WorldWideScience

Sample records for active magnetic regenerative

  1. Optimization of active magnetic regenerative refrigeration systems using Design of Experiments

    Roudaut, Julien; Bouchekara, Houssem; Kedous-Lebouc, Afef; Coulomb, Jean-Louis

    2009-01-01

    International audience This paper attends to demonstrate the usefulness of Design of Experiments (DOE) method in magnetic refrigeration (MR) understanding and optimization. A numerical DOE is applied to a simple 1D finite difference model describing an Active Magnetic Regenerative Refrigeration (AMRR) system. The heat transfer fluid is water, the regenerator consists of stacked gadolinium plates and the model is based on the assumption of an equivalent single plate. A two-level 27-3 fracti...

  2. Maximizing the temperature span of a solid state active magnetic regenerative refrigerator

    Highlights: • A fully solid state active magnetic regenerative refrigerator is proposed. • The temperature span is enhanced by increasing the number of magnetocaloric elements. • Numerical simulations show that the temperature span can reach 11.4 K at 303 K. • Optimization in terms of frequency, operating temperature and contact time. - Abstract: We here describe and numerically simulate a new solid state active magnetic regenerative refrigerator (AMRR) aiming bulk applications. This system uses magnetocaloric materials and materials whose thermal conductivity changes with the applied magnetic field (H). Similarly to common AMRRs, H is moved gradually from the hot to the cold reservoirs to produce a cascade of Brayton cycles. This cascade increases the temperature span and can thus be used in bulk applications where the conservation of a cold environment is demanded. Our results show that by using gadolinium as magnetocaloric material (MCM) and H = 1 T, one can increase the temperature span from 2.5 K up to 11.5 K, an enhancement of over 450%. The optimization of such solid state system is here presented also in terms of frequency, operating temperature and time of contact between the cold reservoir and the MCM

  3. Design optimization of a 0.1-ton/day active magnetic regenerative hydrogen liquefier

    Zhang, L.; Sherif, S. A.; DeGregoria, A. J.; Zimm, C. B.; Veziroglu, T. N.

    2000-04-01

    A design optimization procedure of a 0.1-ton/day active magnetic regenerative (AMR) hydrogen liquefier model is described. The liquefier is proposed for the industrial liquid hydrogen market with overall efficiency being the primary measure of performance. This performance is described here in terms of particle size, bed length, and inter-stage temperature. Efficiency comparable to larger gas cycle plants is predicted. The magnetic liquefier may be modified to operate as a two-stage magnetic refrigerator between 77 and 20 K with high efficiency. The paper describes an optimization method as applied to the design of a two-stage AMR hydrogen liquefier and presents the associated results. A five-parameter optimization process is performed since there are five changeable parameters; the low- and high-stage particle sizes, the low- and high-stage bed lengths, and the inter-stage temperature. Model results are presented and compared with experimental results of an actual liquefier.

  4. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    Park, Inmyong; Park, Jiho; Jeong, Sangkwon [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Kim, Youngkwon [Institute for Basic Science, Daejeon 305-811 (Korea, Republic of)

    2014-01-29

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure and the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.

  5. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure and the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi2, Gd0.1Dy0.9Ni2, Dy0.85Er0.15Al2, Dy0.5Er0.5Al2) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper

  6. 1-D transient numerical model of a regenerator in a novel sub Kelvin Active Magnetic Regenerative Refrigerator

    Jahromi, Amir E.; Miller, Franklin K.

    2016-03-01

    A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.

  7. Experimental investigation of 20 K two-stage layered active magnetic regenerative refrigerator

    Park, Inmyong; Jeong, Sangkwon

    2015-12-01

    The performance of a two-stage layered AMRR is experimentally investigated. The test apparatus includes two-stage layered AMRs, low temperature superconducting (LTS) magnet which generates maximum magnetic field of 4 T, and the helium gas flow system. The helium compressor with the tandem rotary valve is employed to generate the oscillating flow of the helium gas minimizing the pressure swing effect. The mass flow rate of working fluid is controlled separately at the first and second stages of the AMR by solenoid valves. The mass flow rate of the AMRs is measured by the mass flow meter and the cryogenic hot-film sensor which is calibrated at cryogenic temperature range from 20 K to 77 K. In order to reduce the heat leak by shuttle heat transfer of the working fluid, void volumes have been implemented and connected to the cold ends of the AMR1 and AMR2. The temperature span of the AMR is recorded as 52 K and the performance of the AMR with the variation of the mass flow rate is analysed. The results show that the mass flow rate and the heat leak due to the shuttle heat transfer by oscillating working fluid are crucial factors in the AMR performance.

  8. Development of a He{sup 3}−He{sup 4} sub Kelvin active magnetic regenerative refrigerator (AMRR) with no moving parts

    Jahromi, A. E. [Ph.D. student, University of Wisconsin -1500 Engineering Drive, 1335 ERB, Madison, WI, 53706 (United States); Miller, F. K. [Assistant Professor of Mechanical Engineering, University of Wisconsin - 1500 Engineering Drive, 1341 ERB Madison, WI 53706 (United States)

    2014-01-29

    Current state of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin cooling over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. We propose an active Magnetic Regenerative Refrigerator (AMRR) that uses a Superfluid Magnetic Pump (SMP) to circulate liquid He{sup 3}−He{sup 4} through a magnetic regenerator to provide the necessary cooling at sub-Kelvin temperatures. Such system will be capable of distributing the cooling load to a relatively large array of objects. One advantage of using a fluid for heat transfer in such systems is to isolate components such as the superconducting magnets from detectors that are sensitive to magnetic fields. Another advantage of the proposed tandem AMRR is that it does not need Gas Gap Heat Switches (GGHS) to transfer heat during various stages of the magnetic cooling. Our proposed system consists of four superconducting magnets, one superleak, and three heat exchangers. It will operate continuously with no moving parts and it will be capable of providing the necessary cooling at sub-Kelvin temperatures for future space science applications.

  9. Active Gas Regenerative Liquefier Project

    National Aeronautics and Space Administration — We offer a novel liquefier that has the potential to simultaneously increase thermodynamic efficiency and significantly reduce complexity. The ?active gas...

  10. Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine

    H. Markides

    2012-01-01

    Full Text Available Regenerative medicine is a pioneering field aimed at restoring and regenerating the function of damaged cells, organs and tissues in order to establish normal function. It demands the cross communication of disciplines to develop effective therapeutic stem cell based therapies. Nanotechnology has been instrumental in the development and translation of basic research to the clinically relevant therapies. In particular, magnetic nanoparticles (MNPs have been applied to tag, track and activate stem cells offering an effective means of monitoring in vitro and in vivo behaviour. MNPs are comprised of an iron oxide core with a biocompatible biological polymer. Safety is an issue of constant concern and emphasises on the importance of investigating the issue of toxicity. Any indication of toxicity can ultimately limit the therapeutic efficiency of the therapy. Toxicity is highly dependent on the physical, chemical and structural properties of the MNP itself as well as dose and intended use. Few in vitro studies have reported adverse effects of MNP on cells at in vitro in therapeutic doses. However, long term in vivo studies have not been studied as extensively. This review aims to summarise current research in this topic highlighting commonly used toxicity assays to investigate this.

  11. Performance of a novel energy-regenerative active suspension system

    HUANG Da-shan; ZHANG Jin-qiu; LIU Yi-le; WANG Xing-ye

    2015-01-01

    A novel energy-regenerative active suspension (NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a traditional energy-regenerative active suspension (TEAS) system. The energy recovery and active control could be implemented simultaneously in the NEAS. The transforming processes and the corresponding computational formulas of power conversion in the NEAS were provided. The simulation results show that the performances of energy recovery of the NEAS are improved, and the self-sustaining of power supply for the NEAS can be realized.

  12. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine

    Jhon Cores

    2015-06-01

    Full Text Available Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models.

  13. Design and experiment study of a semi-active energy-regenerative suspension system

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration. (paper)

  14. Design and experiment study of a semi-active energy-regenerative suspension system

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

  15. Novel magnetic indenter for rheological analysis of thin biological sheet for regenerative medicine

    Kageshima, Masami; Maruyama, Toshiro; Akama, Tomoya; Nakamura, Tomoyuki

    2016-07-01

    A novel method is proposed for analyzing the mechanical properties of a thin sheet of cells or extracellular matrix cultured for regenerative medicine. A steel sphere is mounted onto the center of the sheet sample, placed over a circular aperture, and a loading force is exerted via an electromagnet with well-regulated current while the displacement of the sample center is optically detected. Details of the instrument and its performance are described. Loading and unloading experiment with stepwise magnetic force revealed that creep response of each of the cell sheet and matrix sheet can be expressed as a combination of a quasi-instantaneous deformation and two delayed elastic responses having different retardation times. The retardation time exhibited an increasing trend with the loading force. Close analysis of loading-force dependence and reversibility of the derived mechanical parameters revealed that these deformation modes are not independent but flexibly switches to each other depending on load magnitude and loading history. The cell sheet sample exhibited remarkable irreversibility between loading and unloading responses, which is attributed to response of the live cells to the sustained loading.

  16. Performance characteristics of an irreversible regenerative magnetic Brayton refrigeration cycle using Gd0.74Tb0.26 as the working substance

    Diguet, Gildas; Lin, Guoxing; Chen, Jincan

    2012-10-01

    The cycle model of an irreversible regenerative magnetic Brayton refrigerator using Gd0.74Tb0.26 as the working substance is established. Based on the experimental characteristics of iso-field heat capacities of the material Gd0.74Tb0.26 at 0 T and 2 T, the corresponding iso-field entropies are calculated and the thermodynamic performance of an irreversible regenerative magnetic Brayton refrigeration cycle is investigated. The effects of the irreversibilities in the two adiabatic processes and non-perfect regenerative process of the magnetic Brayton refrigeration cycle on the cooling quantity, the heat quantity released to the hot reservoir, the net cooling quantity and the coefficient of performance are discussed in detail. Some significant results are obtained.

  17. A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

    Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored

  18. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    In recent years a paradigm shift in understanding of human bone formation has occurred that starts to change current concepts in tissue engineering of bone and cartilage. New discoveries revealed that fundamental steps in biomineralization are enzyme driven, not only during hydroxyapatite deposition, but also during initial bioseed formation, involving the transient deposition and subsequent transformation of calcium carbonate to calcium phosphate mineral. The principal enzymes mediating these reactions, carbonic anhydrase and alkaline phosphatase, open novel targets for pharmacological intervention of bone diseases like osteoporosis, by applying compounds acting as potential activators of these enzymes. It is expected that these new findings will give an innovation boost for the development of scaffolds for bone repair and reconstruction, which began with the use of bioinert materials, followed by bioactive materials and now leading to functional regenerative tissue units. These new developments have become possible with the discovery of the morphogenic activity of bioinorganic polymers, biocalcit, bio-polyphosphate and biosilica that are formed by a biogenic, enzymatic mechanism, a driving force along with the development of novel rapid-prototyping three-dimensional (3D) printing methods and bioprinting (3D cell printing) techniques that may allow a fabrication of customized implants for patients suffering in bone diseases in the future. PMID:25376489

  19. Renal primordia activate kidney regenerative events in a rat model of progressive renal disease.

    Barbara Imberti

    Full Text Available New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures. Here, we studied whether metanephroi possess developmental capacity when transplanted under the kidney capsule of MWF male rats, a model of spontaneous nephropathy. We found that six weeks post-transplantation, renal primordia developed glomeruli and tubuli able to filter blood and to produce urine in cyst-like structures. Newly developed metanephroi were able to initiate a regenerative-like process in host renal tissues adjacent to the graft in MWF male rats as indicated by an increase in cell proliferation and vascular density, accompanied by mRNA and protein upregulation of VEGF, FGF2, HGF, IGF-1 and Pax-2. The expression of SMP30 and NCAM was induced in tubular cells. Oxidative stress and apoptosis markedly decreased. Our study shows that embryonic kidneys generate functional nephrons when transplanted into animals with severe renal disease and at the same time activate events at least partly mimicking those observed in kidney tissues during renal regeneration.

  20. Regenerative (Regen) ECLSS Operations Water Balance

    Tobias, Barry

    2010-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) ECLSS systems which includes the Oxygen Generator Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of "water balance." Even more recently, in 2010 the Sabatier system came online which converts H2 and CO2 into water and methane. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification rates of crew urine output, condensate output, O2 requirements, toilet flush water and drinking needs are well documented and used as a general plan when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent on a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS. This paper will review the various inputs to rate changes and inputs to planning events, including but not limited to; crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water containment availability, and Carbon Dioxide Removal Assembly (CDRA) capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints and finally the operational means by which flight controllers manage this new challenge of "water balance."

  1. Regenerative burner

    Davies, T.E.; Quinn, D.E.; Watson, J.E.

    1986-08-05

    A regenerative burner is described operable in fire and flue modes comprising: a burner shell having first and second internal chambers, the first chamber being disposed on the flame axis of the burner and the second chamber surrounding the radial perimeter of the first chamber; a gas permeable annular regenerative bed separating the first and second chambers such that gas flow between the first and second chambers must travel through the regenerative bed in a generally radial direction with respect to the flame axis; means for supplying combustion air to the second chamber when the burner is in the fire mode and for exhausting the products of combustion from the second chamber when the burner is in the flue mode; and means for supplying fuel in the vicinity of the flame axis for mixing with combustion air to support combustion when the burner is in the fire mode.

  2. Appearance of an inhibitory cell nuclear antigen in rat and human serum during variable degrees of hepatic regenerative activity

    1999-01-01

    AIM To determine whether proliferating cell nuclear antigen (PCNA) is present in the peripheral circulation and whether PCNA levels correlate with enhanced regenerative activity.METHODS In animal studies, adult male Sprague-Dawley rats (n=3-4/ group) were sacrificed at 0, 12, 24, 36, 48, 72 and 96 hours following 70% partial hepatectomy. At each interval, sera were analyzed by Western blot for PCNA by two monoclonal antibodies (PC-10 and 19F-4). In human studies, sera from 4 patients with liver cirrhosis and 4 healthy controls were tested in a similar manner.RESULTS The PC-10 monoclonal antibody identified a protein with a molecular mass of 120 KD which remained stable in rat sera for 24 hours following partial hepatectomy, then increased 1.5-fold at 48 hours prior to returning to baseline at 96 hours after partial hepatectomy. However, it was not detected in the sera of patients with or without liver disease. In the 19F-4 monoclonal antibody, a protein with a molecular mass of approximately 46 KD was found. which was present in rat sera prior to partial hepatectomy and for 12 hours after surgery. Thereafter, levels fell by approximately 50% at 24 hours, 65% at 36 hours and 75% at 48 hours where they remained until 96 hours after partial hepatectomy. The decrease in levels correlated with the extent of partial hepatectomy. In human sera, the appearance of this inhibitory cell nuclear antigen (ICNA) was higher in the sera of patients with cirrhosis than in healthy controls.CONCLUSION The PC-10 monoclonal antibody can detect a protein in the circulation when active hepatic regenerative activity is taking place. The 19F-4 monoclonal antibody, however, identifies a protein in both rat and human sera that inversely correlates with hepatic regenerative activity. This protein which is tentatively referred to as inhibitory cell nuclear antigen (ICNA) may be used in documenting the extent of suppression of hepatic regeneration.

  3. Regenerative Zahnmedizin

    Steffen, R.; C. Moret; van Waes, H

    2011-01-01

    Bei der Behandlung von unreifen, nekrotischen Zähnen ist es zu einem Paradigmawechsel gekommen. Die regenerative, endodontische Behandlung solcher Zähne stützt sich auf die Erkenntnisse aus der biobasierten, regenerativen Forschung, um solche Zähne weiter reifen lassen zu können. Ergebnisse der Grundlagenforschung lassen vermuten, dass Stamm- und Vorläuferzellen aus Pulparesten, dem Periodont und der apikalen Papille zur Wiederbesiedlung von sterilisierten Pulpahöhlen beitragen können....

  4. Bioprinting in Regenerative Medicine.

    Monti, Manuela

    2016-01-01

    Prof. Turksen is a very well known scientist in the stem cell biology field and he is also internationally known for his fundamental studies on claudin-6. In addition to his research activity he is editor for the Stem Cell Biology and Regenerative Medicine series (Humana Press) and editor-in-chief of Stem Cell Reviews and Reports..... PMID:26972720

  5. Bioprinting in Regenerative Medicine

    Manuela Monti

    2016-01-01

    Prof. Turksen is a very well known scientist in the stem cell biology field and he is also internationally known for his fundamental studies on claudin-6. In addition to his research activity he is editor for the Stem Cell Biology and Regenerative Medicine series (Humana Press) and editor-in-chief of Stem Cell Reviews and Reports.....

  6. Bioprinting in Regenerative Medicine

    Manuela Monti

    2016-02-01

    Full Text Available Prof. Turksen is a very well known scientist in the stem cell biology field and he is also internationally known for his fundamental studies on claudin-6. In addition to his research activity he is editor for the Stem Cell Biology and Regenerative Medicine series (Humana Press and editor-in-chief of Stem Cell Reviews and Reports.....

  7. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  8. Development of an active magnetic regenerator for space applications

    Chen, Weibo

    2014-07-01

    This paper discusses the design of a micromachined regenerator in an Active Magnetic Regenerative Refrigeration (AMRR) system for space applications. The AMRR system is designed to provide continuous remote/distributed cooling at about 2 K and reject heat at temperatures of about 15 K. This paper first discusses the general thermal and fluid performance requirements for an AMRR regenerator, a unique structured bed configuration that enables the regenerator to meet these requirements, and its thermal and fluid performance based on numerical analyses. The paper then discusses the general design consideration for the magnetic field driving the regenerator for optimal thermal performance, and the analysis processes to optimize the variation rate of the magnetic field in an actual superconducting magnet during the isothermal processes of the AMRR cycle to enhance the performance of an actual regenerator. The paper finally presents the thermal performance of the regenerator from such iterative design optimization processes.

  9. Active Magnetic Bearings – Magnetic Forces

    Kjølhede, Klaus

    2006-01-01

    the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision......Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... characterization of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input...

  10. Active Magnetic Bearings – Magnetic Forces

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision...... characterization of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input...

  11. Stellar magnetic activity

    The stellar emission in the chromospheric Ca II H+K lines is compared with the coronal soft X-ray emission, measuring the effects of non-radiative heating in the outer atmosphere at temperatures differing two orders of magnitude. The comparison of stellar flux densities in Ca II H+K and X-rays is extended to fluxes from the transition-region and the high-temperature chromosphere. The stellar magnetic field is probably generated in the differentially rotating convective envelope. The relation between rotation rate and the stellar level of activity measured in chromospheric, transition-region, and coronal radiative diagnostics is discovered. X-ray observations of the binary λ Andromedae are discussed. The departure of M-type dwarfs from the main relations, and the implications for the structure of the chromospheres of these stars are discussed. Variations of the average surface flux densities of the Sun during the 11-year activity cycle agree with flux-flux relations derived for other cool stars, suggesting that the interpretation of the stellar relations may be furthered by studying the solar analogue in more detail. (Auth.)

  12. Regenerative burner

    Gitman, G.M.

    1990-05-08

    This patent describes a method of combusting fuel in a furnace having a pair of regenerative burners, each burner having a combustion chamber. It comprises: supplying fuel and oxygen alternatively to each burner to create alternating firing burners wherein the oxygen is supplied from two sources providing first and second oxidizing gases having different oxygen concentrations and simultaneously alternating the application of negative pressure to the remaining non-firing burner to recover heat from flue gases exhausted by the regenerative bed of the non-firing burner to be used further to preheat at least part of the oxygen being supplied to the firing burner; mixing the fuel with a fraction of the oxygen under substoichiometric combustion condition to create products of incomplete combustion to form a hot, luminous flame core containing partially pyrolized fuel; and mixing the partially pyrolyzed fuel with a remaining fraction of the oxygen to complete combustion of the pyrolized fuel; and controlling the total flow of fuel and oxygen supplied to each burner to provide each burner with a desired flame stoichiometry.

  13. Numerical Modeling of Multi-Material Active Magnetic Regeneration

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden;

    2009-01-01

    Magnetic refrigeration is a potentially environmentally-friendly alternative to vapour compression technology that is presented in this paper. The magnetocaloric effect in two magnetocaloric compounds in the La(Fe,Co,Si)13 series is presented in terms of their adiabatic temperature change and the...... specific heat as a function of temperature at constant magnetic field. A 2.5-dimensional numerical model of an active magnetic regenerative (AMR) refrigerator device is presented. The experimental AMR located at Risø DTU has been equipped with a parallel-plate based regenerator made of the two materials....... Experimental zero heat-load temperature spans are presented for different operating conditions and the results are compared to predictions of the numerical model. It is concluded that the model reproduces the experimental tendencies and when including thermal parasitic losses to ambient and the predictions...

  14. Regenerative engineering

    Laurencin, Cato T

    2013-01-01

    Regenerative Engineering: The Future of Medicine Saadiq F. El-Amin III , MD , PhD; Joylene W.L. Thomas, MD ; Ugonna N. Ihekweazu, MD ; Mia D. Woods, MS; and Ashim Gupta, MSCell Biology Gloria Gronowicz, PhD and Karen Sagomonyants, DMDStem Cells and Tissue Regeneration Kristen Martins-Taylor, PhD; Xiaofang Wang, MD , PhD; Xue-Jun Li, PhD; and Ren-He Xu, MD , PhDIntroduction to Materials Science Sangamesh G. Kumbar, PhD and Cato T. Laurencin, MD , PhDBiomaterials A. Jon Goldberg, PhD and Liisa T. Kuhn, PhDIn Vitro Assessment of Cell-Biomaterial Interactions Yong Wang, PhDHost Response to Biomate

  15. An active magnetic regenerator device

    2015-01-01

    A rotating active magnetic regenerator (AMR) device comprising two or more regenerator beds, a magnet arrangement and a valve arrangement. The valve arrangement comprises a plurality of valve elements arranged substantially immovably with respect to the regenerator beds along a rotational direction...

  16. A flexible numerical model to study an active magnetic refrigerator for near room temperature applications

    Aprea, Ciro; Maiorino, Angelo [Department of Mechanical Engineering, University of Salerno, Via Ponte Don Melillo 1, 84084 Fisciano (Salerno) (Italy)

    2010-08-15

    Magnetic refrigeration is an emerging technology based on the magnetocaloric effect in solid-state refrigerants. This technology offers a smaller global environmental impact than the refrigeration obtained by means of the classical vapor compression machines operating with fluids such as HFCs. The Active Magnetic Regenerative Refrigeration (AMRR) is currently the most studied ant tested magnetic cycle. It combines the regenerative properties of a high specific heat solid porous matrix with the ability of performing thermo-magnetic cycles thanks to the magnetocaloric property of the refrigerant; while a fluid pulsing through the regenerator works as a heat transfer medium. An active magnetic regenerator can provide larger temperature spans making up for the local small temperature variation of the refrigerant. In the present paper, a practical model for predicting the performance and efficiency of an AMRR cycle has been developed. The model evaluates both the refrigerant properties and the entire cycle of an AMR operating in conformity with a Brayton regenerative cycle. The magnetocaloric material of choice is gadolinium, while the heat transfer medium is liquid water. With this model can be predicted the refrigeration capacity, the power consumption and consequently the Coefficient of Performance. The results show a greater COP when compared to a classical vapor compression plant working between the same temperature levels. (author)

  17. A flexible numerical model to study an active magnetic refrigerator for near room temperature applications

    Magnetic refrigeration is an emerging technology based on the magnetocaloric effect in solid-state refrigerants. This technology offers a smaller global environmental impact than the refrigeration obtained by means of the classical vapor compression machines operating with fluids such as HFCs. The Active Magnetic Regenerative Refrigeration (AMRR) is currently the most studied ant tested magnetic cycle. It combines the regenerative properties of a high specific heat solid porous matrix with the ability of performing thermo-magnetic cycles thanks to the magnetocaloric property of the refrigerant; while a fluid pulsing through the regenerator works as a heat transfer medium. An active magnetic regenerator can provide larger temperature spans making up for the local small temperature variation of the refrigerant. In the present paper, a practical model for predicting the performance and efficiency of an AMRR cycle has been developed. The model evaluates both the refrigerant properties and the entire cycle of an AMR operating in conformity with a Brayton regenerative cycle. The magnetocaloric material of choice is gadolinium, while the heat transfer medium is liquid water. With this model can be predicted the refrigeration capacity, the power consumption and consequently the Coefficient of Performance. The results show a greater COP when compared to a classical vapor compression plant working between the same temperature levels.

  18. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟∗%Numerical simulation of a hybrid magnetic refrigeration combined with high pressure Stirling regenerative refrigeration effect

    高新强; 沈俊; 和晓楠; 唐成春; 戴巍; 李珂; 公茂琼; 吴剑峰

    2015-01-01

    Magnetic refrigeration is a cooling method based on the magnetocaloric effect, which uses solid magnetocaloric materials as refrigerant, and helium, water or other fluid as heat transfer fluids. Stirling refrigeration is a kind of mature gas regenerative cooling method, using helium gas as the refrigerant. These refrigerations have similar cycling charac-teristics, and are both safe, environmantal-friendly and high efficient cooling methods. Therefore, a hybrid magnetic refrigerator combined with Stirling gas refrigeration effect is proposed and designed. In our previous works for hybrid magnetic refrigeration, numerical simulation and experimental performance of the low-pressure hybrid magnetic refrig-erator was carried out, and the cycling mechanism of hybrid magnetic refrigeration was also figured out. In this study, a numerical model for the high-pressure hybrid magnetic refrigeration cycle is established. The magnetic refrigeration materials are utilized as the regenerator matrix for both gas Stirling and active magnetic regenerative refrigeration in this model. Effects of gas Stirling and active magnetic regenerative refrigeration are combined to build a kind of high efficient refrigeration cycle. Ansys Fluent software is applied in this paper. Based on the physical model of hybrid refrig-erator and the theories of magnetocaloric effect and numerical calculation of regenerator, computational fluid dynamics (CFD) model of high-pressure hybrid magnetic refrigerator is established. This paper describes the internal heat transfer mechanism of Stirling and magnetic refrigeration effect in an active regenerator. Some parameters of the model such as working frequency and utilization are analyzed and the best phase angle is figured out in order to couple these two cooling effects positively. Simulation results show that Stirling and magnetic cooling effects can be coupled positively at phase angle of 60◦. Results also show that with increasing system pressure

  19. 78 FR 43889 - Synergizing Efforts in Standards Development for Cellular Therapies and Regenerative Medicine...

    2013-07-22

    ... Therapies and Regenerative Medicine Products; Public Workshop AGENCY: Food and Drug Administration, HHS... Development for Cellular Therapies and Regenerative Medicine Products.'' The purpose of the public workshop is... activities involving cellular therapies and regenerative medicine products. Date and Time: The...

  20. Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis

    Current treatment of periodontal infections includes mechanical debridement, administration of antibiotics and bone grafting. Oral administration of antibiotics results in undesirable side effects, while current modes of local administration are affected by problems concerning allergic response to the polymeric carrier agents. We have developed an osteoconductive drug delivery system composed of apatitic nanocarriers capable of providing sustained delivery of drugs in the periodontium. Calcium deficient hydroxyapatite (CDHA) nanocarriers of different Ca/P ratios were synthesized and characterized using the x-ray diffraction method, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy and the BET gas isotherm method. Loading and release studies performed with tetracycline showed a sustained release of up to 88% in phosphate buffered saline over a period of five days. Antibacterial activity studies showed that the tetracycline loaded CDHA (TC-CDHA) nanocarriers were effective against S. aureus and E. coli bacteria. The biocompatibility of the TC-CDHA nanocarriers was demonstrated using an alamar blue assay and further characterized by cell uptake studies. Interestingly, cell uptake of drug loaded CDHA also increased the cellular proliferation of human periodontal ligament fibroblast cells. Hence, it can be concluded that the CDHA nanocarriers are ideal drug delivery agents and have bone regenerative potential for local periodontal applications. (paper)

  1. Regenerative partition structures

    Gnedin, Alexander; Pitman, Jim

    2004-01-01

    We consider Kingman's partition structures which are regenerative with respect to a general operation of random deletion of some part. Prototypes of this class are the Ewens partition structures which Kingman characterised by regeneration after deletion of a part chosen by size-biased sampling. We associate each regenerative partition structure with a corresponding regenerative composition structure, which (as we showed in a previous paper) can be associated in turn with a regenerative random...

  2. Globular adiponectin activates motility and regenerative traits of muscle satellite cells.

    Tania Fiaschi

    Full Text Available Regeneration of adult injured skeletal muscle is due to activation of satellite cells, a population of stem cells resident beneath the basal lamina. Thus, information on soluble factors affecting satellite cell activation, as well as migration towards injury and fusion into new myofibers are essential. Here, we show that globular adiponectin (gAd, positively affects several features of muscle satellite cells. gAd activates satellite cells to exit quiescence and increases their recruitment towards myotubes. gAd elicits in satellite cells a specific motility program, involving activation of the small GTPase Rac1, as well as expression of Snail and Twist transcription factors driving a proteolytic motility, useful to reach the site of injury. We show that satellite cells produce autocrine full length adiponectin (fAd, which is converted to gAd by activated macrophages. In turns, gAd concurs to attract to the site of injury both satellite cells and macrophages and induces myogenesis in muscle satellite cells. Thus, these findings add a further role for gAd in skeletal muscle, including the hormone among factors participating in muscle regeneration.

  3. Gradient Descent Learning for Utility Current Compensation using Active Regenerative PWM Filter

    R. Balamurugan

    2011-01-01

    Full Text Available Problem statement: Harmonic analysis is a primary matter of power quality assessment. Its main intention is to check the utility whether it is delivering the loads without any deviations in voltages and currents. The problem is due to proliferation of Electronic converters and power electronics which gave birth to numerous new applications, offering unmatched comfort to the customers. Approach: Harmonics should be maintained within the limits said in standards like IEEE 519 and others such as IEEE 1159 for safeguarding the utility. This was provided by many mitigation technologies like passive, shunt and series filtering, active conditioners, but they were lack of some demerits like huge cost, many controllers and circuit components. So for controlling the harmonic loads the converter with four quadrant characteristics was implemented and this converter act as shunt active filter as well as rectifier simultaneously without any additional circuitry. For having better harmonic reduction in addition, many controllers like p-q Theorem based controller, Fuzzy and gradient descent based neural network is also used. Results: The simulation results gives the compared source current wave forms for various controllers with individual harmonic mitigations. Conclusion: The pure utility current is obtained by using this intelligent neural filter without any additional components and without any extra controllers than the conventional methods.

  4. Numerical analysis of a reciprocating active magnetic regenerator

    A time-dependent, two-dimensional mathematical model of a configuration system for magnetic refrigeration has been developed, based on a reciprocating active magnetic regenerator operating at room temperature. The model's geometry is made of parallel plates of magnetocaloric material separated by microchannels. Through the microchannels, the flow of a heat transfer fluid has also been simulated. Water has been used as heat transfer fluid and as magnetocaloric material we have used the benchmark material gadolinium. The heat transfer inside the regenerator and the fluid flow are modelled separately and the magnetocaloric effect is taken into account by the inclusion of a variable source term in the energy equation. The model simulates the steps of the active magnetic regenerative refrigeration cycle and evaluates the performance in terms of cooling load, COP, temperature span and pressure drop for the parallel-plate configuration. The model has been validated by comparing the numerical results with the results obtained from an experimental device made by a partner. This parametric study allows us to identify the most important characteristics that have a significant influence on the thermal behaviour of the active magnetic regenerator. Several simulation results are discussed and some optimal solutions are presented. - Highlights: • We have developed a 2D model of an active magnetic regenerator. • The MCE is included as a source term with data from experimental measurements. • A validation of the model with experimental data is included. • We analysed the temperature span, the cooling power, the COP and the pressure drop of the system

  5. Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity

    Plikus, Maksim V; Widelitz, Randall B; Maxson, Rob; Chuong, Cheng-ming

    2009-01-01

    The control of hair growth in the adult mammalian coat is a fascinating topic which has just begun to be explored with molecular genetic tools. Complex hair cycle domains and regenerative hair waves are present in normal adult (> 2 month) mice, but more apparent in mutants with cyclic alopecia phenotypes. Each hair cycle domain consists of initiation site(s), a propagating wave and boundaries. By analyzing the dynamics of hair growth, time required for regeneration after plucking, in situ hyb...

  6. Enhanced bifunctional activity of LaNiO3-based gas diffusion electrodes for regenerative fuel cells

    Silva, R A; Soares, C. O.; Carvalho, M. D.; C. M. Rangel; Pereira, M. I. da Silva

    2013-01-01

    Perovskites are of great interest when searching replacements for precious metals as catalyst for bifunctional oxygen electrodes involving the oxygen evolution(OER) and oxygen reduction reaction (ORR) as is the case of regenerative fuel cells. In this work a full electrochemical study on the electrochemical properties of gas diffusion electrodes (GDEs) using LaNiO3-based catalysts, conducted in alkaline media, led to a study of cyclability and durability. The incorporation of GDEs in a low po...

  7. Diffusion in active magnetic colloids

    Properties of active colloids of circle swimmers are reviewed. As a particular example of active magnetic colloids the magnetotactic bacteria under the action of a rotating magnetic field is considered. The relation for a diffusion coefficient due to the random switching of the direction of rotation of their rotary motors is derived on the basis of the master equation. The obtained relation is confirmed by the direct numerical simulation of random trajectory of a magnetotactic bacterium under the action of the Poisson type internal noise due to the random switching of rotary motors. The results obtained are in qualitative and quantitative agreement with the available experimental results and allow one to determine the characteristic time between the switching events of a rotary motor of the bacterium. - Highlights: • Magnetotactic bacteria in a rotating field behaves as circle swimmers. • Diffusion coefficient of these swimmers due to the random switching of rotary motors is calculated. • Results are in good qualitative and quantitative agreement with available experimental results

  8. Magnetic Helicity Injection in Solar Active Regions

    Hong-Qi Zhang

    2006-01-01

    We present the evolution of magnetic field and its relationship with magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station, longitudinal magnetograms by MDI of SOHO and white light images of TRACE. The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere, even if the mean current helicity density brings the general chiral property in a layer of solar active regions. As new magnetic flux emerges in active regions, changes of photospheric current helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected, including changes in sign caused by the injection of magnetic helicity of opposite sign. Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere,the injected magnetic helicity is probably not proportional to the current helicity density remaining in the photosphere. The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions (such as, delta active regions). They represent different aspects of magnetic chirality. A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.

  9. Connection between active longitudes and magnetic helicity

    Brandenburg, A

    2005-01-01

    A two-dimensional mean field dynamo model is solved where magnetic helicity conservation is fully included. The model has a negative radial velocity gradient giving rise to equatorward migration of magnetic activity patterns. In addition the model develops longitudinal variability with activity patches travelling in longitude. These patches may be associated with active longitudes.

  10. Tunable reflector with active magnetic metamaterials.

    Deng, Tianwei; Huang, Ruifeng; Tang, Ming-Chun; Tan, Peng Khiang

    2014-03-24

    We placed active magnetic metamaterials on metallic surface to implement a tunable reflector with excellent agile performance. By incorporating active elements into the unit cells of the magnetic metamaterial, this active magnetic metamaterial can be tuned to switch function of the reflector among a perfect absorber, a perfect reflector and a gain reflector. This brings about DC control lines to electrically tune the active magnetic metamaterial with positive loss, zero loss and even negative loss. The design, analytical and numerical simulation methods, and experimental results of the tunable reflector are presented. PMID:24663977

  11. Demagnetizing fields in active magnetic regenerators

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed to be...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is...

  12. Superconducting magnet activities at CEN Saclay

    The activities in superconducting magnets at DPhPE/Saclay spread over a wide range from DC magnets mainly for particle and nuclear physics and also for other fields of research, pulsed magnets for particle accelerators and for a controlled fusion tokamak machine. The superconducting magnets designed during recent years involve a variety of conductor types, winding schemes, materials and cooling modes, including the use of superfluid helium. (author)

  13. Thermally activated magnetization reversal in magnetic tunnel junctions

    Zhou Guang-Hong; Wang Yin-Gang; Qi Xian-Jin; Li Zi-Quan; Chen Jian-Kang

    2009-01-01

    In this paper, the magnetization reversal of the ferromagnetic layers in the lrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants.

  14. The Magnetic Free Energy in Active Regions

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  15. Microscale Regenerative Heat Exchanger

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  16. Bifurcations and intermittent magnetic activity

    The sequence of equilibria of two-dimensional reduced magnetohydrodynamics has been studied as a function of the tearing mode stability parameter Δ'. After a symmetry-breaking bifurcation occurring at Δ' ∼ 0, which originates a state with a small magnetic island, the system undergoes a second bifurcation, of tangent type, at Δ' ∼ 1. Above this value, no stationary solutions with small islands exist. The system rapidly develops an island of macroscopic size. This general property is proposed as a basic ingredient of the intermittent events observed in magnetically confined plasmas. (author)

  17. Bifurcations and intermittent magnetic activity

    Tebaldi, C.; Ottaviani, M.; Porcelli, F. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1996-04-01

    The sequence of equilibria of two-dimensional reduced magnetohydrodynamics has been studied as a function of the tearing mode stability parameter {Delta}`. After a symmetry-breaking bifurcation occurring at {Delta}` {approx} 0, which originates a state with a small magnetic island, the system undergoes a second bifurcation, of tangent type, at {Delta}` {approx} 1. Above this value, no stationary solutions with small islands exist. The system rapidly develops an island of macroscopic size. This general property is proposed as a basic ingredient of the intermittent events observed in magnetically confined plasmas. (author).

  18. Observational Study of Solar Magnetic Active Phenomena

    Hongqi Zhang

    2006-06-01

    The electric current separated into two parts reflected the quantative properties of heterogeneity and chirality of magnetic field, and defined them as the shear and twist components of current. We analyze the basic configuration and evolution of superactive region NOAA 6580-6619-6659. It is found that the contribution of the twist component of current cannot be reflected in the normal analysis of the magnetic shear and gradient of the active regions. The observational evidence of kink magnetic ropes generated from the subatmosphere cannot be found completely in some super delta active regions.

