WorldWideScience

Sample records for active lubricated multirecess

  1. Feasibility of Influencing the Dynamic Fluid Film Coefficients of a Multirecess Journal Bearing by means of Active Hybrid Lubrication

    Santos, Ilmar; Watanabe, F. Y.

    2003-01-01

    The main objective of this research project is the investigation of multirecess hydrostatic journal bearings with active hybrid (hydrostatic and hydrodynamic) lubrication. This paper gives a theoretical contribution to the modeling of this kind of bearing, combining computational fluid dynamics a...... significant modifications of active hybrid forces, which can be useful while reducing vibration and stabilizing rotating machines.......The main objective of this research project is the investigation of multirecess hydrostatic journal bearings with active hybrid (hydrostatic and hydrodynamic) lubrication. This paper gives a theoretical contribution to the modeling of this kind of bearing, combining computational fluid dynamics and...

  2. Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings using Active Hybrid Lubrication

    Santos, Ilmar; Watanabe, F.Y.

    2004-01-01

    Fluid film forces are generated in hydrostatic journal bearings by two types of lubrication mechanisms: the hydrostatic lubrication in the bearing recesses and hydrodynamic lubrication in the bearing lands, when operating in rotation. The combination of both lubrication mechanisms leads to hybrid...... journal bearings (HJB). When part of hydrostatic pressure is also dynamically modified by means of hydraulic control systems, one refers to the active lubrication. The main contribution of the present theoretical work is to show that it is possible to reduce cross-coupling stiffness and increase the...... direct damping coefficients by means of the active lubrication, what leads to rotor-bearing systems with larger threshold of stability....

  3. Effect of Elasticity on Capillary Compensated Flexible Multi-recess Hydrostatic Journal Bearing Operating with Micropolar Lubricant

    Verma, Suresh; Kumar, Vijay; Gupta, Kapil Dev

    2016-01-01

    This paper presents a theoretical study of the effects of bearing shell deformation upon the performance characteristics of a capillary compensated multi-recess hydrostatic journal bearing system operating with micropolar lubricant. The finite element method has been used to solve the modified Reynolds' equation governing the micropolar lubricant flow in the bearing and the three dimensional elasticity equations governing the displacement field in the bearing shell. The elasto-hydrostatic performance characteristics of the bearing are presented for various values of micropolar parameters ( l m and N 2) and for a wide range of the deformation coefficient bar{C}d which takes into account the flexibility of the bearing shell. The computed results indicate that the influence of the bearing shell flexibility is quite significant on the performance characteristics of recessed hydrostatic journal bearing system operating with micropolar lubricant.

  4. Schemes for applying active lubrication to main engine bearings

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The work presented here is a theoretical study that describes two different schemes for the oil injection system in actively lubricated main engine bearings. The use of active lubrication in journal bearings helps to enhance the hydrodynamic fluid film by increasing the fluid film thickness and...... orifices circumferentially located around the bearing surface. The pressure distribution of the hydrodynamic fluid film in journal bearings is governed by the Reynolds equation, which is modified to accommodate the dynamics of active lubrication, and which can be numerically solved using finite...... consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically modified hydrostatic lubrication. In this case, the hydrostatic lubrication is modified by injecting oil at controllable pressures, through...

  5. Load-Induced Confinement Activates Diamond Lubrication by Water

    Zilibotti, G.; Corni, S.; Righi, M. C.

    2013-10-01

    Tribochemical reactions are chemical processes, usually involving lubricant or environment molecules, activated at the interface between two solids in relative motion. They are difficult to be monitored in situ, which leaves a gap in the atomistic understanding required for their control. Here we report the real-time atomistic description of the tribochemical reactions occurring at the interface between two diamond films in relative motion, by means of large scale ab initio molecular dynamics. We show that the load-induced confinement is able to catalyze diamond passivation by water dissociative adsorption. Such passivation decreases the energy of the contacting surfaces and increases their electronic repulsion. At sufficiently high coverages, the latter prevents surface sealing, thus lowering friction. Our findings elucidate effects of the nanoscale confinement on reaction kinetics and surface thermodynamics, which are important for the design of new lubricants.

  6. Three Types of Active Lubrication Systems for the Main Bearings of Reciprocating Machines

    Santos, Ilmar; Pulido, E. E.

    2010-01-01

    In the paper the authors investigate three different schemes for the realization of the controllable oil injection system to be couple to the main engine bearings. The use of active lubrication in fluid film bearings helps to enhance the hydrodynamic fluid film by increasing the fluid film...... engine, where the conventional lubrication of the main bearing is modified by applying radial oil injection. The performance of such a hybrid bearing is compared to an equivalent conventional lubricated bearing in terms of the maximum fluid film pressures, minimum fluid film thicknesses and reduction of...... thickness and consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically modified hydrostatic lubrication. In this case, the hydrostatic lubrication is modified by injecting oil at controllable...

  7. Actively lubricated bearings applied as calibrated shakers to aid parameter identification in rotordynamics

    Santos, Ilmar; Cerda Varela, Alejandro Javier

    2013-01-01

    between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. An accurate characterization of the active oil film forces is of fundamental importance to elucidate the feasibility of applying the active lubrication as non......-invasive perturbation forces, or in other words, as a "calibrated shaker", to perform in-situ rotordynamic tests. The main original contributions of this paper are three: a) the experimental characterization of the active fluid film forces generated in an actively-lubricated tilting-pad journal bearing in the frequency...... systems; c) experimental indication of how small such active fluid film forces (perturbation forces) should be, in order to perturb the rotor-journal bearing system without significantly changing its dynamic characteristics. To validate the experimental procedure and results obtained via actively-lubricated...

  8. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....

  9. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication....... For further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0 to 80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated...

  10. Experimental Identification of Dynamic Coefficients of Tilting-Pad Bearings with Active Lubrication

    Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar

    supply unit, b) servovalves, c) radial injection nozzles, d) displacement sensors and e) well-tuned digital controllers which turn the bearing static and dynamic properties controllable. A scaled-down industrial rotor, composed by a flexible rotor supported by a four rocker LBP tilting-pad journal......This article presents the experimental identification of the equivalent dynamic coefficients of an activelylubricated bearing under different lubrication regimes, namely: passive (no injection flow), hybrid (constant injection flow) and feedback-controlled (variable injection flow) lubrication. The...... bearing featuring active lubrication under light load conditions, is used for such a goal. The experimental identification is performed in the frequency domain by means of the measured FRFs and a finite element model of the rotor. The comparison between results under the different lubrication regimes...

  11. Lubrication fundamentals

    Pirro, DM

    2001-01-01

    This work discusses product basics, machine elements that require lubrication, methods of application, lubricant storage and handling, and lubricant conservation. This edition emphasizes the need for lubrication and careful lubricant selection.

  12. Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity.

    Dezzutti, Charlene S; Brown, Elizabeth R; Moncla, Bernard; Russo, Julie; Cost, Marilyn; Wang, Lin; Uranker, Kevin; Kunjara Na Ayudhya, Ratiya P; Pryke, Kara; Pickett, Jim; Leblanc, Marc-André; Rohan, Lisa C

    2012-01-01

    Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9), KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm. PMID:23144863

  13. Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity.

    Charlene S Dezzutti

    Full Text Available Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC aqueous- (n = 10, lipid- (n = 2, and silicone-based (n = 2 products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9, KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm.

  14. Feasibility of Applying Active Lubrication to Reduce Vibration in Industrial Compressors

    Santos, Ilmar; Nicoletti, Rodrigo; Scalabrin, A.

    2004-01-01

    the orifices distributed over the sliding surface. The dynamic coefficients of tilting-pad bearings with and without active lubrication and their influence on an industrial compressor of 391 Kg, which operates with a maximum speed of 10,200 rpm, are analyzed. In the original compressor design, the...... bearing housings are mounted on squeeze-film dampers in order to ensure reasonable stability margins during full load condition (high maximum continuous speed). Instead of having a combination of tilting-pad bearings and squeeze-film dampers, another design solution is proposed and theoretically......In this paper the complete set of modified Reynolds´ equations for the active lubrication is presented. The solution of such a set of equations allows the determination of stiffness and damping coefficients of actively lubricated bearings. These coefficients are not just dependent on Sommerfeld...

  15. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    Nicoletti, Rodrigo; Santos, Ilmar

    2005-01-01

    In the present paper the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... active lubricated tilting-pad bearing. By applying a simple proportional controller it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the...

  16. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication. For...... further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an...

  17. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    In the present paper, the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... lubricated tilting-pad bearing. By applying a simple proportional controller, it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the feasibility...

  18. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility o...

  19. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility o...

  20. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    Nicoletti, Rodrigo; Santos, Ilmar

    In the present paper, the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... into the model by using two different approaches: (a) linearized active oil film forces and the assumption that the hydrodynamic forces and the active hydraulic forces can be decoupled; (b) equivalent dynamic coefficients of the active oil film and the solution of the modified Reynolds' equation for...... the active lubrication. The second approach based on the equivalent dynamic coefficients leads to more accurate results since it includes the frequency dependence of the active hydraulic forces. Theoretical and experimental results reveal the feasibility of reducing resonance peaks by using the active...

  1. Linear and non-linear control techniques applied to actively lubricated journal bearings

    Nicoletti, R.; Santos, I. F.

    2003-03-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can use the conventional hydrodynamic lubrication. For further reduction of shaft vibrations one can use the active lubrication action, which is based on injecting pressurized oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and a non-linear controller, applied to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an effective vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0-80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated, illustrating clearly one of its most promising applications.

  2. Lubrication fundamentals

    This book is organized under the following headings: lubricating oils; lubricating greases; synthetic lubricants; machine elements; lubricant application; internal combustion engines; stationary gas turbines; steam turbines; hydraulic turbines; nuclear power plants; automotive chassis components; automotive power transmissions; compressors; handling, storing, and dispensing lubricants, in-plant handling for lubricant conservation

  3. Lubricants and lubrication

    Mang, T.; Dresel, W. [eds.] [Fuchs Petrolub AG, Mannheim (Germany)

    2001-07-01

    The use of lubricants is as old as mankind but the scientific analysis of lubrication, friction and wear, as an aspect of tribology is relatively new. Only recently have lubricants begun to be viewed as functional elements in engineering and this group of substances is also receiving increased attention from engineers. This book provides chemists and engineers with a clear interdisciplinary introduction and orientation to all major lubricant applications, focusing not only on the various products but also on specific application engineering criteria. (orig.)

  4. Exploring integral controllers in actively-lubricated tilting-pad journal bearings

    Salazar, Jorge Andrés González; Santos, Ilmar

    2015-01-01

    Active tilting-pad journal bearings with radial oil injection combine good stability properties of conventional tilting-pad journal bearings with the capability of improving their dynamic properties even more by control techniques. The main contribution of this work is the experimental...... investigation of integral controllers for feedback-controlled lubrication with the aim of: a) presetting the static journal center and consequently exploring the changes of bearing dynamic properties; b) obtaining an integral controller capable of re-positioning the static journal eccentricity for matching...... equilibria under conventional hydrodynamic and feedback-controlled lubrication regimes. A novel application is proposed, that tries to build non-invasive perturbation forces and uses the active fluid film forces of the bearing as a calibrated shaker....

  5. Active lubrication applied to radial gas journal bearings. Part 2: Modelling improvement and experimental validation

    Pierart, Fabián G.; Santos, Ilmar F.

    2016-01-01

    Actively-controlled lubrication techniques are applied to radial gas bearings aiming at enhancing one of their most critical drawbacks, their lack of damping. A model-based control design approach is presented using simple feedback control laws, i.e. proportional controllers. The design approach...... combines three main domains: tribology, dynamics and control. The Reynolds equation with radial injection, including piezoelectrically controlled jet, describes the non-linear interaction between bearing surface and rotating shaft. Dynamics of the flexible shaft and rotating parts are modelled aid by...... finite element method and the global model is used as control design tool. Active lubrication allows for significant increase in damping factor of the rotor-bearing system. Very good agreement between theory and experiment is obtained, supporting the multi-physic design tool developed....

  6. Active lubrication applied to internal combustion engines - evaluation of control strategies

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The performance of fluid film bearings in a combustion engine affects key functions such as durability, noise and vibration. Therefore, this work evaluates different control strategies for applying active radial oil injection in the main bearings of internal combustion engines with the aim of...... reducing friction losses and vibrations between the crankshaft and the bearings. The conventional hydrodynamic lubrication is combined with hydrostatic lubrication which is actively modified by radially injecting oil at controllable pressures, through orifices circumferentially located around the bearing...... surface. The behaviour of a main bearing of a medium size combustion engine, operating with radial oil injection and with four different control strategies is analyzed, giving some insights into the minimum fluid film thickness, maximum fluid film pressure, friction losses and maximum vibration levels...

  7. Actively lubricated bearings applied as calibrated shakers to aid parameter identification in rotordynamics

    Santos, Ilmar; Cerda Varela, Alejandro Javier

    2013-01-01

    -invasive perturbation forces, or in other words, as a "calibrated shaker", to perform in-situ rotordynamic tests. The main original contributions of this paper are three: a) the experimental characterization of the active fluid film forces generated in an actively-lubricated tilting-pad journal bearing in the frequency......The servo valve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling...... domain and the application of such a controllable bearing as a calibrated shaker aiming at determining the frequency response function (FRF) of rotordynamic systems; b) experimental quantification of the influence of the supply pressure and servo valve input signal on the FRF of rotor-journal bearing...

  8. Comparative evaluation of tableting compression behaviors by methods of internal and external lubricant addition: Inhibition of enzymatic activity of trypsin preparation by using external lubricant addition during the tableting compression process

    Otsuka, Makoto; Sato, Mitsuyo; Matsuda, Yoshihisa

    2001-01-01

    This study evaluated tableting compression by using internal and external lubricant addition. The effect of lubricant addition on the enzymatic activity of trypsin, which was used as a model drug during the tableting compression process, was also investigated. The powder mixture (2% crystalline trypsin, 58% crystalline lactose, and 40% microcrystalline cellulose) was kneaded with 5% hydroxypropyl cellulose aqueous solution and then granulated using an extruding granulator equipped with a 0.5-...

  9. Is Wetter Better? An Evaluation of Over-the-Counter Personal Lubricants for Safety and Anti-HIV-1 Activity

    Dezzutti, Charlene S.; Brown, Elizabeth R.; Bernard Moncla; Julie Russo; Marilyn Cost; Lin Wang; Kevin Uranker; Kunjara Na Ayudhya, Ratiya P.; Kara Pryke; Jim Pickett; Marc-André Leblanc; Rohan, Lisa C.

    2012-01-01

    Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmo...

