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23.2%, 21.4%, and 17.6% due to ion backscattering for 2, 4, and 6 keV implants in Ge, respectively. The electrical activation of ultra-shallow B+ implants at 2, 4, and 6 keV to fluences ranging...... from 5.0 × 1013 to 5.0 × 1015 cm-2 was studied using micro Hall effect measurements after annealing at 400-600 °C for 60 s. For both c-Ge and PA-Ge, a large fraction of the implanted dose is rendered inactive due to the formation of a presumable B-Ge cluster. The B lattice location in samples annealed...

  15. Anti-implantation effect of droloxifene in rats and its relationship with anti-estrogenic activity

    Yong HUANG; Yu SHEN; Ying FENG; Lin CAO; Ying LENG

    2005-01-01

    Aim: To investigate the anti-implantation effect of droloxifene and study the possible relationship between the anti-estrogenic activity of droloxifene and its antiimplantation effect. Methods: Pregnant rats were treated orally with droloxifene at 10:00 AM on d 2 at doses of 1.25-20 mg/kg to observe anti-implantation effects,and then doses of 14 mg/kg or 2.5 mg/kg were given at different time on d 2 to d 5to determine the optimal administration time for anti-implantation effects. Pregnant rats were treated with a combination of droloxifene (2.5 mg/kg, ig) and E2 (0.5-8.0 μg/kg, sc) on the optimal administration time to observe the antagonistic effect of external estrogen on the anti-implantation effect of droloxmene. Serum estrogen and progesterone levels were measured by carrying out radioimmunoas says on d 1 to d 6 in droloxifene-treated and control rats to determine the surge time for nidatory estrogen and the effect of droloxifene on ovary function. Results:Droloxifene has anti-implantation effects in rats. The optimal oral administration time was at 22:00 PM on d 4, which was after the surge time for nidatory estrogen (on d 4 at 10:00 AM). This suggests that the anti-implantation effect of droloxifene is not attributable to antagonism of the surge in secretion of nidatory estrogen.External estrogen did not antagonize the anti-implantation effect of droloxifene.Droloxifene had no effect on the serum levels of estrogen and progesterone on d 5 or d 6 when administered on d 4 at 22:00 PM. Conclusion: Droloxifene has an anti-implantation effect in rats, and the effect appears to be not completely due to its anti-estrogenic activity.

  16. Photocatalytic activity study of TiO2 thin films with and without Fe ion implantation

    Transparent and colourless TiO2 thin films were fabricated on microscope glass slides by d.c. magnetron reactive sputtering method using Ar and O2 as working gases. Then Fe ions were implanted into the TiO2 thin film to observe its effects on the photocatalytic activity. X-ray diffraction, X-ray photoelectron spectroscopy and UV-Vis-NIR spectrophotometer technologies were used to characterize the films. The photocatalytic activities of the samples were evaluated by the degradation of Rhodamine B dye. The effects of Fe ion implantation on the decrease in the photocatalytic activity of the TiO2 thin film were discussed

  17. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback

    Zotev, Vadim; Phillips, Raquel; Yuan, Han; Misaki, Masaya; Bodurka, Jerzy

    2013-01-01

    Neurofeedback is a promising approach for non-invasive modulation of human brain activity with applications for treatment of mental disorders and enhancement of brain performance. Neurofeedback techniques are commonly based on either electroencephalography (EEG) or real-time functional magnetic resonance imaging (rtfMRI). Advances in simultaneous EEG-fMRI have made it possible to combine the two approaches. Here we report the first implementation of simultaneous multimodal rtfMRI and EEG neur...

  18. Temporal Cortex Activation to Audiovisual Speech in Normal-Hearing and Cochlear Implant Users Measured with Functional Near-Infrared Spectroscopy

    van de Rijt, Luuk P. H.; van Opstal, A. John; Mylanus, Emmanuel A. M.; Straatman, Louise V.; Hu, Hai Yin; Snik, Ad F. M.; van Wanrooij, Marc M.

    2016-01-01

    Background: Speech understanding may rely not only on auditory, but also on visual information. Non-invasive functional neuroimaging techniques can expose the neural processes underlying the integration of multisensory processes required for speech understanding in humans. Nevertheless, noise (from functional MRI, fMRI) limits the usefulness in auditory experiments, and electromagnetic artifacts caused by electronic implants worn by subjects can severely distort the scans (EEG, fMRI). Therefore, we assessed audio-visual activation of temporal cortex with a silent, optical neuroimaging technique: functional near-infrared spectroscopy (fNIRS). Methods: We studied temporal cortical activation as represented by concentration changes of oxy- and deoxy-hemoglobin in four, easy-to-apply fNIRS optical channels of 33 normal-hearing adult subjects and five post-lingually deaf cochlear implant (CI) users in response to supra-threshold unisensory auditory and visual, as well as to congruent auditory-visual speech stimuli. Results: Activation effects were not visible from single fNIRS channels. However, by discounting physiological noise through reference channel subtraction (RCS), auditory, visual and audiovisual (AV) speech stimuli evoked concentration changes for all sensory modalities in both cohorts (p < 0.001). Auditory stimulation evoked larger concentration changes than visual stimuli (p < 0.001). A saturation effect was observed for the AV condition. Conclusions: Physiological, systemic noise can be removed from fNIRS signals by RCS. The observed multisensory enhancement of an auditory cortical channel can be plausibly described by a simple addition of the auditory and visual signals with saturation. PMID:26903848

  19. 3D active surfaces for liver segmentation in multisequence MRI images.

    Bereciartua, Arantza; Picon, Artzai; Galdran, Adrian; Iriondo, Pedro

    2016-08-01

    Biopsies for diagnosis can sometimes be replaced by non-invasive techniques such as CT and MRI. Surgeons require accurate and efficient methods that allow proper segmentation of the organs in order to ensure the most reliable intervention planning. Automated liver segmentation is a difficult and open problem where CT has been more widely explored than MRI. MRI liver segmentation represents a challenge due to the presence of characteristic artifacts, such as partial volumes, noise and low contrast. In this paper, we present a novel method for multichannel MRI automatic liver segmentation. The proposed method consists of the minimization of a 3D active surface by means of the dual approach to the variational formulation of the underlying problem. This active surface evolves over a probability map that is based on a new compact descriptor comprising spatial and multisequence information which is further modeled by means of a liver statistical model. This proposed 3D active surface approach naturally integrates volumetric regularization in the statistical model. The advantages of the compact visual descriptor together with the proposed approach result in a fast and accurate 3D segmentation method. The method was tested on 18 healthy liver studies and results were compared to a gold standard made by expert radiologists. Comparisons with other state-of-the-art approaches are provided by means of nine well established quality metrics. The obtained results improve these methodologies, achieving a Dice Similarity Coefficient of 98.59. PMID:27282235

  20. Brain region and activity-dependent properties of M for calibrated fMRI.

    Shu, Christina Y; Herman, Peter; Coman, Daniel; Sanganahalli, Basavaraju G; Wang, Helen; Juchem, Christoph; Rothman, Douglas L; de Graaf, Robin A; Hyder, Fahmeed

    2016-01-15

    Calibrated fMRI extracts changes in oxidative energy demanded by neural activity based on hemodynamic and metabolic dependencies of the blood oxygenation level-dependent (BOLD) response. This procedure requires the parameter M, which is determined from the dynamic range of the BOLD signal between deoxyhemoglobin (paramagnetic) and oxyhemoglobin (diamagnetic). Since it is unclear if the range of M-values in human calibrated fMRI is due to regional/state differences, we conducted a 9.4T study to measure M-values across brain regions in deep (α-chloralose) and light (medetomidine) anesthetized rats, as verified by electrophysiology. Because BOLD signal is captured differentially by gradient-echo (R2*) and spin-echo (R2) relaxation rates, we measured M-values by the product of the fMRI echo time and R2' (i.e., the reversible magnetic susceptibility component), which is given by the absolute difference between R2* and R2. While R2' mapping was shown to be dependent on the k-space sampling method used, at nominal spatial resolutions achieved at high magnetic field of 9.4T the M-values were quite homogenous across cortical gray matter. However cortical M-values varied in relation to neural activity between brain states. The findings from this study could improve precision of future calibrated fMRI studies by focusing on the global uniformity of M-values in gray matter across different resting activity levels. PMID:26529646

  1. Does hydro-MRI allow an assessment of the activity in Crohn's disease?

    Purpose: To assess the value of hydro-MRI in the assessment of the activity of Crohn's disease. Materials and methods: After an oral bowel opacification using 1000 ml of a 2,5% mannitol solution, axial and coronal breathhold sequences (T2W HASTE±FS, contrast-enhanced T1W FLASH FS) were acquired in 63 patients with Crohn's disease at 1.0 T. The enhancement of the bowel wall was correlated with other MRI findings, with the Crohn's disease activity index (CDAI), and the C-reactive protein (CRP). Results: In Crohn's disease, contrast enhancement of the affected bowel wall is markedly increased in comparison with the normal bowel wall (+80±23% vs. +43±11%; p=8x10-11). Positive correlations could be established between the increase of bowel wall enhancement and other MRI findings. Between the increase of bowel wall enhancement and the CDAI a poor correlation was found (r=0.25; p=0.046). There was no statistical correlation between the increase of bowel wall enhancement and the CRP (r=0.09; p=0.24). Conclusion: Hydro-MRI allows an assessment of the activity of Crohn's disease. (orig.)

  2. Bilateral use of active middle ear implants: speech discrimination results in noise.

    Wolf-Magele, Astrid; Koci, Viktor; Schnabl, Johannes; Zorowka, Patrick; Riechelmann, Herbert; Sprinzl, Georg Mathias

    2016-08-01

    Binaural sound reception has advantages over unilateral perception, including better localization and sound quality as well as speech and tone reception in both quiet and noisy environments. Up to now, most active middle ear implant (AMEI) users have been unilaterally implanted, but patient demand for an implant on the other side is increasing. Ten bilaterally-AMEI implanted native German-speaking adults were included in the study. The Oldenburg sentence test was used to measure speech reception thresholds in noise. The subject's signal-to-noise ratio (SNR) at a speech reception score of 50 % was calculated for different noise conditions. SRT was measured as a function of noise condition (nc) and listening condition (lc)-for example, SRT (lc, nc), with nc from S0N0, S0N-90, or S0N90 and lc from left, right or both. For each noise condition, the squelch effect and the binaural summation effect were calculated. Patients in this study demonstrated improvement with bilateral AMEIs compared to right or left AMEI only in all three tested listening conditions. Statistical significance was found in the S0N0 condition to favor usage of bilateral AMI versus either the right or left side only. The benefits of binaural hearing are well known, also in normal-hearing individuals. In the future every bilateral implantation should be a part of the clinical routine. Bilateral implantation can help to reduce problems in background noise and restore directional hearing. PMID:26385811

  3. Intersession reliability of fMRI activation for heat pain and motor tasks

    Raimi L. Quiton

    2014-01-01

    Full Text Available As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1 intraclass correlation coefficients (ICC calculated based on signal amplitude and (2 spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results

  4. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex

    Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery ...

  5. Figural memory performance and fMRI activity across the adult lifespan

    Jamadar, Sharna; Assaf, Michal; Jagannathan, Kanchana; Anderson, Karen; Pearlson, Godfrey D.

    2012-01-01

    We examined performance and fMRI activity in participants (n=235) aged 17-81yrs on a non-verbal recognition memory task, figural memory. Reaction time, error rate and response bias measures indicated that the youngest and oldest participants were faster, made fewer errors and showed a more conservative response bias than participants in the median age ranges. Encoding and Recognition phases activated a distributed bilateral network encompassing prefrontal, subcortical, lateral and medial temp...

  6. Characterization of optically actuated MRI-compatible active needles for medical interventions

    Black, Richard J.; Ryu, Seokchang; Moslehi, Behzad; Costa, Joannes M.

    2014-03-01

    The development of a Magnetic Resonance Imaging (MRI) compatible optically-actuated active needle for guided percutaneous surgery and biopsy procedures is described. Electrically passive MRI-compatible actuation in the small diameter needle is provided by non-magnetic materials including a shape memory alloy (SMA) subject to precise fiber laser operation that can be from a remote (e.g., MRI control room) location. Characterization and optimization of the needle is facilitated using optical fiber Bragg grating (FBG) temperature sensors arrays. Active bending of the needle during insertion allows the needle to be accurately guided to even relatively small targets in an organ while avoiding obstacles and overcoming undesirable deviations away from the planned path due to unforeseen or unknowable tissue interactions. This feature makes the needle especially suitable for use in image-guided surgical procedures (ranging from MRI to CT and ultrasound) when accurate targeting is imperative for good treatment outcomes. Such interventions include reaching small tumors in biopsies, delineating freezing areas in, for example, cryosurgery and improving the accuracy of seed placement in brachytherapy. Particularly relevant are prostate procedures, which may be subject to pubic arch interference. Combining diagnostic imaging and actuation assisted biopsy into one treatment can obviate the need for a second exam for guided biopsy, shorten overall procedure times (thus increasing operating room efficiencies), address healthcare reimbursement constraints and, most importantly, improve patient comfort and clinical outcomes.

  7. Glucose Administration Enhances fMRI Brain Activation and Connectivity Related to Episodic Memory Encoding for Neutral and Emotional Stimuli

    Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan

    2011-01-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…

  8. A Biodistribution and Toxicity Study of Cobalt Dichloride–N-Acetyl Cysteine (C4) as an Implantable MRI Marker for Prostate Cancer Treatment

    Frank, Steven J.; Johansen, Mary J.; Martirosyan, Karen; Gagea, Mihai; Van Pelt, Carolyn S.; Borne, Agatha; Carmazzi, Yudith; Madden, Timothy

    2013-01-01

    Purpose C4, a cobalt dichloride–N-acetyl cysteine complex, is being developed as a positive-signal magnetic resonance imaging (MRI) marker to localize implanted radioactive seeds in prostate brachytherapy. We evaluated the toxicity and biodistribution of C4 in rats with the goal of simulating systemic effects of potential leakage from C4 MRI markers within the prostate. Methods 9 µl doses (equivalent to leakage from 120 markers in a human) of control (0.9% sodium chloride), 1% (proposed for clinical use) and 10% C4 solution were injected into the prostates of male Sprague-Dawley rats via laparotomy. Organ toxicity and cobalt disposition in plasma, tissues, feces and urine were evaluated. Results No C4-related morbidity or mortality was observed in the biodistribution arm (60 rats). Biodistribution was measurable following 10% C4 injection: cobalt was cleared rapidly from periprostatic tissue; mean concentrations in prostate were 163 µg/g and 268 µg/g at 5 and 30 minutes but were undetectable by 60 minutes. Expected dual renal-hepatic elimination was observed with % injected dose recovered in tissues of 39.0 ±5.6% (liver) > 11.8 ±6.5% (prostate) > 5.3 ±0.9% (kidney) with low plasma concentrations detected up to 1 hr (1.40 µg/ml at 5–60 minutes). Excretion in urine was 13.1 ±4.6 % with 3.1 ±0.54 % recovered in feces by 24 hours. In the toxicity arm, three animals died in the control group and 1 each in the 1% and 10% groups from surgical or anesthesia-related complications; all others survived to scheduled termination at 14 days. No C4-related adverse clinical signs or organ toxicity was observed. Conclusion C4-related toxicity was not observed at exposures at least 10-fold that proposed for human use. This data demonstrating lack of systemic toxicity with dual routes of elimination in the event of in-situ rupture suggests C4 warrants further investigation as an MRI marker for prostate brachytherapy. PMID:23092727

  9. A Biodistribution and Toxicity Study of Cobalt Dichloride-N-Acetyl Cysteine in an Implantable MRI Marker for Prostate Cancer Treatment

    Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Texas (United States); Johansen, Mary J. [Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Texas (United States); Martirosyan, Karen S. [Department of Physics and Astronomy, The University of Texas at Brownsville, Texas (United States); Gagea, Mihai; Van Pelt, Carolyn S.; Borne, Agatha [Department of Veterinary Medicine, Surgery, and Pathology, The University of Texas MD Anderson Cancer Center, Texas (United States); Carmazzi, Yudith; Madden, Timothy [Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Texas (United States)

    2013-03-15

    Purpose: C4, a cobalt dichloride-N-acetyl cysteine complex, is being developed as a positive-signal magnetic resonance imaging (MRI) marker to localize implanted radioactive seeds in prostate brachytherapy. We evaluated the toxicity and biodistribution of C4 in rats with the goal of simulating the systemic effects of potential leakage from C4 MRI markers within the prostate. Methods and Materials: 9-μL doses (equivalent to leakage from 120 markers in a human) of control solution (0.9% sodium chloride), 1% (proposed for clinical use), and 10% C4 solution were injected into the prostates of male Sprague-Dawley rats via laparotomy. Organ toxicity and cobalt disposition in plasma, tissues, feces, and urine were evaluated. Results: No C4-related morbidity or mortality was observed in the biodistribution arm (60 rats). Biodistribution was measurable after 10% C4 injection: cobalt was cleared rapidly from periprostatic tissue; mean concentrations in prostate were 163 μg/g and 268 μg/g at 5 and 30 minutes but were undetectable by 60 minutes. Expected dual renal-hepatic elimination was observed, with percentages of injected dose recovered in tissues of 39.0 ± 5.6% (liver), >11.8 ± 6.5% (prostate), and >5.3 ± 0.9% (kidney), with low plasma concentrations detected up to 1 hour (1.40 μg/mL at 5-60 minutes). Excretion in urine was 13.1 ± 4.6%, with 3.1 ± 0.54% recovered in feces by 24 hours. In the toxicity arm, 3 animals died in the control group and 1 each in the 1% and 10% groups from surgical or anesthesia-related complications; all others survived to scheduled termination at 14 days. No C4-related adverse clinical signs or organ toxicity were observed. Conclusion: C4-related toxicity was not observed at exposures at least 10-fold the exposure proposed for use in humans. These data demonstrating lack of systemic toxicity with dual routes of elimination in the event of in situ rupture suggest that C4 warrants further investigation as an MRI marker for prostate

  10. A Biodistribution and Toxicity Study of Cobalt Dichloride-N-Acetyl Cysteine in an Implantable MRI Marker for Prostate Cancer Treatment

    Purpose: C4, a cobalt dichloride-N-acetyl cysteine complex, is being developed as a positive-signal magnetic resonance imaging (MRI) marker to localize implanted radioactive seeds in prostate brachytherapy. We evaluated the toxicity and biodistribution of C4 in rats with the goal of simulating the systemic effects of potential leakage from C4 MRI markers within the prostate. Methods and Materials: 9-μL doses (equivalent to leakage from 120 markers in a human) of control solution (0.9% sodium chloride), 1% (proposed for clinical use), and 10% C4 solution were injected into the prostates of male Sprague-Dawley rats via laparotomy. Organ toxicity and cobalt disposition in plasma, tissues, feces, and urine were evaluated. Results: No C4-related morbidity or mortality was observed in the biodistribution arm (60 rats). Biodistribution was measurable after 10% C4 injection: cobalt was cleared rapidly from periprostatic tissue; mean concentrations in prostate were 163 μg/g and 268 μg/g at 5 and 30 minutes but were undetectable by 60 minutes. Expected dual renal-hepatic elimination was observed, with percentages of injected dose recovered in tissues of 39.0 ± 5.6% (liver), >11.8 ± 6.5% (prostate), and >5.3 ± 0.9% (kidney), with low plasma concentrations detected up to 1 hour (1.40 μg/mL at 5-60 minutes). Excretion in urine was 13.1 ± 4.6%, with 3.1 ± 0.54% recovered in feces by 24 hours. In the toxicity arm, 3 animals died in the control group and 1 each in the 1% and 10% groups from surgical or anesthesia-related complications; all others survived to scheduled termination at 14 days. No C4-related adverse clinical signs or organ toxicity were observed. Conclusion: C4-related toxicity was not observed at exposures at least 10-fold the exposure proposed for use in humans. These data demonstrating lack of systemic toxicity with dual routes of elimination in the event of in situ rupture suggest that C4 warrants further investigation as an MRI marker for prostate

  11. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation.

    Lu, Tao; Qian, Shi; Meng, Fanhao; Ning, Congqin; Liu, Xuanyong

    2016-06-01

    As a promising implantable material, poly ether ether ketone (PEEK) possesses similar elastic modulus to that of cortical bones yet suffers from bio-inertness and poor osteogenic properties, which limits its application as orthopedic implants. In this work, calcium is introduced onto PEEK surface using calcium plasma immersion ion implantation (Ca-PIII). The results obtained from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirm the modified layer with varying contents of calcium are formed on PEEK surfaces. Water contact angle measurements reveal the increasing hydrophobicity of both Ca-PIII treated surfaces. In vitro cell adhesion, viability assay, alkaline phosphatase activity and collagen secretion analyses disclose improved the adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs) on Ca-PIII treated surfaces. The obtained results indicate that PEEK surface with enhanced osteogenic activity can be produced by calcium incorporation. PMID:26954085

  12. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    Laura eChaddock-Heyman

    2013-03-01

    Full Text Available This study used functional magnetic resonance imaging (fMRI to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ minutes of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control.

  13. Activation detection in functional MRI using subspace modeling and maximum likelihood estimation.

    Ardekani, B A; Kershaw, J; Kashikura, K; Kanno, I

    1999-02-01

    A statistical method for detecting activated pixels in functional MRI (fMIRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. For periodic activation-baseline patterns, the response signal is modeled by a truncated Fourier series with a known fundamental frequency but unknown Fourier coefficients. The nuisance subspace is assumed to be unknown. A maximum likelihood estimate is derived for the component of the nuisance subspace which is orthogonal to the response signal subspace. An estimate for the order of the nuisance subspace is obtained from an information theoretic criterion. A statistical test is derived and shown to be the uniformly most powerful (UMP) test invariant to a group of transformations which are natural to the hypothesis testing problem. The maximal invariant statistic used in this test has an F distribution. The theoretical F distribution under the null hypothesis strongly concurred with the experimental frequency distribution obtained by performing null experiments in which the subjects did not perform any activation task. Application of the theory to motor activation and visual stimulation fMRI studies is presented. PMID:10232667

  14. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response. PMID:20850237

  15. Cortical connective field estimates from resting state fMRI activity

    Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V.; Dumoulin, Serge O.; Renken, Remco; Ćurčić-Blake, Branislava; Cornelissen, Frans W.

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that—despite some variability in CF estimates between RS scans—neural properties such as CF maps and CF size can be derived from resting state data. PMID:25400541

  16. Incremental Activation Detection for Real-Time fMRI Series Using Robust Kalman Filter

    Liang Li

    2014-01-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI is a technique that enables us to observe human brain activations in real time. However, some unexpected noises that emerged in fMRI data collecting, such as acute swallowing, head moving and human manipulations, will cause much confusion and unrobustness for the activation analysis. In this paper, a new activation detection method for rt-fMRI data is proposed based on robust Kalman filter. The idea is to add a variation to the extended kalman filter to handle the additional sparse measurement noise and a sparse noise term to the measurement update step. Hence, the robust Kalman filter is designed to improve the robustness for the outliers and can be computed separately for each voxel. The algorithm can compute activation maps on each scan within a repetition time, which meets the requirement for real-time analysis. Experimental results show that this new algorithm can bring out high performance in robustness and in real-time activation detection.

  17. Motor association cortex activity in Parkinson's disease. A functional MRI study

    The purpose of this study was to examine the activation of motor association cortex using functional magnetic resonance imaging (fMRI) in patients with Parkinson's disease (PD) and control subjects during performed hand movements. There were 26 patients with PD (12 patients with Hoehn and Yahr stage I-II, 14 patients with stage III) and 8 control subjects. Functional imaging was performed using a 1.5 tesla MRI system equipped with a single-shot, echo-planar pulse sequence. The significant signal changes were observed within the primary sensorimotor area, the supplementary motor area (SMA), and the parietal association area in both PD and control subjects. In PD subjects, the SMA was less activated than in control subjects; there were significant differences in the number of pixels activated in SMA between control and Yahr III group (p<0.01), and between Yahr I-II and Yahr III group (p<0.01). Our results demonstrated that movement related cerebral activity in the SMA is reduced in PD subjects, consistent with previously published data using other methods. It is well known from anatomical studies that one of the major cortical outputs of the basal ganglia is the SMA. This may explain the hypoactivation of the SMA in PD. Studies using fMRI provide a promising method not only for localizing cortical activation related to voluntary movements but also for investigating pathophysiology of movement disorders. (author)

  18. Motor association cortex activity in Parkinson`s disease. A functional MRI study

    Tada, Yukiko [Yamaguchi Univ., Ube (Japan). School of Medicine

    1998-08-01

    The purpose of this study was to examine the activation of motor association cortex using functional magnetic resonance imaging (fMRI) in patients with Parkinson`s disease (PD) and control subjects during performed hand movements. There were 26 patients with PD (12 patients with Hoehn and Yahr stage I-II, 14 patients with stage III) and 8 control subjects. Functional imaging was performed using a 1.5 tesla MRI system equipped with a single-shot, echo-planar pulse sequence. The significant signal changes were observed within the primary sensorimotor area, the supplementary motor area (SMA), and the parietal association area in both PD and control subjects. In PD subjects, the SMA was less activated than in control subjects; there were significant differences in the number of pixels activated in SMA between control and Yahr III group (p<0.01), and between Yahr I-II and Yahr III group (p<0.01). Our results demonstrated that movement related cerebral activity in the SMA is reduced in PD subjects, consistent with previously published data using other methods. It is well known from anatomical studies that one of the major cortical outputs of the basal ganglia is the SMA. This may explain the hypoactivation of the SMA in PD. Studies using fMRI provide a promising method not only for localizing cortical activation related to voluntary movements but also for investigating pathophysiology of movement disorders. (author)

  19. Surface modification of TiO2 coatings by Zn ion implantation for improving antibacterial activities

    Xiaobing Zhao; Jiashen Yang; Jing You

    2016-02-01

    TiO$_2$ coating has been widely applied in orthopaedic and dental implants owing to its excellent mechanical and biological properties. However, one of the biggest complications of TiO$_2$ coating is implant-associated infections. The aim of this work is to improve the antibacterial activity of plasma-sprayed TiO$_2$ coatings by plasma immersion ion implantation (PIII) using zinc (Zn) ions. Results indicate that the as-sprayed TiO$_2$ coating is mainly composed of rutile phase. Zn-PIII modification does not change the phase compositions and the surface morphologies of TiO$_2$ coatings, while change their hydrophilicity. Zn-implanted TiO$_2$ coatings can inhibit the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and the ability to inhibit S. aureus is greater than that to E. coli. Zn ion release and reactive oxygen species may be attributed to improving the antibacterial activity of TiO$_2$ coating. Therefore, Zn-PIII TiO$_2$ coatings on titanium suggest promising candidates for orthopaedic and dental implants.

  20. Limited role of gadolinium to detect active sacroiliitis on MRI in juvenile spondyloarthritis

    Herregods, N.; Leus, A.; Verstraete, K.; Jans, L. [Ghent University Hospital, Department of Radiology and Medical Imaging, Ghent (Belgium); Jaremko, J.L. [University of Alberta Hospital, Department of Radiology and Diagnostic Imaging, Edmonton, AB (Canada); Baraliakos, X. [Ruhr-University Bochum, Rheumazentrum Ruhrgebiet, Herne (Germany); Dehoorne, J. [Ghent University Hospital, Department of Pediatric Rheumatology, Ghent (Belgium)

    2015-11-15

    The aim of this study is to determine the added diagnostic value of contrast-enhanced (CE) magnetic resonance imaging (MRI) compared to routine non contrast-enhanced MRI to detect active sacroiliitis in clinically juvenile spondyloarthritis (JSpA). A total of 80 children clinically suspected for sacroiliitis prospectively underwent MRI of the sacroiliac (SI) joints. Axial and coronal T1-weighted (T1), Short-tau inversion recovery (STIR) and fat-saturated T1-weighted gadolinium-DTPA (Gd) contrast-enhanced (T1/Gd) sequences were obtained. The presence of bone marrow edema (BME), capsulitis, enthesitis, high intra-articular STIR signal, synovial enhancement and a global diagnostic impression of the MRI for diagnosis of sacroiliitis was recorded. STIR and T1/Gd sequences had 100 % agreement for depiction of BME, capsulitis and enthesitis. High intra-articular STIR signal was seen in 18/80 (22.5 %) patients, 15 (83 %) of whom also showed synovial enhancement in the T1/Gd sequence. Sensitivity (SN) and specificity (SP) for a clinical diagnosis of JSpA were similar for high STIR signal (SN = 33 %, SP = 85 %) and T1/Gd synovial enhancement (SN = 36 %, SP = 92 %). Positive likelihood ratio (LR+) for JSpA was twice as high for synovial enhancement than high STIR signal (4.5 compared to 2.2). Global diagnostic impression was similar (STIR: SN = 55 %, SP = 87 %, LR + =4.2; T1/Gd: SN = 55 %, SP = 92 %, LR + = 6.9). MRI without contrast administration is sufficient to identify bone marrow edema, capsulitis and retroarticular enthesitis as features of active sacroiliitis in juvenile spondyloarthritis. In selected cases when high STIR signal in the joint is the only finding, gadolinium-enhanced images may help to confirm the presence of synovitis. (orig.)

  1. Limited role of gadolinium to detect active sacroiliitis on MRI in juvenile spondyloarthritis

    The aim of this study is to determine the added diagnostic value of contrast-enhanced (CE) magnetic resonance imaging (MRI) compared to routine non contrast-enhanced MRI to detect active sacroiliitis in clinically juvenile spondyloarthritis (JSpA). A total of 80 children clinically suspected for sacroiliitis prospectively underwent MRI of the sacroiliac (SI) joints. Axial and coronal T1-weighted (T1), Short-tau inversion recovery (STIR) and fat-saturated T1-weighted gadolinium-DTPA (Gd) contrast-enhanced (T1/Gd) sequences were obtained. The presence of bone marrow edema (BME), capsulitis, enthesitis, high intra-articular STIR signal, synovial enhancement and a global diagnostic impression of the MRI for diagnosis of sacroiliitis was recorded. STIR and T1/Gd sequences had 100 % agreement for depiction of BME, capsulitis and enthesitis. High intra-articular STIR signal was seen in 18/80 (22.5 %) patients, 15 (83 %) of whom also showed synovial enhancement in the T1/Gd sequence. Sensitivity (SN) and specificity (SP) for a clinical diagnosis of JSpA were similar for high STIR signal (SN = 33 %, SP = 85 %) and T1/Gd synovial enhancement (SN = 36 %, SP = 92 %). Positive likelihood ratio (LR+) for JSpA was twice as high for synovial enhancement than high STIR signal (4.5 compared to 2.2). Global diagnostic impression was similar (STIR: SN = 55 %, SP = 87 %, LR + =4.2; T1/Gd: SN = 55 %, SP = 92 %, LR + = 6.9). MRI without contrast administration is sufficient to identify bone marrow edema, capsulitis and retroarticular enthesitis as features of active sacroiliitis in juvenile spondyloarthritis. In selected cases when high STIR signal in the joint is the only finding, gadolinium-enhanced images may help to confirm the presence of synovitis. (orig.)

  2. Real-time magnetic resonance imaging (MRI during active wrist motion--initial observations.

    Robert D Boutin

    Full Text Available BACKGROUND: Non-invasive imaging techniques such as magnetic resonance imaging (MRI provide the ability to evaluate the complex anatomy of bone and soft tissues of the wrist without the use of ionizing radiation. Dynamic instability of wrist--occurring during joint motion--is a complex condition that has assumed increased importance in musculoskeletal medicine. The objective of this study was to develop an MRI protocol for evaluating the wrist during continuous active motion, to show that dynamic imaging of the wrist is realizable, and to demonstrate that the resulting anatomical images enable the measurement of metrics commonly evaluated for dynamic wrist instability. METHODS: A 3-Tesla "active-MRI" protocol was developed using a bSSFP sequence with 475 ms temporal resolution for continuous imaging of the moving wrist. Fifteen wrists of 10 asymptomatic volunteers were scanned during active supination/pronation, radial/ulnar deviation, "clenched-fist", and volarflexion/dorsiflexion maneuvers. Two physicians evaluated distal radioulnar joint (DRUJ congruity, extensor carpi ulnaris (ECU tendon translation, the scapholunate (SL interval, and the SL, radiolunate (RL and capitolunate (CL angles from the resulting images. RESULTS: The mean DRUJ subluxation ratio was 0.04 in supination, 0.10 in neutral, and 0.14 in pronation. The ECU tendon was subluxated or translated out of its groove in 3 wrists in pronation, 9 wrists in neutral, and 11 wrists in supination. The mean SL interval was 1.43 mm for neutral, ulnar deviation, radial deviation positions, and increased to 1.64 mm during the clenched-fist maneuver. Measurement of SL, RL and CL angles in neutral and dorsiflexion was also accomplished. CONCLUSION: This study demonstrates the initial performance of active-MRI, which may be useful in the investigation of dynamic wrist instability in vivo.

  3. Impact of Ion Implantation on Licorice (Glycyrrhiza uralensis Fisch) Growth and Antioxidant Activity Under Drought Stress

    Low energy ion beams are known to have stimulation effects on plant generation and to improve plants' intrinsic quality. In the present study, the growth and physiological index of licorice implanted with 0, 8, 10, 12 and 14x (2.6x1015) ions/cm2 were investigated under well-watered and drought-stress conditions. The results showed that a proper dose of ion implantation was particularly efficient in stimulating the licorice growth and improving the plant biomass significantly in both the well-watered and drought-stress conditions. The physiological results of licorice measured by leaf water potential, lipid oxidation, soluble protein and antioxidant system showed a significant correlation between ion implantation and water regime except for leaf water potential. Therefore, the study indicated that ion implantation can enhance licorice's drought tolerance by increasing the activity of superoxide dismutase (SOD), catalase (CAT) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability to lower oxidative damage to lipids in plants. Ion beam implantation, therefore, provides an alternative method to enhance licorice drought tolerance

  4. Impact of Ion Implantation on Licorice ( Glycyrrhiza uralensis Fisch ) Growth and Antioxidant Activity Under Drought Stress

    LIU Jingnan; TONG Liping; SHEN Tongwei; LI Jie; WU Lijun; YU Zengliang

    2007-01-01

    Low energy ion beams are known to have stimulation effects on plant generation and to improve plants' intrinsic quality. In the present study, the growth and physiological index of licorice implanted with 0, 8, 10, 12 and 14× (2.6×l015) ions/cm2 were investigated under well-watered and drought-stress conditions. The results showed that a proper dose of ion implantation was particularly efficient in stimulating the licorice growth and improving the plant biomass significantly in both the well-watered and drought-stress conditions. The physiological results of licorice measured by leaf water potential, lipid oxidation, soluble protein and antioxidant system showed a significant correlation between ion implantation and water regime except for leaf water potential. Therefore, the study indicated that ion implantation can enhance licorice's drought tolerance by increasing the activity of superoxide dismutase (SOD), catalase (CAT) and DPPH (l,l-diphenyl-2-picrylhydrazyl) radical scavenging ability to lower oxidative damage to lipids in plants. Ion beam implantation, therefore, provides an alternative method to enhance licorice drought tolerance.

  5. Impact of Ion Implantation on Licorice (Glycyrrhiza uralensis Fisch) Growth and Antioxidant Activity Under Drought Stress

    Liu, Jingnan; Tong, Liping; Shen, Tongwei; Li, Jie; Wu, Lijun; Yu, Zengliang

    2007-06-01

    Low energy ion beams are known to have stimulation effects on plant generation and to improve plants' intrinsic quality. In the present study, the growth and physiological index of licorice implanted with 0, 8, 10, 12 and 14× (2.6×1015) ions/cm2 were investigated under well-watered and drought-stress conditions. The results showed that a proper dose of ion implantation was particularly efficient in stimulating the licorice growth and improving the plant biomass significantly in both the well-watered and drought-stress conditions. The physiological results of licorice measured by leaf water potential, lipid oxidation, soluble protein and antioxidant system showed a significant correlation between ion implantation and water regime except for leaf water potential. Therefore, the study indicated that ion implantation can enhance licorice's drought tolerance by increasing the activity of superoxide dismutase (SOD), catalase (CAT) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability to lower oxidative damage to lipids in plants. Ion beam implantation, therefore, provides an alternative method to enhance licorice drought tolerance.

  6. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Bodurka, Jerzy

    2014-01-01

    Neurofeedback is a promising approach for non-invasive modulation of human brain activity with applications for treatment of mental disorders and enhancement of brain performance. Neurofeedback techniques are commonly based on either electroencephalography (EEG) or real-time functional magnetic resonance imaging (rtfMRI). Advances in simultaneous EEG-fMRI have made it possible to combine the two approaches. Here we report the first implementation of simultaneous multimodal rtfMRI and EEG neurofeedback (rtfMRI-EEG-nf). It is based on a novel system for real-time integration of simultaneous rtfMRI and EEG data streams. We applied the rtfMRI-EEG-nf to training of emotional self-regulation in healthy subjects performing a positive emotion induction task based on retrieval of happy autobiographical memories. The participants were able to simultaneously regulate their BOLD fMRI activation of the left amygdala and frontal EEG power asymmetry in the high-beta band using the rtfMRI-EEG-nf. Our proof-of-concept results...

  7. Activation and thermal stability of ultra-shallow B{sup +}-implants in Ge

    Yates, B. R.; Darby, B. L.; Jones, K. S. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Petersen, D. H. [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Hansen, O. [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); CINF, Center for Individual Nanoparticle Functionality, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Lin, R.; Nielsen, P. F. [CAPRES A/S, Scion-DTU, DK-2800 Kgs. Lyngby (Denmark); Romano, L. [IMM-CNR MATIS and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Doyle, B. L. [Sandia National Laboratories, MS-1056, Albuquerque, New Mexico 87185 (United States); Kontos, A. [Applied Materials, Gloucester, Massachusetts 01930 (United States)

    2012-12-15

    The activation and thermal stability of ultra-shallow B{sup +} implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B{sup +} implants in Ge was characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23.2%, 21.4%, and 17.6% due to ion backscattering for 2, 4, and 6 keV implants in Ge, respectively. The electrical activation of ultra-shallow B{sup +} implants at 2, 4, and 6 keV to fluences ranging from 5.0 Multiplication-Sign 10{sup 13} to 5.0 Multiplication-Sign 10{sup 15} cm{sup -2} was studied using micro Hall effect measurements after annealing at 400-600 Degree-Sign C for 60 s. For both c-Ge and PA-Ge, a large fraction of the implanted dose is rendered inactive due to the formation of a presumable B-Ge cluster. The B lattice location in samples annealed at 400 Degree-Sign C for 60 s was characterized by channeling analysis with a 650 keV H{sup +} beam by utilizing the {sup 11}B(p, {alpha})2{alpha} nuclear reaction and confirmed the large fraction of off-lattice B for both c-Ge and PA-Ge. Within the investigated annealing range, no significant change in activation was observed. An increase in the fraction of activated dopant was observed with increasing energy which suggests that the surface proximity and the local point defect environment has a strong impact on B activation in Ge. The results suggest the presence of an inactive B-Ge cluster for ultra-shallow implants in both c-Ge and PA-Ge that remains stable upon annealing for temperatures up to 600 Degree-Sign C.

  8. Statistical modeling of time-dependent fMRI activation effects.

    Kalus, Stefanie; Bothmann, Ludwig; Yassouridis, Christina; Czisch, Michael; Sämann, Philipp G; Fahrmeir, Ludwig

    2015-02-01

    Functional magnetic resonance imaging (fMRI) activation detection within stimulus-based experimental paradigms is conventionally based on the assumption that activation effects remain constant over time. This assumption neglects the fact that the strength of activation may vary, for example, due to habituation processes or changing attention. Neither the functional form of time variation can be retrieved nor short-lasting effects can be detected by conventional methods. In this work, a new dynamic approach is proposed that allows to estimate time-varying effect profiles and hemodynamic response functions in event-related fMRI paradigms. To this end, we incorporate the time-varying coefficient methodology into the fMRI general regression framework. Inference is based on a voxelwise penalized least squares procedure. We assess the strength of activation and corresponding time variation on the basis of pointwise confidence intervals on a voxel level. Additionally, spatial clusters of effect curves are presented. Results of the analysis of an active oddball experiment show that activation effects deviating from a constant trend coexist with time-varying effects that exhibit different types of shapes, such as linear, (inversely) U-shaped or fluctuating forms. In a comparison to conventional approaches, like classical SPM, we observe that time-constant methods are rather insensitive to detect temporary effects, because these do not emerge when aggregated across the entire experiment. Hence, it is recommended to base activation detection analyses not merely on time-constant procedures but to include flexible time-varying effects that harbour valuable information on individual response patterns. PMID:25339617

  9. Real-time fMRI-based activation analysis and stimulus control

    Moench, Tobias; Hollmann, Maurice; Bernarding, Johannes

    2007-03-01

    The real-time analysis of brain activation using functional MRI data offers a wide range of new experiments such as investigating self-regulation or learning strategies. However, besides special data acquisition and real-time data analysing techniques such examination requires dynamic and adaptive stimulus paradigms and self-optimising MRI-sequences. This paper presents an approach that enables the unified handling of parameters influencing the different software systems involved in the acquisition and analysing process. By developing a custom-made Experiment Description Language (EDL) this concept is used for a fast and flexible software environment which treats aspects like extraction and analysis of activation as well as the modification of the stimulus presentation. We describe how extracted real-time activation is subsequently evaluated by comparing activation patterns to previous acquired templates representing activated regions of interest for different predefined conditions. According to those results the stimulus presentation is adapted. The results showed that the developed system in combination with EDL is able to reliably detect and evaluate activation patterns in real-time. With a processing time for data analysis of about one second the approach is only limited by the natural time course of the hemodynamic response function of the brain activation.

  10. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275–364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ∼80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  11. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-01

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz–460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.

  12. Rare earth ion implantation and optical activation in nitride semiconductors for multicolor emission

    In order to understand the behavior of nitride semiconductors when submitted to ion implantation, we have used 300 keV europium at fluences from 1012 to above 1017 ions cm−2. Subsequently, Rutherford backscattering (RBS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to investigate the evolution of damage. The optical properties were investigated prior to and after annealing. It was found that the behavior of the three compounds (AlN, GaN InN) under ion implantation is rather different: whereas InN breaks down at very low fluences (∼1012 ions cm−2), the damage formation mechanisms are similar in AlN and GaN. In both compounds, extended defects such as stacking faults play a critical role. However, they exhibit different stability, as a consequence, GaN transforms to nanocrystalline state from the surface at a fluence of around 2.5 × 1015 ions cm−2, whereas AlN undergoes a chemical amorphization starting at the projected range (Rp), when implanted to extremely high Eu fluences >1017 ionscm−2. As for the optical activation, the formation of highly stable extended defects in these compounds constitutes a real challenge for the annealing of heavily doped layers, and it was noticed that for a substantial optical activation, the implantation fluences should be kept low (<1015 Eu at cm−2). (invited article)

  13. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands.

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-21

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs. PMID:27224201

  14. Classification of autistic individuals and controls using cross-task characterization of fMRI activity

    Guillaume Chanel

    2016-01-01

    Full Text Available Multivariate pattern analysis (MVPA has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI, a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based approach that we apply to two different fMRI experiments with social stimuli (faces and bodies. The method, based on Support Vector Machines (SVMs and Recursive Feature Elimination (RFE, is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%. Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations.

  15. Spectral embedding based active contour (SEAC): application to breast lesion segmentation on DCE-MRI

    Agner, Shannon C.; Xu, Jun; Rosen, Mark; Karthigeyan, Sudha; Englander, Sarah; Madabhushi, Anant

    2011-03-01

    Spectral embedding (SE), a graph-based manifold learning method, has previously been shown to be useful in high dimensional data classification. In this work, we present a novel SE based active contour (SEAC) segmentation scheme and demonstrate its applications in lesion segmentation on breast dynamic contrast enhance magnetic resonance imaging (DCE-MRI). In this work, we employ SE on DCE-MRI on a per voxel basis to embed the high dimensional time series intensity vector into a reduced dimensional space, where the reduced embedding space is characterized by the principal eigenvectors. The orthogonal eigenvector-based data representation allows for computation of strong tensor gradients in the spectrally embedded space and also yields improved region statistics that serve as optimal stopping criteria for SEAC. We demonstrate both analytically and empirically that the tensor gradients in the spectrally embedded space are stronger than the corresponding gradients in the original grayscale intensity space. On a total of 50 breast DCE-MRI studies, SEAC yielded a mean absolute difference (MAD) of 3.2+/-2.1 pixels and mean Dice similarity coefficient (DSC) of 0.74+/-0.13 compared to manual ground truth segmentation. An active contour in conjunction with fuzzy c-means (FCM+AC), a commonly used segmentation method for breast DCE-MRI, produced a corresponding MAD of 7.2+/-7.4 pixels and mean DSC of 0.58+/-0.32. In conjunction with a set of 6 quantitative morphological features automatically extracted from the SEAC derived lesion boundary, a support vector machine (SVM) classifier yielded an area under the curve (AUC) of 0.73, for discriminating between 10 benign and 30 malignant lesions; the corresponding SVM classifier with the FCM+AC derived morphological features yielded an AUC of 0.65.

  16. Activation on occipital lobe in children with abacus mental calculation training: an fMRI study

    Objective: By exploring the activation on occipital lobe in children with and without abacus mental calculation training when they engaged in different calculation tasks with functional magnetic resonance imaging (fMRI), to identify the possible mechanism of occipital lobe in abacus mental calculation. Methods: fMRI was performed in children trained with and without (sixteen in each group) abacus mental calculation when they engaged in addition, subtraction. multiplication, division, and number-object control judging tasks. The data processing and statistical analysis were performed on SPM 2.0 (statistical parametric mapping 2.0) and the related-brain functional areas were identified. The activation on occipital lobe was observed carefully. The difference in activated areas of occipital lobe was statistically significant between two groups engaged in different tasks of calculations (P<0.01). Result: Bilateral occipital lobe, especially in the cuneus and lingual gyrus, were activated in children trained with abacus mental calculation. The main activated area was lingual gyrus in children without abacus mental calculation. Conclusion: The occipital lobe participates visuospatial processing in the abacus mental calculations. The neuromechanism maybe account for the specific activation in occipital lobe. (authors)

  17. Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study

    Matthew P. Kirschen

    2010-01-01

    Full Text Available Verbal working memory (VWM engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters and modality (auditory and visual dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44, insular, cingulate (BA 32, and bilateral inferior parietal/supramarginal (BA 40 regions, as well as in bilateral superior (HVI and right inferior (HVIII cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI cerebellum, bilateral occipital (BA19 and left parietal (BA7/40 cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22. In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.

  18. Measurement, time-stamping, and analysis of electrodermal activity in fMRI

    Smyser, Christopher; Grabowski, Thomas J.; Rainville, Pierre; Bechara, Antione; Razavi, Mehrdad; Mehta, Sonya; Eaton, Brent L.; Bolinger, Lizann

    2002-04-01

    A low cost fMRI-compatible system was developed for detecting electrodermal activity without inducing image artifact. Subject electrodermal activity was measured on the plantar surface of the foot using a standard recording circuit. Filtered analog skin conductance responses (SCR) were recorded with a general purpose, time-stamping data acquisition system. A conditioning paradigm involving painful thermal stimulation was used to demonstrate SCR detection and investigate neural correlates of conditioned autonomic activity. 128x128 pixel EPI-BOLD images were acquired with a GE 1.5T Signa scanner. Image analysis was performed using voxel-wise multiple linear regression. The covariate of interest was generated by convolving stimulus event onset with a standard hemodynamic response function. The function was time-shifted to determine optimal activation. Significance was tested using the t-statistic. Image quality was unaffected by the device, and conditioned and unconditioned SCRs were successfully detected. Conditioned SCRs correlated significantly with activity in the right anterior insular cortex. The effect was more robust when responses were scaled by SCR amplitude. The ability to measure and time register SCRs during fMRI acquisition enables studies of cognitive processes marked by autonomic activity, including those involving decision-making, pain, emotion, and addiction.