  19. International program activities in magnetic fusion energy

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  20. Doppler-free magnetic optical activity

    Giraud-Cotton, S.; Kaftandjian, V.P.; Talin, B.

    1980-01-01

    The theory of Doppler-free magnetic optical activity associated with a single absorption line is presented. The transmission of tunable laser light, linearly polarized, through a dilute gaseous medium along a steady magnetic field is studied in the presence of a second counterpropagating saturating laser. The third order non linear susceptibility is calculated for a two-level system exhibiting a normal Zeeman effect, with arbitrary J values.

  1. Therapeutic potential of nanoceria in regenerative medicine

    Das, Soumen [Univ. of Central Florida, Orlando, FL (United States); Chigurupati, Srinivasulu [U.S. Food and Drug Administration, Silver Spring, MD (United States); Dowding, Janet [Univ. of Central Florida, Orlando, FL (United States); Munusamy, Prabhakaran [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baer, Donald R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGinnis, James F. [Univ. of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Mattson, Mark P. [National Inst. on Aging Intramural Research Program, Bethesda, MD (United States); Self, William [Univ. of Central Florida, Orlando, FL (United States); Seal, Sudipta [Univ. of Central Florida, Orlando, FL (United States)

    2014-11-01

    Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

  2. Improved Regenerative Sorbent-Compressor Refrigerator

    Jones, Jack A.

    1992-01-01

    Conceptual regenerative sorbent-compressor refrigerator attains regeneration efficiency and, therefore, overall power efficiency and performance greater than conventional refrigerators. Includes two fluid loops. In one, CH2FCF3 (R134a) ciculates by physical adsorption and desorption in four activated-charcoal sorption compressors. In other, liquid or gas coolant circulated by pump. Wave of regenerative heating and cooling propagates cyclically like peristatic wave among sorption compressors and associated heat exchangers. Powered by electricity, oil, gas, solar heat, or waste heat. Used as air conditioners, refrigerators, and heat pumps in industrial, home, and automotive applications.

  3. Regenerative photonic therapy: Review

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  4. Cluster magnetic fields from active galactic nuclei

    Sutter, P M; Yang, H -Y

    2009-01-01

    Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.

  5. Biomass Oxidation: Formyl C-H Bond Activation by the Surface Lattice Oxygen of Regenerative CuO Nanoleaves.

    Amaniampong, Prince N; Trinh, Quang Thang; Wang, Bo; Borgna, Armando; Yang, Yanhui; Mushrif, Samir H

    2015-07-27

    An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C-H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C-C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates. PMID:26119659

  6. Center for Neuroscience & Regenerative Medicine

    Federal Laboratory Consortium — The Center for Neuroscience and Regenerative Medicine (CNRM) was established as a collaborative intramural federal program involving the U.S. Department of Defense...

  7. Nanotechnologies in regenerative medicine

    Kubinová, Šárka; Syková, Eva

    2010-01-01

    Roč. 19, 3-4 (2010), s. 144-156. ISSN 1364-5706 R&D Projects: GA AV ČR IAA500390902; GA MŠk(CZ) LC554; GA AV ČR KAN201110651 Grant ostatní: GA ČR(CZ) 1M0538; GA ČR(CZ) GA203/09/1242; GA AV ČR(CZ) KAN200520804; EC FP6 project ENIMET(XE) LSHM-CT-2005-019063 Institutional research plan: CEZ:AV0Z50390703 Keywords : Nanotechnology * regenerative medicine * nanofibers Subject RIV: FH - Neurology Impact factor: 1.051, year: 2010

  8. REGENERATIVE TRANSISTOR AMPLIFIER

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  9. Regenerative adsorption distillation system

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  10. hiPSC-derived iMSCs: NextGen MSCs as an advanced therapeutically active cell resource for regenerative medicine.

    Sabapathy, Vikram; Kumar, Sanjay

    2016-08-01

    Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft-versus-host disease, autoimmune conditions, musculoskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human-induced pluripotent stem cells (hiPSCs) has been shown in recent pre-clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to replace the commonly used adult tissue-derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC-derived MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inexhaustible source of MSCs that could be used to meet the unmet clinical needs. Human-induced PSC-derived MSCs are reported to be superior when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and use of footprint-free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review, the role of iPSC-derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Additionally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to be enforced to render i

  11. Regenerative Medicine: Novel Approach in Burn Wound Healing

    Zare

    2015-06-01

    Full Text Available Context Burn wounds of the skin require a long period to healing, which very often is incomplete, with functional and esthetic consequences for the patients. Stem cells in the traumatized tissue represent the promoters of the healing process and are a primary focus for regenerative medicine, which aims to find and use the triggers for the activation of stem cells of sin tissue. Evidence Acquisition At present, tissue engineering, composite epithelial autografts, multipotent stem cells and combined gene delivery with stem cell therapy are the approaches used in regenerative medicine. Alongside, the development of 3D scaffolds or matrices is a promising adjunct, as studies investigate the multiple uses of these supports for wound repair. Results Application of cells to the burn wound could be performed, either by the bedside, as a non-invasive procedure, or in the operating room, with the use of a matrix, scaffold or dermal substitute. Cell spraying, although under use in clinical setting, is not yet supported by conclusive data. Magnetic resonance imaging, optical imaging and positron emission tomography are currently used to assess the viability and location of stem cells, after transplantation. Conclusions Stem cell therapies in wound care may lessen the morbidities associated with wound healing. An ideal method for the effective administration of stem cells for burn patients has not yet been elucidated. Further comparison of the local and systemic effects in burn patients, associated with each route of stem cell delivery, needs to be performed.

  12. Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles.

    Michael Rotherham

    Full Text Available Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP. A commercially available oscillating magnetic bioreactor (MICA Biosystems was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate

  13. PEM regenerative fuel cells

    Swette, Larry L.; Laconti, Anthony B.; McCatty, Stephen A.

    1993-11-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  14. Recent Activities in Magnetic Separation in Sweden

    Wang, Yanmin; Forssberg, Eric

    1995-01-01

    This paper describes some industrial applications of magnetic separation in Swedish mineral industry. Recent studies on magnetic treatment of minerals in Sweden are also presented. These studies involve selectivity of wet magnetic separation, wet magnetic recovery of mineral fines and ultrafines, sulphide processing by magnetic means, as well as dry magnetic purification of industrial minerals.

  15. Magnetic activity of planet-hosting stars

    Poppenhaeger, Katja

    2011-05-01

    Magnetic activity in cool stars is a widely observed phenomenon, however it is still far from being understood. How fundamental stellar parameters like mass and rotational period quantitatively cause a stellar magnetic field which manifests itself in features such as spots, flares and high-energy coronal emission is a lively area of research in solar and stellar astrophysics. Especially for planet-hosting stars, stellar activity profiles are very interesting as exoplanets are affected by high-energy radiation, both at the time of planet formation as well as during the further lifetime of a star-planet system. In extreme cases, the atmosphere of a planet very close to its host star can be strongly heated by the stellar X-ray and EUV emission and finally escape the planet's gravitational attraction, so that the atmosphere of the planet evaporates over time. Theoretically, planets can also affect their host star's magnetic activity. In analogy to processes in binary stars which lead to enhanced - both overall and periodically varying - activity levels, also giant planets might influence the stellar activity by tidal or magnetic interaction processes, however on a weaker level than in binaries. Some indications for such interactions exist from chromospheric measurements in stars with Hot Jupiters. In this thesis I investigate the magnetic activity of planet-hosting stars and especially possible effects from star-planet interactions with an emphasis on stellar coronae in X-rays. I tested a complete sample of all known planet-hosting stars within 30 pc distance from the Sun for correlations of stellar X-ray properties with planetary parameters. A significant correlation exists between the stellar X-ray luminosity and the product of planetary mass and inverse semimajor axis. However, this could be traced back to a selection effect introduced by planetary detection methods. For stars in the solar neighborhood, planets are mainly detected by radial velocity shifts in the

  16. Magnetic activity in accretion disc boundary layers

    Armitage, Philip J.

    2002-03-01

    We use three-dimensional magnetohydrodynamic simulations to study the structure of the boundary layer between an accretion disc and a non-rotating, unmagnetized star. Under the assumption that cooling is efficient, we obtain a narrow but highly variable transition region in which the radial velocity is only a small fraction of the sound speed. A large fraction of the energy dissipation occurs in high-density gas adjacent to the hydrostatic stellar envelope, and may therefore be reprocessed and largely hidden from view of the observer. As suggested by Pringle, the magnetic field energy in the boundary layer is strongly amplified by shear, and exceeds that in the disc by an order of magnitude. These fields may play a role in generating the magnetic activity, X-ray emission and outflows in disc systems where the accretion rate is high enough to overwhelm the stellar magnetosphere.

  17. New nanostructured biomaterials for regenerative medicine

    A. Sgambato

    2016-01-01

    Innovative approaches in tissue engineering and regenerative medicine based on decellularized extracellular matrix (ECM) scaffolds and tissues are quickly growing. ECM proteins are particularly adequate toward tissue regeneration applications, since they are natural biomaterials that can be bio-activated with signalling molecules able to influence cell fate, driving cell responses and tissue regeneration. Indeed, it is well recognized that cells perceive and respond to their microenvironment;...

  18. Regenerative Therapy for Retinal Disorders

    Narsis Daftarian

    2010-01-01

    Full Text Available Major advances in various disciplines of basic sciences including embryology, molecular and cell biology, genetics, and nanotechnology, as well as stem cell biology have opened new horizons for regenerative therapy. The unique characteristics of stem cells prompt a sound understanding for their use in modern regenerative therapies. This review article discusses stem cells, developmental stages of the eye field, eye field transcriptional factors, and endogenous and exogenous sources of stem cells. Recent studies and challenges in the application of stem cells for retinal pigment epithelial degeneration models will be summarized followed by obstacles facing regenerative therapy.

  19. Experimental Studies with an Active Magnetic Regenerating Refrigerator

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian;

    2015-01-01

    Experimental results for an active magnetic regenerator (AMR) are presented. The focus is on whether or not it pays off to partly substitute soft magnetic material with non-magnetic insulation in a flux-conducting core in the magnet system. Such a substitution reduces losses due to heat conductio...

  20. Photospheric Magnetic Free Energy Density of Solar Active Regions

    Zhang, Hongqi

    2016-01-01

    We present the photospheric energy density of magnetic fields in two solar active regions inferred from observational vector magnetograms, and compare it with the possible different defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in active region NOAA 6580-6619-6659 and 11158. It is noticed that the quantity 1/4pi Bn.Bp is an important energy parameter that reflects the contribution of magnetic shear on the difference between the potential magnetic field (Bp) and non-potential one (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density changes obviously before the powerful solar flares in the active region NOAA 11158, it is consistent with the change of magnetic fields in the lower atmosphere with flares.

  1. Regenerative Perspective in Modern Dentistry

    Mihnea Ioan Nicolescu

    2016-01-01

    This review aims to trace the contour lines of regenerative dentistry, to offer an introductory overview on this emerging field to both dental students and practitioners. The crystallized depiction of the concept is a translational approach, connecting dental academics to scientific research and clinical utility. Therefore, this review begins by presenting the general features of regenerative medicine, and then gradually introduces the specific aspects of major dental subdomains, highlighting...

  2. Regenerative cellular therapies for neurologic diseases.

    Levy, Michael; Boulis, Nicholas; Rao, Mahendra; Svendsen, Clive N

    2016-05-01

    The promise of stem cell regeneration has been the hope of many neurologic patients with permanent damage to the central nervous system. There are hundreds of stem cell trials worldwide intending to test the regenerative capacity of stem cells in various neurological conditions from Parkinson׳s disease to multiple sclerosis. Although no stem cell therapy is clinically approved for use in any human disease indication, patients are seeking out trials and asking clinicians for guidance. This review summarizes the current state of regenerative stem cell transplantation divided into seven conditions for which trials are currently active: demyelinating diseases/spinal cord injury, amyotrophic lateral sclerosis, stroke, Parkinson׳s disease, Huntington׳s disease, macular degeneration and peripheral nerve diseases. This article is part of a Special Issue entitled SI: PSC and the brain. PMID:26239912

  3. Comparison of Analytical and Numerical Performance Predictions for a Regenerative Heat Exchanger in the International Space Station Node 3 Internal Active Thermal Control System

    Wise, Stephen A.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the system dynamics was created using Excel. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.

  4. Comparison of Analytical and Numerical Performance Predictions for an International Space Station Node 3 Internal Active Thermal Control System Regenerative Heat Exchanger

    Wise, Stephen A.; Holt, James M.

    2002-01-01

    The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the systems dynamics was created using an Excel Spreadsheet. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.

  5. Stem cell platforms for regenerative medicine.

    Nelson, Timothy J; Behfar, Atta; Yamada, Satsuki; Martinez-Fernandez, Almudena; Terzic, Andre

    2009-06-01

    The pandemic of chronic degenerative diseases associated with aging demographics mandates development of effective approaches for tissue repair. As diverse stem cells directly contribute to innate healing, the capacity for de novo tissue reconstruction harbors a promising role for regenerative medicine. Indeed, a spectrum of natural stem cell sources ranging from embryonic to adult progenitors has been recently identified with unique characteristics for regeneration. The accessibility and applicability of the regenerative armamentarium has been further expanded with stem cells engineered by nuclear reprogramming. Through strategies of replacement to implant functional tissues, regeneration to transplant progenitor cells or rejuvenation to activate endogenous self-repair mechanisms, the overarching goal of regenerative medicine is to translate stem cell platforms into practice and achieve cures for diseases limited to palliative interventions. Harnessing the full potential of each platform will optimize matching stem cell-based biologics with the disease-specific niche environment of individual patients to maximize the quality of long-term management, while minimizing the needs for adjunctive therapy. Emerging discovery science with feedback from clinical translation is therefore poised to transform medicine offering safe and effective stem cell biotherapeutics to enable personalized solutions for incurable diseases. PMID:19779576

  6. Activity estimation in radioimmunotherapy using magnetic nanoparticles

    Rajabi, Hossein; Johari Daha, Fariba

    2015-01-01

    Objective Estimation of activity accumulated in tumor and organs is very important in predicting the response of radiopharmaceuticals treatment. In this study, we synthesized 177Lutetium (177Lu)-trastuzumab-iron oxide nanoparticles as a double radiopharmaceutical agent for treatment and better estimation of organ activity in a new way by magnetic resonance imaging (MRI). Methods 177Lu-trastuzumab-iron oxide nanoparticles were synthesized and all the quality control tests such as labeling yield, nanoparticle size determination, stability in buffer and blood serum up to 4 d, immunoreactivity and biodistribution in normal mice were determined. In mice bearing breast tumor, liver and tumor activities were calculated with three methods: single photon emission computed tomography (SPECT), MRI and organ extraction, which were compared with each other. Results The good results of quality control tests (labeling yield: 61%±2%, mean nanoparticle hydrodynamic size: 41±15 nm, stability in buffer: 86%±5%, stability in blood serum: 80%±3%, immunoreactivity: 80%±2%) indicated that 177Lu-trastuzumab-iron oxide nanoparticles could be used as a double radiopharmaceutical agent in mice bearing tumor. Results showed that 177Lu-trastuzumab-iron oxide nanoparticles with MRI had the ability to measure organ activities more accurate than SPECT. Conclusions Co-conjugating radiopharmaceutical to MRI contrast agents such as iron oxide nanoparticles may be a good way for better dosimetry in nuclear medicine treatment. PMID:25937783

  7. Regenerative strategies for craniofacial disorders

    Catharine Bradford Garland

    2012-12-01

    Full Text Available Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new regenerative approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders.

  8. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    McIntosh, Scott W

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their p...

  9. A Model of Mercury's Magnetospheric Magnetic Field with Dependence on Magnetic Activity

    Korth, H.; Tsyganenko, N. A.; Johnson, C. L.; Philpott, L. C.; Anderson, B. J.; Solomon, S. C.; McNutt, R. L., Jr.

    2015-12-01

    Accurate knowledge of Mercury's magnetospheric magnetic field is required to characterize the planet's internal field and the structure of the magnetosphere. We present the first model of Mercury's magnetospheric magnetic field that includes a dependence on magnetic activity. The model consists of individual modules for magnetic fields of internal origin, approximated by a dipole of magnitude 190 nT RM3, where RM is Mercury's radius, offset northward by 479 km along the spin axis, and of external origin resulting from currents flowing on the magnetopause boundary and in the cross-tail current sheet. The magnetic field is confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft and dependent on magnetic activity. The cross-tail current is prescribed having a disk shape near the planet and extending into a sheet at larger distances. The magnitude of the tail current, which also depends on magnetic activity, is fit to minimize the root-mean-square residual between the model magnetic field and the field within the magnetosphere observed by MESSENGER. The model was fit separately for magnetic field observations within distinct levels of magnetic activity. Linear fits of model parameters versus magnetic activity allows continuous scaling of the model to magnetic activity. The magnetic field contribution from each module is shielded individually by a scalar potential function, which was fit to minimize the root-mean-square normal magnetic field component at the magnetopause. The resulting model reproduces the dependence of the magnetospheric size and tail current intensity on magnetic activity, and allows more accurate characterization of the internal field.

  10. Optical techniques in regenerative medicine

    Morgan, Stephen P

    2013-01-01

    In regenerative medicine, tissue engineers largely rely on destructive and time-consuming techniques that do not allow in situ and spatial monitoring of tissue growth. Furthermore, once the therapy is implanted in the patient, clinicians are often unable to monitor what is happening in the body. To tackle these barriers, optical techniques have been developed to image and characterize many tissue properties, fabricate tissue engineering scaffolds, and characterize the properties of the scaffolds. Optical Techniques in Regenerative Medicine illustrates how to use optical imaging techniques and

  11. Articular cartilage repair and the evolving role of regenerative medicine

    Pieter K Bos

    2010-10-01

    Full Text Available Pieter K Bos1, Marloes L van Melle1, Gerjo JVM van Osch1,21Department of Orthopaedic Surgery, Erasmus MC, Rotterdam, the Netherlands; 2Department of Otorhinolaryngology, Erasmus MC, Rotterdam, the NetherlandsAbstract: Among the growing applications of regenerative medicine, clinical articular cartilage repair has now been used for 2 decades and forms a successful example of translational medicine. Cartilage is characterized by a limited intrinsic repair capacity following injury. Articular cartilage defects cause symptoms, are not spontaneously repaired, and are generally believed to result in early osteoarthritis. Marrow stimulation techniques, osteochondral transplantation, and cell-based therapies, such as autologous chondrocyte implantation (ACI and use of mesenchymal stem cells (MSCs, are used for tissue regeneration, symptom relief, and prevention of further joint degeneration. The exact incidence of cartilage defects and the natural outcome of joints with these lesions are unclear. Currently available cartilage repair techniques are designed for defect treatment in otherwise healthy joints and limbs, mostly in young adults. The natural history studies presented in this review estimated that the prevalence of cartilage lesions in this patient group ranges from 5% to 11%. The background and results from currently available randomized clinical trials of the three mostly used cartilage repair techniques are outlined in this review. Osteochondral transplantation, marrow stimulation, and ACI show improvement of symptoms with an advantage for cell-based techniques, but only a suggestion that risk for joint degeneration can be reduced. MSCs, characterized by their good proliferative capacity and the potential to differentiate into different mesenchymal lineages, form an attractive alternative cell source for cartilage regeneration. Moreover, MSCs provide a regenerative microenvironment by the secretion of bioactive factors. This trophic activity

  12. An active antenna for ELF magnetic fields

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  13. Magnetic activity at Mars - Mars Surface Magnetic Observatory

    Vennerstrøm, Susanne; Menvielle, M.; Merayo, José M.G.;

    2012-01-01

    , and use this to provide an estimate of the expected magnetic disturbances at the Martian surface. Far from crustal anomaly regions the expected magnetic disturbances originating from currents associated with the induced magnetosphere are very weak at the day-side, but most likely larger on the night...... around medium intensity radial anomalies in the equatorial region appear to derive from local current loops or vortices around cusp-like radial fields, acting to partly cancel the crustal field. The radial perturbation is further found to depend on upstream solar wind dynamic pressure. We define a...

  14. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  15. Applications of magnetically active fibre reinforced composites

    Etches, Julie; Bond, Ian; Mellor, Philip

    2005-05-01

    As the application of fibre reinforced polymer composites (FRP) becomes more widespread there is a desire to add functionality beyond that of simple mechanical properties in order to facilitate the development of 'smart' materials. For example, the functionality being discussed in this paper is the imparting of significant magnetic properties to a FRP. This can take the form of soft magnetic performance for use in electrical machines or hard magnetic performance for novel forms of sensing or power generation. It has been demonstrated that by using hollow glass fibres as a reinforcement, magnetic material can be introduced into these fibres without significant effects on the structural behaviour of the FRP. The current studies have included the assessment of such a magnetic FRP in a variety of applications. The addition of hard magnetic materials, e.g. magnetite and barium ferrite, has been achieved through the use of nanopowders and the resulting FRP has been assessed for morphing structures applications. The magnitude of magnetic performance that can be currently achieved is controlled by the availability of suitable magnetic materials in fine powder form and the volume of magnetic material which can be incorporated within the fibres.

  16. Magnetic activity of surface plasmon resonance using dielectric magnetic materials fabricated on quartz glass substrate

    Narushima, Kazuki; Ashizawa, Yoshito; Brachwitz, Kerstin; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius; Nakagawa, Katsuji

    2016-07-01

    The magnetic activity of surface plasmons in Au/MFe2O4 (M = Ni, Co, and Zn) polycrystalline bilayer films fabricated on a quartz glass substrate was studied for future magnetic sensor applications using surface plasmon resonance. The excitation of surface plasmons and their magnetic activity were observed in all investigated Au/MFe2O4 films. The magnetic activity of surface plasmons of the polycrystalline Au/NiFe2O4 film was larger than those of the other polycrystalline Au/MFe2O4 films, the epitaxial NiFe2O4 film, and metallic films. The large magnetic activity of surface plasmons of the polycrystalline film is controlled by manipulating surface plasmon excitation conditions and magnetic properties.

  17. A magnetically active microfluidic device for chemiluminescence bioassays

    Zheng, Yi; Zhao, Shulin; Liu, Yi-Ming

    2011-01-01

    Highly active horseradish peroxidase functionalized magnetic nanoparticles were prepared and packed into a microfluidic channel, producing an in-line bioreactor that enabled a sensitive chemiluminescence assay of H2O2. The proposed magnetically active microfluidic device proved useful for chemiluminescence assays of biomedically interesting compounds.

  18. Active screening of magnetic field near power stations generator buses

    B.I. Kuznetsov

    2013-12-01

    Full Text Available An experimental study technique for a prototyping system of active screening of power-frequency magnetic field distortions near power station generator buses via controllable magnetic field sources is presented. Results of experimental research on a proto-typing active screening system with different control algorithms are given.

  19. Magnetic history of solar active regions

    An attempt was made to use recent magnetic observations to trace the history of a typical solar active region from birth to death. By comparing the short-term motions to the long-term spreading, it is demonstrated that the decay process is dominated, over periods ranging from days to months, by a random walk of field lines, with a diffusion constant of roughly 200 to 400 km2/sec. While the interaction between diffusion and differential rotation dictates the geometric pattern of the decaying region, the actual quantity of surviving flux appears to be less, and its ultimate annihilation more thorough, than would have been expected. This probably indicates a continued subsurface coupling between opposite polarity features. In addition, the long-range agreement between theory and observation is considerably improved by postulating the existence, in the middle latitudes of each hemisphere, of a systematic, poleward-moving meridional flow of about 3 m/sec. The outlook for being able to make continued progress towards the understanding of basic solar phenomena by further efforts in this direction is promising

  20. The Limit of Free Magnetic Energy in Active Regions

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  1. Rethinking Regenerative Medicine: A Macrophage-Centered Approach

    Bryan N Brown

    2014-11-01

    Full Text Available Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream functional outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host-biomaterial interactions, which typically consider activation of the host immune system as undesirable. It appears desirable that emerging regenerative medicine approaches should not only accommodate, but promote, the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes.

  2. Regenerative Electrode Interfaces for Neural Prostheses.

    Thompson, Cort H; Zoratti, Marissa J; Langhals, Nicholas B; Purcell, Erin K

    2016-04-01

    Neural prostheses are electrode arrays implanted in the nervous system that record or stimulate electrical activity in neurons. Rapid growth in the use of neural prostheses in research and clinical applications has occurred in recent years, but instability and poor patency in the tissue-electrode interface undermines the longevity and performance of these devices. The application of tissue engineering strategies to the device interface is a promising approach to improve connectivity and communication between implanted electrodes and local neurons, and several research groups have developed new and innovative modifications to neural prostheses with the goal of seamless device-tissue integration. These approaches can be broadly categorized based on the strategy used to maintain and regenerate neurons at the device interface: (1) redesign of the prosthesis architecture to include finer-scale geometries and/or provide topographical cues to guide regenerating neural outgrowth, (2) incorporation of material coatings and bioactive molecules on the prosthesis to improve neuronal growth, viability, and adhesion, and (3) inclusion of cellular grafts to replenish the local neuron population or provide a target site for reinnervation (biohybrid devices). In addition to stabilizing the contact between neurons and electrodes, the potential to selectively interface specific subpopulations of neurons with individual electrode sites is a key advantage of regenerative interfaces. In this study, we review the development of regenerative interfaces for applications in both the peripheral and central nervous system. Current and future development of regenerative interfaces has the potential to improve the stability and selectivity of neural prostheses, improving the patency and resolution of information transfer between neurons and implanted electrodes. PMID:26421660

  3. Light-Activated Magnetic Compass in Birds

    Solov'yov, Ilia; Greiner, Walter

    2013-01-01

    Migrating birds fly thousand miles without having a map, or a GPS unit. But they may carry their own sensitive navigational tool, which allows them "see" the Earth’s magnetic field. Here we review the important physical and chemical constraints on a possible compass sensor and discuss the suggest......Migrating birds fly thousand miles without having a map, or a GPS unit. But they may carry their own sensitive navigational tool, which allows them "see" the Earth’s magnetic field. Here we review the important physical and chemical constraints on a possible compass sensor and discuss...... the suggestion that radical pairs in a photoreceptor cryptochrome might provide a biological realization for a magnetic compass. Finally, we review the current evidence supporting a role for radical pair reactions in the magnetic compass of birds....

  4. PRMT7 Preserves Satellite Cell Regenerative Capacity

    Roméo Sébastien Blanc

    2016-02-01

    Full Text Available Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells, which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7−/− adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity.

  5. Pulse-Driven Magnetoimpedance Sensor Detection of Cardiac Magnetic Activity

    Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi

    2011-01-01

    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level...

  6. Regenerative memory in time-delayed neuromorphic photonic resonators

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.

  7. Functional imaging for regenerative medicine

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O’Flatharta, Cathal; Dockery, Peter

    2016-01-01

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can...

  8. CMD kinetics and regenerative medicine

    Anjamrooz, Seyed Hadi

    2016-01-01

    The author’s theory of the cell memory disc (CMD) offers a radical and holistic picture of the cell from both functional and structural perspectives. Despite all of the attention that has been focused on different regenerative strategies, several serious CMD-based obstacles still remain that make current cell therapies inherently unethical, harmful, and largely ineffective from a clinical viewpoint. Accordingly, unless there is a real breakthrough in finding an alternative or complementary ap...

  9. Functional imaging for regenerative medicine.

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter

    2016-01-01

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of

  10. Mathematical Modeling of Magnetic Regenerator Refrigeration Systems

    Salarvand, Navid

    2009-01-01

    ABSTRACT: Active magnetic regenerative refrigeration (AMRR) systems are designed based on magnetocaloric effect of some special solid materials, such as Gadolinium-Silicon-Germanium, Ferrum-Rhodium, etc. During the last three decades, a variety of cooling systems have been proposed using magnetic materials at room temperature. In this thesis, an AMRR system using FeRh as refrigerant is studied. For the simulation, a one-dimensional, time-varying mathematical model is developed. This model co...

  11. Magnetically Responsive Activated Carbons for Bio - and Environmental Applications

    Šafařík, Ivo; Horská, Kateřina; Popisková, K.; Šafaříková, Miroslava

    2012-01-01

    Roč. 4, č. 3 (2012), s. 346-352. ISSN 2035-1755 R&D Projects: GA ČR(CZ) GAP503/11/2263; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : Activated Carbon * Magnetic Modification * Magnetic Separation Subject RIV: EH - Ecology, Behaviour

  12. Regenerative memory in time-delayed neuromorphic photonic systems

    Romeira, B; Figueiredo, José M L; Barland, S; Javaloyes, J

    2015-01-01

    We investigate a regenerative memory based upon a time-delayed neuromorphic photonic oscillator and discuss the link with temporal localized structures. Our experimental implementation is based upon a optoelectronic system composed of a nanoscale nonlinear resonant tunneling diode coupled to a laser that we link to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback.

  13. Regenerative fuel cell systems R and D

    Mitlitsky, F.; Myers, B.; Weisberg, A.H. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-08-01

    Regenerative fuel cell (RFC) systems produce power and electrolytically regenerate their reactants using stacks of electrochemical cells. Energy storage systems with extremely high specific energy (> 400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Progress is reported on the development, integration, and operation of rechargeable energy storage systems with such high specific energy. Lightweight pressure vessels that enable high specific energies have been designed with performance factors (burst pressure/internal volume/tank weight) > 50 km (2.0 million inches), and a vessel with performance factor of 40 km (1.6 million inches) was fabricated. New generations of both advanced and industry-supplied hydrogen tankage are under development. A primary fuel cell test rig with a single cell (46 cm{sup 2} active area) has been modified and operated reversibly as a URFC (for up to 2010 cycles on a single cell). This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the hydrogen side of the cell). Recent modifications also enable anode feed electrolysis (water is fed from the oxygen side of the cell). Hydrogen/halogen URFCs, capable of higher round-trip efficiency than hydrogen/oxygen URFCs, have been considered, and will be significantly heavier. Progress is reported on higher performance hydrogen/oxygen URFC operation with reduced catalyst loading.

  14. Magnetic refrigerator for hydrogen liquefaction

    Matsumoto, K; Kondo, T [Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yoshioka, S; Kamiya, K; Numazawa, T [Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan)], E-mail: kmatsu@kenroku.kanazawa-u.ac.jp

    2009-02-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  15. Magnetic refrigerator for hydrogen liquefaction

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  16. Magnetism and Electricity Activity "Attracts" Student Interest

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this…

  17. The influence of the magnetic field on the performance of an active magnetic regenerator (AMR)

    Bjørk, Rasmus; Engelbrecht, Kurt

    2011-01-01

    The influence of the time variation of the magnetic field, termed the magnetic field profile, on the performance of a magnetocaloric refrigeration device using the active magnetic regeneration (AMR) cycle is studied for a number of process parameters for both a parallel plate and packed bed...... regenerator using a numerical model. The cooling curve of the AMR is shown to be almost linear far from the Curie temperature of the magnetocaloric material. It is shown that a magnetic field profile that is 10% of the cycle time out of sync with the flow profile leads to a drop in both the maximum...

  18. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    Kjølhede, Klaus; Santos, Ilmar

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model vali...... with respect to the instantaneous measured force obtained from the strain gauges signals)...... magnetic forces is conducted using different experimental tests: (a) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor, (b) by measuring the input current and bearing...

  19. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    Kjølhede, Klaus; Santos, Ilmar

    2007-01-01

    Parameter identification procedures and model validation are major steps toward intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model valid...... normalized with respect to the instantaneous measured force obtained from the strain gauges signals)....... the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and...

  20. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    Kjølhede, Klaus; Santos, Ilmar

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model vali...... with respect to the instantaneous measured force obtained from the strain gauges signals)...... magnetic forces is conducted using different experimental tests: (a) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor, (b) by measuring the input current and bearing...

  1. Stellar magnetic activity – Star-Planet Interactions

    Poppenhaeger, K.

    2015-01-01

    Full Text Available Stellar magnetic activity is an important factor in the formation and evolution of exoplanets. Magnetic phenomena like stellar flares, coronal mass ejections, and high-energy emission affect the exoplanetary atmosphere and its mass loss over time. One major question is whether the magnetic evolution of exoplanet host stars is the same as for stars without planets; tidal and magnetic interactions of a star and its close-in planets may play a role in this. Stellar magnetic activity also shapes our ability to detect exoplanets with different methods in the first place, and therefore we need to understand it properly to derive an accurate estimate of the existing exoplanet population. I will review recent theoretical and observational results, as well as outline some avenues for future progress.

  2. Tests of an Induced Activity Monitor in a magnetic environment

    Pangallo, M; Perrot, Anne Laure; Vincke, H; CERN. Geneva. TS Department

    2005-01-01

    The Induced Activity Monitors (IAM) dedicated to measure the gamma ambient dose equivalent rate (due to the photons from the activated materials) will be installed inside the LHC accelerator and in the experimental caverns. Some of these IAM detectors (plastic ionization chambers) will be located in areas were magnetic fields will be present. Therefore the response of such radiation detectors in a magnetic field environment has been experimentally and theoretically studied and the results are reported in this note. The tests were performed at CERN in the CMS H2 experimental area with conventional and superconductor magnets. The response of the IAM was studied for different orientations of its chamber with respect to the magnetic field lines and for different magnetic field intensities up to 3T. Moreover, FLUKA Monte Carlo Simulations were performed to fully understand the physical effects responsible for the various measurement results. The conclusions of this study will permit to choose the proper orientatio...

  3. Ceramic application for regenerative burner system

    Han, D.B.; Park, B.H.; Kim, Y.W.; Bae, W.S. [RIST, Pohang (Korea)

    1999-05-01

    Recently, regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system, the regenerative one has the several merits such as higher fuel efficiency, light weight of apparatus, low harmful toxic gas and homogeneous heating zone, etc. The regenerative material, a very important component of the new regenerative burner system should possess the properties of low specific density, higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study, alumina ball, alumina tube, 3-D ceramic foam and honeycomb as regenerative materials were tested and evaluated. The computer simulation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature. 7 refs., 5 figs., 3 tabs.

  4. Magnetic Levitation Technique for Active Vibration Control

    Hoque, Emdadul; Mizuno, Takeshi

    2010-01-01

    A zero-power controlled magnetic levitation system has been presented in this chapter. The unique characteristic of the zero-power control system is that it can generate negative stiffness with zero control current in the steady-state which is realized in this chapter. The detail characteristics of the levitation system are investigated. Moreover, two major contributions, the stiffness adjustment and nonlinear compensation of the suspension system have been introduced elaborately. Often, ther...

  5. Magnetic structure of an activated filament in a flaring active region

    Sasso, C; Solanki, S K

    2013-01-01

    While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We introduce observational results on the magnetic field structure of an activated filament in a flaring active region. We study, in particular, its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displays signs of rotation. We invert the Stokes profiles of the chromospheric He I 10830 A triplet and the photospheric Si I 10827 A line observed in this filament by the VTT on Tenerife. Using these inversion results we present and interpret the first maps of velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Up to 5 different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of...

  6. Researches on regenerative medicine-current state

    WANG Zheng-guo; Xiao, Kai

    2012-01-01

    【Abstract】 Since 1980s, the rapid development of tissue engineering and stem cell research has pushed re-generative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese ...

  7. Mesenchymal stem cells in regenerative rehabilitation

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this re...

  8. Stability of Markov regenerative switched linear systems

    Ogura, Masaki; Preciado, Victor M.

    2015-01-01

    In this paper, we give a necessary and sufficient condition for mean stability of switched linear systems having a Markov regenerative process as its switching signal. This class of switched linear systems, which we call Markov regenerative switched linear systems, contains Markov jump linear systems and semi-Markov jump linear systems as special cases. We show that a Markov regenerative switched linear system is $m$th mean stable if and only if a particular matrix is Schur stable, under the ...

  9. Optimization of active magnetic bearings for automotive flywheel energy storage systems based on soft magnetic materials

    Wegleiter H.

    2013-01-01

    Full Text Available For active magnetically suspended rotors in mobile flywheel energy storage systems the lowest possible weight, smallest size and a low price is required. Since the flywheel is operated in vacuum and very little heat can be dissipated from the rotor, the bearing’s magnetic losses have to be as minimal as well. This paper compares the design and optimization of homopolar radial active magnetic bearings with 3 different types of laminated steel. The first type is a standard transformer steel, the second one is high flux cobalt steel and the third one is high flux cobalt steel with high tensile strength.

  10. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    Scott William Mcintosh; Leamon, Robert J.

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magne...

  11. Deciphering solar magnetic activity: on grand minima in solar activity

    Mcintosh, Scott W.; Leamon, Robert J.

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magne...

  12. Heat regenerative external combustion engine

    Duva, Anthony W.

    1993-10-01

    A heat regenerative external combustion engine is disclosed. The engine includes fuel inlet means which extends along the exhaust passage and/or combustion chamber in order to preheat the fuel, To provide for preheating by gases in both the combustion chamber and the exhaust passage, the combustion chamber is arranged annularly around the drive shaft and between the cylinders. This configuration also is advantageous in that it reduces the noise of combustion. The engine of the invention is particularly well-suited for use in a torpedo.

  13. Regenerative superheated steam turbine cycles

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  14. The connection between stellar activity cycles and magnetic field topology

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Folsom, C. P.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Waite, I. A.

    2016-08-01

    Zeeman Doppler imaging has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained form ZDI and activity cycles.