  10. Adjustable ETHD lubrication applied to the improvement of dynamic performance of flexible rotors supported by active TPJB

    Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2013-01-01

    pressurized oil directly into the bearing clearance through a nozzle placed in a radial bore at the middle of the pad and connected to a high pressure supply unit by servovalves. The theoretical model is based on a finite element model, where the active TPJB with adjustable lubrication is included using...

  11. Tilting-Pad Journal Bearings with Active Lubrication Applied as Calibrated Shakers: Theory and Experiment

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    In recent years, a continuous research effort has transformed the conventional tilting-pad journal bearing into a mechatronic machine element. The addition of electromechanical elements provides the possibility of generating controllable forces over the rotor as a function of a suitable control...... dependent calibration function, i.e. the transfer function between control signal and force over the rotor. This work presents a theoretical model of the calibration function for a tilting-pad journal bearing with active lubrication. The bearing generates controllable forces by injecting pressurized oil...... signal. Such forces can be applied in order to perform parameter identification procedures in-situ, which enables evaluation of the mechanical condition of the machine in a non-invasive way. The usage of a controllable bearing as a calibrated shaker requires obtaining the bearing specific frequency...

  12. Lubrication background

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Surface topography, including the various physical methods of measuring surfaces, and the various lubrication regimes (hydrodynamic, elastohydrodynamic, boundary, and mixed) are discussed. The historical development of elastohydrodynamic lubrication is outlined. The major accomplishments in four periods, the pre-1950's, the 1950's, the 1960's, and the 1970's are presented.

  13. Lubrication a practical guide to lubricant selection

    Lansdown, A R

    1982-01-01

    Lubrication: A Practical Guide to Lubricant Selection provides a guide to modern lubrication practice in industry, with emphasis on practical application, selection of lubricants, and significant factors that determine suitability of a lubricant for a specific application. Organized into 13 chapters, this book begins with a brief theoretical opening chapter on the basic principles of lubrication. A chapter then explains the choice of lubricant type, indicating how to decide whether to use oil, grease, dry lubricant, or gas lubrication. Subsequent chapters deal with detailed selection of lubric

  14. Developments in lubricant technology

    Srivastava, S P

    2014-01-01

    Provides a fundamental understanding of lubricants and lubricant technology including emerging lubricants such as synthetic and environmentally friendly lubricants Teaches the reader to understand the role of technology involved in the manufacture of lubricants Details both major industrial oils and automotive oils for various engines Covers emerging lubricant technology such as synthetic and environmentally friendly lubricants Discusses lubricant blending technology, storage, re-refining and condition monitoring of lubricant in equipment

  15. Marine Lubricants

    Carter, B. H.; Green, D.

    Marine diesel engines are classified by speed, either large (medium speed) or very large (slow speed) with high efficiencies and burning low-quality fuel. Slow-speed engines, up to 200 rpm, are two-stroke with separate combustion chamber and sump connected by a crosshead, with trunk and system oil lubricants for each. Medium-speed diesels, 300-1500 rpm, are of conventional automotive design with one lubricant. Slow-speed engines use heavy fuel oil of much lower quality than conventional diesel with problems of deposit cleanliness, acidity production and oxidation. Lubricants are mainly SAE 30/40/50 monogrades using paraffinic basestocks. The main types of additives are detergents/dispersants, antioxidants, corrosion inhibitors, anti-wear/load-carrying/ep, pour-point depressants and anti-foam compounds. There are no simple systems for classifying marine lubricants, as for automotive, because of the wide range of engine design, ratings and service applications they serve. There are no standard tests; lubricant suppliers use their own tests or the Bolnes 3DNL, with final proof from field tests. Frequent lubricant analyses safeguard engines and require standard sampling procedures before determination of density, viscosity, flash point, insolubles, base number, water and wear metal content.

  16. Active lubrication applied to radial gas journal bearings. Part 1: Modeling

    Morosi, Stefano; Santos, Ilmar

    2011-01-01

    regulating radial injection of lubricant through the means of piezoelectric actuators mounted on the back of the bearing sleeves. A feedback law is used to couple the dynamic of a simplified rotor-bearing system with the pneumatic and dynamic characteristics of a piezoelectric actuated valve system. Selected...

  17. Aviation Lubricants

    Lansdown, A. R.; Lee, S.

    Aviation lubricants must be extremely reliable, withstand high specific loadings and extreme environmental conditions within short times. Requirements are critical. Piston engines increasingly use multi-grade oils, single grades are still used extensively, with anti-wear and anti-corrosion additives for some classes of engines. The main gas turbine lubricant problem is transient heat exposure, the main base oils used are synthetic polyol esters which minimise thermal degradation. Aminic anti-oxidants are used together with anti-wear/load-carrying, corrosion inhibitor and anti-foam additives. The majority of formulation viscosities are 5 cSt at 100°C. Other considerations are seal compatibility and coking tendency.

  18. Tractor Mechanics. Maintaining and Servicing the Engine, Learning Activity Packages 78-89; Lubricating the Tractor, Learning Activity Packages 90-94; Painting the Tractor, Learning Activity Packages 95-96.

    Clemson Univ., SC. Vocational Education Media Center.

    This series of learning activity packages focuses on three areas of tractor mechanics: (1) maintaining and servicing the engine, (2) lubricating the tractor, and (3) painting the tractor. Each of the nineteen illustrated learning activity packages follows a typical format: introduction, directions, objectives, learning activities, tools and…

  19. New lubricating material for hydraulic turbine equipment

    The release of lubricant into the water stream after passage through hydraulic turbines is an environmental issue of concern. To address concerns about the self-lubricating bearing materials being used to replace the standard grease lubricated bronze bearings for wicket gates, a survey was carried out to determine the availability and use of self-lubricating bearing materials. Included in the survey were users, bearing suppliers and turbine manufacturers. Information derived from the survey included extent of use, historical data, bearing design parameters, lubrication practices, maintenance activity, and environmental issues. Results of the survey are tabulated. It was found that the use of self-lubricating bearing materials is the predominant technology available to satisfy environmental concerns for hydraulic equipment. A number of materials are available based on both metallic and polymer materials. A numer of materials are available that have demonstrated satisfactory service life for at least 10 years. As an alternative, hydraulic equipment can be lubricated with an environmentally friendly lubricant, although there are none commercially available that are biodegradable and non-toxic. In new equipment the cost of using self-lubricating bearings could be less than grease lubricated bronze bearings with automatic lubrication system. 3 refs., 4 figs., 3 tabs

  20. Lubricant composition

    Lubricating compositions and shaped articles composed thereof are described which consist essentially of about 30 to about 60% by weight of an oil of lubricating viscosity, about 20 to about 50% by weight of a high molecular weight polymer, and about 20 about 50% by weight of a heat conductive agent capable of conducting heat away from a bearing surface where it is generated. The high molecular weight polymer may, for example, be polyethylene, having average molecular weights in the range from about 1.0 X 105 to about 5.0 X 106. The oil may be a mineral oil, a diester oil or preferably a synthetic hydrocarbon oil having a viscosity in the range from about 13 to about 1200 mm''/s (Mm2/s) at 380C. (1000F.) the heat conductive agent may be powdered zinc oxide, aluminum powder, or equivalents thereof in this invention. The compositions are semi-rigid gels which may be formed in a mold and used as is, or which may be shaped further after molding. The gels are formed by blending the heat conductive agent and polymer and then blending that mixture with the oil and heating to a temperature above the softening temperature of the polymer for a period of time (About 5 to about 75 minutes) sufficient that the mixture will form a firm, tough solid gel on cooling having an oily surface provided by oil exuding from the gel thus producing a lubricative mass operable for extended periods of time. The heat conductive substance dispersed in the gel aids in dissipating heat produced at the bearing surfaces during use thus improving the performance of the gel both in withstanding higher bulk operating temperatures and in resisting breakdown of the gel under prolonged use

  1. Impact of Lubricant Additives on thePhysicochemical Properties and Activity of Three‐Way Catalysts

    Chao Xie

    2016-04-01

    Full Text Available As alternative lubricant anti‐wear additives are sought to reduce friction and improve overall fuel economy, it is important that these additives are also compatible with current emissions control catalysts. In the present work, an oil‐miscible phosphorous‐containing ionic liquid (IL, trihexyltetradecylphosphonium bis(2‐ethylhexyl phosphate ([P66614][DEHP], is evaluated for its impact on three‐way catalysts (TWC and benchmarked against the industry standard zinc‐dialkyl‐dithio‐phosphate (ZDDP. The TWCs are aged in different scenarios: neat gasoline (no‐additive, or NA, gasoline+ZDDP, and gasoline+IL. The aged samples, along with the as‐received TWC, are characterized through various analytical techniques including catalyst reactivity evaluation in a bench‐flow reactor. The temperatures of 50% conversion (T50 for the ZDDP‐aged TWCs increased by 30, 24, and 25 °C for NO, CO, and C3H6, respectively, compared to the no‐additive case. Although the IL‐aged TWC also increased in T50 for CO and C3H6, it was notably less than ZDDP, 7 and 9 °C, respectively. Additionally, the IL‐aged samples had higher water‐gas‐shift reactivity and oxygen storage capacity than the ZDDP‐aged TWC. Characterization of the aged samples indicated the predominant presence of CePO4 in the ZDDP‐aged TWC aged by ZDDP, while its formation was retarded in the case of IL where higher levels of AlPO4 is observed. Thus, results in this work indicate that the phosphonium‐phosphate IL potentially has less adverse impact on TWC than ZDDP.

  2. Elasto-hydrodynamic lubrication

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  3. Lubricants in Pharmaceutical Solid Dosage Forms

    Jinjiang Li

    2014-02-01

    Full Text Available Lubrication plays a key role in successful manufacturing of pharmaceutical solid dosage forms; lubricants are essential ingredients in robust formulations to achieve this. Although many failures in pharmaceutical manufacturing operations are caused by issues related to lubrication, in general, lubricants do not gain adequate attention in the development of pharmaceutical formulations. In this paper, the fundamental background on lubrication is introduced, in which the relationships between lubrication and friction/adhesion forces are discussed. Then, the application of lubrication in the development of pharmaceutical products and manufacturing processes is discussed with an emphasis on magnesium stearate. In particular, the effect of its hydration state (anhydrate, monohydrate, dihydrate, and trihydrate and its powder characteristics on lubrication efficiency, as well as product and process performance is summarized. In addition, the impact of lubrication on the dynamics of compaction/compression processes and on the mechanical properties of compacts/tablets is presented. Furthermore, the online monitoring of magnesium stearate in a blending process is briefly mentioned. Finally, the chemical compatibility of active pharmaceutical ingredient (API with magnesium stearate and its reactive impurities is reviewed with examples from the literature illustrating the various reaction mechanisms involved.

  4. Control System Design for Active Lubrication with Theoretical and Experimental Examples

    Santos, Ilmar; Scalabrin, A.

    2003-01-01

    This work focuses on the theoretical and experimental behavior of rigid rotors controlled by tilting-pad journal bearings with active oil injection. Initially the mathematical model of the active bearing is presented: The equations that describe the dynamics of hydraulic actuators are introduced...... the control system of the active bearing based on root locus curves. The active system stability is analyzed by calculating its eigenvalues and frequency response curves. The theoretical and experimental results show that this kind of bearing can significantly reduce the vibration level of rotating...

  5. Control system design for flexible rotors supported by actively lubricated bearings

    Nicoletti, Rodrigo; Santos, Ilmar

    2008-01-01

    and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are...... displacement and velocity of the shaft at the bearing positions....

  6. Dynamic Coefficients of a Tilting Pad With Active Lubrication: Comparison Between Theoretical and Experimental Results

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2015-01-01

    This paper deals with the validation of the mathematical model for predicting the equivalent stiffness and damping of an active tilting-pad bearing. The active bearing design includes an injection nozzle in the pad and a hydraulic supply system featuring a servovalve, which enables to modify...

  7. Solid Lubricant For Alumina

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1993-01-01

    Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.

  8. Active Lubrication for Reducing Wear and Vibration: A combination of Fluid Power Control and Tribology

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...

  9. From Hybrid to Actively-Controlled Gas Lubricated Bearings – Theory and Experiment

    Morosi, Stefano

    bearings, tilting pad and flexure pivot gas bearings. These solutions proved to be effective in improving static and dynamic properties of the bearings, however issues related to the manufacturing and accuracy of predictions has so far limited their applications. Another drawback is that passive bearings...... determined by the appearance of subsynchronous whirl instability. In fact, postponing the onset speed of instability poses one of the greatest challenges in high-speed gas bearing design. A great deal of research is devoted to attack such issues, where most propose passive designs such as compliant foil...... offer a low degree of robustness, meaning that an accurate optimization is necessary for each application. Another way of improving gas bearings operation performance is by using active control systems, transforming conventional gas bearings in an electro-mechanical machine component. In this framework...

  10. The determination of trace elements in new and used lubricating oils by neutron activation analysis

    The trace elements on unused and used motor oils of different brands utilized in different light, medium and heavy weight vehicles by neutron activation analysis(N A A) has been measured. To find out the exact amount of trace elements in used motor oil only due to erosion was investigated both qualitatively and quantitatively through neutron activation analysis by thermal neutrons and X ray fluorescence analysis. Forty sample of motor oil with natural basis and ten samples with synthetic basis, plus thirteen samples as filters, gas and oil rings, fix and moving bearing has been provided. For determining the quality of elements in the given samples the time of radiation for short lived elements was from one minute to ten minutes in 1 MW reactor power, using pneumatic rabbit system. The elements Al, V, Ca, and specially S have been recognized. For long lived elements the irradiation time was one hour, one and a half hour and 2 hours. As a whole, for all samples 250 time radiations have been determined. Counting of samples have been done by multichannel analyzers connected to computer P D P/11 and IBM/P C at different times from 200 seconds to 4000 seconds. The time interval between the end of irradiation till start of counting, was from three minutes to a year. Analysis of samples have been provided by software O R A C L in computer P D P/11 and software M A S T E R O in computer IBM/P C. As a whole, nine hundred spectra and analysis have been provide. Thirty one elements have been identified. They are as follows. Al, V, S, Cu, Ca, Mg, Cl, In, Mn, K, Na, As, Br, Cd, Cr, Fe, Sb, Sc, Zn, Ag, Co, Ni, Au, Cs, Eu, Sm, Lu, La, W, Xe, Ba, Hf. These elements were found in all samples. But elements La, Lu, Au, Cs, Ni, Eu, Xe, W, Ba, and Hf were found in some samples. By comparing methods with standards and using thermal neutron flux, the quantitative amounts of elements were found. By using X-ray fluorescence Zn was found in some samples and in some others (used oil) Zn, Br

  11. CALCIUM SOAP LUBRICANTS

    Alaz, Izer; Tugce, Nefise; Devrim, Balköse

    2014-01-01

    The article studies the properties of calcium stearate (CaSt2) and lubricants produced on its basis. These lubricants were prepared using sodium stearate and calcium chloride by subsidence from aqueous solutions. The CaSt2 and the light fraction of crude oil were mixed together to obtain lubricating substances. The article shows that CaSt2 had the melting temperature of 142.8 C that is higher than the melting temperature of crude oil (128 C). The compositions of obtained lubricants were stu...