  19. Differential Activation Patterns of fMRI in Sleep-Deprived Brain: Restoring Effects of Acupuncture

    Lei Gao

    2014-01-01

    Full Text Available Previous studies suggested a remediation role of acupuncture in insomnia, and acupuncture also has been used in insomnia empirically and clinically. In this study, we employed fMRI to test the role of acupuncture in sleep deprivation (SD. Sixteen healthy volunteers (8 males were recruited and scheduled for three fMRI scanning procedures, one following the individual’s normal sleep and received acupuncture SP6 (NOR group and the other two after 24 h of total SD with acupuncture on SP6 (SD group or sham (Sham group. The sessions were counterbalanced approximately two weeks apart. Acupuncture stimuli elicited significantly different activation patterns of three groups. In NOR group, the right superior temporal lobe, left inferior parietal lobule, and left postcentral gyrus were activated; in SD group, the anterior cingulate cortex, bilateral insula, left basal ganglia, and thalamus were significantly activated while, in Sham group, the bilateral thalamus and left cerebellum were activated. Different activation patterns suggest a unique role of acupuncture on SP6 in remediation of SD. SP6 elicits greater and anatomically different activations than those of sham stimuli; that is, the salience network, a unique interoceptive autonomic circuit, may indicate the mechanism underlying acupuncture in restoring sleep deprivation.

  20. Enhanced electrical activation in In-implanted Ge by C co-doping

    Feng, R., E-mail: ruixing.feng@anu.edu.au; Kremer, F.; Mirzaei, S.; Medling, S. A.; Ridgway, M. C. [Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200 (Australia); Sprouster, D. J. [Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Decoster, S.; Pereira, L. M. C. [KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven (Belgium); Glover, C. J. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Russo, S. P. [Applied Physics, School Applied Sciences, RMIT University, Melbourne 3001 (Australia)

    2015-11-23

    At high dopant concentrations in Ge, electrically activating all implanted dopants is a major obstacle in the fulfillment of high-performance Ge-channel complementary metal oxide semiconductor devices. In this letter, we demonstrate a significant increase in the electrically-active dopant fraction in In-implanted Ge by co-doping with the isovalent element C. Electrical measurements have been correlated with x-ray absorption spectroscopy and transmission electron microscopy results in addition to density functional theory simulations. With C + In co-doping, the electrically active fraction was doubled and tripled at In concentrations of 0.2 and 0.7 at. %, respectively. This marked improvement was the result of C-In pair formation such that In-induced strain in the Ge lattice was reduced while the precipitation of In and the formation of In-V clusters were both suppressed.

  1. Activation of ion-implanted polycrystalline silicon thin films prepared on glass substrates

    Phosphorous-implanted polycrystalline Si thin films were subjected to thermal annealing between 300 °C and 650 °C. The thermal activation was monitored electrically and structurally using Hall measurements, Raman spectroscopy, UV–visible spectrophotometry, and transmission electron microscopy. Charge transport information was correlated to the corresponding structural evolution in thermal activation. Phosphorous-implanted activation is divided into short-range ordering at low temperatures and long-range ordering at high temperatures, with the boundary between low and high temperatures set at 425 °C. Short-range ordering allows for significant increase in electronic concentration through substitution of P for Si. Higher temperatures are attributed to long-range ordering, thereby increasing electronic mobility.

  2. Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity.

    Amemiya, Shiori; Takao, Hidemasa; Hanaoka, Shohei; Ohtomo, Kuni

    2016-06-01

    Conventional resting-state fMRI (rs-fMRI) studies have focused on investigating the synchronous neural activity in functionally relevant distant regions that are termed as resting-state networks. On the other hand, less is known about the spatiotemporal dynamics of the spontaneous activity of the brain. By examining the characteristics of both rs-fMRI and vascular time lag that was measured using dynamic susceptibility contrast-enhanced perfusion weighted imaging, the present study identifies several structured propagation of the rs-fMRI signal as putative neural streams. Temporal shift of both rs-fMRI and perfusion imaging data in each voxel compared with the averaged whole-brain signal was computed using cross-correlation analysis. In contrast to the uniformity of the vascular time lag across subjects, whole-brain rs-fMRI time lag was estimated to be composed of three independent components. After regression of vascular time lag, independent component analysis was applied to rs-fMRI data. The putative neural streams showed slow propagation of the signal from task-positive regions to main nodes of the default mode network, which may represent a mode of transmission underlying the interactions among the resting-state networks. PMID:27012499

  3. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers

    Wakelin, Edgar A.; Davies, Michael J.; Bilek, Marcela M. M.;

    2015-01-01

    controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor...

  4. Active waveguides by low-fluence carbon implantation in Nd3+-doped fluorophosphate glasses

    Liu, Chun-Xiao; Luo, Zhe-Yuan; Li, Yu-Wen; Chen, Meng; Xu, Jun; Fu, Li-Li; Yu, Ke-Han; Zheng, Rui-Lin; Zhou, Zhi-Guang; Li, Wei-Nan; Guo, Hai-Tao; Lin, She-Bao; Wei, Wei

    2016-01-01

    A planar waveguide in the Nd3+-doped fluorophosphate glass is fabricated by a 6.0 MeV C3+ ion implantation at a low-fluence of 1.0 × 1014 ions/cm2. The fluence is close to that in semiconductor industry. The dark mode spectra are recorded by a model 2010 prism coupler. The energy losses during the implantation process and the refractive index profile of the waveguide are simulated by the SRIM 2010 code and the reflectivity calculation method (RCM), respectively. The near-field light intensity profile and the propagation loss of the waveguide are measured by an end-face coupling system. The two-dimensional (2D) modal profile of transverse electric (TE) mode for the fabricated waveguide is calculated by the finite difference beam propagation method (FD-BPM). The results of microluminescence and optical absorption reveal that the spectroscopic characteristics of the Nd3+-doped fluorophosphate glass are nearly unaffected by the carbon ion implantation process. This work suggests that the carbon-implanted Nd3+-doped fluorophosphate glass waveguide is a promising candidate for integrated active devices.

  5. Degenerative joint disease on MRI and physical activity: a clinical study of the knee joint in 320 patients

    We examined 320 patients with MRI and arthroscopy after an acute trauma to evaluate MRI in diagnosis of degenerative joint disease of the knee in relation to sports activity and clinical data. Lesions of cartilage and menisci on MRI were registered by two radiologists in consensus without knowledge of arthroscopy. Arthroscopy demonstrated grade-1 to grade-4 lesions of cartilage on 729 of 1920 joint surfaces of 320 knees, and MRI diagnosed 14 % of grade-1, 32 % of grade-2, 94 % of grade-3, and 100 % of grade-4 lesions. Arthroscopy explored 1280 meniscal areas and showed degenerations in 10 %, tears in 11.4 %, and complex lesions in 9.2 %. Magnetic resonance imaging was in agreement with arthroscopy in 81 % showing more degenerations but less tears of menisci than arthroscopy. Using a global system for grading the total damage of the knee joint into none, mild, moderate, or severe changes, agreement between arthroscopy and MRI was found in 82 %. Magnetic resonance imaging and arthroscopy showed coherently that degree of degenerative joint changes was significantly correlated to patient age or previous knee trauma. Patients over 40 years had moderate to severe changes on MRI in 45 % and patients under 30 years in only 22 %. Knee joints with a history of trauma without complete structural or functional reconstitution showed marked changes on MRI in 57 %, whereas stable joints without such alterations had degenerative changes in only 26 %. There was no correlation of degenerative disease to gender, weight, type, frequency, and intensity of sports activity. Therefore, MRI is an effective non-invasive imaging method for exact localization and quantification of chronic joint changes of cartilage and menisci that recommends MRI for monitoring in sports medicine. (orig.) (orig.)

  6. Altered resting-state brain activity at functional MRI during automatic memory consolidation of fear conditioning.

    Feng, Tingyong; Feng, Pan; Chen, Zhencai

    2013-07-26

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of automatic memory consolidation of fear conditioning is still unclear. To address this question, we measured brain activity following fear acquisition using resting-state functional magnetic resonance imaging (rs-fMRI). In the current study, we used a marker of fMRI, amplitude of low-frequency (0.01-0.08Hz) fluctuation (ALFF) to quantify the spontaneous brain activity. Brain activity correlated to fear memory consolidation was observed in parahippocampus, insula, and thalamus in resting-state. Furthermore, after acquired fear conditioning, compared with control group some brain areas showed ALFF increased in ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) in the experimental group, whereas some brain areas showed decreased ALFF in striatal regions (caudate, putamen). Moreover, the change of ALFF in vmPFC was positively correlated with the subjective fear ratings. These findings suggest that the parahippocampus, insula, and thalamus are the neural substrates of fear memory consolidation. The difference in activity could be attributed to a homeostatic process in which the vmPFC and ACC were involved in the fear recovery process, and change of ALFF in vmPFC predicts subjective fear ratings. PMID:23726994

  7. Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: a parametric functional MRI study

    Li, Haiqing; Li, Yuxin; Yin, Bo; Tang, Weijun; Yu, Xiangrong; Geng, Daoying [Huashan Hospital, Department of Radiology, Fudan University, Shanghai (China); Chen, Yan [Fudan University, Department of Neurology, Huashan Hospital, Shanghai (China); Huang, Weiyuan [People' s Hospital of Hainan Province, Department of Radiology, Haikou, Hainan Province (China); Zhang, Biyun [Nanjing University of Traditional Chinese Medicine, Department of radiotherapy, Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)

    2015-09-15

    To investigate functional cerebral abnormalities in patients with amyotrophic lateral sclerosis (ALS) using functional magnetic resonance imaging (fMRI) during action observation. Thirty patients with ALS and 30 matched healthy controls underwent fMRI with an experimental paradigm while observing a video of repetitive flexion-extension of the fingers at three frequency levels or three complexity levels, alternated with periods of a static hand. A parametric analysis was applied to determine the effects of each of the two factors. Action observation activated similar neural networks as the research on execution of action in the ALS patients and healthy subjects in several brain regions related to the mirror-neuron system (MNS). In the ALS patients, in particular, the dorsal lateral premotor cortex (dPMC), inferior parietal gyrus (IPG), and SMA, were more activated compared with the activation in the controls. Increased activation within the primary motor cortex (M1), dPMC, inferior frontal gyrus (IFG), and superior parietal gyrus (SPG) mainly correlated with hand movement frequency/complexity in the videos in the patients compared with controls. The findings indicated an ongoing compensatory process occurring within the higher order motor-processing system of ALS patients, likely to overcome the loss of function. (orig.)

  8. Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: a parametric functional MRI study

    To investigate functional cerebral abnormalities in patients with amyotrophic lateral sclerosis (ALS) using functional magnetic resonance imaging (fMRI) during action observation. Thirty patients with ALS and 30 matched healthy controls underwent fMRI with an experimental paradigm while observing a video of repetitive flexion-extension of the fingers at three frequency levels or three complexity levels, alternated with periods of a static hand. A parametric analysis was applied to determine the effects of each of the two factors. Action observation activated similar neural networks as the research on execution of action in the ALS patients and healthy subjects in several brain regions related to the mirror-neuron system (MNS). In the ALS patients, in particular, the dorsal lateral premotor cortex (dPMC), inferior parietal gyrus (IPG), and SMA, were more activated compared with the activation in the controls. Increased activation within the primary motor cortex (M1), dPMC, inferior frontal gyrus (IFG), and superior parietal gyrus (SPG) mainly correlated with hand movement frequency/complexity in the videos in the patients compared with controls. The findings indicated an ongoing compensatory process occurring within the higher order motor-processing system of ALS patients, likely to overcome the loss of function. (orig.)

  9. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant.

    He, Shu; Zhou, Ping; Wang, Linxin; Xiong, Xiaoling; Zhang, Yifei; Deng, Yi; Wei, Shicheng

    2014-06-01

    Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine followed by immobilization of the antibiotic cefotaxime sodium (CS) onto the polydopamine-coated Ti through catechol chemistry. Contact angle measurement and X-ray photoelectron spectroscopy confirmed the presence of CS grafted on the Ti surface. Our results demonstrated that the antibiotic-grafted Ti substrate showed good biocompatibility and well-behaved haemocompatibility. In addition, the antibiotic-grafted Ti could effectively prevent adhesion and proliferation of Escherichia coli (Gram-negative) and Streptococcus mutans (Gram-positive). Moreover, the inhibition of biofilm formation on the antibiotic-decorated Ti indicated that the grafted CS could maintain its long-term antibacterial activity. This modified Ti substrate with enhanced antibacterial activity holds great potential as implant material for applications in dental and bone graft substitutes. PMID:24647910

  10. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in the electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films

  11. Estimation of the neuronal activation using fMRI data: An observer-based approach

    Laleg-Kirati, Taous-Meriem

    2013-06-01

    This paper deals with the estimation of the neuronal activation and some unmeasured physiological information using the Blood Oxygenation Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). We propose to use an observer-based approach applied to the balloon hemodynamic model. The latter describes the relation between the neural activity and the BOLD signal. The balloon model can be expressed in a nonlinear state-space representation where the states, the parameters and the input (neuronal activation), are unknown. This study focuses only on the estimation of the hidden states and the neuronal activation. The model is first linearized around the equilibrium and an observer is applied to this linearized version. Numerical results performed on synthetic data are presented.

  12. Functional MRI activation of primary and secondary motor areas in healthy subjects

    Donghai Li; Honghan Gong; Xiangzuo Xiao; Jinhua Wan

    2008-01-01

    BACKGROUND:Functional MRI(fMRI)demonstrates the localization of hand representation in the motor cortex,thereby providing feasible noninvasive mapping of functional activities in the human brain.OBJECTIVE:To observe cortical activation within different cortical motor regions during repetitive hand movements in healthy subjects through the use of fMRI.DESIGN:An observational study,with each subject acting as his own control.SETTING:Department of Radiology,the First Affiliated Hospital of Nanchang University.PARTICIPANTS:Seven healthy volunteers,4 males and 3/females,aged 19 to 38 years,participated in the study.All subjects were right-handed,with no neurological or psychological disorders.Informed written consent was obtained from all subjects,and the study was approved by the Institutional Review Board of the First Affiliated Hospital of Nanchang University.METHODS:The study was performed at the Department of Radiology between June-August 2005.A 1.5 Tesla Siemens MRI scanner(Symphony,Germany)was used to acquire Tl-weighted structural images,which were oriented parallel to the line running through the anterior and the posterior commissures.Subjects were instructed on a task and were allowed to practice briefly prior to the imaging procedure.The motor activation task consisted of the right hand performing a clenching movement.The T1-W images were acquired from six alternating epochs of rest and activation from all seven healthy subjects.Data were collected with echoplanar imaging of brain oxygen level dependent(BOLD)sequence.Each series comprised six cycles of task pertormance(30 seconds),alternating with rest(30 seconds) periods,and 3-second time intervals.The differences between active and baseline fMRI imaging were calculated using the student t-test.Differential maps were overlaid on the high resolution T1-W structural image for neuroanatomical correlation of activation areas.MAIN OUTCOME MEASURES:The omega-shaped hand knobs were recognized on T1-W structural

  13. Spatio-temporal activity in real time (STAR): optimization of regional fMRI feedback.

    Magland, Jeremy F; Tjoa, Christopher W; Childress, Anna Rose

    2011-04-01

    The use of real-time feedback has expanded fMRI from a brain probe to include potential brain interventions with significant therapeutic promise. However, whereas time-averaged blood oxygenation level-dependent (BOLD) signal measurement is usually sufficient for probing a brain state, the real-time (frame-to-frame) BOLD signal is noisy, compromising feedback accuracy. We have developed a new real-time processing technique (STAR) that combines noise-reduction properties of multi-voxel (e.g., whole-brain) techniques with the regional specificity critical for therapeutics. Nineteen subjects were given real-time feedback in a cognitive control task (imagining repetitive motor activity vs. spatial navigation), and were all able to control a visual feedback cursor based on whole-brain neural activity. The STAR technique was evaluated, retrospectively, for five a priori regions of interest in these data, and was shown to provide significantly better (frame-by-frame) classification accuracy than a regional BOLD technique. In addition to regional feedback signals, the output of the STAR technique includes spatio-temporal activity maps (movies) providing insight into brain dynamics. The STAR approach offers an appealing optimization for real-time fMRI applications requiring an anatomically-localized feedback signal. PMID:21232612

  14. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... may cause some medical devices to malfunction. Most orthopedic implants pose no risk, but you should always ... surgical staples In general, metal objects used in orthopedic surgery pose no risk during MRI. However, a ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... multiple sclerosis disorders of the eye and inner ear disorders of pituitary gland vascular problems, such as ... should not enter the MRI scanning area: cochlear (ear) implant some types of clips used for brain ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat ...

  17. Grading of Crohn's disease activity using CT, MRI, US and scintigraphy: a meta-analysis

    Puylaert, C.A.J.; Tielbeek, J.A.W.; Bipat, S.; Stoker, J. [University of Amsterdam, Academic Medical Center, Department of Radiology, Amsterdam (Netherlands)

    2015-11-15

    To assess the grading of Crohn's disease activity using CT, MRI, US and scintigraphy. MEDLINE, EMBASE and Cochrane databases were searched (January 1983-March 2014) for studies evaluating CT, MRI, US and scintigraphy in grading Crohn's disease activity compared to endoscopy, biopsies or intraoperative findings. Two independent reviewers assessed the data. Three-by-three tables (none, mild, frank disease) were constructed for all studies, and estimates of accurate, over- and under-grading were calculated/summarized by fixed or random effects models. Our search yielded 9356 articles, 19 of which were included. Per-patient data showed accurate grading values for CT, MRI, US and scintigraphy of 86 % (95 % CI: 75-93 %), 84 % (95 % CI: 67-93 %), 44 % (95 % CI: 28-61 %) and 40 % (95 % CI: 16-70 %), respectively. In the per-patient analysis, CT and MRI showed similar accurate grading estimates (P = 0.8). Per-segment data showed accurate grading values for CT and scintigraphy of 87 % (95 % CI: 77-93 %) and 86 % (95 % CI: 80-91 %), respectively. MRI and US showed grading accuracies of 67-82 % and 56-75 %, respectively. CT and MRI showed comparable high accurate grading estimates in the per-patient analysis. Results for US and scintigraphy were inconsistent, and limited data were available. (orig.)

  18. Grading of Crohn's disease activity using CT, MRI, US and scintigraphy: a meta-analysis

    To assess the grading of Crohn's disease activity using CT, MRI, US and scintigraphy. MEDLINE, EMBASE and Cochrane databases were searched (January 1983-March 2014) for studies evaluating CT, MRI, US and scintigraphy in grading Crohn's disease activity compared to endoscopy, biopsies or intraoperative findings. Two independent reviewers assessed the data. Three-by-three tables (none, mild, frank disease) were constructed for all studies, and estimates of accurate, over- and under-grading were calculated/summarized by fixed or random effects models. Our search yielded 9356 articles, 19 of which were included. Per-patient data showed accurate grading values for CT, MRI, US and scintigraphy of 86 % (95 % CI: 75-93 %), 84 % (95 % CI: 67-93 %), 44 % (95 % CI: 28-61 %) and 40 % (95 % CI: 16-70 %), respectively. In the per-patient analysis, CT and MRI showed similar accurate grading estimates (P = 0.8). Per-segment data showed accurate grading values for CT and scintigraphy of 87 % (95 % CI: 77-93 %) and 86 % (95 % CI: 80-91 %), respectively. MRI and US showed grading accuracies of 67-82 % and 56-75 %, respectively. CT and MRI showed comparable high accurate grading estimates in the per-patient analysis. Results for US and scintigraphy were inconsistent, and limited data were available. (orig.)

  19. Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders

    Since endothelial cells can be targeted by large contrast-carrying particles, molecular imaging of cerebrovascular cell activation is highly promising to evaluate the underlying inflammation of the central nervous system (CNS). In this study, we aimed to demonstrate that molecular magnetic resonance imaging (MRI) of cerebrovascular cell activation can reveal CNS disorders in the absence of visible lesions and symptoms. To this aim, we optimized contrast carrying particles targeting vascular cell adhesion molecule-1 and MRI protocols through both in vitro and in vivo experiments. Although, pre-contrast MRI images failed to reveal the ongoing pathology, contrast-enhanced MRI revealed hypoperfusion-triggered CNS injury in vascular dementia, unmasked amyloid-induced cerebrovascular activation in Alzheimer's disease and allowed monitoring of disease activity during experimental autoimmune encephalomyelitis. Moreover, contrast-enhanced MRI revealed the cerebrovascular cell activation associated with known risk factors of CNS disorders such as peripheral inflammation, ethanol consumption, hyperglycemia and aging. By providing a dramatically higher sensitivity than previously reported methods and molecular contrast agents, the technology described in the present study opens new avenues of investigation in the field of neuro-inflammation. (authors)

  20. Diagnosis of breast implant rupture using magnetic resonance imaging

    At least 20,000 Norwegian woman have silicone breast implants, either for breast augmentation or for reconstruction. One of the complications associated with breast implants is rupture of the implants. Magnetic resonance imaging (MRI) has been shown to be the most accurate imaging modality for evaluating the integrity of breast implants. Recognition of the different types of implants and the appearance of normal implants on MRI is very important for distinguishing these from intracapsular and extracapsular ruptures. Examples are shown of MRI findings in normal and ruptured implants. 16 refs., 6 figs

  1. Posterior midline activation during symptom provocation in acute stress disorder: An fMRI study

    Jan Christopher Cwik

    2014-05-01

    Full Text Available Functional imaging studies of patients with Posttraumatic Stress Disorder showed wide-spread activation of mid-line cortical areas during symptom provocation i.e., exposure to trauma-related cues. The present study aimed at investigating neural activation during exposure to trauma-related pictures in patients with Acute Stress Disorder (ASD shortly after the traumatic event. Nineteen ASD patients and 19 healthy control participants were presented with individualized pictures of the traumatic event and emotionally neutral control pictures during the acquisition of whole-brain data with a 3-T fMRI scanner. Compared to the control group and to control pictures, ASD patients showed significant activation in mid-line cortical areas in response to trauma-related pictures including precuneus, cuneus, postcentral gyrus and pre-supplementary motor area. The results suggest that the trauma-related pictures evoke emotionally salient self-referential processing in ASD patients.

  2. Neural Changes following Behavioral Activation for a Depressed Breast Cancer Patient: A Functional MRI Case Study

    Michael J. Gawrysiak

    2012-01-01

    Full Text Available Functional neuroimaging is an innovative but at this stage underutilized method to assess the efficacy of psychotherapy for depression. Functional magnetic resonance imaging (fMRI was used in this case study to examine changes in brain activity in a depressed breast cancer patient receiving an 8-session Behavioral Activation Treatment for Depression (BATD, based on the work of Hopko and Lejuez (2007. A music listening paradigm was used during fMRI brain scans to assess reward responsiveness at pre- and posttreatment. Following treatment, the patient exhibited attenuated depression and changes in blood oxygenation level dependence (BOLD response in regions of the prefrontal cortex and the subgenual cingulate cortex. These preliminary findings outline a novel means to assess psychotherapy efficacy and suggest that BATD elicits functional brain changes in areas implicated in the pathophysiology of depression. Further research is necessary to explore neurobiological mechanisms of change in BATD, particularly the potential mediating effects of reward responsiveness and associated brain functioning.

  3. Application of MultiScale Hidden Markov Modeling Wavelet Coefficients to fMRI Activation Detection

    Fangyuan Nan

    2008-01-01

    Full Text Available Problem Statement: The problem of detection of functional magnetic resonance images (fMRIs, that is, to decide active and nonactive regions of human brain from fMRIs is studied in this paper. fMRI research is finding and will find more and more applications in diagnosing and treating brain diseases like depression and schizophrenia. At its initial stage fMRI detection are pixel-wise methods, which do not take advantage of mutual information among neighboring pixels. Ignoring such spatial information can reduce detection accuracy. During past decade, many efforts have been focusing on taking advantage of spatial correlation inherent in fMRI data. Most well known is smoothing using a fixed Gaussian filter and the compensation for multiple testing using Gaussian random field theory as used by Statistical Parametric Mapping (SPM. Other methods including wavelets had also been proposed by the community. Approach: In this study a novel two-step approach was put forward that incorporates spatial correlation information and is amenable to analysis and optimization. First, a new multi scale image segmentation algorithm was proposed to decompose the correlation image into several different regions, each of which is of homogeneous statistical behavior. Second, each region will be classified independently as active or inactive using existing pixel-wise test methods. The image segmentation consists of two procedures: Edge detection followed by label estimation. To deduce the presence or absence of an edge from continuous data, two fundamental assumption of our algorithm are 1 each wavelet coefficient was described by a 2-state Gaussian Mixture Model (GMM; 2 across scale, each state is caused by its parent state, hence the Multiscale Hidden Markov Model (MHMM. The states of Markov chain are unknown ("hidden" and represent the presence (state 1 or absence (state 0 of edges. Using this interpretation, the edge detection problem boils down to the posterior state

  4. Effect of low energy N+ ion beam implantation on the secondary structure and activity of α-amylase

    Samples of the α-amylase were treated with 1015-1016 ions/cm2 of 20 keV N+. The secondary structure of the ion-implanted α-amylase was studied by circular dichroism, and activity change of the α-amylase was analyzed. The results showed that in the dose range under investigation, the N+ implantation affected the relative contents of α-helix, β-sheet, β-turn and random coil of the α-amylase, but no significant differences were found between the samples implanted to different doses. The activity of the N+-implanted α-amylase changed, with a relationship between the activity increase and the conformation change. (authors)

  5. fMRI and brain activation after sport concussion: a tale of two cases

    Michael G Hutchison

    2014-04-01

    Full Text Available Sport-related concussions are now recognized as a major public health concern: The number of participants in sport and recreation is growing, possibly playing their games faster, and there is heightened public awareness of injuries to some high-profile athletes. However, many clinicians still rely on subjective symptom reports for the clinical determination of recovery. Relying on subjective symptom reports can be dangerous, as it has been shown that some concussed athletes may downplay their symptoms. The use of neuropsychological (NP testing tools has enabled clinicians to measure the effects and extent of impairment following concussion more precisely, providing more objective metrics for determining recovery after concussion. Nevertheless, there is a remaining concern that brain abnormalities may exist beyond the point at which individuals achieve recovery in self-reported symptoms and cognition measured by NP testing. Our understanding of brain recovery after concussion is important not only from a neuroscience perspective, but also from the perspective of clinical decision making for safe return-to-play (RTP. A number of advanced neuroimaging tools, including blood oxygen level dependent (BOLD functional magnetic resonance imaging (fMRI, have independently yielded early information on these abnormal brain functions. In the two cases presented in this article, we report contrasting brain activation patterns and recovery profiles using fMRI. Importantly, fMRI was conducted using adapted versions of the most sensitive computerized NP tests administered in current clinical practice to determine impairments and recovery after sport-related concussion. One of the cases is consistent with the concept of lagging brain recovery.

  6. MRI abnormalities of foot and ankle in asymptomatic, physically active individuals

    Objective. To assess MRI changes in the ankle and foot after physical exercise.Design and patients. Nineteen non-professional marathon runners and 19 age- and sex-matched controls volunteered for the study. All had ankle and foot MR images (1.5 T) taken in three perpendicular planes (STIR, T2F and T1FS sequences) within 3 h of running a full-length marathon (42.125 km). Three radiologists independently analysed the groups on a masked basis using a predefined form.Results. Severe bone marrow oedema was seen in one and slight bone marrow oedema in three marathon runners. Slight bone marrow oedema was found in three control subjects. Signal alteration within the soleus muscle, consistent with a grade 1 strain, was found in one marathon runner. Small punctate hyperintensities within the Achilles tendon were seen in 26% of the marathon runners and in 63% of controls (P=0.016). An increased amount of fluid in the retrocalcaneal bursa was found in one control and in none of the marathon runners. Small amounts of fluid in the retrocalcaneal bursa were seen in 68% of marathon runners and in 53% of controls. Grade 1 or 2 peritendinous joint fluid was found around 22% of tendons, among both marathon runners and controls, most often involving the tendon sheath of the flexor hallucis longus muscle. An increased amount of joint fluid was noted in 34% of the joints of the marathon runners, and in 18% of the controls.Conclusion. MRI shows several abnormalities in the ankle and foot both after marathon races and in asymptomatic physically active individuals without any preceding extraordinary strain. Recreational sports may lead to a number of positive MRI findings without correlation with clinical findings. (orig.)

  7. MRI abnormalities of foot and ankle in asymptomatic, physically active individuals

    Lohman, M.; Kivisaari, A.; Kivisaari, L. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Vehmas, T.; Malmivaara, A. [Finnish Inst. of Occupational Health, Helsinki (Finland); Kallio, P. [Orthopaedic Div., Dept. of Paediatric Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital, Helsinki (Finland)

    2001-02-01

    Objective. To assess MRI changes in the ankle and foot after physical exercise.Design and patients. Nineteen non-professional marathon runners and 19 age- and sex-matched controls volunteered for the study. All had ankle and foot MR images (1.5 T) taken in three perpendicular planes (STIR, T2F and T1FS sequences) within 3 h of running a full-length marathon (42.125 km). Three radiologists independently analysed the groups on a masked basis using a predefined form.Results. Severe bone marrow oedema was seen in one and slight bone marrow oedema in three marathon runners. Slight bone marrow oedema was found in three control subjects. Signal alteration within the soleus muscle, consistent with a grade 1 strain, was found in one marathon runner. Small punctate hyperintensities within the Achilles tendon were seen in 26% of the marathon runners and in 63% of controls (P=0.016). An increased amount of fluid in the retrocalcaneal bursa was found in one control and in none of the marathon runners. Small amounts of fluid in the retrocalcaneal bursa were seen in 68% of marathon runners and in 53% of controls. Grade 1 or 2 peritendinous joint fluid was found around 22% of tendons, among both marathon runners and controls, most often involving the tendon sheath of the flexor hallucis longus muscle. An increased amount of joint fluid was noted in 34% of the joints of the marathon runners, and in 18% of the controls.Conclusion. MRI shows several abnormalities in the ankle and foot both after marathon races and in asymptomatic physically active individuals without any preceding extraordinary strain. Recreational sports may lead to a number of positive MRI findings without correlation with clinical findings. (orig.)

  8. Functional MRI activation of somatosensory and motor cortices in a hand-grafted patient with early clinical sensorimotor recovery

    Neugroschl, C.; Denolin, V.; Schuind, F.; Holder, C. van; David, P.; Baleriaux, D.; Metens, T. [ULB-Hopital Erasme, Radiology, Brussels (Belgium)

    2005-09-01

    The aim of this study was to investigate somatosensory and motor cortical activity with functional MRI (fMRI) in a hand-grafted patient with early clinical recovery. The patient had motor fMRI examinations before transplantation, and motor and passive tactile stimulations after surgery. His normal hand and a normal group were studied for comparison. A patient with complete brachial plexus palsy was studied to assess the lack of a fMRI signal in somatosensory areas in the case of total axonal disconnection. Stimulating the grafted hand revealed significant activation in the contralateral somatosensory cortical areas in all fMRI examinations. The activation was seen as early as 10 days after surgery; this effect cannot be explained by the known physiological mechanisms of nerve regeneration. Although an imagination effect cannot be excluded, the objective clinical recovery of sensory function led us to formulate the hypothesis that a connection to the somatosensory cortex was rapidly established. Additional cases and fundamental studies are needed to assess this hypothesis, but several observations were compatible with this explanation. Before surgery, imaginary motion of the amputated hand produced less intense responses than executed movements of the intact hand, whereas the normal activation pattern for right-handed subjects was found after surgery, in agreement with the good clinical motor recovery. (orig.)

  9. Functional MRI activation of somatosensory and motor cortices in a hand-grafted patient with early clinical sensorimotor recovery

    The aim of this study was to investigate somatosensory and motor cortical activity with functional MRI (fMRI) in a hand-grafted patient with early clinical recovery. The patient had motor fMRI examinations before transplantation, and motor and passive tactile stimulations after surgery. His normal hand and a normal group were studied for comparison. A patient with complete brachial plexus palsy was studied to assess the lack of a fMRI signal in somatosensory areas in the case of total axonal disconnection. Stimulating the grafted hand revealed significant activation in the contralateral somatosensory cortical areas in all fMRI examinations. The activation was seen as early as 10 days after surgery; this effect cannot be explained by the known physiological mechanisms of nerve regeneration. Although an imagination effect cannot be excluded, the objective clinical recovery of sensory function led us to formulate the hypothesis that a connection to the somatosensory cortex was rapidly established. Additional cases and fundamental studies are needed to assess this hypothesis, but several observations were compatible with this explanation. Before surgery, imaginary motion of the amputated hand produced less intense responses than executed movements of the intact hand, whereas the normal activation pattern for right-handed subjects was found after surgery, in agreement with the good clinical motor recovery. (orig.)

  10. Monitoring brain activation changes in the early postoperative period after radical prostatectomy using fMRI.

    Seseke, S; Baudewig, J; Ringert, R-H; Rebmann, U; Dechent, P

    2013-09-01

    Urinary incontinence is a major concern following radical prostatectomy. The etiology is multifactorial involving intrinsic sphincter deficiency and/or detrusor hyperactivity and/or decreased bladder compliance. Recent studies employing functional imaging methodology nicely demonstrated the reference regions of the micturition circuit. Based on these landmarks this work complements this field of research by studying patients with bladder dysfunction. Our aim was to evaluate, whether iatrogenic impairment of the pelvic floor muscles after retropubic radical prostatectomy (RRP) causes detectable changes in fMRI in the early postoperative period. fMRI was performed at 3T in 22 patients before and after RRP with urge to void due to a filled bladder. In a non-voiding model they were instructed to contract or to relax the pelvic floor muscles repetitively. As previously reported in healthy men, contraction and relaxation of pelvic floor muscles induced strong activations in the brainstem and more rostral areas in our group of patients before and after RRP. In general, all of them had stronger activations during contraction than during relaxation in all regions before and after the operation. Even though there was no difference in the activation level when relaxing the pelvic floor before and after the operation, we found stronger activation during contraction when comparing the preoperative with the postoperative level in some of the regions. The results suggest that the same cortical and subcortical networks can be demonstrated for micturition control in patients with prostate cancer as in healthy subjects. However, impaired pelvic floor muscle function after RRP seems to induce different activation intensities. PMID:23583743

  11. Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity.

    Snyder, Russell L; Middlebrooks, John C; Bonham, Ben H

    2008-01-01

    The multichannel design of contemporary cochlear implants (CIs) is predicated on the assumption that each channel activates a relatively restricted and independent sector of the deaf auditory nerve array, just as a sound within a restricted frequency band activates a restricted region of the normal cochlea The independence of CI channels, however, is limited; and the factors that determine their independence, the relative overlap of the activity patterns that they evoke, are poorly understood. In this study, we evaluate the spread of activity evoked by cochlear implant channels by monitoring activity at 16 sites along the tonotopic axis of the guinea pig inferior colliculus (IC). "Spatial tuning curves" (STCs) measured in this way serve as an estimate of activation spread within the cochlea and the ascending auditory pathways. We contrast natural stimulation using acoustic tones with two kinds of electrical stimulation either (1) a loose fitting banded array consisting of a cylindrical silicone elastomer carrier with a linear series of ring contacts; or (2) a space-filling array consisting of a tapered silicone elastomer carrier that is designed to fit snugly into the guinea pig scala tympani with a linear series of ball contacts positioned along it Spatial tuning curves evoked by individual acoustic tones, and by activation of each contact of each array as a monopole, bipole or tripole were recorded. Several channel configurations and a wide range of electrode separations were tested for each array, and their thresholds and selectivity were estimated. The results indicate that the tapered space-filling arrays evoked more restricted activity patterns at lower thresholds than did the banded arrays. Monopolar stimulation (one intracochlear contact activated with an extracochlear return) using either array evoked broad activation patterns that involved the entire recording array at current levels 1mm), the activity patterns became broader and evoked patterns with two

  12. Estimation of brain activation in response to major and minor scales by fMRI

    We made fMRI measurements of the brain responses to major and minor scales which are the fundamental elements for making melodies in music. In addition, we used an arpeggio of diminished 7th. For a control stimulus, we provided a sequence of repeated single tones. The ascending scales of 12 major and 12 minor keys were made starting from F no.3 to F4. Each scale was 3 s in duration. A 3 s scan was performed 2-3 s (randomized) after a scale has been finished and repeated every 14 s (sparse time scanning). Typically, major scales activated the left inferior frontal gyrus, minor scales the posterior cingulate gyrus and the diminished arpeggio the left auditory cortex. In general, the left hemisphere was more activated than usually seen in responses to music. (author)

  13. Relationship between saccadic eye movements and cortical activity as measured by fMRI

    Kimmig, H.; Greenlee, M.W.; Gondan, Matthias;

    2001-01-01

    quantitative changes in cortical activity associated with qualitative changes in the saccade task for comparable levels of saccadic activity. All experiments required the simultaneous acquisition of eye movement and fMRI data. For this purpose we used a new high-resolution limbus-tracking technique...... for recording eye movements in the magnetic resonance tomograph. In the first two experimental series we varied both frequency and amplitude of saccade stimuli (target jumps). In the third series we varied task difficulty; subjects performed either pro-saccades or anti-saccades. The brain volume investigated...... comprised the frontal and supplementary eye fields, parietal as well as striate cortex, and the motion sensitive area of the parieto-occipital cortex. All these regions showed saccade-related BOLD responses. The responses in these regions were highly correlated with saccade frequency, indicating...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a few types. People with the ...

  15. Characterization and biodistribution of a novel MRI molecular imaging agent by neutron activation analysis

    Angiogenesis is integral to the development and progression of atherosclerotic disease and solid tumor growth. New microvessels form in atherosclerotic plaque and the presence of new vessels has been associated with carotid plaque instability. Likewise, solid tumor growth depends upon angiogenesis to provide tumor cells with oxygen and nutrients. Recently, Lanza et al. have demonstrated molecular imaging of angiogenesis both in human melanoma xenografts in nude mice and atherosclerotic rabbits by magnetic resonance imaging (MRI) with clinical magnet strengths using αvβ3-targeted nanoparticles developed in their lab. αvβ3-integrin is a selective molecular epitope expressed by angiogenic endothelium and the MRI contrast agent consists of a lipid-encapsulated, liquid perfluorocarbon nanoparticle directly coupled to a selective αvβ3 ligand. The nanoparticle also contains the paramagnetic contrast agent gadolinium linked to the nanoparticle as Gd-DTPA-bis-oleate. Use of neutron activation analysis to confirm the Gd content of the nanoparticle formulations and determine the biodistribution of Gd post injection is reported. (author)

  16. Altered default mode network activity in patient with anxiety disorders: An fMRI study

    Anxiety disorder, a common mental disorder in our clinical practice, is characterized by unprovoked anxiety. Medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC), which closely involved in emotional processing, are critical regions in the default mode network. We used functional magnetic resonance imaging (fMRI) to investigate whether default mode network activity is altered in patients with anxiety disorder. Ten anxiety patients and 10 healthy controls underwent fMRI while listening to emotionally neutral words alternating with rest (Experiment 1) and threat-related words alternating with emotionally neutral words (Experiment 2). In Experiment 1, regions of deactivation were observed in patients and controls. In Experiment 2, regions of deactivation were observed only in patients. The observed deactivation patterns in the two experiments, which included MPFC, PCC, and inferior parietal cortex, were similar and consistent with the default model network. Less deactivation in MPFC and greater deactivation in PCC were observed for patients group comparing to controls in Experiment 1. Our observations suggest that the default model network is altered in anxiety patients and dysfunction in MPFC and PCC may play an important role in anxiety psychopathology

  17. Altered default mode network activity in patient with anxiety disorders: An fMRI study

    Zhao Xiaohu [Imaging Department of Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China) and Bio-X lab, Department of Physics, Zhe Jiang University, Hangzhou 310027 (China)], E-mail: xhzhao999@263.net; Wang Peijun [Imaging Department of Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China)], E-mail: tongjipjwang@vip.sina.com; Li Chunbo [Department of Psychiatry, Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China)], E-mail: licb@mail.tongji.edu.cn; Hu Zhenghui [Department of Electrical and Engineering, Hong Kong University of Science and Technology, Hong Kong (China)], E-mail: eezhhu@ust.hk; Xi Qian [Imaging Department of Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China)], E-mail: 96125007@sina.com.cn; Wu Wenyuan [Department of Psychiatry, Tong Ji Hospital of Tong Ji University, Shanghai 200065 (China)], E-mail: wuwy@mail.tongji.edu.cn; Tang Xiaowei [Bio-X lab, Department of Physics, Zhe Jiang University, Hangzhou 310027 (China)], E-mail: tangxw@zju.edu.cn

    2007-09-15

    Anxiety disorder, a common mental disorder in our clinical practice, is characterized by unprovoked anxiety. Medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC), which closely involved in emotional processing, are critical regions in the default mode network. We used functional magnetic resonance imaging (fMRI) to investigate whether default mode network activity is altered in patients with anxiety disorder. Ten anxiety patients and 10 healthy controls underwent fMRI while listening to emotionally neutral words alternating with rest (Experiment 1) and threat-related words alternating with emotionally neutral words (Experiment 2). In Experiment 1, regions of deactivation were observed in patients and controls. In Experiment 2, regions of deactivation were observed only in patients. The observed deactivation patterns in the two experiments, which included MPFC, PCC, and inferior parietal cortex, were similar and consistent with the default model network. Less deactivation in MPFC and greater deactivation in PCC were observed for patients group comparing to controls in Experiment 1. Our observations suggest that the default model network is altered in anxiety patients and dysfunction in MPFC and PCC may play an important role in anxiety psychopathology.

  18. Parahippocampal activation evoked by masked traumatic images in posttraumatic stress disorder: a functional MRI study.

    Sakamoto, Hideshi; Fukuda, Rin; Okuaki, Tomoyuki; Rogers, Mark; Kasai, Kiyoto; Machida, Toru; Shirouzu, Ichiro; Yamasue, Hidenori; Akiyama, Tsuyoshi; Kato, Nobumasa

    2005-07-01

    Posttraumatic stress disorder (PTSD) has been widely studied, but its neural mechanism is still unclear. The purpose of this study is to identify dysfunctional areas in PTSD throughout the whole brain to help to elucidate the neural mechanisms of PTSD. Sixteen patients with PTSD and sixteen healthy controls participated in this study. Traumatic images under perceptual threshold including scenes of earthquakes, traffic accidents, ambulances, emergency rooms, and crimes were presented to the participants, and brain activation was measured using functional MRI. Functional brain images of both groups were evaluated with random effect analysis for the whole brain. In the control group, activation in the ventral frontoparietal areas correlated significantly with presentation of the masked traumatic stimuli. In the PTSD group, activation was not observed in these areas, but significant activation correlated with the masked traumatic stimuli in the parahippocampal region including the left parahippocampal gyrus and tail of the left hippocampus. These results suggest that in PTSD patients activation in the ventral frontoparietal network associated with visual attention processing is attenuated, while the left hippocampal area associated with episodic and autobiographical memory is abnormally easily activated. This pattern of activation corresponds well to the clinical characteristics of PTSD, in which even slight traumatic stimuli tend to induce intrusive recollection or flashbacks, despite a general decrease in attention and ability to concentrate. PMID:15955491

  19. ANTI IMPLANTATION AND PREGNANCY INTERRUPTION ACTIVITY OF JAPAKUSUMA (HIBISCUS ROSA SINENSIS IN ALBINO RATS

    Kashinath Hadimur

    2013-06-01

    Full Text Available Increase in population has affected many socio-economic conditions of people by increasing crimes, illiteracy, destructive activities, diseases, improper food and shelter. Thus to control this population and limit the family size at a personal level and at a national level, modern contraceptive methods and medicines were introduced long back. There are many new contraceptives available now, but they have various side effects. Some traditional practitioners used to dispense oral contraceptives mentioned in Ayurvedic classics. Such as 1 Pippali (Piper longum, Vidanga (Emblica ribes and Tankana (Sodii Biboras. 2 Talisapatra (Taxus baccata and Gairika (Hematite with cold water and 3 Kanji bhavita Japakusuma (Hibiscus rosa sinensis. An experimental study on above mentioned 1 and 2 formulations has proved its efficacy as temporary contraceptive medicine. To evaluate the permanent or long term temporary contraceptive effect of Japakusuma, an attempt was made in this study. Study was conducted by Choudary and Khanna method on 18 female, 36 male (for mating albino rats. Japakusuma, Propylene glycol, Ovral L formed the materials. Single dose was administered on proestrous stage of rat oestrous cycle and observed for anti-implantation and pregnancy interruption activity. Test drug showed significant anti implantation and pregnancy interruption activity. Thus showing the temporary contraceptive activity of Japakusuma (Hibiscus rosa sinensis.

  20. Ultra-high implant activation efficiency in GaN using novel high temperature RTP system

    Cao, X.A.; Abernathy, C.R.; Singh, R.K. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering] [and others

    1998-04-01

    Si{sup +} implant activation efficiencies above 90%, even at doses of 5 {times} 10{sup 15} cm{sup {minus}2}, have been achieved in GaN by RTP at 1,400--1,500 C for 10 secs. The annealing system utilizes with MoSi{sub 2} heating elements capable of operation up to 1,900 C, producing high heating and cooling rates (up to 100 C{center_dot}s{sup {minus}1}). Unencapsulated GaN show severe surface pitting at 1,300 C, and complete loss of the film by evaporation at 1,400 C. Dissociation of nitrogen from the surface is found to occur with an approximate activation energy of 3.8 eV for GaN (compared to 4.4 eV for AlN and 3.4 eV for InN). Encapsulation with either rf-magnetron reactively sputtered or MOMBE-grown AlN thin films provide protection against GaN surface degradation up to 1,400 C, where peak electron concentrations of {approximately} 5 {times} 10{sup 20} cm{sup {minus}3} can be achieved in Si-implanted GaN. SIMS profiling showed little measurable redistribution of Si, suggesting D{sub Si} {le} 10{sup {minus}13} cm{sup 2}{center_dot}s{sup {minus}1} at 1,400 C . The implant activation efficiency decreases at higher temperatures, which may result from Si{sub Ga} to Si{sub N} site switching and resultant self-compensation.

  1. Determination of hemisphere dominance for language: comparison of frontal and temporal fMRI activation with intracarotid amytal testing

    The reliability of frontal and temporal fMRI activations for the determination of hemisphere language dominance was evaluated in comparison with intracarotid amytal testing (IAT). Twenty-two patients were studied by IAT (bilateral in 13, unilateral in 9 patients) and fMRI using a paradigm requiring semantic decisions. Global and regional (frontal and temporoparietal) lateralisation indices (LI) were calculated from the number of activated (r>0.4) voxels in both hemispheres. Frontolateral activations associated with the language task were seen in all patients, temporoparietal activations in 20 of 22. Regional LI corresponded better with IAT results than global LI. Frontolateral LI were consistent with IAT in all patients with bilateral IAT (including three patients with right dominant and one patient with bilateral language representation) and were not conflicting in any of the patients with unilateral IAT. Temporoparietal LI were discordant with IAT in two patients with atypical language representation. In the determination of hemisphere dominance for language, regional analysis of fMRI activation is superior to global analysis. In cases with clear-cut fMRI lateralisation, i.e. consistent lateralised activation of frontal and temporoparietal language zones, IAT may be unnecessary. FMRI should be performed prior to IAT in all patients going to be operated in brain regions potentially involved in language. (orig.)

  2. Determination of hemisphere dominance for language: comparison of frontal and temporal fMRI activation with intracarotid amytal testing

    Spreer, J.; Arnold, S.; Ziyeh, S.; Klisch, J.; Schumacher, M. [Section of Neuroradiology, Neurozentrum, University of Freiburg (Germany); Quiske, A.; Altenmueller, D.; Schulze-Bonhage, A. [Section for Presurgical Epilepsy Diagnosis, Neurozentrum, University of Freiburg (Germany); Wohlfarth, R.; Steinhoff, B.J. [Epilepsiezentrum, Kehl-Kork (Germany); Herpers, M.; Kassubek, J. [Department of Neurology, Neurozentrum, University of Freiburg (Germany); Honegger, J. [Department of Neurosurgery, Neurozentrum, University of Freiburg (Germany)

    2002-06-01

    The reliability of frontal and temporal fMRI activations for the determination of hemisphere language dominance was evaluated in comparison with intracarotid amytal testing (IAT). Twenty-two patients were studied by IAT (bilateral in 13, unilateral in 9 patients) and fMRI using a paradigm requiring semantic decisions. Global and regional (frontal and temporoparietal) lateralisation indices (LI) were calculated from the number of activated (r>0.4) voxels in both hemispheres. Frontolateral activations associated with the language task were seen in all patients, temporoparietal activations in 20 of 22. Regional LI corresponded better with IAT results than global LI. Frontolateral LI were consistent with IAT in all patients with bilateral IAT (including three patients with right dominant and one patient with bilateral language representation) and were not conflicting in any of the patients with unilateral IAT. Temporoparietal LI were discordant with IAT in two patients with atypical language representation. In the determination of hemisphere dominance for language, regional analysis of fMRI activation is superior to global analysis. In cases with clear-cut fMRI lateralisation, i.e. consistent lateralised activation of frontal and temporoparietal language zones, IAT may be unnecessary. FMRI should be performed prior to IAT in all patients going to be operated in brain regions potentially involved in language. (orig.)