  15. Whirling Dervish Dynamos: Magnetic Activity in CV Secondaries

    Saar, Steven

    2003-07-01

    The mass-losing secondary stars of cataclysmic variables {CVs} are the most rapidly rotating cool dwarfs observable. Other rapid rotators show a maximal, "saturated" level of magnetic activity {e.g., X-ray emission}, but there are hints from contact binaries and young clusters that activity may be suppressed at the highest rotation rates. CV secondaries are thus important probes of magnetic dynamos at rotational extremes. Implications for CV evolution {e.g., the ``period gap", accretion variability} may also be profound. Unfortunately, study of CV secondaries is hampered by pesky accretion-related phenomena and reflection effects. As a result, little systematic work has been done. To explore activity in these stars, we therefore propose to study far-UV spectra of AM Her-type systems {which have no accretion disks} in deep photometric minima in which accretion is shut off. Magnetic-related emission from the secondary will be separated {in velocity} from residual accretion emission by observations near quadratures. Lower chromospheric irradiation due to the white dwarf primary will be removed by modeling, yielding the true level of magnetic activity on the secondary. We will compare the results to other dMe stars and draw implications for magnetic dynamos and activity at rotational extremes, and for CV evolution and behavior.

  16. Turning Regenerative Medicine Breakthrough Ideas and Innovations into Commercial Products.

    Bayon, Yves; Vertès, Alain A; Ronfard, Vincent; Culme-Seymour, Emily; Mason, Chris; Stroemer, Paul; Najimi, Mustapha; Sokal, Etienne; Wilson, Clayton; Barone, Joe; Aras, Rahul; Chiesi, Andrea

    2015-12-01

    The TERMIS-Europe (EU) Industry committee intended to address the two main critical issues in the clinical/commercial translation of Advanced Therapeutic Medicine Products (ATMP): (1) entrepreneurial exploitation of breakthrough ideas and innovations, and (2) regulatory market approval. Since January 2012, more than 12,000 publications related to regenerative medicine and tissue engineering have been accepted for publications, reflecting the intense academic research activity in this field. The TERMIS-EU 2014 Industry Symposium provided a reflection on the management of innovation and technological breakthroughs in biotechnology first proposed to contextualize the key development milestones and constraints of allocation of financial resources, in the development life-cycle of radical innovation projects. This was illustrated with the biofuels story, sharing similarities with regenerative medicine. The transition was then ensured by an overview of the key identified challenges facing the commercialization of cell therapy products as ATMP examples. Real cases and testimonies were then provided by a palette of medical technologies and regenerative medicine companies from their commercial development of cell and gene therapy products. Although the commercial development of ATMP is still at the proof-of-concept stage due to technology risks, changing policies, changing markets, and management changes, the sector is highly dynamic with a number of explored therapeutic approaches, developed by using a large diversity of business models, both proposed by the experience, pitfalls, and successes of regenerative medicine pioneers, and adapted to the constraint resource allocation and environment in radical innovation projects. PMID:26179129

  17. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...

  18. Magnetic flare model of quasars and active galactic nuclei

    As a model of quasars and active galactic nuclei, we present the magnetic flare model which clarifies the connection between the primary energy source and the non-thermal phenomena. The behavior of the magnetic field generated in the accretion disk around a massive black hole is investigated in terms of the αω-dynamo and the magnetic buoyancy. The magnetic field is responsible not only for the angular momentum transfer but also for the vertical energy transfer owing to the magnetic buoyancy. Magnetic energy thus transferred should be released in the coronal region above the disk surface through its flare-like reconnection as in the solar flare. We expect that it will produce a variety of non-thermal activities characteristic to quasars and active galactic nuclei. We argue that the following scenario is compatible with various observations: A flare generates the relativistic shock behind which electrons are heated up to the relativistic energy. Subsequently, they produce X and γ rays by the inverse Compton scattering of low energy photons as well as emit from radio up to soft X photons by the synchrotron radiation. (author)

  19. Regenerative Rehabilitation – a New Future?

    Perez-Terzic, Carmen; Childers, Martin K.

    2014-01-01

    Modern rehabilitation medicine is propelled by newfound knowledge aimed at offering solutions for an increasingly aging population afflicted by chronic debilitating conditions. Considered a core component of future healthcare, the roll-out of regenerative medicine underscores a paradigm shift in patient management targeted at restoring physiologic function and restituting normative impact. Nascent regenerative technologies offer unprecedented prospects in achieving repair of degenerated, dise...

  20. Investigation of magnetic active core sizes and hydrodynamic diameters of a magnetically fractionated ferrofluid

    In this work we address the question which relates between the size of the magnetically active core of magnetic nanoparticles (MNPs) and the size of the overall particle in the solution (the so-called hydrodynamic diameter dhyd) exists. For this purpose we use two methods of examination that can deliver conclusions about the properties of MNP which are not accessible with normal microscopy. On the one hand, we use temperature dependent magnetorelaxation (TMRX) method, which enables direct access to the energy barrier distribution and by using additional hysteresis loop measurements can provide details about the size of the magnetically active cores. On the other hand, to determine the size of the overall particle in the solution, we use the magnetooptical relaxation of ferrofluids (MORFF) method, where the stimulation is done magnetically while the reading of the relaxation signal, however, is done optically. As a basis for the examinations in this work we use a ferrofluid that was developed for medicinal purposes and which has been fractioned magnetically to obtain differently sized fractions of MNPs. The two values obtained through these methods for each fraction shows the success in fractioning the original solution. Therefore, one can conclude a direct correlation between the size of the magnetically active core and the size of the complete particle in the solution from the experimental results. To calculate the size of the magnetically active core we found a temperature dependent anisotropy constant which was taken into account for the calculations. Furthermore, we found relaxation signals at 18 K for all fractions in these TMRX measurements, which have their origin in other magnetic effects than the Néel relaxation.

  1. Changes in Regenerative Capacity through Lifespan

    Maximina H. Yun

    2015-10-01

    Full Text Available Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging.

  2. Measurements of flux pumping activation of trapped field magnets

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad [Texas Center for Superconductivity, 202 Houston Science Center, University of Houston, Houston, TX 77204-5002 (United States); Davey, Kent [Physics Department, 617 Science and Research Building I, University of Houston, Houston, TX 77204-5005 (United States)

    2010-11-15

    Large grains of high temperature superconducting (HTS) material can be utilized as trapped field magnets (TFMs). Persistent currents are set up in the HTS when it is cooled in a magnetic field, or exposed to a magnetic field after cooling. TFMs have been improved over the past two decades by the efforts of a large number of worldwide research groups. However, applications using TFMs have lagged, in part due to the problem of high fields needed for activation. We describe herein experiments designed to observe the behaviour of TFM activation using repeated applications of low fields (called 'pumping'). Significant partial activation is obtained using a non-uniform pumping field (e.g., a small permanent magnet) which is higher in the centre of the HTS than at the periphery. Cooling in zero field followed by pumping with such a field results in trapping the full applied field, in comparison to half of the applied field being trapped by cooling in zero field followed by application of a uniform field. We find that for partial activation by cooling in a field and subsequent activation by pumping, the resulting fields are additive. We also conclude that for activation by fluxoid pumping, creep assists the process.

  3. Optimal thermoeconomic performance of an irreversible regenerative ferromagnetic Ericsson refrigeration cycle

    Xu, Zhichao; Guo, Juncheng; Lin, Guoxing; Chen, Jincan

    2016-07-01

    On the basis of the Langevin theory of classical statistical mechanics, the magnetization, entropy, and iso-field heat capacity of ferromagnetic materials are analyzed and their mathematical expressions are derived. An irreversible regenerative Ericsson refrigeration cycle by using a ferromagnetic material as the working substance is established, in which finite heat capacity rates of low and high temperature reservoirs, non-perfect regenerative heat of the refrigeration cycle, additional regenerative heat loss, etc. are taken into account. Based on the regenerative refrigeration cycle model, a thermoeconomic function is introduced as one objective function and optimized with respect to the temperatures of the working substance in the two iso-thermal processes. By means of numerical calculation, the effects of the effective factor of the heat exchangers in high/low temperature reservoir sides, efficiency of the regenerator, heat capacity rate of the low temperature reservoir, and applied magnetic field on the optimal thermoeconomic function as well as the corresponding cooling rate and coefficient of performance are revealed. The results obtained in this paper can provide some theoretical guidance for the optimal design of actual regenerative magnetic refrigerator cycle.

  4. Functional magnetic resonance imaging of higher brain activity

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  5. Simulation of magnetic active polymers for versatile microfluidic devices

    Gusenbauer, Markus; Fischbacher, Johann; Reichel, Franz; Exl, Lukas; Bance, Simon; Kataeva, Nadezhda; Binder, Claudia; Brückl, Hubert; Schrefl, Thomas

    2013-01-01

    We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.

  6. Towards personalized regenerative cell therapy

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2015-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their...... attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of...... functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the...

  7. Regenerative Therapies for Diabetic Microangiopathy

    Roberto Bassi

    2012-01-01

    Full Text Available Hyperglycaemia occurring in diabetes is responsible for accelerated arterial remodeling and atherosclerosis, affecting the macro- and the microcirculatory system. Vessel injury is mainly related to deregulation of glucose homeostasis and insulin/insulin-precursors production, generation of advanced glycation end-products, reduction in nitric oxide synthesis, and oxidative and reductive stress. It occurs both at extracellular level with increased calcium and matrix proteins deposition and at intracellular level, with abnormalities of intracellular pathways and increased cell death. Peripheral arterial disease, coronary heart disease, and ischemic stroke are the main causes of morbidity/mortality in diabetic patients representing a major clinical and economic issue. Pharmacological therapies, administration of growth factors, and stem cellular strategies are the most effective approaches and will be discussed in depth in this comprehensive review covering the regenerative therapies of diabetic microangiopathy.

  8. Unitized regenerative fuel cell system

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  9. The influence of the magnetic field on the performance of an active magnetic regenerator (AMR)

    Bjørk, R

    2014-01-01

    The influence of the time variation of the magnetic field, termed the magnetic field profile, on the performance of a magnetocaloric refrigeration device using the active magnetic regeneration (AMR) cycle is studied for a number of process parameters for both a parallel plate and packed bed regenerator using a numerical model. The cooling curve of the AMR is shown to be almost linear far from the Curie temperature of the magnetocaloric material. It is shown that a magnetic field profile that is 10% of the cycle time out of sync with the flow profile leads to a drop in both the maximum temperature span and the maximum cooling capacity of 20-40\\% for both parallel plate and packed bed regenerators. The maximum cooling capacity is shown to depend very weakly on the ramp rate of the magnetic field. Reducing the temporal width of the high field portion of the magnetic field profile by 10% leads to a drop in maximum temperature span and maximum cooling capacity of 5-20%. An increase of the magnetic field from 1 T t...

  10. Understanding Mechanobiology: Physical Therapists as a Force in Mechanotherapy and Musculoskeletal Regenerative Rehabilitation.

    Thompson, William R; Scott, Alexander; Loghmani, M Terry; Ward, Samuel R; Warden, Stuart J

    2016-04-01

    Achieving functional restoration of diseased or injured tissues is the ultimate goal of both regenerative medicine approaches and physical therapy interventions. Proper integration and healing of the surrogate cells, tissues, or organs introduced using regenerative medicine techniques are often dependent on the co-introduction of therapeutic physical stimuli. Thus, regenerative rehabilitation represents a collaborative approach whereby rehabilitation specialists, basic scientists, physicians, and surgeons work closely to enhance tissue restoration by creating tailored rehabilitation treatments. One of the primary treatment regimens that physical therapists use to promote tissue healing is the introduction of mechanical forces, or mechanotherapies. These mechanotherapies in regenerative rehabilitation activate specific biological responses in musculoskeletal tissues to enhance the integration, healing, and restorative capacity of implanted cells, tissues, or synthetic scaffolds. To become future leaders in the field of regenerative rehabilitation, physical therapists must understand the principles of mechanobiology and how mechanotherapies augment tissue responses. This perspective article provides an overview of mechanotherapy and discusses how mechanical signals are transmitted at the tissue, cellular, and molecular levels. The synergistic effects of physical interventions and pharmacological agents also are discussed. The goals are to highlight the critical importance of mechanical signals on biological tissue healing and to emphasize the need for collaboration within the field of regenerative rehabilitation. As this field continues to emerge, physical therapists are poised to provide a critical contribution by integrating mechanotherapies with regenerative medicine to restore musculoskeletal function. PMID:26637643

  11. Measuring starspots on magnetically active stars with the VLTI

    Wittkowski, M; Hubrig, S; Posselt, B; Von der Lühe, O

    2002-01-01

    We present feasibility studies to directly image stellar surface features, which are caused by magnetic activity, with the Very Large Telescope Interferometer (VLTI). We concentrate on late type magnetically active stars, for which the distribution of starspots on the surface has been inferred from photometric and spectroscopic imaging analysis. The study of the surface spot evolution during consecutive rotation cycles will allow first direct measurements (apart from the Sun) of differential rotation which is the central ingredient of magnetic dynamo processes. The VLTI will provide baselines of up to 200 m, and two scientific instruments for interferometric studies at near- and mid-infrared wavelengths. Imaging capabilities will be made possible by closure-phase techniques. We conclude that a realistically modeled cool surface spot can be detected on stars with angular diameters exceeding ~2 mas using the VLTI with the first generation instrument AMBER. The spot parameters can then be derived with reasonable...

  12. Stellar Magnetic Dynamos and Activity Cycles

    Wright, Nicholas J

    2013-01-01

    Using a new uniform sample of 824 solar and late-type stars with measured X-ray luminosities and rotation periods we have studied the relationship between rotation and stellar activity that is believed to be a probe of the underlying stellar dynamo. Using an unbiased subset of the sample we calculate the power law slope of the unsaturated regime of the activity -- rotation relationship as $L_X/L_{bol}\\propto Ro^\\beta$, where $\\beta=-2.70\\pm0.13$. This is inconsistent with the canonical $\\beta = -2$ slope to a confidence of 5$\\sigma$ and argues for an interface-type dynamo. We map out three regimes of coronal emission as a function of stellar mass and age, using the empirical saturation threshold and theoretical super-saturation thresholds. We find that the empirical saturation timescale is well correlated with the time at which stars transition from the rapidly rotating convective sequence to the slowly rotating interface sequence in stellar spin-down models. This may be hinting at fundamental changes in the ...

  13. Experimental results for a novel rotary active magnetic regenerator

    Engelbrecht, Kurt; Eriksen, Dan; Bahl, Christian; Bjørk, Rasmus; Geyti, Jørgen; Lozano, Jaime; Nielsen, Kaspar Kirstein; Saxild, Finn B.; Smith, Anders; Pryds, Nini

    2012-01-01

    Active magnetic regenerator (AMR) refrigerators represent an alternative to vapor compression technology and have great potential in realizing cooling devices with high efficiency, which are highly desirable for a broad range of applications. The technology relies on the magnetocaloric effect in a...

  14. Magnetic helicity and energy spectra of a solar active region

    Zhang, Hongqi; Sokoloff, D D

    2013-01-01

    We compute magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20 degr southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The relative magnetic helicity is around 8% and strongest at intermediate wavenumbers of k ~ 0.4 Mm^{-1}, corresponding to a scale of 2 pi/k ~ 16 Mm. The same sign and a somewhat smaller value is also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The current helicity spectrum is estimated from the magnetic helicity spectrum and its modulus shows a k^{-5/3} spectrum at large wavenumbers. A similar power law is also obtained for...

  15. Dynamics of an active magnetic particle in a rotating magnetic field.

    Cēbers, A; Ozols, M

    2006-02-01

    The motion of an active (self-propelling) particle with a permanent magnetic moment under the action of a rotating magnetic field is considered. We show that below a critical frequency of the external field the trajectory of a particle is a circle. For frequencies slightly above the critical point the particle moves on an approximately circular trajectory and from time to time jumps to another region of space. Symmetry of the particle trajectory depends on the commensurability of the field period and the period of the orientational motion of the particle. We also show how our results can be used to study the properties of naturally occurring active magnetic particles, so-called magnetotactic bacteria. PMID:16605340

  16. Edge Adapted Wavelets, Solar Magnetic Activity, and Climate Change

    Johnson, Robert W

    2009-01-01

    The continuous wavelet transform is adapted to account for signal truncation through renormalization and by modifying the shape of the analyzing window. Comparison is made of the instant and integrated wavelet power with previous algorithms. The edge adapted and renormalized admissible wavelet transforms are used to estimate the level of solar magnetic activity from the sunspot record. The solar activity is compared to Oerlemans' temperature reconstruction and to the Central England Temperatu...

  17. Regenerative metamorphosis in hairs and feathers: follicle as a programmable biological printer

    Oh, Ji Won; Lin, Sung-Jan; Plikus, Maksim V.

    2015-01-01

    Present-day hairs and feathers are marvels of biological engineering perfected over 200 million years of convergent evolution. Prominently, both follicle types coevolved regenerative cycling, wherein active filament making (anagen) is intermitted by a phase of relative quiescence (telogen). Such regenerative cycling enables follicles to “reload” their morphogenetic program and make qualitatively different filaments in the consecutive cycles. Indeed, many species of mammals and birds undergo r...

  18. Dissemination of Regenerative Medicine - A comparison of the regulatory systems between Japan and Korea - (Japanese)

    KURATA Kenji; Choi, Youn-Hee

    2010-01-01

    Although Japan has surpassed Korea in terms of R&D activities in the area of regenerative medicine, Korea has been more successful in its commercialization. As one of the key reasons for this, the 'posture' of the Pharmaceuticals and Medical Devices Agency (PMDA) in Japan is often criticized. Rather than dwelling on the abstract, this paper chooses to focus on the set up and operation of actual systems that take into consideration the promotion of regenerative medicine in Japan. Analysis and ...

  19. Structure and Performance Analysis of Regenerative Electromagnetic Shock Absorber

    Longxin Zhen

    2010-12-01

    Full Text Available This paper analyzed the structure and principle of a regenerative electromagnetic shock absorber in detail. The innovative shock absorber resembles linear generator in principle and can generate electric power through the relative reciprocating motion between coil assembly and permanent magnet assembly. At the same time, the damping can remove discomfort caused by road roughness. The regenerated electric power can be recovered through battery. Analysis of magnetic flux density of the permanent magnet array of the innovative shock absorber was performed using ANSYS software based on the structure parameters given in the paper,then the performance parameters of the shock absorber was determined . Analysis and calculation results prove the viability of this shock absorber.

  20. Solar Magnetism and the Activity Telescope at HSOS

    Hong-Qi Zhang; Ya-Nan Wang; Qi-Qian Hu; Jun-Sun Xue; Hai-Tian Lu; Hou-Kun Ni; Han-Liang Chen; Xiao-Jun Zhou; Qing-Sheng Zhu; Lü-Jun Yuan; Yong Zhu; Dong-Guang Wang; Yuan-Yong Deng; Ke-Liang Hu; Jiang-Tao Su; Jia-Ben Lin; Gang-Hua Lin; Shi-Mo Yang; Wei-Jun Mao

    2007-01-01

    A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Hα observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1(A) bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Hα filtergrams obtained with this telescope system.

  1. On a Flywheel-Based Regenerative Braking System for Regenerative Energy Recovery

    Hsu, Tai-Ran

    2013-01-01

    This paper presents a unique flywheel-based regenerative energy recovery, storage and release system developed at the author's laboratory. It can recover and store regenerative energy produced by braking a motion generator with intermittent rotary velocity such as the rotor of a wind turbogenerator subject to intermittent intake wind and the axels of electric and hybrid gas-electric vehicles during frequent coasting and braking. Releasing of the stored regenerative energy in the flywheel is c...

  2. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.

    Ogura, Fumitaka; Wakao, Shohei; Kuroda, Yasumasa; Tsuchiyama, Kenichiro; Bagheri, Mozhdeh; Heneidi, Saleh; Chazenbalk, Gregorio; Aiba, Setsuya; Dezawa, Mari

    2014-04-01

    In this study, we demonstrate that a small population of pluripotent stem cells, termed adipose multilineage-differentiating stress-enduring (adipose-Muse) cells, exist in adult human adipose tissue and adipose-derived mesenchymal stem cells (adipose-MSCs). They can be identified as cells positive for both MSC markers (CD105 and CD90) and human pluripotent stem cell marker SSEA-3. They intrinsically retain lineage plasticity and the ability to self-renew. They spontaneously generate cells representative of all three germ layers from a single cell and successfully differentiate into targeted cells by cytokine induction. Cells other than adipose-Muse cells exist in adipose-MSCs, however, do not exhibit these properties and are unable to cross the boundaries from mesodermal to ectodermal or endodermal lineages even under cytokine inductions. Importantly, adipose-Muse cells demonstrate low telomerase activity and transplants do not promote teratogenesis in vivo. When compared with bone marrow (BM)- and dermal-Muse cells, adipose-Muse cells have the tendency to exhibit higher expression in mesodermal lineage markers, while BM- and dermal-Muse cells were generally higher in those of ectodermal and endodermal lineages. Adipose-Muse cells distinguish themselves as both easily obtainable and versatile in their capacity for differentiation, while low telomerase activity and lack of teratoma formation make these cells a practical cell source for potential stem cell therapies. Further, they will promote the effectiveness of currently performed adipose-MSC transplantation, particularly for ectodermal and endodermal tissues where transplanted cells need to differentiate across the lineage from mesodermal to ectodermal or endodermal in order to replenish lost cells for tissue repair. PMID:24256547

  3. Low NO[sub x] regenerative burner

    Anon.

    1992-12-01

    A joint development project between British Gas and Hotwork Development has resulted in maintaining the efficiency of a regenerative burner but without the penalty of the higher NO[sub x] emissions normally associated with combustion air preheat. (author)

  4. 3D Biomaterial Microarrays for Regenerative Medicine

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  5. Lattice Regenerative Cooling Methods (LRCM) Project

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate a novel cooling concept called Lattice Regenerative Cooling Methods (LRCM) for future high thrust in-space propulsion...

  6. Chromospheric magnetic fields of an active region filament

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  7. Magnetic field structures in active compact radio sources

    The analysis of simultaneous multifrequency linear polarimetry data between 1.4 GHz and 90 GHz for about 20 active, compact radio sources at six epochs from 1977 December 10 1980 July is presented. In addition, monthly 8 Ghz polarization data on the same sources were examined. The general polarization characteristics of these sources can be well described in terms of magnetic fields which are largely turbulent and slightly anisotropic. The magnetic field symmetry axes are generally aligned with the source structural axes on the milli-arcsecond scale (OJ 287 is a notable exception.) Monte Carlo calculations indicate that observed polarization variations and in particular rotator polarization events can be produced in this model as a consequence of random walks generated through evolution of the turbulent magnetic field. 43 references

  8. SEE SAW BASED REGENERATIVE POWER SYSTEM

    Tribhuwan Singh; Shahzad Ali

    2016-01-01

    Research related to electrical vehicles is gaining importance due to the energy crisis. Using regenerative braking when braking, improves the efficiency of an electric vehicle as it recovers energy that could go to waste if mechanical brakes were used. A novel regenerative braking system for neighborhood electric vehicles was designed, prototyped and tested. The proposed system utilizes a seesaw system to capture energy whereas the conventional systems regenerate to the batteries. The user ha...

  9. Regenerative Medicine from Protocol to Patient

    Gustav Steinhoff

    2011-01-01

    The essentials of the upcoming and rapidly changing specialty of regenerative medicine, which has kindled high hopes among the clinical and scientific community as well as the society, are presented concisely in this book. Considering the multivariate sub-specialties within regenerative medicine, starting with cell biology and allied basic sciences through translational research to clinical application in various specialties of medicine, enormous efforts are mandatory to bring a comprehensive...

  10. Regenerative burner use on reheat furnaces

    Baggley, G.W. [Bloom Engineering Co. Inc., Pittsburgh, PA (United States)

    1995-06-01

    The environmental advantages of using regenerative burner technology on steel reheat furnaces are explored in this article, in particular improved fuel energy efficiencies and reduced pollution emissions, of nitrogen oxides and carbon monoxide. Experience of the use of regenerative burners in the United States and Japan, where they have achieved significant market penetration is also described, including a case history of a top-fired billet reheat furnace installed in the United States. (UK)

  11. Low NO sub x regenerative burner

    Hovis, J.E.; Finke, H.P.

    1991-01-08

    This patent describes improvements in a regenerative burner having a regenerative bed, a burner port and a fuel nozzle. The improvement comprises: a burner baffle having apertures therein for selectively directing combustion air and inducing combustion gas recirculation into a primary combustion zone for suppressing NO{sub x} emissions, the baffle and the fuel nozzle being positioned substantially adjacent the burner port and being substantially coplanar in a plane perpendicular to a burner axis.

  12. Regenerative nanomedicine: current perspectives and future directions

    Chaudhury K; Kumar V; Kandasamy J; RoyChoudhury S

    2014-01-01

    Koel Chaudhury, Vishu Kumar, Jayaprakash Kandasamy, Sourav RoyChoudhurySchool of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, IndiaAbstract: Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and t...

  13. Double regenerative amplification of picosecond pulses

    Bai, Zhen-ao; Chen, Li-yuan; Bai, Zhen-xu; Chen, Meng; Li, Gang

    2012-04-01

    An double Nd:YAG regenerative amplification picosecond pulse laser is demonstrated under the semiconductor saturable absorption mirror(SESAM) mode-locking technology and regenerative amplification technology, using BBO crystal as PC electro-optic crystal. The laser obtained is 20.71ps pulse width at 10 KHz repetition rate, and the energy power is up to 4W which is much larger than the system without pre-amplification. This result will lay a foundation for the following amplification.

  14. Current overview on challenges in regenerative endodontics

    Ramta Bansal; Aditya Jain; Sunandan Mittal

    2015-01-01

    Introduction: Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. Aim: The aim of this review artic...

  15. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  16. Regenerative Medicine for Neurological Disorders

    Dong-Hyuk Park

    2010-01-01

    Full Text Available The annual meeting of the American Society for Neural Therapy and Repair (ASNTR has always introduced us to top-notch and up-to-date approaches for regenerative medicine related to neuroscience, ranging from stem cell–based therapy to novel drugs. The 16th ASNTR meeting focused on a variety of different topics, including the unknown pathogenesis or mechanisms of specific neurodegenerative diseases, stem cell biology, and development of novel alternative medicines or devices. Newly developed stem cells, such as amniotic epithelial stem cells and induced pluripotent stem cells, as well as well-known traditional stem cells, such as neural, embryonic, bone marrow mesenchymal, and human umbilical cord blood–derived stem cells, were reported. A number of commercialized stem cells were also covered at this meeting. Fetal neural tissues, such as ventral mesencephalon, striatum, and Schwann cells, were investigated for neurodegenerative diseases or spinal cord injury. A number of studies focused on novel methods for drug monitoring or graft tracking, and combination therapy with stem cells and medicine, such as cytokines or trophic factors. Finally, the National Institutes of Health guidelines for human stem cell research, clinical trials of commercialized stem cells without larger animal testing, and prohibition of medical tourism were big controversial issues that led to heated discussion.

  17. The Magnetic Classification of Solar Active Regions 1992 - 2015

    Jaeggli, Sarah A.; Norton, Aimee A.

    2016-01-01

    The purpose of this letter is to address a blind-spot in our knowledge of solar active region statistics. To the best of our knowledge there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all active regions reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the $\\alpha$ and $\\beta$ class active regions (including all sub-g...

  18. FINE MAGNETIC FEATURES AND CHIRALITY IN SOLAR ACTIVE REGION NOAA 10930

    In this paper, we present fine magnetic features near the magnetic inversion line in the solar active region NOAA 10930. The high-resolution vector magnetograms obtained by Hinode allow detailed analyses around magnetic fibrils in the active region. The analyses are based on the fact that the electric current density can be divided into two components: the shear component caused by the magnetic inhomogeneity and the twist component caused by the magnetic field twist. The relationships between magnetic field, electric current density, and its two components are examined. It is found that the individual magnetic fibrils are dominated by the current density component caused by the magnetic inhomogeneity, while the large-scale magnetic region is generally dominated by the electric current component associated with the magnetic twist. The microstructure of the magnetic field in the solar atmosphere is far from the force-free field. The current mainly flows around the magnetic flux fibrils in the active regions.

  19. Towards age/rotation/magnetic activity relation with seismology

    Mathur Savita

    2015-01-01

    Full Text Available The knowledge of stellar ages directly impacts the characterization of a planetary system as it puts strong constraints on the moment when the system was born. Unfortunately, the determination of precise stellar ages is a very difficult task. Different methods can be used to do so (based on isochrones or chemical element abundances but they usually provide large uncertainties. During its evolution a star goes through processes leading to loss of angular momentum but also changes in its magnetic activity. Building rotation, magnetic, age relations would be an asset to infer stellar ages model independently. Several attempts to build empirical relations between rotation and age (namely gyrochronology were made with a focus on cluster stars where the age determination is easier and for young stars on the main sequence. For field stars, we can now take advantage of high-precision photometric observations where we can perform asteroseismic analyses to improve the accuracy of stellar ages. Furthermore, the variability in the light curves allow us to put strong constraints on the stellar rotation and magnetic activity. By combining these precise measurements, we are on the way of understanding and improving relations between magnetic activity, rotation, and age, in particular at different stages of stellar evolution. I will review the status on gyrochronology relationships based on observations of young cluster stars. Then I will focus on solar-like stars and describe the inferences on stellar ages, rotation, and magnetism that can be provided by high-quality photometric observations such as the ones of the Kepler mission, in particular through asteroseismic analyses.

  20. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  1. Exploring the efficiency potential for an active magnetic regenerator

    Eriksen, Dan; Engelbrecht, Kurt; Haffenden Bahl, Christian Robert;

    2016-01-01

    A novel rotary state of the art active magnetic regenerator refrigeration prototype was used in an experimental investigation with special focus on efficiency. Based on an applied cooling load, measured shaft power, and pumping power applied to the active magnetic regenerator, a maximum second......-law efficiency of 18% was obtained at a cooling load of 81.5 W, resulting in a temperature span of 15.5 K and a coefficient of performance of 3.6. A loss analysis is given, based on measured pumping power and shaft power together with theoretically estimated regenerator presssure drop. It is shown that......, especially for the pressure drop, significant improvements can be made to the machine. However, a large part of the losses may be attributed to regenerator irreversibilities. Considering these unchanged, an estimated upper limit to the second-law efficiency of 30% is given by eliminating parasitic losses and...

  2. Design and performance study of the active magnetic refrigerator for room-temperature application

    Zheng, Z.G.; Yu, H.Y.; Zhong, X.C.; Zeng, D.C.; Liu, Z.W. [School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

    2009-01-15

    A room-temperature magnetic refrigerator, consisting of permanent magnet, active magnetic refrigeration (AMR) cycle bed, pumps, hydraulic circuit, active magnetic double regenerator cycle (AM2RC) and control subsystems, has been designed. The magnetic field is supplied by NdFeB permanent magnets. The AMR bed made by stainless steel 304 encloses gadolinium particles as the magnetic working substance. Each part of the refrigerator is controlled by the programmable controller. The different standard heat exchangers are employed to expel heat. The cycle performance of this self-designed facility is analyzed using Langevin theory. The results provide useful data for future design and development of room-temperature magnetic refrigeration. (author)

  3. The development of an axial active magnetic bearing / R. Gouws

    Gouws, Rupert

    2004-01-01

    In this dissertation, the author presents the operation and development of active magnetic bearings (AMBs) , with specific focus on axial M s . The project objective is the development of an axial AMB system. The electromagnetic design, inductive sensor design, dSpace controller model design and actuating amplifier design are aspects discussed in this dissertation. The physical model constitutes two electromagnets positioned above and beneath a 2 kg steel disc with an air gap o...

  4. Condition monitoring of active magnetic bearing systems / Rupert Gouws

    Gouws, Rupert

    2007-01-01

    In this thesis, the author contextualises condition monitoring of active magnetic bearing (AMB) systems and proposes the real-time condition monitoring of AMB systems. Three real-time fault detection, diagnosis, correction and identification schemes for vibration forces on the rotor of a rotational AMB system are proposed. Two AMB systems were used to conduct this research. The one was a fully suspended 250 kW water cooling AMB pump from which historical fault data was obtained and the oth...

  5. Repetitive transcranial magnetic stimulation activates specific regions in rat brain

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive ther...

  6. On the filament motion in magnetic field of active regions

    The study of filament motion in magnetic field of active regions is fulfiled. Filament movement can possibly be presented as a drift in the crossed fields, but there exist fast movements that cannot be described as a drift. For very fast motion, with acceleration greater than that of free fall, it is sometimes necessary to assume, that the motion is carried out due to the filament's own electric current. A model, describing filament motion data, given by Mouradian M. is presented

  7. Fault Diagnosis in a Centrifugal Pump Using Active Magnetic Bearings

    Nordmann Rainer; Aenis Martin

    2004-01-01

    The number of rotors running in active magnetic bearings (AMBs) has increased over the last few years. These systems offer a great variety of advantages compared to conventional systems. The aim of this article is to use the AMBs together with a developed built-in software for identification, fault detection, and diagnosis in a centrifugal pump. A single-stage pump representing the turbomachines is investigated. During full operation of the pump, the AMBs are used as actuators to generate def...

  8. On the Magnetic Field Strength of Active Region Filaments

    Kuckein, C; Pillet, V Martinez; Casini, R; Sainz, R Manso; Shimizu, T

    2009-01-01

    We study the vector magnetic field of a filament observed over a compact Active Region Neutral Line. Spectropolarimetric data acquired with TIP-II (VTT, Tenerife, Spain) of the 10830 \\AA spectral region provide full Stokes vectors which were analyzed using three different methods: magnetograph analysis, Milne-Eddington inversions and PCA-based atomic polarization inversions. The inferred magnetic field strengths in the filament are of the order of 600 - 700 G by all these three methods. Longitudinal fields are found in the range of 100 - 200 G whereas the transverse components become dominant, with fields as large as 500 - 600 G. We find strong transverse fields near the Neutral Line also at photospheric levels. Our analysis indicates that strong (higher than 500 G, but below kG) transverse magnetic fields are present in Active Region filaments. This corresponds to the highest field strengths reliably measured in these structures. The profiles of the Helium 10830 \\AA lines observed in this Active Region filam...

  9. Edge Adapted Wavelets, Solar Magnetic Activity, and Climate Change

    Johnson, Robert W

    2009-01-01

    The continuous wavelet transform is adapted to account for signal truncation through renormalization and by modifying the shape of the analyzing window. Comparison is made of the instant and integrated wavelet power with previous algorithms. The edge adapted and renormalized admissible wavelet transforms are used to estimate the level of solar magnetic activity from the sunspot record. The solar activity is compared to Oerlemans' temperature reconstruction and to the Central England Temperature record. A correlation is seen for years between 1610 and 1990, followed by a strong deviation as the recently observed temperature increases.

  10. The Relationship between Magnetic Gradient and Magnetic Shear in Five Super Active Regions Producing Great Flares

    Hai-Min Wang; Hui Song; Ju Jing; Vasyl Yurchyshyn; Yuan-Yong Deng; Hong-Qi Zhang; David Falconer; Jing Li

    2006-01-01

    We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magnetograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Flight Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magnetograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km-1, 2.3to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.

  11. RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Callahan, Alison; Abeyruwan, Saminda W; Al-Ali, Hassan; Sakurai, Kunie; Ferguson, Adam R; Popovich, Phillip G; Shah, Nigam H; Visser, Ubbo; Bixby, John L; Lemmon, Vance P

    2016-01-01

    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org. PMID:27055827

  12. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    Metcalfe, T. S.; Mathur, S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Buccino, A. P.; Mauas, P. J. D.; Petrucci, R. [Instituto de Astronomia y Fisica del Espacio (CONICET), C.C. 67 Sucursal 28, C1428EHA-Buenos Aires (Argentina); Brown, B. P. [Department of Astronomy and Center for Magnetic Self-Organization, University of Wisconsin, Madison, WI 53706-1582 (United States); Soderblom, D. R. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Henry, T. J. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Hall, J. C. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  13. Cell and biomolecule delivery for regenerative medicine

    Regenerative medicine is an exciting field that aims to create regenerative alternatives to harvest tissues for transplantation. In this approach, the delivery of cells and biological molecules plays a central role. The scaffold (synthetic temporary extracellular matrix) delivers cells to the regenerative site and provides three-dimensional environments for the cells. To fulfil these functions, we design biodegradable polymer scaffolds with structural features on multiple size scales. To enhance positive cell-material interactions, we design nano-sized structural features in the scaffolds to mimic the natural extracellular matrix. We also integrate micro-sized pore networks to facilitate mass transport and neo tissue regeneration. We also design novel polymer devices and self-assembled nanospheres for biomolecule delivery to recapitulate key events in developmental and wound healing processes. Herein, we present recent work in biomedical polymer synthesis, novel processing techniques, surface engineering and biologic delivery. Examples of enhanced cellular/tissue function and regenerative outcomes of these approaches are discussed to demonstrate the excitement of the biomimetic scaffold design and biologic delivery in regenerative medicine. (topical review)

  14. Cell and biomolecule delivery for regenerative medicine

    Ian O Smith and Peter X Ma

    2010-01-01

    Full Text Available Regenerative medicine is an exciting field that aims to create regenerative alternatives to harvest tissues for transplantation. In this approach, the delivery of cells and biological molecules plays a central role. The scaffold (synthetic temporary extracellular matrix delivers cells to the regenerative site and provides three-dimensional environments for the cells. To fulfil these functions, we design biodegradable polymer scaffolds with structural features on multiple size scales. To enhance positive cell–material interactions, we design nano-sized structural features in the scaffolds to mimic the natural extracellular matrix. We also integrate micro-sized pore networks to facilitate mass transport and neo tissue regeneration. We also design novel polymer devices and self-assembled nanospheres for biomolecule delivery to recapitulate key events in developmental and wound healing processes. Herein, we present recent work in biomedical polymer synthesis, novel processing techniques, surface engineering and biologic delivery. Examples of enhanced cellular/tissue function and regenerative outcomes of these approaches are discussed to demonstrate the excitement of the biomimetic scaffold design and biologic delivery in regenerative medicine.