  12. Grease lubrication in rolling bearings

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  13. Feasibility of Applying Controllable Lubrication Techniques to Reciprocating Machines

    Pulido, Edgar Estupinan

    The use of active lubrication in journal bearings helps to enhance the thin fluid films by increasing the fluid film thickness and consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically...... conventional lubrication conditions, a mathematical model of a reciprocating mechanism connected to a rigid / flexible rotor via thin fluid films was developed. The mathematical model involves the use of multibody dynamics theory for the modelling of the reciprocating mechanism (rigid bodies), finite elements...... method for the modelling of the flexible rotor (crankshaft) and hydrodynamic fluid film theory for describing the dynamics of the thin fluid films. When active lubrication is introduced to modify conventional hydrodynamic lubrication, by means of aplying radial oil injection at controllable oil pressures...

  14. Metal forming and lubrication

    Bay, Niels

    2000-01-01

    Lubrication is essential in most metal forming processes. The lubricant film has two basic functions, [1]: i. to separate the work piece and tool surfaces and ii. to cool the workpiece and the tool. Separation of the two surfaces implies lower friction facilitating deformation and lowering the tool...

  15. Dairy Equipment Lubrication

    1978-01-01

    Lake To Lake Dairy Cooperative, Manitowoc, Wisconsin, operates four plants in Wisconsin for processing milk, butter and cheese products from its 1,300 member farms. The large co-op was able to realize substantial savings by using NASA information for improved efficiency in plant maintenance. Under contract to Marshall Space Flight Center, Midwest Research Institute compiled a handbook consolidating information about commercially available lubricants. The handbook details chemical and physical properties, applications, specifications, test procedures and test data for liquid and solid lubricants. Lake To Lake's plant engineer used the handbook to effect savings in maintenance labor and materials costs by reducing the number of lubricants used on certain equipment. Strict U.S. Department of Agriculture and Food and Drug Administration regulations preclude lubrication changes n production equipment, but the co-op's maintenance chief was able to eliminate seven types of lubricants for ancillary equipment, such as compressors and high pressure pumps. Handbook data enabled him to select comparable but les expensive lubricants in the materials consolidation process, and simplified lubrication schedules and procedures. The handbook is in continuing use as a reference source when a new item of equipment is purchased.

  16. PRODUCTION OF HIGH QUALITY LUBRICATING BASE OIL

    2001-01-01

    @@High VI lubricating oil is produced in hydrocracker through hydrocracking (HDC) and hydroisome-rization reactions. In order to effectively produce high VI component, such as iso-pafaffins and monocyclic naphtenes, it is important to load suitable HDC catalysts and operate them in the appropriate reaction conditions.   Nippon Mitsubishi Oil Corporation (NMOC) and its affiliate company, Nippon Mitsubishi Petroleum Refining Company (NMPRC) reported their original HDC catalysts four years ago in this Japan-China joint se-minar in Beijing[1]. NMOC and NMPRC operate their hydrocracker both in fuel oil production mode and in lubricating oil production mode. In lubricating oil production mode, high VI lubricating oil called VHDC are produced.   In this paper, at first, the advantages of high VI lubricating oil are described. And then it is announced that NMOC and NMPRC have developed a new generation of HDC catalyst with higher cracking activity, higher middle distillate selectivity and longer life than the other commercial HDC catalysts. In addition to those properties, the catalyst is able to yield high VI lubricating oil as well.

  17. Potential of palm kernel activated carbon epoxy (PKAC-E composite as solid lubricant: Effect of load on friction and wear properties

    K.W. Chua

    2014-09-01

    Full Text Available The aim of this study is to investigate the effect of load on the friction and wear properties of palm kernel activated carbon epoxy (PKAC-E composite. The PKAC-E composite specimen was fabricated by hot compression molding method. Dry sliding test was performed by using a pin-on-disc tribometer at various load conditions with constant sliding speed and distance. The experimental results show that wear rate and friction coefficient of PKAC-E composite decreases with applied load. However, at higher load, friction coefficient increases slightly and remains almost invariant with applied load. In addition, some adhesive and abrasive wear types were identified on the worn surfaces. The main conclusion of this work is that PKAC-E composite show unique properties as solid lubricant at low load under unlubricated conditions.

  18. Importance of lubricant analysis

    Sreten R. Perić

    2012-04-01

    Full Text Available Monitoring the performance of lubricants in practical application has multiple significance for both the consumer and the lubricant manufacturer. The primary significance for the consumer is extended life and timely change of lubricants, which keeps the costs of maintenance down. The lubricant manufacturer gains by creating a partner relationship with the consumer, as well as creating the possibility of gathering information about the performance of his product which will serve as the foundation for its further improvement and development. If we wish to maintain technical systems so that they have minimum halts and costs caused by halt removal or system failures, we must monitor data indicating equipment condition throughout the system operation. It is especially difficult to obtain data on equipment condition for parts which cannot be observed due to their position. In such cases, the oil analysis enables a continuous equipment condition monitoring and timely response in order to prevent undesirable prolonged halts.

  19. Fuels and Lubricants Facility

    Federal Laboratory Consortium — Modern naval aircraft and turbine-powered craft require reliable and high-quality fuels and lubricants to satisfy the demands imposed upon them for top performance...

  20. Lubrication by glycoprotein brushes.

    Zappone, Bruno; Ruths, Marina; Greene, George W.; Israelachvili, Jacob

    2006-03-01

    Grafted polyelectrolyte brushes show excellent lubricating properties under water and have been proposed as a model to study boundary lubrication in biological system. Lubricin, a glycoprotein of the synovial fluid, is considered the major boundary lubricant of articular joints. Using the Surface Force Apparatus, we have measured normal and friction forces between model surfaces (negatively charged mica, positively charged poly-lysine and aminothiol, hydrophobic alkanethiol) bearing adsorbed layers of lubricin. Lubricin layers acts like a versatile anti-adhesive, adsorbing on all the surfaces considered and creating a repulsion similar to the force between end-grafted polymer brushes. Analogies with polymer brushes also appear from bridging experiment, where proteins molecules are end-adsorbed on two opposing surfaces at the same time. Lubricin `brushes' show good lubricating ability at low applied pressures (P<0.5MPa), especially on negatively charged surfaces like mica. At higher load, the adsorbed layers wears and fails lubricating the surfaces, while still protecting the underlying substrate from wearing. Lubricin might thus be a first example of biological polyelectrolytes providing `brush-like' lubrication and wear-protection.

  1. Power system with an integrated lubrication circuit

    Hoff, Brian D.; Akasam, Sivaprasad; Algrain, Marcelo C.; Johnson, Kris W.; Lane, William H.

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  2. Vibration active control of tilting pad journal bearing rotor system based on the active lubrication%基于主动润滑可倾瓦轴承转子系统的振动主动控制

    刘宏; 宫晓春; 王晋麟

    2011-01-01

    研究一类可倾瓦支承的单盘非对称转子系统的振动主动控制问题.首先建立了系统的非线性动力学方程,针对主动润滑控制系统设计了BP神经网络PID控制器对转子系统进行振动主动控制.通过计算分析可知,采用基于BP-PID的主动润滑系统能够很好的抑制系统的振幅,使系统在很高的转速时才发生油膜失稳,拓宽转子系统稳定运转的转速范围,在转子系统发生油膜失稳时系统的振幅也能够得到极大程度的控制.%The vibration active control of an unsymmetrical rotor supported by two tilting pad journal bearings is investigated in this paper. Firstly, the nonlinear governing equation of the rotor system is formulated. Then the BP neural network PID controller is designed with regard to the active lubricated control system is applied to suppress the vibration of the concerning rotor system. After calculation and analysis the persuasive results are obtained. The vibration amplitude of the rotor system is greatly reduced by means of the active lubricated control system through the BP neural network PID controller. The whip instability of the controlled system occurs at a very high rotational speed and the stable operation range is greatly broadened. The vibration amplitude can be significantly suppressed by the active lubricated control system when the rotor runs up against the whip instability.

  3. Computational Chemistry and Lubrication

    Zehe, Michael J.

    1998-01-01

    Members of NASA Lewis Research Center's Tribology and Surface Science Branch are applying high-level computational chemistry techniques to the development of new lubrication systems for space applications and for future advanced aircraft engines. The next generation of gas turbine engines will require a liquid lubricant to function at temperatures in excess of 350 C in oxidizing environments. Conventional hydrocarbon-based lubricants are incapable of operating in these extreme environments, but a class of compounds known as the perfluoropolyether (PFAE) liquids (see the preceding illustration) shows promise for such applications. These commercially available products are already being used as lubricants in conditions where low vapor pressure and chemical stability are crucial, such as in satellite bearings and composite disk platters. At higher temperatures, however, these compounds undergo a decomposition process that is assisted (catalyzed) by metal and metal oxide bearing surfaces. This decomposition process severely limits the applicability of PFAE's at higher temperatures. A great deal of laboratory experimentation has revealed that the extent of fluid degradation depends on the chemical properties of the bearing surface materials. Lubrication engineers would like to understand the chemical breakdown mechanism to design a less vulnerable PFAE or to develop a chemical additive to block this degradation.

  4. Temperature dependence on the synthesis of Jatropha bio lubricant

    Full text: Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha bio lubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH3) catalyst. The effects of temperature on the synthesis were studied at a range between 120 degree Celsius and 200 degree Celsius with pressure kept at 10 mbar. The conversion of JME to jatropha bio lubricant was found to be the highest (47 %) at 200 degree Celsius. However, it was suggested that the optimum temperature of the reaction is at 150 degree Celsius due to insignificant improvement in bio lubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10-1 (% wt/ wt.min.degree Celsius)-1. The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha bio lubricant was at -3 degree Celsius and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha bio lubricant, pour point and viscosities are found comparable to other plant based bio lubricant, namely palm oil and soybean based bio lubricant. (author)

  5. Mixed lubricated line contacts

    Faraon, Irinel Cosmin

    2005-01-01

    The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is ess

  6. Glass microsphere lubrication

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  7. Carbon-based tribofilms from lubricating oils.

    Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2016-08-01

    Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid 'tribofilms', which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant's anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon-carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm. PMID:27488799

  8. Limits of Lubrication in

    Olsson, David Dam

    Strategic stainless steel surfaces have been developed and investigated during the project in close cooperation with the Department of Chemistry, DTU with the purpose of enhancing the tribological properties. This has been achieved successfully by applying electrochemical treatments of normal as...... delivered stainless steel surfaces implying microstructure changes in terms of larger ratio of closed lubricant pockets due to selective grain boundary etching. Strategic surfaces have also been created by macroscopic texturing using spherical indentations having a very small edge slope in order to promote...... using plain mineral oil is possible without any lubricant breakdown. In deep drawing, 2mm stainless steel blanks can be drawn to drawing ratio of DR=2.0 over a die entry radius of rd=3mm again using a plain mineral oil containing no additives. In stretch forming, friction is reduced considerably by...

  9. Cooling lubricants; Kuehlschmierstoffe

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  10. Green Lubricants for Metal Forming

    Bay, Niels

    The increasing focus on legislation towards diminishing the impact on working environment as well as external environment has driven efforts to develop new, environmentally benign lubricants for metal forming. The present paper gives an overview of these efforts to substitute environmentally haza...... hazardous lubricants in cold, warm and hot forging as well as sheet forming and punching/blanking with new, less harmful lubricants.......The increasing focus on legislation towards diminishing the impact on working environment as well as external environment has driven efforts to develop new, environmentally benign lubricants for metal forming. The present paper gives an overview of these efforts to substitute environmentally...

  11. High Performing PFPE Nanofluid Lubricants Project

    National Aeronautics and Space Administration — Space missions could benefit from improved lubricant technology. PSI intends to develop novel liquid lubricant formulations which are applicable for future NASA...

  12. Improved Ionic Liquids as Space Lubricants Project

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  13. Carbon-based tribofilms from lubricating oils

    Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L.; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K. R. S.

    2016-08-01

    Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid ‘tribofilms’, which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant’s anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon–carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm.

  14. Evaluating Solid-Lubricant Films

    Fusaro, Robert L.

    1988-01-01

    Report describes experimental techniques for measuring properties of solid-lubricant films. Discusses experimental parameters. Reviews basic pin-on-disk configurations and methods of preparing disks and applying solid lubricants. Techniques for constant-temperature testing, low-contact-stress testing, and temperature-versus-time testing presented. Suggests methods of measuring pin-wear volume and recommends ways of presenting data.

  15. Self lubricating fluid bearings

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid

  16. Lubrication of soft viscoelastic solids

    Pandey, Anupam; Venner, Kees; Snoeijer, Jacco

    2015-01-01

    Lubrication flows appear in many applications in engineering, biophysics, and in nature. Separation of surfaces and minimisation of friction and wear is achieved when the lubrication fluid builds up a lift force. In this paper we analyse soft lubricated contacts by treating the solid walls as viscoelastic: soft materials are typically not purely elastic, but dissipate energy under dynamical loading conditions. We present a method for viscoelastic lubrication and focus on three canonical examples, namely Kelvin-Voigt-, Standard Linear-, and Power Law-rheology. It is shown how the solid viscoelasticity affects the lubrication process when the timescale of loading becomes comparable to the rheological timescale. We derive asymptotic relations between lift force and sliding velocity, which give scaling laws that inherit a signature of the rheology. In all cases the lift is found to decrease with respect to purely elastic systems.

  17. Technological lubricating means: Evolution of materials and ideas

    Godlevskiy, Vladimir A.

    2016-03-01

    The main stages of technological lubricating material development from ancient times to date are described. How the chemical composition of these products changed with time, how new ideas revealing the physical and chemical basics of external media that influence the mechanical processing of materials appeared, how these ideas explained the differences between traditional tribology and specific technology of metal processing are discussed. The question of the possible realization of Rehbinder's adsorption effect in contact zone is also stated. The description of a very captivating problem is related to the explanation of the mechanism of lubricant penetration into the contact zone between the material being processed and the tool. The birth and development of the hypothesis of microcapillary penetration of the lubricant into the dynamically changed intersurface clearance that has finally led to formulating the "necessary kinetic condition of the lubricating activity" is relayed.