  3. Virtual visual reminiscing pain stimulation of allodynia patients activates cortical representation of pain and emotions. fMRI study

    It is widely known that sensation of the pain is derived from sensory-discriminative factor and emotional factor. Especially in chronic pain, emotional factors and psychosocial backgrounds are more likely to contribute for the patients' discomfort. The aim of this study is to investigate how emotional factor of pain participates in intractable pain. We employed functional MRI (fMRI) to compare the brain activations occurring in the orthopaedic neuropathic pain patients with allodynia and normal individuals in response to the visual virtual painful experience. During fMRI scanning, a video demonstrating an actual tactile stimulation of the palm and its imitation were shown to participants. In contrast to normal individuals, allodynia patients also displayed activation of the areas reflecting emotions: frontal lobe and anterior cingulate. These findings suggest that brain have important role in the development and maintaining of peripheral originated chronic painful condition. (author)

  4. Optical activity and defect/dopant evolution in ZnO implanted with Er

    The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Er atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery

  5. Optical activity and defect/dopant evolution in ZnO implanted with Er

    Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej; Monakhov, Edouard; Svensson, Bengt G. [Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo (Norway); Hallén, Anders [Royal Institute of Technology, KTH-ICT, Electrum 229, SE-164 40 Stockholm (Sweden)

    2015-09-28

    The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Er atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.

  6. MRI of Stroke Recovery

    Jiang, Quan; Zhang, Zheng Gang; Chopp, Michael

    2009-01-01

    MRI is a vital tool for the measurement of acute stroke and has been used to visualize changes in activation patterns during stroke recovery. There is emerging interest on using MRI to monitor the structural substrates of spontaneous recovery and neurorestorative treatment of stroke. In this review, we describe the use of MRI and its associated challenges to measure vascular and neuronal remodeling in response to spontaneous and therapy-induced stroke recovery. We demonstrate that MRI methodo...

  7. Optimization of Visual Tasks for Detecting Visual Cortex Activity in fMRI Studies

    "A. Mirzajani

    2005-08-01

    Full Text Available Introduction: functional magnetic resonance imaging is a useful non-invasive technique for the evaluation and mapping of human brain, especially the visual cortex. One of the most important subjects in this background is optimizing visual stimuli in various forms of visual tasks for acquiring significant and ro-bust signals. Materials and methods: The effects of physical pa-rameters of visual stimuli on 14 healthy volunteers for detecting visual cortical activity were evaluated by functional magnetic resonance imaging. These pa-rameters were temporal frequency (TF, different pat-terns of activation including, square wave and sine wave grating, and two different states of rest includ-ing black and white screens. Results: The results showed that BOLD signal will be maximally in the TF of 8 Hz, and use the black screen in the rest state. However there was not significant difference between square-¬wave and sine-wave grat-ings in producing visual activation in the cortex. Conclusion: Physical parameters of visual tasks are effective in detecting visual cortical activity, and it is necessary to pay attention to them in order to get sig-nificant and robust signal. Visual tasks with TF of 8 Hz and one pattern of square-wave or sine-wave in activation state, and black screen in rest state are op-timally suitable for fMRI studies.

  8. Cerebellar fMRI Activation Increases with Increasing Working Memory Demands.

    Küper, M; Kaschani, P; Thürling, M; Stefanescu, M R; Burciu, R G; Göricke, S; Maderwald, S; Ladd, M E; Hautzel, H; Timmann, D

    2016-06-01

    The aim of the present study was to explore cerebellar contributions to the central executive in n-back working memory tasks using 7-T functional magnetic imaging (fMRI). We hypothesized that cerebellar activation increased with increasing working memory demands. Activations of the cerebellar cortex and dentate nuclei were compared between 0-back (serving as a motor control task), 1-back, and 2-back working memory tasks for both verbal and abstract modalities. A block design was used. Data of 27 participants (mean age 26.6 ± 3.8 years, female/male 12:15) were included in group statistical analysis. We observed that cerebellar cortical activations increased with higher central executive demands in n-back tasks independent of task modality. As confirmed by subtraction analyses, additional bilateral activations following higher executive demands were found primarily in four distinct cerebellar areas: (i) the border region of lobule VI and crus I, (ii) inferior parts of the lateral cerebellum (lobules crus II, VIIb, VIII, IX), (iii) posterior parts of the paravermal cerebellar cortex (lobules VI, crus I, crus II), and (iv) the inferior vermis (lobules VI, VIIb, VIII, IX). Dentate activations were observed for both verbal and abstract modalities. Task-related increases were less robust and detected for the verbal n-back tasks only. These results provide further evidence that the cerebellum participates in an amodal bilateral neuronal network representing the central executive during working memory n-back tasks. PMID:26202670

  9. Altered cortical activity in prelingually deafened cochlear implant users following long periods of auditory deprivation.

    Lammers, Marc J W; Versnel, Huib; van Zanten, Gijsbert A; Grolman, Wilko

    2015-02-01

    Auditory stimulation during childhood is critical for the development of the auditory cortex in humans and with that for hearing in adulthood. Age-related changes in morphology and peak latencies of the cortical auditory evoked potential (CAEP) have led to the use of this cortical response as a biomarker of auditory cortical maturation including studies of cortical development after deafness and subsequent cochlear implantation. To date, it is unknown whether prelingually deaf adults, with early onset deafness (before the age of 2 years) and who received a cochlear implant (CI) only during adulthood, would display absent or aberrant CAEP waveforms as predicted from CAEP studies in late implanted prelingually deaf children. In the current study, CAEP waveforms were recorded in response to electric stimuli in prelingually deaf adults, who received their CI after the age of 21 years. Waveform morphology and peak latencies were compared to the CAEP responses obtained in postlingually deaf adults, who became deaf after the age of 16. Unexpectedly, typical CAEP waveforms with adult-like P1-N1-P2 morphology could be recorded in the prelingually deaf adult CI users. On visual inspection, waveform morphology was comparable to the CAEP waveforms recorded in the postlingually deaf CI users. Interestingly, however, latencies of the N1 peak were significantly shorter and amplitudes were significantly larger in the prelingual group than in the postlingual group. The presence of the CAEP together with an early and large N1 peak might represent activation of the more innate and less complex components of the auditory cortex of the prelingually deaf CI user, whereas the CAEP in postlingually deaf CI users might reflect activation of the mature neural network still present in these patients. The CAEPs may therefore be helpful in the assessment of developmental state of the auditory cortex. PMID:25315357

  10. Inefficient Preparatory fMRI-BOLD Network Activations Predict Working Memory Dysfunctions in Patients with Schizophrenia.

    Baenninger, Anja; Diaz Hernandez, Laura; Rieger, Kathryn; Ford, Judith M; Kottlow, Mara; Koenig, Thomas

    2016-01-01

    Patients with schizophrenia show abnormal dynamics and structure of temporally -coherent networks (TCNs) assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM) tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide novel insights into WM performance deficits seen in schizophrenia. Simultaneous EEG-fMRI data were acquired during the performance of a verbal Sternberg WM task with two load levels (load 2 and load 5) in 17 patients with schizophrenia and 17 matched healthy controls. Using covariance mapping, we investigated the relationship of the activity in the TCNs before the memoranda were encoded and EEG spectral power during the retention interval. We assessed four TCNs - default mode network (DMN), dorsal attention network (dAN), left and right working memory networks (WMNs) - and three EEG bands - theta, alpha, and beta. In healthy controls, there was a load-dependent inverse relation between DMN and frontal midline theta power and an anti-correlation between DMN and dAN. Both effects were not significantly detectable in patients. In addition, healthy controls showed a left-lateralized load-dependent recruitment of the WMNs. Activation of the WMNs was bilateral in patients, suggesting more resources were recruited for successful performance on the WM task. Our findings support the notion of schizophrenia patients showing deviations in their neurophysiological responses before the retention of relevant information in a verbal WM task. Thus, treatment strategies as neurofeedback -targeting prestates could be beneficial as task performance relies on the preparatory state of the brain. PMID:27047395

  11. Inefficient preparatory fMRI-BOLD network activations predict working memory dysfunctions in patients with schizophrenia

    Anja eBaenninger

    2016-03-01

    Full Text Available Patients with schizophrenia show abnormal dynamics and structure of temporally coherent networks (TCNs assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide novel insights into WM performance deficits seen in schizophrenia.Simultaneous EEG-fMRI data were acquired during the performance of a verbal Sternberg WM task with two load levels (load 2 & load 5 in 17 patients with schizophrenia and 17 matched healthy controls. Using covariance mapping, we investigated the relationship of the activity in the TCNs before the memoranda were encoded and EEG spectral power during the retention interval. We assessed four TCNs – default mode network (DMN, dorsal attention network (dAN, left and right working memory networks (WMNs – and three EEG bands – theta, alpha, and beta.In healthy controls, there was a load dependent inverse relation between DMN and frontal-midline theta power and an anti-correlation between DMN and dAN. Both effects were not significantly detectable in patients. In addition, healthy controls showed a left-lateralized load-dependent recruitment of the WMNs. Activation of the WMNs was bilateral in patients, suggesting more resources were recruited for successful performance on the WM task.Our findings support the notion of schizophrenia patients showing deviations in their neurophysiological responses before the retention of relevant information in a verbal WM task. Thus, treatment strategies as neurofeedback targeting pre-states could be beneficial as task performance relies on the preparatory state of the brain.

  12. Relative efficacy of different MRI signs in diagnosing active Crohn's disease, compared against a histological gold standard

    There has been growing interest in the use of MRI in assessing Crohn's disease because of its lack of ionising radiation. Many MRI signs have been described in the literature, but their relative utility is unknown. The MRIs of the bowel performed at 1.5 Tesla were blindly reviewed on 26 patients with recent histology (surgery and/or colonoscopy and their associated reports) according to a dedicated pro forma. Each patient's bowel was divided into nine segments. Each segment was assessed as to the presence or absence of 15 MRI signs described in the literature: abnormal gadolinium enhancement (both subjective and objective), wall oedema, fat oedema, fat proliferation, nodal enlargement, free fluid, wall nodularity, serosal blurring, mural thickening >4 mm, stricture, multi-segmental disease, fistula, abscess and layered contrast enhancement. The results were compared against a histological gold standard with a six-point scale of disease severity. MRI correctly identified all 15 patients with at least established mucosal disease, and three of eight with only mild mucosal disease. Combining these results, a positive MRI correlated highly with at least early mucosal disease (positive predictive value 95%), while the presence of established mucosal disease was unlikely if MRI was negative (negative predictive value 100%). The MRI signs found to be the most sensitive for detecting active Crohn's disease were those related to the bowel wall, namely, wall thickening, nodularity, contrast enhancement and oedema. The most specific signs were the presence of multi-segmental disease, layered contrast enhancement and complications (fistula and abscess).

  13. MRI of the transverse and alar ligaments in rheumatoid arthritis: feasibility and relations to atlantoaxial subluxation and disease activity

    Vetti, Nils; Kraakenes, Jostein; Roervik, Jarle; Espeland, Ansgar [Haukeland University Hospital, Department of Radiology, Bergen (Norway); University of Bergen, Section for Radiology, Department of Surgical Sciences, Bergen (Norway); Alsing, Rikke; Brun, Johan Gorgas [Haukeland University Hospital, Department of Rheumatology, Bergen (Norway); University of Bergen, Section for Rheumatology, Institute of Medicine, Bergen (Norway); Gilhus, Nils Erik [Haukeland University Hospital, Department of Neurology, Bergen (Norway); University of Bergen, Section for Neurology, Department of Clinical Medicine, Bergen (Norway)

    2010-03-15

    Dysfunctional transverse and alar craniovertebral ligaments can cause instability and osseous destruction in rheumatoid arthritis (RA). This study examined (1) the feasibility of high-resolution magnetic resonance imaging (MRI) of these ligaments in RA and (2) the relation between ligament high-signal changes and atlantoaxial subluxation and RA duration/severity. Consecutive RA patients (n=46) underwent clinical examination, functional radiography, and high-resolution MRI. Two blinded radiologists rated MRI image quality, graded ligament high-signal changes 0-3 on proton-weighted sequences using an existing grading system, and assessed cervical spine rheumatic changes on short tau inversion recovery images. Agreement was analyzed using kappa and relations using multiple logistic regression. MRI images had good quality in 42 (91.3%) of 46 patients and were interpretable in 44 (32 women and 12 men, median age/disease duration 60.4/9.1 years). MRI grades 2-3 changes of the transverse and alar ligaments showed moderate and good interobserver agreement (kappa 0.59 and 0.78), respectively, and prevalence 31.8% and 34.1%. Such ligament changes were more frequent with increasing anterior atlantoaxial subluxation (p=0.012 transverse, p=0.028 alar), higher erythrocyte sedimentation rate (p=0.003 transverse), positive rheumatoid factor (p=0.002 alar), and neck pain (p = 0.004 alar). This first study of high-resolution MRI of these ligaments in RA showed high feasibility and relations with atlantoaxial subluxation, RA disease activity, and neck pain. The clinical usefulness of such MRI needs further evaluation. (orig.)

  14. Synovitis and osteitis are very frequent in rheumatoid arthritis clinical remission: results from an MRI study of 294 patients in clinical remission or low disease activity state

    Gandjbakhch, Frédérique; Conaghan, Philip G; Ejbjerg, Bo;

    2011-01-01

    In rheumatoid arthritis (RA), radiographic progression may occur despite clinical remission. This may be explained by subclinical inflammation. Magnetic resonance imaging (MRI) provides a greater sensitivity than clinical examination and radiography for assessing disease activity. Our objective w...... to determine the MRI characteristics of RA patients in clinical remission or low disease activity (LDA) state....

  15. Modulation of fronto-limbic activity by the psychoeducation in euthymic bipolar patients. A functional MRI study.

    Favre, Pauline; Baciu, Monica; Pichat, Cédric; De Pourtalès, Marie-Atéa; Fredembach, Benjamin; Garçon, Sabrina; Bougerol, Thierry; Polosan, Mircea

    2013-12-30

    Bipolar disorders (BD) are mainly characterized by emotional and cognitive processing impairment. The cerebral substrate explaining BD impairment and the action mechanisms of therapies are not completely understood, especially for psychosocial interventions. This fMRI study aims at assessing cerebral correlates of euthymic bipolar patients (EBP) before and after psychoeducation therapy. Sixteen EBP and 16 matched healthy subjects (HS) performed a word-face emotional Stroop task in two separate fMRI sessions at 3-month interval. Between fMRI sessions, EBP underwent psychoeducation. Before psychoeducation, the comparison of EBP vs. HS in fMRI data revealed (a) significant decreased activity of cognitive control regions such as bilateral inferior and left superior frontal gyri, right insula, right fusiform gyrus and bilateral occipital gyri and (b) significant increased activity of emotion-related processing regions such as bilateral hippocampus, parahippocampal gyri and the left middle temporal gyrus. After psychoeducation, EBP showed significant clinical improvement, increased activity of inferior frontal gyri and a tendency toward decreased activity of right hippocampus and parahippocampal gyrus. These results suggest that the imbalance between cognitive control and emotion processing systems characterizing BD acute episodes may persist during euthymic periods. Moreover, this imbalance may be improved by psychoeducation, which enhances the cognitive control and modulates emotional fluctuations in EBP. PMID:24156926

  16. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus

    Smits, Marion [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Hs 224, Rotterdam (Netherlands); Kovacs, Silvia; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [University Hospitals of the Catholic University Leuven, Department of Radiology, Leuven (Belgium); Ridder, Dirk de [University of Antwerp, Department of Neurosurgery, Edegem (Belgium)

    2007-08-15

    Tinnitus is hypothesized to be an auditory phantom phenomenon resulting from spontaneous neuronal activity somewhere along the auditory pathway. We performed fMRI of the entire auditory pathway, including the inferior colliculus (IC), the medial geniculate body (MGB) and the auditory cortex (AC), in 42 patients with tinnitus and 10 healthy volunteers to assess lateralization of fMRI activation. Subjects were scanned on a 3T MRI scanner. A T2*-weighted EPI silent gap sequence was used during the stimulation paradigm, which consisted of a blocked design of 12 epochs in which music presented binaurally through headphones, which was switched on and off for periods of 50 s. Using SPM2 software, single subject and group statistical parametric maps were calculated. Lateralization of activation was assessed qualitatively and quantitatively. Tinnitus was lateralized in 35 patients (83%, 13 right-sided and 22 left-sided). Significant signal change (P{sub corrected} < 0.05) was found bilaterally in the primary and secondary AC, the IC and the MGB. Signal change was symmetrical in patients with bilateral tinnitus. In patients with lateralized tinnitus, fMRI activation was lateralized towards the side of perceived tinnitus in the primary AC and IC in patients with right-sided tinnitus, and in the MGB in patients with left-sided tinnitus. In healthy volunteers, activation in the primary AC was left-lateralized. Our paradigm adequately visualized the auditory pathways in tinnitus patients. In lateralized tinnitus fMRI activation was also lateralized, supporting the hypothesis that tinnitus is an auditory phantom phenomenon. (orig.)

  17. 'Visual' cortical activation induced by acupuncture at vision-related acupoint: a fMRI study

    It has attracted attention recently that acupuncture at vision-related acupoints, which are used to treat eye diseases according to Traditional Chinese Medicine (TCM), could activate the visual cortex. Cho and colleagues have reported that acupuncture at vision-related acupoints in the foot, activate the visual cortex bilaterally. Similar results were reported by Siedentopf and coworkers using laser acupuncture. However, Gareus et al. did not get the result. In this study, manual acupuncture was used to examine the response of central nervous system (CNS) to acupuncture at Liv3, one of important acupoints used to treat eye-related disease in clinic. To avoid the non-specific factors such as pain and anxiety, a sham acupoint which is approximately 10 mm anterior to Liv3 and innervated by the same spinal segment was selected as control. The CNS response was obtained by subtracting fMRI brain images evoked by nearby 'sham' acupoint from that evoked by the 'real' acupoint. 17 healthy right handed volunteers were comprised in the study. The images were got on 1.5T MR with EPI sequence. After 62 baseline scans, a silver needle 0.30 mm in diameter and 25 mm long was inserted and twirled for 60 scans; then the needle was withdrawn while fMRI scanning continued, until a total of 402 scans were acquired. During acupuncture, the needle was twirled manually clockwise and anticlockwise at 1 Hz with 'even reinforcing and reducing' needle manipulation. The depth of needle insertion at the sham acupoint was approximately 15 mm, the same as at the real acupoint. All the points in this study were on the right foot. The data were analyzed with spm99 using random effects analysis, discrepancies in the activation areas between Liv3 and the sham acupoint were obtained at p<0.01. Acupuncture at Liv3 significantly activated Brodmann Area 19 (BA 19) bilaterally, middle temporal gyrus, cerebellum, ipsilateral posterior cingulate, parahippocampal gyrus, contralateral postcentral gyrus, and

  18. 'Visual' cortical activation induced by acupuncture at vision-related acupoint: A fMRI study

    It has attracted attention recently that acupuncture at vision-related acupoints, which are used to treat eye diseases according to Traditional Chinese Medicine (TCM), could activate the visual cortex. Cho and colleagues have reported that acupuncture at vision-related acupoints in the foot, activate the visual cortex bilaterally. Similar results were reported by Siedentopf and coworkers using laser acupuncture. However, Gareus et al. did not get the result, In this study, manual acupuncture was used to examine the response of central nervous system (CNS) to acupuncture at Liv3, one of important acupoints used to treat eye-related disease in clinic. To avoid the non-specific factors such as pain and anxiety, a sham acupoint which is approximately 10 mm anterior to Liv3 and innervated by the same spinal segment was selected as control. The CNS response was obtained by subtracting fMRI brain images evoked by nearby 'sham' acupoint from that evoked by the 'real' acupoint. 17 healthy right handed volunteers were comprised in the study. The images were got on 1.5T MR with EPI sequence. After 62 baseline scans, a silver needle 0.30 mm in diameter and 25 mm long was inserted and twirled for 60 scans; then the needle was withdrawn while fMRI scanning continued, until a total of 402 scans were acquired. During acupuncture, the needle was twirled manually clockwise and anticlockwise at 1 Hz with 'even reinforcing and reducing' needle manipulation. The depth of needle insertion at the sham acupoint was approximately 15 mm, the same as at the real acupoint. All the points in this study were on the right foot. The data were analyzed with spm99 using random effects analysis, discrepancies in the activation areas between Liv3 and the sham acupoint were obtained at p<0.01. Acupuncture at Liv3 significantly activated Brodmann Area 19 (BA 19) bilaterally, middle temporal gyrus, cerebellum, ipsilateral posterior cingulate, parahippocampal gyrus, contralateral postcentral gyrus, and

  19. Quantifying the inflammatory activity in Crohn's disease using CE dynamic MRI

    Purpose: Evaluation of dynamic contrast enhanced MRI in patients with Crohn's disease to assess local inflammatory activity. Material and Methods: Prospective study of 13 patients with histologically proven Crohn's disease. Axial and coronal slices were acquired by a 1.5 T MR (Magnetom Vision, Siemens, Germany): T1 flash 2 D (TR 72.5 ms, TE 4.1 ms), T2 (TR 2730 ms, TE 138 ms), turbo-flash sequences T1 (TR 94.2 ms, TE 4.1 ms) post contrast media fat saturated (MagnevistcircledR, 0.2 ml/kg, flow 4 ml/s). In area of maximal thickening of terminal ileal wall, axial dynamic T1 sequences (TR 11 ms, TE 4.2 ms) were acquired every 1.5 s post contrast media application for a total duration of 1 min. Contrast uptake was subjectively measured by semiquantitative score and computed assisted ROI evaluation. MR parameters were correlated with CDAI (Crohn's disease activity index) and SAI (severe activity index). Results: Contrast uptake in the intestinal wall occurred after 18.5 s (range: 3.0-28.0), contrast upslope until plateau phase lasted for 16.1 s (range: 8.0-50.0). Maximum contrast enhancement into the bowel wall was 266% (105-450%) of baseline. After maximum contrast uptake, we observed a plateau phase in all cases for the total duration of measurement. A significant correlation existed for maximum contrast uptake to CDAI (r = 0.591; p = 0.033), for beginning of contrast upslope to the time until plateau phase (r = 0.822; p = 0.001), and for the time until plateau phase to CDAI (r = 0.562; p = 0.046). CDAI was on average 108, median 106; SAI was on average 114, median 115. SAI correlated significantly to CDAI (r = 0.874). Maximum contrast uptake, beginning of contrast upslope, and time until plateau phase were independent to creeping fat, local lymphadenitis, laboratory parameters, temperature, body mass index, heart frequency and systolic blood pressure. Conclusion: Dynamic MRI enables to quantify local inflammatory activity of bowel wall in patients with Crohn

  20. Brain activity during driving with distraction: an immersive fMRI study

    Tom A Schweizer

    2013-02-01

    Full Text Available Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns to more complex (left turns at busy intersections. To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research.

  1. Updating working memory in aircraft noise and speech noise causes different fMRI activations.

    Saetrevik, Bjørn; Sörqvist, Patrik

    2015-02-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between "substitution processes," which involve adding new items to the working memory representation and suppressing old items, and "exclusion processes," which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. PMID:25352319

  2. Brain's reward circuits mediate itch relief. a functional MRI study of active scratching.

    Alexandru D P Papoiu

    Full Text Available Previous brain imaging studies investigating the brain processing of scratching used an exogenous intervention mimicking scratching, performed not by the subjects themselves, but delivered by an investigator. In real life, scratching is a conscious, voluntary, controlled motor response to itching, which is directed to the perceived site of distress. In this study we aimed to visualize in real-time by brain imaging the core mechanisms of the itch-scratch cycle when scratching was performed by subjects themselves. Secondly, we aimed to assess the correlations between brain patterns of activation and psychophysical ratings of itch relief or pleasurability of scratching. We also compared the patterns of brain activity evoked by self-scratching vs. passive scratching. We used a robust tridimensional Arterial Spin Labeling fMRI technique that is less sensitive to motion artifacts: 3D gradient echo and spin echo (GRASE--Propeller. Active scratching was accompanied by a higher pleasurability and induced a more pronounced deactivation of the anterior cingulate cortex and insula, in comparison with passive scratching. A significant involvement of the reward system including the ventral tegmentum of the midbrain, coupled with a mechanism deactivating the periaqueductal gray matter (PAG, suggests that itch modulation operates in reverse to the mechanism known to suppress pain. Our findings not only confirm a role for the central networks processing reward in the pleasurable aspects of scratching, but also suggest they play a role in mediating itch relief.

  3. Effects of active music therapy on the normal brain: fMRI based evidence.

    Raglio, Alfredo; Galandra, Caterina; Sibilla, Luisella; Esposito, Fabrizio; Gaeta, Francesca; Di Salle, Francesco; Moro, Luca; Carne, Irene; Bastianello, Stefano; Baldi, Maurizia; Imbriani, Marcello

    2016-03-01

    The aim of this study was to investigate the neurophysiological bases of Active Music Therapy (AMT) and its effects on the normal brain. Twelve right-handed, healthy, non-musician volunteers were recruited. The subjects underwent 2 AMT sessions based on the free sonorous-music improvisation using rhythmic and melodic instruments. After these sessions, each subject underwent 2 fMRI scan acquisitions while listening to a Syntonic (SP) and an A-Syntonic (AP) Production from the AMT sessions. A 3 T Discovery MR750 scanner with a 16-channel phased array head coil was used, and the image analysis was performed with Brain Voyager QX 2.8. The listening to SP vs AP excerpts mainly activated: (1) the right middle temporal gyrus and right superior temporal sulcus, (2) the right middle frontal gyrus and in particular the right precentral gyrus, (3) the bilateral precuneus, (4) the left superior temporal sulcus and (5) the left middle temporal gyrus. These results are consistent with the psychological bases of the AMT approach and with the activation of brain areas involved in memory and autobiographical processes, and also in personal or interpersonal significant experiences. Further studies are required to confirm these findings and to explain possible effects of AMT in clinical settings. PMID:25847861

  4. [Implantable cardioverter/defibrillator: long-term stability of the defibrillation threshold with a unipolar electrode configuration (active-can")].

    Knuefermann, P; Wolpert, C; Spehl, S; Korte, T; Manz, M; Lüderitz, B; Jung, W

    2000-09-01

    The majority of cardioverter/defibrillator (ICD) implantations are currently performed with a non-thoracotomy approach. From November 1993 to January 1995, 46 patients underwent implantation of a PCD 7219C with an "active-can" lead configuration at our institution. While the chronic stability of the defibrillation threshold (DFT) for an epicardial lead system is well established, the results are still inconsistent for non-thoracotomy lead systems. Accordingly, the aim of the present study was to compare the acute and chronic defibrillation thresholds of the ICDs implanted with an "active-can" lead system in order to assess the chronic stability of these systems. The defibrillation energy requirements were measured at implant, prior to hospital discharge, three, six and twelve months after implantation of the defibrillator. The patient group consisted of 8 females and 38 males with a mean age of 57.2 years. The mean left ventricular ejection fraction was 43.8%. The most frequent underlying heart disease was coronary artery disease in 31 of 46 patients. Eight patients had idiopathic dilated cardiomyopathy. In 39 of 46 patients, the defibrillation threshold could be successfully determined at all 4 time points after implantation. The mean defibrillation energy requirement at the time of implantation was 9.2 +/- 5.9 Joules (J). The subsequent mean energy requirements were 7.6 +/- 4.8 J at pre-hospital discharge, 8.6 +/- 5.7 J at the 3 month, 8.1 +/- 6.0 J at the 6 month and 8.6 +/- 5.8 J at the 12 month follow-up visits. The mean defibrillation threshold was lowest at the time of prehospital discharge, significantly lower than at the time of initial implantation (p = 0.021). However, at all later time points up to one year, there was no significant difference in the DFT as compared with the time of initial implantation. Comparing the DFT at the time of implantation and the DFT at all other time points, there were no significant differences (9.23 vs. 8.56 J, p = 0

  5. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. PMID:25899927

  6. Dynamic characteristics of oxygenation-sensitive MRI signal in different temporal protocols for imaging human brain activity

    The temporal characteristics of cerebral blood oxygenation during human brain activation were monitored with dynamic echo-planar imaging (EPI) using the blood oxygenation level dependent (BOLD) fMRI. We investigated oxygenation-sensitive signal changes: 1. during repetitive block stimuli, to determine the latency of the activation-induced signal change in the primary visual cortex; 2. on shortening the rest periods between constant stimulated phases, to investigate the limitations that this latency poses in temporal resolution of the technique; and 3. on sustained steady-state stimulation, to characterise oxygenation changes during prolonged brain activation using different stimuli. Delayed intrinsic haemodynamic response and a finite signal-to-noise ratio limit the temporal resolution achieved with BOLD fMRI. Separate activation periods were resolved when the delay between consecutive stimulations was at least 2 s. In this study oxygenation remained elevated throughout sustained activation, suggesting a constant rate of oxygen consumption by the primary cortical neurones during activation. Characterisation of fMRI signal dynamics in dynamic temporal protocols is significant both in terms of optimising stimulation protocols and the potential to gain insight into the physiological mechanisms underlying neuronal activation which could increase the clinical applicability of the technique. (orig.)

  7. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs

    Klemen Jane; Vollstädt-Klein Sabine; Bühler Mira; Smolka Michael N

    2008-01-01

    Abstract Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed...

  8. Application of fMRI to obesity research: differences in reward pathway activation measured with fMRI BOLD during visual presentation of high and low calorie foods

    Tsao, Sinchai; Adam, Tanja C.; Goran, Michael I.; Singh, Manbir

    2012-03-01

    The factors behind the neural mechanisms that motivate food choice and obesity are not well known. Furthermore, it is not known when these neural mechanisms develop and how they are influenced by both genetic and environmental factors. This study uses fMRI together with clinical data to shed light on the aforementioned questions by investigating how appetite-related activation in the brain changes with low versus high caloric foods in pre-pubescent girls. Previous studies have shown that obese adults have less striatal D2 receptors and thus reduced Dopamine (DA) signaling leading to the reward-deficit theory of obesity. However, overeating in itself reduces D2 receptor density, D2 sensitivity and thus reward sensitivity. The results of this study will show how early these neural mechanisms develop and what effect the drastic endocrinological changes during puberty has on these mechanisms. Our preliminary results showed increased activations in the Putamen, Insula, Thalamus and Hippocampus when looking at activations where High Calorie > Low Calorie. When comparing High Calorie > Control and Low Calorie > Control, the High > Control test showed increased significant activation in the frontal lobe. The Low > Control also yielded significant activation in the Left and Right Fusiform Gyrus, which did not appear in the High > Control test. These results indicate that the reward pathway activations previously shown in post-puberty and adults are present in pre-pubescent teens. These results may suggest that some of the preferential neural mechanisms of reward are already present pre-puberty.

  9. Selection of a Model of Cerebral Activity for fMRI Group Data Analysis

    Keller, Merlin; Lavielle, Marc

    2010-01-01

    This thesis is dedicated to the statistical analysis of multi-sub ject fMRI data, with the purpose of identifying bain structures involved in certain cognitive or sensori-motor tasks, in a reproducible way across sub jects. To overcome certain limitations of standard voxel-based testing methods, as implemented in the Statistical Parametric Mapping (SPM) software, we introduce a Bayesian model selection approach to this problem, meaning that the most probable model of cerebral activity given the data is selected from a pre-defined collection of possible models. Based on a parcellation of the brain volume into functionally homogeneous regions, each model corresponds to a partition of the regions into those involved in the task under study and those inactive. This allows to incorporate prior information, and avoids the dependence of the SPM-like approach on an arbitrary threshold, called the cluster- forming threshold, to define active regions. By controlling a Bayesian risk, our approach balances false positive...

  10. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  11. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Liu Yaou [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liang Peipeng [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); International WIC institute, Beijing University of Technology, Beijing 100024 (China); Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong Huiqing; Ye Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2011-11-15

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  12. Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback

    Brian D Berman

    2013-10-01

    Full Text Available The capacity for subjects to learn to volitionally control localized brain activity using neurofeedback is actively being investigated. We aimed to investigate the ability of healthy volunteers to quickly learn to use visual feedback during real-time functional MRI (rtfMRI to modulate brain activity within their anterior right insular cortex (RIC localized during a blink suppression task, an approach of possible interest in the use of rtfMRI to reduce urges. The RIC region of interest (RIC-ROI was functionally localized using a blink suppression task, and BOLD signal changes within RIC-ROI used to create a constantly updating display fed back to the subject in the scanner. Subjects were instructed to use emotional imagery to try and increase activity within RIC-ROI during four feedback training runs (FB1–FB4. A ‘control’ run (CNTRL before training and a ‘transfer’ run (XSFR after training were performed without feedback to assess for baseline abilities and learning effects. Fourteen participants completed all neurofeedback training runs. At the group level, increased BOLD activity was seen in the anterior RIC during all the FB runs, but a significant increase in the functionally defined RIC-ROI was only attained during FB2. In atlas-defined insular cortex ROIs, significant increases were seen bilaterally during the CNTRL, FB1, FB2, and FB4 runs. Increased activity within the insular cortices did not show lateralization. Training did, however, result in a significant increase in functional connectivity between the RIC-ROI and the medial frontal gyrus when comparing FB4 to FB1. Since neurofeedback training did not lead to an increase in BOLD signal across all feedback runs, we suggest that learning to control one’s brain activity in this fashion may require longer or repeated rtfMRI training sessions.

  13. Diagnostic value of macrophage activity MRI in rat model of multiple sclerosis

    Objective: To investigate the value of macrophage activity imaging (MAI) in the diagnosis of brain and spinal cord lesions in rat model of multiple sclerosis (MS). Methods: Twenty LEW rats were divided into 15 model rats and 5 control rats. MS animal model, experimental autoimmune encephalomyelitis (EAE) was induced by the injection of peptide 35-55 of myelin oligodendrocyte glycoprotein (MOG35-55), MRI was performed on the third day of the acute stage of disease. The brain and spinal cord of' rats were scanned by 3.0 T MR scanner (Siemens Trio Tim) with quadrature wrist joint coil. The T2W and T1W images, Gadolinium enhanced T1W images in 3D volume were obtained respectively. The MAI were obtained at 24 hours after intravenous injection of ultra small superparamagnetic iron oxide (USPIO) as contrast medium on T2WI. The workstation with special software was used for the reconstruction images of brain and spinal cord of rat in multiple orientations. Results: Fifteen MOG3555-EAE rats model of' MS were successfully induced. The great majority lesions of central nervous system in acute stage were located in the brain (58/63) and less in the spinal cord (5/63). The main manifestation of EAE lesions presented was hyperintensity on T2WI and hypointensity on T1WI, and some lesions had enhancement after Gd-DTPA injection. The EAE lesions presented as hypointensity on MAI images, but some of them were found to be isointensity on T2WI. The enhancement pattern was discrepant between USPIO and Gd-DTPA. The sensitivity of depicting lesions of MOG35-55-EAE rat at acute stage were higher on T2WI (14/15) and MAI (13/15), and the detection rate was 100% (15/15) if they were combined. Gd-DTPA enhanced T1WI had a lower sensitivity (7/15). All the MAI findings were negative in the control rats. Conclusions: MAI can complement the drawback of conventional MRI techniques by continuously monitoring the inflammatory activity of EAE lesions, and it could raise the detection rate of EAE

  14. Activation of the dentate nucleus in a verb generation task: A 7T MRI study.

    Thürling, M; Küper, M; Stefanescu, R; Maderwald, S; Gizewski, E R; Ladd, M E; Timmann, D

    2011-08-01

    There is increasing evidence of a topographic organization within the human cerebellar cortex for motor and non-motor functions. Likewise, a subdivision of the dentate nucleus in a more dorsal and rostral motor domain and a more ventral and caudal non-motor domain has been proposed by Dum and Strick (2003) based on anatomical studies in monkey. In humans, however, very little is known about topographic organization within the dentate nucleus. Activation of the dentate nucleus in a verb generation task was examined in young and healthy subjects using ultra-highfield 7T functional magnetic resonance imaging (fMRI) with its increase in signal-to-noise ratio. Data of 17 subjects were included in statistical analysis. Subjects were asked to (i) read words (nouns) aloud presented on a screen, (ii) silently read the same nouns, (iii) silently generate the appropriate verbs to the same nouns and (iv) to silently repeat the names of the months. A block design was used. For image processing, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied. Activation related to motor speech (contrast aloud reading minus silent reading) was strongest in the rostral parts of the dentate nucleus. Dorsorostral activations were present bilaterally. Activation related to verb generation (contrast verb generation minus silent reading) was found in the ventrocaudal parts of the dentate nucleus on the right. The present findings are in good accordance with the anatomical data in monkeys and suggest that the human dentate nucleus can be subdivided into a rostral and more dorsal motor domain and a ventrocaudal non-motor domain. PMID:21640191

  15. Articular Cartilage Evaluation After TruFit Plug Implantation Analyzed by Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC)

    Bekkers, J.E.J.; Bartels, L.W.; Vincken, K.L.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F.

    2013-01-01

    Background: Quantitative MRI of articular cartilage has rapidly developed in recent years and provides the clinician with a noninvasive tool to determine the biological consequence of an intervention. Purpose: To evaluate the quality of intra-articular cartilage, using the dGEMRIC scanning techniqu

  16. Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI

    Background A clinically isolated syndrome (CIS) is the first manifestation of multiple sclerosis (MS). Previous task-related functional MRI studies demonstrate functional reorganization in patients with CIS. Purpose To assess baseline brain activity changes in patients with CIS by using the technique of regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI. Material and Methods Resting-state fMRIs data acquired from 37 patients with CIS and 37 age- and sex-matched normal controls were compared to investigate ALFF differences. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration, and T2 lesion volume (T2LV) were further explored. Results Patients with CIS had significantly decreased ALFF in the right anterior cingulate cortex, right caudate, right lingual gyrus, and right cuneus (P < 0.05 corrected for multiple comparisons using Monte Carlo simulation) compared to normal controls, while no significantly increased ALFF were observed in CIS. No significant correlation was found between the EDSS, disease duration, T2LV, and ALFF in regions with significant group differences. Conclusion In patients with CIS, resting-state fMRI demonstrates decreased activity in several brain regions. These results are in contrast to patients with established MS, in whom ALFF demonstrates several regions of increased activity. It is possible that this shift from decreased activity in CIS to increased activity in MS could reflect the dynamics of cortical reorganization

  17. Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI

    Liu, Yaou; Duan, Yunyun; Liang, Peipeng; Jia, Xiuqin; Yu, Chunshui [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Ye, Jing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Butzkueven, Helmut [Dept. of Medicine, Univ. of Melbourne, Melbourne (Australia); Dong, Huiqing [Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Li, Kuncheng [Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China); Beijing Key Laboratory of MRI and Brain Informatics, Beijing (China)], E-mail: likuncheng1955@yahoo.com.cn

    2012-11-15

    Background A clinically isolated syndrome (CIS) is the first manifestation of multiple sclerosis (MS). Previous task-related functional MRI studies demonstrate functional reorganization in patients with CIS. Purpose To assess baseline brain activity changes in patients with CIS by using the technique of regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI. Material and Methods Resting-state fMRIs data acquired from 37 patients with CIS and 37 age- and sex-matched normal controls were compared to investigate ALFF differences. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration, and T2 lesion volume (T2LV) were further explored. Results Patients with CIS had significantly decreased ALFF in the right anterior cingulate cortex, right caudate, right lingual gyrus, and right cuneus (P < 0.05 corrected for multiple comparisons using Monte Carlo simulation) compared to normal controls, while no significantly increased ALFF were observed in CIS. No significant correlation was found between the EDSS, disease duration, T2LV, and ALFF in regions with significant group differences. Conclusion In patients with CIS, resting-state fMRI demonstrates decreased activity in several brain regions. These results are in contrast to patients with established MS, in whom ALFF demonstrates several regions of increased activity. It is possible that this shift from decreased activity in CIS to increased activity in MS could reflect the dynamics of cortical reorganization.

  18. A Two-State Analysis of ERP Activity Measures and fMRI Activations Relevant to the Detection of Deception

    Schillaci, Michael; Vendemia, Jennifer; Green, Eric; Buzan, Robert; Meek, Scott; Phillips, Michelle

    2007-03-01

    A novel analysis approach for high-density event related scalp potential data (ERP) gathered druing various scenarios is presented. We construct energy-density functional clusters using the empirical voltage and power values and extract extrema of these cognitive activity mesaures to assess the temporal dynamics in areas of physiological significance for the detection of deception. These studies indicate that for questions relating to autobiographical knowledge neocortical interaction times are greater for deceptive responses. This finding is reproduced when workload requirements are increased and suggests that a ``neocortical circuit'' involving activity in short-term memory, visual processing, and executive control regions of the cortex is present. Individual and group analyses are given and continuing experiments involving questions where misinformation is used illustrate that early, up-front control may also be present during deceptive repsonses. A comparison of dipole source models with fMRI data collected in our lab confirms that BOLD activation in the ROIs is consistent with our model of deception.

  19. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity.

    Isao Kurihara

    2007-06-01

    Full Text Available Progesterone and estrogen are critical regulators of uterine receptivity. To facilitate uterine remodeling for embryo attachment, estrogen activity in the uterine epithelia is attenuated by progesterone; however, the molecular mechanism by which this occurs is poorly defined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2, a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma and its expression is regulated by the progesterone-Indian hedgehog-Patched signaling axis that emanates from the epithelium. To further assess COUP-TFII uterine function, a conditional COUP-TFII knockout mouse was generated. This mutant mouse is infertile due to implantation failure, in which both embryo attachment and uterine decidualization are impaired. Using this animal model, we have identified a novel genetic pathway in which BMP2 lies downstream of COUP-TFII. Epithelial progesterone-induced Indian hedgehog regulates stromal COUP-TFII, which in turn controls BMP2 to allow decidualization to manifest in vivo. Interestingly, enhanced epithelial estrogen activity, which impedes maturation of the receptive uterus, was clearly observed in the absence of stromal-derived COUP-TFII. This finding is consistent with the notion that progesterone exerts its control of implantation through uterine epithelial-stromal cross-talk and reveals that stromal-derived COUP-TFII is an essential mediator of this complex cross-communication pathway. This finding also provides a new signaling paradigm for steroid hormone regulation in female reproductive biology, with attendant implications for furthering our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in such human reproductive disorders as endometriosis and endometrial cancer.

  20. Cortical activities of single-trial P300 amplitudes modulated by memory load using simultaneous EEG-fMRI

    Zhang, Qiushi; Zhao, Xiaojie; Zhu, Chaozhe; Yang, Xueqian; Yao, Li

    2015-03-01

    The functional magnetic resonance imaging (fMRI) researches on working memory have found that activation of cortical areas appeared dependent on memory load, and event-related potentials (ERP) studies have demonstrated that amplitudes of P300 decreased significantly when working memory load increased. However, the cortical activities related with P300 amplitudes under different memory loads remains unclear. Joint fMRI and EEG analysis which fusions the time and spatial information in simultaneous EEG-fMRI recording can reveal the regional activation at each ERP time point. In this paper, we first used wavelet transform to obtain the single-trial amplitudes of P300 caused by a digital N-back task in the simultaneous EEG-fMRI recording as the ERP feature sequences. Then the feature sequences in 1-back condition and 3-back condition were introduced into general linear model (GLM) separately as parametric modulations to compare the cortical activation under different memory loads. The results showed that the average amplitudes of P300 in 3-back significantly decreased than that in 1-back, and the activities induced by ERP feature sequences in 3-back also significantly decreased than that in the 1-back, including the insular, anterior cingulate cortex, right inferior frontal gyrus, and medial frontal gyrus, which were relevant to the storage, monitoring, and manipulation of information in working memory task. Moreover, the difference in the activation caused by ERP feature showed a positive correlation with the difference in behavioral performance. These findings demonstrated the locations of P300 amplitudes differences modulated by the memory load and its relationship with the behavioral performance.

  1. Training readers to improve their accuracy in grading Crohn's disease activity on MRI

    To prospectively evaluate if training with direct feedback improves grading accuracy of inexperienced readers for Crohn's disease activity on magnetic resonance imaging (MRI). Thirty-one inexperienced readers assessed 25 cases as a baseline set. Subsequently, all readers received training and assessed 100 cases with direct feedback per case, randomly assigned to four sets of 25 cases. The cases in set 4 were identical to the baseline set. Grading accuracy, understaging, overstaging, mean reading times and confidence scores (scale 0-10) were compared between baseline and set 4, and between the four consecutive sets with feedback. Proportions of grading accuracy, understaging and overstaging per set were compared using logistic regression analyses. Mean reading times and confidence scores were compared by t-tests. Grading accuracy increased from 66 % (95 % CI, 56-74 %) at baseline to 75 % (95 % CI, 66-81 %) in set 4 (P = 0.003). Understaging decreased from 15 % (95 % CI, 9-23 %) to 7 % (95 % CI, 3-14 %) (P < 0.001). Overstaging did not change significantly (20 % vs 19 %). Mean reading time decreased from 6 min 37 s to 4 min 35 s (P < 0.001). Mean confidence increased from 6.90 to 7.65 (P < 0.001). During training, overall grading accuracy, understaging, mean reading times and confidence scores improved gradually. Inexperienced readers need training with at least 100 cases to achieve the literature reported grading accuracy of 75 %. (orig.)

  2. Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment.

    Wong, Chi Wah; Olafsson, Valur; Plank, Markus; Snider, Joseph; Halgren, Eric; Poizner, Howard; Liu, Thomas T

    2014-01-01

    In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI) measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment. PMID:25286145

  3. Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment.

    Chi Wah Wong

    Full Text Available In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment.

  4. Anti-infection activity of nanostructured titanium percutaneous implants with a postoperative infection model

    Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo

    2015-07-01

    The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 108 CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The immersion test in the culture medium suggested that one of causes be probably more proteins adsorbed on TNT than on pTi.

  5. An active learning approach to education in MRI technology for the biomedical engineering curriculum

    Hanson, Lars G.

    2012-01-01

    It is challenging to give students an intuitive understanding of the basic magnetic resonance phenomenon and a sample of the many MRI techniques. Whereas compact mathematical descriptions of MRI techniques can be made, students are typically left with no intuitive understanding unless the common sense expressed in the math is in focus. Unfortunately, the nuclear dynamics happen in four dimensions, and are therefore not well suited for illustration on blackboard. 3D movies are more appropriate...

  6. Primary motor cortex activity reduction under the regulation of SMA by real-time fMRI

    Guo, Jia; Zhao, Xiaojie; Li, Yi; Yao, Li; Chen, Kewei

    2012-03-01

    Real-time fMRI (rtfMRI) is a new technology which allows human subjects to observe and control their own BOLD signal change from one or more localized brain regions during scanning. Current rtfMRI-neurofeedback studies mainly focused on the target region itself without considering other related regions influenced by the real-time feedback. However, there always exits important directional influence between many of cooperative regions. On the other hand, rtfMRI based on motor imagery mainly aimed at somatomotor cortex or primary motor area, whereas supplement motor area (SMA) was a relatively more integrated and pivotal region. In this study, we investigated whether the activities of SMA can be controlled utilizing different motor imagery strategies, and whether there exists any possible impact on an unregulated but related region, primary motor cortex (M1). SMA was first localized using overt finger tapping task, the activities of SMA were feedback to subjects visually on line during each of two subsequent imagery motor movement sessions. All thirteen healthy participants were found to be able to successfully control their SMA activities by self-fit imagery strategies which involved no actual motor movements. The activation of right M1 was also found to be significantly reduced in both intensity and extent with the neurofeedback process targeted at SMA, suggestive that not only the part of motor cortex activities were influenced under the regulation of a key region SMA, but also the increased difference between SMA and M1 might reflect the potential learning effect.