  15. Developments in the field of active magnetic bearings at EDF

    The studies carried out by EDF concerning the evaluation of the active magnetic bearing technology for their possible application to rotating machinery in electrical plants, and especially the 900 MW ''CP2'' turbogenerators which appear to have very little damping and vibrate noticeably during transients. Using a 4 tons test bench, the good quality of simulation applied to both permanent and transient conditions have been verified. Then, using a 10 tons test bench, the dimensioning concerns of the CP2 application were more precisely evaluated. It has been especially demonstrated that the accessible levels of force and damping were compatible with the application constraints. In a final 30 tons project, some innovative technological components have been used and the benefits from an optimization of the design of the magnetic parameters were determined. Specifications for a full-scale implementation have been therefore defined to enable the manufacturer to make a commercial offer. After a disappointing analysis of the offer, CP2 computations and studies were stopped but subsidiary studies were conducted: estimation of the damage risk under alternative bending of the CP2 rotors during their lifetime, prospective analysis of other possible applications of active magnetic bearings in power plants, development of a new vibratory test method through electromagnetic excitation. 5 figs., 6 refs

  16. Active split-ring metamaterial slabs for magnetic resonance imaging

    Lopez, Marcos A; Freire, Manuel J; Behr, Volker C; Jakob, Peter M; Marques, Ricardo

    2011-01-01

    In this work, it is analyzed the ability of split-ring metamaterial slabs with zero/high permeability to reject/confine the radiofrequency magnetic field in magnetic resonance imaging systems. Using an homogenization procedure, split-ring slabs have been designed and fabricated to work in a 1.5T system. Active elements consisting of pairs of crossed diodes are inserted in the split-rings. With these elements, the permeability of the slabs can be automatically switched between a unity value when interacting with the strong excitation field of the transmitting body coil, and zero or high values when interacting with the weak field produced by protons in tissue. Experiments are shown for different configurations where these slabs can help to locally increase the signal-to-noise-ratio.

  17. Numerical modeling and analysis of the active magnetic regenerator

    Nielsen, Kaspar Kirstein

    In this thesis the active magnetic regenerator (AMR) is analyzed using various numerical tools and experimental devices. A 2-dimensional transient numerical model of the AMR is developed and implemented and it is used to investigate the in uence of a range of parameters on the performance of the...... investigated using the numerical AMR model. The results show indeed that the performance may be enhanced signicantly and it may thus be concluded that the performance of the AMR is dependent on a vast number of parameters (material composition, magnetic eld source, regenerator geometry, regenerator eciency...... AMR. The model simulates a regenerator made of parallel plates. The operating parameters, such as uid ow rates, thermal utilization, magnetocaloric properties etc. are varied as are geometric properties such as plate and channel thickness, regenerator length and porosity. In this way the performance...

  18. Towards age/rotation/magnetic activity relation with seismology

    Mathur, Savita

    2015-01-01

    The knowledge of stellar ages directly impacts the characterization of a planetary system as it puts strong constraints on the moment when the system was born. Unfortunately, the determination of precise stellar ages is a very difficult task. Different methods can be used to do so (based on isochrones or chemical element abundances) but they usually provide large uncertainties. During its evolution a star goes through processes leading to loss of angular momentum but also changes in its magnetic activity. Building rotation, magnetic, age relations would be an asset to infer stellar ages model independently. Several attempts to build empirical relations between rotation and age (namely gyrochronology) were made with a focus on cluster stars where the age determination is easier and for young stars on the main sequence. For field stars, we can now take advantage of high-precision photometric observations where we can perform asteroseismic analyses to improve the accuracy of stellar ages. Furthermore, the variab...

  19. Optimisation Of An Integrated Planar Magnetic For Active Antenna Panels

    Strixner, E.; Godzik, S.; Drechsler, E., , Dr.

    2011-10-01

    The envisaged German Space Missions HRWS and TerraSAR-X follow-on have triggered the development of a new generation of low voltage DC power supplies for active antennas at Astrium GmbH. The basic approachis tointegrate all power, digital, RF electronics and RF radiators required for one antenna tile into one common unit. Due to the high number of electronic boxes needed for one antenna it is essential to optimise cost, volume, efficiency and weight. The development of an integrated planar magnetic for power conversion is one contribution to this overall optimisation process. The focus of this presentation is the development of an integrated planar magnetic used for a half-bridge forward converter with secondary side synchronous current doubler. The converter is supplied from a 100 V power bus and delivers a total average output power of 280W for the drain supply of the pulsed RF power stages.

  20. Activation of sweeping magnets in Tevatron II standardized target piles

    As designs of the primary targeting schemes for the new Tevatron II slow spill beams progress, it is becoming clear that a standardized form for these schemes is emerging. The general form consists of a production target (usually about 30 cm of beryllium having a diameter from 0.64 to 1.27 cm) followed by from one to three of the new Tevatron II H frame magnets recently developed by D. Eartly. These magnets sweep the unused primary proton beam onto a massive steel beam dump containing a core of material capable of dispersing the energy of the beam along with a hole for transmitting the secondary beam desired at experimental targets. Typical primary proton intensities at such production targets are planned to be in the range of 3 x 1012 to 5 x 1012 protons per spill. If one assumes such operation during a run of 4000 hours per year, 60 spills per hour, the integrated beam is seen to be approximately 1 x 1018 per year targetted at a rate of 7/0 x 1010 protons/sec during the run. It is clear, from experience, that such beam intensities require that the water used to cool the beam dump must be in a closed loop system both to protect personnel during operations from the external radiation exposure rate due to short lived radionuclides (e.g., 11C and 7Be) and to protect against release of significant activities of tritium into surface waters. It is not certain that a closed loop system is required for the sweeping magnets. This TM reports on a calculation designed to evaluate this potential problem, the expected dose rates external to such magnets, and the total activity which will be contained in them and the target

  1. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    Sikora, Marek [Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw (Poland); Begelman, Mitchell C., E-mail: sikora@camk.edu.pl, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States)

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  2. Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery.

    Faulconer, Emily K; von Reitzenstein, Natalia V Hoogesteijn; Mazyck, David W

    2012-01-15

    Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 μg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N(2) (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 μg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (± 8.3%) sorbent recovery and 96.3% (± 9%) Hg removal. The mass balance has been closed to within approximately ± 15%. PMID:22104766

  3. Regenerative medicine: learning from past examples.

    Couto, Daniela S; Perez-Breva, Luis; Cooney, Charles L

    2012-11-01

    Regenerative medicine products have characteristically shown great therapeutic potential, but limited market success. Learning from the past attempts at capturing value is critical for new and emerging regenerative medicine therapies to define and evolve their business models as new therapies emerge and others mature. We propose a framework that analyzes technological developments along with alternative business models and illustrates how to use both strategically to map value capture by companies in regenerative medicine. We analyze how to balance flexibility of the supply chain and clarity in the regulatory pathway for each business model and propose the possible pathways of evolution between business models. We also drive analogies between cell-based therapies and other healthcare products such as biologicals and medical devices and suggest how to strategically evolve from these areas into the cell therapy space. PMID:22697402

  4. Overcoming immunological barriers in regenerative medicine.

    Zakrzewski, Johannes L; van den Brink, Marcel R M; Hubbell, Jeffrey A

    2014-08-01

    Regenerative therapies that use allogeneic cells are likely to encounter immunological barriers similar to those that occur with transplantation of solid organs and allogeneic hematopoietic stem cells (HSCs). Decades of experience in clinical transplantation hold valuable lessons for regenerative medicine, offering approaches for developing tolerance-induction treatments relevant to cell therapies. Outside the field of solid-organ and allogeneic HSC transplantation, new strategies are emerging for controlling the immune response, such as methods based on biomaterials or mimicry of antigen-specific peripheral tolerance. Novel biomaterials can alter the behavior of cells in tissue-engineered constructs and can blunt host immune responses to cells and biomaterial scaffolds. Approaches to suppress autoreactive immune cells may also be useful in regenerative medicine. The most innovative solutions will be developed through closer collaboration among stem cell biologists, transplantation immunologists and materials scientists. PMID:25093888

  5. Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery

    Faulconer, Emily K., E-mail: emily.faulconer@yahoo.com [Department of Environmental Engineering Sciences, University of Florida, 217 Black Hall, P.O. Box 116450, Gainesville, FL 32611-645 (United States); Hoogesteijn von Reitzenstein, Natalia V.; Mazyck, David W. [Department of Environmental Engineering Sciences, University of Florida, 217 Black Hall, P.O. Box 116450, Gainesville, FL 32611-645 (United States)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal oxidation of MPAC decreased the amorphous characteristic of iron oxides. Black-Right-Pointing-Pointer Thermal oxidation did not influence magnetic recovery or Hg removal performance. Black-Right-Pointing-Pointer At all thermal oxidation temperatures, the 3:1 MPAC achieved the highest Hg removal. - Abstract: Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 {mu}g/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N{sub 2} (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 {mu}g/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% ({+-}8.3%) sorbent recovery and 96.3% ({+-}9%) Hg removal. The mass balance has been closed to within approximately {+-}15%.

  6. Platelet-rich plasma in regenerative medicine

    Guhta Ra Hara and Thaha Basu

    2014-01-01

    Full Text Available Platelet-rich plasma (PRP contains at least seven growth factors including epidermal, plateletderived, transforming, vascular endothelial, fibroblast, insulin-like and keratinocyte growth factor. The therapeutic effect of PRP occurs because of the high concentration of these growth factors compared with those found in normal plasma. In recent years, PRP is widely used across many clinical fields, especially in regenerative medicine. This review aimed at presenting an overview of the applications of PRP in regenerative medicine. The mechanisms of PRP effects on healing are also stated in this review. [Biomed Res Ther 2014; 1(1.000: 25-31

  7. Control of active liquid crystals with a magnetic field.

    Guillamat, Pau; Ignés-Mullol, Jordi; Sagués, Francesc

    2016-05-17

    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix. PMID:27140604

  8. Evolution of the Magnetic Field Distribution of Active Regions

    Dacie, Sally; van Driel-Gesztelyi, Lidia; Long, David; Baker, Deb; Janvier, Miho; Yardley, Stephanie; Pérez-Suárez, David

    2016-01-01

    Aims. Although the temporal evolution of active regions (ARs) is relatively well understood, the processes involved continue to be the subject of investigation. We study how the magnetic field of a series of ARs evolves with time to better characterise how ARs emerge and disperse. Methods. We examine the temporal variation in the magnetic field distribution of 37 emerging ARs. A kernel density estimation plot of the field distribution was created on a log-log scale for each AR at each time step. We found that the central portion of the distribution is typically linear and its slope was used to characterise the evolution of the magnetic field. Results. The slopes were seen to evolve with time, becoming less steep as the fragmented emerging flux coalesces. The slopes reached a maximum value of ~ -1.5 just before the time of maximum flux before becoming steeper during the decay phase towards the quiet Sun value of ~ -3. This behaviour differs significantly from a classical diffusion model, which produces a slope...

  9. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO2) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO2 was coagulated with magnetite particles using FeCl3·6 H2O at a fixed pH value. Magnetic separation of coagulated TiO2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO2 powder. The magnetic separation of TiO2–magnetite coagulate from solution proved to be efficient around pH:8

  10. Solar activity, magnetic storms and their effects on biological systems

    Full text: In the present time much attention is spent on the electromagnetic waves, solar radiation and magnetic storms on biological systems, including on person. However, there are few publications describing the mechanism of these influences on human. First of all it is necessary to point out that electromagnetic waves, the flow of particles in space and magnetic storms, acting on person human-all is connected with biophysical processes. So approach to influence of these factors on organism follows the processes of influence of these waves on bio system. Magnetic storms are phenomena continuously connected with solar activity. Investigation of cosmic space has intensified the practical importance of the problem of interaction with natural factors of external ambience. Much attention deserves the cosmic radiation, geomagnetic field, elements of climate and weathers. However the mechanism of bio tropic action of these factors is not enough studied. Beginning XXI century was already signified the successes in investigation of Mars. The Space shuttles 'Spirit' and 'Opportunity' successfully have carried out some work on examining and finding of water on Mars. A flight of person to Mars is being considered. One of the important mechanisms of influence on human organism is, in our opinion, the rising of the resonance at coincidence of frequencies and their more important factor is a phenomena of electromagnetic induction and forming the radicals in the organism

  11. Effects of flow balancing on active magnetic regenerator performance

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian;

    2016-01-01

    Experiments with a recently constructed rotary multi-bed active magnetic regnenerator (AMR) prototype have revealed strong impacts on the temperature span from variations in the resistances of the flow channels carrying heat transfer fluid in and out of the regenerator beds. In this paper we show...... through numerical modeling how unbalanced flow in the beds decreases the cooling power and COP for a dual bed device. Furthermore, it is shown how resistance variations in multi-bed devices give rise to unbalanced flow in the individual beds and how this decreases cooling powers and COPs of the machines...

  12. Dimensionless numerical model for simulation of active magnetic regenerator refrigerator

    Sarlah, A.; Poredos, A. [Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2010-09-15

    In order to obtain a better reliability, consistency and accuracy of results obtained with a numerical simulation of an AMRR (active magnetic regenerator refrigerator), a dimensionless numerical model was developed, which can equally be used for determination of regenerator's heat transfer coefficient and simulation of passive heat regenerators or AMRR operation. Regenerator's heat transfer coefficient {alpha}{sub f}, is a crucial input parameter in the simulation of AMRR operation and has a primal effect on the outcome of a solution. This paper deals with a derived dimensionless model and discusses errors involved when using different models for heat transfer coefficient and AMRR operation simulation. (author)

  13. Improved modelling of a parallel plate active magnetic regenerator

    Engelbrecht, Kurt; Tušek, J.; Nielsen, Kaspar Kirstein;

    2013-01-01

    Much of the active magnetic regenerator (AMR) modelling presented in the literature considers only the solid and fluid domains of the regenerator and ignores other physical effects that have been shown to be important, such as demagnetizing fields in the regenerator, parasitic heat losses and fluid...... flow maldistribution in the regenerator. This paper studies the effects of these loss mechanisms and compares theoretical results with experimental results obtained on an experimental AMR device. Three parallel plate regenerators were tested, each having different demagnetizing field characteristics...

  14. Three-axis active magnetic attitude control asymptotical study

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.

    2015-05-01

    Active magnetic attitude control system providing given inertial attitude is considered. Control algorithm is constructed on the basis of a planar motion model. It decreases attitude discrepancy. Alternative approach is based on the PD-controller design. System behavior is analyzed for specific motion cases and sometimes for specific inertia tensor (axisymmetrical satellite) using averaging technique. Overall satellite angular motion is covered. Necessary attitude is found to be accessible for some control parameters. Stability is proven and optimal algorithm parameters are obtained. Floquet-based analysis is performed to verify and broaden analytical results.

  15. Failure Mode and Effect Analysis of Active Magnetic Bearings

    K.P. Lijesh

    2016-03-01

    Full Text Available In the present research work Failure Mode and Effect Analysis (FMEA of an Active Magnetic Bearing (AMB has been presented. Various possible failures modes of AMBs and the corresponding effects of those failures on performance of AMBs have been identified. The identified failure modes of AMBs will facilitate designer to incorporate necessary design features that would prevent the occurrence of the failure. The severity, occurrence and detection of the failures modes are determined based on a rating scale of 1 to 5 to quantify the Risk Priority Number (RPN of the failure modes. The methods to eliminate or reduce the high-risk-failure modes are proposed.

  16. Photometric magnetic-activity metrics tested with the Sun: Application to Kepler M dwarfs

    Mathur, S; Garcia, R A; Ceillier, T

    2014-01-01

    The Kepler mission has been providing high-quality photometric data leading to many breakthroughs in the exoplanet search and in stellar physics. Stellar magnetic activity results from the interaction between rotation, convection, and magnetic field. Constraining these processes is important if we want to better understand stellar magnetic activity. Using the Sun, we want to test a magnetic activity index based on the analysis of the photo- metric response and then apply it to a sample of M dwarfs observed by Kepler. We estimate a global stellar magnetic activity index by measuring the standard deviation of the whole time series, Sph. Because stellar variability can be related to convection, pulsations, or magnetism, we need to ensure that this index mostly takes into account magnetic effects. We define another stellar magnetic activity index as the average of the standard deviation of shorter subseries which lengths are determined by the rotation period of the star. This way we can ensure that the measured p...

  17. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs -- Space-weather HMI Active Region Patches

    Bobra, Monica G; Hoeksema, J Todd; Turmon, Michael J; Liu, Yang; Hayashi, Keiji; Barnes, Graham; Leka, K D

    2014-01-01

    A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are avail...

  18. The Magnetic Classification of Solar Active Regions 1992-2015

    Jaeggli, S. A.; Norton, A. A.

    2016-03-01

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  19. Observational evidence for enhanced magnetic activity of superflare stars.

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  20. The Magnetic Classification of Solar Active Regions 1992 - 2015

    Jaeggli, Sarah A

    2016-01-01

    The purpose of this letter is to address a blind-spot in our knowledge of solar active region statistics. To the best of our knowledge there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all active regions reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the $\\alpha$ and $\\beta$ class active regions (including all sub-groups e.g. $\\beta\\gamma$, $\\beta\\delta$) make up fractions of approximately 20% and 80% of the sample respectively. This fraction is relatively constant during high levels of activity, however, an increase in the $\\alpha$ fraction to about 35% and and a decrease in the $\\beta$ fraction to about 65% can be seen near each solar minimum and is statistically significant at the 2-$\\sigma$ level. Over 30% of all active regions observed during the years of solar maxima were appended with the classifications $\\gamma$ and/or $\\del...

  1. Magnetic Activity Cycles in the Exoplanet Host Star epsilon Eridani

    Metcalfe, T S; Brown, B P; Mathur, S; Soderblom, D R; Henry, T J; Mauas, P J D; Petrucci, R; Hall, J C; Basu, S

    2012-01-01

    The active K2 dwarf epsilon Eri has been extensively characterized, both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3 year magnetic activity cycle in epsilon Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3 year and 13 year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3 year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95+/-0.03 years and 12.7+/-0.3 years, which by analogy with the solar case suggests a revised identification of the dynamo mechanisms that are responsible for the so-called "active" and "inactive" sequences as proposed by Bohm-V...

  2. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J., E-mail: mscott@hao.ucar.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  3. Inertia Wheel on Low-Noise Active Magnetic Suspension

    Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.

    2002-01-01

    Magnetic bearings are particularly suited for space applications for a number of reasons: - they are ideally suited for vacuum applications; - the lack of lubrication and wear enhances the reliability and guaranties a long maintenance-free operation - the low drag torque decreases power consumption and reduces the torque exerted on the stator of the machine. - the possibility of insulating actively the spacecraft from the excitation due to unbalance of the rotating system In the case of reaction wheels, a well designed magnetic suspension allows high speed operation with a very low power consumption and vibration level. Conversely, microgravity (and possibly vacuum) operation is an advantage for magnetic bearings. The absence of static forces allows to operate with low current levels, thus reducing electrical noise and allowing to reach even lower vibration levels than in Earth applications of magnetic bearings. Active magnetic bearings (AMB) allow to adapt the working characteristics of the system to the operating needs: it is possible to use the actuators to lock the system during launch (absence of grabbers) and to stiffen the suspension when the spacecraft is accelerated (impulsive phases), while working in conditions optimised for microgravity when this is needed. Magnetic suspension systems designed for microgravity environment cannot be correctly tested on the ground. Testing in ground conditions results in the need of grossly overdesigning the levitation device; furthermore, in some cases ground testing is completely impossible, if not by introducing devices which compensate for the Earth gravitational field. If the compensation for the gravitational force is supplied by the same actuators used for microgravity operation, the actuators and the power amplifiers must be overdesigned and in some cases the suspension can be altogether impossible. They work in conditions which are much different from nominal ones and, above all, it is impossible to reach the

  4. MAGNET

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  5. 2-dimensional numerical modeling of active magnetic regeneration

    Nielsen, Kaspar Kirstein; Pryds, Nini; Smith, Anders;

    2009-01-01

    Various aspects of numerical modeling of Active Magnetic Regeneration (AMR) are presented. Using a 2-dimensional numerical model for solving the unsteady heat transfer equations for the AMR system, a range of physical effects on both idealized and non-idealized AMR are investigated. The modeled...... system represents a linear, parallel-plate based AMR. The idealized version of the model is able to predict the theoretical performance of AMR in terms of cooling power and temperature span. This is useful to a certain extent, but a model reproducing experiments to a higher degree is desirable. Therefore...... physical effects such as thermal parasitic losses have been included. Furthermore, experimentally found magnetocaloric properties are used when available, since the commonly used mean field model can be too idealized and is not always able to determine the magnetocaloric effect accurately. In the present...

  6. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  7. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  8. Effect of Magnetic Field on Enzyme Activities in Main Soils of Northeast China

    LIUXIAOYI; YIYANLI; 等

    1996-01-01

    Soil enzyme activities as affected by applied magnetic field were studied with three main soils (brown soil,black soil and albic soil) collected from Northeast China,Appropriate intensities of magnetic field could obviously enhance the activities of hydrogen peroxidases,invertases,amylases and phosphatases in the three soils,although the effect varied with types and water regimes of the soils.Increasing times of magnetic treatment could multiple its good effect on the activities of hydrogen peroxidases in soils.

  9. Thermal activation-induced sweep-rate dependence of magnetic switching astroid

    We examine the sweep-rate dependence of magnetic switching field, Hs, in submicron magnetic tunnel junctions where shape anisotropy is dominant. Experimental data support the use of a single-domain thermal activation model for description of activated magnetic reversal in junctions 0.2 by 0.5 μm or less in size. A scaling law is obtained for the thermal activation energy which varies as the cube of junction size. [copyright] 2001 American Institute of Physics

  10. Asymmetric magnetic disorder observed in thermally activated magnetization reversal of exchange-biased IrMn/CoFe films

    We report an asymmetry of magnetic disorder in exchange-biased IrMn(tIrMn=5–20 nm)/CoFe(50 nm) films observed by means of a Kerr microscope, capable of direct domain observation. From the correlation between the magnetization half-reversal time and applied magnetic field, we find that the magnetization switching in all the films occurs via a thermally activated reversal mechanism for both branches of hysteresis loops. Surprisingly, in the forward branch reversal where the applied magnetic field is antiparallel to the direction of exchange-bias field, degree of magnetic disorder decreases as exchange-bias field increases, which is definitely contrasted with the case of backward branch reversal. This result is likely ascribed to the fact that the local values of exchange-bias field and coercive field are oppositely fluctuating with each other in the film. - Highlights: ► Quite different “magnetic disorder” in the same structural-disordered system. ► Elucidation of magnetization reversal mechanism via direct domain observation. ► The simple model which explains the origin of asymmetric magnetic disorder.

  11. Regenerative Medicine from Protocol to Patient

    Gustav Steinhoff

    2011-01-01

    Full Text Available The essentials of the upcoming and rapidly changing specialty of regenerative medicine, which has kindled high hopes among the clinical and scientific community as well as the society, are presented concisely in this book. Considering the multivariate sub-specialties within regenerative medicine, starting with cell biology and allied basic sciences through translational research to clinical application in various specialties of medicine, enormous efforts are mandatory to bring a comprehensive text book of this nature. The authors deserve kudos for this. This book comprehensively describes and reviews the current progress in stem cell research and regenerative medicine, in five main parts: (I Biology of Tissue Regeneration; (II Stem Cell Science and Technology; (III Tissue Engineering, Biomaterials and Nanotechnology; (IV Regenerative Therapies; and (V Regulation and Ethics. It fully covers all the major components in the field. Each chapter, written by the experts in the respective areas of work, throws light on the intricacies in detail, making this book immensely useful for students, clinicians and scientists interested in regenerative medicine. However, there is still scope for further refinement of some chapters. In Part II Stem Cell Science and Technology, three important stem cell types- muscle stem cells (satellite cells, stem cells from the skin and hair follicles, and stem cells from the gut epithelium-may be added as three individual chapters which probably the authors could consider for the next edition, as these cell types represent unique stem cells that have distinct properties and replenish specifically muscle, skin, hair, and gut epithelium respectively. In the chapter on cardiac stem cells, a table summarizing the properties of the four different types of cardiac stem cells described in the text may give readers more clear comparison of the pros and cons on these cells and know their properties better. The future direction

  12. [Tissue engineered skin and regenerative wound repair].

    Han, Chun-mao; Wang, Xin-gang

    2013-04-01

    Various skin defects resulting from mechanical injury, burns, chronic ulcers, and resection of tumor etc. are very common in clinic. The traditional treatment measure, such as grafting of autologous split-thickness skin remains the gold standard. However, its limitations are obvious, such as shortage of donor sites, creation of new injury, and scar formation. To realize regenerative or scarless repair of tissue defects has always been the dream of human being. The advent of tissue engineered skin (TES) provides an ideal access to tissue regeneration. After decades of development, several kinds of TES products have been developed and used in clinic, with promising effects. However, a large number of basic scientific problems regarding TES, as well as difficulties in translation of basic research to bedside should be taken into serious consideration. This article presents a comprehensive overview of strategies of construction of TES, the role of TES in regenerative wound repair, and its opportunities and challenges. PMID:23985197

  13. Micro-Scale Regenerative Heat Exchanger

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  14. First lasing of the regenerative amplifier FEL

    The regenerative amplifier free-electron laser (RAFEL) is a high-gain RF-linac FEL capable of producing high optical power from a compact design. The combination of a high-gain and small optical feedback enables the FEL to reach saturation and produce a high optical power and high extraction efficiency without the risk of optical damage to the mirrors. This paper summarizes the first lasing of the regenerative amplifier FEL and describes recent experimental results. The highest optical energy achieved thus far at 16.3 μm is 1.7 J over a train of 900 micropulses. We infer pulse energy of 1.9 mJ in each 16 ps micropulse, corresponding to a peak power of 120 MW

  15. Regenerative endodontics: A state of the art

    Rashmi Bansal

    2011-01-01

    Full Text Available Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue grafting, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. Non-vital infected teeth have long been treated with root canal therapy (for mature root apex and apexification (for immature root apex, or doomed to extraction. Although successful, current treatments fail to re-establish healthy pulp tissue in these teeth. But, what if the non-vital tooth could be made vital once again? That is the hope offered by regenerative endodontics, an emerging field focused on replacing traumatized and diseased pulp with functional pulp tissue. Restoration of vitality of non-vital tooth is based on tissue engineering and revascularization procedures. The purpose of this article is to review these biological procedures and the hurdles that must be overcome to develop regenerative endodontic procedures.

  16. Average Regression-Adjusted Controlled Regenerative Estimates

    Lewis, Peter A.W.; Ressler, Richard

    1991-01-01

    Proceedings of the 1991 Winter Simulation Conference Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.) One often uses computer simulations of queueing systems to generate estimates of system characteristics along with estimates of their precision. Obtaining precise estimates, espescially for high traffic intensities, can require large amounts of computer time. Average regression-adjusted controlled regenerative estimates result from combining the two techniques ...

  17. Application of Regenerative Medicine for Kidney Diseases

    Yokoo, Takashi; Fukui, Akira; Kobayashi, Eiji

    2007-01-01

    Following recent advancements of stem cell research, the potential for organ regeneration using somatic stem cells as an ultimate therapy for organ failure has increased. However, anatomically complicated organs such as the kidney and liver have proven more refractory to stem cell-based regenerative techniques. At present, kidney regeneration is considered to require one of two approaches depending on the type of renal failure, namely acute renal failure (ARF) and chronic renal failure (CRF).

  18. Regenerative ceramic burner has highest efficiency

    Gettings, M.

    1986-01-01

    Regenerative ceramic burners consisting of a double gas/air burner and utilising waste heat which is stored via regenerators are described. The system is capable of operating at 1400/sup 0/C, it removes about 85-90% of energy from hot waste gases and exhibits energy savings of 40-60% over cold nozzle mix burners and 20-25% over recuperative burners. (UK).

  19. Fluorescent Cell Imaging in Regenerative Medicine

    Etai Sapoznik; Guoguang Niu; Yu Zhou; Murphy, Sean V.; Shay Soker

    2016-01-01

    Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as i...

  20. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine

    González-Béjar, María; Francés-Soriano, Laura; Pérez-Prieto, Julia

    2016-01-01

    Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium se...

  1. Nanotechnology in regenerative medicine: the materials side

    Engel López, Elisabeth; Michiardi, A; Navarro, M.; Lacroix, Damien Jerome; Planell Estany, Josep Anton

    2008-01-01

    Regenerative medicine is an emerging multidisciplinary field that aims to restore, maintain or enhance tissues and hence organ functions. Regeneration of tissues can be achieved by the combination of living cells, which will provide biological functionality, and materials, which act as scaffolds to support cell proliferation. Mammalian cells behave in vivo in response to the biological signals they receive from the surrounding environment, which is structured by nanometre-scaled components. T...

  2. Regenerative Endodontics: A Road Less Travelled

    Bansal, Ramta; Jain, Aditya; Mittal, Sunandan; Kumar, Tarun; Kaur, Dilpreet

    2014-01-01

    Although traditional approaches like root canal therapy and apexification procedures have been successful in treating diseased or infected root canals, but these modalities fail to re-establish healthy pulp tissue in treated teeth. Regeneration-based approaches aims to offer high levels of success by replacing diseased or necrotic pulp tissues with healthy pulp tissue to revitalize teeth. The applications of regenerative approaches in dental clinics have potential to dramatically improve pati...

  3. Formation of Solar Delta Active Regions:Twist and Writhe of Magnetic Ropes

    Hong-Qi Zhang

    2004-01-01

    We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere,the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere,is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) The proposition is that the large-scale delta active regions are formed from contribution by small-scale non-potential magnetic flux bundles generated in the subatmosphere.

  4. Activity Analyses for Solar-Type Stars Observed With Kepler. I. Proxies of Magnetic Activity

    He, Han; Yun, Duo

    2016-01-01

    Light curves of solar-type stars often show gradual fluctuations due to rotational modulation by magnetic features (starspots and faculae) on stellar surfaces. Two quantitative measures of modulated light curves are employed as the proxies of magnetic activity for solar-type stars observed with Kepler telescope. The first is named autocorrelation index $i_{AC}$, which describes the degree of periodicity of the light curve, the second is the effective fluctuation range of the light curve $R_{eff}$, which reflects the depth of rotational modulation. The two measures are complementary and depict different aspects of magnetic activities on solar-type stars. By using the two proxies $i_{AC}$ and $R_{eff}$, we analyzed activity properties of two carefully selected solar-type stars observed with Kepler (Kepler ID: 9766237 and 10864581), which have distinct rotational periods (14.7 vs. 6.0 days). We also applied the two measures to the Sun for a comparative study. The result shows that both the measures can reveal cy...

  5. Regenerative magnetorheological dampers for vehicle suspensions

    Chen, Chao; Zou, Li; Liao, Wei-Hsin

    2015-04-01

    Magnetorheological (MR) dampers are promising for vehicle suspensions, by virtue of their adaptive properties. During the everyday use of vehicles, a lot of energy is wasted due to the energy dissipation by dampers under the road irregularities. On the other hand, extra batteries are required for the current MR damper systems. To reduce the energy waste and get rid of the dependence on extra batteries, in this paper, regenerative MR dampers are proposed for vehicle suspensions, which integrate energy harvesting and controllable damping functions. The wasted vibration energy can be converted into electrical energy and power the MR damper coil. A regenerative MR damper for vehicle suspensions is developed. Damping force and power generation characteristics of the regenerative MR damper were modeled and analyzed. Then the damper is applied to a 2 DOF suspension system for system simulation under various road conditions. Simulation results show that riding comfort can be significantly improved, while harvesting energy for other use in addition to supply power for the controlled MR damper.

  6. Regenerative endodontics-Creating new horizons.

    Dhillon, Harnoor; Kaushik, Mamta; Sharma, Roshni

    2016-05-01

    Trauma to the dental pulp, physical or microbiologic, can lead to inflammation of the pulp followed by necrosis. The current treatment modality for such cases is non-surgical root canal treatment. The damaged tissue is extirpated and the root canal system prepared. It is then obturated with an inert material such a gutta percha. In spite of advances in techniques and materials, 10%-15% of the cases may end in failure of treatment. Regenerative endodontics combines principles of endodontics, cell biology, and tissue engineering to provide an ideal treatment for inflamed and necrotic pulp. It utilizes mesenchymal stem cells, growth factors, and organ tissue culture to provide treatment. Potential treatment modalities include induction of blood clot for pulp revascularization, scaffold aided regeneration, and pulp implantation. Although in its infancy, successful treatment of damaged pulp tissue has been performed using principles of regenerative endodontics. This field is dynamic and exciting with the ability to shape the future of endodontics. This article highlights the fundamental concepts, protocol for treatment, and possible avenues for research in regenerative endodontics. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 676-685, 2016. PMID:26699211

  7. Mesenchymal stem cells in regenerative rehabilitation

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  8. An improved theory for regenerative pump performance

    Meakhail, T.; Park, S.O.

    2005-03-15

    Owing to their low specific speed, regenerative pumps allow high heads with small flow rates and have performance curves with very stable features. This kind of pump is also smaller and simpler to construct than the other equivalent volumetric pumps, although it has fairly low efficiency. Over the past few years, regenerative pumps have been subject to more interest in various industrial applications. Previous mathematical models do not describe the flow characteristics very well as they are based on simplified assumptions. An improved model is proposed in this paper for the pump performance. The model can handle one inlet angle and two exit angles for the impeller blades and it can be used for the design of twisted blades that would increase the pump head and efficiency. A new feature of the pump characteristics based on the proposed model is discussed. It is shown that the proposed model yield results that are in good agreements with the experimental results. The new model also shows that the side-blade exit angle has a major effect on the performance of regenerative pump, which has not been accounted for in the previous theory. (Author)

  9. Evolution of Magnetic Helicity and Energy Spectra of Solar Active Regions

    Zhang, Hongqi; Sokoloff, D D

    2015-01-01

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field for estimating magnetic energy and helicity spectra as well as current helicity spectra of individual active regions and the change of their spectral indices with the solar cycle. The departure of the spectral index of current helicity from 5/3 is analyzed, and it is found that it is lower than that of magnetic energy. There is no obvious relationship between the change of the normalized magnetic helicity and the integral scale of the magnetic field for individual active regions. The evolution of the spectral index reflects the development and distribution of various scales of magnetic structures in active regions. It is found that around solar maximum the magnetic energy and helicity spectra are steeper.

  10. Institutional framework and the principles of regenerative medicine centers and rehabilitation in a megapolis

    Shapovalenko Т.V.

    2013-12-01

    Full Text Available A concept of development of centers for regenerative medicine and rehabilitation, organizational bases of rehabilitation centers, basic principles and approaches to the creation and activities of the rehabilitation treatment and rehabilitation in the city are presented in the study.

  11. Difficulties in the Translation of Functionalized Biomaterials into Regenerative Medicine Clinical Products

    Ratcliffe, Anthony

    2011-01-01

    There are many ways to influence cell activities, and biomaterials with functional groups attached is an attractive method that clearly has the ability to modulate cell behavior. The evidence is clear that biomaterials, with or without growth factors and cells, have resulted in numerous products for the regenerative medicine field. In contrast the functionalized biomaterial products remain in the development phase.

  12. Electrospun magnetic nanofibre mats – A new bondable biomaterial using remotely activated magnetic heating

    Zhong, Yi [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai (China); Leung, Victor; Yuqin Wan, Lynn [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Dutz, Silvio [Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau (Germany); Department of Nano Biophotonics, Leibniz Institute of Photonic Technology, Jena (Germany); Ko, Frank K., E-mail: frank.ko@ubc.ca [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Häfeli, Urs O., E-mail: urs.hafeli@ubc.ca [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver (Canada)

    2015-04-15

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe{sub 3}O{sub 4}) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy.

  13. Electrospun magnetic nanofibre mats - A new bondable biomaterial using remotely activated magnetic heating

    Zhong, Yi; Leung, Victor; Yuqin Wan, Lynn; Dutz, Silvio; Ko, Frank K.; Häfeli, Urs O.

    2015-04-01

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe3O4) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy.