  18. Automotive gear oil lubricant from soybean oil

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  19. Advances in lubrication technology and modelling. Novel nanoscale friction modifiers - Piezoviscosity effect in EHL contacts

    Petrone, Vincenzo

    2014-01-01

    2012 - 2013 Lubricant additives have an important influence on the lubrication performances. These additives are active ingredients which can be added during a blending process to base oils in order either to enhance the existing performance of the base fluids or to impart new properties that the base fluids lack. In modern industry, the ever growing demand on the duration and efficiency of machineries stimulates the research for lubricant additives with better performance. At the same tim...

  20. Controllable Lubrication for Main Engine Bearings Using Mechanical and Piezoelectric Actuators

    Estupinan, Edgar; Santos, Ilmar

    2012-01-01

    Although mechatronic systems are nowadays implemented in a large number of systems in vehicles, active lubrication systems are still incipient in industrial applications. This study is an attempt to extend the active lubrication concept to combustion engines and gives a theoretical contribution t...

  1. Structural lubricity under ambient conditions

    Cihan, Ebru; İpek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-01-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000–130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold–graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions. PMID:27350035

  2. Biodegradable lubricants for road vehicles

    Schramm, J. [Denmark Technical Univ., Lyngby (Denmark). Dept. of Mechanical Engineering

    2004-07-01

    This presentation outlined the characteristics of biolubricants and their use in vehicles. Experiments with compression ignition (CI) and spark ignition (SI) engines were also presented. Biolubes can be used in 4-stroke and 2-stroke engines, bearing compressors and hydraulic equipment. Studies have shown that biolubes do not cause unusual engine wear. They are produced from biomass, with the base material being vegetable oils and synthetic esters. Conventional lubricants are produced from fossil fuels, with the base material being mineral oils, polyglycol or synthetic ester. This presentation rated the characteristics of various lubricants in terms of viscosity temperature behaviour, low temperature behaviour, liquid range, oxidation stability, thermal stability, volatility, fire resistance, hydrolytic stability, corrosion protection, seal material compatibility, paints compatibility, miscibility with mineral oil, solubility of additives, lubricating properties, toxicity, and biodegradability. The environmental impacts of biolubes regarding emissions of carbon dioxide, nitrous oxide and particulate matter were discussed along with the impact of combining biolubes with alternative fuels. The future beneficial applications include outboard engines, off road vehicle engines and road vehicle engines. Currently, vegetable oil based biolubricants are 2 to 3 times more expensive than mineral based oils, and synthetic lubricants are even more expensive. It was suggested that future studies should examine the biodegradability of used lubricants, the performance of biodegradable lubricants, alternative fuels and fuel economy. tabs., figs.

  3. Analysis on mechanism of thin film lubrication

    ZHANG Chaohui; LUO Jianbin; HUANG Zhiqiang

    2005-01-01

    It is an important concern to explore the properties and principles of lubrication at nano or molecularscale. For a long time, measurement apparatus for filmthickness of thin film lubrication (TFL) at nano scale havebeen devised on the basis of superthin interferometry technique. Many experiments were carried out to study the lubrication principles of TFL by taking advantages of aforementioned techniques, in an attempt to unveil the mechanism of TFL. Comprehensive experiments were conducted to explore the distinctive characteristics of TFL. Results show that TFL is a distinctive lubrication state other than any known lubrication ones, and serves as a bridge between elastohydrodynamic lubrication (EHL) and boundary lubrication (BL). Two main influence factors of TFL are the solid surface effects and the molecular properties of the lubricant, whose combination effects result in alignment of liquid molecules near the solid surfaces and subsequently lubrication with ordered film emerged. Results of theoretical analysis considering microstructure are consistent with experimental outcomes, thus validating the proposed mechanism.

  4. Investigation of the Wheel-Flange Lubrication of Railway Trains

    A tracer method was applied to investigate the wheel-flange lubrication action of the new Austrian multiple-unit train ''Transalpin''. On electric engines the flanges of the first pair of wheels are lubricated by a pendulum oil pump. This pump starts to work when there is lateral movement of the engine in curves or at high speed on straight lines. The lubricating oil is transferred, while the train is underway, from the first wheel to the inner surface of the rail. From there it should be taken up by the following wheels of the train. In this way the friction between the rails and the wheel flanges can be reduced and as a consequence the wear of material is decreased. Until the present investigation it has not been possible to get quantitative information about the action of this type of lubrication. By adding the tracer 198Au in the form of a colloid to the lubricating oil (specific activity 0.5 Ci/litre), quantitative measurements of the oil transport mechanism could be made on the moving train. The detection of the labelled lubricant was possible even on the last wheels of a train of 44 axles. The oil films which were still detectable on the wheel flanges had a thickness of about 0. 3 microns. By this tracer method, the dependence of lubrication on the speed and the line conditions can also be determined. The tracer method has a wide range of applications in the study of underway conditions in railroad operation including the investigation of the sine movement of trains. (author)

  5. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    Qu, J. [ORNL; Viola, M. B. [General Motors Company

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

  6. Top-of-Rail lubricant

    Alzoubi, M. F.; Fenske, G. R.; Erck, R. A.; Boparai, A. S.

    2000-07-14

    Analysis of the volatile and semivolatile fractions collected after use of the TOR lubricant indicated that other than contaminants in the collection laboratory, no compounds on the EPA's Target Compound Lists (Tables 2 and 5) were detected in these fractions. The data of these qualitative analyses, given in the various tables in the text, indicate only the relative amounts of the tentatively identified compounds. The authors recommend that quantitative analysis be performed on the volatile and semivolatile fractions to allow confirmation of the tentatively identified compounds and to obtain absolute amounts of the detected compounds. Additionally, the semivolatile fraction should be analyzed by liquid chromatography/mass spectrometry to identify compounds that are not chromatographable under the temperature program used for determination of semivolatile compounds. Introducing the top-of-rail (TOR) lubricant into the wheel/rail interface results in a reduction of almost 60% of lateral friction force over the forces encountered under dry conditions. This reveals good potential for energy savings, as well as wear reduction, for railroad companies. In TOR lubrication, an increase in the angle of attack and axle load results in increased lateral friction and rate of lubricant consumption. The most efficient TOR lubricant quantity to be used in the wheel/rail interface must be calculated precisely according to the number of cars, axle loads, train speed, and angle of attack.

  7. Cost-Cutting Powdered Lubricant

    2005-01-01

    Scientists at NASA's Glenn Research Center developed a high-temperature, solid lubricant coating material that is saving the manufacturing industry millions of dollars. The material came out of 3 decades of tribological research, work studying high-temperature friction, lubrication, and the wearing of interacting surfaces that are in relative motion. It was developed as a shaft coating deposited by thermal spraying to protect foil air bearings used in oil-free turbomachinery, like gas turbines, and is meant to be part of a larger project: an oil-free aircraft engine capable of operating at high temperatures with increased reliability, lowered weight, reduced maintenance requirements, and increased power. This advanced coating, PS300, is a self-lubricating bearing material containing chromium oxide, with additions of a low-temperature start up lubricant (silver) and a high-temperature lubricant, making it remarkably stable at high temperatures, and better suited than previously available materials for high-stress conditions. It improves efficiency, lowers friction, reduces emissions, and has been used by NASA in advanced aeropropulsion engines, refrigeration compressors, turbochargers, and hybrid electrical turbogenerators. PS300 is ideal in any application where lowered weight and reduced maintenance are desired, and high-temperature uses and heavy operating speeds are expected. It has notable uses for the Space Agency, but it has even further-reaching potential for the industrial realm.

  8. Metalworking corrosion inhibition/drawing lubricant

    Lipinski, H.F.; Wantling, S.J.

    1980-05-06

    A metalworking lubricant composition is disclosed which is effective as both a corrosion inhibitor and drawing lubricant and comprises a mineral oil and an additive combination of barium lanolate soap and barium sulfonate.

  9. Effect of surface condition on the formation of solid lubricating films at high temperatures

    Hanyaloglu, Bengi; Graham, E. E.

    1992-01-01

    Solid films were produced on active metal or ceramic surfaces using lubricants (such as tricresyl phosphate) delivered as a vapor at high temperatures, and the lubricity of these deposits under different dynamic wear conditions was investigated. A method is described for chemically activating ceramic surfaces resulting in a surface that could promote the formation of lubricating polymeric derivative of TCP. Experiments were carried out to evaluate the wear characteristics of unlubricated cast iron and of Sialon ceramic at 25 and 280 C, and lubricated with a vapor of TCP at 280 C. It is shown that continuous vapor phase lubrication of chemically treated Sialon reduced its coefficient of friction from 0.7 to less than 0.1.

  10. Biodegradation and toxicological evaluation of lubricant oils

    Ivo Shodji Tamada; Paulo Renato Matos Lopes; Renato Nallin Montagnolli; Ederio Dino Bidoia

    2012-01-01

    The aim of this work was to compare different toxicity levels of lubricant oils. The tests were performed using the earthworm (Eisenia andrei), arugula seeds (Eruca sativa) and lettuce seeds (Lactuca sativa), with three types of contaminants (mineral lubricant oil, synthetic lubricant oil and used lubricant oil) for various biodegradation periods in the soil. The toxicity tests indirectly measured the biodegradation of the contaminants. The samples were analyzed at t0, t60, t120 and t180 days...

  11. CYLINDER AND SYSTEM LUBRICATING OILS

    ION ADRIAN GIRBA

    2016-06-01

    Full Text Available Increased thermal efficiency, savings in the fuel consumption and the possibility to burn low quality fuels conducted to an intense development of marine engines in past 20 years, this progress being emphasized by the increased combustion pressures and better combustion properties. These improvements represent a continuous challenge for lubricating oil manufacturers: the rise in combustion temperatures and pressures is making difficult to preserve the oil film in critical areas and the longer strokes of the piston leads to issues of spreading the oil. Adding here the new type of engines using gas or biofuel which requires different types of lubricating oils. Therefore, the success of new generation of engines will depend on lubricating oils quality. :

  12. Tethered Lubricants for Small Systems

    Lynden A. Archer

    2006-01-09

    The objective of this research project is two-fold. First, to fundamentally understand friction and relaxation dynamics of polymer chains near surfaces; and second, to develop novel self-lubricated substrates suitable for MEMS devices. During the three-year performance period of this study the PI and his students have shown using theory and experiments that systematic introduction of disorder into tethered lubricant coatings (e.g. by using self-assembled monolayer (SAM) mixtures or SAMs with nonlinear, branched architectures) can be used to significantly reduce the friction coefficient of a surface. They have also developed a simple procedure based on dielectric spectroscopy for quantifying the effect of surface disorder on molecular relaxation in lubricant coatings. Details of research accomplishments in each area of the project are described in the body of the report.

  13. Growth and opportunities in the lubricants business in Asia

    The demand for lubricants is increasing faster in Asia than any other part of the world. This development is being propelled largely by the expansion of the transportation and manufacturing sectors. By the year 2000, lubricant consumption in Asia will exceed that of Western Europe, Africa and the Middle East combined. Aside from this growth, most of the region is shifting from very low quality to higher quality value-added products. In view of these factors, there has been an explosion of activity over the past few years as lubricant blenders and additive suppliers attempt to position themselves within the market. Over the past year, Chem Systems has undertaken an extensive study of the lubricants business in East Asia, focusing on the evolution of this complex market structure and the identification of attractive opportunities. The overview presented in this paper is a product of these efforts. Whether you are a multinational oil company, independent blender, national oil company or multinational additive suppler, the questions are the same when developing a strategy for the region: regional overview of lubricant business structure; outlook for Asian demand; profile of lube/additives businesses; and successful competition--what is required?

  14. Laboratory services series: a lubrication program

    Bowen, H.B.; Miller, T.L.

    1976-05-01

    The diversity of equipment and operating conditions at a major national research and development laboratory requires a systematic, effective lubrication program. The various phases of this program and the techniques employed in formulating and administering this program are discussed under the following topics: Equipment Identification, Lubrication Requirements, Assortment of Lubricants, Personnel, and Scheduling.

  15. A new lubricant carrier for metal forming

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben;

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers with a s...... extrusion at high reduction and excessive stroke comparing with conventionally lubrication using phosphate coating and soap....

  16. Lubrication greases for nuclear reactors

    Lubricating greases are essential components of many machines used in nuclear power plants. Where these machines are subject to radiation the life of the grease will be reduced due to deterioration of the components of the grease. According to the chemical nature of the grease used a greater or lesser resistance to radiation will be observed. Tests and techniques to evaluate the performance of greases before and after irradiation are described. The results of these tests show that conventional premium greases will resist comparatively low levels of irradiation, whilst greases formulated from correctly selected components can tolerate quite high levels of radiation permitting the machines they lubricate to attain their designed service lives

  17. New approach in lubrication engineering using neutron reflectometry

    According to historic papers in lubrication engineering, lubrication modes between two solids are essentially classified into three groups - boundary lubrication, mixed lubrication and full-film lubrication. This paper proposed some novel approaches for elucidation of lubrication phenomena using neutron reflectometry. For the studies on boundary lubrication, the neutron reflectometry is helpful to in-situ observe the 'absorbed layer' near the solid surface, while for the studies on full-film lubrication, it can reveal the density of lubricants at the solid-liquid interface. Those information will help to clarify the friction mechanism under lubrication in the field of tribology. (author)

  18. Self lubrication of bitumen froth in pipelines

    Joseph, D.D. [Univ. of Minnesota, Minneapolis, MN (United States)

    1997-12-31

    In this paper I will review the main properties of water lubricated pipelines and explain some new features which have emerged from studies of self-lubrication of Syncrudes` bitumen froth. When heavy oils are lubricated with water, the water and oil are continuously injected into a pipeline and the water is stable when in a lubricating sheath around the oil core. In the case of bitumen froth obtained from the Alberta tar sands, the water is dispersed in the bitumen and it is liberated at the wall under shear; water injection is not necessary because the froth is self-lubricating.

  19. Longevity Of Dry Film Lubricants

    Kannel, J. W.; Stockwell, R. D.

    1993-01-01

    Report describes evaluation of dry film lubricants candidate for use in rotary joints of proposed Space Station. Study included experiments and theoretical analyses focused on longevity of sputtered molybdenum disulfide films and ion-plated lead films under conditions partially simulating rolling contact.

  20. Vegetable oil basestocks for lubricants

    Garces, R.; Martinez-Force, E.; Salas, J.

    2011-07-01

    The use of vegetable biodegradable basestocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for biolubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed. (Author).