  7. Relationship between task execution time and detectability of activation in fMRI hand-grasp movement task

    To minimize patient requirement in functional magnetic resonance imaging (fMRI) studies, we investigated the relationship between hand grasp movement task execution time and detectability of activation. Using an fMRI time series consisting of 4 sets of rest and task periods (30 s each) as the basic data, we reduced task execution time (τ) by decreasing the number of sets and removing volume from each cycle. We evaluated detectability of activation with different τ based on the number of activated voxels, Vn, in the primary motor area (MOT) and cerebellum (CER) in 11 healthy volunteers. The results showed that Vn in the MOT and CER decreased linearly with decreasing τ. In addition, the value of Vn was clearly smaller with 2 sets than 3 and 4 sets, which suggested that use of 2 sets was not a suitable means for shortening time. The proposed method is expected to be useful for evaluating the relationship between task execution time and detectability of activation, which may reduce task execution time depending on the clinical purpose and thus minimize patient requirement in fMRI studies. (author)

  8. Magnetic resonance imaging of trilucent TM breast implants

    AIM: To demonstrate the magnetic resonance imaging (MRI) appearances of intact and ruptured Trilucent TM implants with imaging and surgical correlation. The appearances of the implant transponder artefact are also described MATERIALS AND METHODS: A retrospective review of the MRI findings in 34 patients with bilateral subpectoral Trilucent TM breast implants (Lipomatrix, Inc./Collagen Aesthetics International Inc., Neuchatel, Switzerland) was performed. Patients under implant surveillance and those with suspected implant rupture formed the study group. Imaging findings were correlated with surgical appearances. RESULTS: Surgical correlation was available in 53% of patients. Fifty per cent (18/36) of implants were intact at surgery, 50% (18/36) of implants were ruptured. Of the 18 ruptured implants, 17 were intracapsular ruptures and one an extracapsular rupture. The sensitivity of MRI for detection of intracapsular rupture in Trilucent TM breast implants was 82% specificity 76%, positive predictive value 78%, negative predictive value 81% and accuracy 79% in this study group. No case of implant rupture was obscured by the transponder artefact. Four implants were found to have 'pseudocapsules' at surgery (5·9%), the implants were intact with fluid present between the implant and capsule. Only one pseudocapsule was demonstrated on MRI. CONCLUSION: Magnetic resonance imaging is currently the most accurate technique for diagnosis of implant rupture in Trilucent TM breast implants. Transponder artefact does not appear to interfere with the assessment of implant rupture. Elson, E. M. et al. (2002)

  9. Chest MRI

    Nuclear magnetic resonance - chest; Magnetic resonance imaging - chest; NMR - chest; MRI of the thorax; Thoracic MRI ... healthy enough to filter the contrast. During the MRI, the person who operates the machine will watch ...

  10. Effects of macrophage-activating lipopeptide-2 (MALP-2) on the vascularisation of implanted polyurethane scaffolds seeded with microvascular fragments.

    Grässer, C; Scheuer, C; Parakenings, J; Tschernig, T; Eglin, D; Menger, M D; Laschke, M W

    2016-01-01

    The seeding of scaffolds with adipose tissue-derived microvascular fragments represents a promising strategy to establish a sufficient blood supply in tissue constructs. Herein, we analysed whether a single application of macrophage-activating lipopeptide-2 (MALP-2) at the implantation site further improves the early vascularisation of such microvessel-seeded constructs. Microvascular fragments were isolated from epididymal fat pads of C57BL/6 mice. The fragments were seeded on polyurethane scaffolds, which were implanted into mouse dorsal skinfold chambers exposed to MALP-2 or vehicle (control). The inflammatory host tissue response and the vascularisation of the scaffolds were analysed using intravital fluorescence microscopy, histology and immunohistochemistry. We found that the numbers of microvascular adherent leukocytes were significantly increased in MALP-2-treated chambers during the first 3 days after scaffold implantation when compared to controls. This temporary inflammation resulted in an improved vascularisation of the host tissue surrounding the implants, as indicated by a higher density of CD31-positive microvessels at day 14. However, the MALP-2-exposed scaffolds themselves presented with a lower functional microvessel density in their centre. In addition, in vitro analyses revealed that MALP-2 promotes apoptotic cell death of endothelial and perivascular cells in isolated microvascular fragments. Hence, despite the beneficial pro-angiogenic properties of MALP-2 at the implantation site, the herein evaluated approach may not be recommended to improve the vascularisation capacity of microvascular fragments in tissue engineering applications. PMID:27386841

  11. Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl).

    Lopez, E; Le Faou, A; Borzeix, S; Berland, S

    2000-02-01

    The components of the cutaneous envelope, the epidermis and the dermis, change in response to aging or environmental stress factors. The fibroblasts involved in maintaining skin tone are the main targets. Nacre, mother of pearl, from Pinctada maxima, which can stimulate and regulate bone forming cells, was implanted in the dermis of rats to test its action on the skin fibroblasts. This report describes the effect of nacre on the skin fibroblast recruitment and physiological activity. It resulted in enhanced extracellular matrix synthesis and the production of components implicated in cell to cell adhesion and communication (such as decorine) and in tissue regeneration (type I and type III collagens). The nacre implant produced a well vascularized tissue. The physiological conditions in the region around the implant are thus those required for the positive interactions between the dermis and epidermis which are fundamental for the physiological function of the skin. PMID:10798323

  12. Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach

    Chaari, Lotfi; Vincent, Thomas; Forbes, Florence; Dojat, Michel; Ciuciu, Philippe

    2013-01-01

    International audience In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the socalled region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the...

  13. Prognosis and risk models of depression are built from analytical components of the rs-fMRI activity in patients

    Tornador Antolin, Cristian, 1979-

    2016-01-01

    Depression is the most common type of emotional disorder among the world's population. It is characterized by negative sentiments, the feeling of guilt, low self-esteem, a loss of interest, a high-level process of reflection, and in general by a decrease of the individual's psychic functions. The new non-invasive neuroimaging techniques have increased the ability of studying possible variations in patients' brain activity. In concrete, functional magnetic resonance imaging (fMRI) has become t...

  14. Functional MRI activity in the thalamus and occipital cortex of anesthetized dogs induced by monocular and binocular stimulation.

    Willis, C K; Quinn, R P; McDonell, W M; Gati, J; Partlow, G; Vilis, T.

    2001-01-01

    The neuroanatomy of the mammalian visual system has received considerable attention through electrophysiological study of cats and non-human primates, and through neuroimaging of humans. Canine neuroanatomy, however, has received much less attention, limiting our understanding of canine vision and visual pathways. As an early step in applying blood oxygenation level dependant (BOLD) functional magnetic resonance imaging (fMRI) for veterinary use, we compared visual activity in the thalamus an...

  15. Dental Implants

    Full Text Available Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide helpful ... whether dental implants are right for your situation. Dental Implants and Roots The key benefit of dental implants ...

  16. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D; Feldner, Matthew T; Bodurka, Jerzy

    2014-01-01

    Background: Real-time fMRI neurofeedback (rtfMRI-nf) is a promising approach for studies and treatment of major depressive disorder (MDD). EEG performed simultaneously with rtfMRI-nf procedure allows independent evaluation of rtfMRI-nf effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been related to simultaneously acquired fMRI data. Methods: We performed the first study combining rtfMRI-nf with simultaneous (passive) EEG recordings. MDD patients in the experimental group (n=13) learned to upregulate BOLD activity of the left amygdala using rtfMRI-nf during a positive emotion induction task. MDD patients in the control group (n=11) were provided with sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper-alpha band and BOLD activity across the brain were examined. Results: Participants in the experimental group showed positive average changes in frontal EEG asymmetry during the ...

  17. MRI and low back pain

    Backache - MRI; Low back pain - MRI; Lumbar pain - MRI; Back strain - MRI; Lumbar radiculopathy - MRI; Herniated intervertebral disk - MRI; Prolapsed intervertebral disk - MRI; Slipped disk - MRI; Ruptured ...

  18. Thirty minute transcutaneous electric acupoint stimulation modulates resting state brain activities: a perfusion and BOLD fMRI study.

    Jiang, Yin; Hao, Ying; Zhang, Yue; Liu, Jing; Wang, Xiaoying; Han, Jisheng; Fang, Jing; Zhang, Jue; Cui, Cailian

    2012-05-31

    Increasing neuroimaging studies have focused on the sustained after effects of acupuncture, especially for the changes of brain activities in rest. However, short-period stimuli have mostly been chosen in these works. The present study aimed to investigate how the resting state brain activities in healthy subjects were modulated by relatively long-period (30 min) acupuncture, a widely used modality in clinical practice. Transcutaneous electric acupoint stimulation (TEAS) or intermittent minimal TEAS (MTEAS) were given for 30 min to 40 subjects. Functional MRI (fMRI) data were collected including the pre-stimulation resting state and the post-stimulation resting state, using dual-echo arterial spin labeling (ASL) techniques, representing both cerebral blood flow (CBF) signals and blood oxygen-dependent level (BOLD) signals simultaneously. Following 30 min TEAS, but not MTEAS, the mean global CBF decreased, and a significant decrease of regional CBF was observed in SI, insula, STG, MOG and IFG. Functional connectivity analysis showed more secure and spatially extended connectivity of both the DMN and SMN after 30 min TEAS. Our results implied that modulation of the regional brain activities and network connectivity induced by thirty minute TEAS may associate with the acupuncture-related therapeutic effects. Furthermore, the resting state regional CBF quantified by ASL perfusion fMRI may serve as a potential biomarker in future acupuncture studies. PMID:22541167

  19. Pomegranate Juice Augments Memory and fMRI Activity in Middle-Aged and Older Adults with Mild Memory Complaints

    Susan Y. Bookheimer

    2013-01-01

    Full Text Available Despite increasing emphasis on the potential of dietary antioxidants in preventing memory loss and on diet as a precursor of neurological health, rigorous studies investigating the cognitive effects of foods and their components are rare. Recent animal studies have reported memory and other cognitive benefits of polyphenols, found abundantly in pomegranate juice. We performed a preliminary, placebo-controlled randomized trial of pomegranate juice in older subjects with age-associated memory complaints using memory testing and functional brain activation (fMRI as outcome measures. Thirty-two subjects (28 completers were randomly assigned to drink 8 ounces of either pomegranate juice or a flavor-matched placebo drink for 4 weeks. Subjects received memory testing, fMRI scans during cognitive tasks, and blood draws for peripheral biomarkers before and after the intervention. Investigators and subjects were all blind to group membership. After 4 weeks, only the pomegranate group showed a significant improvement in the Buschke selective reminding test of verbal memory and a significant increase in plasma trolox-equivalent antioxidant capacity (TEAC and urolithin A-glucuronide. Furthermore, compared to the placebo group, the pomegranate group had increased fMRI activity during verbal and visual memory tasks. While preliminary, these results suggest a role for pomegranate juice in augmenting memory function through task-related increases in functional brain activity.

  20. Anti-infection activity of nanostructured titanium percutaneous implants with a postoperative infection model

    Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo, E-mail: fengbo@swjtu.edu.cn

    2015-07-30

    Highlights: • We prepared three titania nanotubes (TNT-50, TNT-100, TNT-150) on titanium surfaces by anodization. • TNT-100 had the highest antibacterial efficiency under the visible light. • The immersion test in the culture medium suggested that TNT can adsorb more proteins than pTi. • TNT implants inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. - Abstract: The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 10{sup 8} CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The

  1. Anti-infection activity of nanostructured titanium percutaneous implants with a postoperative infection model

    Highlights: • We prepared three titania nanotubes (TNT-50, TNT-100, TNT-150) on titanium surfaces by anodization. • TNT-100 had the highest antibacterial efficiency under the visible light. • The immersion test in the culture medium suggested that TNT can adsorb more proteins than pTi. • TNT implants inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. - Abstract: The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 108 CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The

  2. Ion implantation of epitaxial GaN films: damage, doping and activation

    Single-crystal GaN films grown on AlN buffer layers previously deposited on 6H-SiC(0001) were studied for radiation damage and its recovery using Rutherford backscattering/channeling, photoluminescence, and cross-sectional TEM. The highest fluence of (1e15 cm-2) 110 keV Mg and 160 keV Si produced little damage at implantation temperature 550 C. RT damage was higher for same fluences compared to 550 C implantation. The damage was partially annealed by RTA at 1000 C, however, this was not enough to recover the PL signal even for the lowest fluence (1e14 cm-2). XTEM of as-implanted samples revealed small clusters of defects extended beyond the projected ion range. To recover damage completely, perhaps one needs to go either much higher RTA temperature and/or implant samples in a smaller fluence increment and anneal in between implants to recover the damage

  3. Bio-activated titanium surface utilizable for mimetic bone implantation in dentistry—Part III: Surface characteristics and bone implant contact formation

    Strnad, Jakub; Strnad, Zdeněk; Šesták, Jaroslav; Urban, Karel; Povýšil, Ctibor

    2007-05-01

    This study was carried out to quantify the effect of an alkali-modified surface on the bone implant interface formation during healing using an animal model. A total of 24 screw-shaped, self-tapping, (c.p.) titanium dental implants, divided into test group B—implants with alkali-modified surface (Bio surface) and control group M—implants with turned, machined surface, were inserted without pre-tapping in the tibiae of three beagle dogs. The animals were sacrificed after 2, 5 and 12 weeks and the bone implant contact (BIC%) was evaluated histometrically. The surface characteristics that differed between the implant surfaces, i.e. specific surface area, contact angle, may represent factors that influence the rate of osseointegration and the secondary implant stability. The alkali-treated surface enhances the BIC formation during the first 2 5 weeks of healing compared to the turned, machined surface.

  4. A Miniature-Implantable RF-Wireless Active Glaucoma Intraocular Pressure Monitor.

    Chow, Eric Y; Chlebowski, Arthur L; Irazoqui, Pedro P

    2010-12-01

    Glaucoma is a detrimental disease that causes blindness in millions of people worldwide. There are numerous treatments to slow the condition but none are totally effective and all have significant side effects. Currently, a continuous monitoring device is not available, but its development may open up new avenues for treatment. This work focuses on the design and fabrication of an active glaucoma intraocular pressure (IOP) monitor that is fully wireless and implantable. Major benefits of an active IOP monitoring device include the potential to operate independently from an external device for extended periods of time and the possibility of developing a closed-loop monitoring and treatment system. The fully wireless operation is based off using gigahertz-frequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a micro-electromechanical systems (MEMS) pressure sensor, a capacitive power storage array, an application-specific integrated circuit designed on the Texas Instruments (TI) 130 nm process, and a monopole antenna all assembled into a biocompatible liquid-crystal polymer-based tadpole-shaped package. PMID:23850751

  5. Thinking about Eating Food Activates Visual Cortex with Reduced Bilateral Cerebellar Activation in Females with Anorexia Nervosa: An fMRI Study

    Brooks, Samantha J.; O'Daly, Owen; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C.R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C

    2012-01-01

    Background: Women with anorexia nervosa (AN) have aberrant cognitions about food and altered activity in prefrontal cortical and somatosensory regions to food images. However, differential effects on the brain when thinking about eating food between healthy women and those with AN is unknown.Methods: Functional magnetic resonance imaging (fMRI) examined neural activation when 42 women thought about eating the food shown in images: 18 with AN (11 RAN, 7 BPAN) and 24 age-matched controls (HC).R...

  6. Combined Use of Tc-99m MIBI Scan and MRI for Evaluation of Active Lesions in Multiple Myeloma

    Full text: Multiple Myeloma is a malignancy of plasma cells, in which neoplastic bone involvement is one of the leading symptoms. Many researchers have been trying to develop new imaging modalities and new methods for detecting the bone involvement, mainly because apart from the fact that bone marrow infiltration is one of the diagnostic criteria, typical radiographic findings can be found only in 60 70% of pts with first diagnosis of MM, and 10% of pts can present only osteoporosis-like changes. Purpose To evaluate the efficacy of 99mTc-MIBI whole-body scan in diagnosis of Multiple Myeloma, in correlation with other imaging modalities, and mainly with MRI. Material and Method: We performed a retrospective review of 29 cases of Multiple Myeloma Patients, all of them in active stage of the disease. All of them underwent 99mTc-MIBI whole body scan, MRI examination of the spine and a bone scan. Diagnosis and staging of the disease was made by using standard criteria. MRI was performed mainly for imaging spinal cord compression and for morphological characterization of lesions. We obtained saggital and transverse images which included T1-weighted spin-echo, T2-weighted turbo spin-echo and STIR sequences. We performed whole body MIBI scan in anterior and posterior views, 10 - 20 min after IV injection of 500-550 MBq of 99mTc-MIBI, using a dual head gamma-camera Philips- Axis. Results: We obtained pathologic changes in 25/29 pts that underwent whole-body MIBI scan(86.75%), and in 27/29(89.65%) for the MRI. Bone scan shown pathologic uptake of radiotracer in 18/29 pts(62.06%). In 4 pts that demonstrated pathologic increased uptake of MIBI we found photopenic lesions on the bone scan which were missed at the first interpretation of the bone scan; these lesions were reported only after comparative evaluation of bone scan and MIBI scan.We found three different patterns of pathologic MIBI uptake: focal increased uptake of MIBI in different sites (9 pts), diffuse increased

  7. Social reward improves the voluntary control over localized brain activity in fMRI-based neurofeedback training

    Krystyna Anna Mathiak

    2015-06-01

    Full Text Available Neurofeedback (NF based on real-time functional magnetic resonance imaging (rt-fMRI allows voluntary regulation of the activity in a selected brain region. For the training of this regulation, a well-designed feedback system is required. Social reward may serve as an effective incentive in NF paradigms, but its efficiency has not yet been tested. Therefore, we developed a social reward NF paradigm and assessed it in comparison with a typical visual NF paradigm (moving bar. We trained 24 healthy participants, on three consecutive days, to control activation in dorsal anterior cingulate cortex (ACC with fMRI-based NF. In the social feedback group, an avatar gradually smiled when ACC activity increased, whereas in the standard feedback group, a moving bar indicated the activation level. To assess a transfer of the NF training both groups were asked to up-regulate their brain activity without receiving feedback immediately before and after the NF training (pre- and post-test. Finally, the effect of the acquired NF training on ACC function was evaluated in a cognitive interference task (Simon task during the pre- and post-test. Social reward led to stronger activity in the ACC and reward-related areas during the NF training when compared to standard feedback. After the training, both groups were able to regulate ACC without receiving feedback, with a trend for stronger responses in the social feedback group. Moreover, despite a lack of behavioral differences, significant higher ACC activations emerged in the cognitive interference task, reflecting a stronger generalization of the NF training on cognitive interference processing after social feedback. Social reward can increase self-regulation in fMRI-based NF and strengthen its effects on neural processing in related tasks, such as cognitive interference. An advantage of social feedback is that a direct external reward is provided as in natural social interactions, opening perspectives for implicit

  8. Cochlear implants

    Despotović, Adrijana

    2011-01-01

    The aim of the thesis is to analyze the performance of the child with cochlear implant (CI) at language, math and movement activities. For the purpose of research exercises from all three above mentioned activities are prepared. Results of the exercises constitute the ground for the comparison of a child with CI and children with no hearing disability. Testing language skills was performed with exercises that included understanding, diction and identifying syllables. Mathematic skills...

  9. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression.

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D; Feldner, Matthew T; Bodurka, Jerzy

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala

  10. Total neuroenergetics support localized brain activity: Implications for the interpretation of fMRI

    Hyder, Fahmeed; Rothman, Douglas L.; Shulman, Robert G.

    2002-01-01

    In α-chloralose-anesthetized rats, changes in the blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signal (ΔS/S), and the relative spiking frequency of a neuronal ensemble (Δν/ν) were measured in the somatosensory cortex during forepaw stimulation from two different baselines. Changes in cerebral oxygen consumption (ΔCMRO2/CMRO2) were derived from the BOLD signal (at 7T) by independent determinations in cerebral blood flow (ΔCBF/CBF) and volume (ΔCBV/CBV). The spiking frequency ...

  11. A computer-aided detection system for rheumatoid arthritis MRI data interpretation and quantification of synovial activity

    Kubassova, Olga, E-mail: olga@imageanalysis.org.u [Image Analysis Ltd., The Waterfront, Old Mill Lane, Saltaire BD17 7EZ (United Kingdom); Boesen, Mikael, E-mail: parker@frh.regionh.d [Parker Institute, Frederiksberg Hospital, Nordre Fasanvej 57, 2000 Frederiksberg, Copenhagen (Denmark); Cimmino, Marco A., E-mail: cimmino@unige.i [Clinica Reumatologica, DI.M.I., Universita di Genova, Viale Benedetto XV, 6, 16129 Genova (Italy); Bliddal, Henning [Parker Institute, Frederiksberg Hospital, Nordre Fasanvej 57, 2000 Frederiksberg, Copenhagen (Denmark)

    2010-06-15

    Rational and objective: Disease assessment and follow-up of rheumatoid arthritis (RA) patients require objective evaluation and quantification. Magnetic resonance imaging (MRI) has a large potential to supplement such information for the clinician, however, time spent on data reading and interpretation slow down development in this area. Existing scoring systems of especially synovitis are too rigid and insensitive to measure early treatment response and quantify inflammation. This study tested a novel automated, computer system for analysis of dynamic MRI data acquired from patients with RA, Dynamika-RA, which incorporates efficient data processing and analysis techniques. Materials and methods: 140 MRI scans from hands and wrists of 135 active RA patients and 5 healthy controls were processed using Dynamika-RA and evaluated with RAMRIS. To reduce patient motion artefacts, MRI data were processed using Dynamika-RA, which removed motion in 2D and 3D planes. Then synovial enhancement was visualised and qualified using a novel fully automated voxel-by-voxel analysis based algorithm. This algorithm was used to replace traditional region-of-interest (ROI) and subtraction methods, yielding observer independent quantitative results. Results: Conventional scoring performed by an observer took 30-45 min per dataset. Dynamika-RA reduced motion artefacts, visualised inflammation and quantified disease activity in less than 3 min. Data processing allowed increasing signal to noise ratio by a factor 3. Due to fully automated procedure of data processing, there was no intertest variation in the results. Conclusions: Algorithms incorporated into Dynamika-RA allow for the significant enhancement of data quality through eliminating motion artefacts and reduction of time for evaluation of synovial inflammation.

  12. Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture.

    Napadow, Vitaly; Dhond, Rupali; Park, Kyungmo; Kim, Jieun; Makris, Nikos; Kwong, Kenneth K; Harris, Richard E; Purdon, Patrick L; Kettner, Norman; Hui, Kathleen K S

    2009-08-01

    Acupuncture modulation of activity in the human brainstem is not well known. This structure is plagued by physiological artifact in neuroimaging experiments. In addition, most studies have used short (30 min) stimulation with verum (VA, electro-stimulation at acupoint ST-36) or sham point (SPA, non-acupoint electro-stimulation) acupuncture. Our results provide evidence that acupuncture modulates brainstem nuclei important to endogenous monoaminergic and opioidergic systems. Specifically, VA modulated activity in the substantia nigra (SN), nucleus raphe magnus, locus ceruleus, nucleus cuneiformis, and periaqueductal gray (PAG). Activation in the ventrolateral PAG was greater for VA compared to SPA. Linearly decreasing time-variant activation, suggesting classical habituation, was found in response to both VA and SPA in sensorimotor (SII, posterior insula, premotor cortex) brain regions. However, VA also produced linearly time-variant activity in limbic regions (amygdala, hippocampus, and SN), which was bimodal and not likely habituation--consisting of activation in early blocks, and deactivation by the end of the run. Thus, acupuncture induces different brain response early, compared to 20-30 min after stimulation. We attribute the fMRI differences between VA and SPA to more varied and stronger psychophysical response induced by VA. Our study demonstrates that acupuncture modulation of brainstem structures can be studied non-invasively in humans, allowing for comparison to animal studies. Our protocol also demonstrates a fMRI approach to study habituation and other time-variant phenomena over longer time durations. PMID:19345268

  13. The fMRI study on the front-parietal activation in abacus mental calculation trained children

    Objective: To investigate the difference in front-parietal activation between the trained and untrained children engaged in addition and multiplication with functional magnetic resonance imaging (fMRI), and to explore the role of abacus mental calculation in brain development. Methods: Twenty-four children trained with abacus mental calculation and twelve untrained children performed mental calculation tasks including addition, multiplication and number-object control judging tasks. Blood oxygenation level dependence (BOLD) fMRI was performed when they were calculating. All data were analyzed by SPM2 (statistical parametric mapping 2) to generate the brain activation map. Results: The performance of the trained group had better correctness and shorter reaction time than that of the untrained group. The front-parietal activation between two groups had obvious difference. The activation involved less prefrontal cortex in the trained group than in the untrained group (P<0.05). The parietal activation in the trained group was mainly in the posterior superior parietal lobe/ precuneus, whereas the activation areas focused on the inferior parietal lobule in the untrained group. Conclusion: Abacus mental calculation involves multiple functional areas. and these areas may work together as a whole in processing arithmetic problems. Abacus mental calculation not only enhances the information processing in some brain areas and improves the utilization efficiency of neural resources, but also plays an important role in developing brain. (authors)

  14. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus

  15. Differentiation between vergence and saccadic functional activity within the human frontal eye fields and midbrain revealed through fMRI.

    Yelda Alkan

    Full Text Available PURPOSE: Eye movement research has traditionally studied solely saccade and/or vergence eye movements by isolating these systems within a laboratory setting. While the neural correlates of saccadic eye movements are established, few studies have quantified the functional activity of vergence eye movements using fMRI. This study mapped the neural substrates of vergence eye movements and compared them to saccades to elucidate the spatial commonality and differentiation between these systems. METHODOLOGY: The stimulus was presented in a block design where the 'off' stimulus was a sustained fixation and the 'on' stimulus was random vergence or saccadic eye movements. Data were collected with a 3T scanner. A general linear model (GLM was used in conjunction with cluster size to determine significantly active regions. A paired t-test of the GLM beta weight coefficients was computed between the saccade and vergence functional activities to test the hypothesis that vergence and saccadic stimulation would have spatial differentiation in addition to shared neural substrates. RESULTS: Segregated functional activation was observed within the frontal eye fields where a portion of the functional activity from the vergence task was located anterior to the saccadic functional activity (z>2.3; p0.2. CONCLUSION: Functional MRI can elucidate the differences between the vergence and saccade neural substrates within the frontal eye fields and midbrain.

  16. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  17. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  18. Design and Manufacturing of a Custom Skull Implant

    Juan F.I. Saldarriaga

    2011-01-01

    Full Text Available Problem statement: Cranioplasty is defined as a neurosurgical procedure to cover an injured bone in the skull. This procedure is carried out in order to protect and restore intracranial structures and to restore the appearance and psychological stability of the patient. Advances in medical imaging, such as MRI and CT, have allowed the 3D reconstruction of anatomical structures for several medical applications, including the design of custom-made implants. This study describes the methodology used to design a custom-made cranial implant for a 13-year-old patient who suffered a lesion in the left frontoparietal region of the skull caused by a fall. Approach: The design of the implant was based on the 3D reconstruction of the skull of the patient, obtained by a CT scan, using Rapid Form® 2006. Once the preliminary design was completed, 3D models of the injured region of the skull and of the implant were fabricated in a Rapid Prototyping (RP machine using Fused Deposition Modeling Technology (FDM with the purpose of functionally and dimensionally validating the implant. Subsequently, the implant was fabricated using a 1.2-mm-thick Titanium Alloy (Ti6Al4V plate. Results: The prosthesis was successfully implanted. The surgical time was 85% shorter than that for the same type of surgery in which standard commercial implants and titanium meshes are used. This decrease in surgery time is primarily the result of eliminating the need for trial and error procedures to achieve a good fit for the implant. Finally, the appearance of the patient was restored, allowing the patient to safely perform daily activities. Conclusion: The use of 3D reconstruction techniques from medical images reduces the possibility of errors during surgery, improves fit and provides better implant stability. The use of 3D models designed in RP proved to be an effective practice in the design process.

  19. Acute patellofemoral pain: aggravating activities, clinical examination, MRI and ultrasound findings

    Brushoj, C.; Holmich, P.; Nielsen, M.B.;

    2008-01-01

    %)), but other synovial covered structures including the fat pad of Hoffa (12 patients (40%)), the medial plica and the joint line (12 patients (40%)) were also involved. Only eight patients (27%) experienced pain on the patellofemoral compression test. Only discrete changes was detected on MRI...

  20. A large N400 but no BOLD effect--comparing source activations of semantic priming in simultaneous EEG-fMRI.

    Sebastian Geukes

    Full Text Available Numerous studies have reported neurophysiological effects of semantic priming in electroencephalography (EEG and in functional magnetic resonance imaging (fMRI. Because of differing methodological constraints, the comparability of the observed effects remains unclear. To directly compare EEG and fMRI effects and neural sources of semantic priming, we conducted a semantic word-picture priming experiment while measuring EEG and fMRI simultaneously. The visually presented primes were pseudowords, words unrelated to the target, semantically related words and the identical names of the target. Distributed source analysis of the event-related potentials (ERPs successfully revealed a large effect of semantic prime-target relatedness (the N400 effect, which was driven by activations in a left-temporal source region. However, no significantly differing activations between priming conditions were found in the fMRI data. Our results support the notion that, for joint interpretations of existing EEG and fMRI studies of semantic priming, we need to fully appreciate the respective methodological limitations. Second, they show that simultaneous EEG-fMRI, including ERP source localization, is a feasible and promising methodological advancement for the investigation of higher-cognitive processes. Third, they substantiate the finding that, compared to fMRI, ERPs are often more sensitive to subtle cognitive effects.

  1. Effects of the contraceptive skin patch and subdermal contraceptive implant on markers of endothelial cell activation and inflammation.

    Hernandez-Juarez, Jesus; Sanchez-Serrano, Juan Carlos; Moreno-Hernandez, Manuel; Alvarado-Moreno, Jose Antonio; Hernandez-Lopez, Jose Rubicel; Isordia-Salas, Irma; Majluf-Cruz, Abraham

    2015-07-01

    Changes in blood coagulation factors may partially explain the association between hormonal contraceptives and thrombosis. Therefore, the likely effects of the contraceptive skin patch and subdermal contraceptive implant on levels of inflammatory markers and endothelial activation were analyzed. This was an observational, prospective, longitudinal, nonrandomized study composed of 80 women between 18 and 35 years of age who made the decision to use the contraceptive skin patch or subdermal contraceptive implant. vascular cell adhesion molecule-1 (VCAM-1), endothelial cell leukocyte adhesion molecule-1 (ELAM-1), von Willebrand factor (VWF), and plasminogen activator inhibitor type 1(PAI-1) as well as high-sensitivity C-reactive protein (hsCRP) were assayed before and after 4 months of use of the contraceptive method. VCAM-1, VWF, and PAI-1 remained unchanged in the contraceptive skin patch group; however, a significant increase in hsCRP (0.29-0.50 mg/dL; P =.012) and a significant decrease in ELAM-1 (44-25 ng/mL; P =.022) were observed. A significant diminution in VCAM-1 (463-362 ng/mL; P =.022) was also found in the subdermal contraceptive implant group. Our results strongly suggest that these contraceptive methods do not induce endothelial activation after 4 months of use. Increase in hsCRP levels was unrelated to changes in markers of endothelial activation. PMID:25655356

  2. Dental Implant Systems

    Yoshiki Oshida

    2010-04-01

    Full Text Available Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities.

  3. X线钼靶、高频超声及MRI对硅胶假体隆乳术后破裂的诊断价值%The Diagnosis of Mammography, High-frequency Ultrasound and MRI in Silicone Breast Implant Rupture

    杜牧; 曹满瑞; 谢肇峰; 刘涛

    2014-01-01

    目的:探讨X线钼靶、高频超声及MRI对硅胶假体隆乳术后破裂的诊断价值。方法对28例56只乳腺硅胶假体隆乳术后患者的X线钼靶、高频超声及MRI资料进行回顾性研究,分析其影像表现及对假体囊内破裂及囊外破裂的诊断价值。结果 X线不能完整显示假体(0%),高频超声及MRI都能够完整显示假体(均为100%);对囊外破裂,X线钼靶、高频超声及MRI都能显示(均为7.1%,4/56); X线不能显示囊内破裂(0%), MRI(32.1%,18/56)对囊内破裂的检出率高于超声(21.4%,12/56)(P=0.031)。结论对硅胶假体破裂的诊断,X线钼靶并不是令人满意的方法,超声是经济高效的检查方法,而MRI是最理想的检查方法,如经济允许,MRI可列为首选。%Objective To investigate the diagnostic value of mammography, high-frequency ultrasound and MRI in silicone breast implant rupture. Methods 28 cases with 56 breasts were included in this study, and the mammography, high-frequency ultrasound and MRI findings and its diagnostic value for silicone breast implant rupture were analyzed. Results The mammography can't show the integrity of the silicone breast implant(0%,0/56), and ultrasound and MRI can show it(100%,56/56). Both mammography, ultrasound and MRI can diagnose extracapsular rupture(7.1%,4/56). Mammography can't detect intracapsular rupture (0%,0/56),and MRI(32.1%,18/56)is better than ultrasound(21.4%,12/56)in detection of intracapsular rupture(P=0.031). Conclusion In detecting silicone breast implant rupture, mammography is a satisfied way, ultrasound is an economic and efficient way, and MRI is the most ideal way and it should be the first choice if the economy allowed.

  4. Internal focus of attention in anxiety-sensitive females up-regulates amygdale activity: an fMRI study.

    Pfleiderer, Bettina; Berse, Timo; Stroux, Daniel; Ewert, Adrianna; Konrad, Carsten; Gerlach, Alexander L

    2014-11-01

    Cognitive behavioral models of panic disorder (PD) stress the importance of an increased attentional focus towards bodily symptoms in the onset and maintenance of this debilitating anxiety disorder. In this fMRI mental tracking paradigm, we looked at the effects of focusing one's attention internally (interoception) vs. externally (exteroception) in a well-studied group at risk for PD-that is anxiety-sensitive females (AS-high). We hypothesized that AS-high subjects compared to control subjects will present higher arousal and decreased valence scores during interoception and parallel higher activity in brain areas which are associated with fear and interoception. 24 healthy female students with high levels of anxiety sensitivity and 24 healthy female students with normal levels of anxiety sensitivity serving as control group were investigated by 3 T fMRI. Subjects either focused their attention on their heartbeats (internal condition) or on neutral tones (external condition). Task performance was monitored by reporting the number of heartbeats or tones after each block. State of arousal and emotional valence were also assessed. The high anxiety-sensitive group reported higher arousal scores compared to controls during the course of the experiment. Simultaneously, fMRI results indicated higher activation in anxiety-sensitive participants than in controls during interoception in a network of cortical and subcortical brain regions (thalamus, amygdala, parahippocampus) that overlaps with known fear circuitry structures. In particular, the activity of the right amygdala was up-regulated. Future prospective-longitudinal studies are needed to validate the role of the amygdala for transition to disorder. Attention to internal body functions up-regulates the activity of interoceptive and fear-relevant brain regions in anxiety-sensitive females, a high-risk group for the development of anxiety disorders. PMID:24898851

  5. Brain activity modification produced by a single radioelectric asymmetric brain stimulation pulse: a new tool for neuropsychiatric treatments. Preliminary fMRI study

    Castagna A

    2011-10-01

    Full Text Available Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna1 1Department of Neuro-Psycho-Physio Pathology, Rinaldi Fontani Institute, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, Italy Purpose: Radioelectric asymmetric brain stimulation technology with its treatment protocols has shown efficacy in various psychiatric disorders. The aim of this work was to highlight the mechanisms by which these positive effects are achieved. The current study was conducted to determine whether a single 500-millisecond radioelectric asymmetric conveyor (REAC brain stimulation pulse (BSP, applied to the ear, can effect a modification of brain activity that is detectable using functional magnetic resonance imaging (fMRI. Methods: Ten healthy volunteers, six females and four males, underwent fMRI during a simple finger-tapping motor task before and after receiving a single 500-millisecond REAC-BSP. Results: The fMRI results indicate that the average variation in task-induced encephalic activation patterns is lower in subjects following the single REAC pulse. Conclusion: The current report demonstrates that a single REAC-BSP is sufficient to modulate brain activity in awake subjects, able to be measured using fMRI. These initial results open new perspectives into the understanding of the effects of weak and brief radio pulses upon brain activity, and provide the basis for further indepth studies using REAC-BSP and fMRI. Keywords: fMRI, brain stimulation, brain modulation, REAC, neuropsychiatric treatments

  6. 两种MRI快速成像序列在胎盘植入诊断中的应用%Two Fast-imaging MRI Sequences in the Diagnosis of Placenta Implantation

    梁娜; 田伟

    2015-01-01

    Purpose Placenta implantation (PI) is a rare but severe pregnancy complication, and imaging diagnosis is always difficult. This paper aims to explore the ideal fast-imaging MRI sequences for PI and to provide high quality images for diagnosis. Materials and Methods The MRI images of 21 cases with pathology confirmed PI were retrospectively analyzed. Prenatal MRI of 2D fast-imaging employing steady-state acquisition (2D FIESTA) and single-shot fast spin echo (SSFSE) sequences were performed, and the imaging quality rating and the accuracy in detecting PI were compared. Results Satisfactory images were acquired in 71.4% (15/21) of the patients using 2D FIESTA, and 38.1% (8/21) using SSFSE with statistically significant difference (χ2=4.790, P<0.05). The MRI features of PI included placenta heterogeneity, low-signal-intensity bands, abnormal placental vascularity, uterine junction zone interruption, placental tissue invading the myometrium, placenta tissue into uterine serosa, and the detection rates of 2D FIESTA and SSFSE sequences on the above features were 57.1%, 57.1%, 28.6%, 61.9%, 66.7% and 14.2%, respectively; 90.4%, 71.4%, 38.1%, 42.9%, 28.6% and 6.5%, respectively. The detection rates of placenta heterogeneity and placental tissue invading the myometrium using these two sequences are statistically different (χ2=4.560 and 6.109, P<0.05). Conclusion The images quality of 2D FIESTA sequence is higher than those of the SSFSE sequence. 2D FIESTA sequence shows better delineation of the border of the placenta and uterine, and SSFSE sequence shows better contrasts of the placenta;therefore, combining these two can improve MRI diagnostic value for PI.%目的:胎盘植入是妊娠少见的严重并发症,影像诊断较困难,本文旨在探讨胎盘植入 MRI 扫描中相对理想的快速成像序列,为影像诊断提供优质图像。资料与方法回顾性分析经手术病理证实为胎盘植入的21例孕妇的 MRI 图像,患者分别行二

  7. Diffusion, confusion and functional MRI

    Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intra-voxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This 'DfMRI' signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI. (authors)

  8. Ion implantation of epitaxial GaN films: damage, doping and activation

    Parikh, N.; Suvkhanov, A.; Lioubtchenko, M. [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Physics and Astronomy; Carlson, E.; Bremser, M.; Bray, D.; Davis, R. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Hunn, J. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    Single-crystal GaN films grown on AlN buffer layers previously deposited on 6H-SiC(0001) were studied for radiation damage and its recovery using Rutherford backscattering/channeling, photoluminescence, and cross-sectional TEM. The highest fluence of (1e15 cm{sup -2}) 110 keV Mg and 160 keV Si produced little damage at implantation temperature 550 C. RT damage was higher for same fluences compared to 550 C implantation. The damage was partially annealed by RTA at 1000 C, however, this was not enough to recover the PL signal even for the lowest fluence (1e14 cm{sup -2}). XTEM of as-implanted samples revealed small clusters of defects extended beyond the projected ion range. To recover damage completely, perhaps one needs to go either much higher RTA temperature and/or implant samples in a smaller fluence increment and anneal in between implants to recover the damage.

  9. Dental Implants

    Full Text Available Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide ... whether dental implants are right for your situation. Dental Implants and Roots The key benefit of dental ...

  10. Dental Implants

    Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide ... whether dental implants are right for your situation. Dental Implants and Roots The key benefit of dental ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... types of clips used for brain aneurysms some types of metal coils placed within blood vessels nearly all cardiac defibrillators and pacemakers You ... called MR angiography (MRA) provides detailed images of blood vessels in the ... the opening of certain types of MRI machines. The presence of an implant ...

  12. Effects of methylphenidate on resting-state brain activity in normal adults: an fMRI study

    Yihong Zhu; Bin Gao; Jianming Hua; Weibo Liu; Yichao Deng; Lijie Zhang; Biao Jiang

    2013-01-01

    Methylphenidate (MPH) is one of the most commonly used stimulants for the treatment of attention deficit hyperactivity disorder (ADHD).Although several studies have evaluated the effects of MPH on human brain activation during specific cognitive tasks using functional magnetic resonance imaging (fMRI),few studies have focused on spontaneous brain activity.In the current study,we investigated the effect of MPH on the intra-regional synchronization of spontaneous brain activity during the resting state in 18normal adult males.A handedness questionnaire and the Wechsler Adult Intelligence Scale were applied before medication,and a resting-state fMRI scan was obtained 1 h after medication (20 mg MPH or placebo,order counterbalanced between participants).We demonstrated that:(1) there were no significant differences in the performance of behavioral tasks between the MPH and placebo groups; (2) the left middle and superior temporal gyri had stronger MPH-related regional homogeneity (ReHo); and (3) the left lingual gyrus had weaker MPH-related ReHo.Our findings showed that the ReHo in some brain areas changes with MPH compared to placebo in normal adults,even though there are no behavioral differences.This method can be applied to patients with mental illness who may be treated with MPH,and be used to compare the difference between patients taking MPH and normal participants,to help reveal the mechanism of how MPH works.

  13. An evaluation on the activity level of Aspartate aminotransferase and Alkaline phosphatase nzymes in peri-implant sulcus fluid

    Paknegad M. Assistant Professor

    2003-07-01

    Full Text Available Statement of Problem: The correlation between the activity of aspartate aminotransferase (AST and alkaline phosphatase (ALP enzymes in gingival sulcular fluid (GCF with inflammation and periodontal attachment loss has been proved, however there are not adequate studies about dental implants. Purpose: The aim of present study was to investigate the presence and activity level of AST & ALP and their correlation with pocket depth (PD and bleeding of peri-implant slcular fluid (PISF, and to evaluate the possibility of using these assessments as a diagnostic index in oral implantology. Material and Methods: In this study, 41 implants as test group and 41 contralateral teeth as control group, in 21 patients were evaluated. At first visit, the general information about implants and the values of pocket probing depth (PPD, modified sulcus bleeding index (mSBl and modified plaque index (mPI were recorded. At the second visit, samples of GCF/PISF were collected. AST & ALP activity was determined spectrophotometrically and data were analyzed by "t", "Mann-Whitney" tests and Pearson Spearman correlation coefficient."nResults: The results showed that there was a significant difference in the activity of AST between two study groups (P<0.0001. The average activity of ALP in test group was more than control group but the difference was not significant. After elimination of the confounding variables, the average AST in test group was 54.6 (S£=2.3 and in control groups was 44.8 (SE=2.3 (P=0.004. The average ALP in test group (SE=2.2 and in control (SE=2.2 were 36.6 and 35.4, respectively. Values of AST and ALP were positively correlated with other clinical parameters such as PD and mSBI which was significant in test group."nConclusion: The present study suggests that PISF analysis could be considered as a proper diagnostic strategy in the evaluation of dental implant success.

  14. Ultra thin layer activation by recoil implantation of radioactive heavy ions: applicability in wear and corrosion studies

    Lacroix, O.; Sauvage, T.; Blondiaux, G.; Guinard, L.

    1997-02-01

    A new calibration procedure is proposed for the application of recoil implantation of radioactive heavy ions (energies between a few hundred keV and a few MeV) into the near surface of materials as part of a research programme on submicrometric wear or corrosion phenomena. The depth profile of implanted radioelements is performed by using ultra thin deposited films obtained by cathode sputtering under argon plasma. Two curves for 56Co ion in nickel have been determined for implantation depths of 110 and 200 nm, respectively, and stress the feasibility and reproductibility of this method for such activated depths. The achieved surface loss detection sensitivities are about 1 and 2 nm respectively. The on line detection mode is performed directly on the sample of interest. A general description of the method is presented. A study of the reaction kinematics followed by a general treatment on the irradiation parameters to be adopted are also developed with the intention of using the ultra thin layer activation method (UTLA) to further applications in research and industry.

  15. Ultra thin layer activation by recoil implantation of radioactive heavy ions. Applicability in wear and corrosion studies

    A new calibration procedure is proposed for the application of recoil implantation of radioactive heavy ions (energies between a few hundred keV and a few MeV) into the near surface of materials as part of a research programme on sub-micrometric wear or corrosion phenomena. The depth profile of implanted radioelements is performed by using ultra thin deposited films obtained by cathode sputtering under argon plasma. Two curves for 56Co ion in nickel have been determined for implantation depths of 110 and 200 nm, respectively, and stress the feasibility and reproducibility of this method for such activated depths. The achieved surface loss detection sensitivities are about 1 and 2 nm respectively. The on line detection mode is performed directly on the sample of interest. A general description of the method is presented. A study of the reaction kinematics followed by a general treatment on the irradiation parameters to be adopted are also developed with the intention of using the ultra thin layer activation method (UTLA) to further applications in research and industry. (author)

  16. Ultra shallow junction formation and dopant activation study of Ga implanted Si

    Gwilliam, R. [Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)]. E-mail: r.gwilliam@surrey.ac.uk; Gennaro, S. [ITC-irst Istituto Trentino di Cultura, Centro per la Ricerca Scientifica e Tecnologica, Via Sommarive 18, 38050 Povo (Trento) (Italy); Claudio, G. [Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Sealy, B.J. [Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Mulcahy, C. [Cascade Scientific Ltd., ETC Building, Brunel Science Park Uxbridge, Middlesex UB8 3PH (United Kingdom); Biswas, S. [Cascade Scientific Ltd., ETC Building, Brunel Science Park Uxbridge, Middlesex UB8 3PH (United Kingdom)

    2005-08-01

    The trend for decreasing geometries within CMOS architecture is driving the need for ever shallower, highly doped, low resistivity layers in silicon. The conventional dopant of choice, boron, as a result of its light mass requires that implant energies be ever reduced to meet the demands of these shallow junctions, with the inevitable effect on throughput due to implanter beam current limitations. In this paper we investigate using secondary ion mass spectrometry (SIMS), spreading resistance profiling (SRP) and Hall effect measurements, the alternate p-type dopant species of Ga and its behaviour in the energy range 2-5 keV, implanted into both single crystal Si and pre-amorphised material.

  17. MRI Scans

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from ...

  18. Inappropriate shocks delivered by implantable cardiac defibrillators during oversensing of activity of diaphagmatic muscle

    Babuty, D; Fauchier, L; Cosnay, P

    1999-01-01

    Two cases are reported (both men, one 72 and one 54 years old) of inappropriate shocks delivered by an implantable cardiac defibrillator (ICD) device, which oversensed the myopotentials induced by deep breathing and Valsalva manoeuvre. No damage to leads was associated with the oversensing of myopotentials. The mechanism of the inappropriate shocks was determined using real time electrograms. Modification of the duration of ventricular detection and decrease in sensitivity made it possible to avoid the oversensing of myopotentials and to deliver ICD treatment.

 Keywords: implantable cardiac defibrillator;  inappropriate shocks;  myopotentials PMID:10220554

  19. In vitro investigation of biological and technical prosthetic heart valves in MRI: evaluation of possible deflection and heating of the implants

    Purpose: In vitro evaluation of possible deflection and heating of present-day prosthetic heart valves, 12 technical and 5 biological, were investigated using a 1.5 Tesla Siemens Vision system. Deflection was measured at the edge of a 1.5 Tesla superconducting magnet. Each valve was then submerged in a vial of a 1/1 electrolyte solution and temperature was measured before and after imaging with a turbo-spin-echo sequence (TR 5200 ms, TE 138 ms, Flip angle 180 C, acquisition time 10.5 minutes, length of echo train 29). MR imaging was performed with phase encoding parallel and perpendicular to the plane of the valves. Results: None of the investigated prosthetic heart valves was deflected. The maximal observed temperature rise was 0.5 C. During MR investigation of the prostheses, artifacts caused by metallic parts were less evident using a spin-echo sequence than a gradient-echo sequence. Conclusions: Patients with the tested present-day prosthetic heart valves can be safely imaged by MRI. (orig.)