  14. Electrospun magnetic nanofibre mats – A new bondable biomaterial using remotely activated magnetic heating

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe3O4) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy

  15. Modulation of cortical oscillatory activity during transcranial magnetic stimulation.

    Brignani, Debora; Manganotti, Paolo; Rossini, Paolo M; Miniussi, Carlo

    2008-05-01

    Transcranial magnetic stimulation (TMS) can transiently modulate cortical excitability, with a net effect depending on the stimulation frequency ( or =5 Hz facilitation, at least for the motor cortex). This possibility has generated interest in experiments aiming to improve deficits in clinical settings, as well as deficits in the cognitive domain. The aim of the present study was to investigate the on-line effects of low frequency (1 Hz) TMS on the EEG oscillatory activity in the healthy human brain, focusing particularly on the outcome of these modulatory effects in relation to the duration of the TMS stimulation. To this end, we used the event-related desynchronization/synchronization (ERD/ERS) approach to determine the patterns of oscillatory activity during two consecutive trains of sham and real TMS. Each train of stimulation was delivered to the left primary motor cortex (MI) of healthy subjects over a period of 10 min, while EEG rhythms were simultaneously recorded. Results indicated that TMS induced an increase in the power of brain rhythms that was related to the period of the stimulation, i.e. the synchronization of the alpha band increased with the duration of the stimulation, and this increase was inversely correlated with motor-evoked potentials (MEPs) amplitude. In conclusion, low frequency TMS over primary motor cortex induces a synchronization of the background oscillatory activity on the stimulated region. This induced modulation in brain oscillations seems to increase coherently with the duration of stimulation, suggesting that TMS effects may involve short-term modification of the neural circuitry sustaining MEPs characteristics. PMID:17557296

  16. Significance of magnetic resonance imaging for early rheumatoid arthritis activity

    E Y Pogozeva

    2009-01-01

    Full Text Available Objective. To assess possibility of magnetic resonance image (MRI application for rheu- matoid arthritis (RA activity and severity assessment.Material and methods. 100 pts with RA who fulfilled the 1987 ACR criteria with disease duration less than 12 months were included. Standard clinical examination with evaluation of tender and swollen joint counts, acute phase markers, hand and foot X-ray and hand MRI with 0,2 T Artoscan apparatus (ESAOTE Biomedica, Italy were performed.Results. MRI showed hand joint synovitis in 94,5%, erosions – in 67,3% of cases. X-ray examination revealed erosions in only 20,8% of pts. Localization of erosions revealed by X-ray and MRI coincided in 36,4% of cases and in 61,8% of pts erosions were detected only by MRI. MRI confirmed clinical conclusion about presence or absence of metacarpophalangeal and wrist joint synovitis in 64,5% and 74,5% of cases respectively. In8,2% and 21,8% MRI revealed signs of synovitis in clinically intact joints. MRI synovitis score correlated with clinical and laboratory measures of disease activity – DAS 28 (r=0,37, p=0,001, CRP(r=0,30, p=0,001, ESR (r=0,42, p=0,001, HAQ (r=0,24, p=0,001. Weak correlation was revealed between ESR and presence of erosions (r=0,29, CRP, ESR and MRI signs of bone marrow edema (r=0,27, p=0,005 and r=0,29, p=0,002 respectively. Relationship between laboratory and clinical features was weaker and referred only to CRP level and swollen joint count (p=0,05.Conclusion. MRI signs may be used as additional and independent measures of inflammatory activity (particularly synovitis score and severity of RA

  17. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  18. Ionospheric trough observation probability dependence on the season, local time, longitude and magnetic activity level

    Probability of different ionospheric trough observation for Kosmos satellite data (about 3000 circuits) is analysed. Trough appearance probability variations with the season, longitude, local time and magnetic activity are discriminated and investigated. It is shown that trough production probability depends on the magnetic activity and background ionization. The last is determined by illumination variations and neutral wind

  19. An Index (PC) Aimed at Monitoring the (P)olar (C)ap for Magnetic Activity

    National Oceanic and Atmospheric Administration, Department of Commerce — PC is an index for magnetic activity in the (P)olar (C)ap. It is based on data from a single nearpole station, and aimed to monitor the polar cap magnetic activity...

  20. Determination of the Topology Skeleton of Magnetic Fields in a Solar Active Region

    Hui Zhao; Jing-Xiu Wang; Jun Zhang; Chi-Jie Xiao; Hai-Min Wang

    2008-01-01

    Magnetic topology has been a key to the understanding of magnetic energy re-lease mechanism. Based on observed vector magnetograms, we have determined the three-dimensional (3D) topology skeleton of the magnetic fields in the active region NOAA 10720.The skeleton consists of six 3D magnetic nulls and a network of corresponding spines, fans,and null-null lines. For the first time, we have identified a spiral magnetic null in Sun's corona.The magnetic lines of force twisted around the spine of the null, forming a 'magnetic wreath'with excess of free magnetic energy and resembling observed brightening structures at extra-ultraviolet (EUV) wavebands. We found clear evidence of topology eruptions which are re-ferred to as catastrophic changes of topology skeleton associated with a coronal mass ejection(CME) and an explosive X-ray flare. These results shed new lights on the structural complex-ity and its role in explosive magnetic activity. The concept of flux rope has been widely used in modelling explosive magnetic activity, although their observational identity is rather ob-scure or, at least, lacking of necessary details up to date. We suggest that the magnetic wreath associated with the 3D spiral null is likely an important class of the physical entity of flux ropes.

  1. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Zhibin Song; Weimin Li; Guoqing Xu; Kun Xu

    2011-01-01

    Regenerative braking is an effective approach for electric vehicles (EVs) to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS) integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from ex...

  2. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Guoqing Xu; Weimin Li; Kun Xu; Zhibin Song

    2011-01-01

    Regenerative braking is an effective approach for electric vehicles (EVs) to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS) integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from ex...

  3. Regenerative Endodontics: Barriers and Strategies for Clinical Translation

    Kim, Sahng G.; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y; Yang, Rujing; Zhou, Xuedong; Mao, Jeremy J.

    2012-01-01

    Despite a great deal of enthusiasm and effort, regenerative endodontics has encountered substantial challenges towards clinical translation. Recent adoption by the American Dental Association (ADA) of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for the majority of endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other orga...

  4. Magnetic graphene oxide-polystyrene and magnetic activated carbon-polystyrene nanocomposites as sorbents for bisphenol A.

    Rekos, Kyriazis; Kampouraki, Zoi Christina; Samanidou, Victoria; Deliyanni, Eleni

    2016-04-01

    Magnetic graphene oxide-polystyrene and magnetic activated carbon-polystyrene nanocomposites as sorbents for bisphenol A. Kyriazis Rekos1, Zoi Christina Kampouraki1, Victoria Samanidou2, Eleni Deliyanni1 1 Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece 2 Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece The aim of this work was to prepare and characterize novel composites of magnetic activated carbon or magnetic graphene oxide with polystyrene (GO/PSm), through one step simple and effective route. Μagnetite nanoparticles, prepared in the laboratory, were dispersed in the presence of activated carbon (C) or graphene oxide (GO) in a polystyrene (PS) solution in dimethylformamide, at elevated temperature, for the fabrication of the magnetite-Carbon-PS (C-PSm) and magnetite- Graphene Oxide-PS (GO-PSm) hybrid-nanoparticles. For comparison, C-PS and GO-PS composites were also prepared in the same route. The nanocomposites were tested for their sorption ability for an endocrine disruptor, bisphenol A. The effect of solution pH, initial concentration, contact time and temperature were examined. The magnetic graphite oxide-polystyrene presented higher adsorption capacity (100 mg/g) than the non magnetic composites (70 mg/g), as well as than initial graphite oxide (20 mg/g). FTIR, XRD, BET, TGA, VSM and SEM were performed in order to investigate the role of the PS on the better adsorption performance of the mGO-PS nanocomposites. The characterization with these techniques revealed the possible interactions of the surface functional groups of activated carbon and/or graphite oxide with polystyrene that resulted in the better performance of the magnetic nanocomposites for bisphenol A adsorption.

  5. MAGNET

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  6. Compressorless Gas Storage and Regenerative Hydrogen Purification Project

    National Aeronautics and Space Administration — Microwave regenerative sorption media gas storage/delivery techniques are proposed to address both compressed gas management and hydrogen purification requirements...

  7. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    Sindlinger, R. S.

    1977-01-01

    Magnetic bearings used for the suspension of momentum wheels provide conclusive advantages: the low friction torques and the absence of abrasion allow the realization of lightweight high speed wheels with high angular momentum and energy storage capacity and virtually unlimited lifetime. The use of actively controlled bearings provides a magnetic gimballing capability by applying the external signals to the two servo loops controlling the rotational degrees of freedom. Thus, an attitude control system can be realized by using only one rotating mass for 3-axis active satellite stabilization.

  8. Regenerative Blower for EVA Suit Ventilation Fan

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  9. Biomaterials and Stem Cells in Regenerative Medicine

    Ramalingam, Murugan; Best, Serena

    2012-01-01

    Work in the area of biomaterials and stem cell therapy has revealed great potential for many applications, from the treatment of localized defects and diseases to the repair and replacement of whole organs. Researchers have also begun to develop a better understanding of the cellular environment needed for optimal tissue repair and regeneration. Biomaterials and Stem Cells in Regenerative Medicine explores a range of applications for biomaterials and stem cell therapy and describes recent research on suitable cell scaffolds and substrates for tissue repair and reconstruction. Featuring contrib

  10. Phosphorous-containing polymers for regenerative medicine

    Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications. (paper)

  11. Guest Editorial: Regenerative rehabilitation: A call to action

    Alan Russell, PhD

    2010-05-01

    Full Text Available We have battled against disease since the beginning of time. As science and technology have evolved, so have the weapons in our antidisease arsenal improved. Indeed, in the last 50 years, the sheer volume of knowledge about human biology has doubled every 8 years. This means that the foundation on which the design and delivery of healthcare is built is 1,000 times stronger at the end of our lives than at the beginning. In the next century, we will add therapies that can restore lost function to ailing tissues and organs to the arsenal of health-aging technologies. This "regenerative medicine" will eventually open the door to battling crippling diseases like diabetes, Parkinson, and heart failure, as well as the impacts of traumatic injury. Success in the laboratory, where all such endeavors must begin, will drive the commercial activities toward products that subsequently become available to patients.

  12. Regenerative medicine in China: demands, capacity, and regulation.

    Cheng, Biao; Lu, Shuliang; Fu, Xiaobing

    2016-01-01

    Regenerative medicine (RM) is an emerging interdisciplinary field of research. Its clinical application focuses on the repair, replacement, and regeneration of cells, tissues, and organs by approaches including cell reprogramming, stem cell transplantation, tissue engineering, activating factors, and clone treatment. RM has become a hot point of research in China and other countries. China's main and local governments have attached great importance to RM and given strong support in relevant policies and funding. About 3.5 billion RMB has been invested in this field. Since 1999, China has established about 30 RM centers and cooperates with many advanced countries in RM research and benefits from their cooperation. However, China needs to develop standards, regulations, and management practices suitable for the healthy development of RM. In this review, we focus on its great demand, capacity, and relative regulations. PMID:27574693

  13. Research on Attitude System of Active Magnetic Control Small Satellite

    Zhaowei, Sun; Di, Yang

    1998-01-01

    When enter orbit, small satellite often tumble as a result of disturbance. How to capture it promptly with finite magnetic torque is an important problem. Because of the coupling of dynamics and control, the small satellite control system is a nonlinear attitude control system with bounds. For high direction and steady precision, an effective method must be found. In this paper, combining with the bound conditions of magnetic torque, two methods are researched. The first is energy method. It ...

  14. Dependence of Stellar Magnetic Activity Cycles on Rotational Period in a Nonlinear Solar-type Dynamo

    Pipin, V. V.; Kosovichev, A. G.

    2016-06-01

    We study the turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account nonlinear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation from either magnetic buoyancy or magnetic helicity. We discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.

  15. Dependence of stellar magnetic activity cycles on rotational period in nonlinear solar-type dynamo

    Pipin, Valery

    2016-01-01

    We study turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account non-linear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation either from magnetic buoyancy or magnetic helicity. We discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.

  16. Differential activation of nerve fibers with magnetic stimulation in humans

    Olree Kenneth S

    2006-07-01

    Full Text Available Abstract Background Earlier observations in our lab had indicated that large, time-varying magnetic fields could elicit action potentials that travel in only one direction in at least some of the myelinated axons in peripheral nerves. The objective of this study was to collect quantitative evidence for magnetically induced unidirectional action potentials in peripheral nerves of human subjects. A magnetic coil was maneuvered to a location on the upper arm where physical effects consistent with the creation of unidirectional action potentials were observed. Electromyographic (EMG and somatosensory evoked potential (SEP recordings were then made from a total of 20 subjects during stimulation with the magnetic coil. Results The relative amplitudes of the EMG and SEP signals changed oppositely when the current direction in the magnetic coil was reversed. This effect was consistent with current direction in the coil relative to the arm for all subjects. Conclusion A differential evocation of motor and sensory fibers was demonstrated and indicates that it may be possible to induce unidirectional action potentials in myelinated peripheral nerve fibers with magnetic stimulation.

  17. Multiple excitation regenerative amplifier inertial confinement system

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation

  18. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.

    1986-01-01

    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.

  19. Thermally-Activated Magnetic Reversal Induced by a Spin-Polarized Current

    Myers, E. B.; Albert, F. J.; Saneky, J. C.; Bonet, E.; Buhrman, R. A.; Ralph, D. C.

    2002-01-01

    We have measured the statistical properties of magnetic reversal in nanomagnets driven by a spin-polarized current. Like reversal induced by a magnetic field, spin-transfer-driven reversal near room temperature exhibits the properties of thermally-activated escape over an effective barrier. However, the spin-transfer effect produces qualitatively different behaviors than an applied magnetic field. We discuss an effective current vs. field phase diagram. If the current and field are tuned so t...

  20. Toward Modelling Topsoil Magnetic Susceptibility for Demining Activities

    Hannam, J. A.; Dearing, J. A.

    2003-12-01

    The Landmine Monitor estimates that landmines cause up to 20,000 fatalities and casualties worldwide every year, in over 100 countries affected by landmine contamination. Although detection technologies have become more sophisticated, the metal detector still remains the most widely employed detection system in landmine affected regions. With increased use of minimum metal mines, the performance and sensitivity of metal detectors are increasingly challenged. In addition to mine constituents, depth of burial and orientation, soil properties significantly affect metal detection capabilities. Soils with high magnetic susceptibility, in particular those dominated by viscous components, interfere with the response signal in both frequency and time domain metal detection systems. Using Bosnia and Herzegovina (BiH) as a pilot region, we created an expert system to predict topsoil susceptibility from environmental information within a SOTER data base. Initially, the knowledge base is constructed from published relationships of environmental parameters and magnetic susceptibility and knowledge of experts in the field of soil magnetism. The knowledge base is underpinned by environmental conditions that are known to enhance or reduce magnetic susceptibility in topsoils. Where semi-quantitative data exists, transfer-functions are used to provide first approximations of susceptibility classes and offer a basis for a probability score for the susceptibility class. As a first approximation, susceptibility values are categorized into five continuous classes delimited by published magnetic susceptibility ranges in topsoils. The predicted susceptibility maps result in regional contrasts, delineated by the spatial scale of the environmental information. Further development of the model using a Baysean rule-based system with fuzzy boundaries is anticipated. Validation of the model is proposed using archived soil survey samples from BiH. In addition to providing essential data for

  1. Thermal Characteristics of Heating-furnace with Regenerative Burner

    HUA, Jianshe; Li, Xiaoming; Kawabata, Nobuyoshi

    2005-01-01

    Thermal characteristics between the heating-furnace with regenerative burner and the classical triple-fired continuous furnace by heat balance testing for two billet steel heating-furnace at the same billet steel heating have been analyzed. In addition, the operating principle, the thermal characteristics and the effect of energy saving for heating-furnace with regenerative burner are introduced.

  2. Numerical Modelling of Regenerative Liquid Propellant Guns with Annular Piston

    K. J. Daniel; D. K. Kharat; K.R. Rao; Shah, S.T.; S. C. Mitra

    1997-01-01

    The development of regenerative liquid propellant guns (RLPGs) needs due consideration of numerous interdependent parameters that affect its performance. To help in this task, computer simulation was undertaken to predict internal ballistics of a conceptual liquid propellant gun. The expected pressure and other important parameters are documented which serve as an aid to the hardware, design of the regenerative liquid propellant guns.

  3. Regenerative medicine. Opportunities and challenges: a brief overview

    Polak, Dame Julia

    2010-01-01

    Regenerative medicine is a new multi-disciplinary field aiming at the repair or replacement of disease body parts. The field is progressing at an unprecedented pace and although the opportunities are immense, many hurdles lie ahead. This brief review analyses the opportunities and challenges faced by regenerative medicine.

  4. Stem Cells: Intellectual Property Issues in Regenerative Medicine

    Zachariades, Nicholas A.

    2013-01-01

    The topic of stem cells for use in regenerative medicine, especially embryonic stem cells, inspires much debate, discussion, and outrage as it slices through the very core moral values of society. These social and moral issues have, in turn, resulted in government policies that have influenced the study of stem cells in regenerative medicine.

  5. State of the art: stem cells in equine regenerative medicine.

    Lopez, M J; Jarazo, J

    2015-03-01

    According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine. PMID:24957845

  6. Active magnetic bearings: As applied to centrifugal pumps

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-01-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  7. Time scheduling of magnetic surveys in mid-latitudes with respect to forecasting geomagnetic activity

    Hejda, Pavel; Bochníček, Josef; Horáček, Josef; Nejedlá, Jaroslava

    2006-01-01

    Roč. 58, č. 6 (2006), s. 735-740. ISSN 1343-8832 R&D Projects: GA AV ČR IAA3012105 Institutional research plan: CEZ:AV0Z30120515 Keywords : magnetic surveys * repeat stations * geomagnetic activity Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.954, year: 2006

  8. Control of Active Axial Magnetic Bearings for Flywheel-based Energy Storage System

    Morís Gómez, Juan

    2014-01-01

    This thesis deals with the design and implementation of the control system for a Flywheel-based Energy Storage System (FESS) with active magnetic bearings. The thesis focuses on the construction of realistic model of the system according to experimental tests. The simulation model will be used to control the thrust magnetic bearings in order to withstand the flywheel in levitation.

  9. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  10. Magnetically Active and Coated Gadolinium-Filled Carbon Nanotubes

    Fidiani, Elok

    2013-08-15

    Gd-filled carbon nanotubes (which include the so-called gadonanotubes(1)) have been attracting much interest due to their potential use in medical diagnostic applications. In the present work, a vacuum filling method was performed to confine gadolinium(III) iodide in carbon nanotubes (CNTs). Filling yields in excess of 50% were obtained. Cleaning and dosing of the external walls was undertaken, as well as the study of the filled CNT magnetic properties. Overall, we found that the encapsulating procedure can lead to reduction of the lanthanide metal and induce disorder in the initial GdI3-type structure. Notwithstanding, the magnetic response of the material is not compromised, retaining a strong paramagnetic response and an effective magnetic moment of similar to 6 mu B. Our results may entice further investigation into whether an analogous Gd3+ to Gd2+ reduction takes place in other Gd-filled CNT systems.

  11. TRANSIENT TEMPERATURE FIELD IN ACTIVE THRUST MAGNETIC BEARING

    Sun Shouqun; Geng Haipeng; Guo Keqian

    2005-01-01

    A transient temperature field model in a thrust magnetic bearing is built in which the heat resources come mainly from the eddy-current loss of solid cores and the copper loss of coils. The transient temperature field, system temperature rise and the thermo-equilibrium state during the rotor starting-up are calculated considering only the copper loss and the eddy-current loss. The numerical results indicate that the temperatures in coils and in magnets rise rapidly, their thermo-equilibrium states are formed within a short time. The temperatures in a thrust-disk and in a rotor rise slowly, their thermo-equilibrium states are formed after a long period time. The temperatures of the thrust-disk and the rotor are far higher than the temperatures of coils and/or magnets after the thermo-equilibrium state has come into being.

  12. Magnetic resonance imaging as a tool for extravehicular activity analysis

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  13. Solar Airplanes and Regenerative Fuel Cells

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of

  14. Researches on regenerative medicine——current state and prospect

    WANG Zheng-guo; XIAO Kai

    2012-01-01

    Since 1980s,the rapid development of tissue engineering and stem cell research has pushed regenerative medicine to a new fastigium,and regenerative medicine has become a noticeable research field in the international biology and medicine.In China,about 100 million patients need repair and regeneration treatment every year,while the number is much larger in the world.Regenerative medicine could provide effective salvation for these patients.Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine.The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine.In accord with this strategy,the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD)for the research on regenerative medicine.In order to push the translation of regenerative medicine forward - from bench to bedside,a strategic alliance has been established.and it includes 27 top-level research institutes,medical institutes,colleges,universities and enterprises in the field of stem cell and regeneration medicine.Recently the journal,Science,has published a special issue-Regenerative Medicine in China,consisting of 35 papers dealing with stem cell and regeneration,tissue engineering and regeneration,trauma and regeneration and bases for tissue repair and regenerative medicine.It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years).

  15. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation.

    Yun, Hyung-Mun; Ahn, Su-Jin; Park, Kyung-Ran; Kim, Mi-Joo; Kim, Jung-Ju; Jin, Guang-Zhen; Kim, Hae-Won; Kim, Eun-Cheol

    2016-04-01

    Magnetism has recently been implicated to play significant roles in the regulation of cell responses. Allowing cells to experience a magnetic field applied externally or scaffolding them in a material with intrinsic magnetic properties has been a possible way of utilizing magnetism. Here we aim to investigate the combined effects of the external static magnetic field (SMF) with magnetic nanocomposite scaffold made of polycaprolactone/magnetic nanoparticles on the osteoblastic functions and bone formation. The SMF synergized with the magnetic scaffolds in the osteoblastic differentiation of primary mouse calvarium osteoblasts, including the expression of bone-associated genes (Runx2 and Osterix) and alkaline phosphatase activity. The synergism was demonstrated in the activation of integrin signaling pathways, such as focal adhesion kinase, paxillin, RhoA, mitogen-activated protein kinase, and nuclear factor-kappaB, as well as in the up-regulation of bone morphogenetic protein-2 and phosphorylation of Smad1/5/8. Furthermore, the SMF/magnetic scaffold-stimulated osteoblasts promoted the angiogenic responses of endothelial cells, including the expression of vascular endothelial growth factor and angiogenin-1 genes and the formation of capillary tubes. When the magnetic scaffolds were implanted in mouse calvarium defects, the application of SMF significantly enhanced the new bone formation at 6 weeks, as revealed by the histological and micro-computed tomographic analyses. Current findings suggest that the combinatory application of external (SMF) and internal (scaffold) magnetism can be a promising tool to regenerative engineering of bone. PMID:26854394

  16. Auroral Electrojet Index Designed to Provide a Global Measure, Hourly Intervals, of Auroral Zone Magnetic Activity

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet (AE) index is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  17. Low-latitude coronal holes, decaying active regions and global coronal magnetic structure

    Petrie, Gordon

    2013-01-01

    We study the relationship between decaying active region magnetic fields, coronal holes and the global coronal magnetic structure using Global Oscillations Network Group (GONG) synoptic magnetograms, Solar Terrestrial RElations Observatory (STEREO) extreme ultra-violet (EUV) synoptic maps and coronal potential-field source-surface (PFSS) models. We analyze 14 decaying regions and associated coronal holes occurring between early 2007 and late 2010, four from cycle 23 and 10 from cycle 24. We investigate the relationship between asymmetries in active regions' positive and negative magnetic intensities, asymmetric magnetic decay rates, flux imbalances, global field structure and coronal hole formation. Whereas new emerging active regions caused changes in the large-scale coronal field, the coronal fields of the 14 decaying active regions only opened under the condition that the global coronal structure remained almost unchanged. This was because the dominant slowly-varying, low-order multipoles prevented opposin...

  18. Design Concepts for a Continuously Rotating Active Magnetic Regenerator

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus;

    2010-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the AMR from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33-xSrxMn1.05O3, gives both a low pressure drop and allows grading of the Curie temperatu...

  19. Proton-exchange membrane regenerative fuel cells

    Swette, Larry L.; LaConti, Anthony B.; McCatty, Stephen A.

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton-exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 cm 2 electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80°C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt. Ir, Ru. Rh and Na xPt 3O 4 catalysts as well as for electrode structure variations.

  20. Regenerative decline of stem cells in sarcopenia.

    Sousa-Victor, Pedro; Muñoz-Cánoves, Pura

    2016-08-01

    Skeletal muscle mass and function decline with aging, a process known as sarcopenia, which restrains posture maintenance, mobility and quality of life in the elderly. Sarcopenia is also linked to a progressive reduction in the regenerative capacity of the skeletal muscle stem cells (satellite cells), which are critical for myofiber formation in early life stages and for sustaining repair in response to muscle damage or trauma. Here we will review the most recent findings on the causes underlying satellite cell functional decline with aging, and will discuss the prevalent view whereby age-associated extrinsic factor alterations impact negatively on satellite cell-intrinsic mechanisms, resulting in deficient muscle regeneration with aging. Further understanding of the interplay between satellite cell extrinsic and intrinsic factors in sarcopenia will facilitate therapies aimed at improving muscle repair in the increasing aging population. PMID:26921790

  1. High-energy regenerative thin disk amplifier

    Chyla, Michal; Smrž, Martin; Mocek, Tomáš

    Melville: AIP, 2012 - (Osvay, K.; Dombi, P.; Fülöp, J.; Varjú, K.), s. 84-87. (AIP Conference Proceedings. 1462). ISBN 978-0-7354-1066-4. ISSN 0094-243X. [Light at Extreme Intensities 2011. Szeged (HU), 14.11.2011-18.11.2011] R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk ED2.1.00/01.0027 Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; HILASE(XE) CZ.1.05/2.1.00/01.0027 Institutional support: RVO:68378271 Keywords : Yb: YAG * thin-disk * regenerative amplifier * high energy * picosecond pulses * CPA Subject RIV: BH - Optics, Masers, Lasers

  2. Statistical study of free magnetic energy and flare productivity of solar active regions

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  3. Statistical study of free magnetic energy and flare productivity of solar active regions

    Su, J. T.; Jing, J.; Wang, S.; Wang, H. M. [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Wiegelmann, T., E-mail: sjt@bao.ac.cn [Max-Planck-Institut fur Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany)

    2014-06-20

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  4. Statistical study of free magnetic energy and flare productivity of solar active regions

    Su, J T; Wang, S; Wiegelmann, T; Wang, H M

    2014-01-01

    Photospheric vector magnetograms from Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both non-linear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with ARs' flare index (FI) and find that there is a weak correlation ($<60\\%$) between FME and FI. FME shows slightly improved flare predictability relative to total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  5. Study of magnetic field expansion using a plasma generator for space radiation active protection

    JIA Xiang-Hong; JIA Shao-Xia; XU Feng; BAI Yan-Qiang; WAN Jun; LIU Hong-Tao; JIANG Rui

    2013-01-01

    There are many active protecting methods including Electrostatic Fields,Confined Magnetic Field,Unconfined Magnetic Field and Plasma Shielding etc.for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration.The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far.The magnetic field expansion caused by plasma can improve its protective efficiency of space particles.One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric.A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz,which exits from both sides of the magnet and makes the magnetic field expand on one side.The discharging belts phenomenon is similar to the Earth's radiation belt,but the mechanism has yet to be understood.A magnetic probe is used to measure the magnetic field expansion distributions,and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.

  6. Long-term variation in the Sun's activity caused by magnetic Rossby waves in the tachocline

    Zaqarashvili, T V; Hanslmeier, A; Carbonell, M; Ballester, J L; Gachechiladze, T; Usoskin, I G

    2015-01-01

    Long-term records of sunspot number and concentrations of cosmogenic radionuclides (10Be and 14C) on the Earth reveal the variation of the Sun's magnetic activity over hundreds and thousands of years. We identify several clear periods in sunspot, 10Be, and 14C data as 1000, 500, 350, 200 and 100 years. We found that the periods of the first five spherical harmonics of the slow magnetic Rossby mode in the presence of a steady toroidal magnetic field of 1200-1300 G in the lower tachocline are in perfect agreement with the time scales of observed variations. The steady toroidal magnetic field can be generated in the lower tachocline either due to the steady dynamo magnetic field for low magnetic diffusivity or due to the action of the latitudinal differential rotation on the weak poloidal primordial magnetic field, which penetrates from the radiative interior. The slow magnetic Rossby waves lead to variations of the steady toroidal magnetic field in the lower tachocline, which modulate the dynamo magnetic field ...

  7. Energy regenerative suspension test for EEV and hybrid vehicle

    Abdullah, M. A.; Jamil, J. F.; Muhammad, N. S.

    2015-12-01

    The world is demanding on the alternative fuel and reducing the fuel consumption of land transportation especially in the automotive industries. This paper emphasizes the development of the energy regenerative suspension system (EReSS) for energy efficient vehicle (EEV) or hybrid. The EReSS product is fabricated and tested on the laboratory and real vehicle. The test is conducted to test the function of the EReSS system on real vehicle. The test is done using the multimeter to record the reading of voltage produces by the EReSS system that is attached to the vehicle suspension system. The experiment starts by setting the parameters in the EReSS system which is the number of windings with a standard magnet. Road irregularity is one of the important parts of the experiment which is set to be various types of road condition and driving style. A domestic car model is selected for the EReSS test that the system can be installed. The test of the EReSS gives out the maximum output voltage of 5.6 V with 530 windings. Improvement on the material can increase the output voltage. The EReSS is function on the real vehicle by producing voltage by harvesting the kinetic energy from the suspension vibration.

  8. Magnetic Nonpotentiality in Photospheric Active Regions as a Predictor of Solar Flares

    Yang, Xiao; Lin, GangHua; Zhang, Hongqi; Mao, Xinjie

    2013-01-01

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Seve...

  9. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird

    Heyers, Dominik; Zapka, Manuela; Hoffmeister, Mara; Wild, John Martin; Mouritsen, Henrik

    2010-01-01

    The upper beak of birds, which contains putative magnetosensory ferro-magnetic structures, is innervated by the ophthalmic branch of the trigeminal nerve (V1). However, because of the absence of replicable neurobiological evidence, a general acceptance of the involvement of the trigeminal nerve in magnetoreception is lacking in birds. Using an antibody to ZENK protein to indicate neuronal activation, we here document reliable magnetic activation of neurons in and near the principal (PrV) and ...

  10. Variability in foF2 at an equatorial station and the influence of magnetic activity

    Variability in foF2 is investigated for an equatorial station in the African region. Variability during the day time at high solar activity varies between 10 and 30 percent. It varies between 10 and 20 percent at high solar activity. Magnetic storms increase the variability at both solar activity periods. (author)

  11. Quantifying the Topology and Evolution of a Magnetic Flux Rope Associated with Multi-flare Activities

    Yang, Kai; Ding, M D

    2016-01-01

    Magnetic flux rope (MFR) plays an important role in solar activities. A quantitative assessment of the topology of an MFR and its evolution is crucial for a better understanding of the relationship between the MFR and the associated activities. In this paper, we investigate the magnetic field of active region 12017 from 2014 March 28 to 29, where 12 flares were triggered by the intermittent eruptions of a filament (either successful or confined). Using the vector magnetic field data from the Helioseismic and Magnetic Imager on board the \\textit{Solar Dynamics Observatory}, we calculate the magnetic energy and helicity injection in the active region, and extrapolate the 3D magnetic field with a nonlinear force-free field model. From the extrapolations, we find an MFR that is cospatial with the filament. We further determine the configuration of this MFR by a closed quasi-separatrix layer (QSL) around it. Then, we calculate the twist number and the magnetic helicity for the field lines composing the MFR. The re...

  12. Simulation of magnetic active polymers for versatile microfluidic devices

    Binder Claudia; Kataeva Nadezhda; Bance Simon; Exl Lukas; Reichel Franz; Fischbacher Johann; Özelt Harald; Gusenbauer Markus; Brückl Hubert; Schrefl Thomas

    2013-01-01

    We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedde...

  13. Highly active antibody-modified magnetic polyelectrolyte capsules.

    Valdepérez, Daniel; Del Pino, Pablo; Sánchez, Lourdes; Parak, Wolfgang J; Pelaz, Beatriz

    2016-07-15

    Polyelectrolyte hollow capsules are versatile platforms typically used for encapsulation of a wide variety of macromolecules in their cavity. The polymer shell of these capsules as composed by alternating layers of oppositely charged polyelectrolytes also allows for adding additional functionalities. The properties of the shell can be for example engineered by trapping different nanoparticles in-between the shell layers and/or by attaching bioactive molecules such as antibodies to the outermost layer. Herein, iron oxide NPs were inmobilized into the shell of polyelectrolyte capsules and the outermost layer of the shell was covalently modified with anti peroxidase antibodies. These capsules act as prototype model system, aiming to obtain a microstructure with the potential capability to specifically recognize and separate macromolecules. Due to the magnetic nanoparticles in the capsule shell, the capsules together with the attached target might be extracted by magnetic field gradients. Here we verified this approach by extracting horseradish peroxidase from a solution through magnetic separation with capsules bearing antibodies against horseradish peroxidase. The bioactivity of the capsules and the high degree of specific antibody functionalization were confirmed and quantified through an enzymatic reaction mediated by the extracted horseradish peroxidase. PMID:27089014

  14. A GdxHo1−x-based composite and its performance characteristics in a regenerative Ericsson refrigeration cycle

    Highlights: • MCE characteristics of GdxHo1−x alloys with different x are determined. • A promising material compositing with GdxHo1−x alloys is suggested. • Optimal mass ratios of three components in the composite are obtained. • Isothermal magnetic entropy change of the composite is close to a constant inside 28 K. • Thermodynamic performances between GdxHo1−x alloys and the composite are compared. - Abstract: Based on the molecular field theory, de Gennes factor model, and numerical calculation method, the magnetic entropy change and Curie temperature of GdxHo1−x alloys are studied, where x = 0.80, 0.91, and 1. The composite magnetic material consists of Gd0.80Ho0.20, Gd0.91Ho0.09, and Gd, according to the definite mass ratios y1, y2 and y3. The calculation results show that there exist optimal mass ratios y1opt, y2opt, and y3opt and their values depend on the applied magnetic field μ0H1. When μ0H1 = 2 T, y1opt, y2opt, and y3opt are equal to 0.24, 0.17, and 0.59, respectively. It is found that the total magnetic entropy change of the composite magnetic material 0.24Gd0.80Ho0.20⋅0.17Gd0.91Ho0.09⋅0.59Gd under 2 T applied magnetic field change is close to a constant in the region between 265 K and 293 K. Furthermore, the regenerative Ericsson refrigeration cycle using the composite magnetic material as the working substance is put forward and its cyclic performances including the net cooling quantity Qnet, coefficient of performance (COP), etc. are analyzed. The results obtained show that for the regenerative Ericsson refrigeration cycle using the composite magnetic material as the working substance, there are not only a large temperature span (28 K) but also a large net cooling quantity (1008 J/kg under 2 T applied magnetic field) and a large COP (9.01), which are, respectively, larger than those of regenerative Ericsson refrigeration cycles using Gd0.80Ho0.20, Gd0.91Ho0.09 or Gd. Moreover, the effect of the applied magnetic field on the

  15. MAGNET

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  16. Effect of Static Magnetic Field on α-Amylase Activity and Enzymatic Reaction

    JIA Shaoyi; LIU Yong; WU Songhai; WANG Zhibin

    2009-01-01

    The effect of magnetic field on α-amylase was studied. Under the experimental conditions, α-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activ-ity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a con-siderable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×102 to 0.87×102, whereas Vm decreased from 2.0×103 g/min to 1.1×103g/min. At the same time, there were some irregular changes in α-amylase secondary conformation.

  17. Towards stable bifunctional oxygen electrodes and corrosion resistant gas diffusion layers for regenerative fuel cells

    Silva, R A; Soares, C. O.; Carvalho, M. D.; Jorge, M. E. Melo; Gomes, A.; Pereira, M. I. da Silva; C. M. Rangel

    2013-01-01

    ABSTRACT: Regenerative fuel cells (RFCs) can provide very high energy storage at minimal weight in a dual mode system, by combining an electrolyzer and a fuel cell. Although RFCs are an appealing technology their development is still at an early stage. One key issue is the search for highly active electrocatalysts for both oxygen reduction and water oxidation. Presently, platinum is the best electrocatalyst for the oxygen reduction reaction (ORR), but has a poor oxygen evolution (OER) perform...

  18. Strategy for regenerative energy sources. Status and development potential

    Without doubt, in the future, we shall have to cover a growing proportion of our energy requirements by utilizing regenerative energy sources such as the sun, wind, water and biomass. The indisputable advantages of inexhaustibility and environment friendliness are, however, compared with the disadvantages of non-uniform demand as well as partially small potential and high costs. In spite of these facts, there are, in the minds of the public, high expectations and great demands on the electricity supply industry in relation to the further development of regenerative power generation. In the future, RWE Energie AG will strongly intensify its efforts towards improving the economics of regenerative power generation. (orig.)

  19. Functional magnetic resonance imaging evaluation of visual cortex activation in patients with anterior visual pathway lesions

    Xiufeng Song; Guohua Wang; Tong Zhang; Lei Feng; Peng An; Yueli Zhu

    2012-01-01

    The aim of this study was to examine the secondary visual cortex functional disorder in patients with glaucoma and large pituitary adenoma by functional magnetic resonance imaging, and to determine the correlation between visual field defect and primary visual cortex activation. Results showed that single eye stimulation resulted in bilateral visual cortex activation in patients with glaucoma or large pituitary adenoma. Compared with the normal control group, the extent and intensity of visual cortex activation was decreased after left and right eye stimulation, and functional magnetic resonance imaging revealed a correlation between visual field defects and visual cortex activation in patients with glaucoma and large pituitary adenoma. These functional magnetic resonance imaging data suggest that anterior optic pathway lesions can cause secondary functional disorder of the visual cortex, and that visual defects are correlated with visual cortex activation.

  20. Radio wavelength observations of magnetic fields on active dwarf M, RS CVn and magnetic stars

    Lang, Kenneth R.

    1986-01-01

    The dwarf M stars, YZ Canis Minoris and AD Leonis, exhibit narrow-band, slowly varying (hours) microwave emission that cannot be explained by conventional thermal radiation mechanisms. The dwarf M stars, AD Leonis and Wolf 424, emit rapid spikes whose high brightness temperatures similarly require a nonthermal radiation process. They are attributed to coherent mechanisms such as an electron-cyclotron maser or coherent plasma radiation. If the electron-cyclotron maser emits at the second or third harmonic gyrofrequency, the coronal magnetic field strength equals 250 G or 167 G, and constraints on the plasma frequency imply an electron density of 6 x 10 to the 9th/cu cm. Radio spikes from AD Leonis and Wolf 424 have rise times less than or equal to 5 ms, indicating a linear size of less than or equal to 1.5 x 10 to the 8th cm, or less than 0.005 of the stellar radius. Although Ap magnetic stars have strong dipole magnetic fields, they exhibit no detectable gyroresonant radiation, suggesting that these stars do not have hot, dense coronae. The binary RS CVn star UX Arietis exhibits variable emission at 6 cm wavelength on time scales ranging from 30 s to more than one hour.