  1. Automotive Cooling and Lubricating Systems.

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide new mechanics with a source of study materials to assist them in becoming more proficient in their jobs. The course contains four study units covering automotive cooling system maintenance, cooling system repair, lubricating systems, and lubrication…

  2. Thin Film Solid Lubricant Development

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  3. Full Life Wind Turbine Gearbox Lubricating Fluids

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearbox reliability. Thus, verifying and quantifying the potential of PFPE fluid to effect gearbox reliability is the key assumption that would need to be further validated. In summary the proof of concept to use PFPE fluid as wind turbine gear box lubricant was validated with this project. The increase in life time was qualitatively demonstrated and this supports the need for future activity of field trials and laboratory aging studies to quantify the predicted 20 year life. With micro-pitting being the major failure mechanism in the last years, recent publications show that white etch cracking of bearings seem to have the highest impact on wind turbine reliability. With its higher film thicknesses compared to PAO reference oils, PFPE fluids have the potential to reduce this failure occurrence as well.

  4. Friction Regimes in the Lubricants Solid-State Regime

    Schipper, D.J.; Maathuis, O.; Dowson, D; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughness on this transition. The friction measurements showed that in the lubricants solid-state region three lubrication modes can be distinguished: A) full-film lubrication; separation is maintained b...

  5. Lubricated friction between incommensurate substrates

    Vanossi, Andrea; Santoro, Giuseppe E.; Manini, Nicola; Tosatti, Erio; Braun, O. M.

    2007-01-01

    This paper is part of a study of the frictional dynamics of a confined solid lubricant film - modelled as a one-dimensional chain of interacting particles confined between two ideally incommensurate substrates, one of which is driven relative to the other through an attached spring moving at constant velocity. This model system is characterized by three inherent length scales; depending on the precise choice of incommensurability among them it displays a strikingly different tribological beha...

  6. Wet friction materials and lubricants

    Matsumoto, Takayuki

    1988-02-01

    There are wet and dry friction materials used for friction clutches and friction brakes. Wet friction materials include sintered alloys and semimetallic substances. Paper friction materials which are the most common wet friction materials used in automobiles were studied for their performance and their relation to lubricants. All present paper friction materials are non-asbestos paper friction materials. The requirements for paper friction material performance are as follows: (1) The heat resistance and durability are so high that the material can stand sliding for a long time. (2) The friction curve is flat. (3) The mechanical strength, wear resistance, and resistance to oil pressure are high. (4) The coefficient of friction (particularly, of static friction) is very high. (5) Variations in the coefficient of friction with time are low. The friction characteristics and wear of paper friction materials are influenced by the lubricant used together with the paper friction materials. It is necessary to develop materials which are immune to the influence of the lubricant. (11 figs, 3 tabs, 21 refs)

  7. Used lubricants and ecological problems

    This planet is undergoing a severe ecological crisis. The consequent problems include not only how to prevent the destruction of contemporary civilization, but also how to preserve mankind as a biological species. In the onset of this crisis, used lubricants (ULs) play a role that is by no means the least important. Every year, the worldwide discharge of petroleum products to the biosphere is approximately 6 million tonnes, of which more than 50% consists of ULs. The ecologically dangerous components of both commercial lubricants and used lubricants are the polycyclic aromatic hydrocarbons (PAHs) that are originally present in crude oil; polyhalobiphenyls, mainly polychlorobiphenyls (PCBs) of anthropogenic origin; sulfur- and chlorine-containing additives; a number of biocides; organic compounds of metals (lead, barium, antimony, zinc); and nitrites. These substances are distributed in the atmosphere, water, and soil, entering the food chain and appearing in foodstuffs. Moreover, hydrocarbons of petroleum and synthetic oils with a low degree of biodegradability (10-30%) accumulate in the environment and may shift the ecological equilibrium (accelerated multiplication and mutation of microorganisms that assimilate petroleum products). 32 refs., 1 fig

  8. Effect of Lubricant Additives on the WDLC Coating Structure When Tested in Boundary Lubrication Regime

    Yang, L; Neville, A; Brown, A; Ransom, P; Morina, A

    2015-01-01

    Improvements in coating deposition technology enable the mass production of high-quality diamond-like carbon (DLC) coatings at an industrial scale and also increase their use in lubricated contacts. However, the understanding of the interactions of different lubricant additives with this material is not yet fully developed. This study focuses on several fundamental aspects of the tungsten-doped DLC coating (denoted as WDLC) behaviour under boundary lubrication conditions with model lubricants...

  9. Experimental identification of dynamic coefficients of lightly loaded tilting-pad bearings under several lubrication regimes

    Salazar, Jorge G.; Santos, Ilmar F.

    2016-01-01

    ) radial injection nozzles, (d) displacement sensors and (e) well-tuned digital controllers. A scaled-down industrial rotor featuring active lubrication, composed of a flexible rotor supported by a four-rocker load-between-pads tilting-pad bearing under light load condition, is used for this objective. The......This paper presents the identified dynamic coefficients of a lightly loaded actively lubricated bearing under three lubrication regimes: passive, hybrid and feedback-controlled. The goal is to experimentally demonstrate the feasibility of modifying the bearing dynamic properties via active...... lubrication. Dominated by the latest two regimes, the bearing properties become adjustable or controllable due to the injection of either a constant or variable pressurized oil flow. Such a flow is regulated by a hydraulic control system composed of (a) a high-pressure oil supply unit, (b) servovalves, (c...

  10. Influence of Lubricant Pocket Geometry upon Lubrication Mechanisms on Tool-Workpiece Interfaces in Metal Forming

    Shimizu, I; Martins, P.A.F.; Bay, Niels; Andreasen, Jan Lasson; Bech, Jakob I.

    Micro lubricant pockets located on the surface of plastically deforming workpieces are recognized to improve the performance of fluid lubrication in a metal forming processes. This work investigates the joint influence of pocket geometry and process working conditions on micro lubrication mechani...

  11. Solid lubrication technology of HTGR under helium

    Because Helium is used as coolant in High Temperature Gas-cooled Reactor (HTGR), the change of tribological properties of HTGR structure component under Helium is a big problem. Under Helium, tribological properties of material becomes worse and fluid lubrication can not be used. Bonded solid lubrication film and fusion sintering solid film are used in control rod and can solve the tribological problem well. Methods of replenishment solid lubricant are discussed for continuously operating friction components. The necessity and possibility for solid lubrication film used in Helium fan is also discussed

  12. Lubrication System with Tolerance for Reduced Gravity

    Portlock, Lawrence E. (Inventor); McCune, Michael E. (Inventor); Dobek, Louis J. (Inventor)

    2013-01-01

    A lubrication system includes an auxiliary lubricant tank 48, a supply conduit 58 extending from a source of lubricant 26 to the auxiliary lubricant tank. A reduced-G bypass line 108 branches from the conduit and enters the auxiliary tank at a first elevation E.sub.1. The system also includes an auxiliary tank discharge conduit 116, a portion of which resides within the tank. The resident portion has an opening 122 at least partially at a second elevation E.sub.2 higher than the first elevation.

  13. Aqueous lubrication natural and biomimetic approaches

    Spencer, Nicholas D

    2014-01-01

    Man lubricates mostly with oil. Nature lubricates exclusively with water. Pure water is a poor lubricant, but the addition of proteins, especially glycoproteins, can modify surfaces to make them far more lubricating at slow speeds. Understanding how nature does this, and the physical structures involved, is not only important for the understanding of diseases such as osteoarthritis, but also essential for the successful application of articulating implants, such as hips and knees, as well as the development of medical devices such as catheters and contact lenses. A host of important applicati

  14. Ecotoxicological study of used lubricating oil

    Used lubricating oil is more toxic than crude oil and fuel oil since it contains comparatively high levels of heavy metals and polycyclic aromatic hydrocarbons (PAHs). No detail toxicological study has been conducted to evaluate the hazards of used lubricating oil to the environment. This study reports a battery of bioassays using bacteria (Microtox test and Mutatox test), algae, amphipod and shrimp larvae to determine the toxicity of water soluble fraction of used lubricating oil. The results will be used to formulate a complete and extensive ecotoxicological assessment of the impacts of used lubricating oil on aquatic environment

  15. Lubricant for cold stamping of metal

    Tulik, V.T.; Movshovich, V.S.; Speranskiy, B.S.; Tseloval' nikov, V.M.; Yudovich, S.Z.

    1980-03-19

    Hydrogenated thermally thickened vegetable oil and the product of condensation of triethanolamine with the bottoms of synthetic fatty acids are added to the oil, which contains petroleum oil, lanolin and a nonionogenic wetting agent, in order to increase the lubricating properties and to give it mothballing properties. The contents of the components are in %: lanolin, 10-20; nonionogenic wetting agent, 1-5; vegetable oil, 10-50; product of condensation, 1-5 and petroleum oil to 100%. The lubricant is produced through the introduction of the cited components in petroleum oil heated to 65-75/sup 0/C with careful mixing. Comparative laboratory tests of the lubricant samples were conducted through identifying the degree of drawing, the drawing force and the degree of deformation. The tests showed that the new lubricant has high lubricating and washing properties. Also studied was the corrosion stability in a moisture chamber as compared with I-20 A lubricant. The time after which the corrosion appeared in days for the I-20 A is 1 and the sample of the lubricant, 28. Industrial tests showed that the proposed lubricant may be used in sheet stamping production in the manufacture of complex parts of motor vehicles without the additional application of industrial lubricant in conditions of press production.

  16. Direct observation of lubricant additives using tomography techniques

    Chen, Yunyun; Sanchez, Carlos; Parkinson, Dilworth Y.; Liang, Hong

    2016-07-01

    Lubricants play important roles in daily activities such as driving, walking, and cooking. The current understanding of mechanisms of lubrication, particularly in mechanical systems, has been limited by the lack of capability in direct observation. Here, we report an in situ approach to directly observe the motion of additive particles in grease under the influence of shear. Using the K-edge tomography technique, it is possible to detect particular additives in a grease and observe their distribution through 3D visualization. A commercial grease as a reference was studied with and without an inorganic additive of Fe3O4 microparticles. The results showed that it was possible to identify these particles and track their movement. Under a shear stress, Fe3O4 particles were found to adhere to the edge of calcium complex thickeners commonly used in grease. Due to sliding, the grease formed a film with increased density. This approach enables in-line monitoring of a lubricant and future investigation in mechanisms of lubrication.

  17. Estimation of appropriate lubricating film thickness in ceramic-on-ceramic hip prostheses

    Tauviqirrahman, M.; Muchammad, Bayuseno, A. P.; Ismail, R.; Saputra, E.; Jamari, J.

    2016-04-01

    Artificial hip prostheses, consisting of femoral head and acetabular cup are widely used and have affected the lives of many people.However, the primary issue associated with the long term performance of hip prostheses is loosening induced by excessive wear during daily activity. Therefore, an effective lubrication is necessary to significantly decrease the wear. To help understand the lubricating performance of such typical hip joint prostheses, in the present paper a hydrodynamic lubrication model based on Reynolds equationwas introduced. The material pairs of ceramic acetabular cup against ceramic femoral head was investegated.The main aim of this study is to investigate of the effect of loading on the formation of lubricating film thickness.The model of a ball-in-socket configuration was considered assuming that the cup was stationary while the ball was to rotate at a steady angular velocityvarying loads.Based on simulation result, it was found that to promote fluid film lubrication and prevent the contacting components leading to wear, the film thickness of lubricant should be determined carefully based on the load applied. This finding may have useful implication in predicting the failure of lubricating synovial fluid film and wear generation in hip prostheses.

  18. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties

    Gupta, Bhavana; Kumar, N.; Panda, Kalpataru; Dash, S.; Tyagi, A. K.

    2016-01-01

    Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication.

  19. Dynamics of SAMs in Boundary Lubrication

    J. Manojlović

    2013-09-01

    Full Text Available Surfactant molecules have some properties responsible for a number ofremarkable phenomena, such as oriented adsorption of surfactants at surfaces and interfaces. The capability to self -assemble into well- defined structures is often seen as being more important than their surface activity. When a surfactant solution is in contact with a solid surface, the surfactant molecules adsorb onto the surface, ideally forming an adsorbed layer of a high order, termed as a self- assembled monolayer (SAM. Many surface properties are influenced bysuch a film, and therefore, SAMs offer the capability to form ordered organic surface coatings, suitable for various applications, such as wetting or corrosion protection. Due to the flexibility in choosing the molecular architecture, organic molecules have many interesting applications, such as biosensors, in Photoelectronics, in controlling water adsorption or boundary lubricant coating. This paper Focuses on cationic surfactants (quaternary ammonium surfactants with some unique properties that are not present in other surfactants.

  20. Experimental study and modelling of mixed particulate lubrication with MoS2 powder solid lubricant

    H. Wiśniewska-Weinert

    2011-12-01

    Full Text Available Purpose: The purpose of the paper is experimental study and modelling of mixed particulate lubrication with MoS2 powder solid lubricant.Design/methodology/approach: In the present investigation, ball-on-disc experiments were carried out to determine the lubrication performance of MoS2 solid lubricant powder that could be used for hard PVD coatings applied for forging and stamping tools.Findings: The proposed solid lubricant nano- and submicroparticles mixture demonstrates excellent potential for use in mixed lubrication regimes The quasi-hydrodynamic behaviour of solid lubricant and wear debris particles results in low friction coefficients of hard coating – steel ball friction pairs.Research limitations/implications: The solid lubricant particle exfoliation and formation of tribofilms on micro-asperities allow to achieve the boundary lubrication effects which is found to more preferable for steel contacts rather than for hard coatings.Originality/value: The model of mixed lubrication based on non Newtonian behaviour of powder solid lubricant was validated based on the experimental results. Results of calculation of Stribeck curves demonstrate the potential of modelling of friction process by sharing boundary and quasi-hydrodynamic processes.

  1. A Biomimetic Approach to Lubricate Engineering Materials

    Røn, Troels

    electrostatic repulsion between charged PAA blocks, hindering the facile formation of the lubricating layer under cyclic tribological stress. It is well known that graft copolymers anchor more efficiently to surfaces than their diblock counterparts, thus the synthesis and study on lubricating capabilities of...

  2. Pressure-viscosity coefficient of biobased lubricants

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  3. 30 CFR 56.14204 - Machinery lubrication.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery lubrication. 56.14204 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Practices and Operational Procedures § 56.14204 Machinery lubrication. Machinery...

  4. 30 CFR 57.14204 - Machinery lubrication.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery lubrication. 57.14204 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Practices and Operational Procedures § 57.14204 Machinery lubrication. Machinery...

  5. Lubricity studies with biodiesel and related compounds

    Biodiesel, the alkyl esters of vegetable oils or animal fats, possesses excellent lubricity. This feature has rendered biodiesel of special interest for blending with ultra-low sulfur diesel fuels with poor lubricity. However, some minor components, mainly free fatty acids and monoacylglycerols, of ...

  6. An emulsion lubricant for metallic molds

    Dovzhik, O.I.; Cherkayev, V.G.; Min' kovskiy, M.M.; Romanyuk, V.G.; Shapiro, L.D.; Sokolov, V.A.