  20. Spinal fMRI during proprioceptive and tactile tasks in healthy subjects: activity detected using cross-correlation, general linear model and independent component analysis

    Functional MRI (fMRI) of the spinal cord is able to provide maps of neuronal activity. Spinal fMRI data have been analyzed in previous studies by calculating the cross-correlation (CC) between the stimulus and the time course of every voxel and, more recently, by using the general linear model (GLM). The aim of this study was to compare three different approaches (CC analysis, GLM and independent component analysis (ICA)) for analyzing fMRI scans of the cervical spinal cord. We analyzed spinal fMRI data from healthy subjects during a proprioceptive and a tactile stimulation by using two model-based approaches, i.e., CC analysis between the stimulus shape and the time course of every voxel, and the GLM. Moreover, we applied independent component analysis, a model-free approach which decomposes the data in a set of source signals. All methods were able to detect cervical cord areas of activity corresponding to the expected regions of neuronal activations. Model-based approaches (CC and GLM) revealed similar patterns of activity. ICA could identify a component correlated to fMRI stimulation, although with a lower statistical threshold than model-based approaches, and many components, consistent across subjects, which are likely to be secondary to noise present in the data. Model-based approaches seem to be more robust for estimating task-related activity, whereas ICA seems to be useful for eliminating noise components from the data. Combined use of ICA and GLM might improve the reliability of spinal fMRI results. (orig.)

  1. Altered baseline brain activity with 72 h of simulated microgravity--initial evidence from resting-state fMRI.

    Liao, Yang; Zhang, Jinsong; Huang, Zhiping; Xi, Yibin; Zhang, Qianru; Zhu, Tianli; Liu, Xufeng

    2012-01-01

    To provide the basis and reference to further insights into the neural activity of the human brain in a microgravity environment, we discuss the amplitude changes of low-frequency brain activity fluctuations using a simulated microgravity model. Twelve male participants between 24 and 31 years old received resting-state fMRI scans in both a normal condition and after 72 hours in a -6° head down tilt (HDT). A paired sample t-test was used to test the amplitude differences of low-frequency brain activity fluctuations between these two conditions. With 72 hours in a -6° HDT, the participants showed a decreased amplitude of low-frequency fluctuations in the left thalamus compared with the normal condition (a combined threshold of Pmicrogravity environment. PMID:23285086

  2. The diagnosis of breast implant rupture

    Hölmich, Lisbet R; Vejborg, Ilse; Conrad, Carsten; Sletting, Susanne; McLaughlin, Joseph K

    2005-01-01

    STUDY OBJECTIVE: The aim of this study was to evaluate the accuracy of Magnetic Resonance Imaging (MRI) as performed according to a strict study protocol in diagnosing rupture of silicone breast implants. MATERIAL AND METHODS: The study population consisted of 64 women with 118 implants, who had ...

  3. Updating working memory in aircraft noise and speech noise causes different fMRI activations

    Sætrevik, Bjørn; Sörqvist, Patrik

    2014-01-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between “substitution processes,” which involve adding new items to the working memory representation and suppressing old items, and “exclusion processes,” which involve rejecting new items and maintaining an intact memory set. The cu...

  4. Initial experience with lung-MRI at 3.0 T: Comparison with CT and clinical data in the evaluation of interstitial lung disease activity

    Objectives: We evaluated the feasibility of highfield lung-MRI at 3.0 T. A comparison with Computed Tomography (CT) and clinical data regarding the assessment of inflammatory activity in patients with diffuse lung disease was performed. Material and methods: Prospective evaluation of 21 patients (15 males, 6 females, 43-80 y) with diffuse lung diseases who underwent clinical work-up inclusive laboratory tests, lung-function tests and transbronchial biopsy. After routine helical CT (additional 12 HRCT) a lung-MRI (3.0 Intera, Philips Medical Systems, Best, The Netherlands) using a T2-weighted, cardiac and respiratory triggered Fast-Spinecho-Sequence (TE/TR = 80/1500-2500 ms, 22 transverse slices, 7/2 mm slice-thickness/-gap) was performed. A pneumologist classified the cases into two groups: A = temporary acute interstitial disease or chronic interstitial lung disease with acute episode or superimposed infection/B = burned out interstitial lung disease without activity. Two blinded CT-radiologists graded the cases in active/inactive disease on the basis of nine morphological criteria each. A third radiologist rated the MRI-cases as active/inactive, depending on the signal-intensities of lung tissues. Results: The pneumologist classified 14 patients into group A and 7 patients into group B. Using CT, 6 cases were classified as active, 15 cases as inactive disease. With MRI 12 cases were classified as active and 9 cases as inactive. In the complete group of 21 patients MRI decisions and CT decisions respectively were false positive/false negative/correct in 2/4/15 respectively 0/8/13 cases. Correct diagnoses were obtained in 72% (MRI) respectively 62% (CT). In the subgroup of 12 cases including HRCT, MRI respectively CT were false positive/false negative/correct in 2/1/9 respectively 0/5/7 cases. Correct diagnoses were obtained in 75% (MRI) respectively 58% (CT). Conclusion: Highfield MRI of the lung is feasible and performed slightly better compared to CT in the

  5. Initial experience with lung-MRI at 3.0 T: Comparison with CT and clinical data in the evaluation of interstitial lung disease activity

    Lutterbey, G. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany)]. E-mail: goetz.lutterbey@ukb.uni-bonn.de; Grohe, C. [Department of Internal Medicine, University of Bonn (Germany); Gieseke, J. [PHILIPS Medical Systems, Best (Netherlands); Falkenhausen, M. von [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany); Morakkabati, N. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany); Wattjes, M.P. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany); Manka, R. [Department of Internal Medicine, University of Bonn (Germany); Trog, D. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany); Schild, H.H. [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn (Germany)

    2007-02-15

    Objectives: We evaluated the feasibility of highfield lung-MRI at 3.0 T. A comparison with Computed Tomography (CT) and clinical data regarding the assessment of inflammatory activity in patients with diffuse lung disease was performed. Material and methods: Prospective evaluation of 21 patients (15 males, 6 females, 43-80 y) with diffuse lung diseases who underwent clinical work-up inclusive laboratory tests, lung-function tests and transbronchial biopsy. After routine helical CT (additional 12 HRCT) a lung-MRI (3.0 Intera, Philips Medical Systems, Best, The Netherlands) using a T2-weighted, cardiac and respiratory triggered Fast-Spinecho-Sequence (TE/TR = 80/1500-2500 ms, 22 transverse slices, 7/2 mm slice-thickness/-gap) was performed. A pneumologist classified the cases into two groups: A = temporary acute interstitial disease or chronic interstitial lung disease with acute episode or superimposed infection/B = burned out interstitial lung disease without activity. Two blinded CT-radiologists graded the cases in active/inactive disease on the basis of nine morphological criteria each. A third radiologist rated the MRI-cases as active/inactive, depending on the signal-intensities of lung tissues. Results: The pneumologist classified 14 patients into group A and 7 patients into group B. Using CT, 6 cases were classified as active, 15 cases as inactive disease. With MRI 12 cases were classified as active and 9 cases as inactive. In the complete group of 21 patients MRI decisions and CT decisions respectively were false positive/false negative/correct in 2/4/15 respectively 0/8/13 cases. Correct diagnoses were obtained in 72% (MRI) respectively 62% (CT). In the subgroup of 12 cases including HRCT, MRI respectively CT were false positive/false negative/correct in 2/1/9 respectively 0/5/7 cases. Correct diagnoses were obtained in 75% (MRI) respectively 58% (CT). Conclusion: Highfield MRI of the lung is feasible and performed slightly better compared to CT in the

  6. Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo.

    Anna Thorfve

    Full Text Available Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+. The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid (PLGA implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of β-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.

  7. Dental Implants

    Full Text Available ... helpful facts so you can make an informed decision as to whether dental implants are right for your situation. Dental Implants and Roots The key benefit of dental implants over other tooth replacement systems is that an implant connects directly to the ...

  8. MRI analysis after augmentation mammoplasty

    Objective: To analyze MRI appearance after augmentation mammoplasty, and to assess the clinical value. Methods: Sixty-three cases with augmentation mammoplasty were imaged by MR scanner. MR imaging features of silicone implant and injected implant were analyzed respectively. Results 80 breasts in 40 patients were with polyacrylamide hydrogel injection. In 50 breasts, the implants were shown as irregular gel in mammary gland, pectoralis muscle, and subcutaneous tissue. Auto-fat injection in both side of breast was performed in 7 cases. Among them, fibrofatty mass was detected in 12 breasts, fat- fluid interface was seen in 6 breasts, and fat in pectoralis major was revealed in 6 breasts. Silicone implant in both side of breast was performed in 16 cases. 2 breasts in 2 ease were detected as saline-filled implants with intracapsular rupture. 14 eases were with silicone gel-filled implants, among them, 4 breasts were found to have extracapsular rupture and 10 breasts intracapsular rupture. Conclusion: MRI is a perfect method in accessing the patients with augmentation mammoplasty. (authors)

  9. Alteration of the timing of implantation by in vivo gene transfer: delay of implantation by suppression of nuclear factor κB activity and partial rescue by leukemia inhibitory factor

    Nuclear factor κB (NF-κB) is activated in the murine endometrium during implantation period [Am. J. Reprod. Immunol. 51 (2004) 16]. Transient transfection of IκBα mutant (IκBαM) cDNA into the mouse uterine cavity using hemagglutinating virus of Japan envelope vector suppressed uterine NF-κB activity less than half of that observed in control on days 3.5 and 4.5 p.c. IκBαM cDNA transfection led to significant delay of implantation. After IκBαM cDNA transfection, LIF mRNA expression in the uterus was significantly suppressed on days 3.5 and 4.5 p.c. Co-transfection of LIF cDNA with IκBαM cDNA in the uterus partially rescued the delay of implantation induced by suppression of NF-κB activity. Taken together, these findings indicate that NF-κB activation determines the timing of the implantation, at least in part, via control of LIF expression

  10. MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety

    Sonmez Merdim

    2012-06-01

    Full Text Available Abstract Background The field of interventional cardiovascular MRI is hampered by the unavailability of active guidewires that are both safe and conspicuous. Heating of conductive guidewires is difficult to predict in vivo and disruptive to measure using external probes. We describe a clinical-grade 0.035” (0.89 mm guidewire for MRI right and left heart catheterization at 1.5 T that has an internal probe to monitor temperature in real-time, and that has both tip and shaft visibility as well as suitable flexibility. Methods The design has an internal fiberoptic temperature probe, as well as a distal solenoid to enhance tip visibility on a loopless antenna. We tested different tip-solenoid configurations to balance heating and signal profiles. We tested mechanical performance in vitro and in vivo in comparison with a popular clinical nitinol guidewire. Results The solenoid displaced the point of maximal heating (“hot spot” from the tip to a more proximal location where it can be measured without impairing guidewire flexion. Probe pullback allowed creation of lengthwise guidewire temperature maps that allowed rapid evaluation of design prototypes. Distal-only solenoid attachment offered the best compromise between tip visibility and heating among design candidates. When fixed at the hot spot, the internal probe consistently reflected the maximum temperature compared external probes. Real-time temperature monitoring was performed during porcine left heart catheterization. Heating was negligible using normal operating parameters (flip angle, 45°; SAR, 1.01 W/kg; the temperature increased by 4.2°C only during high RF power mode (flip angle, 90°; SAR, 3.96 W/kg and only when the guidewire was isolated from blood cooling effects by an introducer sheath. The tip flexibility and in vivo performance of the final guidewire design were similar to a popular commercial guidewire. Conclusions We integrated a fiberoptic temperature probe inside

  11. A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI

    Makni, S. [Univ Oxford, John Radcliffe Hosp, Oxford Ctr Funct Magnet Resonance Imaging Brain, Oxford OX3 9DU (United Kingdom); Idier, J. [IRCCyN CNRS, Nantes (France); Vincent, T.; Ciuciu, P. [CEA, NeuroSpin, Gif Sur Yvette (France); Vincent, T.; Dehaene-Lambertz, G.; Ciuciu, P. [Inst Imagerie Neurofonctionnelle, IFR 49, Paris (France); Thirion, B. [INRIA Futurs, Orsay (France); Dehaene-Lambertz, G. [INSERM, NeuroSpin, U562, Gif Sur Yvette (France)

    2008-07-01

    Within-subject analysis in fMRI essentially addresses two problems, i. e., the detection of activated brain regions in response to an experimental task and the estimation of the underlying dynamics, also known as the characterisation of Hemodynamic response function (HRF). So far, both issues have been treated sequentially while it is known that the HRF model has a dramatic impact on the localisation of activations and that the HRF shape may vary from one region to another. In this paper, we conciliate both issues in a region-based joint detection-estimation framework that we develop in the Bayesian formalism. Instead of considering function basis to account for spatial variability, spatially adaptive General Linear Models are built upon region-based non-parametric estimation of brain dynamics. Regions are first identified as functionally homogeneous parcels in the mask of the grey matter using a specific procedure [Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., Poline, J.B., August 2006. Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 27 (8), 678-693.]. Then, in each parcel, prior information is embedded to constrain this estimation. Detection is achieved by modelling activating, deactivating and non-activating voxels through mixture models within each parcel. From the posterior distribution, we infer upon the model parameters using Markov Chain Monte Carlo (MCMC) techniques. Bayesian model comparison allows us to emphasize on artificial datasets first that inhomogeneous gamma-Gaussian mixture models outperform Gaussian mixtures in terms of sensitivity/specificity trade-off and second that it is worthwhile modelling serial correlation through an AR(1) noise process at low signal-to-noise (SNR) ratio. Our approach is then validated on an fMRI experiment that studies habituation to auditory sentence repetition. This phenomenon is clearly recovered as well as the hierarchical temporal

  12. Comparative study of two sparse multinomial logistic regression models in decoding visual stimuli from brain activity of fMRI

    Song, Sutao; Chen, Gongxiang; Zhan, Yu; Zhang, Jiacai; Yao, Li

    2014-03-01

    Recently, sparse algorithms, such as Sparse Multinomial Logistic Regression (SMLR), have been successfully applied in decoding visual information from functional magnetic resonance imaging (fMRI) data, where the contrast of visual stimuli was predicted by a classifier. The contrast classifier combined brain activities of voxels with sparse weights. For sparse algorithms, the goal is to learn a classifier whose weights distributed as sparse as possible by introducing some prior belief about the weights. There are two ways to introduce a sparse prior constraints for weights: the Automatic Relevance Determination (ARD-SMLR) and Laplace prior (LAP-SMLR). In this paper, we presented comparison results between the ARD-SMLR and LAP-SMLR models in computational time, classification accuracy and voxel selection. Results showed that, for fMRI data, no significant difference was found in classification accuracy between these two methods when voxels in V1 were chosen as input features (totally 1017 voxels). As for computation time, LAP-SMLR was superior to ARD-SMLR; the survived voxels for ARD-SMLR was less than LAP-SMLR. Using simulation data, we confirmed the classification performance for the two SMLR models was sensitive to the sparsity of the initial features, when the ratio of relevant features to the initial features was larger than 0.01, ARD-SMLR outperformed LAP-SMLR; otherwise, LAP-SMLR outperformed LAP-SMLR. Simulation data showed ARD-SMLR was more efficient in selecting relevant features.

  13. Statistical mapping of sound-evoked activity in the mouse auditory midbrain using Mn-enhanced MRI.

    Yu, Xin; Zou, Jing; Babb, James S; Johnson, Glyn; Sanes, Dan H; Turnbull, Daniel H

    2008-01-01

    Manganese-enhanced MRI (MEMRI) has been developed to image brain activity in small animals, including normal and genetically modified mice. Here, we report the use of a MEMRI-based statistical parametric mapping method to analyze sound-evoked activity in the mouse auditory midbrain, the inferior colliculus (IC). Acoustic stimuli with defined frequency and amplitude components were shown to activate and enhance neuronal ensembles in the IC. These IC activity patterns were analyzed quantitatively using voxel-based statistical comparisons between groups of mice with or without sound stimulation. Repetitive 40-kHz pure tone stimulation significantly enhanced ventral IC regions, which was confirmed in the statistical maps showing active regions whose volumes increased in direct proportion to the amplitude of the sound stimuli (65 dB, 77 dB, and 89 dB peak sound pressure level). The peak values of the activity-dependent MEMRI signal enhancement also increased from 7% to 20% for the sound amplitudes employed. These results demonstrate that MEMRI statistical mapping can be used to analyze both the 3D spatial patterns and the magnitude of activity evoked by sound stimuli carrying different energy. This represents a significant advance in the development of MEMRI for quantitative and unbiased analysis of brain function in the deep brain nuclei of mice. PMID:17919926

  14. Changes in brain activation in stroke patients after mental practice and physical exercise:a functional MRI study

    Hua Liu; Luping Song; Tong Zhang

    2014-01-01

    Mental practice is a new rehabilitation method that refers to the mental rehearsal of motor imagery content with the goal of improving motor performance. However, the relationship between activated regions and motor recovery after mental practice training is not well understood. In this study, 15 patients who suffered a first-ever subcortical stroke with neurological deficits affecting the right hand, but no significant cognitive impairment were recruited. 10 patients underwent mental practice combined with physical practice training, and 5 patients only underwent physical practice training. We observed brain activation regions after 4 weeks of training, and explored the correlation of activation changes with functional recovery of the affected hands. The results showed that, after 4 weeks of mental practice combined with physical training, the Fugl-Meyer assessment score for the affected right hand was significantly increased than that after 4 weeks of practice training alone. Functional MRI showed enhanced activation in the left primary somatosensory cortex, attenuated activation intensity in the right primary motor cortex, and enhanced right cerebellar activation observed during the motor imagery task using the affected right hand after mental practice training. The changes in brain cortical activity were related to functional recovery of the hand. Experimental findings indicate that cortical and cerebellar functional reorganization following mental practice contributed to the improvement of hand function.

  15. Whole-body MRI assessment of disease activity and structural damage in rheumatoid arthritis

    Axelsen, Mette Bjørndal; Eshed, Iris; Duer, Anne;

    2014-01-01

    Objective. The aim of this study was to investigate the ability of whole-body MRI (WBMRI) to visualize inflammation [synovitis, bone marrow oedema (BME) and enthesitis] and structural damage in patients with RA.Methods. The 3T WBMR images were acquired in a head-to-toe scan in 20 patients with RA......, 30 entheseal sites and in the spine.Results. The readability was >70% for all individual joints, except for the most peripheral joints of the hands and feet. Synovitis was most frequent in the wrist, first tarsometatarsal, first CMC joints and glenohumeral joints (67-61%); BME in the wrist, CMC......, acromioclavicular and glenohumeral joints (45-35%) and erosions in the wrist, MTP and CMC joints (19-16%). Enthesitis at ≥1 site was registered in 16 patients. BME was frequently seen in the cervical (20%) but not the thoracic and lumbar spine, while fat infiltrations and erosions were rare. The intrareader...

  16. Individualized and clinically derived stimuli activate limbic structures in depression: an fMRI study.

    Henrik Kessler

    Full Text Available OBJECTIVES: In the search for neurobiological correlates of depression, a major finding is hyperactivity in limbic-paralimbic regions. However, results so far have been inconsistent, and the stimuli used are often unspecific to depression. This study explored hemodynamic responses of the brain in patients with depression while processing individualized and clinically derived stimuli. METHODS: Eighteen unmedicated patients with recurrent major depressive disorder and 17 never-depressed control subjects took part in standardized clinical interviews from which individualized formulations of core interpersonal dysfunction were derived. In the patient group such formulations reflected core themes relating to the onset and maintenance of depression. In controls, formulations reflected a major source of distress. This material was thereafter presented to subjects during functional magnetic resonance imaging (fMRI assessment. RESULTS: Increased hemodynamic responses in the anterior cingulate cortex, medial frontal gyrus, fusiform gyrus and occipital lobe were observed in both patients and controls when viewing individualized stimuli. Relative to control subjects, patients with depression showed increased hemodynamic responses in limbic-paralimbic and subcortical regions (e.g. amygdala and basal ganglia but no signal decrease in prefrontal regions. CONCLUSIONS: This study provides the first evidence that individualized stimuli derived from standardized clinical interviewing can lead to hemodynamic responses in regions associated with self-referential and emotional processing in both groups and limbic-paralimbic and subcortical structures in individuals with depression. Although the regions with increased responses in patients have been previously reported, this study enhances the ecological value of fMRI findings by applying stimuli that are of personal relevance to each individual's depression.

  17. Cochlear Implant

    Mehrnaz Karimi

    1992-04-01

    Full Text Available People with profound hearing loss are not able to use some kinds of conventional amplifiers due to the nature of their loss . In these people, hearing sense is stimulated only when the auditory nerve is activated via electrical stimulation. This stimulation is possible through cochlear implant. In fact, for the deaf people who have good mental health and can not use surgical and medical treatment and also can not benefit from air and bone conduction hearing aids, this device is used if they have normal central auditory system. The basic parts of the device included: Microphone, speech processor, transmitter, stimulator and receiver, and electrode array.

  18. Systemic Inflammatory Response Syndrome in End-Stage Heart Failure Patients Following Continuous-Flow Left Ventricular Assist Device Implantation: Differences in Plasma Redox Status and Leukocyte Activation.

    Mondal, Nandan K; Sorensen, Erik N; Pham, Si M; Koenig, Steven C; Griffith, Bartley P; Slaughter, Mark S; Wu, Zhongjun J

    2016-05-01

    The role of oxidative stress and leukocyte activation has not been elucidated in developing systemic inflammatory response syndrome (SIRS) in heart failure (HF) patients after continuous-flow left ventricular assist device (CF-LVAD) implantation. The objective of this study was to investigate the change of plasma redox status and leukocyte activation in CF-LVAD implanted HF patients with or without SIRS. We recruited 31 CF-LVAD implanted HF patients (16 SIRS and 15 non-SIRS) and 11 healthy volunteers as the control. Pre- and postimplant blood samples were collected from the HF patients. Plasma levels of oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA), total antioxidant capacity (TAC), superoxide dismutase (SOD) in erythrocyte, myeloperoxidase (MPO), and polymorphonuclear elastase (PMN-elastase) were measured. The HF patients had a preexisting condition of oxidative stress than healthy controls as evident from the higher oxLDL and MDA levels as well as depleted SOD and TAC. Leukocyte activation in terms of higher plasma MPO and PMN-elastase was also prominent in HF patients than controls. Persistent oxidative stress and reduced antioxidant status were found to be more belligerent in HF patients with SIRS after the implantation of CF-LVAD when compared with non-SIRS patients. Similar to oxidative stress, the activation of blood leukocyte was significantly highlighted in SIRS patients after implantation compared with non-SIRS. We identified that the plasma redox status and leukocyte activation became more prominent in CF-LVAD implanted HF patients who developed SIRS. Our findings suggest that plasma biomarkers of oxidative stress and leukocyte activation may be associated with the development of SIRS after CF-LVAD implant surgery. PMID:26416627

  19. Permanent prostate implant using high activity seeds and inverse planning with fast simulated annealing algorithm: A 12-year Canadian experience

    Purpose: To report outcomes and toxicity of the first Canadian permanent prostate implant program. Methods and Materials: 396 consecutive patients (Gleason ≤6, initial prostate specific antigen (PSA) ≤10 and stage T1-T2a disease) were implanted between June 1994 and December 2001. The median follow-up is of 60 months (maximum, 136 months). All patients were planned with fast-simulated annealing inverse planning algorithm with high activity seeds ([gt] 0.76 U). Acute and late toxicity is reported for the first 213 patients using a modified RTOG toxicity scale. The Kaplan-Meier biochemical failure-free survival (bFFS) is reported according to the ASTRO and Houston definitions. Results: The bFFS at 60 months was of 88.5% (90.5%) according to the ASTRO (Houston) definition and, of 91.4% (94.6%) in the low risk group (initial PSA ≤10 and Gleason ≤6 and Stage ≤T2a). Risk factors statistically associated with bFFS were: initial PSA >10, a Gleason score of 7-8, and stage T2b-T3. The mean D90 was of 151 ± 36.1 Gy. The mean V100 was of 85.4 ± 8.5% with a mean V150 of 60.1 ± 12.3%. Overall, the implants were well tolerated. In the first 6 months, 31.5% of the patients were free of genitourinary symptoms (GUs), 12.7% had Grade 3 GUs; 91.6% were free of gastrointestinal symptoms (GIs). After 6 months, 54.0% were GUs free, 1.4% had Grade 3 GUs; 95.8% were GIs free. Conclusion: The inverse planning with fast simulated annealing and high activity seeds gives a 5-year bFFS, which is comparable with the best published series with a low toxicity profile

  20. Neural Response during the Activation of the Attachment System in Patients with Borderline Personality Disorder: An fMRI Study

    Buchheim, Anna; Erk, Susanne; George, Carol; Kächele, Horst; Martius, Philipp; Pokorny, Dan; Spitzer, Manfred; Walter, Henrik

    2016-01-01

    Individuals with borderline personality disorder (BPD) are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging (fMRI). Eleven female patients with BPD without posttraumatic stress disorder (PTSD) and 17 healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System (AAP), an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for 2 min. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex (DLPFC) and the rostral cingulate zone (RCZ). We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear. PMID:27531977

  1. Functional MRI activity in the thalamus and occipital cortex of anesthetized dogs induced by monocular and binocular stimulation.

    Willis, C K; Quinn, R P; McDonell, W M; Gati, J; Partlow, G; Vilis, T

    2001-07-01

    The neuroanatomy of the mammalian visual system has received considerable attention through electrophysiological study of cats and non-human primates, and through neuroimaging of humans. Canine neuroanatomy, however, has received much less attention, limiting our understanding of canine vision and visual pathways. As an early step in applying blood oxygenation level dependant (BOLD) functional magnetic resonance imaging (fMRI) for veterinary use, we compared visual activity in the thalamus and occipital cortex of anesthetized dogs presented with binocular and monocular visual stimuli. Activity in the left and right thalamus and occipital cortex during monocular stimulation was also compared. Six beagles were presented with a vertical grating visual stimulus and scanned at 4 Tesla. Each dog was scanned twice under each of 3 anesthetic protocols (isoflurane, propofol, and fentanyl/midazolam). We found: 1) significant BOLD activation in the lateral geniculate nucleus (LGN) of the thalamus and the occipital cortex; 2) a significantly larger area of activation in the LGN during monocular stimulation than during binocular stimulation; and 3) that activity in the hemisphere contralateral to the stimulus was not significantly greater than that ipsilateral to it. PMID:11480525

  2. A Survey of Agreement Rate between Simple MTC and Post Contrast T1 Sequence MRI for Diagnosing Active Multiple Sclerosis Plaques

    N. Farshchian

    2016-07-01

    Full Text Available Introduction & Objective: MS is the most common disabling neurological disorder. Identifying new active MS plaques at the onset and clinical status and faster onset of treatment as well as evaluating the response to treatment is important and MRI with contrast is the best indicator for these measures. Materials & Methods: This study was cross-sectional including 62 patients with diagnosed MS. Whose clinical symptoms suggested the recurrence of MS. They were referred to the radiol-ogy department to undergo brain MRI with injection for the diagnosis of active plaques by a neurologist,The Data were analyzed using statistical tests and SPSS 21 software. Results: Based on the sequences of post contrast T1, pre contrast MTC and post contrast MTC 74, 272 and 271 plaques were respectively discovered. Detection of active MS plaques on T1 sequences after injection were in poor accordance and had significant difference with MTC before and after injection. Moreover, detection of active MS plaques on MTC sequences be-fore injection were in good accordance and did not show significant difference with MTC se-quences after injection. Conclusion: Based on these results, it seems that the purpose of MRI in MS patients is deter-mining the amount of active plaques. Sequences of pre contrast and post contrast MTC are significantly more than sequences of post contrast T1. Therefore, using sequences of MTC can be helpful in MRI. (Sci J Hamadan Univ Med Sci 2016; 23 (2:97-102

  3. Many Neighbors are not Silent. fMRI Evidence for Global Lexical Activity in Visual Word Recognition.

    Mario Braun

    2015-07-01

    Full Text Available Many neurocognitive studies investigated the neural correlates of visual word recognition, some of which manipulated the orthographic neighborhood density of words and nonwords believed to influence the activation of orthographically similar representations in a hypothetical mental lexicon. Previous neuroimaging research failed to find evidence for such global lexical activity associated with neighborhood density. Rather, effects were interpreted to reflect semantic or domain general processing. The present fMRI study revealed effects of lexicality, orthographic neighborhood density and a lexicality by orthographic neighborhood density interaction in a silent reading task. For the first time we found greater activity for words and nonwords with a high number of neighbors. We propose that this activity in the dorsomedial prefrontal cortex reflects activation of orthographically similar codes in verbal working memory thus providing evidence for global lexical activity as the basis of the neighborhood density effect. The interaction of lexicality by neighborhood density in the ventromedial prefrontal cortex showed lower activity in response to words with a high number compared to nonwords with a high number of neighbors. In the light of these results the facilitatory effect for words and inhibitory effect for nonwords with many neighbors observed in previous studies can be understood as being due to the operation of a fast-guess mechanism for words and a temporal deadline mechanism for nonwords as predicted by models of visual word recognition. Furthermore, we propose that the lexicality effect with higher activity for words compared to nonwords in inferior parietal and middle temporal cortex reflects the operation of an identification mechanism and based on local lexico-semantic activity.

  4. The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval.

    Maguire, E A; Vargha-Khadem, F; Mishkin, M

    2001-06-01

    Using functional magnetic resonance imaging (fMRI) we examined successful retrieval of real-world memories in a patient (Jon) with selective bilateral hippocampal pathology resulting from perinatal hypoxia compared with healthy control subjects. Jon activated the same brain regions during memory retrieval as control subjects, both medial and lateral on the left. In contrast to controls, Jon also activated many homologous regions on the right. In spite of having 50% volume loss bilaterally in his hippocampi, retrieval in Jon was associated with increased activation of the hippocampi. Furthermore, hippocampal activity, as with the controls, was differential, being most responsive to retrieval of autobiographical events compared with other memory types (autobiographical facts, public events, general knowledge). Jon made a distinction between events that the control subjects did not make, namely that some of the autobiographical and public events he clearly remembered, while others he found that he knew about but did not truly remember. His hippocampi and medial frontal cortex were significantly more active during retrieval of events for which he had clear and conscious recollection compared with those he knew as much about, including the context, but could not remember experiencing. Although Jon activates the same network of brain regions as the controls (albeit bilaterally), and with the same pattern of response in the hippocampus, the communication between regions differs from controls with regard to hippocampal-cortical connectivity. In controls there was increased effective connectivity between parahippocampal cortex and hippocampus, specifically during the retrieval of autobiographical events. In contrast, this increase was not apparent in Jon; rather, retrieval of autobiographical events elicited greater interaction between the hippocampus and retrosplenial cortex, and also increased interaction between retrosplenial and medial frontal cortex. This study

  5. Abnormal Brain Activity in Social Reward Learning in Children with Autism Spectrum Disorder: An fMRI Study

    Choi, Uk-Su; Kim, Sun-Young; Sim, Hyeon Jeong; Lee, Seo-Young; Park, Sung-Yeon; Jeong, Joon-Sup; Seol, Kyeong In; Yoon, Hyo-Woon; Jhung, Kyungun; Park, Jee-In; Cheon, Keun-Ah

    2015-01-01

    Purpose We aimed to determine whether Autism Spectrum Disorder (ASD) would show neural abnormality of the social reward system using functional MRI (fMRI). Materials and Methods 27 ASDs and 12 typically developing controls (TDCs) participated in this study. The social reward task was developed, and all participants performed the task during fMRI scanning. Results ASDs and TDCs with a social reward learning effect were selected on the basis of behavior data. We found significant differences in...

  6. Detection of irregular, transient fMRI activity in normal controls using 2dTCA: comparison to event-related analysis using known timing

    Morgan, Victoria L.; John C Gore

    2009-01-01

    When events occur spontaneously during the acquisition of a series of images, traditional modeling methods for detecting functional MRI activation detection cannot be employed. The two-dimensional Temporal Clustering Algorithm, 2dTCA, has been shown to accurately detect random, transient activations in computer simulations without the use of known event timings. In this study we applied the 2dTCA technique to detect the timings and spatial locations of sparse, irregular, transient activations...

  7. Visual cortex activation in late-onset, Braille naive blind individuals: An fMRI study during semantic and phonological tasks with heard words

    Burton, Harold; McLaren, Donald G.

    2005-01-01

    Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuot...

  8. Altered baseline brain activities before food intake in obese men: a resting state fMRI study.

    Zhang, Bin; Tian, Derun; Yu, Chunshui; Zhang, Jing; Tian, Xiao; von Deneen, Karen M; Zang, Yufeng; Walter, Martin; Liu, Yijun

    2015-01-01

    Obesity as a chronic disease has become a global epidemic. However, why obese individuals eat more still remains unclear. Recent functional neuroimaging studies have found abnormal brain activations in obese people. In the present study, we used resting state functional MRI to observe spontaneous blood-oxygen-level dependent (BOLD) signal fluctuations during both hunger and satiety states in 20 lean and 20 obese men. Using a regional homogeneity (ReHo) analysis method, we measured temporal homogeneity of the regional BOLD signals. We found that, before food intake, obese men had significantly increased synchronicity of activity in the left putamen relative to lean men. Decreased synchronicity of activity was found in the orbitofrontal cortex (OFC) and medial prefrontal cortex(MPFC) in the obese subjects. And, the ratings of hunger of the obese subjects were higher than those of the lean subjects before food intake. After food intake, we did not find the significant differences between the obese men and the lean men. In all participations, synchronicity of activity increased from the fasted to the satiated state in the OFC. The results indicated that OFC plays an important role in feeding behavior, and OFC signaling may be disordered in obesity. Obese men show less inhibitory control during fasting state. This study has provided strong evidence supporting the hypothesis that there is a hypo-functioning reward circuitry in obese individuals, in which the frontal cortex may fail to inhibit the striatum, and consequently lead to overeating and obesity. PMID:25459293

  9. Verum and sham acupuncture exert distinct cerebral activation in pain processing areas: a crossover fMRI investigation in healthy volunteers.

    Usichenko, Taras I; Wesolowski, Toni; Lotze, Martin

    2015-06-01

    Although acupuncture is effective for treating pain, its site-specificity is questioned. The aim was to compare the cerebral responses of needling applied to an acupuncture point to the needling of a sham point, using functional magnetic resonance imaging (fMRI). Twenty-one healthy male volunteers were enrolled. Manual stimulation of the acupuncture (ST44) and sham points on the dorsum of the left foot was applied during fMRI in a crossover manner. fMRI data analysis was performed contrasting the ST44 and the sham conditions. Stimulation intensity, subjective discrimination of the needling site and the incidence of "Qi" sensation were additionally recorded. Stimulation of ST44 acupoint, in comparison to the sham procedure, was associated with an increased fMRI-activation in the primary somatosensory, the inferior parietal and the prefrontal cortex and the posterior insula. Sham needling was associated with increased activation in the anterior cingulate cortex and the anterior insula. Verum acupuncture increased the activity of discriminative somatosensory and cognitive pain processing areas of the brain, whereas sham needling activated the areas responsible for affective processing of pain. This may explain favorable effects of verum acupuncture in clinical studies about treatment of chronic pain patients. PMID:24728839

  10. Pixel-by-pixel analysis of DCE-MRI curve shape patterns in knees of active and inactive juvenile idiopathic arthritis patients

    Hemke, Robert; Lavini, Cristina; Maas, Mario [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Nusman, Charlotte M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Berg, J.M. van den; Schonenberg-Meinema, Dieneke; Kuijpers, Taco W. [University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Dolman, Koert M. [Department of Pediatric Rheumatology, Reade, Amsterdam (Netherlands); St. Lucas Andreas Hospital, Department of Pediatrics, Amsterdam (Netherlands); Rossum, Marion A.J. van [University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Department of Pediatric Rheumatology, Reade, Amsterdam (Netherlands)

    2014-07-15

    To compare DCE-MRI parameters and the relative number of time-intensity curve (TIC) shapes as derived from pixel-by-pixel DCE-MRI TIC shape analysis between knees of clinically active and inactive juvenile idiopathic arthritis (JIA) patients. DCE-MRI data sets were prospectively obtained. Patients were classified into two clinical groups: active disease (n = 43) and inactive disease (n = 34). Parametric maps, showing seven different TIC shape types, were created per slice. Statistical measures of different TIC shapes, maximal enhancement (ME), maximal initial slope (MIS), initial area under the curve (iAUC), time-to-peak (TTP), enhancing volume (EV), volume transfer constant (K {sup trans}), extravascular space fractional volume (V{sub e}) and reverse volume transfer constant (k{sub ep}) of each voxel were calculated in a three-dimensional volume-of-interest of the synovial membrane. Imaging findings from 77 JIA patients were analysed. Significantly higher numbers of TIC shape 4 (P = 0.008), median ME (P = 0.015), MIS (P = 0.001) and iAUC (P = 0.002) were observed in clinically active compared with inactive patients. TIC shape 5 showed higher presence in the clinically inactive patients (P = 0.036). The pixel-by-pixel DCE-MRI TIC shape analysis method proved capable of differentiating clinically active from inactive JIA patients by the difference in the number of TIC shapes, as well as the descriptive parameters ME, MIS and iAUC. (orig.)

  11. Pixel-by-pixel analysis of DCE-MRI curve shape patterns in knees of active and inactive juvenile idiopathic arthritis patients

    To compare DCE-MRI parameters and the relative number of time-intensity curve (TIC) shapes as derived from pixel-by-pixel DCE-MRI TIC shape analysis between knees of clinically active and inactive juvenile idiopathic arthritis (JIA) patients. DCE-MRI data sets were prospectively obtained. Patients were classified into two clinical groups: active disease (n = 43) and inactive disease (n = 34). Parametric maps, showing seven different TIC shape types, were created per slice. Statistical measures of different TIC shapes, maximal enhancement (ME), maximal initial slope (MIS), initial area under the curve (iAUC), time-to-peak (TTP), enhancing volume (EV), volume transfer constant (K trans), extravascular space fractional volume (Ve) and reverse volume transfer constant (kep) of each voxel were calculated in a three-dimensional volume-of-interest of the synovial membrane. Imaging findings from 77 JIA patients were analysed. Significantly higher numbers of TIC shape 4 (P = 0.008), median ME (P = 0.015), MIS (P = 0.001) and iAUC (P = 0.002) were observed in clinically active compared with inactive patients. TIC shape 5 showed higher presence in the clinically inactive patients (P = 0.036). The pixel-by-pixel DCE-MRI TIC shape analysis method proved capable of differentiating clinically active from inactive JIA patients by the difference in the number of TIC shapes, as well as the descriptive parameters ME, MIS and iAUC. (orig.)

  12. An fMRI study of neuronal activation in schizophrenia patients with and without previous cannabis use

    Else-Marie eLøberg

    2012-10-01

    Full Text Available Previous studies have mostly shown positive effects of cannabis use on cognition in patients with schizophrenia, which could reflect lower neurocognitive vulnerability. There are however no studies comparing whether such cognitive differences have neuronal correlates. Thus, the aim of the present study was to compare whether patients with previous cannabis use differ in brain activation from patients who has never used cannabis. The patients groups were compared on the ability to up-regulate an effort mode network during a cognitive task and down-regulate activation in the same network during a task-absent condition. Task-present and task-absent brain activation was measured by functional magnetic resonance neuroimaging (fMRI. Twenty-six patients with a DSM-IV and ICD-10 diagnosis of schizophrenia were grouped into a previous cannabis user group and a no-cannabis group. An auditory dichotic listening task with instructions of attention focus on either the right or left ear stimulus was used to tap verbal processing, attention and cognitive control, calculated as an aggregate score. When comparing the two groups, there were remaining activations in the task-present condition for the cannabis group, not seen in the no-cannabis group, while there was remaining activation in the task-absent condition for the no-cannabis group, not seen in the cannabis group. Thus, the patients with previous cannabis use showed increased activation in an effort mode network and decreased activation in the default mode network as compared to the no-cannabis group. It is concluded that the present study show some differences in brain activation to a cognitively challenging task between previous cannabis and no-cannabis schizophrenia patients.

  13. Carmustine Implant

    Carmustine implant is used along with surgery and sometimes radiation therapy to treat malignant glioma (a certain type of ... Carmustine implant comes as a small wafer that is placed in the brain by a doctor during surgery to ...

  14. Goserelin Implant

    Goserelin implant is used in combination with radiation therapy and other medications to treat localized prostate cancer and is ... treatment of abnormal bleeding of the uterus. Goserelin implant is in a class of medications called gonadotropin- ...

  15. Dental Implants

    Full Text Available ... is lost for the most predictable esthetic outcome. Timeline Replacing a tooth with an implant and a ... months to complete the process . Due to the timeline, dental implants are actually a series of steps; ...

  16. Changes in brain activation patterns according to cross-training effect in serial reaction time task An functional MRI study

    Yong Hyun Kwon; Jung Won Kwon; Ji Won Park

    2013-01-01

    Cross-training is a phenomenon related to motor learning, where motor performance of the untrained limb shows improvement in strength and skill execution following unilateral training of the homologous contralateral limb. We used functional MRI to investigate whether motor performance of the untrained limb could be improved using a serial reaction time task according to motor sequential learning of the trained limb, and whether these skill acquisitions led to changes in brain activation patterns. We recruited 20 right-handed healthy subjects, who were randomly allocated into training and control groups. The training group was trained in performance of a serial reaction time task using their non-dominant left hand, 40 minutes per day, for 10 days, over a period of 2 weeks. The control group did not receive training. Measurements of response time and percentile of response accuracy were performed twice during pre- and post-training, while brain functional MRI was scanned during performance of the serial reaction time task using the untrained right hand. In the training group, prominent changes in response time and percentile of response accuracy were observed in both the untrained right hand and the trained left hand between pre- and post-training. The control group showed no significant changes in the untrained hand between pre- and post-training. In the training group, the activated volume of the cortical areas related to motor function (i.e., primary motor cortex, premotor area, posterior parietal cortex) showed a gradual decrease, and enhanced cerebellar activation of the vermis and the newly activated ipsilateral dentate nucleus were observed during performance of the serial reaction time task using the untrained right hand, accompanied by the cross-motor learning effect. However, no significant changes were observed in the control group. Our findings indicate that motor skills learned over the 2-week training using the trained limb were transferred to the

  17. How Does Brain Activation Differ in Children with Unilateral Cerebral Palsy Compared to Typically Developing Children, during Active and Passive Movements, and Tactile Stimulation? An fMRI Study

    Van de Winckel, Ann; Klingels, Katrijn; Bruyninckx, Frans; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Eyssen, Maria; De Weerdt, Willy; Feys, Hilde

    2013-01-01

    The aim of the functional magnetic resonance imaging (fMRI) study was to investigate brain activation associated with active and passive movements, and tactile stimulation in 17 children with right-sided unilateral cerebral palsy (CP), compared to 19 typically developing children (TD). The active movements consisted of repetitive opening and…

  18. Effect of B+ Flux on the electrical activation of ultra-shallow B+ implants in Ge

    Yates, B.R.; Darby, B.L.; Petersen, Dirch Hjorth;

    2012-01-01

    being 76% higher at 6.4 mA as compared to 0.4mA. However, at 6.4 mA, the electrically active fraction remained low at 11.4%. Structural characterization revealed that the implanted region remained crystalline and amorphization is not able to explain the increased activation. The results suggest the...

  19. Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy

    Dymarkowski, S.; Sunaert, S.; Oostende, S. van; Hecke, P. van; Wilms, G.; Demaerel, P.; Marchal, G. [Department of Radiology, University Hospitals, Leuven (Belgium); Nuttin, B.; Plets, C. [Department of Neurosurgery, University Hospitals, Leuven (Belgium)

    1998-12-01

    The aim of this study was to assess the feasibility of functional MRI (fMRI) in a clinical environment on a large patient group, and to evaluate the pretherapeutic value of localisation of eloquent cortex. Forty patients with focal brain lesions of different origin were studied using fMRI. Functional information was obtained using motor, somatosensory, auditory and phonological stimuli depending on the localisation of the lesions. To obtain information about the spatial accuracy of fMRI, the results were compared with postoperative electrocortical stimulation. Two patients with secondary trigeminal neuralgia were scanned using a motor protocol and were implanted with an extradural plate electrode. Imaging was successful in 40 of 42 patients (including the 2 with trigeminal neuralgia). These patients were analysed for strength of activation, the relation of the lesion to activation sites and the presence of mass effect. The correlation between these data and surgical findings provided significant additional clinical information. Functional MRI can be accurately performed in patients with focal brain lesions using a dedicated approach. Functional MRI offers important clinical information as a contribution to a decrease in posttherapeutic morbidity. The accuracy of the technique can be confirmed by other modalities, including invasive cortical electrostimulation. (orig.) With 7 figs., 2 tabs., 25 refs.

  20. Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy

    The aim of this study was to assess the feasibility of functional MRI (fMRI) in a clinical environment on a large patient group, and to evaluate the pretherapeutic value of localisation of eloquent cortex. Forty patients with focal brain lesions of different origin were studied using fMRI. Functional information was obtained using motor, somatosensory, auditory and phonological stimuli depending on the localisation of the lesions. To obtain information about the spatial accuracy of fMRI, the results were compared with postoperative electrocortical stimulation. Two patients with secondary trigeminal neuralgia were scanned using a motor protocol and were implanted with an extradural plate electrode. Imaging was successful in 40 of 42 patients (including the 2 with trigeminal neuralgia). These patients were analysed for strength of activation, the relation of the lesion to activation sites and the presence of mass effect. The correlation between these data and surgical findings provided significant additional clinical information. Functional MRI can be accurately performed in patients with focal brain lesions using a dedicated approach. Functional MRI offers important clinical information as a contribution to a decrease in posttherapeutic morbidity. The accuracy of the technique can be confirmed by other modalities, including invasive cortical electrostimulation. (orig.)

  1. Combined PET/MRI

    Bailey, D. L.; Pichler, B. J.; Gückel, B.;

    2015-01-01

    This paper summarises key themes and discussions from the 4th international workshop dedicated to the advancement of the technical, scientific and clinical applications of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) systems that was held in Tübingen, Germany, from...... February 23 to 27, 2015. Specifically, we summarise the three days of invited presentations from active researchers in this and associated fields augmented by round table discussions and dialogue boards with specific topics. These include the use of PET/MRI in cardiovascular disease, paediatrics, oncology......, neurology and multi-parametric imaging, the latter of which was suggested as a key promoting factor for the wider adoption of integrated PET/MRI. Discussions throughout the workshop and a poll taken on the final day demonstrated that attendees felt more strongly that PET/MRI has further advanced in both...

  2. Altered baseline brain activity with 72 h of simulated microgravity--initial evidence from resting-state fMRI.

    Yang Liao

    Full Text Available To provide the basis and reference to further insights into the neural activity of the human brain in a microgravity environment, we discuss the amplitude changes of low-frequency brain activity fluctuations using a simulated microgravity model. Twelve male participants between 24 and 31 years old received resting-state fMRI scans in both a normal condition and after 72 hours in a -6° head down tilt (HDT. A paired sample t-test was used to test the amplitude differences of low-frequency brain activity fluctuations between these two conditions. With 72 hours in a -6° HDT, the participants showed a decreased amplitude of low-frequency fluctuations in the left thalamus compared with the normal condition (a combined threshold of P<0.005 and a minimum cluster size of 351 mm(3 (13 voxels, which corresponded with the corrected threshold of P<0.05 determined by AlphaSim. Our findings indicate that a gravity change-induced redistribution of body fluid may disrupt the function of the left thalamus in the resting state, which may contribute to reduced motor control abilities and multiple executive functions in astronauts in a microgravity environment.

  3. The effect of leisure activity golf practice on motor imagery: an fMRI study in middle adulthood.

    Bezzola, Ladina; Mérillat, Susan; Jäncke, Lutz

    2012-01-01

    Much is known about practice-induced plasticity of the motor system. But it is not clear how a physical training influences the mental rehearsal of the practiced task and its associated hemodynamic responses. In the present longitudinal study with two measurement time-points, we used the method of functional magnetic resonance imaging (fMRI) and a motor imagery task, in order to explore the dynamic neuro-functional changes induced by a highly complex physical training. The 11 golf novices between the age of 40 and 60 years practiced the motor training as leisure activity. Additionally, data from an age and sex-matched control group without golf training was collected. As a main result, we demonstrate that changes between the two measurement time-points were only found in the golf novice group. The golf novices showed a decrease in hemodynamic responses during the mental rehearsal of the golf swing in non-primary motor areas after the 40 h of golf practice. Thus, the results indicate that a complex physical leisure activity induces functional neuroplasticity in the seldom studied population of middle-aged adults, and that this effect is evident during mental rehearsal of the practiced task. This finding supports the idea that (a) a skill improvement is associated with a modified activation pattern in the associated neuronal network that can be identified during mental rehearsal of the practiced task, and that (b) a strict training protocol is not necessary to induce functional neuroplasticity. PMID:22479243

  4. Healthy individuals treated with clomipramine: an fMRI study of brain activity during autobiographical recall of emotions.