  1. New Regenerative Cycle for Vapor Compression Refrigeration

    Mark J. Bergander

    2005-08-29

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and

  2. A modeling study on the geometry of active magnetic regenerator

    Numazawa, Takenori; Mastumoto, Koichi; Yanagisawa, Yoshinori; Nakagome, Hideki

    2012-06-01

    Magnetic refrigeration technology needs further development not just by the improvement of magnetocaloric properties but also the optimization of the cooling system design. One of the important problems in the cooling system design is the geometry of regenerator for the efficient heat transfer between magnetic material and fluid which is the major loss mechanism in cooling system. Two kinds of regenerators are widely used. One is flat plate regenerator which can offer the best heat transfer to pressure drop ratio [2] for common regenerator design; another is porous media regenerator which can obtain a large temperature span for the good heat transfer surface. But until now, only a few research papers actually study the regenerator geometry. This paper focuses on the influence of regenerator geometry to the performance of AMR system. The 1 dimension flat plat model and porous media model have been constructed and compared with entropy generation, cooling capacity, coefficient of performance by changing plate thickness and sphere size at frequency 0.25Hz, 0.5Hz, 1, aspect ratio 2, 7, 14. The result shows that the optimized sphere size will be around 0.2mm to 0.3mm. On the other hand, 0.1mm to 0.2mm thickness plate will be more efficient. Compared the 2 models, flat plate model can get a smaller entropy generation and achieve a higher cooling capacity.

  3. Ultralightweight, Regeneratively Cooled Combustion Chamber for Mars Ascent Vehicles Project

    National Aeronautics and Space Administration — We propose a high-pressure, regeneratively-cooled combustion chamber that uses novel material selection for extreme reductions in mass. These materials are...

  4. Iron serves as diffusion barrier in thermally regenerative galvanic cell

    Crouthamel, C. E.

    1967-01-01

    Pure iron or iron-coated diaphragm provides a hydrogen diffusion electrode for a thermally regenerative galvanic cell. It allows the gas to diffuse through its interatomic spaces and resists the corrosive action of the cell environment.

  5. Advanced Space Power Systems (ASPS): Regenerative Fuel Cells (RFC) Project

    National Aeronautics and Space Administration — The objective of the regenerative fuel cell project element is to develop power and energy storage technologies that enable new capabilities for future human space...

  6. Electrolyzer for NASA Lunar Regenerative Fuel Cells Project

    National Aeronautics and Space Administration — Water electrolyzer stacks are a key component of regenerative fuel cells, designed to replace batteries as a means of storing electric energy on the lunar surface....

  7. Quo Vadis medycyno regeneracyjna?: Quo Vadis Regenerative Medicine?

    Ratajczak, Mariusz Z.; Suszyńska, Malwina

    2013-01-01

    There are presented the most important sources of pluripotent stem cells for potential application in the regenerative medicine. This review summarizes also advantages and disadvantages for potential application of these cells in clinical medicine.

  8. Science and ethics: bridge to the future for regenerative medicine.

    Patricio, Ventura-Juncá

    2011-11-01

    The objective of this article is to reflect on the relationship between regenerative medicine and ethics, using as references the Aristotelian concept of what is ethical and that of Raessler Van Potter about bioethics. To do this, I will briefly describe the advances in regenerative medicine with stem cells, the strategies for producing pluripotential cells without destroying human embryos, and the great potential of stem cells to improve life for Humanity, noting that for this to be possible, it is necessary to locate the role of regenerative medicine in the context of human values and well being. In this way, this article has a real perspective of the role that regenerative medicine can play in benefitting human beings and engendering respect for human and natural environments. PMID:24298338

  9. Novel Regenerative Carbon Analyzer for Water Quality Monitoring Project

    National Aeronautics and Space Administration — One of the highest priorities of a regenerative life support system for manned space missions (to the Moon, Mars, and other remote locations) is to recover and...

  10. The economic value of investing in regenerative medicine.

    Hussain, Aftab; Rivers, Patrick A

    2009-01-01

    This article discusses the science of regenerative medicine and presents evidence that investments towards the development of this technology will reduce total health care output. Use of regenerative medicine will also be an important factor in eliminating chronic diseases such as diabetes, heart disease, and Parkinson's disease. Investment in regenerative medicine is a sound strategy for several reasons: human suffering will be reduced, if not eliminated; and the economy will be stimulated by creating employment opportunities, generating additional income and tax revenues, increasing worker productivity, creating new conglomerates, and reducing insurance costs. This article discusses some of the latest advances in regenerative medicine as well as the progress that has been made in the development of new stem cell therapies. PMID:20499720

  11. Use of regenerative energy sources and hydrogen technology 2006. Proceedings

    This volume contains 25 contributions, which were held on the 13th symposium ''Use of regenerative energy sources and hydrogen technology'' in Stralsund (Germany). Separate documentation items analysing 16 of the contributions have been prepared for the ENERGY database

  12. LOX/Methane Regeneratively-Cooled Rocket Engine Development Project

    National Aeronautics and Space Administration — Design, build, and test a 5,000 lbf thrust regeneratively cooled combustion chamber at JSC for a low pressure liquid oxygen/methane engine. The engine demonstrates...

  13. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  14. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings Theory and Implementation

    Yoon, Se Young; Allaire, Paul E

    2013-01-01

    Control of Surge in Centrifugal Compressors by Active Magnetic Bearings sets out the fundamentals of integrating the active magnetic bearing (AMB) rotor suspension technology in compressor systems, and describes how this relatively new bearing technology can be employed in the active control of compressor surge. The authors provide a self-contained and comprehensive review of rotordynamics and the fundamentals of the AMB technology. The active stabilization of compressor surge employing AMBs in a machine is fully explored, from the modeling of the instability and the design of feedback controllers, to the implementation and experimental testing of the control algorithms in a specially-constructed, industrial-size centrifugal compression system. The results of these tests demonstrate the great potential of the new surge control method developed in this text. This book will be useful for engineers in industries that involve turbocompressors and magnetic bearings, as well as for researchers and graduate students...

  15. Processing and characterization of activated carbon coated magnetic particles for biomedical applications

    Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)]. E-mail: ramanujan@ntu.edu.sg; Purushotham, S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Chia, M.H. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-05-16

    Synthesis and characterization of Magnetically Targeted Carrier (MTC) powders consisting of activated carbon coated iron particles were carried out. Powders with activated carbon content of 5% by weight (Fe5C) and 35% by weight (Fe35C) were studied. Powders were synthesized via the high energy ball milling route, and the influence of milling time on the morphology, magnetic properties and drug adsorption and desorption characteristics was investigated. Physical and structural characterization included electron microscopy, size analysis, and X-ray diffraction. The magnetic properties, and theophylline adsorption and desorption characteristics were studied. Fe35C milled for 10 h was found to be a suitable candidate for MTC applications with fine size, stable magnetic properties, and superior drug adsorption and desorption behavior.

  16. Dynamics of Continuously Pumped Solid-State Regenerative Amplifiers

    Grishin, Mikhail; Michailovas, Andrejus

    2010-01-01

    Continuously pumped regenerative amplifiers are subject to energy instability at high pulse repetition rates due to period doubling bifurcation. Theoretical concepts representing a generalized picture of operation features have been in-detail worked out in order to differentiate and understand instability effects. Experimental data for Nd:YVO4 regenerative amplifier have been presented; and possible techniques for performance optimization have been analyzed. An increase in the seed pulse ener...

  17. Rethinking Regenerative Medicine: A Macrophage-Centered Approach

    Brown, Bryan N.; Sicari, Brian M.; Badylak, Stephen F.

    2014-01-01

    Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretof...

  18. Translational Models for Musculoskeletal Tissue Engineering and Regenerative Medicine

    Sah, Robert L.; Ratcliffe, Anthony

    2010-01-01

    The National Institutes of Health–sponsored workshop “Translational Models for Musculoskeletal Tissue Engineering and Regenerative Medicine” was held to describe the utility of various translational models for engineered tissues and regenerative medicine therapies targeting intervertebral disc, cartilage, meniscus, ligament, tendon, muscle, and bone. Participants included leaders in the various topics, as well as National Institutes of Health and Food and Drug Administration. The Food and Dru...

  19. Study of regenerative medicine in China: demands and clinical translation

    Fu, Xiao-Bing

    2012-01-01

    The repair and regeneration of tissue is a well-discussed topic. Over the past 20 years, with the development of genetics, auxology, stem cell biology, and tissue engineering, tissue repair and regeneration have rapidly developed as emerging "Regenerative Medicine". Regenerative medicine has significant market demand in China. Based on national statistics, injury and poisoning patients rank third in afflictions in city hospitals (accounting for 9.13%) and rank second in afflictions in county ...

  20. Use of genes and cells in regenerative medicine

    Simonson, Oscar

    2015-01-01

    Regenerative medicine is a discipline that aims to achieve regeneration of cells, tissue or organs in order to restore or establish normal functions. There are several strategies that can be used to achieve this goal. Many of the strategies are based on use of genes or cells to regenerate organ functions. The present thesis aim to investigate different gene and cell based methods for the use in regenerative medicine. In paper I a novel peptide conjugate is described for the...

  1. Musculoskeletal Regenerative Engineering: Biomaterials, Structures, and Small Molecules

    Roshan James; Laurencin, Cato T.

    2014-01-01

    Musculoskeletal tissues are critical to the normal functioning of an individual and following damage or degeneration they show extremely limited endogenous regenerative capacity. The future of regenerative medicine is the combination of advanced biomaterials, structures, and cues to re-engineer/guide stem cells to yield the desired organ cells and tissues. Tissue engineering strategies were ideally suited to repair damaged tissues; however, the substitution and regeneration of large tissue vo...

  2. On the Development of an Efficient Regenerative Compressor

    Griffini, D.; Salvadori, S.; Carnevale, M.; A. Cappelletti; Ottanelli, L.; Martelli, F.

    2015-01-01

    Regenerative compressors are attractive machines used in several industrial processes. Their main characteristic is the highly three-dimensional development of the flow. Consequently, usual approach for axial or centrifugal compressors design are not an affordable strategy. The analysis of the rotor/stator coupling is the main issue in the design of regenerative compressors because of the vane-less nature of the stator and the characteristic trajectory of the flow. This paper describes the de...

  3. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics

    Mahla, Ranjeet Singh

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regen...

  4. Science and Ethics: Bridge to the Future for Regenerative Medicine

    Patricio, Ventura-Juncá

    2011-01-01

    The objective of this article is to reflect on the relationship between regenerative medicine and ethics, using as references the Aristotelian concept of what is ethical and that of Raessler Van Potter about bioethics. To do this, I will briefly describe the advances in regenerative medicine with stem cells, the strategies for producing pluripotential cells without destroying human embryos, and the great potential of stem cells to improve life for Humanity, noting that for this to be possible...

  5. A high-power compact regenerative amplifier FEL

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction (5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  6. Numerical Modelling of Regenerative Liquid Propellant Guns with Annular Piston

    K. J. Daniel

    1997-01-01

    Full Text Available The development of regenerative liquid propellant guns (RLPGs needs due consideration of numerous interdependent parameters that affect its performance. To help in this task, computer simulation was undertaken to predict internal ballistics of a conceptual liquid propellant gun. The expected pressure and other important parameters are documented which serve as an aid to the hardware, design of the regenerative liquid propellant guns.

  7. Hepatic progenitor cells in canine and feline medicine: potential for regenerative strategies.

    Kruitwagen, Hedwig S; Spee, Bart; Schotanus, Baukje A

    2014-01-01

    New curative therapies for severe liver disease are urgently needed in both the human and veterinary clinic. It is important to find new treatment modalities which aim to compensate for the loss of parenchymal tissue and to repopulate the liver with healthy hepatocytes. A prime focus in regenerative medicine of the liver is the use of adult liver stem cells, or hepatic progenitor cells (HPCs), for functional recovery of liver disease. This review describes recent developments in HPC research in dog and cat and compares these findings to experimental rodent studies and human pathology. Specifically, the role of HPCs in liver regeneration, key components of the HPC niche, and HPC activation in specific types of canine and feline liver disease will be reviewed. Finally, the potential applications of HPCs in regenerative medicine of the liver are discussed and a potential role is suggested for dogs as first target species for HPC-based trials. PMID:24946932

  8. Experimental and modelling results of a parallel-plate based active magnetic regenerator

    Tura, A.; Nielsen, Kaspar Kirstein; Rowe, A.

    2012-01-01

    The performance of a permanent magnet magnetic refrigerator (PMMR) using gadolinium parallel plates is described. The configuration and operating parameters are described in detail. Experimental results are compared to simulations using an established twodimensional model of an active magnetic...... regenerator (AMR). In particular, the effect of geometric demagnetization in the regenerator is included in a simplified manner. The model and experimental data are in good agreement while the effect of demagnetization is seen to degrade the performance. It is concluded from the experiments that both thinner...

  9. Long-term variation in the Sun's activity caused by magnetic Rossby waves in the tachocline

    Zaqarashvili, T. V.; Oliver, R.; Hanslmeier, A.; Carbonell, M.; Ballester, J. L.; Gachechiladze, T.; I. G. Usoskin

    2015-01-01

    Long-term records of sunspot number and concentrations of cosmogenic radionuclides (10Be and 14C) on the Earth reveal the variation of the Sun's magnetic activity over hundreds and thousands of years. We identify several clear periods in sunspot, 10Be, and 14C data as 1000, 500, 350, 200 and 100 years. We found that the periods of the first five spherical harmonics of the slow magnetic Rossby mode in the presence of a steady toroidal magnetic field of 1200-1300 G in the lower tachocline are i...

  10. Temperature dependence of the activation energy at low magnetic induction in high-Tc superconductors

    The activation energy U0 has been measured for melt-textured YBa2Cu3O7 samples at low magnetic induction B parallel c. The data indicate that U0 has a nearly linear temperature dependence in a certain temperature regime (congruent 10--60 K) and is insensitive to magnetic induction. In terms of the collective-pinning ideas and taking into account the modification due to the thermal fluctuation of the flux-line lattice, we propose a possible theoretical explanation. Meanwhile, the critical current Jc, which depends upon the magnetic induction B as Jc∝1/ √B , was obtained

  11. Magnetic Fusion Energy Technology Fellowship Program: Summary of program activities for calendar year 1985

    This report summarizes the activities of the US Department of Energy (DOE) Magnetic Fusion Energy Technology Fellowship program (MFETF) for the 1985 calendar year. The MFETF program has continued to support the mission of the Office of Fusion Energy (OFE) and its Division of Development and Technology (DDT) by ensuring the availability of appropriately trained engineering manpower needed to implement the OFE/DDT magnetic fusion energy agenda. This program provides training and research opportunities to highly qualified students at DOE-designated academic, private sector, and government magnetic fusion energy institutions. The objectives of the Magnetic Fusion Energy Technology Fellowship program are: (1) to provide support for graduate study, training, and research in magnetic fusion energy technology; (2) to ensure an adequate supply of appropriately trained manpower to implement the nation's magnetic fusion energy agenda; (3) to raise the visibility of careers in magnetic fusion energy technology and to encourage students to pursue such careers; and (4) to make national magnetic fusion energy facilities available for manpower training

  12. Liver-Regenerative Transplantation: Regrow and Reset.

    Collin de l'Hortet, A; Takeishi, K; Guzman-Lepe, J; Handa, K; Matsubara, K; Fukumitsu, K; Dorko, K; Presnell, S C; Yagi, H; Soto-Gutierrez, A

    2016-06-01

    Liver transplantation, either a partial liver from a living or deceased donor or a whole liver from a deceased donor, is the only curative therapy for severe end-stage liver disease. Only one-third of those on the liver transplant waiting list will be transplanted, and the demand for livers is projected to increase 23% in the next 20 years. Consequently, organ availability is an absolute constraint on the number of liver transplants that can be performed. Regenerative therapies aim to enhance liver tissue repair and regeneration by any means available (cell repopulation, tissue engineering, biomaterials, proteins, small molecules, and genes). Recent experimental work suggests that liver repopulation and engineered liver tissue are best suited to the task if an unlimited availability of functional induced pluripotent stem (iPS)-derived liver cells can be achieved. The derivation of iPS cells by reprogramming cell fate has opened up new lines of investigation, for instance, the generation of iPS-derived xenogeneic organs or the possibility of simply inducing the liver to reprogram its own hepatocyte function after injury. We reviewed current knowledge about liver repopulation, generation of engineered livers and reprogramming of liver function. We also discussed the numerous barriers that have to be overcome for clinical implementation. PMID:26699680

  13. Regenerative burner in the metals industry

    Gettings, M.

    1986-07-01

    The Regenerative Ceramic Burner, RCB is becoming widely accepted in the UK as the successor of the world famous recuperative burner. This paper describes the RCB and its modes of operation and compares it with the recuperative burner. This comparison uses the example of a reheating furnace employed to heat a 10 tonne billet to 1250/sup 0/C. The superior technical performance of the RCB is mirrored in its economic attractiveness. For most medium and large furnace applications the device can pay for itself in less than two years with 40 to 50% fuel savings. Examples of the use of the device are presented from both the steel and aluminium industries. In all cases, operation and worthwhile energy savings have been achieved. In its role on an aluminum melter, the burner has demonstrated its ability to handle contaminated gases with minimum maintenance requirement. The paper concludes with ideas for future developments of the technology which will extend its use into other industry sectors.

  14. Recent advancements in regenerative dentistry: A review.

    Amrollahi, Pouya; Shah, Brinda; Seifi, Amir; Tayebi, Lobat

    2016-12-01

    Although human mouth benefits from remarkable mechanical properties, it is very susceptible to traumatic damages, exposure to microbial attacks, and congenital maladies. Since the human dentition plays a crucial role in mastication, phonation and esthetics, finding promising and more efficient strategies to reestablish its functionality in the event of disruption has been important. Dating back to antiquity, conventional dentistry has been offering evacuation, restoration, and replacement of the diseased dental tissue. However, due to the limited ability and short lifespan of traditional restorative solutions, scientists have taken advantage of current advancements in medicine to create better solutions for the oral health field and have coined it "regenerative dentistry." This new field takes advantage of the recent innovations in stem cell research, cellular and molecular biology, tissue engineering, and materials science etc. In this review, the recently known resources and approaches used for regeneration of dental and oral tissues were evaluated using the databases of Scopus and Web of Science. Scientists have used a wide range of biomaterials and scaffolds (artificial and natural), genes (with viral and non-viral vectors), stem cells (isolated from deciduous teeth, dental pulp, periodontal ligament, adipose tissue, salivary glands, and dental follicle) and growth factors (used for stimulating cell differentiation) in order to apply tissue engineering approaches to dentistry. Although they have been successful in preclinical and clinical partial regeneration of dental tissues, whole-tooth engineering still seems to be far-fetched, unless certain shortcomings are addressed. PMID:27612840

  15. THE EXPERIMENTAL TESTING OF AN ACTIVE MAGNETIC BEARING/ROTOR SYSTEM UNDERGOING BASE EXCITATION

    Clements, Joshua Ryan

    2000-01-01

    Active Magnetic Bearings (AMB) are a relatively recent innovation in bearing technology. Unlike conventional bearings, which rely on mechanical forces originating from fluid films or physical contact to support bearing loads, AMB systems utilize magnetic fields to levitate and support a shaft in an air-gap within the bearing stator. This design has many benefits over conventional bearings. The potential capabilities that AMB systems offer are allowing this new technology to be considered f...

  16. Engineering of Iron-Based Magnetic Activated Carbon Fabrics for Environmental Remediation

    Hai Haham; Judith Grinblat; Moulay-Tahar Sougrati; Lorenzo Stievano; Shlomo Margel

    2015-01-01

    Magnetic Fe3O4, Fe and Fe/Pd nanoparticles embedded within the pores of activated carbon fabrics (ACF) were prepared by impregnation of the ACF in iron acetylacetanoate (Fe(acac)3) ethanol solution, followed by thermal decomposition of the embedded iron precursor at 200, 400 and 600 °C in an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area, pore volume, and magnetic properties of the various functionalized ACF was elucid...

  17. Magnetic activation of bipolar plasmas in HgTe-CdTe superlattices

    Meyer, J. R.; Hoffman, C. A.; Bartoli, F. J.; Wojtowicz, T.; Dobrowolska, M.; Furdyna, J. K.; Chu, X.; Faurie, J. P.; Ram-Mohan, L. R.

    1991-08-01

    It is shown theoretically that in semimetallic HgTe-CdTe superlattices, there is a critical magnetic field above which minority carriers with density proportional to B-Bcrit are expected to coexist with majority carriers in the zero-temperature limit. Experimental confirmation of the magnetically activated bipolar plasma is provided by low-temperature magneto-optical data showing the emergence of minority holes in an n-type superlattice whenever B>Bcrit.

  18. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598. ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  19. On Asymmetry of Magnetic Helicity in Emerging Active Regions: High Resolution Observations

    Tian, Lirong; Démoulin, Pascal; Alexander, David; Zhu, Chunming

    2011-01-01

    We employ the DAVE (differential affine velocity estimator, Schuck 2005; 2006) tracking technique on a time series of MDI/1m high spatial resolution line- of-sight magnetograms to measure the photospheric flow velocity for three newly emerging bipolar active regions. We separately calculate the magnetic helicity injection rate of the leading and following polarities to confirm or refute the magnetic helicity asymmetry, found by Tian & Alexander (2009) using MDI/96m low spatial resolution magn...

  20. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian; Nielsen, Kaspar Kirstein; Barbosa Jr., J.R.; Prata, A. T.; Pryds, Nini

    2012-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators of commercial grade gadolinium (Gd) was employed. With operating frequencies up to 10 Hz and volumetric flow rates up to 600 L/h, the prototype has shown high performance and the results are consistent with...

  1. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian;

    2012-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators of...... function of cycle frequency was determined. It was found that thermal losses increase as the frequency increases. Therefore, a detailed study of these parasitic losses was carried out experimentally and numerically....

  2. Coupling of the solar wind to measures of magnetic activity

    The technique of linear prediction filtering has been used to generate empirical response functions relating the solar wind electric field to the most frequently used magnetic indices, AL, AU, Dst and ASYM. Two datasets, one from 1967-1968 and one from 1973-1974, provided the information needed to calculate the empirical response functions. These functions have been convolved with solar wind observations obtained during the IMS to predict the indices. These predictions are compared with the observed indices during two, three-day intervals studied extensively by participants in the CDAW-6 workshop. Differences between the observed and predicted indices are discussed in terms of the linear assumption and in terms of physical processes other than direct solar wind-magnetosphere interaction

  3. Solar regenerative fuel cell system for high altitude airships

    'Full text': A closed-loop regenerative fuel cell (RFC) system that serves as an energy storage device for space activities is studied through dynamic simulations. The unique nature of the closed-loop RFC makes it an ideal power system for key applications in homeland defense and earth observatory systems such as high altitude aircrafts /airships, unmanned aerial vehicles, and in planetary exploration for flyer or for surface power. The RFC considered using the photovoltaic cells to produce electric power during the day, part of which is used to produce hydrogen and oxygen through electrolysis. The stored hydrogen and oxygen is used through a fuel cell to produce electric power during night hours. A MATLAB/SIMULINK model was developed for the components of the RFC that include a fuel cell, electrolyzer, photovoltaic solar array, power bus, humidifiers, compressor/motor assembly, expander, pumps, phase separators, storage tanks for hydrogen, oxygen and water, control valves and piping, electric grid system and controls. A proton exchange membrane (PEM) fuel cell and PEM electrolyzer were modeled in detail that included the mass momentum, energy, chemical reaction rates at cathode and anode. The PEM fuel cell voltage was modeled accounting cell activation and ohmic polarizations. A modular approach was used to develop models for each component. Component models were based on fundamental physics to the extent practical. Steady state and dynamic response of the RFC for different operational conditions including start-up, shut down, load changes and (accidental) transients was studied. (author)

  4. MAGNET

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  5. MSCs-Derived Exosomes: Cell-Secreted Nanovesicles with Regenerative Potential.

    Marote, Ana; Teixeira, Fábio G; Mendes-Pinheiro, Bárbara; Salgado, António J

    2016-01-01

    Exosomes are membrane-enclosed nanovesicles (30-150 nm) that shuttle active cargoes between different cells. These tiny extracellular vesicles have been recently isolated from mesenchymal stem cells (MSCs) conditioned medium, a population of multipotent cells identified in several adult tissues. MSCs paracrine activity has been already shown to be the key mediator of their elicited regenerative effects. On the other hand, the individual contribution of MSCs-derived exosomes for these effects is only now being unraveled. The administration of MSCs-derived exosomes has been demonstrated to restore tissue function in multiple diseases/injury models and to induce beneficial in vitro effects, mainly mediated by exosomal-enclosed miRNAs. Additionally, the source and the culture conditions of MSCs have been shown to influence the regenerative responses induced by exosomes. Therefore, these studies reveal that MSCs-derived exosomes hold a great potential for cell-free therapies that are safer and easier to manipulate than cell-based products. Nevertheless, this is an emerging research field and hence, further studies are required to understand the full dimension of this complex intercellular communication system and how it can be optimized to take full advantage of its therapeutic effects. In this mini-review, we summarize the most significant new advances in the regenerative properties of MSCs-derived exosomes and discuss the molecular mechanisms underlying these effects. PMID:27536241

  6. Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics.

    Duncan, H F; Smith, A J; Fleming, G J P; Cooper, P R

    2016-05-01

    Dental pulp stem cells (DPSCs) offer significant potential for use in regenerative endodontics, and therefore, identifying cellular regulators that control stem cell fate is critical to devising novel treatment strategies. Stem cell lineage commitment and differentiation are regulated by an intricate range of host and environmental factors of which epigenetic influence is considered vital. Epigenetic modification of DNA and DNA-associated histone proteins has been demonstrated to control cell phenotype and regulate the renewal and pluripotency of stem cell populations. The activities of the nuclear enzymes, histone deacetylases, are increasingly being recognized as potential targets for pharmacologically inducing stem cell differentiation and dedifferentiation. Depending on cell maturity and niche in vitro, low concentration histone deacetylase inhibitor (HDACi) application can promote dedifferentiation of several post-natal and mouse embryonic stem cell populations and conversely increase differentiation and accelerate mineralization in DPSC populations, whilst animal studies have shown an HDACi-induced increase in stem cell marker expression during organ regeneration. Notably, both HDAC and DNA methyltransferase inhibitors have also been demonstrated to dramatically increase the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) for use in regenerative therapeutic procedures. As the regulation of cell fate will likely remain the subject of intense future research activity, this review aims to describe the current knowledge relating to stem cell epigenetic modification, focusing on the role of HDACi on alteration of DPSC phenotype, whilst presenting the potential for therapeutic application as part of regenerative endodontic regimens. PMID:26011759

  7. Study of regenerative medicine in China: demands and clinical translation

    Xiao-bing FU

    2012-03-01

    Full Text Available The repair and regeneration of tissue is a well-discussed topic. Over the past 20 years, with the development of genetics, auxology, stem cell biology, and tissue engineering, tissue repair and regeneration have rapidly developed as emerging "Regenerative Medicine". Regenerative medicine has significant market demand in China. Based on national statistics, injury and poisoning patients rank third in afflictions in city hospitals (accounting for 9.13% and rank second in afflictions in county hospitals (accounting for 14.07%. Totally, approximately one hundred million patients suffered from traumatic, genetic and metabolic diseases in China and demand reparative and regenerative medical treatment each year. The Chinese government and its related departments have always attached great importance and support to the development of regenerative medicine, and the Chinese academic circle is involved in a very wide range of diseases and injuries including regenerative medical theory and technology. Stem cell biology, organ engineering and duplication, tissue engineering research and production have developed rapidly, and great portion of these studies have started to appear in applications, which have aroused extensive concerns in international professional circle. In the next 10 years, the Chinese regenerative medical system will be further improved, in both statute and rules, clinical translation will be further accelerated. Breakthroughs are expected in induced differentiation of stem cells and synchronous repair and regeneration of multiple organs, construction of major organs by tissue engineering, large-scale applications of tissue engineering products, and other aspects.

  8. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    Ismail, Raid A., E-mail: raidismail@yahoo.com [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Sulaiman, Ghassan M. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq); Abdulrahman, Safa A. [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Marzoog, Thorria R. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq)

    2015-08-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field.

  9. Magnetic Flux Transport and the Long-term Evolution of Solar Active Regions

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  10. Using Magnetic Helicity Diagnostics to Determine the Nature of Solar Active-Region Formation

    Georgoulis, Manolis K.

    Employing a novel nonlinear force-free (NLFF) method that self-consistently infers instantaneous free magnetic-energy and relative magnetic-helicity budgets from single photospheric vector magnetograms, we recently constructed the magnetic energy-helicity (EH) diagram of solar active regions. The EH diagram implies dominant relative helicities of left-handed or right-handed chiralities for the great majority of active regions. The amplitude (budget) of these helicities scales monotonically with the free magnetic energy. This constructive, strongly preferential accumulation of a certain sense of magnetic helicity seems to disqualify recently proposed mechanisms relying on a largely random near-surface convection for the formation of the great majority of active regions. The existing qualitative formation mechanism for these regions remains the conventional Omega-loop emergence following a buoyant ascension from the bottom of the convection zone. However, exceptions to this rule include even eruptive active regions: NOAA AR 11283 is an obvious outlier to the EH diagram, involving significant free magnetic energy with a small relative magnetic helicity. Relying on a timeseries of vector magnetograms of this region, our methodology shows nearly canceling amounts of both senses of helicity and an overall course from a weakly left-handed to a weakly right-handed structure, in the course of which a major eruption occurs. For this and similarly behaving active regions the latest near-surface formation scenario might conceivably be employed successfully. Research partially supported by the EU Seventh Framework Programme under grant agreement No. PIRG07-GA-2010-268245 and by the European Union Social Fund (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  11. EVOLUTION OF RELATIVE MAGNETIC HELICITY AND CURRENT HELICITY IN NOAA ACTIVE REGION 11158

    Both magnetic and current helicities are crucial ingredients for describing the complexity of active-region magnetic structure. In this Letter, we present the temporal evolution of these helicities contained in NOAA active region 11158 during five days from 2011 February 12 to 16. The photospheric vector magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory were used as the boundary conditions for the coronal field extrapolation under the assumption of nonlinear force-free field, from which we calculated both relative magnetic helicity and current helicity. We construct a time-altitude diagram in which altitude distribution of the magnitude of current helicity density is displayed as a function of time. This diagram clearly shows a pattern of upwardly propagating current helicity density over two days prior to the X2.2 flare on February 15 with an average propagation speed of ∼36 m s–1. The propagation is synchronous with the emergence of magnetic flux into the photosphere, and indicative of a gradual energy buildup for the X2.2 flare. The time profile of the relative magnetic helicity shows a monotonically increasing trend most of the time, but a pattern of increasing and decreasing magnetic helicity above the monotonic variation appears prior to each of two major flares, M6.6 and X2.2, respectively. The physics underlying this bump pattern is not fully understood. However, the fact that this pattern is apparent in the magnetic helicity evolution but not in the magnetic flux evolution makes it a useful indicator in forecasting major flares.

  12. Magnetic properties and adsorptive performance of manganese–zinc ferrites/activated carbon nanocomposites

    Owing to the unique microstructure and high specific surface area, activated carbon (AC) could act as an excellent adsorbent for wastewater treatment and good carrier for functional materials. In this paper, manganese–zinc ferrites (Mn0.5Zn0.5Fe2O4: MZF) were anchored into AC by hydrothermal method, resulting in the excellent magnetic response for AC nanocomposites in wastewater treatment. All results demonstrated the magnetic nanoparticles presented a spinel phase structure and existed in the pores of AC. The saturation magnetization (Ms) of MZF/AC nanocomposites increased with the ferrites content, while the pore volume and specific surface area declined. The Sample-5 possessed the specific surface area of 1129 m2 g−1 (close to 1243 m2 g−1 of AC) and Ms of 3.96 emu g−1. Furthermore, the adsorptive performance for organic dyes was studied and 99% methylene blue was adsorbed in 30 min. The magnetic AC nanocomposites could be separated easily from solution by magnetic separation technique. - Graphical abstract: The Sample-5 presented both good magnetic response and high BET surface area up to 1129 m2 g−1 (close to AC of 1243 m2 g−1), which could be separated completely for about 60 s. MZF/AC nanocomposites (Sample-3, 4, 5) in our work could be used as the magnetic absorbents, which could be separated easily by an outer magnet after the MB adsorption. - Highlights: • Mn0.5Zn0.5Fe2O4 (MZF) as few as possible was implanted into activated carbon (AC) for the higher surface area. • Sample-5 possessed the high specific surface area (1129 m2 g−1) and the suitable Ms (3.96 emu g−1). • Methylene blue was adsorbed almost completely by MZF/AC nanocomposites in 30 min. • MZF/AC nanocomposites were separated easily from solution by magnetic separation technique

  13. In vivo characterization of regenerative peripheral nerve interface function

    Ursu, Daniel C.; Urbanchek, Melanie G.; Nedic, Andrej; Cederna, Paul S.; Gillespie, R. Brent

    2016-04-01

    Objective. Regenerative peripheral nerve interfaces (RPNIs) are neurotized free autologous muscle grafts equipped with electrodes to record myoelectric signals for prosthesis control. Viability of rat RPNI constructs have been demonstrated using evoked responses. In vivo RPNI characterization is the next critical step for assessment as a control modality for prosthetic devices. Approach. Two RPNIs were created in each of two rats by grafting portions of free muscle to the ends of divided peripheral nerves (peroneal in the left and tibial in the right hind limb) and placing bipolar electrodes on the graft surface. After four months, we examined in vivo electromyographic signal activity and compared these signals to muscular electromyographic signals recorded from autologous muscles in two rats serving as controls. An additional group of two rats in which the autologous muscles were denervated served to quantify cross-talk in the electrode recordings. Recordings were made while rats walked on a treadmill and a motion capture system tracked the hind limbs. Amplitude and periodicity of signals relative to gait were quantified, correlation between electromyographic and motion recording were assessed, and a decoder was trained to predict joint motion. Main Results. Raw RPNI signals were active during walking, with amplitudes of 1 mVPP, and quiet during standing, with amplitudes less than 0.1 mVPP. RPNI signals were periodic and entrained with gait. A decoder predicted bilateral ankle motion with greater than 80% reliability. Control group signal activity agreed with literature. Denervated group signals remained quiescent throughout all evaluations. Significance. In vivo myoelectric RPNI activity encodes neural activation patterns associated with gait. Signal contamination from muscles adjacent to the RPNI is minimal, as demonstrated by the low amplitude signals obtained from the Denervated group. The periodicity and entrainment to gait of RPNI recordings suggests the

  14. Magnetic Nonpotentiality in Photospheric Active Regions as a Predictor of Solar Flares

    Yang, Xiao; Zhang, HongQi; Mao, XinJie

    2013-01-01

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform ...

  15. Stellar magnetic activity and their influence on the habitability of exoplanets

    Lüftinger, T; Johnstone, C P

    2015-01-01

    Stellar magnetism, explorable via polarimetry, is a crucial driver of activity, ionization, photodissociation, chemistry and winds in stellar environments. Thus it has an important impact on the atmospheres and magnetospheres of surrounding planets. Modeling of stellar magnetic fields and their winds is extremely challenging, both from the observational and the theoretical points of view, and only recent ground breaking advances in observational instrumentation - as were discussed during this Symposium - and a deeper theoretical understanding of magnetohydrodynamic processes in stars enable us to model stellar magnetic fields and winds and the resulting influence on surrounding planets in more and more detail. We have initiated a national and international research network (NFN): 'Pathways to Habitability - From Disks to Active Stars, Planets to Life', to address questions on the formation and habitability of environments in young, active stellar/planetary systems. In this contribution we discuss the work we ...

  16. Distinguishing clinical and imaging features of nodular regenerative hyperplasia and large regenerative nodules of the liver

    Aim: Nodular regenerative hyperplasia (NRH) and large regenerative nodules (LRN) are distinct types of hepatocellular nodules that have been confused in the radiology literature. However, distinction is critical because their clinical significance is quite different. Our purpose was to review the clinical and imaging findings in a series of patients with NRH and LRN in order to identify distinguishing clinical and imaging features. Materials and methods: This was a retrospective case series. The clinical and imaging features were compared in 36 patients with pathological proof of NRH and 23 patients with pathological evidence of LRN. Results: NRH and LRN have different predisposing factors and imaging findings. NRH is often associated with organ transplantation, myeloproliferative disease, or autoimmune processes. Livers with NRH typically do not have enhancing nodules; none of the present patients with NRH had enhancing liver masses. In contrast, LRN are often associated with Budd-Chiari syndrome. Enhancing liver masses were noted in 19 (83%) of the 23 patients with LRN. The p values for the comparisons were less than 0.001 for both enhancing liver masses and hepatic vein thrombosis. Conclusion: NRH and LRN can have distinct clinical presentations and imaging appearances. LRN often result in enhancing liver nodules, whereas NRH usually does not. Clinical and imaging information enables the distinction of LRN and NRH in many cases.

  17. Distinguishing clinical and imaging features of nodular regenerative hyperplasia and large regenerative nodules of the liver

    Ames, J.T. [Departments of Radiology, University of Pittsburgh Medical Center Pittsburgh, Pennsylvania (United States); Federle, M.P., E-mail: federle@stanford.ed [Departments of Radiology, University of Pittsburgh Medical Center Pittsburgh, Pennsylvania (United States); Chopra, K. [Departments of Gastroenterology, University of Pittsburgh Medical Center Pittsburgh, Pennsylvania (United States)

    2009-12-15

    Aim: Nodular regenerative hyperplasia (NRH) and large regenerative nodules (LRN) are distinct types of hepatocellular nodules that have been confused in the radiology literature. However, distinction is critical because their clinical significance is quite different. Our purpose was to review the clinical and imaging findings in a series of patients with NRH and LRN in order to identify distinguishing clinical and imaging features. Materials and methods: This was a retrospective case series. The clinical and imaging features were compared in 36 patients with pathological proof of NRH and 23 patients with pathological evidence of LRN. Results: NRH and LRN have different predisposing factors and imaging findings. NRH is often associated with organ transplantation, myeloproliferative disease, or autoimmune processes. Livers with NRH typically do not have enhancing nodules; none of the present patients with NRH had enhancing liver masses. In contrast, LRN are often associated with Budd-Chiari syndrome. Enhancing liver masses were noted in 19 (83%) of the 23 patients with LRN. The p values for the comparisons were less than 0.001 for both enhancing liver masses and hepatic vein thrombosis. Conclusion: NRH and LRN can have distinct clinical presentations and imaging appearances. LRN often result in enhancing liver nodules, whereas NRH usually does not. Clinical and imaging information enables the distinction of LRN and NRH in many cases.