    1980-02-26

    An emulsion lubricant for metallic molds used in production of concrete products for eliminating adhesion of concrete with the metallic mold, and to eliminate potential for air pore formation on surface of product, contains lanolin production waste materials. Compos. of lubricant %: Synthetic emulsol oxide 5-10; wastes from lanolin production in conversion to wax 5-10; water the rest.

  7. VOLATILIZED LUBRICANT EMISSIONS FROM STEEL ROLLING OPERATIONS

    The report gives results of a study of the volatilization of lubricants used in steel rolling. Data from nine steel mills were used to: define the volatilized portion of lubricants used in rolling; and prepare total oil, grease, and hydraulic material balances for actual and typi...

  8. Turbulence Models of Hydrodynamic Lubrication

    张直明; 王小静; 孙美丽

    2003-01-01

    The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang' s combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.

  9. New lubricating material for hydraulic turbine generators

    The current state-of-the-art of lubricating practices for major hydraulic equipment which is in contact with water, such as wicket gates, were surveyed by the Canadian Electrical Association by means of a questionnaire. Participants in the survey included owners and operators, designers and bearing and lubricant suppliers. Current practices, major technical issues and potential constraints of using alternative, environmentally friendly lubricant practices were identified. It was found that self lubricating bearing materials were commonly used to address environmental concerns. Results of the survey also revealed that regulations for underwater hydraulic equipment have not been established in Canada nor the U.S. Several recommendations for adopting environmentally friendly lubricants into current practices were made

  10. Biodegradation and toxicological evaluation of lubricant oils

    Ivo Shodji Tamada

    2012-12-01

    Full Text Available The aim of this work was to compare different toxicity levels of lubricant oils. The tests were performed using the earthworm (Eisenia andrei, arugula seeds (Eruca sativa and lettuce seeds (Lactuca sativa, with three types of contaminants (mineral lubricant oil, synthetic lubricant oil and used lubricant oil for various biodegradation periods in the soil. The toxicity tests indirectly measured the biodegradation of the contaminants. The samples were analyzed at t0, t60, t120 and t180 days of biodegradation. The used lubricant oil was proved very toxic in all the tests and even after biodegradation its toxicity was high. The mineral and synthetic oils were biodegraded efficiently in the soil although their toxicity did not disappear completely after 180 days.

  11. Squeezing Molecularly thin Lubricant Films between curved Corrugated Surfaces with long range Elasticity

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    The present work investigates the ability of two nm thick lubrication films to stay in a contact and thereby to prevent excessive wear of the surfaces. At this thickness the film is no longer a fluid but it is the very important intermediate between the lubricated and the dry regimes, the latter...... one being associated with devastating wear progress. The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the roughness, curvature and elastic properties of the solid surfaces. We consider linear alkanes of different chain lengths, C......3H8, C4H10, C8H18, C9H20, C10H22, C14H30 and C16H34, confined between corrugated gold surfaces. Well defined molecular layers develop in the lubricant film when the width is of the order of a few atomic diameters. An external squeezing pressure induces discontinuous, thermally activated changes in...

  12. Process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium

    Ginosar, Daniel M.; Fox, Robert V.

    2005-05-03

    A process for producing alkyl esters useful in biofuels and lubricants by transesterifying glyceride- or esterifying free fatty acid-containing substances in a single critical phase medium is disclosed. The critical phase medium provides increased reaction rates, decreases the loss of catalyst or catalyst activity and improves the overall yield of desired product. The process involves the steps of dissolving an input glyceride- or free fatty acid-containing substance with an alcohol or water into a critical fluid medium; reacting the glyceride- or free fatty acid-containing substance with the alcohol or water input over either a solid or liquid acidic or basic catalyst and sequentially separating the products from each other and from the critical fluid medium, which critical fluid medium can then be recycled back in the process. The process significantly reduces the cost of producing additives or alternatives to automotive fuels and lubricants utilizing inexpensive glyceride- or free fatty acid-containing substances, such as animal fats, vegetable oils, rendered fats, and restaurant grease.

  13. Application of a Biodegradable Lubricant in a Diesel Vehicle

    Schramm, Jesper

    2003-01-01

    , NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...

  14. Friction Regimes in the Lubricants Solid-State Regime

    Schipper, D.J.; Maathuis, O.; Dowson, D.; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughn

  15. Determining the Thermal Properties of Space Lubricants

    Maldonado, Christina M.

    2004-01-01

    Many mechanisms used in spacecrafts, such as satellites or the space shuttle, employ ball bearings or gears that need to be lubricated. Normally this is not a problem, but in outer space the regular lubricants that are used on Earth will not function properly. Regular lubricants will quickly vaporize in the near vacuum of space. A unique liquid called a perfluoropolyalkylether (PFPE) has an extremely low vapor pressure, around l0(exp -10) torr at 20 C, and has been used in numerous satellites and is currently used in the space shuttle. Many people refer to the PFPEs as "liquid Teflon". PFPE lubricants however, have a number of problems with them. Lubricants need many soluble additives, especially boundary and anti-wear additives, in them to function properly. All the regular known boundary additives are insoluble in PFPEs and so PFPEs lubricate poorly under highly loaded conditions leading to many malfunctioning ball bearings and gears. JAXA, the Japanese Space Agency, is designing and building a centrifuge rotor to be installed in the International Space Station. The centrifuge rotor is part of a biology lab module. They have selected a PFPE lubricant to lubricate the rotor s ball bearings and NASA bearing experts feel this is not a wise choice. An assessment of the centrifuge rotor design is being conducted by NASA and part of the assessment entails knowing the physical and thermal properties of the PFPE lubricant. One important property, the thermal diffusivity, is not known. An experimental apparatus was set up in order to measure the thermal diffusivity of the PFPE. The apparatus consists of a constant temperature heat source, cylindrical Pyrex glassware, a thermal couple and digital thermometer. The apparatus was tested and calibrated using water since the thermal diffusivity of water is known.

  16. Immobilisation of alpha contaminated lubricating oils in cement matrix

    Alpha contaminated lubricating oil wastes are generated from the reprocessing plants and other alpha handling facilities. Incineration of these spent lubricating oils requires specially designed facility to handle the aerosols of actinide oxides released to the off-gases. Hence immobilisation of these wastes into cement matrix could be a viable alternative. Work was therefore initiated to examine the possibility of immobilising such waste in cement matrix with the help of suitable additives. This work led to the selection of sodium hydroxide and silica fumes as additives for their distinct role in immobilization of such waste in cement. The selected formulation was tested extensively both on laboratory scale and full scale for acceptable waste form. The leach test on laboratory scale indicated negligible release of alpha and beta gamma activity after 180 days. This report gives a brief on the formulation of the admixture and its effect on the immobilization of waste. (author)

  17. Potential of Palm Olein as Green Lubricant Source: Lubrication Analysis and Chemical Characterisation

    Palm olein (POo) is widely used as edible oil in tropical countries. The lubrication properties and chemical compositions of POo being considered to be used as renewable raw material for bio lubricant synthesis. POo is suitable to be used directly as bio lubricant for medium temperature industrial applications. Palm olein has good viscosity index, oxidative stability, flash and fire point as a lubricant source. POo contains unsaturated triacylglycerols (TAG): Palmitin-Olein-Olein, POO (33.3 %), Palmitin-Olein-Palmitin, POP (29.6 %), which are very important to produce good lubricant properties. This unsaturated bond is preferable in chemical modification to produce bio lubricant. The chemical compositions of POo were tested by using high performance liquid chromatography (HPLC) and gas chromatography (GC) techniques. (author)

  18. The role of lubricant analysis in maximizing lubricant and equipment life

    Lubricant analysis has always played an important yet somewhat invisible role in equipment health monitoring. At its most primitive, simple observations and field testing alert equipment operators to changing conditions. At its most advanced, data from performance and analytical tests are used to develop or select optimum lubricants for service, stretch drain intervals, predict remaining equipment life and identify potential equipment or system problems at an incipient stage. Coupled with thermography and vibration analysis, lubricant analysis can become a major component of a comprehensive predictive maintenance (PM) program. Ontario Hydro finds itself at a turning point regarding the use and monitoring of lubricants. Increasing emphasis on equipment reliability and plant life extension, coupled with major, recent changes in lubricant composition in response to environmental, energy and safety concerns, forces an upgrading of many aspects of lubricant monitoring so that it may establish itself as a key part of modern PM practices. This paper discusses some of these aspects. (author)

  19. Graphite and Hybrid Nanomaterials as Lubricant Additives

    Zhenyu J. Zhang

    2014-04-01

    Full Text Available Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inorganic part is responsible for hardness. The relationship between the design parameters of the organic coatings, such as molecular architecture and the lubrication performance, however, remains to be fully elucidated. A survey of current understanding of hybrid nanoparticles as lubricant additives is presented in this review.

  20. PetroChina Continues to Restructure Lubricants Assets

    Zhang Bingxing

    2002-01-01

    @@ PetroChina has recently separated the lubricants assets of the two oil refining enterprises at Liaohe Oil Field and Yumen Oil Field and transferred them to PetroChina Lubricating Oil Company. As a result,the lubricating oil company has currently nine regional lubricants production plants nationwide with six regional sales centers and two research centers,forming a large-scale lubricants complex with integration of production, marketing and technical development.

  1. Developments and unsolved problems in nano-lubrication*

    2001-01-01

    The main achievements in the area of nano liquid film, e.g. the distinction between different lubrication regimes, properties of thin film lubrication, the transition between liquid and solid state, ordered and disordered state, the failure of thin lubricant film, the equivalent viscosity and flowing characteristics of micro-fluid, the influence of solid surfaces on nano-lubrication, thin film lubrication of polymer, superlubricity, have been reviewed and some unsolved problems are discussed.

  2. Device for lubricating sealed support of a cutter bit

    Grushkin, B.N.; Balabashin, B.P.; Popov, L.N.; Spivak, A.I.; Yudin, A.S.; Zhulayev, V.P.

    1982-01-01

    A device is proposed for lubricating the sealed support of a cutter bit. It contains a vessel arranged in the bit clamp for supplying the lubricant material, a pump with piston and a closed system of lubricant-supplying channels. In order to improve the efficiency of lubrication during drilling with above-bit shock absorbers by accelerating the circulation of the lubricating material, the pump piston is installed with the potential of interacting with the shock absorber.

  3. Upgrading the lubricity of bio-oil via homogeneous catalytic esterification under vacuum distillation conditions

    In order to accelerate the application of bio-oil in the internal combustion engines, homogeneous catalytic esterification technology under vacuum distillation conditions was used to upgrade the crude bio-oil. The lubricities of the crude bio-oil (BO) and refined bio-oil with homogeneous catalytic esterification (RBOhce) or refined bio-oil without catalyst but with distillation operation (RBOwc) were evaluated by a high frequency reciprocating test rig according to the ASTM D 6079 standard. The basic physiochemical properties and components of the bio-oils were analyzed. The surface morphology, contents and chemical valence of active elements on the worn surfaces were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy, respectively. The results show that RBOhce has better lubricities than those of BO, but RBOwc has worse lubricities than those of BO. The tribological mechanisms of the bio-oils are attributed to the combined actions of lubricating films and factors that will break the film. Compared with BO, plenty of phenols in RBOwc results in corrosion of the substrate and destroys the integrity of the lubricating films, which is responsible for its corrosive wear. However, more esters and alkanes in RBOhce contribute to forming a complete boundary lubricating film on the rubbed surfaces which result in its excellent antifriction and antiwear properties. - Highlights: • Refined bio-oil was prepared through homogeneous catalytic esterification technology. • Properties of the bio-oils before and after refining were assessed by HFRR. • Refined bio-oil showed better lubricities than crude bio-oil. • More esters and alkanes in refined bio-oil contributed to forming superior boundary lubrication

  4. A randomized controlled trial comparing nonoxynol-9 lubricated condoms with silicone lubricated condoms for prophylaxis

    Roddy, R E; M. Cordero; Ryan, K.A.; Figueroa, J.

    1998-01-01

    OBJECTIVE: We tested the effect of nonoxynol-9 (N-9) in condom lubrication on the risk of acquiring STD and genital discomfort. METHODS: The study was a triple masked, randomised controlled trial comparing N-9 lubricated condoms with plain silicone lubricated condoms among Dominican female sex workers. RESULTS: Randomisation provided two groups (313 for N-9 and 322 for plain) similar in baseline characteristics, but extensive loss to follow up occurred (56 women in each group completed ...

  5. Vegetable oil basestocks for lubricants

    Garcés, Rafael

    2011-03-01

    Full Text Available The use of vegetable biodegradable basestocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for biolubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed.

    El uso de bases vegetales biodegradables para aceites lubricantes presenta varias ventajas sobre las mucho más extendidas bases minerales. Estas ventajas se centran sobre todo en su biodegradabilidad, en ser un recurso renovable de producción local, en su lubricidad y en su índice de viscosidad, presentando además costes más bajos que las bases sintéticas. Sin embargo, estas ventajas no han extendido el uso de bases vegetales ni en industria ni en automoción debido a su menor estabilidad y sus mayores puntos críticos de fluidez. Los aceites vegetales son ésteres de ácidos grasos y glicerol y sus propiedades físico-químicas dependen principalmente de su composición acílica. Así, para asegurar los máximos niveles de

  6. Solid lubricating films for extreme environments

    Advances in solid lubricating films for vacuum and high temperature applications are reviewed. Traditional lubricants (e.g. graphite and dichalcogenides) are being improved and new lubricating materials (e.g. amorphous carbons) are being discovered with the aid of recent developments in deposition processes and surface analytical methods. Ion bombardment treatments have increased film adhesion, lowered friction coefficients and enhanced the wear life of MoS2 films, as well as created new forms of lubricating carbons (amorphous, polymeric and diamond-like). Composite films and multilayer coating treatments are providing extra protection for surface and films against environmental degradation. Ultralow friction coefficients (2 as well as diamond-like carbon films. Material selection, in some cases (e.g. thin metal films), can now be made on scientific, principles, although many tribomaterials are still being developed by trial and error methods

  7. Ionic Liquids as Advanced Lubricant Fluids

    Francisco-José Carrión

    2009-08-01

    Full Text Available Ionic liquids (ILs are finding technological applications as chemical reaction media and engineering fluids. Some emerging fields are those of lubrication, surface engineering and nanotechnology. ILs are thermally stable, non-flammable highly polar fluids with negligible volatility, these characteristics make them ideal candidates for new lubricants under severe conditions, were conventional oils and greases or solid lubricants fail. Such conditions include ultra-high vacuum and extreme temperatures. Other very promising areas which depend on the interaction between IL molecules and material surfaces are the use of ILs in the lubrication of microelectromechanic and nanoelectromechanic systems (MEMS and NEMS, the friction and wear reduction of reactive light alloys and the modification of nanophases.