    Cerqueira, C T; Sato, J R; de Almeida, J R C; Amaro, E; Leite, C C; Gorenstein, C; Gentil, V; Busatto, G F

    2014-01-01

    Various functional magnetic resonance imaging studies addressed the effects of antidepressant drugs on brain functioning in healthy subjects; however, none specifically investigated positive mood changes to antidepressant drug. Sixteen subjects with no personal or family history of psychiatric disorders were selected from an ongoing 4-week open trial of small doses of clomipramine. Follow-up interviews documented clear positive treatment effects in six subjects, with reduced irritability and tension in social interactions, improved decision making, higher self-confidence and brighter mood. These subjects were then included in a placebo-controlled confirmatory trial and were scanned immediately after 4 weeks of clomipramine use and again 4 weeks after the last dose of clomipramine. The functional magnetic resonance imaging (fMRI) scans were run during emotion-eliciting stimuli. Repeated-measures analysis of variance of brain activity patterns showed significant interactions between group and treatment status during induced irritability (Phappiness. Individuals displaying a positive subjective response do clomipramine had higher frontoparietal cortex activity during irritability than during happiness and neutral emotion, and higher temporo-parieto-occipital cortex activity during irritability than during happiness. We conclude that antidepressants not only induce positive mood responses but also act upon autobiographical recall of negative emotions. PMID:24984192

  5. Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.

    Kurkela, Kyle A; Dennis, Nancy A

    2016-01-29

    Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. PMID:26683385

  6. Evaluation of silver-titanium implants activated by low intensity direct current for orthopedic infection control: An in vitro and in vivo study.

    Cavanaugh, Daniel L; Tan, Zhuo George; Norris, James P; Hardee, Amelia; Weinhold, Paul S; Dahners, Laurence E; Orndorff, Paul E; Shirwaiker, Rohan A

    2016-07-01

    Silver is an alternative antimicrobial of interest for the prophylaxis of prosthetic infections and electrical activation is known to augment its oligodynamic efficacy. In this study, we evaluated the in vitro and in vivo efficacy of a silver (Ag)-titanium (Ti) implant activated by 30 µA direct current compared with three controls - passive Ag-Ti, active Ti-Ti, and passive Ti-Ti. We hypothesized that the experimental group would provide better resistance to pathogenic colonization on the implant. Modified Kirby-Bauer technique was used to evaluate in vitro efficacy of the four groups against five bacteria and one fungus. For in vivo evaluation, forty-eight rats were divided into four groups. The implant was secured in a wound cavity along the posterior margin of the femur. The wound was inoculated with 7.5 × 10(5) CFU of Staphylococcus aureus. Rats were euthanized 14 days postsurgery and quantitative cultures were performed on the implant segments and the wound cavity tissue. In vitro tests showed that the growth of all six pathogens was inhibited around the active Ag anodes of the experimental group. In vivo, none of the four groups were able to prevent wound infection, but the experimental group resulted in reduced colonization. The mean bacterial loads on Ti segments were significantly lower in the implants which also had an Ag segment (p = 0.0007), and this effect was more pronounced with electrical activation (p = 0.0377). The results demonstrate the antimicrobial potential of LIDC-activated Ag-Ti implants. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1023-1031, 2016. PMID:25996127

  7. Contrast-enhanced MRI of the knee in children unaffected by clinical arthritis compared to clinically active juvenile idiopathic arthritis patients

    To evaluate enhancing synovial thickness upon contrast-enhanced magnetic resonance imaging (MRI) of the knee in children unaffected by clinical arthritis compared with clinically active juvenile idiopathic arthritis (JIA) patients. A secondary objective was optimization of the scoring method based on maximizing differences on MRI between these groups. Twenty-five children without history of joint complaints nor any clinical signs of joint inflammation were age/sex-matched with 25 clinically active JIA patients with arthritis of at least one knee. Two trained radiologists, blinded for clinical status, independently evaluated location and extent of enhancing synovial thickness with the validated Juvenile Arthritis MRI Scoring system (JAMRIS) on contrast-enhanced axial fat-saturated T1-weighted MRI of the knee. Enhancing synovium (≥2 mm) was present in 13 (52 %) unaffected children. Using the total JAMRIS score for synovial thickening, no significant difference was found between unaffected children and active JIA patients (p = 0.091). Additional weighting of synovial thickening at the JIA-specific locations enabled more sensitive discrimination (p = 0.011). Mild synovial thickening is commonly present in the knee of children unaffected by clinical arthritis. The infrapatellar and cruciate ligament synovial involvement were specific for JIA, which - in a revised JAMRIS - increases the ability to discriminate between JIA and unaffected children. (orig.)

  8. Contrast-enhanced MRI of the knee in children unaffected by clinical arthritis compared to clinically active juvenile idiopathic arthritis patients

    Nusman, Charlotte M.; Hemke, Robert [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Benninga, Marc A.; Kindermann, Angelika [University of Amsterdam, Department of Pediatric Gastroenterology, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Schonenberg-Meinema, Dieneke; Berg, J.M. van den; Kuijpers, Taco W. [University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Rossum, Marion A.J. van [University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Reade, Department of Pediatric Rheumatology, Amsterdam (Netherlands); Maas, Mario [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands)

    2016-04-15

    To evaluate enhancing synovial thickness upon contrast-enhanced magnetic resonance imaging (MRI) of the knee in children unaffected by clinical arthritis compared with clinically active juvenile idiopathic arthritis (JIA) patients. A secondary objective was optimization of the scoring method based on maximizing differences on MRI between these groups. Twenty-five children without history of joint complaints nor any clinical signs of joint inflammation were age/sex-matched with 25 clinically active JIA patients with arthritis of at least one knee. Two trained radiologists, blinded for clinical status, independently evaluated location and extent of enhancing synovial thickness with the validated Juvenile Arthritis MRI Scoring system (JAMRIS) on contrast-enhanced axial fat-saturated T1-weighted MRI of the knee. Enhancing synovium (≥2 mm) was present in 13 (52 %) unaffected children. Using the total JAMRIS score for synovial thickening, no significant difference was found between unaffected children and active JIA patients (p = 0.091). Additional weighting of synovial thickening at the JIA-specific locations enabled more sensitive discrimination (p = 0.011). Mild synovial thickening is commonly present in the knee of children unaffected by clinical arthritis. The infrapatellar and cruciate ligament synovial involvement were specific for JIA, which - in a revised JAMRIS - increases the ability to discriminate between JIA and unaffected children. (orig.)

  9. Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: A group level comparison with BOLD fMRI and PET.

    Özbay, Pinar Senay; Warnock, Geoffrey; Rossi, Cristina; Kuhn, Felix; Akin, Burak; Pruessmann, Klaas Paul; Nanz, Daniel

    2016-08-15

    Dynamic changes of brain-tissue magnetic susceptibility provide the basis for functional MR imaging (fMRI) via T2*-weighted signal-intensity modulations. Promising initial work on a detection of neuronal activity via quantitative susceptibility mapping (fQSM) has been published but consistently reported on ill-understood positive and negative activation patterns (Balla et al., 2014; Chen and Calhoun, 2015a). We set out to (i) demonstrate that fQSM can exploit established fMRI data acquisition and processing methods and to (ii) better describe aspects of the apparent activation patterns using fMRI and PET as standards of reference. Under a standardized visual-stimulation paradigm PET and 3-T gradient-echo EPI-based fQSM, fMRI data from 9 healthy volunteers were acquired and analyzed by means of Independent Component Analysis (ICA) at subject level and, for the first time, at group level. Numbers of activated (z-score>2.0) voxels were counted and their mean z-scores calculated in volumes of interest (occipital lobe (Nocc_lobe), segmented occipital gray-matter (NGM_occ_lobe), large veins (Nveins)), and in occipital-lobe voxels commonly activated in fQSM and fMRI component maps. Common but not entirely congruent regions of apparent activation were found in the occipital lobe in z-score maps from all modalities, fQSM, fMRI and PET, with distinct BOLD-negatively correlated regions in fQSM data. At subject-level, Nocc_lobe, NGM_occ_lobe and their mean z-scores were significantly smaller in fQSM than in fMRI, but their ratio, NGM_occ_lobe/Nocc_lobe, was comparable. Nveins did not statistically differ and the ratio Nveins/NGM_occ_lobe as well as the mean z-scores were higher for fQSM than for fMRI. In veins and immediate vicinity, z-score maps derived from both phase and fQSM-data showed positive and negative lobes resembling dipole shapes in simulated field and phase maps with no correlate in fMRI or PET data. Our results show that standard fMRI tools can directly be used

  10. EEG-fMRI correlation patterns in the presurgical evaluation of focal epilepsy: a comparison with electrocorticographic data and surgical outcome measures.

    van Houdt, Petra J; de Munck, Jan C; Leijten, Frans S S; Huiskamp, Geertjan J M; Colon, Albert J; Boon, Paul A J M; Ossenblok, Pauly P W

    2013-07-15

    EEG-correlated functional MRI (EEG-fMRI) visualizes brain regions associated with interictal epileptiform discharges (IEDs). This technique images the epileptiform network, including multifocal, superficial and deeply situated cortical areas. To understand the role of EEG-fMRI in presurgical evaluation, its results should be validated relative to a gold standard. For that purpose, EEG-fMRI data were acquired for a heterogeneous group of surgical candidates (n=16) who were later implanted with subdural grids and strips (ECoG). The EEG-fMRI correlation patterns were systematically compared with brain areas involved in IEDs ECoG, using a semi-automatic analysis method, as well as to the seizure onset zone, resected area, and degree of seizure freedom. In each patient at least one of the EEG-fMRI areas was concordant with an interictally active ECoG area, always including the early onset area of IEDs in the ECoG data. This confirms that EEG-fMRI reflects a pattern of onset and propagation of epileptic activity. At group level, 76% of the BOLD regions that were covered with subdural grids, were concordant with interictally active ECoG electrodes. Due to limited spatial sampling, 51% of the BOLD regions were not covered with electrodes and could, therefore, not be validated. From an ECoG perspective it appeared that 29% of the interictally active ECoG regions were missed by EEG-fMRI and that 68% of the brain regions were correctly identified as inactive with EEG-fMRI. Furthermore, EEG-fMRI areas included the complete seizure onset zone in 83% and resected area in 93% of the data sets. No clear distinction was found between patients with a good or poor surgical outcome: in both patient groups, EEG-fMRI correlation patterns were found that were either focal or widespread. In conclusion, by comparison of EEG-fMRI with interictal invasive EEG over a relatively large patient population we were able to show that the EEG-fMRI correlation patterns are spatially accurate at the

  11. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  12. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    Wang, Li [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China); Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong [Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Liu, Chen; Yang, Jun [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China); Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Zheng, Xiaolin [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China)

    2014-04-15

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  13. Linguine sign in musculoskeletal imaging: calf silicone implant rupture

    Imaging findings of breast silicone implant rupture are well described in the literature. On MRI, the linguine sign indicates intracapsular rupture, while the presence of silicone particles outside the fibrous capsule indicates extracapsular rupture. The linguine sign is described as the thin, wavy hypodense wall of the implant within the hyperintense silicone on T2-weighted images indicative of rupture of the implant within the naturally formed fibrous capsule. Hyperintense T2 signal outside of the fibrous capsule is indicative of an extracapsular rupture with silicone granuloma formation. We present a rare case of a patient with a silicone calf implant rupture and discuss the MRI findings associated with this condition. (orig.)

  14. Linguine sign in musculoskeletal imaging: calf silicone implant rupture

    Duryea, Dennis; Petscavage-Thomas, Jonelle [Milton S. Hershey Medical Center, Department of Radiology, H066, 500 University Drive, P.O. Box 850, Hershey, PA (United States); Frauenhoffer, Elizabeth E. [Milton S. Hershey Medical Center, Department of Pathology, 500 University Drive, P.O. Box 850, Hershey, PA (United States); Walker, Eric A. [Milton S. Hershey Medical Center, Department of Radiology, H066, 500 University Drive, P.O. Box 850, Hershey, PA (United States); Uniformed Services University of the Health Sciences, Department of Radiology and Nuclear Medicine, Bethesda, MD, 20814 (United States)

    2015-08-15

    Imaging findings of breast silicone implant rupture are well described in the literature. On MRI, the linguine sign indicates intracapsular rupture, while the presence of silicone particles outside the fibrous capsule indicates extracapsular rupture. The linguine sign is described as the thin, wavy hypodense wall of the implant within the hyperintense silicone on T2-weighted images indicative of rupture of the implant within the naturally formed fibrous capsule. Hyperintense T2 signal outside of the fibrous capsule is indicative of an extracapsular rupture with silicone granuloma formation. We present a rare case of a patient with a silicone calf implant rupture and discuss the MRI findings associated with this condition. (orig.)

  15. Lithium alters brain activation in bipolar disorder in a task- and state-dependent manner: an fMRI study

    Dave Sanjay

    2005-07-01

    Full Text Available Abstract Background It is unknown if medications used to treat bipolar disorder have effects on brain activation, and whether or not any such changes are mood-independent. Methods Patients with bipolar disorder who were depressed (n = 5 or euthymic (n = 5 were examined using fMRI before, and 14 days after, being started on lithium (as monotherapy in 6 of these patients. Patients were examined using a word generation task and verbal memory task, both of which have been shown to be sensitive to change in previous fMRI studies. Differences in blood oxygenated level dependent (BOLD magnitude between the pre- and post-lithium results were determined in previously defined regions of interest. Severity of mood was determined by the Hamilton Depression Scale for Depression (HAM-D and the Young mania rating scale (YMRS. Results The mean HAM-D score at baseline in the depressed group was 15.4 ± 0.7, and after 2 weeks of lithium it was 11.0 ± 2.6. In the euthymic group it was 7.6 ± 1.4 and 3.2 ± 1.3 respectively. At baseline mean BOLD signal magnitude in the regions of interest for the euthymic and depressed patients were similar in both the word generation task (1.56 ± 0.10 and 1.49 ± 0.10 respectively and working memory task (1.02 ± 0.04 and 1.12 ± 0.06 respectively. However, after lithium the mean BOLD signal decreased significantly in the euthymic group in the word generation task only (1.56 ± 0.10 to 1.00 ± 0.07, p Conclusion This is the first study to examine the effects of lithium on brain activation in bipolar patients. The results suggest that lithium has an effect on euthymic patients very similar to that seen in healthy volunteers. The same effects are not seen in depressed bipolar patients, although it is uncertain if this lack of change is linked to the lack of major improvements in mood in this group of patients. In conclusion, this study suggests that lithium may have effects on brain activation that are task- and state

  16. Genome-wide association of implantable cardioverter-defibrillator activation with life-threatening arrhythmias.

    Sarah S Murray

    Full Text Available OBJECTIVES: To identify genetic factors that would be predictive of individuals who require an implantable cardioverter-defibrillator (ICD, we conducted a genome-wide association study among individuals with an ICD who experienced a life-threatening arrhythmia (LTA; cases vs. those who did not over at least a 3-year period (controls. BACKGROUND: Most individuals that receive implantable cardioverter-defibrillators never experience a life-threatening arrhythmia. Genetic factors may help identify who is most at risk. METHODS: Patients with an ICD and extended follow-up were recruited from 34 clinical sites with the goal of oversampling those who had experienced LTA, with a cumulative 607 cases and 297 controls included in the analysis. A total of 1,006 Caucasian patients were enrolled during a time period of 13 months. Arrhythmia status of 904 patients could be confirmed and their genomic data were included in the analysis. In this cohort, there were 704 males, 200 females, and the average age was 73.3 years. We genotyped DNA samples using the Illumina Human660 W Genotyping BeadChip and tested for association between genotype at common variants and the phenotype of having an LTA. RESULTS AND CONCLUSIONS: We did not find any associations reaching genome-wide significance, with the strongest association at chromosome 13, rs11856574 at P = 5×10⁻⁶. Loci previously implicated in phenotypes such as QT interval (measure of the time between the start of the Q wave and the end of the T wave as measured by electrocardiogram were not found to be significantly associated with having an LTA. Although powered to detect such associations, we did not find common genetic variants of large effect associated with having a LTA in those of European descent. This indicates that common gene variants cannot be used at this time to guide ICD risk-stratification. TRIAL REGISTRATION: ClinicalTrials.gov NCT00664807.

  17. Blood oxygenation-level dependent functional MRI in evaluating the selective activation of motor cortexes associated with recovery of motor function in hemiplegic patients with ischemic stroke

    Yuechun Li; Xiaoyan Liu; Guorong Liu; Ying He; Baojun Wang; Furu Liang; Li Wang; Hui Zhang; Jingfen Zhang; Ruiming Li

    2006-01-01

    BACKGROUND: Previous studies about blood oxygenation-level dependent (BOLD) functional MRI (fMRI) have indicated that the poststroke recovery of motor function is accompanied by the selective activation of motor cor texes with high correlation.OBJECTIVE: To evaluate the short-term outcomes after rehabilitative interventions with BOLD fMRI in hemi plegic patients with acute stroke, and analyze the correlation of the excitement of brain function in the passive and active movements of the affected limb with the recovery of motor function. DESIGN : A case observation. SETTING: Department of Neurology, Baotou Central Hospital. PARTICIPANTS: Thirty hemiplegic inpatients with ischemic stroke were selected from the Department of Neurology, Baotou Central Hospital from January to December in 2005, including 16 males and 14 females, aging 44-71 years with an average age of (56±5) years, and the disease course ranged from 12 to 72 hours. Inclusive criteria: In accordance with the diagnostic standard of ischemic stroke revised by the Fourth National Academic Meeting for Cerebrovascular Disease; Confirmed by cranial CT or MRI. They were all informed agreed with the detected items.METHODS: ① The Bobath technique was adopted in the rehabilitative interventions of the 30 patients, 30 minutes for each time, twice a day for three weeks continuously. ② The hand motor recovery of the stroke patients was graded by the Brunnstrom,stages ( Ⅰ -Ⅵ), and be able to grasp various objects and extend for the whole range was taken as grade Ⅵ. ③ The patients were examined with fMRI BOLD before rehabilitation and 3 weeks after rehabilitation. All the patients were trained with finger movements, the distracting thoughts should be eliminated as much as possible especially during the movement phase, the patients should highly concentrate on the hand movements. The range for the finger movements should be as large as possible with moderate frequency. The hand movements should be 10 s with

  18. Correlation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness

    Soddu, Andrea; Gomez, Francisco; Heine, Lizette; Di Perri, Carol; Bahri, Mohamed Ali; Voss, Henning U.; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Phillips, Christophe; Demertzi, Athina; Chatelle, Camille; Schrouff, Jessica; Thibaut, Aurore; Charland-Verville, Vanessa; Noirhomme, Quentin

    2015-01-01

    Introduction: The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure ‘resting state’ cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. Objective: We assessed the possi- bility of creating functional MRI activity maps, which could estimate the rela- tive levels...

  19. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study.

    Kaufmann, C; Wehrle, R; Wetter, T C; Holsboer, F; Auer, D P; Pollmächer, T; Czisch, M

    2006-03-01

    Regional differences in sleep EEG dynamics indicate that sleep-related brain activity involves local brain processes with sleep stage specific activity patterns of neuronal populations. Macroscopically, it is not fully understood which cerebral brain regions are involved in the successive discontinuation of wakefulness. We simultaneously used EEG and functional MRI on 9 subjects (6 female: mean = 24.1 years, 3 male: mean = 26.0 years) and analyzed local blood oxygenation level dependent signal changes linked to the transition from wakefulness to different non-rapid eye movement (NREM) sleep stages (according to Rechtschaffen and Kales) of the first sleep cycles after 36 h of total sleep deprivation. Several brain regions throughout the cortex, the limbic lobe, the thalamus, the caudate nucleus, as well as midbrain structures, such as the mammillary body/hypothalamus, showed reduced activity during NREM sleep across all sleep stages. Additionally, we found deactivation patterns specific to NREM sleep stages compared with wakefulness suggesting that a synchronized sleeping state can be established only if these regions interact in a well-balanced way. Sleep stage 2, which is usually linked to the loss of self-conscious awareness, is associated with signal decreases comprising thalamic and hypothalamic regions, the cingulate cortex, the right insula and adjacent regions of the temporal lobe, the inferior parietal lobule and the inferior/middle frontal gyri. The hypothalamic region known to be of particular importance in the regulation of the sleep-wake cycle shows specific temporally correlated network activity with the cortex while the system is in the sleeping state, but not during wakefulness. We describe a specific pattern of decreased brain activity during sleep and suggest that this pattern must be synchronized for establishing and maintaining sleep. PMID:16339798

  20. Multi-regional investigation of the relationship between functional MRI blood oxygenation level dependent (BOLD activation and GABA concentration.

    Ashley D Harris

    Full Text Available Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.

  1. Is dorsal anterior cingulate cortex activation in response to social exclusion due to expectancy violation?: An fMRI study

    Taishi Kawamoto

    2012-07-01

    Full Text Available People are typically quite sensitive about being accepted or excluded by others. Previous studies have suggested that the dorsal anterior cingulate cortex (dACC is a key brain region involved in the detection of social exclusion. However, this region has also been shown to be sensitive to non-social expectancy violations. We often expect other people to follow an unwritten rule in which they include us as they would expect to be included, such that social exclusion likely involves some degree of expectancy violation. The present event-related functional magnetic resonance imaging (fMRI study sought to separate the effects of expectancy violation from those of social exclusion, such that we employed an “overinclusion” condition in which a player was unexpectedly overincluded in the game by the other players. With this modification, we found that the dACC and right ventrolateral prefrontal cortex (rVLPFC were activated by exclusion, relative to overinclusion. In addition, we identified a negative correlation between exclusion-evoked brain activity and self-rated social pain in the rVLPFC, but not in the dACC. These findings suggest that the rVLPFC is critical for regulating social pain, whereas the dACC plays an important role in the detection of exclusion. The neurobiological basis of social exclusion is different from that of mere expectancy violation.

  2. Dynamic subcortical blood flow during male sexual activity with ecological validity: a perfusion fMRI study.

    Georgiadis, Janniko R; Farrell, Michael J; Boessen, Ruud; Denton, Derek A; Gavrilescu, Maria; Kortekaas, Rudie; Renken, Remco J; Hoogduin, Johannes M; Egan, Gary F

    2010-03-01

    This study used arterial spin labeling (ASL) fMRI to measure brain perfusion in a group of healthy men under conditions that closely resembled customary sexual behavior. Serial perfusion measures for 30 min during two self-limited periods of partnered penis stimulation, and during post-stimulatory periods, revealed novel sexual activity-related cerebral blood flow (rCBF) changes, mainly in subcortical parts of the brain. Ventral pallidum rCBF was highest during the onset of penile erection, and lowest after the termination of penis stimulation. The perceived level of sexual arousal showed the strongest positive association with rCBF in the right basal forebrain. In addition, our results demonstrate that distinct subregions of the hypothalamus and cingulate cortex subserve opposite functions during human male sexual behavior. The lateral hypothalamus and anterior part of the middle cingulate cortex showed increased rCBF correlated with penile erection. By contrast, the anteroventral hypothalamus and subgenual anterior cingulate cortex exhibited rCBF changes correlated with penile detumescence after penile stimulation. Continuous rapid and high-resolution brain perfusion imaging during normal sexual activity has provided novel insights into the central mechanisms that control male sexual arousal. PMID:20006720

  3. Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach

    In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. (authors)

  4. Differential Left Hippocampal Activation during Retrieval with Different Types of Reminders: An fMRI Study of the Reconsolidation Process

    De Pino, Gabriela; Fernández, Rodrigo Sebastián; Villarreal, Mirta Fabiana; Pedreira, María Eugenia

    2016-01-01

    Consolidated memories return to a labile state after the presentation of cues (reminders) associated with acquisition, followed by a period of stabilization (reconsolidation). However not all cues are equally effective in initiating the process, unpredictable cues triggered it, predictable cues do not. We hypothesize that the different effects observed by the different reminder types on memory labilization-reconsolidation depend on a differential neural involvement during reminder presentation. To test it, we developed a declarative task and compared the efficacy of three reminder types in triggering the process in humans (Experiment 1). Finally, we compared the brain activation patterns between the different conditions using functional magnetic resonance imaging (fMRI) (Experiment 2). We confirmed that the unpredictable reminder is the most effective in initiating the labilization-reconsolidation process. Furthermore, only under this condition there was differential left hippocampal activation during its presentation. We suggest that the left hippocampus is detecting the incongruence between actual and past events and allows the memory to be updated. PMID:26991776

  5. Analysis of short single rest/activation epoch fMRI by self-organizing map neural network

    Erberich, Stephan G.; Dietrich, Thomas; Kemeny, Stefan; Krings, Timo; Willmes, Klaus; Thron, Armin; Oberschelp, Walter

    2000-04-01

    Functional magnet resonance imaging (fMRI) has become a standard non invasive brain imaging technique delivering high spatial resolution. Brain activation is determined by magnetic susceptibility of the blood oxygen level (BOLD effect) during an activation task, e.g. motor, auditory and visual tasks. Usually box-car paradigms have 2 - 4 rest/activation epochs with at least an overall of 50 volumes per scan in the time domain. Statistical test based analysis methods need a large amount of repetitively acquired brain volumes to gain statistical power, like Student's t-test. The introduced technique based on a self-organizing neural network (SOM) makes use of the intrinsic features of the condition change between rest and activation epoch and demonstrated to differentiate between the conditions with less time points having only one rest and one activation epoch. The method reduces scan and analysis time and the probability of possible motion artifacts from the relaxation of the patients head. Functional magnet resonance imaging (fMRI) of patients for pre-surgical evaluation and volunteers were acquired with motor (hand clenching and finger tapping), sensory (ice application), auditory (phonological and semantic word recognition task) and visual paradigms (mental rotation). For imaging we used different BOLD contrast sensitive Gradient Echo Planar Imaging (GE-EPI) single-shot pulse sequences (TR 2000 and 4000, 64 X 64 and 128 X 128, 15 - 40 slices) on a Philips Gyroscan NT 1.5 Tesla MR imager. All paradigms were RARARA (R equals rest, A equals activation) with an epoch width of 11 time points each. We used the self-organizing neural network implementation described by T. Kohonen with a 4 X 2 2D neuron map. The presented time course vectors were clustered by similar features in the 2D neuron map. Three neural networks were trained and used for labeling with the time course vectors of one, two and all three on/off epochs. The results were also compared by using a

  6. Differentiation between active and chronic Crohn's disease using MRI small-bowel motility examinations — Initial experience

    Aim: To evaluate the influence of locally active Crohn's disease on systemic small-bowel motility in patients with chronic Crohn's disease compared to healthy individuals. Material and methods: Fifteen healthy individuals (11 men, four women; mean age 37 years) and 20 patients with histopathologically proven active (n = 15; 10 women, 5 men; mean age 45 years) or chronic (n = 5; four women, one man; mean age 48 years) Crohn's disease were included in this institutional review board-approved, retrospective study. Magnetic resonance imaging (MRI; 1.5 T) was performed after standardized preparation. Two-dimensional (2D) cine sequences for motility acquisition were performed in apnoea (27 s). Motility assessment was performed using dedicated software in three randomly chosen areas of the small-bowel outside known Crohn's disease-affected hotspots. The main quantitative characteristics (frequency, amplitude, occlusion rate) were compared using Student's t-test and one-way analysis of variance (ANOVA). Results: Three randomly chosen segments were analysed in each participant. Patients with active Crohn's disease had significantly (p < 0.05) reduced contraction frequencies (active Crohn's disease: 2.86/min; chronic: 4.14/min; healthy: 4.53/min) and luminal occlusion rates (active: 0.43; chronic: 0.70; healthy: 0.73) compared to healthy individuals and patients with chronic Crohn's disease. Contraction amplitudes were significantly reduced during active Crohn's disease (6.71 mm) compared to healthy participants (10.14 mm), but this only reached borderline significance in comparison to chronic Crohn's disease (8.87 mm). Mean bowel lumen diameter was significantly (p = 0.04) higher in patients with active Crohn's disease (16.91 mm) compared to healthy participants (14.79 mm) but not in comparison to patients with chronic Crohn's disease (13.68). Conclusion: The findings of the present study suggest that local inflammatory activity of small-bowel segments in patients with

  7. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations.

    Vassal, François; Schneider, Fabien; Boutet, Claire; Jean, Betty; Sontheimer, Anna; Lemaire, Jean-Jacques

    2016-01-01

    Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM) connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI) fiber tracking (FT) and language functional magnetic resonance imaging (fMRI) in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF), superior longitudinal fascicle (SLF), uncinate fascicle (UF), temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF), middle longitudinal fascicle (MdLF), frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy) and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be related to

  8. Effects of oral glatiramer acetate on clinical and MRI-monitored disease activity in patients with relapsing multiple sclerosis: a multicentre, double-blind, randomised, placebo-controlled study.

    Filippi, M.; Wolinsky, J.S.; Comi, G.

    2006-01-01

    BACKGROUND: Parenterally administered glatiramer acetate reduces the frequency of relapses and the formation of active brain lesions seen with MRI in multiple sclerosis. This study assessed whether two doses of glatiramer acetate given orally could improve clinical and MRI measures of inflammation a

  9. Reduced parietal activation in cervical dystonia after parietal TMS interleaved with fMRI

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Hinson, Vanessa K.; George, Mark S.; Leenders, Klaus L.

    2012-01-01

    Objective: Clinically normal hand movement with altered cerebral activation patterns in cervical dystonia (CD) may imply cerebral adaptation. Since impaired sensorimotor integration appears to play a role in dystonia, left superior parietal cortex modulation with repetitive transcranial magnetic sti

  10. Comparison of [18 F]FDG PET/CT and MRI in the diagnosis of active osteomyelitis

    Demirev, Anastas; Mottaghy, Felix [University Hospital of Maastricht, Department of Nuclear Medicine, Maastricht (Netherlands); Weijers, Rene [University Hospital of Maastricht, Department of Radiology, Maastricht (Netherlands); Geurts, Jan; Walenkamp, Geert [University Hospital of Maastricht, Department of Orthopedic Surgery, Maastricht (Netherlands); Brans, Boudewijn [University Hospital of Maastricht, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Centre, Department of Nuclear Medicine, PO Box 5800, Maastricht (Netherlands)

    2014-05-15

    In diagnosing osteomyelitis (OM) both MRI and [18 F]FDG PET-CT proved to be accurate modalities. In anticipation of the advent of hybrid PET/MRI scanners we analyzed our patient group to give direction to future imaging strategies in patients with suspected OM. In this retrospective study all patients of a tertiary referral center who underwent both an MRI and a PET for the diagnosis of OM were included. The results of those scans were evaluated using patient's histology, microbiological findings, and clinical/radiological follow-up. Additionally, ROC curve analysis of the SUVmax and the SUVmax ratio on the PET scans was performed. Two imaging strategies were simulated: first MRI followed by PET, or vice versa. Twenty-seven localizations in 26 patients were included. Both MRI and PET were shown to be accurate in our patients for the qualitative detection of OM. A cut-off value for the SUVmax of 3 gave optimal results (a specificity of 90 % with a sensitivity of 88 %). The SUVmax ratio gave a worse performance. The two simulated imaging strategies showed no difference in the final diagnosis in 20 out of 27 cases. Remarkably, 6 equivocal cases were all correctly diagnosed by the second modality, i.e., PET or MRI. Both MRI and [18 F]FDG PET were accurate in diagnosing OM in a tertiary referral hospital population. Simulation of imaging strategies showed that a combined sequential strategy was optimal. It seems preferable to use MRI as a primary imaging tool for uncomplicated unifocal cases, whereas in cases with (possible) multifocal disease or a contraindication for MRI, PET is preferred. This combined sequential strategy looks promising, but needs to be confirmed in a larger prospective study. (orig.)

  11. Cortical activities evoked by the signals ascending through unmyelinated C fibers in humans. A fMRI study

    Acute pain is classified as first and second pain associated with rapidly conducting Aδ fibers and slowly conducting unmyelinated C fibers, respectively. First pain aims at achieving relative safety from the source of injury, whereas second pain, with its strong affective component, attracts longer-lasting attention and initiates behavioral responses in order to limit further injury and optimize recovery. Accordingly, the distinct brain representations for first and second pain should reflect distinct biological functions of both sensations. In this study, therefore, an event-related functional magnetic resonance imaging (fMRI) was used to investigate brain processing of the signals ascending from peripheral C and Aδ fibers evoked by phasic laser stimuli on the right hand in humans. The stimulation of both C and Aδ nociceptors activated the bilateral thalamus, bilateral secondary somatosensory cortex (SII), right (ipsilateral) middle insula, and bilateral Brodmann's area (BA) 24/32, with the majority of activity found in the posterior portion of the anterior cingulate cortex (pACC). However, magnitude of activity in the right (ipsilateral) BA32/8/6, including dorsal parts in the anterior portion of the ACC (aACC) and pre-supplementary motor area (pre-SMA), and the bilateral anterior insula was significantly stronger following the stimulation of C nociceptors than Aδ nociceptors. It was concluded that the activation of C nociceptors, related to second pain, evokes different brain processing from that of Aδ nociceptors, related to first pain, probably due to the differences in the emotional and motivational aspects of either pain, which are mainly related to the aACC, pre-SMA and anterior insula. (author)

  12. The effect of leisure activity golf practice on motor imagery: an fMRI study in middle adulthood

    Ladina eBezzola

    2012-03-01

    Full Text Available Much is known about practice-induced plasticity of the motor system. But it is not clear whether the activity in the motor network induced by mental motor imagery is influenced by actually practicing the imagined motor tasks.In a longitudinal study design with two measurement time-points, functional magnetic resonance imaging (fMRI was used to explore dynamic changes in the brain in response to training of highly complex movements by participants of 40 to 60 years of age. The investigated motor learning task entailed golf training practiced by novices as leisure activity. Additionally, data from an age and sex-matched control group without golf training was collected.Results show increased hemodynamic responses during mental rehearsal of a golf swing in non-primary cortical motor areas, sub-cortical motor areas, and parietal regions of the novice golfers and the control subjects. This result complements previous mental imagery research that shows involvement of motor areas during mental rehearsal of a complex movement, especially in subjects with low skill level. More importantly, changes were only found between the two measurement time-points in the golf novice group with a decrease in hemodynamic responses in non-primary motor areas after the 40 hours of golf practice. Thus, the results indicate that a complex physical leisure activity induces functional neuroplasticity in the seldom studied population of middle-aged adults, and that this effect is evident during mental rehearsal of the practiced task. This finding supports the idea that (a a skill improvement is associated with a modified activation pattern in the associated neuronal network that can be identified during mental rehearsal of the practiced task, and that (b a strict training protocol is not necessary to induce functional neuroplasticity.

  13. Cocaine-induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganese-enhanced MRI.

    Perrine, Shane A; Ghoddoussi, Farhad; Desai, Kirtan; Kohler, Robert J; Eapen, Ajay T; Lisieski, Michael J; Angoa-Perez, Mariana; Kuhn, Donald M; Bosse, Kelly E; Conti, Alana C; Bissig, David; Berkowitz, Bruce A

    2015-11-01

    A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence. PMID:26411897

  14. Brain activity during driving with distraction: an immersive fMRI study

    Tom A Schweizer; Karen Kan; Yuwen Hung; Fred Tam; Gary Naglie; Simon Graham

    2013-01-01

    Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functio...

  15. Abnormal Activation of the Primary Somatosensory Cortex in Spasmodic Dysphonia: An fMRI Study

    Simonyan, Kristina; Ludlow, Christy L.

    2010-01-01

    Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and d...

  16. Abdominal MRI

    ... kidney and ureter Insulinoma Islet of Langerhans tumor Medullary cystic disease Multiple endocrine neoplasia (MEN) I Multiple endocrine neoplasia ( ... kidney and ureter Insulinoma Kidney stones Lymphofollicular ... kidney disease MRI Multiple endocrine neoplasia (MEN) I Multiple endocrine ...

  17. Pediatric MRI

    U.S. Department of Health & Human Services — The NIH Study of Normal Brain Development is a longitudinal study using anatomical MRI, diffusion tensor imaging (DTI), and MR spectroscopy (MRS) to map pediatric...

  18. Thinking about eating food activates visual cortex with reduced bilateral cerebellar activation in females with anorexia nervosa: an fMRI study.

    Samantha J Brooks

    Full Text Available BACKGROUND: Women with anorexia nervosa (AN have aberrant cognitions about food and altered activity in prefrontal cortical and somatosensory regions to food images. However, differential effects on the brain when thinking about eating food between healthy women and those with AN is unknown. METHODS: Functional magnetic resonance imaging (fMRI examined neural activation when 42 women thought about eating the food shown in images: 18 with AN (11 RAN, 7 BPAN and 24 age-matched controls (HC. RESULTS: Group contrasts between HC and AN revealed reduced activation in AN in the bilateral cerebellar vermis, and increased activation in the right visual cortex. Preliminary comparisons between AN subtypes and healthy controls suggest differences in cortical and limbic regions. CONCLUSIONS: These preliminary data suggest that thinking about eating food shown in images increases visual and prefrontal cortical neural responses in females with AN, which may underlie cognitive biases towards food stimuli and ruminations about controlling food intake. Future studies are needed to explicitly test how thinking about eating activates restraint cognitions, specifically in those with restricting vs. binge-purging AN subtypes.

  19. Assessment of brain activities during an emotional stress state using fMRI

    We investigated cerebrum activation using functional magnetic resonance imaging during a mental stress state. Thirty-four healthy adults participated. Before the experiment, we assessed their stress states using the Stress Self-rating Scale and divided the participants into Stress and Non-stress groups. The experiment consisted of 6 trials. Each trial consisted of a 20-s block of emotional audio-visual stimuli (4-s stimulation x 5 slides) and a fixation point. These processes were performed 3 times continuously (Relaxed, Pleasant, Unpleasant stimuli) in a random order. These results showed that the Non-stress group indicated activation of the amygdala and hippocampus in the Pleasant and Unpleasant stimuli while the Stress group indicated activation of the hippocampus in Pleasant stimuli, and the amygdala and hippocampus in Unpleasant stimuli. These findings suggested that the mental stress state engages the reduction of emotional processing. Also, the responsiveness of the memory system remained during and after the emotional stress state. (author)

  20. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.

    Anand, Sindhu; Kumar, Swathy Sampath; Muthuswamy, Jit

    2016-08-01

    Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time). PMID:27457752

  1. Neural activity in relation to clinically derived personality syndromes in depression using a psychodynamic fMRI paradigm

    Svenja eTaubner

    2013-12-01

    Full Text Available Objective: The heterogeneity between patients with depression cannot be captured adequately with existing descriptive systems of diagnosis and neurobiological models of depression. Furthermore, considering the highly individual nature of depression, the application of general stimuli in past research efforts may not capture the essence of the disorder. This study aims to identify subtypes of depression by using empirically-derived personality-syndromes, and to explore neural correlates of the derived personality syndromes.Method: In the present exploratory study an individually tailored and psychodynamically based fMRI paradigm using dysfunctional relationship patterns was presented to 20 chronically depressed patients. Results from the Shedler-Westen-Assessment-Procedure (SWAP-200 were analyzed by Q-factor analysis to identify clinically relevant subgroups of depression and related brain activation.Results: The principle component analysis of SWAP-200 items from all 20 patients lead to a 2-factor solution: Depressive Personality and Emotional-Hostile-Externalizing Personality. Both factors were used in a whole-brain correlational analysis but only the second factor yielded significant positive correlations in four regions: A large cluster in the right orbitofrontal cortex (OFC, the left ventral striatum, a small cluster in the left temporal pole and another small cluster in the right middle frontal gyrus. Discussion: The degree to which patients with depression score high on the factor Emotional-Hostile-Externalizing Personality correlated with relatively higher activity in three key areas involved in emotion processing, evaluation of reward/punishment, negative cognitions, depressive pathology and social knowledge (OFC, ventral striatum, temporal pole. Results may contribute to an alternative description of neural correlates of depression showing differential brain activation dependent on the extent of specific personality syndromes in

  2. Mirror neuron activity during contagious yawning--an fMRI study.

    Haker, Helene; Kawohl, Wolfram; Herwig, Uwe; Rössler, Wulf

    2013-03-01

    Yawning is contagious. However, little research has been done to elucidate the neuronal representation of this phenomenon. Our study objective was to test the hypothesis that the human mirror neuron system (MNS) is activated by visually perceived yawning. We used functional magnetic resonance imaging to assess brain activity during contagious yawning (CY). Signal-dependent changes in blood oxygen levels were compared when subjects viewed videotapes of yawning faces as opposed to faces with a neutral expression. In response to yawning, subjects showed unilateral activation of their Brodmann's area 9 (BA 9) portion of the right inferior frontal gyrus, a region of the MNS. In this way, two individuals could share physiological and associated emotional states based on perceived motor patterns. This is one component of empathy (motor empathy) that underlies the development of cognitive empathy. The BA 9 is reportedly active in tasks requiring mentalizing abilities. Our results emphasize the connection between the MNS and higher cognitive empathic functions, including mentalizing. We conclude that CY is based on a functional substrate of empathy. PMID:22772979

  3. Using Perfusion fMRI to Measure Continuous Changes in Neural Activity with Learning

    Olson, Ingrid R.; Rao, Hengyi; Moore, Katherine Sledge; Wang, Jiongjiong; Detre, John A.; Aguirre, Geoffrey K.

    2006-01-01

    In this study, we examine the suitability of a relatively new imaging technique, "arterial spin labeled perfusion imaging," for the study of continuous, gradual changes in neural activity. Unlike BOLD imaging, the perfusion signal is stable over long time-scales, allowing for accurate assessment of continuous performance. In addition, perfusion…

  4. Abnormal cortical sensorimotor activity during "Target" sound detection in subjects with acute acoustic trauma sequelae: an fMRI study.

    Job, Agnès; Pons, Yoann; Lamalle, Laurent; Jaillard, Assia; Buck, Karl; Segebarth, Christoph; Delon-Martin, Chantal

    2012-03-01

    The most common consequences of acute acoustic trauma (AAT) are hearing loss at frequencies above 3 kHz and tinnitus. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to visualize neuronal activation patterns in military adults with AAT and various tinnitus sequelae during an auditory "oddball" attention task. AAT subjects displayed overactivities principally during reflex of target sound detection, in sensorimotor areas and in emotion-related areas such as the insula, anterior cingulate and prefrontal cortex, in premotor area, in cross-modal sensory associative areas, and, interestingly, in a region of the Rolandic operculum that has recently been shown to be involved in tympanic movements due to air pressure. We propose further investigations of this brain area and fine middle ear investigations, because our results might suggest a model in which AAT tinnitus may arise as a proprioceptive illusion caused by abnormal excitability of middle-ear muscle spindles possibly link with the acoustic reflex and associated with emotional and sensorimotor disturbances. PMID:22574285

  5. Fingerprints of Learned Object Recognition Seen in the fMRI Activation Patterns of Lateral Occipital Complex.

    Roth, Zvi N; Zohary, Ehud

    2015-09-01

    One feature of visual processing in the ventral stream is that cortical responses gradually depart from the physical aspects of the visual stimulus and become correlated with perceptual experience. Thus, unlike early retinotopic areas, the responses in the object-related lateral occipital complex (LOC) are typically immune to parameter changes (e.g., contrast, location, etc.) when these do not affect recognition. Here, we use a complementary approach to highlight changes in brain activity following a shift in the perceptual state (in the absence of any alteration in the physical image). Specifically, we focus on LOC and early visual cortex (EVC) and compare their functional magnetic resonance imaging (fMRI) responses to degraded object images, before and after fast perceptual learning that renders initially unrecognized objects identifiable. Using 3 complementary analyses, we find that, in LOC, unlike EVC, learned recognition is associated with a change in the multivoxel response pattern to degraded object images, such that the response becomes significantly more correlated with that evoked by the intact version of the same image. This provides further evidence that the coding in LOC reflects the recognition of visual objects. PMID:24692511

  6. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study.

    Becker, G; Bolbos, R; Costes, N; Redouté, J; Newman-Tancredi, A; Zimmer, L

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  7. Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM)

    Seow, P.; Win, M. T.; Wong, J. H. D.; Abdullah, N. A.; Ramli, N.

    2016-03-01

    Gliomas are tumours arising from the interstitial tissue of the brain which are heterogeneous, infiltrative and possess ill-defined borders. Tumour subregions (e.g. solid enhancing part, edema and necrosis) are often used for tumour characterisation. Tumour demarcation into substructures facilitates glioma staging and provides essential information. Manual segmentation had several drawbacks that include laborious, time consuming, subjected to intra and inter-rater variability and hindered by diversity in the appearance of tumour tissues. In this work, active contour model (ACM) was used to segment the solid enhancing subregion of the tumour. 2D brain image acquisition data using 3T MRI fast spoiled gradient echo sequence in post gadolinium of four histologically proven high-grade glioma patients were obtained. Preprocessing of the images which includes subtraction and skull stripping were performed and then followed by ACM segmentation. The results of the automatic segmentation method were compared against the manual delineation of the tumour by a trainee radiologist. Both results were further validated by an experienced neuroradiologist and a brief quantitative evaluations (pixel area and difference ratio) were performed. Preliminary results of the clinical data showed the potential of ACM model in the application of fast and large scale tumour segmentation in medical imaging.

  8. Head MRI

    ... you have: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not be able to ... artificial joints Certain types of vascular stents Worked with ...

  9. Heart MRI

    ... you have: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not be able to ... artificial joints Certain types of vascular stents Worked with ...

  10. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    Khoram, Nafiseh

    2014-08-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented. © 2014 IEEE.

  11. MRI and morphological observation in C6 glioma model rats and significance

    Objective: To establish stable and reliable rat C6 glioma model, and to perform MRI dynamic observation and pathomorphological observation in model animal brain, and to provide experimental basis for pharmaceutical research on anti-glioma drugs. Methods: The C6 glioma cells were cultured and 20 μL cultural fluid containing 1×106 C6 cells was sterotactically implanted into the left caudate nuclei in 10 male Wistar rats, respectively. The changes in the behavior of the rats after implantation were observed and recorded. MRI dynamic scanning was performed in 10 rats 2, 3 and 4 weeks after implantation and the brain tissues were taken for general and pathological examination when the 10 rats were naturally dead. The survival period of tumor-bearing rats was calculated. Results: 2 weeks after implantation the rats showed decreased activities and food intake, fur lackluster, and conjunctival congestion and so on; 3 weeks later, some rats appeared nerve symptoms such as body twitch, body hemiplegy, body distortion, rotation and so on. All the 10 rats died in 8-30 d. The median survival period of the tumor-bearing rats was 18 d, the average survival period was (18.3±7.3) d. The pathological examination showed that the tumor cells were arranged irregularly closely and karyokinesis was easy to see; tumor vascular tissue proliferation and tumor invasive growth into surrounding normal tissues were found. The expression of glial fibrillary acidic protein (GFAP) was positive in the tumors. Conclusion: A stable animal model of intracranial glioma is successfully established by stereotactic implantation of C6 cells into the rat caudate nucleus. The results of MRI dynamic observation and pathohistological observation on the model animal brain tissue. Can provide experimental basis for selecting the appropriate time window to perform the pharmaceutical research on anti-glioma drugs. (authors)

  12. Combination of DTI and fMRI reveals the white matter changes correlating with the decline of default-mode network activity in Alzheimer's disease

    Wu, Xianjun; Di, Qian; Li, Yao; Zhao, Xiaojie

    2009-02-01

    Recently, evidences from fMRI studies have shown that there was decreased activity among the default-mode network in Alzheimer's disease (AD), and DTI researches also demonstrated that demyelinations exist in white matter of AD patients. Therefore, combining these two MRI methods may help to reveal the relationship between white matter damages and alterations of the resting state functional connectivity network. In the present study, we tried to address this issue by means of correlation analysis between DTI and resting state fMRI images. The default-mode networks of AD and normal control groups were compared to find the areas with significantly declined activity firstly. Then, the white matter regions whose fractional anisotropy (FA) value correlated with this decline were located through multiple regressions between the FA values and the BOLD response of the default networks. Among these correlating white matter regions, those whose FA values also declined were found by a group comparison between AD patients and healthy elderly control subjects. Our results showed that the areas with decreased activity among default-mode network included left posterior cingulated cortex (PCC), left medial temporal gyrus et al. And the damaged white matter areas correlated with the default-mode network alterations were located around left sub-gyral temporal lobe. These changes may relate to the decreased connectivity between PCC and medial temporal lobe (MTL), and thus correlate with the deficiency of default-mode network activity.