  18. A Comparison Between Global Proxies of the Sun's Magnetic Activity Cycle: Inferences from Helioseismology

    Broomhall, A -M

    2015-01-01

    The last solar minimum was, by recent standards, unusually deep and long. We are now close to the maximum of the subsequent solar cycle, which is relatively weak. In this article we make comparisons between different global (unresolved) measures of the Sun's magnetic activity, to investigate how they are responding to this weak-activity epoch. We focus on helioseismic data, which are sensitive to conditions, including the characteristics of the magnetic field, in the solar interior. Also considered are measures of the magnetic field in the photosphere (sunspot number and sunspot area), the chromosphere and corona (10.7cm radio flux and 530.3nm green coronal index), and two measures of the Sun's magnetic activity closer to Earth (the interplanetary magnetic field and the galactic cosmic-ray intensity). Scaled versions of the activity proxies diverge from the helioseismic data around 2000, indicating a change in relationship between the proxies. The degree of divergence varies from proxy to proxy with sunspot a...

  19. Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas

    We examined whether proton magnetic resonance spectroscopy (MRS) could provide accurate information on histological grade and cell proliferation in astrocytomas. We studied 23 patients with astrocytomas: five grade II, 10 grade III and eight with grade IV (glioblastoma multiforme). We performed proton MRS and determined the Ki-67 labeling index (LI), a tumour proliferation marker, in the same areas of the astrocytomas, and examined the statistical relationship between proton MRS and Ki-67 LI. The N-acetylaspartate (NAA)/creatine-phosphocreatine (Cr) and NAA/choline (Cho)-containing compound ratios were always significantly lower and the Cho/Cr ratios significantly higher than those for normal brain. The Cho/Cr ratio correlated positively and the NAA/Cho ratio inversely with Ki-67 LI. These findings suggest that the Cho signal in proton MRS reflects cellular proliferation. In Kaplan-Meier survival analysis, there was no significant difference between high (> 2.0, 14 cases) and low (< 2.0, 9 cases) Cho/cr ratio groups. (orig.)

  20. Effect of the active damper coil system on the lateral displacement of the magnetically levitated bogie

    Ohashi, S.; Ohsaki, H.; Masada, E.

    1999-09-01

    Numerical simulation of the superconducting magnetically levitated bogie (JR Maglev) has been studied. The active damper coil system is introduced. In this levitation system, the interaction between levitation and guidance is strong. This active damper coil system is designed for reducing the vertical vibration of the bogie. Using the numerical simulation, its effect on the lateral displacement of the bogie is assessed. The active damper coil system for the vertical vibration is shown to works as a passive damper for the lateral vibration.

  1. Workshop Physics Activity Guide, Module 4: Electricity and Magnetism

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including: Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

  2. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  3. Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-12-01

    By performing a global magnetohydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. This is a natural extension into the central few 100 pc of the magnetic activity, which is observed as molecular loops at radii from a few 100 pc to 1 kpc. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which we discuss from a viewpoint of the outflow from the bulge.

  4. Performance of biological magnetic powdered activated carbon for drinking water purification.

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2016-06-01

    Combining the high adsorption capacity of powdered activated carbon (PAC) with magnetic properties of iron oxide nanoparticles (NPs) leads to a promising composite material, magnetic PAC or MPAC, which can be separated from water using magnetic separators. We propose MPAC as an alternative adsorbent in the biological hybrid membrane process and demonstrate that PAC covered with magnetic NPs is suitable as growth support for heterotrophic and nitrifying bacteria. MPAC with mass fractions of 0; 23; 38 and 54% maghemite was colonized in small bioreactors for over 90 days. Although the bacterial community composition (16s rRNA analysis) was different on MPAC compared to PAC, NPs neither inhibited dissolved organic carbon and ammonia biological removals nor contributed to significant adsorption of these compounds. The same amount of active heterotrophic biomass (48 μg C/cm(3)) developed on MPAC with a mass fraction of 54% NPs as on the non-magnetic PAC control. While X-ray diffraction confirmed that size and type of iron oxides did not change over the study period, a loss in magnetization between 10% and 34% was recorded. PMID:27017574

  5. The evolution of magnetic activity on V711 Tauri and evidence for a significant facular contribution

    Dorren, J. D.; Guinan, E. F.

    1990-01-01

    The nature of the long-term evolution of magnetic activity in the RS CVn binary V711 Tauri is investigated using the complete set of available archival IUE SWP low-dispersion spectra of V711 Tau for the period covering August 1978 - December 1984. An analysis of the spectra confirmed the pattern of a long-term smooth variation of chromospheric and transition region emission found previosly by Dorren et al. (1986). An explanation of the relationship between the different facets of the magnetic activity on V711 Tau is presented.

  6. Restoration of Nrf2 Signaling Normalizes the Regenerative Niche.

    Soares, Marc A; Cohen, Oriana D; Low, Yee Cheng; Sartor, Rita A; Ellison, Trevor; Anil, Utkarsh; Anzai, Lavinia; Chang, Jessica B; Saadeh, Pierre B; Rabbani, Piul S; Ceradini, Daniel J

    2016-03-01

    Chronic hyperglycemia impairs intracellular redox homeostasis and contributes to impaired diabetic tissue regeneration. The Keap1/Nrf2 pathway is a critical regulator of the endogenous antioxidant response system, and its dysfunction has been implicated in numerous pathologies. Here we characterize the effect of chronic hyperglycemia on Nrf2 signaling within a diabetic cutaneous regeneration model. We characterized the effects of chronic hyperglycemia on the Keap1/Nrf2 pathway within models of diabetic cutaneous wound regeneration. We assessed reactive oxygen species (ROS) production and antioxidant gene expression following alterations in the Nrf2 suppressor Keap1 and the subsequent changes in Nrf2 signaling. We also developed a topical small interfering RNA (siRNA)-based therapy to restore redox homeostasis within diabetic wounds. Western blotting demonstrated that chronic hyperglycemia-associated oxidative stress inhibits nuclear translocation of Nrf2 and impairs activation of antioxidant genes, thus contributing to ROS accumulation. Keap1 inhibition increased Nrf2 nuclear translocation, increased antioxidant gene expression, and reduced ROS production to normoglycemic levels, both in vitro and in vivo. Topical siKeap1 therapy resulted in improved regenerative capacity of diabetic wounds and accelerated closure. We report that chronic hyperglycemia weakens the endogenous antioxidant response, and the consequences of this defect are manifested by intracellular redox dysregulation, which can be restored by Keap1 inhibition. Targeted siRNA-based therapy represents a novel, efficacious strategy to reestablish redox homeostasis and accelerate diabetic cutaneous tissue regeneration. PMID:26647385

  7. MAGNET

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  8. MAGNET

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  9. MAGNET

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  10. Simulation of magnetic active polymers for versatile microfluidic devices

    Binder Claudia

    2013-01-01

    Full Text Available We propose to use a compound of magnetic nanoparticles (20–100 nm embedded in a flexible polymer (Polydimethylsiloxane PDMS to filter circulating tumor cells (CTCs. The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.

  11. Design and experimental tests of a rotary active magnetic regenerator prototype

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian;

    2015-01-01

    transfer fluid flow and an inhomogenous time-varying magnetic field in the individual regenerator beds has been used in the design process. For one operating point a COP of 3.1 at a temperature span of 10.2 K and a cooling power of 103Wwere measured. Major issues limiting the performance have been......A rotary active magnetic regenerator (AMR) prototype with efficiency and compact design as focus points has been designed and built. The main objective is to demonstrate improved efficiency for rotary devices by reducing heat leaks from the environment and parasitic mechanical work losses while...... optimizing the utilization of the magnetized volume. Heat transfer calculations combined with 1D AMR modeling have revealed the necessity for an insulating air gap between magnet and regenerator when designing for high efficiency. 2D finite difference AMR modeling capturing the interplay between heat...

  12. Rapid eye movement-related brain activation in human sleep: a functional magnetic resonance imaging study.

    Wehrle, Renate; Czisch, Michael; Kaufmann, Christian; Wetter, Thomas C; Holsboer, Florian; Auer, Dorothee P; Pollmächer, Thomas

    2005-05-31

    In animal models, ponto-geniculo-occipital waves appear as an early sign of rapid eye movement sleep and may be functionally significant for brain plasticity processes. In this pilot study, we use a combined polysomnographic and functional magnetic resonance imaging approach, and show distinct magnetic resonance imaging signal increases in the posterior thalamus and occipital cortex in close temporal relationship to rapid eye movements during human rapid eye movement sleep. These findings are consistent with cell recordings in animal experiments and demonstrate that functional magnetic resonance imaging can be utilized to detect ponto-geniculo-occipital-like activity in humans. Studying intact neuronal networks underlying sleep regulation is no longer confined to animal models, but has been shown to be feasible in humans by a combined functional magnetic resonance imaging and electroencephalograph approach. PMID:15891584

  13. Cell Processing Engineering for Regenerative Medicine : Noninvasive Cell Quality Estimation and Automatic Cell Processing.

    Takagi, Mutsumi

    2016-01-01

    The cell processing engineering including automatic cell processing and noninvasive cell quality estimation of adherent mammalian cells for regenerative medicine was reviewed. Automatic cell processing necessary for the industrialization of regenerative medicine was introduced. The cell quality such as cell heterogeneity should be noninvasively estimated before transplantation to patient, because cultured cells are usually not homogeneous but heterogeneous and most protocols of regenerative medicine are autologous system. The differentiation level could be estimated by two-dimensional cell morphology analysis using a conventional phase-contrast microscope. The phase-shifting laser microscope (PLM) could determine laser phase shift at all pixel in a view, which is caused by the transmitted laser through cell, and might be more noninvasive and more useful than the atomic force microscope and digital holographic microscope. The noninvasive determination of the laser phase shift of a cell using a PLM was carried out to determine the three-dimensional cell morphology and estimate the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. The noninvasive discrimination of cancer cells from normal cells by measuring the phase shift was performed based on the difference in cytoskeleton density. Chemical analysis of the culture supernatant was also useful to estimate the differentiation level of a cell population. A probe beam, an infrared beam, and Raman spectroscopy are useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell. PMID:25373455

  14. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  15. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAMα cells and induced to osteogenic status—their in vivo osteogenesis was subsequently investigated in rats. It was found that HAMα cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAMα cells. The expression of osteocalcin mRNA was increased in HAMα cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAMα cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: ► Human amniotic mesenchymal cells include cells (HAMα cells) that have the properties of MSCs. ► HAMα cells have excellent osteogenic differentiation potential. ► Osteogenic differentiation ability of HAMα was amplified by calcium phosphate scaffolds. ► HAMα cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  16. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  17. Active region filaments might harbor weak magnetic fields

    Baso, C J Díaz; Ramos, A Asensio

    2016-01-01

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted either as a signature of mixed "turbulent" field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectro-polarimetric observations of active region filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, the azimuth difference between them being close to 90 degrees. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so that its combination along the ...

  18. Photospheric activity, rotation and magnetic interaction in LHS 6343 A

    Herrero, E; Ribas, I; Jordi, C; Morales, J C

    2013-01-01

    Context. The Kepler mission has recently discovered a brown dwarf companion transiting one member of the M4V+M5V visual binary system LHS 6343 AB with an orbital period of 12.71 days. Aims. The particular interest of this transiting system lies in the synchronicity between the transits of the brown dwarf C component and the main modulation observed in the light curve, which is assumed to be caused by rotating starspots on the A component. We model the activity of this star by deriving maps of the active regions that allow us to study stellar rotation and the possible interaction with the brown dwarf companion. Methods. An average transit profile was derived, and the photometric perturbations due to spots occulted during transits are removed to derive more precise transit parameters. We applied a maximum entropy spot model to fit the out-of-transit optical modulation as observed by Kepler during an uninterrupted interval of 500 days. It assumes that stellar active regions consist of cool spots and bright facul...

  19. TWIST AND CONNECTIVITY OF MAGNETIC FIELD LINES IN THE SOLAR ACTIVE REGION NOAA 10930

    Twist and connectivity of magnetic field lines in the flare-productive active region NOAA 10930 are investigated in terms of the vector magnetograms observed by the Solar Optical Telescope on board the Hinode satellite and the nonlinear force-free field (NLFFF) extrapolation. First, we show that the footpoints of magnetic field lines reconstructed by the NLFFF correspond well to the conjugate pair of highly sheared flare ribbons on the Ca II images, which were observed by Hinode as an X3.4 class flare on 2006 December 13. This demonstrates that the NLFFF extrapolation may be used to analyze the magnetic field connectivity. Second, we find that the twist of magnetic field lines anchored on the flare ribbons increased as the ribbons moved away from the magnetic polarity inversion line in the early phase of the flare. This suggests that magnetic reconnection might commence from a region located below the most strongly twisted field. Third, we reveal that the magnetic flux twisted more than a half turn and gradually increased during the last one day prior to the onset of the flare, and that it quickly decreased for two hours after the flare. This is consistent with the store-and-release scenario of magnetic helicity. However, within this active region, only a small fraction of the flux was twisted by more than one full turn and the field lines that reconnected first were twisted less than one turn. These results imply that the kink mode instability could hardly occur, at least before the onset of flare. Based on our results, we discuss the trigger process of solar flares.

  20. Results of Russian geomagnetic observatories in the 19th century: magnetic activity, 1841–1862

    L. Häkkinen

    2010-04-01

    Full Text Available Hourly (spot readings magnetic data (H- and D-components were digitized from Russian yearbook tables for the years 1850–1862 from four observatories. The pdf pictures for digitization were taken by a normal digital camera. The database obtained consists of about 900 000 single data points. The time series of hourly magnetic values reveal slow secular variations (declination only as well as transient and regular geomagnetic variations of external origin. The quality and homogeneity of the data is satisfactory. Daily Ak-indices were calculated using the index algorithm that has been earlier applied to 19th century data from Helsinki (Finland as well as modern magnetic observatory recordings. The activity index series derived from the Russian data is consistent with earlier activity index series for 1850–1862. The digitized index data series derived in this study was extended back to 1841 by including magnetic C9 activity index data available from a Russian observatory (St. Petersburg. Magnetic data rescued here is well suitable for various reconstructions for studies of the long-term variation of the space weather in the 19th century.

  1. MAGNETIC ENERGY AND HELICITY IN TWO EMERGING ACTIVE REGIONS IN THE SUN

    Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Schuck, P. W. [Space Weather Laboratory, Code 674, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-12-20

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158, are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term, (2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and (4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course. We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  2. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  3. ADSORPTION PROPERTIES OF NICKEL-BASED MAGNETIC ACTIVATED CARBON PREPARED BY PD-FREE ELECTROLESS PLATING

    Boyang Jia

    2011-02-01

    Full Text Available Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.

  4. Visual activation in infants and young children studied by functional magnetic resonance imaging

    Born, Alfred Peter; Leth, H; Miranda Gimenez-Ricco, Maria Jo;

    1998-01-01

    The purpose of this study was to determine whether visual stimulation in sleeping infants and young children can be examined by functional magnetic resonance imaging. We studied 17 children, aged 3 d to 48 mo, and three healthy adults. Visual stimulation was performed with 8-Hz flickering light...... through the sleeping childs' closed eyelids. Functional magnetic resonance imaging was performed with a gradient echoplanar sequence in a l.5-T magnetic resonance scanner. Six subjects were excluded because of movement artifacts; the youngest infant showed no response. In 10 children, we could demonstrate...... flow during activation. The different response patterns in young children and adults can reflect developmental or behavioral differences. Localization of the activation seemed to be age-dependent. In the older children and the adults, it encompassed the whole length of the calcarine sulcus, whereas it...

  5. Magnetic plasmonic Metamaterials in actively pumped Host Medium and Plasmonic Nanolaser

    Sarychev, A K; Sarychev, Andrey K.; Tartakovsky, Gennady

    2006-01-01

    We consider plasmonic nanoantennas immersed in active host medium. Specifically shaped metal nanoantennas can exhibit strong magnetic properties in the optical spectral range due to the excitation of Magnetic Plasmon Resonance (MPR). A case when a metamaterial comprising such nanoantennas can demonstrate both "left-handiness" and negative permeability in the optical range is considered. We show that high losses predicted for optical "left- handed" materials can be compensated in the gain medium. Gains required to achieve local generation in such magnetic active metamaterials are calculated for real metals. We propose plasmonic nanolaser, where the metal nanoantenna operates like a resonator. The size of the proposed plasmonic laser is much smaller than the wavelength. Therefore, it can serve as a very compact source of EM radiation.

  6. Active Region Filaments Might Harbor Weak Magnetic Fields

    Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A.

    2016-05-01

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between them being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.

  7. MAGNET

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  8. MAGNET

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  9. MAGNET

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  10. Stem cells have the potential to rejuvenate regenerative medicine research.

    Eve, David J; Fillmore, Randolph; Borlongan, Cesar V; Sanberg, Paul R

    2010-10-01

    The increasing number of publications featuring the use of stem cells in regenerative processes supports the idea that they are revolutionizing regenerative medicine research. In an analysis of the articles published in the journal Cell Transplantation - The Regenerative Medicine Journal between 2008 and 2009, which reveals the topics and categories that are on the cutting edge of regenerative medicine research, stem cells are becoming increasingly relevant as the "runner-up" category to "neuroscience" related articles. The high volume of stem cell research casts a bright light on the hope for stem cells and their role in regenerative medicine as a number of reports deal with research using stem cells entering, or seeking approval for, clinical trials. The "methods and new technologies" and "tissue engineering" sections were almost equally as popular, and in part, reflect attempts to maximize the potential of stem cells and other treatments for the repair of damaged tissue. Transplantation studies were again more popular than non-transplantation, and the contribution of stem cell-related transplants was greater than other types of transplants. The non-transplantation articles were predominantly related to new methods for the preparation, isolation and manipulation of materials for transplant by specific culture media, gene therapy, medicines, dietary supplements, and co-culturing with other cells and further elucidation of disease mechanisms. A sizeable proportion of the transplantation articles reported on how previously new methods may have aided the ability of the cells or tissue to exert beneficial effects following transplantation. PMID:20885363

  11. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Zhibin Song

    2011-09-01

    Full Text Available Regenerative braking is an effective approach for electric vehicles (EVs to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from experiencing wheel lock and slip phenomena during braking. Then, a fuzzy RBS using the driver’s braking force command, vehicle speed, battery SOC, battery temperature are designed to determine the distribution between friction braking force and regenerative braking force to improve the energy recuperation efficiency. The experimental results on an “LF620” prototype EV validated the feasibility and effectiveness of regenerative braking and showed that the proposed fuzzy RBS was endowed with good control performance. The maximum driving range of LF620 EV was improved by 25.7% compared with non-RBS conditions.

  12. Regenerative Medicine: Charting a New Course in Wound Healing

    Gurtner, Geoffrey C.; Chapman, Mary Ann

    2016-01-01

    Significance: Chronic wounds are a prevalent and costly problem in the United States. Improved treatments are needed to heal these wounds and prevent serious complications such as infection and amputation. Recent Advances: In wound healing, as in other areas of medicine, technologies that have the potential to regenerate as opposed to repair tissue are gaining ground. These include customizable nanofiber matrices incorporating novel materials; a variety of autologous and allogeneic cell types at various stages of differentiation (e.g., pluripotent, terminally differentiated); peptides; proteins; small molecules; RNA inhibitors; and gene therapies. Critical Issues: Wound healing is a logical target for regenerative medicine due to the accessibility and structure of skin, the regenerative nature of healing, the lack of good limb salvage treatments, and the current use of cell therapies. However, more extensive knowledge of pathophysiologic targets is needed to inform regenerative strategies, and new technologies must demonstrate value in terms of outcomes and related health economic measures to achieve successful market access and penetration. Future Directions: Due to similarities in cell pathways and developmental mechanisms, regenerative technologies developed in one therapeutic area may be applicable to others. Approaches that proceed from human genomic or other big data sources to models are becoming increasingly common and will likely suggest novel therapeutic avenues. To fully capitalize on the advances in regenerative medicine, studies must demonstrate the value of new therapies in identified patient populations, and sponsors must work with regulatory agencies to develop appropriate dossiers supporting timely approval. PMID:27366592

  13. Modelling and performance analysis of a regenerative solar desalination unit

    Zurigat, Y.H. [University of Jordan, Amman (Jordan). Dept. of Mechanical Engineering; Abu-Arabi, M.K. [The Middle East Desalination Center, Al-Khuwair Sultanate of Oman (Oman)

    2004-05-01

    In this paper, a regenerative solar desalination unit is modeled and its performance evaluated. The unit consists of two basins (effects), with provision for cooling water to flow in and out of the second effect. This arrangement has the advantages of increasing the temperature difference between water and glass cover in the first effect and utilizes the latent heat of water vapor condensing on the glass of the first effect to produce more fresh water in the second effect. The performance of the regenerative still is evaluated by comparison with the performance of the conventional still under the same weather conditions. The results of the simulations show that the productivity of the regenerative still is 20% higher compared to the conventional still. Making the stills perfectly insulated increases their productivity two and one half folds. Insulation has higher effect on the regenerative still compared to the conventional still. The wind speed has a significant effect on the productivity of the stills; it can increase the productivity by more than 50% if the wind speed is increased from 0 to 10 m/s. The thickness of water on top of the first glass cover and the mass flow rate of water going into the second effect have marginal effect on the productivity of the regenerative still. (author)

  14. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds

    Nießner, Christine; Denzau, Susanne; Stapput, Katrin; Ahmad, Margaret; Peichl, Leo; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2013-01-01

    The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp•/FAD• radical pair formed during photoreduction is crucial for detecting magnetic directions. PMID:23966619

  15. AC loss of HTS magnet for AMR refrigerator using magnetic field formulation and edge element in cylindrical coordinates

    Kim, Seo Ho; Park, Minwon [Changwon National University, Changwon (Korea, Republic of); Jeong, Sang Kwon [KAIST, Daejeon (Korea, Republic of)

    2013-05-15

    AMR (Active Magnetic Regenerative) refrigerators require the large variation of the magnetic field and a HTS magnet can be used. The amount of AC loss is very important considering the overall efficiency of the AMR refrigerator. However, it is very hard to estimate the precise loss of the HTS magnet because the magnetic field distribution around the conductor itself depends on the coil configuration and the neighboring HTS wires interact each other through the distorted magnetic field by the screening current Therefore, the AC loss of HTS magnet should be calculated using the whole configuration of the HTS magnet with superconducting characteristic. This paper describes the AC loss of the HTS magnet by an appropriate FEM approach, which uses the non-linear characteristic of HTS conductor. The analysis model is based on the 2-D FEM model, called as 'magnetic field formulation and edge-element model', for whole coil configuration in cylindrical coordinates. The effects of transport current and stacked conductors on the AC loss are investigated considering the field-dependent critical current. The PDE model of 'Comsol multiphysics' is used for the FEM analysis with properly implemented equations for axisymmetric model.

  16. Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity

    Yuan, Yi; Chen, Yudong; Li, Xiaoli

    2016-02-01

    A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.

  17. Cylindrical active coated nano-particles excited by electric and magnetic line sources

    Arslanagic, Samel; Liu, Y.; Malureanu, Radu;

    2011-01-01

    Cylindrical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be an electric or a magnetic line current, while three different plasmonic...

  18. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging.

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von Zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  19. Activity and magnetic field structure of the Sun-like planet-hosting star HD 1237

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Grunhut, J.; Fares, R.; Donati, J.-F.; Alecian, E.; Kochukhov, O.; Oksala, M.; Morin, J.; Redfield, S.; Cohen, O.; Drake, J. J.; Jardine, M.; Matt, S.; Petit, P.; Walter, F. M.

    2015-10-01

    We analyse the magnetic activity characteristics of the planet-hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements that is consistent with our ZDI analysis with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on the shape of the extracted Stokes V profile but does result in a small increase in the S/N (~7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also affects the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI map solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes (~45 degrees). Similar magnetic field maps are recovered from data acquired five months apart. Future work will investigate how this surface magnetic field distribution affeccts the coronal magnetic field and extended environment around this planet-hosting star.

  20. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Two Flaring Active Regions

    Petrie, Gordon

    2016-05-01

    For two major X-class flares observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory Ahead (STEREO-A) spacecraft when they were close to quadrature, we compare major, abrupt changes in the photospheric magnetic vector field to changes in the observed coronal magnetic structure during the two flares. The Lorentz force changes in strong photospheric fields within active regions are estimated from time series of SDO Helioseismic and Magnetic Imager (HMI) vector magnetograms. These show that the major changes occurred in each case near the main neutral line of the region and in two neighboring twisted opposite-polarity sunspots. In each case the horizontal parallel field strengthened significantly near the neutral line while the azimuthal field in the sunspots decreased, suggesting that a flux rope joining the two sunspots collapsed across the neutral line with reduced magnetic pressure because of a reduced field twist component. At the same time, the coronal extreme ultraviolet (EUV) loop structure was observed by the Atmospheric Imaging Assembly (AIA) onboard SDO and the Extreme Ultraviolet Imager (EUVI) on STEREO-A to decrease significantly in height during each eruption, discontinuous changes signifying ejection of magnetized plasma, and outward-propagating continuous but abrupt changes consistent with loop contraction. An asymmetry in the observed EUV loop changes during one of the flares matches an asymmetry in the photospheric magnetic changes associated with that flare. The observations are discussed in terms of the well-known tether-cutting and breakout flare initiation models.

  1. Palladium Activated Self-Assembled Monolayer for Magnetics on Silicon Applications

    Anthony, Ricky; Mathúna, Cian Ó.; Rohan, James F.

    Magnetic thin films such as Permalloy (Py) have been extensively used as core material in integrated power magnetic components (micro-inductors and transformers) for their excellent soft magnetic properties. Existing core electrodeposition technology requires sputtered permalloy seed layer. This seed layer etches slowly compared to the electroplated core during magnetic core patterning. In this work, a new electroless deposition process has been developed where samples are activated by palladium to realize a thin catalytic layer on SiO2. Up to 1 μm thick permalloy (∼22% ±3% Fe and ∼78%±3% Ni) is deposited from an in-house developed borane based bath to achieve ∼ 30-35 μOhm-cm resistivities. The magnetic properties of permalloy deposits reveal distinct hysteresis loop with coercivity (∼4.5 Oe). The electroless permalloy over-etch (12 μm) compared with sputtered permalloy seed is found to be negligible (2 μm). This demonstrates the applicability of permalloy electroless deposition as a seed for high yield batch fabrication of magnetics on silicon devices.

  2. Somatotopical relationships between cortical activity and reflex areas in reflexology: A functional magnetic resonance imaging study

    Nakamaru, Tomomi; MIURA, NAOKI; Fukushima, Ai; Kawashima, Ryuta

    2008-01-01

    We examined the somatotopical relationship between cortical activity and sensory stimulation of reflex areas in reflexology using functional magnetic resonance imaging. Three reflex areas on the left foot, relating to the eye, shoulder, and small intestine were stimulated during the experiment. A statistical analysis showed that reflexological stimulation of the foot reflex areas corresponding to the eye, shoulder, and small intestine activated not only the somatosensory areas corresponding t...

  3. Research of Air-Magnet Active Vibration Isolation System Based on H∞ Control

    Wen Xianglong

    2015-01-01

    Full Text Available Considering the uncertainty of air-magnet active vibration isolation system (AMAVIS, passive vibration isolation was combined with active vibration isolation, which adopted H∞ control strategies. System identification method was used to get the channel model. By adopting mixed sensitivity design strategy, weighting functions were chosen and H∞ controller was designed. Both simulation results and experimental results show AMAVIS based on H∞ control had satisfying effect of vibration reduction in assigned frequency band.

  4. Could a change in magnetic field geometry cause the break in the wind-activity relation?

    Vidotto, A A; Jardine, M; See, V; Petit, P; Boisse, I; Saikia, S Boro; Hebrard, E; Jeffers, S V; Marsden, S C; Morin, J

    2015-01-01

    Wood et al suggested that mass-loss rate is a function of X-ray flux ($\\dot{M} \\propto F_x^{1.34}$) for dwarf stars with $F_x \\lesssim F_{x,6} \\equiv 10^6$ erg cm$^{-2}$ s$^{-1}$. However, more active stars do not obey this relation. These authors suggested that the break at $F_{x,6}$ could be caused by significant changes in magnetic field topology that would inhibit stellar wind generation. Here, we investigate this hypothesis by analysing the stars in Wood et al's sample that had their surface magnetic fields reconstructed through Zeeman-Doppler Imaging (ZDI). Although the solar-like outliers in the $\\dot{M}$ -- $F_x$ relation have higher fractional toroidal magnetic energy, we do not find evidence of a sharp transition in magnetic topology at $F_{x,6}$. To confirm this, further wind measurements and ZDI observations at both sides of the break are required. As active stars can jump between states with highly toroidal to highly poloidal fields, we expect significant scatter in magnetic field topology to exi...

  5. Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  6. Ulysses observations of electron and proton components in a magnetic cloud and related wave activity

    Osherovich, V. A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Phillips, J. L.; Balogh, A.

    1995-01-01

    In addition to a smooth rotation of the magnetic field vector, magnetic clouds have a low proton temperature T(sub p). Their expansion in the solar wind leads to depletion and therefore the ion component cools down. It has been shown recently that the electron component in magnetic clouds behaves differently: when the cloud expands, electron temperature Te anti correlates with density and therefore Te increases in the cloud, creating favorable conditions for the rise of ion-acoustic waves. For the magnetic cloud observed by Ulysses on June 10 - 12, 1993 at 4.64 AU at S 32.5 deg, we present observations for both electron and proton components and related plasma wave activity. Our results confirm the anti correlation between T(sub e) and electron density and also exhibit a high ratio of T(sub e)/T(sub P) in the cloud. Since Landau damping is not effective for T(sub e)/T(sub p) much greater than 1, Doppler shifted ion acoustic waves are expected in the cloud. Calculation of ion acoustic wave frequencies in the cloud and comparison with observed wave activity confirm this expectation. As in our previous work, we show that the electron component in the cloud obeys a polytropic law with gamma is less than 1 (gamma approximately equals 0.3-0.4). The dynamics of the magnetic cloud are determined to a large degree by the dominating electron pressure.

  7. A new shunt DC active filter of power supply in a steady high magnetic field facility

    A DC active power filter is an indispensable part in a high power and high stability power supply system, especially in the power supply system of the Steady High Magnetic Field Facility, which requires that the current ripple should be limited to 50 parts per million. In view of the disadvantages of the series DC active power filter and shunt Pulse Width Modulation DC active filter, this paper puts forward a novel DC active filter by combining the advantages of the transistor regulator and the shunt type. The structure and principle of the new shunt linear active filter are introduced. Meanwhile, the design of several key components that construct the new shunt linear active filter is also analyzed. The simulation model and an experimental prototype of the shunt linear active filter are developed, and the results verify that the parameter design is reasonable and the shunt active filter has a good filter effect. (authors)

  8. State of the art of control for magnetic levitation and magnetic bearing and control theory. Active control seigyo riron oyo no saisentan

    Nonami, K. (Chiba University, Chiba (Japan). Faculty of Engineering)

    1993-04-10

    From the viewpoint of control theory which was made known mainly through the papers presented in the international active magnetic bearing conference, survey was made of the latest state of active magnetic levitation and bearing system technology. The active magnetic bearing control system is applied to turbo-molecular pumps. They are analog PID-controlled rigid rotor pumps. Many of them are commonly characterized by five-axis controlled suction type active magnetic bearing. For heightening its performance, a further progress is being made in the following items of R and D: Transition from analog control to digital control using the digital signal processor. Transition from PID-controlled stabilization control to advanced control applying the modern control theory, robust control theory, learning control theory, and disturbance compensation control and other system designs. Active magnetic bearing control system with flexible rotors passing through the high order elastic mode. Active magnetic sensorless bearing by which the control is made by assuming the rotor displacement by the observer theory from the electric current in exciting coil. 37 refs., 11 figs.

  9. MAGNET

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  10. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.

    Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M

    2016-01-01

    The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. PMID:26422652

  11. Design and development of a low NOx regenerative burner

    1994-03-01

    Regenerative burner technology is used worldwide by a range of process industries to utilize waste heat and reduce specific energy consumption. Regenerative burners are associated with annual energy savings of 6.2 PJ and consequently have a further benefit, reducing CO[sub 2] emissions by approximately 316,000 tonnes/year. However, the high air pre-heat temperatures attained by these burners are also responsible for NOx emissions rates which are substantially higher than those for cold air fired burners. To address this problem the current project was set up to develop a low NOx regenerative burner which would comply with the then anticipated NOx emission legislation. The combination of computational fluid dynamic (CFD) modelling and experimental work has shown that there are available methods to reduce NOx emissions. For instance, in this project NOx emissions from a 3 MW burner were reduced to levels similar to those of a 600 kW unit. (author)

  12. Gene delivery in tissue engineering and regenerative medicine.

    Fang, Y L; Chen, X G; W T, Godbey

    2015-11-01

    As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle. PMID:25557560

  13. Engineered Theranostic Magnetic Nanostructures: Role of Composition and Surface Coating on Magnetic Resonance Imaging Contrast and Thermal Activation.

    Nandwana, Vikas; Ryoo, Soo-Ryoon; Kanthala, Shanthi; De, Mrinmoy; Chou, Stanley S; Prasad, Pottumarthi V; Dravid, Vinayak P

    2016-03-23

    Magnetic nanostructures (MNS) have emerged as promising functional probes for simultaneous diagnostics and therapeutics (theranostic) applications due to their ability to enhance localized contrast in magnetic resonance imaging (MRI) and heat under external radio frequency (RF) field, respectively. We show that the "theranostic" potential of the MNS can be significantly enhanced by tuning their core composition and architecture of surface coating. Metal ferrite (e.g., MFe2O4) nanoparticles of ∼8 nm size and nitrodopamine conjugated polyethylene glycol (NDOPA-PEG) were used as the core and surface coating of the MNS, respectively. The composition was controlled by tuning the stoichiometry of MFe2O4 nanoparticles (M = Fe, Mn, Zn, ZnxMn1-x) while the architecture of surface coating was tuned by changing the molecular weight of PEG, such that larger weight is expected to result in longer length extended away from the MNS surface. Our results suggest that both core as well as surface coating are important factors to take into consideration during the design of MNS as theranostic agents which is illustrated by relaxivity and thermal activation plots of MNS with different core composition and surface coating thickness. After optimization of these parameters, the r2 relaxivity and specific absorption rate (SAR) up to 552 mM(-1) s(-1) and 385 W/g were obtained, respectively, which are among the highest values reported for MNS with core magnetic nanoparticles of size below 10 nm. In addition, NDOPA-PEG coated MFe2O4 nanostructures showed enhanced biocompatibility (up to [Fe] = 200 μg/mL) and reduced nonspecific uptake in macrophage cells in comparison to other well established FDA approved Fe based MR contrast agents. PMID:26936392

  14. Identifying parameters in active magnetic bearing system using LFT formulation and Youla factorization

    Lauridsen, Jonas; Sekunda, André Krabdrup; Santos, Ilmar;

    2015-01-01

    In this paper, a method for identifying uncertain parameters in a rotordynamic system composed of a flexible rotating shaft, rigid discs and two radial active magnetic bearings is presented. Shaft and disc dynamics are mathematically described using a Finite Element (FE) model while magnetic...... of the system matrix A of the full FE model while it is represented as several elements spread over multiple rows and columns of the system matrix of the reduced model. The parametric uncertainty, for both the full and reduced FE model, is represented using Linear Fractional Transformation (LFT). In...

  15. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.;

    2014-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at the Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators of...... implemented in a one-dimensional numerical AMR model that includes also the parasitic losses from the prototype. The temperature span for a thermal load of 200 W as a function of frequency was measured and modelled. Moreover, the temperature span dependence on the cooling capacity as a function of cycle...

  16. Recent development in noninvasive brain activity measurement by functional magnetic resonance imaging (fMRI)

    fMRI (functional magnetic resonance imaging) is a non-invasive brain imaging technique with which the distribution of neural activity is estimated by measuring local blood flow changes. Blood-oxygenation-level-dependent (BOLD) method measures changes in the density of deoxidized hemoglobin in blood caused by blood flow changes, while other methods have been developed to measure the blood flow changes directly. Effort has been expended to realize a submillimeter spatial resolution by using higher static magnetic field. fMRI has been carried out with various mental tasks, and many important findings have been made on the localization of higher brain functions. (author)

  17. Bucking Coil Implementation on PMT for Active Cancelling of Magnetic Field

    Gogami, T; Bono, J; Baturin, P; Chen, C; Chiba, A; Chiga, N; Fujii, Y; Hashimoto, O; Kawama, D; Maruta, T; Maxwell, V; Mkrtchyan, A; Nagao, S; Nakamura, S N; Reinhold, J; Shichijo, A; Tang, L; Taniya, N; Wood, S A; Ye, Z

    2013-01-01

    Aerogel and water Cerenkov detectors were employed to tag kaons for a lambda hypernuclear spectroscopic experiment which used the (e,e'K+) reaction in experimental Hall C at Jefferson Lab (JLab E05-115). Fringe fields from the kaon spectrometer magnet yielded ~5 Gauss at the photomultiplier tubes (PMT) for these detectors which could not be easily shielded. As this field results in a lowered kaon detection efficiency, we implemented a bucking coil on each photomultiplier tubes to actively cancel this magnetic field, thus maximizing kaon detection efficiency.

  18. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds

    Vanesa Andreu

    2015-08-01

    the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management.