  8. Biodegradable lubricants - ''the solution for future?''

    The environmental impact of lubricants use concern the direct effects from spills but also the indirect effects such as their lifetime and the emissions from thermal engines. The biodegradable performances and the toxicity are the environmental criteria that must be taken into account in the development and application of lubricants together with their technical performances. This paper recalls first the definition of biodegradable properties of hydrocarbons and the standardized tests, in particular the CEC and AFNOR tests. Then, the biodegradable performances of basic oils (mineral, vegetal, synthetic esters, synthetic hydrocarbons etc..), finite lubricants (hydraulic fluids..) and engine oils is analyzed according to these tests. Finally, the definition of future standards would take into account all the environmental characteristics of the lubricant: biodegradable performances, energy balance (CO2, NOx and Hx emissions and fuel savings), eco-toxicity and technical performances (wearing and cleanliness). (J.S.)

  9. Numerical Simulation of Piston Ring Lubrication

    Felter, Christian Lotz

    2006-01-01

    and the angle between the normals of the solid and the free surface. The numerical model is compared with the results from an analytical solution of Reynolds equation for a fixed incline slider bearing. Then results from a more compli- cated simulation of piston ring lubrication is given and discussed.......This paper describes a numerical method that can be used to model the lubrication of piston rings. Classical lubrication theory is based on the Reynolds equation which is ap- plicable to confined geometries and open geometries where the flooding conditions are known. Lubrication of piston rings...... extended to include also the oil film outside the piston rings. The numerical model consists of a 2D free surface code that solves the time dependent compressible Navier-Stokes equations. The equations are cast in Lagrangian form and discretized by a meshfree moving least squares method using the primitive...

  10. Boundary friction on molecular lubricants: rolling mode?

    A theoretical model is proposed for low-temperature friction between two smooth rigid solid surfaces separated by lubricant molecules, admitting their deformations and rotations. The appearance of different modes of energy dissipation (by 'rocking' or 'rolling' of lubricants) at slow relative displacement of the surfaces is shown to be accompanied by stick-and-slip features and reveals a nonmonotonic (mean) friction force vs external load

  11. Advanced lubrication systems and materials. Final report

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  12. New Lubricants Protect Machines and the Environment

    2007-01-01

    In 1994, NASA and Lockheed Martin Space Operations commissioned Sun Coast Chemicals of Daytona Inc to develop a new type of lubricant that would be safe for the environment and help "grease the wheels" of the shuttle-bearing launcher platform. Founded in 1989, Sun Coast Chemicals is known amongst the racing circuit for effective lubricants that help overcome engine and transmission problems related to heat and wear damage. In a matter of weeks, Sun Coast Chemical produced the biodegradable, high-performance X-1R Crawler Track Lube. In 1996, Sun Coast Chemical determined there was a market for this new development, and introduced three derivative products, Train Track Lubricant, Penetrating Spray Lubricant, and Biodegradable Hydraulic Fluid, and then quickly followed with a gun lubricant/cleaner and a fishing rod and reel lubricant. Just recently, Sun Coast introduced the X-1R Corporation, which folds the high-performance, environmentally safe benefits into a full line of standard automotive and specially formulated racing products. The entire X-1R automotive product line has stood up to rigorous testing by groups such as the American Society of Mechanical Engineers, the Swedish National Testing and Research Institute, the Department of Mechanical Engineering at Oakland University (Rochester, Michigan), and Morgan-McClure Motorsports (Abingdon, Virginia). The X-1R Corporation also markets "handy packs" for simple jobs around the house, consisting of a multi-purpose, multi-use lubricant and grease. In 2003, The X-1R Corporation teamed up with Philadelphia-based Penn Tackle Manufacturing Co., a leading manufacturer of fishing tackle since 1932, to jointly develop and market a line of advanced lubrication products for saltwater and freshwater anglers

  13. The use of radioactive tracers in lubrication and wear research

    In many lubrication and wear problems, processes occurring on a very small scale have to be studied and the great sensitivity of radioactive tracer methods has been successfully applied. Several examples of such applications are cited from the work of the Lubrication and Wear Division of the National Engineering Laboratory in the United Kingdom. The quantitative relation between metal transfer and boundary friction is studied as a function of sliding velocity, surface roughness and the presence of lubricants. In order to study the distribution of wear, cast iron plugs containing Ir192 are inserted in the liners of a Diesel engine and the radioactivity present in oil samples is measured. Radioactive iron and iron oxide particles are used to study then role in the wear process. The reactivity of strained metal surface is studied with the aid of C14- labelled stearic acid and of S35 in solution. The reaction rates of gear oil additive are being studied by passing short electric-current pulses through metal wires immersed in solutions of compounds labelled with S35 and P32. The build-up of anti-wear films on the surface of gear teeth is being studied as a function of lead, speed and running time. A problem encountered in many of these applications is the conversion of the measured activity into absolute quantities of materials present in surface films or in wear debris. Calibration methods have been developed for this purpose. (author)

  14. Foaming characteristics of refigerant/lubricant mixtures

    Goswami, D.Y.; Shah, D.O.; Jotshi, C.K.; Bhagwat, S.; Leung, M.; Gregory, A.

    1997-04-01

    The air-conditioning and refrigeration industry has moved to HFC refrigerants which have zero ozone depletion and low global warming potential due to regulations on CFC and HCFC refrigerants and concerns for the environment. The change in refrigerants has prompted the switch from mineral oil and alkylbenzene lubricants to polyolester-based lubricants. This change has also brought about a desire for lubricant, refrigerant and compressor manufacturers to understand the foaming properties of alternative refrigerant/ lubricant mixtures, as well as the mechanisms which affect these properties. The objectives of this investigation are to experimentally determine the foaming absorption and desorption rates of HFC and blended refrigerants in polyolester lubricant and to define the characteristics of the foam formed when the refrigerant leaves the refrigerant/ lubricant mixture after being exposed to a pressure drop. The refrigerants being examined include baseline refrigerants: CFC-12 (R-12) and HCFC-22 (R-22); alternative refrigerants: HFC-32 (R-32), R-125, R-134a, and R-143a; and blended refrigerants: R-404A, R-407C, and R-410A. The baseline refrigerants are tested with ISO 32 (Witco 3GS) and ISO 68 (4GS) mineral oils while the alternative and blended refrigerants are tested with two ISO 68 polyolesters (Witco SL68 and ICI RL68H).

  15. Solubility modeling of refrigerant/lubricant mixtures

    Michels, H.H.; Sienel, T.H.

    1996-12-31

    A general model for predicting the solubility properties of refrigerant/lubricant mixtures has been developed based on applicable theory for the excess Gibbs energy of non-ideal solutions. In our approach, flexible thermodynamic forms are chosen to describe the properties of both the gas and liquid phases of refrigerant/lubricant mixtures. After an extensive study of models for describing non-ideal liquid effects, the Wohl-suffix equations, which have been extensively utilized in the analysis of hydrocarbon mixtures, have been developed into a general form applicable to mixtures where one component is a POE lubricant. In the present study we have analyzed several POEs where structural and thermophysical property data were available. Data were also collected from several sources on the solubility of refrigerant/lubricant binary pairs. We have developed a computer code (NISC), based on the Wohl model, that predicts dew point or bubble point conditions over a wide range of composition and temperature. Our present analysis covers mixtures containing up to three refrigerant molecules and one lubricant. The present code can be used to analyze the properties of R-410a and R-407c in mixtures with a POE lubricant. Comparisons with other models, such as the Wilson or modified Wilson equations, indicate that the Wohl-suffix equations yield more reliable predictions for HFC/POE mixtures.

  16. A formula for lubrication of journal boxes

    Gimayev, R.N.; Aliyev, R.A.; Dolukhanov, R.Ts.; Kondrasheva, N.K.; Ol' kov, P.L.; Rogacheva, O.I.; Spivak, Ye.A.

    1982-01-01

    In order to improve lubricating properties of oils used for journal boxes, an extract that boils off at 275-470/sup 0/, 60-75, is used, with a thermal cracking residue that is ADS 25-40. The latter consists of oil fraction extracts in a mixture with a catalytically cracked heavy gasoil (low-coking). Thus, content of aromatic hydrocarbons and asphalt-tar substances determines its positive lubricating properties. Example: the lubricant derived by direct compounding of a selectively cleaned oil fraction extract (SE), having a boiling temp. of 275-470/sup 0/, thermal ADS cracking residue and density of 1.100 is prepared with a component ratio 75:25. The derived oil has a viscosity of 42.0 sSt/50/sup 0/; dynamic viscosity 110 pz/-10/sup 0/; boiling temp. in an open crucible is 140/sup 0/; congelation temp. -42/sup 0/; critical loading, determined by a four-bearing friction machine, 85 kgs; thickness of lubricating layer, determined by centrifuge, 3.35 mkm. Comparison of physicochemical properties of the given and known lubricants shows that the tested item has better viscosity and lubricating characteristics. Oil test samples satisfy all GOST 610-72 requirements for summer-type axle oils.

  17. Characteristics of lubrication at nanoscale in two-phasefluid system

    ZHANG; Chaohui(张朝辉); WEN; Shizhu(温诗铸); LUO; Jianbin(雒建斌)

    2002-01-01

    Thin film lubrication (TFL) is a condition in which the lubricating features between two surfaces in relative motion are determined by the combination of the properties of the surfaces and the lubricant and viscosity of the lubricant. The effects imposed by couple stress on lubrication characteristics cannot be disregarded in this regime where the ordered molecules dominate the fluid field. There are different tensor measures and constitutive equations in this case other than Newtonian case. The lubrication of two-phase (solid phase and liquid phase) fluid is investigated in this paper. The existence of couple stress will enhance the lubricant viscosity and hence increase the film thickness and improve the load-carrying capability. Size-dependent effects can be seen in the lubrication with couple stress, and the thinner the lubricating film is, the more obvious the effect will be.

  18. Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1

    Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

    1997-07-01

    Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

  19. STARCH-LUBRICANT COMPOSITION FOR IMPROVED LUBRICITY AND FLUID LOSS IN WATER-BASED DRILLING MUDS

    Water-based mud systems that approach the performance of oil-based muds are an ongoing effort. Starch-lubricant compositons were developed as environmentally safe, non-toxic, stable dispersions in water-based drilling muds. Starch-lubricant compositions were prepared by jet cooking mixtures of wat...

  20. Lubricity of bio-based lubricant derived from chemically modified jatropha methyl ester

    N.W.M. Zulkifli

    2014-06-01

    Full Text Available Many studies have been undertaken with a view to using chemically modified vegetable oil as a bio-based lubricant. This research focused on tribological properties of trimethylolpropane (TMP ester, which is derived from renewable resource. This TMP ester was produced from jatropha methyl ester; it is biodegradable and has high lubricity properties. Two different conditions of lubrication are being investigated: extreme pressure and anti-wear. It was found that the TMP ester (Jatropha has better lubricity in terms of wear and friction compared to paraffin oil under extreme pressure conditions. TMP ester (Jatropha has similar characteristics to fully formulated lubricant (FFL, in terms of the coefficient of friction (CoF. In terms of the anti-wear condition, TMP ester (Jatropha has the lowest CoF; however it also has the high wear scar diameter. This is due to corrosion and chemical attack.

  1. Mechanisms of lubrication and wear of a bonded solid lubricant film

    Fusaro, R. L.

    1980-01-01

    To obtain a better understanding of how bonded solid lubricant films lubricate and wear (in general), the tribological properties of polyimide-bonded graphite fluoride films were studied (in specific). A pin-on-disk type of testing apparatus was used; but in addition to sliding a hemispherically tipped rider, a rider with a 0.95 mm diameter flat area was slid against the film. This was done so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurred. In the first, the film supported the load. The lubricating mechanism consisted of the shear of a thin surface layer (of the film) between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress.

  2. Determination of service life of aviation lubricants

    Kuznetsov, V.G.; Novosartov, G.T.; Echin, A.I.; Bakunin, V.N.

    1985-11-01

    A method of evaluating the quality of expensive lubricants was developed based on determination of thermo-oxidative stability on a TSM-1 apparatus. This allowed measurement of the content of additives and qualitative properties associated with them during oxidation under laboratory conditions. By developing graphs showing dependence of operating properties sharply degrade was determined. This minimum additive content became the criterion for assessing the working capability of the lubricant and determining the limiting length of its service. Thus, for lubricant B-3V, the most important operating characteristics are thermooxidative stability and critical loading. Samples were tested for the additives PODFA and kaptaks and for indicators of antioxidative and antiseizing properties. Experiments showed little change in characteristics during 10 h of oxidation. Laboratory tests showed that the critical loading began to drop when the kaptaks level fell below 0.2%, so this was taken as the minimal acceptable level. Similarly, for lubricant IPM-10, the most important operating property is its thermo-oxidative stability. Tests showed that indicators of thermo-oxidative stability all began to fall when the antioxidative additive fell below 0.1%. This approach allows rapid determination of service criteria for any aviation lubricant with critical additives. In a practical test, B-3V lubricant had been changed in the MI-8 helicopter every 200-300 h, although its kaptaks level was still 0.65%; even at 900 hours it had fallen to only 0.36%. This would allow the service life to be tripled, a conclusion verified by determination of physicochemical and operating properties of the lubricant at that point. 4 references, 2 figures.

  3. Potentially useful polyolester lubricant additives an overview of antioxidants, antiwear and antiseize compounds

    Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

    1996-11-01

    Reliable service lubrication of compressors with polyolesters that do not contain additives is the optimal goal for hermetic compressor use. Chlorine derived from CFC and HCFC refrigerants is reported to have effective antiwear properties and negates the widespread use of additives in mineral oil lubricated systems. The use of antioxidants for mineral oil and polyolesters have been reported; antioxidant additive activity seems essential for polyolesters.- Antiwear and antiseize additives seem to be a short term goal for use with polyolesters. High silicone aluminum to steel wear seems to be a primary target for additive use. The interaction of specific heteroatom organic compounds with highly polar surface active synthetic polyolester lubricants is complex. Results of an extensive literature search describe results from a service base determined at ambient conditions. Known lubricant additives used in the hermetic compressor industry, the. mode of action of several types of additives and some lubricant additive chemistry that demonstrates selective thermal stability in conjunction with the chemical structure are examined.

  4. Liquid-liquid extraction and adsorption on solid surfaces applied to used lubricant oils recovery

    J. L. Assunção Filho

    2010-12-01

    Full Text Available In this work, the recovery of base oils from waste lubricants following the steps of solvent extraction, adsorption on solids and solvent removal by evaporation was evaluated. In the step of solvent extraction, the most efficient was 1-butanol, followed by tert-butanol, 2-propanol and ethanol; for the step of adsorption, activated carbon was the most effective solid for PAH removal, confirming the similarity of these compounds with petroleum aromatic fractions. Thus, the optimum solvent-adsorbent pair for the recovery of used lubricant oils through the proposed methodology was 1-butanol/activated carbon. At the end of the process, it was possible to establish a set of steps that permit the recovery of lubricant base oils with lower content of contaminants.