  13. Kinetic analysis of hyaluronidase activity using a bioactive MRI contrast agent

    Shiftan, Liora; Neeman, Michal

    2006-01-01

    One of the attractions of molecular imaging using ‘smart’ bioactive contrast agents is the ability to provide non-invasive data on the spatial and temporal changes in the distribution and expression patterns of specific enzymes. The tools developed for that aim could potentially also be developed for functional imaging of enzyme activity itself, through quantitative analysis of the rapid dynamics of enzymatic conversion of these contrast agents. High molecular weight hyaluronan, the natural s...

  14. Altered Spontaneous Activity in Anisometropic Amblyopia Subjects: Revealed by Resting-State fMRI

    Lin, Xiaoming; Ding, Kun; Liu, Yong; Yan, Xiaohe; SONG Shaojie; Jiang, Tianzi

    2012-01-01

    Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo), a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to invest...

  15. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism.

    Sotero, Roberto C; Trujillo-Barreto, Nelson J

    2008-01-01

    Our goal is to model the coupling between neuronal activity, cerebral metabolic rates of glucose and oxygen consumption, cerebral blood flow (CBF), electroencephalography (EEG) and blood oxygenation level-dependent (BOLD) responses. In order to accomplish this, two previous models are coupled: a metabolic/hemodynamic model (MHM) for a voxel, linking BOLD signals and neuronal activity, and a neural mass model describing the neuronal dynamics within a voxel and its interactions with voxels of the same area (short-range interactions) and other areas (long-range interactions). For coupling both models, we take as the input to the BOLD model, the number of active synapses within the voxel, that is, the average number of synapses that will receive an action potential within the time unit. This is obtained by considering the action potentials transmitted between neuronal populations within the voxel, as well as those arriving from other voxels. Simulations are carried out for testing the integrated model. Results show that realistic evoked potentials (EP) at electrodes on the scalp surface and the corresponding BOLD signals for each voxel are produced by the model. In another simulation, the alpha rhythm was reproduced and reasonable similarities with experimental data were obtained when calculating correlations between BOLD signals and the alpha power curve. The origin of negative BOLD responses and the characteristics of EEG, PET and BOLD signals in Alzheimer's disease were also studied. PMID:17919931

  16. An active learning approach to education in MRI technology for the biomedical engineering curriculum

    Hanson, Lars G.

    2012-01-01

    sense expressed in the math is in focus. Unfortunately, the nuclear dynamics happen in four dimensions, and are therefore not well suited for illustration on blackboard. 3D movies are more appropriate, but they do not encourage active learning. The typical solution employed by educators is hand waving...... (literally), since arm motions can to a limited extent be used to illustrate nuclear dynamics. Many students find this confusing, however, and students who do not grasp the meaning during lectures, are left in a bad position. For this reason, educational software was developed over the last decade (the Bloch...

  17. Electrical Nerve Stimulation Can Be Used as a Tool in fMRI Studies of Pain- and Tingling-Evoked Activations

    Davis, Karen D.; Kwan, Chun L; Crawley, Adrian P.; Mikulis, David J.

    2000-01-01

    OBJECTIVES/HYPOTHESES: To determine whether transcutaneous electrical nerve stimulation (TENS) provides adequate, inexpensive and simple means to image innocuous and pain-related activations in the thalamus and cortex.SUBJECTS AND METHODS: High resolution functional magnetic resonance imaging (fMRI) was used to obtain functional data sets on a 1.5T General Electric echospeed scanner (General Electric, Milwaukee) from six axial slices during interleaved periods of rest and TENS at either nonpa...

  18. Functional MRI approach for assessing hemispheric predominance of regions activated by a phonological and a semantic task

    Cousin, Emilie; Peyrin, Carole; Pichat, Cedric [Laboratoire de Psychologie et Neurocognition, UMR CNRS 5105, Universite Pierre Mendes-France, BP 47, 38040 Grenoble Cedex 09 (France); Lamalle, Laurent; Le Bas, Jean-Francois [Unite IRM, IFR1, CHU Grenoble (France); Baciu, Monica [Laboratoire de Psychologie et Neurocognition, UMR CNRS 5105, Universite Pierre Mendes-France, BP 47, 38040 Grenoble Cedex 09 (France)], E-mail: mbaciu@upmf-grenoble.fr

    2007-08-15

    This fMRI study performed in healthy subjects aimed at using a statistical approach in order to determine significant functional differences between hemispheres and to assess specialized regions activated during a phonological and during a semantic task. This approach ('flip' method and subsequent statistical analyses of the parameter estimates extracted from regions of interest) allows identifying: (a) hemispheric specialized regions for each language task [semantic (living categorization) and phonological (rhyme detection)] and (b) condition-specific regions with respect to paradigm conditions (task and control). Our results showed that the rhyme-specific task regions were the inferior frontal (sub-region of BA 44, 45) and left inferior parietal (BA 40, 39) lobules. Furthermore, within the inferior parietal lobule, the angular gyrus was specific to target (rhyming) items (related to successfully grapho-phonemic processing). The categorization-specific task regions were the left inferior frontal (sub-region of BA 44, 45) and superior temporal (BA 22) cortices. Furthermore, the superior temporal gyrus was related to non-target (non-living) items (correlated to task difficulty). The relatively new approach used in this study has the advantage of providing: (a) statistical significance of the hemispheric specialized regions for a given language task and (b) supplementary information in terms of paradigm condition-specificity of the activated regions. The results (standard hemispheric specialized regions for a semantic and for a phonological task) obtained in healthy subjects may constitute a basement for mapping language and assessing hemispheric predominance in epileptic patients before surgery and avoiding post-surgical impairments of language.

  19. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang [Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao, Zuowei, E-mail: liuhui@dlut.edu.cn [Second Affiliated Hospital, Dalian Medical University, Dalian 116027 (China); Zhang, Lina [Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian 116027 (China)

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  20. An fMRI study of joint action–varying levels of cooperation correlates with activity in control networks

    Chaminade, Thierry; Marchant, Jennifer L.; Kilner, James; Frith, Christopher D.

    2012-01-01

    As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant, the amount of cooperation along the two dimensions varied along four levels, from no (each participant controlled one dimension exclusively) to full (each participant controlled half of each dimension) cooperation. Increasing cooperation correlated with BOLD signal in the left parietal operculum and anterior cingulate cortex (ACC), while decreasing cooperation correlated with activity in the right inferior frontal and superior temporal gyri, the intraparietal sulci and inferior temporal gyri bilaterally, and the dorsomedial prefrontal cortex. As joint performance improved with the level of cooperation, we assessed the brain responses correlating with behavior, and found that activity in most of the areas associated with levels of cooperation also correlated with the joint performance. The only brain area found exclusively in the negative correlation with cooperation was in the dorso medial frontal cortex, involved in monitoring action outcome. Given the cluster location and condition-related signal change, we propose that this region monitored actions to extract the level of cooperation in order to optimize the joint response. Our results, therefore, indicate that, in the current experimental paradigm involving joint control of a visually presented object with joystick movements, the level of cooperation affected brain networks involved in action control, but not mentalizing. PMID:22715326

  1. An fMRI study of joint action-varying levels of cooperation correlates with activity in control networks.

    Chaminade, Thierry; Marchant, Jennifer L; Kilner, James; Frith, Christopher D

    2012-01-01

    As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant, the amount of cooperation along the two dimensions varied along four levels, from no (each participant controlled one dimension exclusively) to full (each participant controlled half of each dimension) cooperation. Increasing cooperation correlated with BOLD signal in the left parietal operculum and anterior cingulate cortex (ACC), while decreasing cooperation correlated with activity in the right inferior frontal and superior temporal gyri, the intraparietal sulci and inferior temporal gyri bilaterally, and the dorsomedial prefrontal cortex. As joint performance improved with the level of cooperation, we assessed the brain responses correlating with behavior, and found that activity in most of the areas associated with levels of cooperation also correlated with the joint performance. The only brain area found exclusively in the negative correlation with cooperation was in the dorso medial frontal cortex, involved in monitoring action outcome. Given the cluster location and condition-related signal change, we propose that this region monitored actions to extract the level of cooperation in order to optimize the joint response. Our results, therefore, indicate that, in the current experimental paradigm involving joint control of a visually presented object with joystick movements, the level of cooperation affected brain networks involved in action control, but not mentalizing. PMID:22715326

  2. Functional MRI approach for assessing hemispheric predominance of regions activated by a phonological and a semantic task

    This fMRI study performed in healthy subjects aimed at using a statistical approach in order to determine significant functional differences between hemispheres and to assess specialized regions activated during a phonological and during a semantic task. This approach ('flip' method and subsequent statistical analyses of the parameter estimates extracted from regions of interest) allows identifying: (a) hemispheric specialized regions for each language task [semantic (living categorization) and phonological (rhyme detection)] and (b) condition-specific regions with respect to paradigm conditions (task and control). Our results showed that the rhyme-specific task regions were the inferior frontal (sub-region of BA 44, 45) and left inferior parietal (BA 40, 39) lobules. Furthermore, within the inferior parietal lobule, the angular gyrus was specific to target (rhyming) items (related to successfully grapho-phonemic processing). The categorization-specific task regions were the left inferior frontal (sub-region of BA 44, 45) and superior temporal (BA 22) cortices. Furthermore, the superior temporal gyrus was related to non-target (non-living) items (correlated to task difficulty). The relatively new approach used in this study has the advantage of providing: (a) statistical significance of the hemispheric specialized regions for a given language task and (b) supplementary information in terms of paradigm condition-specificity of the activated regions. The results (standard hemispheric specialized regions for a semantic and for a phonological task) obtained in healthy subjects may constitute a basement for mapping language and assessing hemispheric predominance in epileptic patients before surgery and avoiding post-surgical impairments of language

  3. Neural activation during imitation with or without performance feedback: An fMRI study.

    Zhang, Kaihua; Wang, Hui; Dong, Guangheng; Wang, Mengxing; Zhang, Jilei; Zhang, Hui; Meng, Weixia; Du, Xiaoxia

    2016-08-26

    In our daily lives, we often receive performance feedback (PF) during imitative learning, and we adjust our behaviors accordingly to improve performance. However, little is known regarding the neural mechanisms underlying this learning process. We hypothesized that appropriate PF would enhance neural activation or recruit additional brain areas during subsequent action imitation. Pictures of 20 different finger gestures without any social meaning were shown to participants from the first-person perspective. Imitation with or without PF was investigated by functional magnetic resonance imaging in 30 healthy subjects. The PF was given by a real person or by a computer. PF from a real person induced hyperactivation of the parietal lobe (precuneus and cuneus), cingulate cortex (posterior and anterior), temporal lobe (superior and transverse temporal gyri), and cerebellum (posterior and anterior lobes) during subsequent imitation. The positive PF and negative PF from a real person, induced the activation of more brain areas during the following imitation. The hyperactivation of the cerebellum, posterior cingulate cortex, precuneus, and cuneus suggests that the subjects exhibited enhanced motor control and visual attention during imitation after PF. Additionally, random PF from a computer had a small effect on the next imitation. We suggest that positive and accurate PF may be helpful for imitation learning. PMID:27422729

  4. Activation Detection on fMRI Time Series Using Hidden Markov Model

    Rong Duan

    2012-01-01

    based on hidden Markov model (HMM. HMM approach is focused on capturing the first-order statistical evolution among the samples of a voxel time series, and it can provide a complimentary perspective of the BOLD signals. Two-state HMM is created for each voxel, and the model parameters are estimated from the voxel time series and the stimulus paradigm. Two different activation detection methods are presented in this paper. The first method is based on the likelihood and likelihood-ratio test, in which an additional Gaussian model is used to enhance the contrast of the HMM likelihood map. The second method is based on certain distance measures between the two state distributions, in which the most likely HMM state sequence is estimated through the Viterbi algorithm. The distance between the on-state and off-state distributions is measured either through a t-test, or using the Kullback-Leibler distance (KLD. Experimental results on both normal subject and brain tumor subject are presented. HMM approach appears to be more robust in detecting the supplemental active voxels comparing with SPM, especially for brain tumor subject.

  5. Manganese-Enhanced MRI Reflects Both Activity-Independent and Activity-Dependent Uptake within the Rat Habenulomesencephalic Pathway

    Wang, Leiming; Lu, Hanbing; Brown, P Leon; Rea, William; Vaupel, Bruce; Yang, Yihong; Stein, Elliot; Shepard, Paul D.

    2015-01-01

    Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful technique for assessing the functional connectivity of neurons within the central nervous system. Despite the widely held proposition that MEMRI signal is dependent on neuronal activity, few studies have directly tested this implicit hypothesis. In the present series of experiments, MnCl2 was injected into the habenula of urethane-anesthetized rats alone or in combination with drugs known to alter neuronal activity by modulat...

  6. A single diamagnetic catalyCEST MRI contrast agent that detects cathepsin B enzyme activity by using a ratio of two CEST signals

    Hingorani, Dina V.; Montano, Luis A.; Randtke, Edward A.; Lee, Yeon Sun; Cárdenas-Rodríguez, Julio; Pagel, Mark D.

    2016-01-01

    CatalyCEST MRI can detect enzyme activity by monitoring the change in chemical exchange with water after a contrast agent is cleaved by an enzyme. Often these molecules use paramagnetic metals and are delivered with an additional non-responsive reference molecule. To improve this approach for molecular imaging, a single diamagnetic agent with enzyme-responsive and enzyme-unresponsive CEST signals was synthesized and characterized. The CEST signal from the aryl amide disappeared after cleavage of a dipeptidyl ligand with cathepsin B, while a salicylic acid moiety was largely unresponsive to enzyme activity. The ratiometric comparison of the two CEST signals from the same agent allowed for concentration independent measurements of enzyme activity. The chemical exchange rate of the salicylic acid moiety was unchanged after enzyme catalysis, which further validated that this moiety was enzyme-unresponsive. The temperature dependence of the chemical exchange rate of the salicylic acid moiety was non-Arrhenius, suggesting a two-step chemical exchange mechanism for salicylic acid. The good detection sensitivity at low saturation power facilitates clinical translation, along with the potentially low toxicity of a non-metallic MRI contrast agent. The modular design of the agent constitutes a platform technology that expands the variety of agents that may be employed by catalyCEST MRI for molecular imaging. PMID:26633584

  7. Ion implantation

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  8. Magnetic Resonance Imaging (MRI)

    ... Resonance Imaging (MRI) What is an MRI? MRI stands for Magnetic Resonance Imaging. It is an important ... MRI is often used for diagnosis or for monitoring disease. For example, if someone is having severe ...

  9. MRI Safety during Pregnancy

    ... News Physician Resources Professions Site Index A-Z MRI Safety During Pregnancy Magnetic resonance imaging (MRI) Illness ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor ...

  10. Portable MRI

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  11. Portable MRI

    Espy, Michelle A. [Los Alamos National Laboratory

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  12. On clustering fMRI time series

    Goutte, Cyril; Toft, Peter Aundal; Rostrup, E.;

    1999-01-01

    Analysis of fMRI time series is often performed by extracting one or more parameters for the individual voxels. Methods based, e.g., on various statistical tests are then used to yield parameters corresponding to probability of activation or activation strength. However, these methods do not...... between the activation stimulus and the fMRI signal. We present two different clustering algorithms and use them to identify regions of similar activations in an fMRI experiment involving a visual stimulus....

  13. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes.

    Liu, Xiao; Demosthenous, Andreas; Vanhoestenberghe, Anne; Jiang, Dai; Donaldson, Nick

    2012-06-01

    This paper presents an integrated stimulator that can be embedded in implantable electrode books for interfacing with nerve roots at the cauda equina. The Active Book overcomes the limitation of conventional nerve root stimulators which can only support a small number of stimulating electrodes due to cable count restriction through the dura. Instead, a distributed stimulation system with many tripole electrodes can be configured using several Active Books which are addressed sequentially. The stimulator was fabricated in a 0.6-μm high-voltage CMOS process and occupies a silicon area of 4.2 × 6.5 mm(2). The circuit was designed to deliver up to 8 mA stimulus current to tripole electrodes from an 18 V power supply. Input pad count is limited to five (two power and three control lines) hence requiring a specific procedure for downloading stimulation commands to the chip and extracting information from it. Supported commands include adjusting the amplitude of stimulus current, varying the current ratio at the two anodes in each channel, and measuring relative humidity inside the chip package. In addition to stimulation mode, the chip supports quiescent mode, dissipating less than 100 nA current from the power supply. The performance of the stimulator chip was verified with bench tests including measurements using tripoles in saline. PMID:23853144

  14. Adaptive RBF network with active contour coupling for multispectral MRI segmentation

    Valdes-Cristerna, Raquel; Medina, Veronica; Yanez-Suarez, Oscar

    2002-05-01

    A segmentation procedure using a radial basis function network (RBFN), coupled with an active contour (AC) model based on a cubic splines formulation is presented for the detection of the gray-white matter boundary in axial MMRI (T1, T2 and PD). A RBFN classifier has been previously introduced for MMRI segmentation, with good generalization at a rate of 10% misclassification over white and gray matter pixels on the validation set. The coupled RBFN and AC model system incorporates the posterior probability estimation map into the AC energy term as a restriction force. The RBFN output is also employed to provide an initial contour for the AC. Furthermore, an adaptation strategy for the network weights, guided by a feedback from the contour model adjustment at each iteration, is described. In order to compare the algorithm's performance, the segmentations using the adaptive, as well as the non-adaptive schemes were computed. It was observed that the major differences are located around deep circonvolutions, where the result of the adaptive process is superior than that obtained with the non-adaptive scheme, even in moderate noise conditions. In summary, the RBFN provides a good initial contour for the AC, the coupling of both processes keeps the final contour within the desired region and the adaptive strategy enhances the contour location.

  15. Non-perforating small bowel Crohn's disease assessed by MRI enterography: Derivation and histopathological validation of an MR-based activity index

    Steward, Michael J., E-mail: mikejsteward@gmail.com [Department of Specialist Imaging, University College Hospital London, 235 Euston Road, London NW1 2BU (United Kingdom); Punwani, Shonit, E-mail: shonit.punwani@uclh.nhs.net [Department of Specialist Imaging, University College Hospital London, 235 Euston Road, London NW1 2BU (United Kingdom); Centre for Medical Imaging, Division of Medicine, University College London, 235 Euston Road, London NW1 2BU (United Kingdom); Proctor, Ian, E-mail: ian.proctor@nhs.net [Department of Histopathology, University College London Hospital, London, 235 Euston Road, London NW1 2BU (United Kingdom); Adjei-Gyamfi, Yvette, E-mail: yvette.adjei-gyamfi@uclh.nhs.net [Department of Specialist Imaging, University College Hospital London, 235 Euston Road, London NW1 2BU (United Kingdom); Chatterjee, Fiona, E-mail: fiona.chaterjee@uclh.nhs.net [Department of Specialist Imaging, University College Hospital London, 235 Euston Road, London NW1 2BU (United Kingdom); Bloom, Stuart, E-mail: stuart.bloom@uclh.nhs.net [Department of Gastroenterology, University College London Hospital, London, 235 Euston Road, London NW1 2BU (United Kingdom); Novelli, Marco, E-mail: marco.novealli@uclh.nhs.net [Department of Histopathology, University College London Hospital, London, 235 Euston Road, London NW1 2BU (United Kingdom); Halligan, Steve, E-mail: S.halligan@ucl.ac.uk [Department of Specialist Imaging, University College Hospital London, 235 Euston Road, London NW1 2BU (United Kingdom); Centre for Medical Imaging, Division of Medicine, University College London, 235 Euston Road, London NW1 2BU (United Kingdom); Rodriguez-Justo, Manuel, E-mail: manuel.rodriguez-justo@uclh.nhs.uk [Department of Histopathology, University College London Hospital, London, 235 Euston Road, London NW1 2BU (United Kingdom); and others

    2012-09-15

    Objectives: To develop and validate a qualitative scoring system for enteric Crohn's disease activity using MR enterography (MRE). Methods: MRE was performed in 16 patients (mean age 33, 8 male) undergoing small bowel resection. Mural thickness, T2 signal, contrast enhancement, and perimural oedema were scored qualitatively (0–3) at 44 locations. Transmural histopathological scoring of acute inflammation (AIS) was performed at all locations (score 0–13). MRI parameters best predicting AIS were derived using multivariate analysis. The MRI activity index was applied to 26 Crohn's patients (mean age 32, range 13–69 years, 15 male) and correlated to terminal ileal biopsy scores of acute inflammation (“eAIS” score 1–6). Receiver operator characteristic curves were calculated. Results: Mural thickness (coefficient 1.34 (95% CI 0.36, 2.32)], p = 0.007) and T2 signal (coefficient 0.90 (95% CI −0.24, 2.04) p = 0.06) best predicted AIS (AIS = 1.79 + 1.34*mural thickness + 0.94*mural T2 score [R-squared 0.52]). There was a significant correlation between the MRI index and eAIS (Kendall's tau = 0.40, 95% CI 0.11–0.64, p = 0.02). The model achieved a sensitivity of 0.81 (95% CI 0.54–0.96), specificity of 0.70 (0.35–0.93) and AUC 0.77 for predicting acute inflammation (eAIS ≥2). Conclusions: A simple qualitative MRI Crohn's disease activity score appears predictive against a histopathological standard of reference.

  16. Non-perforating small bowel Crohn's disease assessed by MRI enterography: Derivation and histopathological validation of an MR-based activity index

    Objectives: To develop and validate a qualitative scoring system for enteric Crohn's disease activity using MR enterography (MRE). Methods: MRE was performed in 16 patients (mean age 33, 8 male) undergoing small bowel resection. Mural thickness, T2 signal, contrast enhancement, and perimural oedema were scored qualitatively (0–3) at 44 locations. Transmural histopathological scoring of acute inflammation (AIS) was performed at all locations (score 0–13). MRI parameters best predicting AIS were derived using multivariate analysis. The MRI activity index was applied to 26 Crohn's patients (mean age 32, range 13–69 years, 15 male) and correlated to terminal ileal biopsy scores of acute inflammation (“eAIS” score 1–6). Receiver operator characteristic curves were calculated. Results: Mural thickness (coefficient 1.34 (95% CI 0.36, 2.32)], p = 0.007) and T2 signal (coefficient 0.90 (95% CI −0.24, 2.04) p = 0.06) best predicted AIS (AIS = 1.79 + 1.34*mural thickness + 0.94*mural T2 score [R-squared 0.52]). There was a significant correlation between the MRI index and eAIS (Kendall's tau = 0.40, 95% CI 0.11–0.64, p = 0.02). The model achieved a sensitivity of 0.81 (95% CI 0.54–0.96), specificity of 0.70 (0.35–0.93) and AUC 0.77 for predicting acute inflammation (eAIS ≥2). Conclusions: A simple qualitative MRI Crohn's disease activity score appears predictive against a histopathological standard of reference

  17. Fetal MRI

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  18. Fetal MRI

    Prayer, D.; Brugger, P.C. [University Hospital of Vienna (Austria). Division of Neuroradiology

    2004-07-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  19. Comparison of Brain Activation Images Associated with Sexual Arousal Induced by Visual Stimulation and SP6 Acupuncture: fMRI at 3 Tesla

    This study was performed not only to compare the brain activation regions associated with sexual arousal induced by visual stimulation and SP6 acupuncture, but also to evaluate its differential neuro-anatomical mechanism in healthy women using functional magnetic resonance imaging (fMRI) at 3 Tesla (T). A total of 21 healthy right-handed female volunteers (mean age 22 years, range 19 to 32) underwent fMRI on a 3T MR scanner. The stimulation paradigm for sexual arousal consisted of two alternating periods of rest and activation. It began with a 1-minute rest period, 3 minutes of stimulation with either of an erotic video film or SP6 acupuncture, followed by 1-minute rest. In addition, a comparative study on the brain activation patterns between an acupoint and a shampoint nearby GB37 was performed. The fMRI data were obtained from 20 slices parallel to the AC-PC line on an axial plane, giving a total of 2,000 images. The mean activation maps were constructed and analyzed by using the statistical parametric mapping (SPM99) software. As comparison with the shampoint, the acupoint showed 5 times and 2 times higher activities in the neocortex and limbic system, respectively. Note that brain activation in response to stimulation with the shampoint was not observed in the regions including the HTHL in the diencephalon, GLO and AMYG in the basal ganglia, and SMG in the parietal lobe. In the comparative study of visual stimulation vs. SP6 acupuncture, the mean activation ratio of stimulus was not significantly different to each other in both the neocortex and the limbic system (p < 0.05). The mean activities induced by both stimuli were not significantly different in the neocortex, whereas the acupunctural stimulation showed higher activity in the limbic system (p < 0.05). This study compared the differential brain activation patterns and the neural mechanisms for sexual arousal, which were induced by visual stimulation and SP6 acupuncture by using 3T fMRI. These findings

  20. Comparison of Brain Activation Images Associated with Sexual Arousal Induced by Visual Stimulation and SP6 Acupuncture: fMRI at 3 Tesla

    Choi, Nam Gil [Dept. of Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of); Han, Jae Bok; Jang, Seong Joo [Dept. of Radiology, Dongshin University, Naju (Korea, Republic of)

    2009-06-15

    This study was performed not only to compare the brain activation regions associated with sexual arousal induced by visual stimulation and SP6 acupuncture, but also to evaluate its differential neuro-anatomical mechanism in healthy women using functional magnetic resonance imaging (fMRI) at 3 Tesla (T). A total of 21 healthy right-handed female volunteers (mean age 22 years, range 19 to 32) underwent fMRI on a 3T MR scanner. The stimulation paradigm for sexual arousal consisted of two alternating periods of rest and activation. It began with a 1-minute rest period, 3 minutes of stimulation with either of an erotic video film or SP6 acupuncture, followed by 1-minute rest. In addition, a comparative study on the brain activation patterns between an acupoint and a shampoint nearby GB37 was performed. The fMRI data were obtained from 20 slices parallel to the AC-PC line on an axial plane, giving a total of 2,000 images. The mean activation maps were constructed and analyzed by using the statistical parametric mapping (SPM99) software. As comparison with the shampoint, the acupoint showed 5 times and 2 times higher activities in the neocortex and limbic system, respectively. Note that brain activation in response to stimulation with the shampoint was not observed in the regions including the HTHL in the diencephalon, GLO and AMYG in the basal ganglia, and SMG in the parietal lobe. In the comparative study of visual stimulation vs. SP6 acupuncture, the mean activation ratio of stimulus was not significantly different to each other in both the neocortex and the limbic system (p < 0.05). The mean activities induced by both stimuli were not significantly different in the neocortex, whereas the acupunctural stimulation showed higher activity in the limbic system (p < 0.05). This study compared the differential brain activation patterns and the neural mechanisms for sexual arousal, which were induced by visual stimulation and SP6 acupuncture by using 3T fMRI. These findings

  1. Comparison of brain activation to purposefully activate a tool in healthy subjects and brain tumor patients using fMRI

    The purpose of this study was to determine the functional organization of the human brain involved in tool-manipulation. Blood Oxygen Level Dependent was measured by functional magnetic resonance imaging in seventeen right-handed healthy volunteers and two brain tumor patients during two tool-manipulation tasks: simulated tightening a bolt with a screwdriver (Simulation), and tightening a bolt with a screwdriver (Real). Subjects performed the experiment without watching the tasks. Bilateral pre-supplementary motor areas, bilateral cerebellar posterior lobes, right ventral premotor area, right calcarine sulcus, and cerebellar vermis were activated during Real but not during Simulation tasks in healthy volunteers. In addition, brain tumor patients activated the prefrontal areas. Our results suggest that the human brain mechanisms for tool-manipulation have a neural-network comprised of presupplementary motor area, ventral premotor area, and bilateral cerebellar posterior lobes. In the patients with brain dusfurction diee to tumors, activation at the prefrontal area provided function compensation without motor paralysis. (author)

  2. Clinical applications of functional MRI in epilepsy

    The role of functional MRI (fMRI) in the presurgical evaluation of patients with intractable epilepsy is being increasingly recognized. Real-time fMRI is an easily performable diagnostic technique in the clinical setting. It has become a noninvasive alternative to intraoperative cortical stimulation and the Wada test for eloquent cortex mapping and language lateralization, respectively. Its role in predicting postsurgical memory outcome and in localizing the ictal activity is being recognized. This review article describes the biophysical basis of blood-oxygen-level-dependent (BOLD) fMRI and the methodology adopted, including the design, paradigms, the fMRI setup, and data analysis. Illustrative cases have been discussed, wherein the fMRI results influenced the seizure team's decisions with regard to diagnosis and therapy. Finally, the special issues involved in fMRI of epilepsy patients and the various challenges of clinical fMRI are detailed

  3. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of ... sounds when the coils that generate the radiofrequency pulses are activated. Some centers provide earplugs, while others ...

  4. MRI zoo

    Laustsen, Christoffer

    The basic idea was to use MRI to produce a sequence of 3D gray scale image slices of various animals, subsequentlyimaged with a clinical CT system. For this purpose, these animals were used: toad, lungfish, python snake and a horseshoe crab. Each animal was sacrificed according to standard proced...

  5. Fetal MRI

    Ultrasonography is the method of choice for prenatal malformation screening, but it does not always provide sufficient information for correct diagnosis or adequate abnormality evaluation. Fetal MRI is increasingly being used to complete sonographic findings. It was initially used for evaluation of cerebral abnormalities but is increasingly being applied to other fetal areas. In vivo investigation of fetal brain maturation has been enhanced by MRI. An adequate analysis of fetal chest and abdomen can be achieved with fast T2-, T1-weighted and diffusion-weighted imaging (DWI). The advantages include the great field of view and the excellent soft tissue contrast. This allows correct diagnosis of congenital diaphragmatic hernia and evaluation of the consequences on pulmonary growth. Other pulmonary malformations, such as cystic adenomatoid malformation, sequestration and brochogenic cysts, can also be easily identified. Renal position can be quickly determined using DWI sequences and renal agenesia can be easily diagnosed with only one sequence. Prenatal MRI is virtually as effective as postnatal examination, dispenses with transport of a potentially very ill newborn, and provides logistic advantages. Therefore, prenatal MRI is useful for adequate postnatal treatment of newborns with malformations. (orig.)

  6. Methylphenidate modulates activity within cognitive neural networks of patients with post-stroke major depression: A placebo-controlled fMRI study

    Rajamannar Ramasubbu

    2008-10-01

    Full Text Available Rajamannar Ramasubbu1, Bradley G Goodyear21Departments of Psychiatry and Clinical Neurosciences; 2Department of Radiology and Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, AB, CanadaBackground: Methylphenidate (MP is a dopamine- and noradrenaline-enhancing agent beneficial for post-stroke depression (PSD and stroke recovery due to its therapeutic effects on cognition, motivation, and mood; however, the neural mechanisms underlying its clinical effects remain unknown. This study used functional magnetic resonance imaging (fMRI to investigate the effect of MP on brain activity in response to cognitive tasks in patients with PSD.Methods: Nine stroke outpatients with DSM IV defined major depression underwent fMRI during two cognitive tasks (2-back and serial subtraction on four occasions, on the first and third day of a three-day treatment of MP and placebo. Nine healthy control (HC subjects matched for age and sex scanned during a single session served as normative data for comparison. The main outcome measure was cognitive task-dependent brain activity.Results: For the 2-back task, left prefrontal, right parietal, posterior cingulate, and temporal and bilateral cerebellar regions exhibited significantly greater activity during the MP condition relative to placebo. Less activity was detected in rostral prefrontal and left parietal regions. For serial subtraction, greater activity was detected in medial prefrontal, biparietal, bitemporal, posterior cingulate, and bilateral cerebellar regions, as well as thalamus, putamen, and insula. Further, underactivation observed during the placebo condition relative to HC improved or reversed during MP treatment. No significant differences in behavioral measures were found between MP and placebo conditions or between patients and HC.Conclusions: Short-term MP treatment may improve and normalize activity in cognitive neuronal networks in patients with PSD

  7. Activation of ion implanted Si for backside processing by Ultra-fast Laser Thermal Annealing: Energy homogeneity and micro-scale sheet resistance

    Huet, K.; Lin, Rong; Boniface, C; Desse, F; Petersen, Dirch Hjorth; Hansen, Ole; Variam, N; La Magna, A; Schuhmacher, M; Jensen, A.; Nielsen, P.F; Besaucele, H; Venturini, J

    In this paper ion activation of implanted silicon using ultra-fast laser thermal annealing (LTA) process was discussed. The results stated that there was high dopant activation using LTA process for over 70%, excellent within shot activation uniformity, and there was a possibility for overlap...... parameter optimization. It was observed that, for activation LTA process, shallow box-shaped profiles- high diffusivity of B in liquids and high-temperatures was observed only near the surface in a submicrosecond timescale. Possible solutions were suggested as to low-cost and high-end for overlap...

  8. Cerebral Inefficient Activation in Schizophrenia Patients and Their Unaffected Parents during the N-Back Working Memory Task: A Family fMRI Study.

    Sisi Jiang

    Full Text Available It has been suggested that working memory deficits is a core feature of symptomatology of schizophrenia, which can be detected in patients and their unaffected relatives. The impairment of working memory has been found related to the abnormal activity of human brain regions in many functional magnetic resonance imaging (fMRI studies. This study investigated how brain region activation was altered in schizophrenia and how it was inherited independently from performance deficits.The authors used fMRI method during N-back task to assess working memory related cortical activation in four groups (N = 20 in each group, matching task performance, age, gender and education: schizophrenic patients, their unaffected biological parents, young healthy controls for the patients and older healthy controls for their parents.Compared to healthy controls, patients showed an exaggerated response in the right dorsolateral prefrontal cortex (brodmann area [BA] 46 and bilateral ventrolateral prefrontal cortex, and had reduced activation in bilateral dorsolateral prefrontal cortex (BA 9. In the conjunction analysis, the effect of genetic risk (parents versus older control shared significantly overlapped activation with effect of disease (patients versus young control in the right middle frontal gyrus (BA 46 and left inferior parietal gyrus (BA 40.Physiological inefficiency of dorsal prefrontal cortex and compensation involvement of ventral prefrontal cortex in working memory function may one physiological characteristics of schizophrenia. And relatively inefficient activation in dorsolateral prefrontal cortex probably can be a promising intermediate phenotype for schizophrenia.

  9. Dental Implants

    Full Text Available ... are lost, it’s not uncommon to suffer from social consequences and poor nutrition. Rebuilding Bone When the ... not a one-day procedure. The implant needs time to properly adhere to the bone and create ...

  10. Cochlear Implants

    ... on this topic can be found in our Audiology Information Series [PDF]. How does a cochlear implant ... speech-language pathologists; speech, language, and hearing scientists; audiology and speech-language pathology support personnel; and students. ...

  11. Implantation of intercomparison program for activity measurements on radiopharmaceuticals at nuclear medicine services

    This work aimed to present to the Brazilian scientific and medical community the activity measurement intercomparison program of the most used radionuclides in Nuclear Medicine Services in order to improve their accuracy and establish their traceability to national standards. The present estate of Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI) as reference body for this program will be shown. The strategies to reach the objectives of the program, the protocol chosen to manage it and some qualitative results of the pilot program will also be presented. (author)

  12. The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field

    As the use of radiofrequency (RF) electromagnetic (EM) fields has increased along with increased use of wireless communication, the possible related health risks have also been widely discussed. One safety aspect is the interaction of medical implants and RF devices like mobile phones. In the literature, effects on active implants like pacemakers have been discussed but the studies of passive metallic (i.e. conductive) implants are rare. However, some studies have shown that the EM power absorption in tissues may be enhanced due to metallic implants. In this study, the effect of authentic passive metallic implants in the head region was examined. A half-wave dipole antenna was used as an exposure source and the specific absorption rate (SAR, W kg-1) in the near field was studied numerically. The idea was to model the presumably worst cases of most common implants in an accurate MRI-based phantom. As exposure frequencies GSM (900 and 1800 MHz) and UMTS (2450 MHz) regions were considered. The implants studied were skull plates, fixtures, bone plates and ear rings. The results indicate that some of the implants, under very rare exposure conditions, may cause a notable enhancement in peak mass averaged SAR

  13. Mesoporous silica coatings for cephalosporin active release at the bone-implant interface

    Rădulescu, Dragoş; Voicu, Georgeta; Oprea, Alexandra Elena; Andronescu, Ecaterina; Grumezescu, Valentina; Holban, Alina Maria; Vasile, Bogdan Stefan; Surdu, Adrian Vasile; Grumezescu, Alexandru Mihai; Socol, Gabriel; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Balaure, Paul Cătălin; Rădulescu, Radu; Chifiriuc, Mariana Carmen

    2016-06-01

    In this study, we investigated the potential of MAPLE-deposited coatings mesoporous silica nanoparticles (MSNs) to release Zinforo (ceftarolinum fosmil) in biologically active form. The MSNs were prepared by using a classic procedure with cetyltrimethylammonium bromide as sacrificial template and tetraethylorthosilicate as the monomer. The Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analyses revealed network-forming granules with diameters under 100 nm and an average pore diameter of 2.33 nm. The deposited films were characterized by SEM, TEM, XRD and IR. Microbiological analyses performed on ceftaroline-loaded films demonstrated that the antibiotic was released in an active form, decreasing the microbial adherence rate and colonization of the surface. Moreover, the in vitro and in vivo assays proved the excellent biodistribution and biocompatibility of the prepared systems. Our results suggest that the obtained bioactive coatings possess a significant potential for the design of drug delivery systems and antibacterial medical-use surfaces, with great applications in bone implantology.

  14. Battlefield MRI

    Espy, Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  15. Increased Intraregional Synchronized Neural Activity in Adult Brain After Prolonged Adaptation to High-Altitude Hypoxia: A Resting-State fMRI Study.

    Chen, Ji; Fan, Cunxiu; Li, Jinqiang; Han, Qiaoqing; Lin, Jianzhong; Yang, Tianhe; Zhang, Jiaxing

    2016-03-01

    Chen, Ji, Cunxiu Fan, Jinqiang Li, Qiaoqing Han, Jianzhong Lin, Tianhe Yang, and Jiaxing Zhang. Increased intraregional, synchronized neural activity in adult brain after prolonged adaptation to high-altitude hypoxia: a resting-state fMRI study. High Alt Med Biol. 17:16-24, 2016-The human brain is intrinsically plastic such that its functional architecture can be reorganized in response to environmental pressures and physiological changes. However, it remains unclear whether a compensatory modification of spontaneous neural activity occurs in adult brain during prolonged high-altitude (HA) adaptation. In this study, we obtained resting-state functional magnetic resonance (MR) images in 16 adults who have immigrated to Qinghai-Tibet Plateau (2300-4400 m) for 2 years and in 16 age-matched sea level (SL) controls. A validated regional homogeneity (Reho) method was employed to investigate the local synchronization of resting-state functional magnetic resonance imaging (fMRI) signals. Seed connectivity analysis was carried out subsequently. Cognitive and physiological assessments were made and correlated with the image metrics. Compared with SL controls, global mean Reho was significantly increased in HA immigrants as well as a regional increase in the right inferolateral sensorimotor cortex. Furthermore, mean z-Reho value extracted within the inferolateral sensorimotor area showed trend-level significant inverse correlation with memory search reaction time in HA immigrants. These observations, for the first time, provide evidence of adult brain resilience of spontaneous neural activity after long-term HA exposure without inherited and developmental effects. Resting-state fMRI could yield valuable information for central mechanisms underlying respiratory and cognitive compensations in adults during prolonged environmentally hypoxic adaptation, paving the way for future HA-adaptive training. PMID:26906285

  16. Different brain activations between own- and other-race face categorization: an fMRI study using group independent component analysis

    Wei, Wenjuan; Liu, Jiangang; Dai, Ruwei; Feng, Lu; Li, Ling; Tian, Jie

    2014-03-01

    Previous behavioral research has proved that individuals process own- and other-race faces differently. One well-known effect is the other-race effect (ORE), which indicates that individuals categorize other-race faces more accurately and faster than own-race faces. The existed functional magnetic resonance imaging (fMRI) studies of the other-race effect mainly focused on the racial prejudice and the socio-affective differences towards own- and other-race face. In the present fMRI study, we adopted a race-categorization task to determine the activation level differences between categorizing own- and other-race faces. Thirty one Chinese participants who live in China with Chinese as the majority and who had no direct contact with Caucasian individual were recruited in the present study. We used the group independent component analysis (ICA), which is a method of blind source signal separation that has proven to be promising for analysis of fMRI data. We separated the entail data into 56 components which is estimated based on one subject using the Minimal Description Length (MDL) criteria. The components sorted based on the multiple linear regression temporal sorting criteria, and the fit regression parameters were used in performing statistical test to evaluate the task-relatedness of the components. The one way anova was performed to test the significance of the component time course in different conditions. Our result showed that the areas, which coordinates is similar to the right FFA coordinates that previous studies reported, were greater activated for own-race faces than other-race faces, while the precuneus showed greater activation for other-race faces than own-race faces.

  17. Development of simultaneous measurement techniques for event-related fMRI and EEG and observation of the activation process of P300

    In this study, techniques to measure electroencephalogram (EEG) and fMRI simultaneously were investigated, from which P300 responses evoked by visual stimuli were examined. Event-related analysis was applied to combine high temporal resolution of EEG with high spatial resolution of fMRI, which may allow estimation of the temporal change of activation of multiple cortical areas. A time scheme of stimulus presentation and MRI scan was designed, considering the temporal delay between the generation of P300 potential and the blood oxygen level dependent (BOLD) response. Three pattern oddball paradigm using standard, target and novel letter stimuli was performed, in which subjects responded to the rare target-letters but not to frequent standard-and rare novel-letters. Noises arising from MR scan and cardio-ballistic artifacts were removed from the raw data of EEG by subtraction of the time-averaged waveforms of those artifacts. Comparing the grand average response of EEG evoked by target events with that evoked by standard events, a significant difference was found in latency range from 280 to 450 ms (P<0.001). This enlarged response to the target corresponded to the late component, id est (i.e.), P3b, of P300. In the group study of BOLD responses, significant activation appeared in the occipital region, the parietal and temporal regions and the prefrontal cortex, some of which showed a laterality of right-hemisphere dominance. Based on the results of EEG topography during the period of P3b response, a temporal progression of the activations from the occipital visual cortex, via the temporoparietal and temporal regions to the prefrontal cortex was estimated. (author)

  18. MRI and EM Observation of Repair Effect of Implantation of Microgene pSVPoMcat Modified SC on Injured Spinal Cord%应用MRI和电镜观察pSVPoMact微基因修饰雪氏细胞移植对损伤脊髓的修复作用

    陈礼刚; 高立达; 曾凡俊; 顾明; 李讯; 黄茂清; 毛伯镛

    2001-01-01

    Objective To approach the effect of microgene pSVPoMcat modified Schwann cell (SC) on the regeneration and repair of injured spinal cord.Method Spinal cord hemi- transection models were made with the cutting method in healthy SD rats. Microgene pSVPoMcat modified SC(group A),highly purified SC(group B),and glutin sponge (control group C)were randomly implanted into the cut. After 3 month living ,the host rats were scanned by MRI, and observed under EM. Result Spinal signals at the injury region nearly recovered to normal in group A.No recovery was found in group B.Malacosis was found in group C.TEM findings: regeneration of large number of myelinated and nonmyelinated axons and SC proliferation in group A, myelinated axon regeneration and SC necrosis in group B, non myelinated and nonmyelinated axon in group C.Conclusion Implantation of microgene pSVPoMcat modified SC could promote the repair of injured spinal cord.

  19. An fMRI study of joint action–varying levels of cooperation correlates with activity in control networks

    Chaminade, Thierry; Marchant, Jennifer L.; Kilner, James; Frith, Christopher D

    2012-01-01

    As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant,...

  20. A multi-atlas based method for automated anatomical rat brain MRI segmentation and extraction of PET activity.

    Sophie Lancelot

    Full Text Available INTRODUCTION: Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies. METHODS: High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA, 2/using the maximum probability atlas (MP, and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF. Evaluation was performed on the five remaining rats which additionally underwent [18F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index and functional performance (evaluated by comparing extracted PET measures. RESULTS: Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA. PET regional measures were more accurate with multi-atlas methods than with SA method. CONCLUSIONS: Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure's extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses.

  1. Behavioural and neural plasticity of ocular motor control: changes in performance and fMRI activity following antisaccade training

    Sharna Jamadar; Beth P Johnson; Joanne Fielding

    2015-01-01

    The antisaccade task provides a model paradigm that sets the inhibition of a reflexively driven behaviour against the volitional control of a goal-directed behaviour. The stability and adaptability of antisaccade performance was investigated in 23 neurologically healthy individuals. Behaviour and brain function were measured using functional magnetic resonance imaging (fMRI) prior to and immediately following two weeks of daily antisaccade training. Participants performed antisaccade trials f...

  2. MRI and diffusion tensor imaging in assessing correlation of activation of cortical motor function and manifestations of corticospinal tract with muscle strength in patients with ischemic stroke

    Ziqian Chen; Hui Xiao; Biyun Zhang; Gennian Qian; Ping Ni; Xizhang Yang

    2006-01-01

    BACKGROUND: Ischemic stroke is often followed by the abnormalities of neurons and corticospinal tract,which can lead to corresponding clinical symptoms and signs. Recently, with the continuous perfection of high-field MRI instrument, it becomes possible to assess and investigate the cortical function and structural reconstruction following stroke by using MRI and diffusion tensor imaging (DTI).OBJECTIVE: To observe the cortical motor function and changes of corticospinal tracts by using MRI and DTI in the patients with ischemic stroke at acute period, compare with the normal subjects, and assess the damage of corticospinal tract and muscle strength.DESIGN: A case-control observation.SETTING: Department of Medical Imaging, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: Nine inpatients (5 males and 4 females) with injury of motor function induced by acute ischemic stroke were selected from Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA between August and December in 2005, they aged 16-87 years with an average of 51 years old, and those with obvious conscious disturbances and severe cognitive disorders were excluded. At the same time, nine healthy right-handed physical examinees matched by age and gender with the patients were also selected, and they all had no nervous disease, epilepsy, mental diseases, cerebrovascular abnormalities and injury history, etc. All the subjects were informed with the detected items and agreed to participate in.METHODS:All the 9 patients with ischemic stroke at acute period and 9 healthy subjects were examined with MRI and DTI. ① A block-based design was used in the MRI, the passive finger-to-finger exercise was used as the stimulative task, and the static condition was taken as the baseline task. The GE 1.5T MRI system was used, all the data were processed after off-line, and analyzed with the SPM2 software, the association between the activated area and local anatomy of

  3. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  4. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    Tzu-Hao Harry Chao

    Full Text Available Functional magnetic resonance imaging (fMRI provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1. The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91, and location (overlap ratio from 0.61 to 0.67. The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI.

  5. Factors affecting peri-implant tissue reactions

    Hultin, Margareta

    2001-01-01

    Screw- shaped titanium implants are today routinely used m the substitution of lost teeth. In this thesis some of the biological factors related to the long-term survival and maintenance of dental implants were studied. The first arm of these studies was to evaluate the neutrophil activation around teeth and dental implants (Papers I & II). Secondly we wanted to evaluate the clinical radiographic and microbiological status of implants after long-term. function m partly e...