  19. The role of active region coronal magnetic field in determining coronal mass ejection propagation direction

    Wang, Rui; Dai, Xinghua; Yang, Zhongwei; Huang, Chong; Hu, Huidong

    2015-01-01

    We study the role of the coronal magnetic field configuration of an active region in determining the propagation direction of a coronal mass ejection (CME). The CME occurred in the active region 11944 (S09W01) near the disk center on 2014 January 7 and was associated with an X1.2 flare. A new CME reconstruction procedure based on a polarimetric technique is adopted, which shows that the CME changed its propagation direction by around 28$^\\circ$ in latitude within 2.5 R$_\\odot$ and 43$^\\circ$ in longitude within 6.5 R$_\\odot$ with respect to the CME source region. This significant non-radial motion is consistent with the finding of M$\\ddot{o}$stl et al. (2015). We use nonlinear force-free field (NLFFF) and potential field source surface (PFSS) extrapolation methods to determine the configurations of the coronal magnetic field. We also calculate the magnetic energy density distributions at different heights based on the extrapolations. Our results show that the active region coronal magnetic field has a strong ...

  20. Magnetic Flux Transport and the Long-Term Evolution of Solar Active Regions

    Ugarte-Urra, Ignacio; Warren, Harry P; Hathaway, David H

    2015-01-01

    With multiple vantage points around the Sun, STEREO and SDO imaging observations provide a unique opportunity to view the solar surface continuously. We use He II 304 A data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport (AFT) model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illust...

  1. Application study of complex control algorithm for regenerative furnace temperature

    Lusheng GE

    2004-01-01

    Altemative switch combustion mode of air and gas is adopted on the two sides of the regenerative furnace, its temperature is in uncontrolled state in the switching process and the switch period is generally 3 ~ 5 min. Thus, the conventional bi-cross limited combustion control method is no longer applicable to the object. This paper makes use of neutral network algorithm to adjust the static operating point. On this basis, fuzzy control strategy is used for the furnace temperature control. The actual application result shows that the control strategy is effective to solve the problem of the combustion control for regenerative furnace.

  2. Physiological conditions influencing regenerative potential of stem cells.

    Spaltro, Gabriella; Avitabile, Daniele; De Falco, Elena; Gambini, Elisa

    2016-01-01

    Stem cells are being used in the treatment of cardivovascular diseases. Here, we review the physiologic and pathologic conditions that impact the regenerative potential of stem cells in the treatment of cardiovascular diseases which include the influence of donor age and the presence of metabolic syndromes. We will also discuss strategies such as pretreatment of the recipient tissue or autologous or allogeneic stem cells by growth factors or drugs and by providing a synthetic scaffold and genetic modifications that impact the regenerative potential of stem cells. Finally, we will evaluate the current state of treatment of acute or chronic cardiovascular diseases with allogeneic stem cells. PMID:27100496

  3. Adipocyte-derived stem and regenerative cells in facial rejuvenation.

    Cohen, Steven R; Mailey, Brian

    2012-10-01

    The identification of regenerative cells in adult human fat has invigorated the field of facial fat grafting. This article reviews traditional and cell-enriched fat grafting methods and the use of fat to create or refine aesthetic results. The rationale and potential applications of adipocyte-derived stem and regenerative cells in facial surgery are also described. The reader is presented with surgical techniques for harvesting and delivering fat grafts to optimize engraftment. Mesotherapy and related applications currently under investigation are also discussed. PMID:23036296

  4. Thin-rod Yb:YAG regenerative laser amplifier

    Maruko, A.; Nishio, M.; Matsubara, S.; Tanaka, M.; Takama, M.; Yoshida, T.; Kyomoto, K.; Okunishi, H.; Kato, K.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-average-power, high-repetition-rates picosecond-pulsed regenerative ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser amplifiers were developed. The architecture used in the amplifiers, which are named as thin-rod, has a unique cooling scheme like slab lasers and also has a unique pumping scheme like photonic crystal fiber lasers, is suitable for high-average power Ytterbium lasers. This architecture also has high gain characteristics which is appropriate for the regenerative spectral and pulse shaping on high-repetition-rate, ultrashort-pulse amplifications.

  5. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  6. Static magnetic field changes the activity of venom phospholipase of Vipera Lebetina snakes

    The effect of the static magnetic field (SMF) on the phospholipid activity of the class-A snake venom is studied. The Vipera Lebetina snake venom was subjected during 10 days to 30 minute impact of the CMF daily. It is established that increase in the phospholipase A1 and A2 approximately by 21 and 32 % correspondingly and in the phosphodiesterase C - by 33 % was observed. The decrease in the total protein level of the snake venom by 31.6 ± 2.2 % was noted thereby. It may be assumed that the described phospholipase and phosphoesterase changes may lead to essential shifts in the total metabolic activity of cells and organism as a whole. The activity index of these ferments may serve as an indicator of changes in the environmental magnetic field

  7. Analysis on Dynamic Performance for Active Magnetic Bearing—Rotor System

    YANHui-yan; WANGXi-ping; 等

    2001-01-01

    In the application of active magnetic bearings(AMB),one of the key problems to be solved is the safety and stabiltiy in the sense of rotor dynamics,The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings,and studies its rotor dynamics performance,including calculation of the natural frequencies with their distribution characteristics,and the critical speeds of the system.one of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magntic bearing-rotor systemby combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.

  8. Effect of solar and magnetic activity on VHF scintillations near the equatorial anomaly crest

    R. P. Singh

    2004-09-01

    Full Text Available The VHF amplitude scintillation recorded during the period January 1991 to December 1993 in the declining phase of a solar cycle and April 1998 to December 1999 in the ascending phase of the next solar cycle at Varanasi (geogr. lat.=25.3°, long.=83.0°, dip=37°N have been analyzed to study the behavior of ionospheric irregularities during active solar periods and magnetic storms. It is shown that irregularities occur at arbitrary times and may last for <30min. A rise in solar activity increases scintillations during winter (November-February and near equinoxes (March-April; September-October, whereas it depresses the scintillations during the summer (May-July. In general, the role of magnetic activity is to suppress scintillations in the pre-midnight period and to increase it in the post-midnight period during equinox and winter seasons, whilst during summer months the effect is reversed. The pre-midnight scintillation is sometimes observed when the main phase of Dst corresponds to the pre-midnight period. The annual variation shows suppression of scintillations on disturbed days, both during pre-midnight and post-midnight period, which becomes more effective during years of high solar activity. It is observed that for magnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time. If the magnetic storm occurred during daytime, then the probability of occurrence of scintillations during the night hours is decreased. The penetration of magnetospheric electric fields to the magnetic equator affects the evolution of low-latitude irregularities. A delayed disturbance dynamo electric field also affects the development of irregularities.

  9. Specific capture of the hydrolysate on magnetic beads for sensitive detecting plant vacuolar processing enzyme activity.

    Zhou, Jun; Cheng, Meng; Zeng, Lizhang; Liu, Weipeng; Zhang, Tao; Xing, Da

    2016-05-15

    Conventional plant protease detection always suffers from high background interference caused by the complex coloring metabolites in plant cells. In this study, a bio-modified magnetic beads-based strategy was developed for sensitive and quantitative detection of plant vacuolar processing enzyme (VPE) activity. Cleavage of the peptide substrate (ESENCRK-FITC) after asparagine residue by VPE resulted in the 2-cyano-6-amino-benzothiazole (CABT)-functionalized magnetic beads capture of the severed substrate CRK-FITC via a condensation reaction between CABT and cysteine (Cys). The catalytic activity was subsequently obtained by the confocal microscopy imaging and flow cytometry quantitative analysis. The sensor system integrated advantages of (i) the high efficient enrichment and separation capabilities of magnetic beads and (ii) the catalyst-free properties of the CABT-Cys condensation reaction. It exhibited a linear relationship between the fluorescence signal and the concentration of severed substrate in the range of 10-600 pM. The practical results showed that, compared with normal growth conditions, VPE activity was increased by 2.7-fold (307.2 ± 25.3 μM min(-1)g(-1)) upon cadmium toxicity stress. This platform effectively overcame the coloring metabolites-caused background interference, showing fine applicability for the detection of VPE activity in real samples. The strategy offers great sensitivity and may be further extended to other protease activity detection. PMID:26797250

  10. Computer aided design of digital controller for radial active magnetic bearings

    Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin

    1992-01-01

    A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.

  11. The magnetic fields at the surface of active single G-K giants

    Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.

    2015-02-01

    Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro

  12. Magnet Architectures and Active Radiation Shielding Study - SR2S Workshop

    Westover, Shane; Meinke, Rainer; Burger, William; Ilin, Andrew; Nerolich, Shaun; Washburn, Scott

    2014-01-01

    Analyze new coil configurations with maturing superconductor technology -Develop vehicle-level concept solutions and identify engineering challenges and risks -Shielding performance analysis Recent advances in superconducting magnet technology and manufacturing have opened the door for re-evaluating active shielding solutions as an alternative to mass prohibitive passive shielding.Publications on static magnetic field environments and its bio-effects were reviewed. Short-term exposure information is available suggesting long term exposure may be okay. Further research likely needed. center dotMagnetic field safety requirements exist for controlled work environments. The following effects have been noted with little noted adverse effects -Magnetohydrodynamic (MHD) effects on ionized fluids (e.g. blood) creating an aortic voltage change -MHD interaction elevates blood pressure (BP) center dot5 Tesla equates to 5% BP elevation -Prosthetic devises and pacemakers are an issue (access limit of 5 gauss).

  13. Magnetic Properties and Activity of Pt-Er/γ-Al2O3 Catalysts

    2006-01-01

    A series of Pt-Er/γ-Al2O3 catalysts containing 0.5%(mass fraction) platinum and 0.05%-1.5% Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. The surface properties of the catalysts were studied by methods of temperature programmed reduction and temperature programmed desorption. The magnetic behavior of Pt-Er-γ-Al2O3 catalysts were studied with a Faraday magnetic balance and the results show that the addition of Er can affect the surface properties, the catalytic activities, and magnetic behavior of the reforming catalysts. It is found that there is a corresponding relationship between the susceptibility and selectivity of Pt-Er-γ-Al2O3 catalysts. The experimental results show that Er plays the role of electron promoter.

  14. Review on numerical modeling of active magnetic regenerators for room temperature applications

    Nielsen, Kaspar Kirstein; Tusek, Jaka; Engelbrecht, Kurt;

    2011-01-01

    The active magnetic regenerator (AMR) is an alternative refrigeration cycle with a potential gain of energy efficiency compared to conventional refrigeration techniques. The AMR poses a complex problem of heat transfer, fluid dynamics and magnetic fields, which requires detailed and robust modeling....... This paper reviews the existing numerical modeling of room temperature AMR to date. The governing equations, implementation of the magnetocaloric effect (MCE), fluid flow and magnetic field profiles, thermal conduction etc. are discussed in detail as is their impact on the AMR cycle. Flow channeling...... effects, hysteresis, thermal losses and demagnetizing fields are discussed and it is concluded that more detailed modeling of these phenomena is required to obtain a better understanding of the AMR cycle....

  15. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  16. MAGNET

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  17. MAGNET

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  18. MAGNET

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  19. MAGNETIC STRUCTURE PRODUCING X- AND M-CLASS SOLAR FLARES IN SOLAR ACTIVE REGION 11158

    We study the three-dimensional magnetic structure of the solar active region 11158, which produced one X-class and several M-class flares on 2011 February 13-16. We focus on the magnetic twist in four flare events, M6.6, X2.2, M1.0, and M1.1. The magnetic twist is estimated from the nonlinear force-free field extrapolated from the vector fields obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory using the magnetohydrodynamic relaxation method developed by Inoue et al. We found that strongly twisted lines ranging from half-turn to one-turn twists were built up just before the M6.6 and X2.2 flares and disappeared after that. Because most of the twists remaining after these flares were less than a half-turn twist, this result suggests that the buildup of magnetic twist over the half-turn twist is a key process in the production of large flares. On the other hand, even though these strong twists were also built up just before the M1.0 and M1.1 flares, most of them remained afterward. Careful topological analysis before the M1.0 and M1.1 flares shows that the strongly twisted lines were surrounded mostly by the weakly twisted lines formed in accordance with the clockwise motion of the positive sunspot, whose footpoints are rooted in strong magnetic flux regions. These results imply that these weakly twisted lines might suppress the activity of the strongly twisted lines in the last two M-class flares.

  20. On the Current Solar Magnetic Activity in the Light of Its Behaviour During the Holocene

    Inceoglu, F.; Simoniello, R.; Knudsen, M. F.; Karoff, C.; Olsen, J.; Turck-Chièze, S.

    2016-01-01

    Solar modulation potential (SMP) reconstructions based on cosmogenic nuclide records reflect changes in the open solar magnetic field and can therefore help us obtain information on the behaviour of the open solar magnetic field over the Holocene period. We aim at comparing the Sun's large-scale magnetic field behaviour over the last three solar cycles with variations in the SMP reconstruction through the Holocene epoch. To achieve these objectives, we use the IntCal13 14C data to investigate distinct patterns in the occurrences of grand minima and maxima during the Holocene period. We then check whether these patterns might mimic the recent solar magnetic activity by investigating the evolution of the energy in the Sun's large-scale dipolar magnetic field using the Wilcox Solar Observatory data. The cosmogenic radionuclide data analysis shows that {≈} 71 % of grand maxima during the period from 6600 BC to 1650 AD were followed by a grand minimum. The characteristics of the occurrences of grand maxima and minima are consistent with the scenario in which the dynamical non-linearity induced by the Lorentz force leads the Sun to act as a relaxation oscillator. This finding implies that the probability for these events to occur is non-uniformly distributed in time, as there is a memory in their driving mechanism, which can be identified via the back-reaction of the Lorentz force.

  1. On the current solar magnetic activity in the light of its behaviour during the Holocene

    Inceoglu, F; Knudsen, M F; Karoff, C; Olsen, J; Turck-Chièze, S

    2015-01-01

    Solar modulation potential (SMP) reconstructions based on cosmogenic nuclide records reflect changes in the open solar magnetic field and can therefore help us obtain information on the behaviour of the open solar magnetic field over the Holocene period. We aim at comparing the Sun's large-scale magnetic field behaviour over the last three solar cycles with variations in the SMP reconstruction through the Holocene epoch. To achieve these objectives, we use the IntCal13 $^{14}$C data to investigate distinct patterns in the occurrences of grand minima and maxima during the Holocene period. We then check whether these patterns might mimic the recent solar magnetic activity by investigating the evolution of the energy in the Sun's large-scale dipolar magnetic field using the Wilcox Solar Observatory data. The cosmogenic radionuclide data analysis shows that $\\sim$71\\% of grand maxima during the period from 6600 BC to 1650 AD were followed by a grand minimum. The occurrence characteristics of grand maxima and mini...

  2. NiFe2O4/activated carbon nanocomposite as magnetic material from petcoke

    Nickel ferrite (NiFe2O4) was supported on activated carbon (AC) from petroleum coke (petcoke). Potassium hydroxide (KOH) was employed with petcoke to produce activated carbon. NiFe2O4 were synthesized using PEG-Oleic acid assisted hydrothermal method. The structural and magnetic properties were determined using thermogravimetric and differential thermal analysis (TGA–DTA), X-ray diffraction (XRD), Fourier Transform Infrared (IR-FT), surface area (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD analysis revealed the cubic spinel structure and ferrite phase with high crystallinity. IR-FT studies showed that chemical modification promoted the formation of surface oxygen functionalities. Morphological investigation by SEM showed conglomerates of spherical nanoparticles with an average particle size of 72 nm and TEM showed the formation of NiFe2O4/carbon nanofibers. Chemical modification and activation temperature of 800 °C prior to activation dramatically increased the BET surface area of the resulting activated carbon to 842.4 m2/g while the sulfur content was reduced from 6 to 1%. Magnetic properties of nanoparticles show strong dependence on the particle size. - Highlights: • TEM showed the formation of NiFe2O4/carbon nanofibers. • Nanoparticles were supported on the activated carbon from petcoke. • Activation dramatically increased the BET surface area to 842 m2/g. • Magnetic properties show strong dependence on the particle size. • Sulphur content was reduced from 6 to 1% with the petcoke activation

  3. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  4. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    Corgié, Stéphane C.

    2012-02-15

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Magnetic Systems Triggering the M6.6-class Solar Flare in NOAA Active Region 11158

    Toriumi, Shin; Bamba, Yumi; Kusano, Kanya; Imada, Shinsuke; Inoue, Satoshi

    2013-01-01

    We report a detailed event analysis on the M6.6-class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activities including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region w...

  6. Design and implement for control system of active magnetic bearings based on DSP

    Cao, Jie; Cao, Lihong

    2005-12-01

    Magnetic-bearings, which support shafts with magnetic levitation rather than mechanical contact, have been in industrial use for decades. Recent technological developments, especially in digital processing and control, have made magnetic bearings a more-robust and cost-effective design solution than ever. The dynamic characteristic of electromagnetic bearing depends upon adopted controller; the active control can makes the electromagnetic bearings to realize complex control and special control. With the development of signal processing technology and modern control theory, the main parts of the control system are the digital signal-processing (DSP) electronics, a power supply, and amplifiers. An Active Magnetic Bearing (AMB) controller is mainly discussed in the paper, which is to be solved to realize this flexible control by hardware design based on DSP using TMS320C32 processor. It is proved by experiment that this kind of controller can optimize for this system, improve its stability and also have a very important referential value on the further study of AMB system.

  7. Conceptual design of an advanced absorption cycle: the double-effect regenerative absorption refrigeration cycle

    Dao, K.

    1978-09-01

    An advanced absorption refrigeration cycle was proposed as a heat-activated refrigeration system. Referred to as the double-effect regenerative absorption cycle of cycle 2R, it improves the performance of the conventional single-effect absorption cycle at high heat source temperatures. The performance of cycle 2R continually improves as input temperatures rise, in contrast to the conventional double-effect absorption cycle that has a sharp cut-off temperature below which it ceases to operate. Cycle 2R operates with two subcycles, the first-effect and the second-effect subcycles.

  8. Integrating Microtissues in Nanofiber Scaffolds for Regenerative Nanomedicine

    Laetitia Keller

    2015-10-01

    Full Text Available A new generation of biomaterials focus on smart materials incorporating cells. Here, we describe a novel generation of synthetic nanofibrous implant functionalized with living microtissues for regenerative nanomedicine. The strategy designed here enhances the effectiveness of therapeutic implants compared to current approaches used in the clinic today based on single cells added to the implant.

  9. Potentialities and limits of electricity generation from regenerative energy sources

    Regenerative energies comprise hydro-, solar-, wind-and geothermal power as well as biomass. Comparisons are made with respect to numbers such running hours per annum, cumulated primary energy consumption (fuel plus construction), efficiency, costs etc. Finally the technological as well as economic potentials of the energies are outlined. Nuclear power plants data are added in some instances for sake of comparison. (Quittner)

  10. Adipose-Derived Stem Cells for Future Regenerative System Medicine

    Yani Lina

    2012-08-01

    Full Text Available BACKGROUND: The potential use of stem cell-based therapies for repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of disease. Despite the advances, the availability of stem cells remaining a challenge for both scientist and clinicians in pursuing regenerative medicine. CONTENT: Subcutaneous human adipose tissue is an abundant and accessible cell source for applications in tissue engineering and regenerative medicine. Routinely, the adipose issue is digested with collagenase or related lytic enzymes to release a heterogeneous population for stromal vascular fraction (SVF cells. The SVF cells can be used directly or can be cultured in plastic ware for selection and expansion of an adherent population known as adipose-derived stromal/stem cells (ASCs. Their potential in the ability to differentiate into adipogenic, osteogenic, chondrogenic and other mesenchymal lineages, as well in their other clinically useful properties, includes stimulation of angiogenesis and suppression of inflammation. SUMMARY: Adipose tissue is now recognized as an accessible, abundant and reliable site for the isolation of adult stem cels suitable for the application of tissue engineering and regenerative medicine applications. The past decade has witnessed an explosion of preclinical data relating to the isolation, characterization, cryopreservation, differentiation, and transplantation of freshly isolated stromal vascular fraction cells and adherent, culture-expanded, adipose-derived stromal/stem cells in vitro and in animal models. KEYWORDS: adipose tissue, adult stem cells, regenerative medicine, mesenchymal stem cells.

  11. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  12. Regenerative burner system for thermoelectric power sources. Technical report

    Guazzoni, G.; Angello, J.; Herchakowski, A.

    1979-07-01

    A thermoelectric power source is being developed to provide a multifuel, silent, maintenance free tactical power generator for forward area and unattended-operation applications. An experimental study of a regenerative burner system for the 500-Watt Thermoelectric Power Source has resulted in significant reduction in fuel consumption and infrared signature of the power source.

  13. Regenerative Snubber For GTO-Commutated SCR Inverter

    Rippel, Wally E.; Edwards, Dean B.

    1992-01-01

    Proposed regenerative snubbing circuit substituted for dissipative snubbing circuit in inverter based on silicon controlled rectifiers (SCR's) commutated by gate-turn-off thyristor (GTO). Intended to reduce loss of power that occurs in dissipative snubber. Principal criteria in design: low cost, simplicity, and reliability.

  14. Erich Regener and the maximum in ionisation of the atmosphere

    Carlson, P

    2014-01-01

    In the 1930s the German physicist Erich Regener (1881-1955) did important work on the measurement of the rate of production of ionisation deep under-water and in the atmosphere. He discovered, along with one of his students, Georg Pfotzer, the altitude at which the production of ionisation in the atmosphere reaches a maximum, often, but misleadingly, called the Pfotzer maximum. Regener was one of the first to estimate the energy density of cosmic rays, an estimate that was used by Baade and Zwicky to bolster their postulate that supernovae might be their source. Yet Regener's name is less recognised by present-day cosmic ray physicists than it should be largely because in 1937 he was forced to take early retirement by the National Socialists as his wife had Jewish ancestors. In this paper we briefly review his work on cosmic rays and recommend an alternative naming of the ionisation maximum. The influence that Regener had on the field through his son, his son-in-law, his grandsons and his students and through...

  15. On the maximum efficiency of the ideal regenerative Stirling cycle

    It is shown that the efficiency of the regenerative Stirling cycle principally does not reach the efficiency of the Carnot cycle, acting in the same range of temperatures. A connection between the degree of regeneration and the characteristics of regenerator is obtained. The maximal efficiency for an ideal Stirling engine is obtained.

  16. Potential of regenerative medicine techniques in canine hepatology.

    Schotanus, Baukje A; Penning, Louis C; Spee, Bart

    2013-12-01

    Liver cell turnover is very slow, especially compared to intestines and stomach epithelium and hair cells. Since the liver is the main detoxifying organ in the body, it does not come as a surprise that the liver has an unmatched regenerative capacity. After 70% partial hepatectomy, the liver size returns to normal in about two weeks due to replication of differentiated hepatocytes and cholangiocytes. Despite this, liver diseases are regularly encountered in the veterinary clinic. Dogs primarily present with parenchymal pathologies such as hepatitis. The estimated frequency of canine hepatitis depends on the investigated population and accounts for 1%-2% of our university clinic referral population, and up to 12% in a general population. In chronic and severe acute liver disease, the regenerative and replicative capacity of the hepatocytes and/or cholangiocytes falls short and the liver is not restored. In this situation, proliferation of hepatic stem cells or hepatic progenitor cells (HPCs), on histology called the ductular reaction, comes into play to replace the damaged hepatocytes or cholangiocytes. For unknown reasons the ductular reaction is often too little and too late, or differentiation into fully differentiated hepatocytes or cholangiocytes is hampered. In this way, HPCs fail to fully regenerate the liver. The presence and potential of HPCs does, however, provide great prospectives for their use in regenerative strategies. This review highlights the regulation of, and the interaction between, HPCs and other liver cell types and discusses potential regenerative medicine-oriented strategies in canine hepatitis, making use of (liver) stem cells. PMID:24422896

  17. Translational Approaches in Tissue Engineering and Regenerative Medicine

    Mao, Jeremy J

    2007-01-01

    This landmark book identifies the current and forthcoming roadblocks to scientific research and technological development in stem cell research, tissue engineering, wound healing, and in-vivo animal models. The book is the first to focus on the translational aspect of tissue engineering and regenerative medicine and bridges the gap between laboratory discovery and clinical applications.

  18. MicroRNAs in Tissue Engineering and Regenerative Medicine

    Krenning, Guido; Harmsen, Martin; Sen, Chandan

    2015-01-01

    The body has a large regenerative capacity to cope with the continuous adverse challenges of high-calorie diets, aging, inflammation, and wear and tear, as well as acute injuries such as myocardial infarction. However, if the amount of sustained damage exceeds the body’s repair capacity, regenerativ

  19. Status of the Regenerative ECLS Water Recovery System

    Carter, Donald Layne

    2010-01-01

    The regenerative Water Recovery System (WRS) has completed its first full year of operation on the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2010, and describes the technical challenges encountered and lessons learned over the past year.

  20. MAGNET

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  1. MAGNET

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  2. Impact of frequency switching on the efficiency of a fully suspended active magnetic bearing system

    Gouws, Rupert

    2012-01-01

    Due to the rising energy (and electricity) cost it is essential that an active magnetic bearing (AMB) system is operated as efficiently as possible. Frequency switching caused by an external source can cause an AMB system to operate at a higher than expected energy level and lower than expected efficiency. The purpose of this paper is therefore to investigate the impact of frequency switching (caused by an external source) on the efficiency of a fully suspended AMB system. The shaft of the fu...

  3. A Timely Intervention: Endoscopic Retrieval of a Swallowed Magnetized Activity Watch

    Jason S. Radowsky

    2016-01-01

    Full Text Available The accidental ingestion of a foreign object often presents a difficult scenario for the clinician. This includes not only the decision to retrieve the material but also the appropriate technique to use. We present the case of a young asymptomatic girl who swallowed a magnetic activity watch, which was then successfully retrieved with an endoscopic snare. To our knowledge, this is the first documented case of salvaging an operational watch from the stomach using an endoscopic technique.

  4. Magnetic Field and Activity of the Single Late-type Giant Beta Ceti

    Tsvetkova, S.; Auriere, M.; Konstantinova-Antova, R.; Wade, G. A.; Bogdanovski, R. G.; Petit, P.

    2012-01-01

    We present the behavior of the magnetic field and activity indicators of the single late-type giant Beta Ceti in the period June 19, 2010 - December 14, 2010. We used spectropolarimetric data obtained with two telescopes - the NARVAL spectropolarimeter at Telescope Bernard Lyot, Pic du Midi, France and the ESPaDOnS spectropolarimeter at CFHT, Hawaii. The data were processed using the method of Least Square Deconvolution which enables to derive the mean photospheric profiles of Stokes I and V ...

  5. A Self-Sensing Active Magnetic Bearing Based on a Direct Current Measurement Approach

    Du Rand, Carel P.; George van Schoor; Niemann, Andries C.

    2013-01-01

    Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance the...

  6. Functional Magnetic Resonance Imaging of Hippocampal Activation During Silent Mantra Meditation

    Engström, Maria; Pihlsgård, Johan; Lundberg, Peter; Axelsson Söderfeldt, Birgitta

    2010-01-01

    Objectives: The objective of the present study was to investigate whether moderately experienced meditators activate hippocampus and the prefrontal cortex during silent mantra meditation, as has been observed in earlier studies on subjects with several years of practice. Methods: Subjects with less than 2 years of meditation practice according to the Kundalini yoga or Acem tradition were examined by functional magnetic resonance imaging during silent mantra meditation, using an on-off block d...

  7. A Timely Intervention: Endoscopic Retrieval of a Swallowed Magnetized Activity Watch.

    Radowsky, Jason S; Lee, Joseph S; Schlussel, Andrew T

    2016-01-01

    The accidental ingestion of a foreign object often presents a difficult scenario for the clinician. This includes not only the decision to retrieve the material but also the appropriate technique to use. We present the case of a young asymptomatic girl who swallowed a magnetic activity watch, which was then successfully retrieved with an endoscopic snare. To our knowledge, this is the first documented case of salvaging an operational watch from the stomach using an endoscopic technique. PMID:26904319

  8. Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles

    Bidollari E

    2012-05-01

    Full Text Available Giulietta Sinigaglia1, Massimiliano Magro1, Giovanni Miotto1, Sara Cardillo1, Enzo Agostinelli2,3, Radek Zboril4, Eris Bidollari2,3, Fabio Vianello11Department of Biological Chemistry, University of Padua, Padua, Italy; 2Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Rome, Italy; 3CNR, Institute Biology and Molecular Pathology, Rome, Italy; 4Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, Olomouc, Czech RepublicAbstract: Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN–RITC–BSAO that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements. The results of this study demonstrated that bare magnetic nanoparticles form stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine serum amine oxidase was approximately 6.4 mg g-1 nanoparticles. The immobilization procedure reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant was increased by a factor of 2. We suggest that the SAMN–RITC–BSAO complex, characterized by a specific activity of 0.81 IU g-1, could be used in the presence of polyamines to create a fluorescent magnetically drivable H2O2 and aldehydes-producing system. Selective tumor cell destruction is suggested as a potential future application of this system.Keywords: amine oxidase, hydrogen peroxide production, superparamagnetic

  9. Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain

    Lizarbe, Blanca; Benítez, Ania; Sánchez-Montañés, Manuel; Lago-Fernández, L.; García-Martín, María L.; López-Larrubia, Pilar; Cerdán, Sebastián

    2013-01-01

    Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non-invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse ...

  10. Modeling and flat control law for a fine pointing system based on semi active magnetic bearings

    Mahout, Vincent; Prats Menéndez, Xavier; Mignot, Jean

    2002-01-01

    In this paper aspects of non linear systems and flat control are studied for a specific application of a satellite fine pointing breadboard based on semi active magnetic bearings actuators. Authors propose a complete 6 degrees of freedom mechanical model which describes the system dynamics. A completely non linear and unstable system is obtained leading to implement non linear control laws. A combination of flat control, which ensures trajectory tracking and path plann...

  11. Permanent Magnet Synchronous Generator Driven Wind Energy Conversion System Based on Parallel Active Power Filter

    FERDI Brahim; DIB Samira; BERBAOUI Brahim

    2014-01-01

    This paper proposes a novel application of the instantaneous P-Q theory in a wind energy conversion system (WECS). The proposed WECS is formed by permanent magnet synchronous generator (PMSG) wind turbine system connected to the grid through parallel active power filter (PAPF). PAPF uses the generated wind energy to feed loads connected at the point of common coupling (PPC), compensates current harmonics and injects the excess of this energy into the grid using P-Q theory as control method. T...

  12. Adaptive control of an active magnetic bearing flywheel system using neural networks / Angelique Combrinck

    Combrinck, Angelique

    2010-01-01

    The School of Electrical, Electronic and Computer Engineering at the North-West University in Potchefstroom has established an active magnetic bearing (AMB) research group called McTronX. This group provides extensive knowledge and experience in the theory and application of AMBs. By making use of the expertise contained within McTronX and the rest of the control engineering community, an adaptive controller for an AMB flywheel system is implemented. The adaptive controller is ...

  13. Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation

    Darling, Warren G.; Wolf, Steven L.; Butler, Andrew J.

    2006-01-01

    The purpose of this research was to determine whether motor cortex excitability assessed using transcranial magnetic stimulation (TMS) is less variable when subjects maintain a visually controlled low-level contraction of the muscle of interest. We also examined the dependence of single motor evoked potential (MEP) amplitude on stimulation intensity and pre-stimulus muscle activation level using linear and non-linear multiple regression analysis. Eight healthy adult subjects received single p...

  14. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    Ferfecki P.

    2009-01-01

    The development and the design of a radial active magnetic bearing (AMB) reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead ...

  15. Scoring inflammatory activity of the spine by magnetic resonance imaging in ankylosing spondylitis: a multireader experiment

    Lukas, Cédric; Braun, Jürgen; van der Heijde, Désirée;

    2007-01-01

    OBJECTIVE: Magnetic resonance imaging (MRI) of the spine is increasingly important in the assessment of inflammatory activity in clinical trials with patients with ankylosing spondylitis (AS). We investigated feasibility, inter-reader reliability, sensitivity to change, and discriminatory ability...... of 3 different scoring methods for MRI activity and change in activity of the spine in patients with AS. METHODS: Thirty sets of spinal MRI at baseline and after 24 weeks of followup, derived from a randomized clinical trial comparing a tumor necrosis factor (TNF)-blocking drug (n = 20) with placebo...... (n = 10) and selected to cover a wide range of activity at baseline and change in activity, were presented electronically in a partial latin-square design to 9 experienced readers from different countries (Europe, Canada). Readers scored each set of MRI 3 times, using 3 different methods including...

  16. Magnetic Field and Activity of the Single Late-type Giant Beta Ceti

    Tsvetkova, S; Konstantinova-Antova, R; Wade, G A; Bogdanovski, R G; Petit, P

    2012-01-01

    We present the behavior of the magnetic field and activity indicators of the single late-type giant Beta Ceti in the period June 19, 2010 - December 14, 2010. We used spectropolarimetric data obtained with two telescopes - the NARVAL spectropolarimeter at Telescope Bernard Lyot, Pic du Midi, France and the ESPaDOnS spectropolarimeter at CFHT, Hawaii. The data were processed using the method of Least Square Deconvolution which enables to derive the mean photospheric profiles of Stokes I and V parameters. We measured the surface-averaged longitudinal magnetic field Bl, which varies in the interval 0.1 - 8.2 G, the line activity indicators CaII K, H_alpha, CaII IR (854.2 nm) and radial velocity. By analyzing the Bl variations, was identified a possible rotational period P = 118 days. A single, large magnetic spot which dominates the field topology is a possible explanation for the Bl and activity indicator variations of Beta Ceti.

  17. MAGNETIC NONPOTENTIALITY IN PHOTOSPHERIC ACTIVE REGIONS AS A PREDICTOR OF SOLAR FLARES

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform well, however, they are less sensitive in predicting large flares. Employing the nonpotentiality predictors from vector fields improves the performance of predicting large flares of magnitude ≥M5.0 and ≥X1.0

  18. HER Catalytic Activity of Electrodeposited Ni-P Nanowires under the Influence of Magnetic Field

    Hung-Bin Lee

    2013-01-01

    Full Text Available Nickel alloy electrodes both in plane and nanowire morphologies were fabricated by electrodeposition in sulfamate bath. With the increasing concentration of phosphorous acid in the electrolyte, the P content in the deposition increased accordingly. In the meantime, the grain refined and even became amorphous in microstructure as the P content was raised. For the nanowire electrode, vibrating sample magnetometer (VSM measurement showed that its coercivity was anisotropic and decreased with P-content. In addition, the easy axis for magnetization of the electrode was parallel to the axial direction of nanowire. The electrocatalytic activity measurement of the electrode in 0.5 M H2SO4 electrolyte showed that the nanowire electrode had higher activity than the plane one, and the alloying of P in Ni electrode raised its hydrogen evolution reaction (HER performance. The enhanced performance of nanowire electrode was attributed to the smaller and more uniform hydrogen bubbles generated in HER reaction. Finally, the applied magnetic field (3.2 T improved significantly the HER activity of Ni but not Ni-P electrode. By using nanowire morphology and applying magnetic field, the current density at −0.75 V HER stability test of the Ni electrode increased fourfold more than its plane counterpart.

  19. Active control of surge in centrifugal compressors using magnetic thrust bearing actuation

    Sanadgol, Dorsa

    This research presents a new method for active surge control in centrifugal compressors with unshrouded impellers using a magnetic thrust bearing to modulate the impeller tip clearance. Magnetic bearings offer the potential for active control of flow instabilities. This capability is highly dependent on the sensitivity of the compressor characteristics to blade tip clearance. If the position of the shaft can be actuated with sufficient authority and speed, the induced pressure modulation makes control of surge promising. The active nature of the magnetic bearing system makes the real-time static and dynamic positioning of the rotor and therefore modulation of the impeller tip clearance possible. A theoretical model is first established that describes the sensitivity of the centrifugal compressor characteristic curve to tip clearance variations induced by axial motion of the rotor. Results from simulation of the nonlinear model for a single stage high-speed centrifugal compressor show that using the proposed control method, mass flow and pressure oscillations associated with compressor surge are quickly suppressed with acceptable tip clearance excursions, typically less than 20% of the available clearance. It is shown that it is possible to produce adequate axial excursions in the clearance between the impeller blades and the adjacent stationary shroud using a magnetic thrust bearing with practical levels of drive voltage. This surge control method would allow centrifugal compressors to reliably and safely operate with a wider range than is currently done in the field. The principal advantage of the proposed approach over conventional surge control methods lies in that, in machines already equipped with magnetic bearing, the method can potentially be implemented by simply modifying controller software. This dispenses with the need to introduce additional hardware, permitting adaptation of existing machinery at virtually no cost. In addition, since the controller is

  20. Development of Active Regions: Flows, Magnetic-Field Patterns and Bordering Effect

    Getling, A. V.; Ishikawa, R.; Buchnev, A. A.

    2016-02-01

    A qualitative analysis is given of the data on the full magnetic and velocity vector fields in a growing sunspot group, recorded nearly simultaneously with the Solar Optical Telescope on the Hinode satellite. Observations of a young bipolar subregion developing within AR 11313 were carried out on 9 - 10 October 2011. Our aim was to form an idea about the consistency of the observed pattern with the well-known rising-tube model of the formation of bipolar active regions and sunspot groups. We find from our magnetograms that the distributions of the vertical [Bv] and the horizontal [Bh] component of the magnetic field over the area of the magnetic subregion are spatially well correlated; in contrast, the rise of a flux-tube loop would result in a qualitatively different pattern, with the maxima of the two magnetic-field components spatially separated: the vertical field would be the strongest where either spot emerges, while the maximum horizontal-field strengths would be reached in between them. A specific feature, which we call the bordering effect, is revealed: some local extrema of Bv are bordered with areas of locally enhanced Bh. This effect suggests a fountainlike spatial structure of the magnetic field near the Bv extrema, which is also hardly compatible with the emergence of a flux-tube loop. The vertical-velocity field in the area of the developing active subregion does not exhibit any upflow on the scale of the whole subregion, which should be related to the rising-tube process. Thus, our observational data can hardly be interpreted in the framework of the rising-tube model.