  6. Active Sites Implanted Carbon Cages in Core-Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction.

    Zhang, Huabin; Ma, Zuju; Duan, Jingjing; Liu, Huimin; Liu, Guigao; Wang, Tao; Chang, Kun; Li, Mu; Shi, Li; Meng, Xianguang; Wu, Kechen; Ye, Jinhua

    2016-01-26

    Low efficiency and poor stability are two major challenges we encounter in the exploration of non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) in both acidic and alkaline environment. Herein, the hybrid of cobalt encapsulated by N, B codoped ultrathin carbon cages (Co@BCN) is first introduced as a highly active and durable nonprecious metal electrocatalysts for HER, which is constructed by a bottom-up approach using metal organic frameworks (MOFs) as precursor and self-sacrificing template. The optimized catalyst exhibited remarkable electrocatalytic performance for hydrogen production from both both acidic and alkaline media. Stability investigation reveals the overcoating of carbon cages can effectively avoid the corrosion and oxidation of the catalyst under extreme acidic and alkaline environment. Electrochemical active surface area (EASA) evaluation and density functional theory (DFT) calculations revealed that the synergetic effect between the encapsulated cobalt nanoparticle and the N, B codoped carbon shell played the fundamental role in the superior HER catalytic performance. PMID:26649629

  7. The cooperation of the functional activation areas in human brain: an application of event-related fMRI study of the voluntary motor function

    Objective: To detect the cooperation of the functional activation areas in human brain using event-related fMRI technique developed in recent years. Methods: Forty-four subjects were selected in this experiment and scanned by GE Signa Horizon 1.5 Tesla superconductive MR system. A CUE-GO paradigm was used in this experiment. The data were analyzed in SUN and SGI workstation. Results: The activation areas were found in contralateral primary motor area (Ml), bilateral supplementary motor areas (SMA), pre-motor areas (PMA), basal ganglia, and cerebellar cortices. The time-signal curve of Ml was a typical single-peak curve, but the curves in PMA, basal ganglia, and cerebellar cortices were double-peak curves. SMA had 2 parts, one was Pre-SMA, and another was SMA Proper. The curve was double-peak type in Pre-SMA and single-peak type in SMA Proper. There was difference between the time-signal intensity curves in above-mentioned areas. Conclusion: (1) Ml is mainly associated with motor execution, while others with both motor preparation and execution. There are differences in the function at the variant areas in the brain. (2) The fact that bilateral SMA, PMA, basal ganglia, and cerebellar cortices were activated, is different from what the classical theories told. (3) Event-related fMRI technique has higher temporary and spatial resolutions. (4) There is cooperation among different cortical areas, basal ganglia, and cerebellum

  8. Remote actuated valve implant

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  9. Remote actuated valve implant

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  10. Clinical application of functional MRI

    Described is the present state of clinical application of fMRI in the preoperative assessment of brain tumors, and plasticity in and pathophysiology of central diseases. For the tumor resection, fMRI is useful for risk assessment of postoperative nerve dysfunction, for selection of the patient rather suitable for brain mapping at the invasive surgery than at the pre-operation and for guidance of the operation itself. Preoperative fMRI alone can neither distinguish the regions of the primary and secondary functions nor exhibit the relation between the tumor and white matter fibers but there are compensatory means for these drawbacks. Benefit of preoperative fMRI has not yet been based on the evidence on double blind trials. Combination of fMRI imaging and electroencephalography (EEG) finding has shown that, in generalized epilepsy, extensive and stimulated activation occurs in both frontal/occipital regions and in thalamus area, respectively, and that the concomitant lowered activities are conceivably the reflection of burst discharge in normal brain functions. Plasticity in the human brain has been demonstrated by fMRI in cerebral vascular diseases, multiple sclerosis and amyotrophic lateral sclerosis. Pathogenesis of Parkinson disease and depression has been better understood by fMRI investigations revealing regions with elevated and reduced activities. Studies of attention deficit hyperactivity disorder have shown similar change of activities with functional reductions of the right dorsolateral frontal anterior area and of dorsal frontal cingulate gyrus, together with stimulated wider regions to given tasks. As above, fMRI has greatly contributed to our understanding of diseases of central nervous system and is to be expected to expand wider in this field. (T.T.)

  11. Flight muscle development in Locusta migratoria: Effects of implantation of corpora allata on the attainment of metabolic enzyme activities

    Hondel-Franken, M.A.M. van den; Broek, A.Th.M. van den; Beenakkers, A.M.Th.

    1980-01-01

    The effects of corpora allata (CA) implantation on the development of the dorsolongitudinal flight muscles and the wings and on the pigmentation in Locusta migratoria were investigated. Fifth-instar female larvae 0–24 hr after ecdysis received either one pair of CA taken from adult females or one, two, three, or four pairs of CA taken from young fourth-instar larvae. Implantation of one, two, or (except for a few cases) three pairs of larval CA did not produce any effect. However, after impla...

  12. Instrumented hip implants: electric supply systems.

    Soares dos Santos, Marco P; Ferreira, Jorge A F; Ramos, A; Simões, José A O; Morais, Raul; Silva, Nuno M; Santos, Paulo M; Reis, M J C S; Oliveira, T

    2013-10-18

    Instrumented hip implants were proposed as a method to monitor and predict the biomechanical and thermal environment surrounding such implants. Nowadays, they are being developed as active implants with the ability to prevent failures by loosening. The generation of electric energy to power active mechanisms of instrumented hip implants remains a question. Instrumented implants cannot be implemented without effective electric power systems. This paper surveys the power supply systems of seventeen implant architectures already implanted in-vivo, namely from instrumented hip joint replacements and instrumented fracture stabilizers. Only inductive power links and batteries were used in-vivo to power the implants. The energy harvesting systems, which were already designed to power instrumented hip implants, were also analyzed focusing their potential to overcome the disadvantages of both inductive-based and battery-based power supply systems. From comparative and critical analyses of the methods to power instrumented implants, one can conclude that: inductive powering and batteries constrain the full operation of instrumented implants; motion-driven electromagnetic energy harvesting is a promising method to power instrumented passive and active hip implants. PMID:24050511

  13. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  14. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity β2-containing nicotinic receptors (β2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and β2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, β2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via α7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  15. MRI (Magnetic Resonance Imaging)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... 8 MB) Also available in Other Language versions . Magnetic Resonance Imaging (MRI) is a medical imaging procedure for making ...

  16. What Is Chest MRI?

    ... from the NHLBI on Twitter. What Is Chest MRI? Chest MRI (magnetic resonance imaging) is a safe, noninvasive test. "Noninvasive" means that ... your chest wall, heart, and blood vessels. Chest MRI uses radio waves, magnets, and a computer to ...

  17. Knee MRI scan

    MRI - knee ... radiologist see certain areas more clearly. During the MRI, the person who operates the machine will watch ... less anxious. Your provider may suggest an "open" MRI, in which the machine is not as close ...

  18. Cochlear Implant

    2002-01-01

    In this text, the authors recall the main principles and data ruling cochlear implants. Then, a first circle of technical equipment for assistance is presented. This circle includes: device setting (DS), Electrically evoked Auditory Brainstem Responses (EABR), Neural Response Telemetry (NRT), Stapedial Reflex (SR) and Electrodogram Acquisition (EA). This first cycle becomes more and more important as children are implanted younger and younger; the amount of data available with this assistance makes necessary the use of models (implicit or explicit) to handle this information. Consequently, this field is more open than ever.

  19. Drug-related cue induced craving and the correlation between the activation in nucleus accumbens and drug craving: a fMRI study on heroin addicts

    Objective: To explore the neural mechanism underlying the craving of heroin addicts induced by picture-cue and the correlation between the brain activation degree in nucleus accumbens (NAc)/ the ventral striatum and the scores of patients self-report craving. Methods: Twelve active heroin addicts and 12 matched healthy controls underwent fMRI scan while viewing drug-related pictures and neutral pictures presented in a block design paradigm after anatomical scanning in GE 3.0 T scanner. The fMRI data were analyzed with SPM 5. The change of craving scores was tested by Wilcoxon signed rank test. The Pearson correlation between the activation of NAc/the ventral striatum and the heroin craving score was tested by SPSS 13.0. Results: The craving scores of heroin addicts ranged from 0 to 3.70 (median 0.15) before exposed to drug cue and 0 to 5.10 (median 3.25) after viewing drug-related pictures and showed statistical significance (Z=-2.666, P<0.05). There were 16 activated brain areas when heroin dependent patients exposed to visual drug-related cue vs. neutral visual stimuli. The activation brain regions belonged to two parts, one was limbic system (amygdale, hippocampus, putamen, anterior cingulate cortex and caudate), another was brain cortex (middle frontal cortex, inferior frontal cortex, precentral gyrus, middle temporal cortex, inferior temporal cortex, fusiform gyrus, precuneus and middle occipital gyrus). The MR signal activation magnitude of heroin addicts ranged from 0.19 to 3.50. The result displayed a significant positive correlation between the cue-induced fMRI activation in NAc/the ventral striatum and heroin craving severity (r=0.829, P<0.05). Conclusion: Heroin shared the same neural circuitry in part with other drugs of abuse for cue-induced craving, including brain reward circuitry, visualspatial attention circuit and working memory region. In addition, the dysfunction of NAc/the ventral striatum may attribute to heroin-related cue induced craving

  20. Physical activity in primary versus secondary prevention indication implantable cardioverter defibrillator recipients 6-12 months after implantation - a cross-sectional study with register follow up

    Berg, S. K.; Thygesen, L. C.; Svendsen, J. H.;

    2015-01-01

    MEASURES: Questions regarding physical activity and the IPAQ questionnaire were used to assess physical activity. RESULTS: The response rate was 71.7%. Mean age 65.5 years with 82% males. 37% participated in a rehabilitation programme. 21 % were sedentary compared to 8 % in the reference population (p < 0.......11;13.71) p<0.05, however not statistically significant when adjusted for age, sex, marital status and co-morbidity. CONCLUSION: Guidelines for exercise and participation in rehabilitation are not meet for this population which leave a great potential for future interventions improving the clinical outcomes...

  1. Men fear other men most: Gender specific brain activations in perceiving threat from dynamic faces and bodies. An fMRI study.

    Mariska Esther Kret

    2011-01-01

    Full Text Available Gender differences are an important factor regulating daily interactions. Using functional magnetic resonance imaging (fMRI we show that areas involved in processing social signals are activated differently by threatening signals send from male or female facial and bodily expressions and these activity patterns are different for male and female participants. Male participants pay more attention to the female face as shown by increased amygdala activity. But a host of other areas indicate a selective sensitivity for male observers attending to male bodily expressions (extrastriate body area, superior temporal sulcus, fusiform gyrus, pre-supplementary motor area and premotor cortex. This is the first study investigating gender differences in processing dynamic female and male facial and bodily expressions and it illustrates the importance of gender differences in affective communication.

  2. Flight muscle development in Locusta migratoria: Effects of implantation of corpora allata on the attainment of metabolic enzyme activities

    Hondel-Franken, M.A.M. van den; Broek, A.Th.M. van den; Beenakkers, A.M.Th.

    1980-01-01

    The effects of corpora allata (CA) implantation on the development of the dorsolongitudinal flight muscles and the wings and on the pigmentation in Locusta migratoria were investigated. Fifth-instar female larvae 0–24 hr after ecdysis received either one pair of CA taken from adult females or one, t

  3. Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades

    Sharna eJamadar

    2013-10-01

    Full Text Available The antisaccade task is a classic task of oculomotor control that requires participants to inhibit a saccade to a target and instead make a voluntary saccade to the mirror opposite location. By comparison, the prosaccade task requires participants to make a visually-guided saccade to the target. These tasks have been studied extensively using behavioural oculomotor, electrophysiological and neuroimaging in both non-human primates and humans. In humans, the antisaccade task is under active investigation as a potential endophenotype or biomarker for multiple psychiatric and neurological disorders. A large and growing body of literature has used functional magnetic resonance imaging (fMRI and positron emission tomography (PET to study the neural correlates of the antisaccade and prosaccade tasks. We present a quantitative meta-analysis of all published voxel-wise fMRI and PET studies (18 of the antisaccade task and show that consistent activation for antisaccades and prosaccades is obtained in a fronto-subcortical-parietal network encompassing frontal and supplementary eye fields, thalamus, striatum and intraparietal cortex. This network is strongly linked to oculomotor control and was activated to a greater extent for antisaccade than prosaccade trials. Antisaccade but not prosaccade trials additionally activated dorsolateral and ventrolateral prefrontal cortices. We also found that a number of additional regions not classically linked to oculomotor control were activated to a greater extent for antisaccade versus prosaccade trials; these regions are often reported in antisaccade studies but rarely commented upon. While the number of studies eligible to be included in this meta-analysis was small, the results of this systematic review reveal that antisaccade and prosaccade trials consistently activate a distributed network of regions both within and outside the classic definition of the oculomotor network.

  4. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study.

    Czisch, Michael; Wetter, Thomas C; Kaufmann, Christian; Pollmächer, Thomas; Holsboer, Florian; Auer, Dorothee P

    2002-05-01

    Although there is evidence that acoustic stimuli are processed differently during sleep and wakefulness, little is known about the underlying neuronal mechanisms. In the present study, the processing of an acoustic stimulus was investigated during different non rapid eye movement (NREM) sleep stages using a combined EEG/fMRI approach in healthy human volunteers: A text stimulus was presented to sleep-deprived subjects prior to and after the onset of sleep, and single-slice silent fMRI were acquired. We found significantly different blood oxygenation level-dependent (BOLD) contrast responses during sleep compared to wakefulness. During NREM sleep stages 1 and 2 and during slow wave sleep (SWS) we observed reduced activation in the auditory cortex and a pronounced negative signal in the visual cortex and precuneus. Acoustic stimulation during sleep was accompanied by an increase in EEG frequency components in the low delta frequency range. Provided that neurovascular coupling is not altered during sleep, the negative transmodal BOLD response which is most pronounced during NREM sleep stages 1 and 2 reflects a deactivation predominantly in the visual cortex suggesting that this decrease in neuronal activity protects the brain from the arousing effects of external stimulation during sleep not only in the primary targeted sensory cortex but also in other brain regions. PMID:11969332

  5. Differential activity in left inferior frontal gyrus for pseudo and real words: an event-related functional MRI study on auditory lexical decision

    Objective: To study lexical processing of pseudo words and real words by using a fast event-related functional MRI (ER-fMRI) design. Methods: Participants did an auditory lexical decision task on a list of pseudo-randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. Pseudo words were constructed by recombining constituent characters of the real words to control for sublexical codes properties. Results: The behavioral performance of fourteen participants indicated that response to pseudowords was significantly slower and less accurate than to real words (mean error rate: 9.9% versus 3.9%, mean reaction time: 1618 ms versus 1143 ms). Processing of pseudo words and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudo words than for real words. Conclusion: The results indicate that the processing of left inferior frontal gyrus in judging pseudo words and real words is not related to grapheme-to-phoneme conversion, but rather to making positive versus negative responses in decision making. (authors)

  6. Cochlear implant

    ... are sent along the auditory nerve to the brain. A deaf person does not have a functioning inner ear. A cochlear implant tries to replace the function of the inner ear by ... signals to the brain. Sound is picked up by a microphone worn ...

  7. Cochlear Implants

    ... an optimal period to develop speech and language skills. Research has shown that when these children receive a cochlear implant followed by intensive therapy before they are 18 months ... age develop language skills at a rate comparable to children with normal ...

  8. Dental Implants

    Full Text Available ... suffer from social consequences and poor nutrition. Rebuilding Bone When the supporting alveolar bone melts away , it’s gone for good, but through grafting, a skilled dental professional can recreate bone to fuse with and support an implant. This ...

  9. Dental Implants

    Full Text Available ... an implant connects directly to the jaw bone. It’s obviously not the same as the original connection , ... may feel you don’t need to replace it, since no one can see that it’s missing ...

  10. Dental Implants

    Full Text Available Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide helpful facts so you ... found in nature. What Happens When You Lose a Tooth? When you lose a tooth, especially a ...

  11. MRI of the hip joint

    Magnetic resonance imaging (MRI) is performed to diagnose many pathologic conditions affecting the hip joint. Either conventional MRI (without contrast enhancement of the joint cavity) or MR arthrography is used to detect and most accurately differentiate hip joint pathologies. Conventional MRI is performed in cases of bone marrow edema, necrosis, arthrosis and especially the so-called ''activated arthrosis'', as well as in inflammatory and tumorous entities. MR arthography, which has only recently become available for use, is excellently suited for diagnosing lesions of the acetabular labrum, cartilage lesions, and free articular bodies. This article provides an overview about MRI characteristics and their accuracy of hip joint diseases and the impact on the therapeutic procedure. (orig.)

  12. The effect of intellectual ability on functional activation in a neurodevelopmental disorder: preliminary evidence from multiple fMRI studies in Williams syndrome

    Pryweller Jennifer R

    2012-10-01

    Full Text Available Abstract Background Williams syndrome (WS is a rare genetic disorder caused by the deletion of approximately 25 genes at 7q11.23 that involves mild to moderate intellectual disability (ID. When using functional magnetic resonance imaging (fMRI to compare individuals with ID to typically developing individuals, there is a possibility that differences in IQ contribute to between-group differences in BOLD signal. If IQ is correlated with BOLD signal, then group-level analyses should adjust for IQ, or else IQ should be matched between groups. If, however, IQ is not correlated with BOLD signal, no such adjustment or criteria for matching (and exclusion based on IQ is necessary. Methods In this study, we aimed to test this hypothesis systematically using four extant fMRI datasets in WS. Participants included 29 adult subjects with WS (17 men demonstrating a wide range of standardized IQ scores (composite IQ mean = 67, SD = 17.2. We extracted average BOLD activation for both cognitive and task-specific anatomically defined regions of interest (ROIs in each individual and correlated BOLD with composite IQ scores, verbal IQ scores and non-verbal IQ scores in Spearman rank correlation tests. Results Of the 312 correlations performed, only six correlations (2% in four ROIs reached statistical significance at a P value Conclusions These data suggest that the inclusion of subjects with below normal IQ does not introduce a confounding factor, at least for some types of fMRI studies with low cognitive load. By including subjects who are representative of IQ range for the targeted disorder, findings are more likely to generalize to that population.

  13. The effect of intellectual ability on functional activation in a neurodevelopmental disorder: preliminary evidence from multiple fMRI studies in Williams syndrome

    2012-01-01

    Background Williams syndrome (WS) is a rare genetic disorder caused by the deletion of approximately 25 genes at 7q11.23 that involves mild to moderate intellectual disability (ID). When using functional magnetic resonance imaging (fMRI) to compare individuals with ID to typically developing individuals, there is a possibility that differences in IQ contribute to between-group differences in BOLD signal. If IQ is correlated with BOLD signal, then group-level analyses should adjust for IQ, or else IQ should be matched between groups. If, however, IQ is not correlated with BOLD signal, no such adjustment or criteria for matching (and exclusion) based on IQ is necessary. Methods In this study, we aimed to test this hypothesis systematically using four extant fMRI datasets in WS. Participants included 29 adult subjects with WS (17 men) demonstrating a wide range of standardized IQ scores (composite IQ mean = 67, SD = 17.2). We extracted average BOLD activation for both cognitive and task-specific anatomically defined regions of interest (ROIs) in each individual and correlated BOLD with composite IQ scores, verbal IQ scores and non-verbal IQ scores in Spearman rank correlation tests. Results Of the 312 correlations performed, only six correlations (2%) in four ROIs reached statistical significance at a P value < 0.01, but none survived correction for multiple testing. All six correlations were positive. Therefore, none supports the hypothesis that IQ is negatively correlated with BOLD response. Conclusions These data suggest that the inclusion of subjects with below normal IQ does not introduce a confounding factor, at least for some types of fMRI studies with low cognitive load. By including subjects who are representative of IQ range for the targeted disorder, findings are more likely to generalize to that population. PMID:23102261

  14. Infection-resistant MRI-visible scaffolds for tissue engineering applications

    Mahmoudi, Morteza; Zhao, Mingming; Matsuura, Yuka; Laurent, Sophie; Yang, Phillip C.; Bernstein, Daniel; Ruiz-Lozano, Pilar; Serpooshan, Vahid

    2016-01-01

    Summary Tissue engineering utilizes porous scaffolds as template to guide the new tissue growth. Clinical application of scaffolding biomaterials is hindered by implant-associated infection and impaired in vivo visibility of construct in biomedical imaging modalities. We recently demonstrated the use of a bioengineered type I collagen patch to repair damaged myocardium. By incorporating superparamagnetic iron oxide nanoparticles into this patch, here, we developed an MRI-visible scaffold. Moreover, the embedded nanoparticles impeded the growth of Salmonella bacteria in the patch. Conferring anti-infection and MRI-visible activities to the engineered scaffolds can improve their clinical outcomes and reduce the morbidity/mortality of biomaterial-based regenerative therapies. PMID:27525229

  15. Activity of left inferior frontal gyrus related to word repetition effects: LORETA imaging with 128-channel EEG and individual MRI.

    Kim, Young Youn; Lee, Boreom; Shin, Yong Wook; Kwon, Jun Soo; Kim, Myung-Sun

    2006-02-01

    We investigated the brain substrate of word repetition effects on the implicit memory task using low-resolution electromagnetic tomography (LORETA) with high-density 128-channel EEG and individual MRI as a realistic head model. Thirteen right-handed, healthy subjects performed a word/non-word discrimination task, in which the words and non-words were presented visually, and some of the words appeared twice with a lag of one or five items. All of the subjects exhibited word repetition effects with respect to the behavioral data, in which a faster reaction time was observed to the repeated word (old word) than to the first presentation of the word (new word). The old words elicited more positive-going potentials than the new words, beginning at 200 ms and lasting until 500 ms post-stimulus. We conducted source reconstruction using LORETA at a latency of 400 ms with the peak mean global field potentials and used statistical parametric mapping for the statistical analysis. We found that the source elicited by the old words exhibited a statistically significant current density reduction in the left inferior frontal gyrus. This is the first study to investigate the generators of word repetition effects using voxel-by-voxel statistical mapping of the current density with individual MRI and high-density EEG. PMID:16188458

  16. Dual-Energy CT for Evaluation of Intra- and Extracapsular Silicone Implant Rupture.

    Glazebrook, Katrina N; Leng, Shuai; Jacobson, Steven R; McCollough, Cynthia M

    2016-01-01

    Silicone implants are commonly used for both breast augmentation and breast reconstruction. With aging of the implant, the silicone envelope may become weak or may rupture. The technique of choice for evaluation of implant integrity is breast MRI; however this may be contraindicated in some patients or the cost may be prohibitive. Dual-energy CT allows determination of density and atomic number of tissue and can provide material composition information. We present a case of extracapsular implant rupture with MRI and dual-energy CT imaging and surgical correlation. PMID:26942031

  17. On the Need of Objective Vigilance Monitoring: Effects of Sleep Loss on Target Detection and Task-Negative Activity Using Combined EEG/fMRI.

    Czisch, Michael; Wehrle, Renate; Harsay, Helga A; Wetter, Thomas C; Holsboer, Florian; Sämann, Philipp G; Drummond, Sean P A

    2012-01-01

    Sleep loss affects attention by reducing levels of arousal and alertness. The neural mechanisms underlying the compensatory efforts of the brain to maintain attention and performance after sleep deprivation (SD) are not fully understood. Previous neuroimaging studies of SD have not been able to separate the effects of reduced arousal from the effects of SD on cerebral responses to cognitive challenges. Here, we used a simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) approach to study the effects of 36 h of total sleep deprivation (TSD). Specifically, we focused on changes in selective attention processes as induced by an active acoustic oddball task, with the ability to isolate runs with objective EEG signs of high (SD(alert)) or reduced (SD(sleepy)) vigilance. In the SD(alert) condition, oddball task-related activity appears to be sustained by compensatory co-activation of insular regions, but task-negative activity in the right posterior node of the default mode network is altered following TSD. In the SD(sleepy) condition, oddball task-positive activity was massively impaired, but task-negative activation was showing levels comparable with the control condition after a well-rested night. Our results suggest that loss of strict negative correlation between oddball task-positive and task-negative activation reflects the effects of TSD, while the actual state of vigilance during task performance can affects either task-related or task-negative activity, depending on the exact vigilance level. PMID:22557992

  18. Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging

    Acikel, Volkan, E-mail: vacik@ee.bilkent.edu.tr; Atalar, Ergin [Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey and National Magnetic Resonance Research Center (UMRAM), Bilkent, Ankara 06800 (Turkey); Uslubas, Ali [MR:comp GmbH, MR Safety Testing Laboratory, Buschgrundstraße 33, 45984 Gelsenkirchen (Germany)

    2015-07-15

    Purpose: The authors’ purpose is to model the case of an implantable pulse generator (IPG) and the electrode of an active implantable medical device using lumped circuit elements in order to analyze their effect on radio frequency induced tissue heating problem during a magnetic resonance imaging (MRI) examination. Methods: In this study, IPG case and electrode are modeled with a voltage source and impedance. Values of these parameters are found using the modified transmission line method (MoTLiM) and the method of moments (MoM) simulations. Once the parameter values of an electrode/IPG case model are determined, they can be connected to any lead, and tip heating can be analyzed. To validate these models, both MoM simulations and MR experiments were used. The induced currents on the leads with the IPG case or electrode connections were solved using the proposed models and the MoTLiM. These results were compared with the MoM simulations. In addition, an electrode was connected to a lead via an inductor. The dissipated power on the electrode was calculated using the MoTLiM by changing the inductance and the results were compared with the specific absorption rate results that were obtained using MoM. Then, MRI experiments were conducted to test the IPG case and the electrode models. To test the IPG case, a bare lead was connected to the case and placed inside a uniform phantom. During a MRI scan, the temperature rise at the lead was measured by changing the lead length. The power at the lead tip for the same scenario was also calculated using the IPG case model and MoTLiM. Then, an electrode was connected to a lead via an inductor and placed inside a uniform phantom. During a MRI scan, the temperature rise at the electrode was measured by changing the inductance and compared with the dissipated power on the electrode resistance. Results: The induced currents on leads with the IPG case or electrode connection were solved for using the combination of the MoTLiM and

  19. Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging

    Purpose: The authors’ purpose is to model the case of an implantable pulse generator (IPG) and the electrode of an active implantable medical device using lumped circuit elements in order to analyze their effect on radio frequency induced tissue heating problem during a magnetic resonance imaging (MRI) examination. Methods: In this study, IPG case and electrode are modeled with a voltage source and impedance. Values of these parameters are found using the modified transmission line method (MoTLiM) and the method of moments (MoM) simulations. Once the parameter values of an electrode/IPG case model are determined, they can be connected to any lead, and tip heating can be analyzed. To validate these models, both MoM simulations and MR experiments were used. The induced currents on the leads with the IPG case or electrode connections were solved using the proposed models and the MoTLiM. These results were compared with the MoM simulations. In addition, an electrode was connected to a lead via an inductor. The dissipated power on the electrode was calculated using the MoTLiM by changing the inductance and the results were compared with the specific absorption rate results that were obtained using MoM. Then, MRI experiments were conducted to test the IPG case and the electrode models. To test the IPG case, a bare lead was connected to the case and placed inside a uniform phantom. During a MRI scan, the temperature rise at the lead was measured by changing the lead length. The power at the lead tip for the same scenario was also calculated using the IPG case model and MoTLiM. Then, an electrode was connected to a lead via an inductor and placed inside a uniform phantom. During a MRI scan, the temperature rise at the electrode was measured by changing the inductance and compared with the dissipated power on the electrode resistance. Results: The induced currents on leads with the IPG case or electrode connection were solved for using the combination of the MoTLiM and

  20. On clustering fMRI time series

    Goutte, Cyril; Toft, Peter Aundal; Rostrup, E.; Nielsen, Finn Årup; Hansen, Lars Kai

    1999-01-01

    indicate whether sets of voxels are activated in a similar way or in different ways. Typically, delays between two activated signals are not identified. In this article, we use clustering methods to detect similarities in activation between voxels. We employ a novel metric that measures the similarity...... between the activation stimulus and the fMRI signal. We present two different clustering algorithms and use them to identify regions of similar activations in an fMRI experiment involving a visual stimulus....

  1. Demonstration of ipsilateral brain activation by noise in patients profoundly deaf with cochlear implant, or unilaterally deaf

    Two groups of patients with hearing handicaps have been investigated with PET and F-18-2-FDG. Since these patients were unilaterally deaf or profoundly deaf with a cochlear implant installed, monaural stimulation was possible excluding any effects of bone conduction to the contralateral ear. White noise was used as acoustic stimulus in unilaterally deaf patients. The peripheral auditory nerve of cochlear implant patients was stimulated by electrical impulses which were encoded from music or a 4-tone mixture by an electronic speech processor. The non-music stimuli were chosen to avoid associative cortical reactions. In both groups response to the stimuli by increase of glucose consumption (LCMRglc) was found not only in the contralateral primary auditory cortex as expected from neuroanatomical knowledge, but also in the ipsilateral auditory cortex. Furthermore there was no correlation between the hemisphere showing increased LCMRglc and the side of stimulation or the type of stimulus. The similarity of results obtained in both groups by acoustical and electrical stimulation of the auditory nerve suggests that this kind of measurement might be a tool to predict or check the performance of a cochlear implant in a profoundly deaf patient. The finding of increased LCMRglc in the area of the normal auditory cortex in patients profoundly deaf since birth contradicts the hypothesis of degeneration of this cortical center in such patients. (Author)

  2. Magnetic Resonance Imaging (MRI)

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  3. Cochlear implant patients underwent successful MRI examination after local bandaging:a case report%电子耳蜗植入术患者局部包扎后行MRI检查成功1例

    保国华; 曹克利

    2012-01-01

    Summary A female patient, now 6 years old. received cochlear implant in the right ear at the age of 2(February .2006). In August 16. 2010. a cervical spine MR1 examination was required due to the cervical spine injury in order to confirm the diagnosis. Considering the cochlea coil may interfere with the MKI examination results, a local bandaging around the ear was given to isolate cochlear magnetic field. The results of cervical spine MR1 ex aminations showed no obvious disturbance, which suggests that we could further explore this method clinically.

  4. The value of MRI findings in augmented mammoplasty

    The objective of augmentation mammography includes reconstruction and cosmesis after breast surgery. Increasing frequency of the procedure has been related with increased complications. Authors evaluated the value of breast MRI in the diagnosis of complications after augmentation mammoplasty. Authors studied 42 breasts of 24 patients, who had undertaken augmentation mammoplasty. We evaluated findings of mammography, ultrasonography, and breast MRI in all patients. We used variable MRI sequences for better evaluation of implant status. The results were compared with the findings in surgical field. In all imaging studies, nodule or mass was identifiable in the cases of interstitial paraffine injection (8 breasts), interstitial silicon injection (7 breasts), and herb medication (2 breasts). However, the differentiation between malignant and benign nodule was only possible at dynamic breast MRI. Mammogram was not helpful in the evaluation of extracapsular rupture in the cases of silastic bag insertion. In sonogram, identification of echogenic material was possible, although, false negative and false positive rate were high. MRI was able to visualize contour of entire implant and it was able to easily recognize low signal internal structure. MRI was the most accurate diagnostic tool in the evaluation of the character of the palpable mass after augmentation mammoplasty and early detection of breast implant rupture

  5. The value of MRI findings in augmented mammoplasty

    Yoon, Sang Wook; Oh, Ki Keun; Jung, Eun Ki; Kim, Ji Hyung [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1995-04-15

    The objective of augmentation mammography includes reconstruction and cosmesis after breast surgery. Increasing frequency of the procedure has been related with increased complications. Authors evaluated the value of breast MRI in the diagnosis of complications after augmentation mammoplasty. Authors studied 42 breasts of 24 patients, who had undertaken augmentation mammoplasty. We evaluated findings of mammography, ultrasonography, and breast MRI in all patients. We used variable MRI sequences for better evaluation of implant status. The results were compared with the findings in surgical field. In all imaging studies, nodule or mass was identifiable in the cases of interstitial paraffine injection (8 breasts), interstitial silicon injection (7 breasts), and herb medication (2 breasts). However, the differentiation between malignant and benign nodule was only possible at dynamic breast MRI. Mammogram was not helpful in the evaluation of extracapsular rupture in the cases of silastic bag insertion. In sonogram, identification of echogenic material was possible, although, false negative and false positive rate were high. MRI was able to visualize contour of entire implant and it was able to easily recognize low signal internal structure. MRI was the most accurate diagnostic tool in the evaluation of the character of the palpable mass after augmentation mammoplasty and early detection of breast implant rupture.

  6. fMRI activation of visual cortex to brightness change by the visual stimulating without form information

    Visual information is of various types and includes form, color and motion. There have been no studies that have only measured just the responses to visual stimuli of luminance change without form information in area V1. To achieve a spatially uniform brightness change that excluded color and form, such as Ganzfeld stimuli, subjects wore semi-transparent covers on their eyes. Through the use of functional magnetic resonance imaging (fMRI), we were able to measure the V1 responses while subjects viewed instantaneous or gradual brightness changes. Our results indicated that responses to temporal contrast changes of brightness without spatial contrast in area V1 do exist. These results must have been caused by responses in area V1 that were a combination of the transient responses to the instantaneous brightness change and the sustained responses to the value of luminance. (author)

  7. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.

    Nathalie Van Den Berge

    Full Text Available Deep Brain Stimulation (DBS is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI, which reflects changes in blood oxygen level dependent (BOLD responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.

  8. Differential neural activation for camouflage detection task in Field-independent and Field-Dependent individuals: Evidence from fMRI

    Janani Rajagopalan; Shilpi Modi; Pawan Kumar; Subash Khushu; Manas K Mandal

    2015-12-01

    It is not clearly known as to why some people identify camouflaged objects with ease compared with others. The literature suggests that Field-Independent individuals detect camouflaged object better than their Field-Dependent counterparts, without having evidence at the neural activation level. A paradigm was designed to obtain neural correlates of camouflage detection, with real-life photographs, using functional magnetic resonance imaging. Twenty-three healthy human subjects were stratified as Field-Independent (Fl) and Field-Dependent (FD), with Witkins Embedded Figure Test. FIs performed better than FDs (marginal significance; =0.054) during camouflage detection task. fMRI revealed differential activation pattern between Fl and FD subjects for this task. One sample T-test showed greater activation in terms of cluster size in FDs, whereas FIs showed additional areas for the same task. On direct comparison of the two groups, Fl subjects showed additional activation in parts of primary visual cortex, thalamus, cerebellum, inferior and middle frontal gyrus. Conversely, FDs showed greater activation in inferior frontal gyms, precentral gyms, putamen, caudate nucleus and superior parietal lobule as compared to FIs. The results give preliminary evidence to the differential neural activation underlying the variances in cognitive styles of the two groups.

  9. Research progress of functional MRI in depression

    The mood disorders of depression are associated with abnormalities of brain structure and function, and exploring their pathological mechanism has important significance for the choice of treatment and the curative effect evaluation. In recent years, the research of MRI on brain structure and function of depression has made great progress, especially in functional magnetic resonance imaging (fMRI). fMRI can detect the functional change in real time, and also can display the activity of brain and changes in the nerve pathways in patients with depression. This article summarizes the present research situation and progress of MRI in the diagnosis of depression. (authors)

  10. Just watching the game ain’t enough: Striatal fMRI reward responses to successes and failures in a video game during active and vicarious playing

    Jari eKätsyri

    2013-06-01

    Full Text Available Although the multimodal stimulation provided by modern audiovisual video games is pleasing by itself, the rewarding nature of video game playing depends critically also on the players’ active engagement in the gameplay. The extent to which active engagement influences dopaminergic brain reward circuit responses remains unsettled. Here we show that striatal reward circuit responses elicited by successes (wins and failures (losses in a video game are stronger during active than vicarious gameplay. Eleven healthy males both played a competitive first-person tank shooter game (active playing and watched a pre-recorded gameplay video (vicarious playing while their hemodynamic brain activation was measured with 3-tesla functional magnetic resonance imaging (fMRI. Wins and losses were paired with symmetrical monetary rewards and punishments during active and vicarious playing so that the external reward context remained identical during both conditions. Brain activation was stronger in the orbitomedial prefrontal cortex (omPFC during winning than losing, both during active and vicarious playing conditions. In contrast, both wins and losses suppressed activations in the midbrain and striatum during active playing; however, the striatal suppression, particularly in the anterior putamen, was more pronounced during loss than win events. Sensorimotor confounds related to joystick movements did not account for the results. Self-ratings indicated losing to be more unpleasant during active than vicarious playing. Our findings demonstrate striatum to be selectively sensitive to self-acquired rewards, in contrast to frontal components of the reward circuit that process both self-acquired and passively received rewards. We propose that the striatal responses to repeated acquisition of rewards that are contingent on game related successes contribute to the motivational pull of video-game playing.

  11. ELECTROMAGNETIC COMPATIBILITY AND RENEWABLE POWER FOR IMPLANTABLE NEUROSTIMULATORS

    Pantchenko, Oxana S

    2012-01-01

    Over the last decade, the number of implantable neurostimulator systems implanted in patients has been rapidly growing. Nearly 50,000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference neurostimulator function an issue of concern. The susceptibility of six active implantable neurostimulators ...

  12. MRI compatible optrodes for simultaneous LFP and optogenetic fMRI investigation of seizure-like afterdischarges.

    Duffy, Ben A; Choy, ManKin; Chuapoco, Miguel R; Madsen, Michael; Lee, Jin Hyung

    2015-12-01

    In preclinical studies, implanted electrodes can cause severe degradation of MRI images and hence are seldom used for chronic studies employing functional magnetic resonance imaging. In this study, we developed carbon fiber optrodes (optical fiber and electrode hybrid devices), which can be utilised in chronic longitudinal studies aiming to take advantage of emerging optogenetic technologies, and compared them with the more widely used tungsten optrodes. We find that optrodes constructed using small diameter (~130 μm) carbon fiber electrodes cause significantly reduced artifact on functional MRI images compared to those made with 50 μm diameter tungsten wire and at the same time the carbon electrodes have lower impedance, which leads to higher quality LFP recordings. In order to validate this approach, we use these devices to study optogenetically-induced seizure-like afterdischarges in rats sedated with dexmedetomidine and compare these to sub (seizure) threshold stimulations in the same animals. The results indicate that seizure-like afterdischarges involve several extrahippocampal brain regions that are not recruited by subthreshold optogenetic stimulation of the hippocampus at 20 Hz. Subthreshold stimulation led to activation of the entire ipsilateral hippocampus and septum, whereas afterdischarges additionally produced activations in the contralateral hippocampal formation, neocortex, cerebellum, nucleus accumbens, and thalamus. Although we demonstrate just one application, given the ease of fabrication, we anticipate that carbon fiber optrodes could be utilised in a variety of studies that could benefit from longitudinal optogenetic functional magnetic resonance imaging. PMID:26208873

  13. COCHLEAR IMPLANTATION PREVALENCE IN ELDERLY

    A. V. Starokha

    2014-01-01

    Full Text Available Current paper describes an experience of cochlear implantation in elderly. Cochlear implantation has become a widely accepted intervention in the treatment of individuals with severe-to-profound sensorineural hearing loss. Cochlear implants are now accepted as a standard of care to optimize hearing and subsequent speech development in children and adults with deafness. But cochlear implantation affects not only hearing abilities, speech perception and speech production; it also has an outstanding impact on the social life, activities and self-esteem of each patient. The aim of this study was to evaluate the cochlear implantation efficacy in elderly with severe to profound sensorineural hearing loss. There were 5 patients under our observation. Surgery was performed according to traditional posterior tympanotomy and cochleostomy for cochlear implant electrode insertion for all observed patients. The study was conducted in two stages: before speech processor’s activation and 3 months later. Pure tone free field audiometry was performed to each patient to assess the efficiency of cochlear implantation in dynamics. The aim of the study was also to evaluate quality of life in elderly with severe to profound sensorineural hearing loss after unilateral cochlear implantation. Each patient underwent questioning with 36 Item Short Form Health Survey (SF-36. SF-36 is a set of generic, coherent, and easily administered quality-of-life measures. The SF-36 consists of eight scaled scores, which are the weighted sums of the questions in their section. Each scale is directly transformed into a 0-100 scale on the assumption that each question carries equal weight. The eight sections are: physical functioning; physical role functioning; emotional role functioning; vitality; emotional well-being; social role functioning; bodily pain; general health perceptions. Our results demonstrate that cochlear implantation in elderly consistently improved quality of life

  14. [An fMRI Study of the Brain Activation Related to Intensive Positive Emotions During Viweing Erotic Pictures in 49-74 Old Men].

    Martynova, O; Portnova, G; Orlov, I

    2016-01-01

    According to psychological research erotic images are evaluated in the context of positive emotions as the most intense, most associated with emotional arousal, among the variety of pleasant and unpleasant stimuli. However it is difficult to separate areas of the brain that are related to the general emotional process from the activity of the brain areas involved in neuronal representations of reward system. The purpose of this study was to determine differences in the brain activity using functional magnetic resonance imaging (fMRI) in male subjects in evaluating an intensity of pleasant images, including erotic, or unpleasant and neutral pictures. When comparing the condition with evaluation of the pleasant erotic images with conditions containing neutral or unpleasant stimuli, a significant activation was observed in the posterior cingulate cortex; the prefrontal cortex and the right globus pallidus. An increased activity of the right anterior central gyrus was observed in the conditions related to evaluation of pleasant and neutral stimuli. Thus, in the process of evaluating the intensity of emotional images of an erotic nature the active brain areas were related not only to neuronal representations of emotions, but also to motivations and control system of emotional arousal, which should be taken into account while using erotic pictures as intensive positive emotional stimuli. PMID:27263273

  15. The Biological Activity of Propolis-Containing Toothpaste on Oral Health Environment in Patients Who Underwent Implant-Supported Prosthodontic Rehabilitation

    Tadeusz Morawiec

    2013-01-01

    Full Text Available The soft and periodontal tissues surrounding dental implants are particularly susceptible to bacteria invasion and inflammatory reactions due to complex histological structures. This study was carried out to investigate the influence of a propolis-containing hygienic agent on selected oral health parameters, oral microflora, and the condition of periodontal health. Sixteen subjects who underwent an oral rehabilitation with dental implants were selected and randomly assigned into two groups, which received a newly formulated propolis-containing toothpaste (3% (CA or a negative control without an active ingredient (CC. Approximal plaque index (API, oral hygiene index (OHI, debris component, and sulcus bleeding index (SBI were assessed in three subsequent stages. During the first and last examinations, the swabs were employed for microbiological inoculation. Propolis-containing toothpaste was found to be distinctively effective in improving oral health and the occurrence of gingivitis triggered by dental plaque. The qualitative and quantitative changes in oral bacteria spectrum were observed. Antibacterial measures containing propolis might be used as a natural adjuvant to other active substances in individuals with a high risk of periodontal problems against pathogenic oral microflora.

  16. The biological activity of propolis-containing toothpaste on oral health environment in patients who underwent implant-supported prosthodontic rehabilitation.

    Morawiec, Tadeusz; Dziedzic, Arkadiusz; Niedzielska, Iwona; Mertas, Anna; Tanasiewicz, Marta; Skaba, Dariusz; Kasperski, Jacek; Machorowska-Pieniążek, Agnieszka; Kucharzewski, Marek; Szaniawska, Karolina; Więckiewicz, Włodzimierz; Więckiewicz, Mieszko

    2013-01-01

    The soft and periodontal tissues surrounding dental implants are particularly susceptible to bacteria invasion and inflammatory reactions due to complex histological structures. This study was carried out to investigate the influence of a propolis-containing hygienic agent on selected oral health parameters, oral microflora, and the condition of periodontal health. Sixteen subjects who underwent an oral rehabilitation with dental implants were selected and randomly assigned into two groups, which received a newly formulated propolis-containing toothpaste (3% (CA)) or a negative control without an active ingredient (CC). Approximal plaque index (API), oral hygiene index (OHI, debris component), and sulcus bleeding index (SBI) were assessed in three subsequent stages. During the first and last examinations, the swabs were employed for microbiological inoculation. Propolis-containing toothpaste was found to be distinctively effective in improving oral health and the occurrence of gingivitis triggered by dental plaque. The qualitative and quantitative changes in oral bacteria spectrum were observed. Antibacterial measures containing propolis might be used as a natural adjuvant to other active substances in individuals with a high risk of periodontal problems against pathogenic oral microflora. PMID:23762153

  17. Posterior Cingulate Cortex-Related Co-Activation Patterns: A Resting State fMRI Study in Propofol-Induced Loss of Consciousness

    Amico, Enrico; Gomez, Francisco; Di Perri, Carol; Vanhaudenhuyse, Audrey; Lesenfants, Damien; Boveroux, Pierre; Bonhomme, Vincent; Brichant, Jean-François; Marinazzo, Daniele; Laureys, Steven

    2014-01-01

    Background Recent studies have been shown that functional connectivity of cerebral areas is not a static phenomenon, but exhibits spontaneous fluctuations over time. There is evidence that fluctuating connectivity is an intrinsic phenomenon of brain dynamics that persists during anesthesia. Lately, point process analysis applied on functional data has revealed that much of the information regarding brain connectivity is contained in a fraction of critical time points of a resting state dataset. In the present study we want to extend this methodology for the investigation of resting state fMRI spatial pattern changes during propofol-induced modulation of consciousness, with the aim of extracting new insights on brain networks consciousness-dependent fluctuations. Methods Resting-state fMRI volumes on 18 healthy subjects were acquired in four clinical states during propofol injection: wakefulness, sedation, unconsciousness, and recovery. The dataset was reduced to a spatio-temporal point process by selecting time points in the Posterior Cingulate Cortex (PCC) at which the signal is higher than a given threshold (i.e., BOLD intensity above 1 standard deviation). Spatial clustering on the PCC time frames extracted was then performed (number of clusters = 8), to obtain 8 different PCC co-activation patterns (CAPs) for each level of consciousness. Results The current analysis shows that the core of the PCC-CAPs throughout consciousness modulation seems to be preserved. Nonetheless, this methodology enables to differentiate region-specific propofol-induced reductions in PCC-CAPs, some of them already present in the functional connectivity literature (e.g., disconnections of the prefrontal cortex, thalamus, auditory cortex), some others new (e.g., reduced co-activation in motor cortex and visual area). Conclusion In conclusion, our results indicate that the employed methodology can help in improving and refining the characterization of local functional changes in the

  18. Advances in implantable cardioverter defibrillator therapy.

    Rickard, John; Wilkoff, Bruce L

    2016-03-01

    Since the first implant in 1980, implantable cardioverter defibrillator (ICD) technology has progressed rapidly. Modern ICD's have hundreds of programmable options with the general goal of preventing inappropriate shocks and providing shocks for truly life threatening symptomatic ventricular arrhythmias. New studies on ICD programming have shown the benefits of prolonged detection intervals in reaching this goal. Anti-tachycardia pacing (ATP) therapy has become an important adjunct to defibrillator shocks. Remote monitoring technologies have surfaced which have been shown to identify arrhythmias and problems with the device in an expedient fashion. The subcutaneous ICD offers the advantage of avoiding intravascular leads and their inherent risks. Lastly, the current understanding of the effects of MRI in ICD patients has advanced creating new opportunities to provide MRI safely to such patients. PMID:26653411

  19. Learned audio-visual cross-modal associations in observed piano playing activate the left planum temporale. An fMRI study.

    Hasegawa, Takehiro; Matsuki, Ken-Ichi; Ueno, Takashi; Maeda, Yasuhiro; Matsue, Yoshihiko; Konishi, Yukuo; Sadato, Norihiro

    2004-08-01

    Lip reading is known to activate the planum temporale (PT), a brain region which may integrate visual and auditory information. To find out whether other types of learned audio-visual integration occur in the PT, we investigated "key-touch reading" using functional magnetic resonance imaging (fMRI). As well-trained pianists are able to identify pieces of music by watching the key-touching movements of the hands, we hypothesised that the visual information of observed sequential finger movements is transformed into the auditory modality during "key-touch reading" as is the case during lip reading. We therefore predicted activation of the PT during key-touch reading. Twenty-six healthy right-handed volunteers were recruited for fMRI. Of these, 7 subjects had never experienced piano training (naïve group), 10 had a little experience of piano playing (less trained group), and the remaining 9 had been trained for more than 8 years (well trained group). During task periods, subjects were required to view the bimanual hand movements of a piano player making key presses. During control periods, subjects viewed the same hands sliding from side to side without tapping movements of the fingers. No sound was provided. Sequences of key presses during task periods consisted of pieces of familiar music, unfamiliar music, or random sequences. Well-trained subjects were able to identify the familiar music, whereas less-trained subjects were not. The left PT of the well-trained subjects was equally activated by observation of familiar music, unfamiliar music, and random sequences. The naïve and less trained groups did not show activation of the left PT during any of the tasks. These results suggest that PT activation reflects a learned process. As the activation was elicited by viewing key pressing actions regardless of whether they constituted a piece of music, the PT may be involved in processes that occur prior to the identification of a piece o