  5. Nanoscale Organic−Inorganic Hybrid Lubricants

    Kim, Daniel

    2011-03-15

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona brush that stabilizes them against aggregation. When these hybrid particles are dispersed in poly-α-olefin (PAO) oligomers, they form homogeneous nanocomposite fluids at both low and high particle loadings. By varying the volume fraction of the SiO2 nanostructures in the PAO nanocomposites, we show that exceptionally stable hybrid lubricants can be created and that their mechanical properties can be tuned to span the spectrum from simple liquids to complex gels. We further show that these hybrid lubricants simultaneously exhibit lower interfacial friction coefficients, enhanced wear and mechanical properties, and superior thermal stability in comparison with either PAO or its nanocomposites created at low nanoparticle loadings. Profilometry and energy dispersive X-ray spectroscopic analysis of the wear track show that the enhanced wear characteristics in PAO-SiO2 composite lubricants originate from two sources: localization of the SiO2 particles into the wear track and extension of the elastohydrodynamic lubrication regime to Sommerfeld numbers more than an order of magnitude larger than for PAO. © 2011 American Chemical Society.

  6. Asphalt modification with used lubricating oil

    Villanueva, A.; Ho, S.; Zanzotto, L. [Calgary Univ., AB (Canada). Schulich School of Engineering, Bituminous Materials Research Laboratory

    2008-02-15

    A method of recycling waste lubricating oil from vehicles was presented. Various asphalt materials were modified with different amounts of lubricating oil and analyzed using standard Superpave tests. Dynamic shear rheometer (DSR) tests were then conducted to in order to obtain high temperature samples. Bending beam rheometer (BBR) and direct tension tests (DTT) were used to obtain low temperature sample profiles. Potential applications for the materials were reviewed. Environmental impacts and costs associated with using the materials were also presented. The study demonstrated that waste lubricating oil can be used as a softening agent in modified asphalt binders using a low temperature grade technique. It was concluded that the low cost of waste lubricating oil in Alberta makes it a potential resource for asphalt modification. The oil modified samples lowered the high-temperature grade and did not improve the overall quality of the asphalt. Further testing is needed to examine the quality and consistency of lubricating oils. 19 refs., 7 tabs., 12 figs.

  7. Vegetable oil base stocks for lubricants

    Garces, R.; Martinez-Force, E.; Salas, J.

    2011-07-01

    The use of vegetable biodegradable base stocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for bio lubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed. (Author).

  8. Lubrication control of motors in paper mills

    Kano, Yasuo

    1987-12-01

    This review is focused lubrication control of motors in paper mills. Smaller motors use deep groove ball bearings and lubricating grease. They need no make-up grease. Medium-size motors incorporate both sealed and open bearings or only open bearings and the grade, make-up intervals and make-up volume of the lubricating grease to be used are specified. Methods for automatic grease supply include the use of an automatic grease cup with improved injection mechanism, use of an injection pump for automatic supply to each motor, and group-control for parallel supply to several motors through distribution valves. For large-size motors, oil-bath lubricating is usually adopted in combination with a circulating oil supply device, etc. Improved techniques are currently available for automatization of the main systems and for automatization and reduction in cost of electric instrumentation. However, grease up of bearings, especially for medium-size motors, is performed by hand. Effective lubrication control and increased productivity are expected to be achieved by the combined use of automatic oil supply and monitoring devices. (14 figs, 4 tabs)

  9. High temperature solid lubricants - When and where to use them.

    Sliney, H. E.

    1973-01-01

    This paper reviews the state of the art of solid lubrication for moderate to extremely high temperature lubrication (to 1600 F). Lubricating characteristics, stability in various environments, and relevant machine design considerations are discussed. Lubricating materials discussed include MoS2, WS2, graphite, graphite fluoride, the high temperature polymide polymer, and calcium fluoride based coatings and composites. The scope of the information includes results from wear testers, ball bearings, and journal bearings.

  10. Practical Applications and Uses of Solid Lubricant Films

    Stupp, B. C.

    1984-01-01

    Practical applications are illustrated with discussions covering the reasons for use of solid lubricants, required performance, lubricant selection, and results obtained for the various examples shown. The applications described cover a broad range of solid lubricants. Included are soft lamellar compounds, organic polymers, soft elemental metals, oxides and compounds for high temperature use. The illustrations selected cover a broad range of lubricant application techniques delineating the reasons for the different processing procedures which include bonded films, plasma spraying, sputtering, ion plating and electrodeposition.

  11. Data on radiation resistance of lubricating oil

    This report presents data of radiation resistance of commercial lubricating oils. Data included are the radiation induced change of properties such as kinematic viscosity, total acid number, flash point, pour point, specific gravity and color, and the results by instrumental analysis such as gas analysis by gas chromatography, ESR spectra, infrared spectra, mass spectra, and molecular weight distribution by liquid chromatography. Twenty-seven different kinds of commercial lubricating oils including mineral oils, a synthetic hydrocarbon oil, ester lubricants, a polyether, silicone oils, florinated oils and aromatic oils were irradiated with 60Co γ-rays at room temperature in a vacuum, in air and under bubbling oxygen. The irradiation was carried out up to 30 MGy at a dose rate of 10 kGy/h. (author)

  12. Rheology and lubricity of hyaluronic acid

    Liang, Jing; Krause, Wendy E.

    2007-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan) is an important component in synovial fluid (i.e., the fluid that lubricates our freely moving joints). Its presence results in highly viscoelastic solutions. In comparison to healthy synovial fluid, diseased fluid has a reduced viscosity and loss of lubricity. In osteoarthritis the reduction in viscosity results from a decline in both the molecular weight and concentration of HA. In our investigation, we attempt to correlate the rheological properties of HA solutions to changes in lubrication and wear. A nanoindenter will be used to evaluate the coefficient of friction and wear properties between the nanoindenter tip and ultrahigh molecular weight polyethylene in both the presence and absence of a thin film of HA solution.

  13. Compatibility of refrigerants and lubricants with elastomers

    Hamed, G.R.; Seiple, R.H.

    1992-10-01

    Information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on the availability of additional quantities of R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  14. Compatibility of refrigerants and lubricants with elastomers

    Hamed, G.R.; Seiple, R.H.

    1993-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  15. Electrophoretically-deposited solid film lubricants

    Dugger, M.T.; Panitz, J.K.J.; Vanecek, C.W.

    1995-04-01

    An aqueous-based process that uses electrophoresis to attract powdered lubricant in suspension to a charged target was developed. The deposition process yields coatings with low friction, complies with environmental safety regulations, requires minimal equipment, and has several advantages over processes involving organic binders or vacuum techniques. This work focuses on development of the deposition process, includes an analysis of the friction coefficient of the material in sliding contact with stainless steel under a range of conditions, and a functional evaluation of coating performance in a precision mechanical device application. Results show that solid lubricant films with friction coefficients as low as 0.03 can be produced. A 0.03 friction coefficient is superior to solid lubricants with binder systems and is comparable to friction coefficients generated with more costly vacuum techniques.

  16. The Lubrication Qualities of Dimethyl Ether (DME)

    Sivebæk, Ion Marius; Sorenson, Spencer C; Jakobsen, J.

    2002-01-01

    Dimethyl Ether (DME) has been recognised as a clean alternative for diesel oil for some years now. Fuelling diesel engines with DME solves their two most significant problems: The emission of particulate matter is virtually eliminated and the level of NOx can be reduced considerably by exhaust gas...... the viscosity, which plays a major role in the hydrodynamic lubrication regime. The lubricity of DME has been established by the medium frequency pressurised reciprocating rig (MFPRR) to be very low compared to the one of diesel oil. But the DME film limits the wear extent significantly compared to...... the case of dry sliding. By mixing DME with additives, the lubricity level is easily raised even above the one of diesel oil. The viscosity of DME has been established by the volatile fuel viscometer (VFVM) to be as low as 0.185 cSt @ 25 oC. It is also shown that this viscosity cannot be raised...

  17. Sputtering technology in solid film lubrication

    Spalvins, T.

    1978-01-01

    Potential and present sputtering technology is discussed as it applies to the deposition of solid film lubricants particularly MoS2, WS2, and PTFE. Since the sputtered films are very thin, the selection of the sputtering parameters and substrate condition is very critical as reflected by the lubricating properties. It was shown with sputtered MoS2 films that the lubricating characteristics are directly affected by the selected sputtering parameters (power density, pressure, sputter etching, dc-biasing, etc.) and the substrate temperature, chemistry, topography and the environmental conditions during the friction tests. Electron microscopy and other surface sensitive analytical techniques illustrate the resulting changes in sputtered MoS2 film morphology and chemistry which directly influence the film adherence and frictional properties.

  18. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  19. Deposited Micro Porous Layer as Lubricant Carrier in Metal Forming

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben; Jensen, Jørgen Dai; Paldan, Nikolas Aulin; Mizushima, Io; Eriksen, Rasmus Solmer

    lubricant reservoirs. Conventional friction tests for cold forming; ring compression and double cup extrusion tests are carried out with Molykote DX paste and mineral oil as lubricant. Both lubricants act as intended for the ring compressions test whereas only the low viscosity oil perform successfully in...

  20. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  1. Developments of New Lubricants for Cold Forging of Stainless Steel

    Steenberg, Thomas; Christensen, Erik; Olesen, P.;

    1997-01-01

    Two new lubricant systems for cold forging of stainless steel have been developed. The main component of these systems are FeCl3 and ZnCa2(PO4)2, respectively. Both lubricant systems have been tested using a backward extrusion test. The results show excellent lubricating properties with respect to...

  2. Ultrasonic monitoring of lubricating conditions of hydrodynamic bearing

    The performance of a hydrodynamic bearing is illustrated by the lubricating conditions which transfer from ones to another when working condition is changed. The thickness of lubricant film is the key parameter of lubricating conditions. The lubricating conditions of hydrodynamic bearing can be monitored by the measured film thickness and the relationship between them. For thin lubricant film layers less than ultrasonic wavelength, the spring model method is applied to measure the film thickness. The proportion of the ultrasound reflected from film layer, depended on the film stiffness, is determined and then can be readily converted to the film thickness. For the thicker films ranging from several microns to tens microns, ultrasonic resonance method was employed. An adaptive measurement algorithm is presented to automatically choice appropriate ultrasonic measurement method according to the different lubricating stage. All the range of lubricant film thickness of a hydrodynamic bearing can then be measured by the automatic selection of spring model and resonance methods. Simulation device of lubricant film layers with PZT positioning stage is designed to verify the accuracy of the adaptive measurement algorithm. Hydrodynamic bearing experimental setup is used to generate varies of lubricating condition by changing the shaft speed, radial direction loading force, and lubricant temperature. The lubricating condition of hydrodynamic bearing is then evaluated according to the measured lubricant film thickness and the working conditions.

  3. Ionic liquid lubrication at electrified interfaces

    Kong, Lingling; Huang, Wei; Wang, Xiaolei

    2016-06-01

    The lubrication performances of ionic liquids at electrified interfaces have been investigated by using a reciprocating sliding tribometer. Experimental results indicated that the lubricity of the confined ionic liquids was markedly affected by the application of external electric field and strong interface electric field strength could result in high friction. The influence was more pronounced for the ionic liquid with a shorter alkyl side chain in particular. The main reason of the friction increment might be ascribed to the electrically influenced surface adsorption where the charged ions were structured to form robust and ordered layers.

  4. Modes of lubrication in human hip joints.

    Roberts, B J; Unsworth, A; Mian, N.

    1982-01-01

    Cadaveric hip joints were tested in a hip function simulator which subjected the femoral head to a cycle of loading and oscillation similar to that experienced during walking and measured the frictional torque transmitted to the acetabulum. Silicone fluids with viscosities from 10-2 Pa s (pascal second) to 30 Pa s were used as lubricants and the transition from mixed to full fluid film lubrication was observed around 5 x 10(-2) Pa s. Sodium carboxymethylcellulose solutions were also tested at...

  5. Self-lubricating non-oxidizing composites

    Aluminum nitride - boron nitride ceramic composites were fabricated by pressureless sintering following the method of X. E. Chen et al. It is believed that hexagonal boron nitride incorporated into an aluminum nitride matrix will produce a composite that exploits desirable properties of both materials. The composite should exhibit lubricating qualities of the boron nitride and hardness of the aluminum nitride. The material was studied by X-ray analysis, flexure strength testing and friction testing. This composite has potential use for wear applications in oxidizing environments, where high temperatures prevent the use of conventional lubricants

  6. Lubrication Oil Flow Simulation in Connecting Rod

    Alendal, Ivar Audun Lothe

    2015-01-01

    Lubrication oil-flow in the crank system of an medium size diesel engine running at 750 RPM was modeled and analyzed. The model was built up by combining models from several studies in both engine lubrication systems and pipe flow modal analysis. The model is first used to analyze a system where the oil supply lines are fully open during the complete engine cycle. The result showed that these designs need a very high oil supply pressure to maintain a positive pressure in the connecting rod at...

  7. Alkylphenoxyalkylstannanes as biocidal additives to lubricants

    Belov, P.S.; Gulo, R.A.; Komarova, N.N.; Korenev, K.D.; Poddubnyi, V.N.; Tsvetkov, O.N.

    1980-01-01

    The synthesis of akylphenoxyalkylstannanes with different numbers and lengths of akyl radicals on the tin atom and different structures and lengths of radicals on the aromatic ring is described. They were investigated as biocidal additives to lubricants. Alkylphenoxytriethylstannanes have the best protective properties. In 0.25% concentration (by wt) neither the structure nor the alkyl substituent (C/sub 1/-C/sub 16/) length has an effect on their antiseptic properties. From the results of the conducted studies, for antiseptization of lubricating compositions, the additive AFOTAS a reaction product of an industrial alkylphenol and bis(triethylol) oxide is recommended.

  8. Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2003-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26 and C14......H30 confined between smooth gold surfaces. In most cases we observe well defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of...... lubricant layers. We find that with increasing alkane chain length, the transition from n to n-1 layers occurs at higher pressure, as expected based on the increasing wettability ~or spreading pressure with increasing chain length. Thus, the longer alkanes are better boundary lubricants than the shorter...

  9. Influences of lubricant pocket geometry and working conditions upon micro lubrication mechanisms in upsetting and strip drawing

    Shimizu, Ichiro; Martins, P. A. F.; Bay, Niels; Andresen, Jan Lasson; Bech, Jakob Ilsted

    2010-01-01

    Micro-lubricant pockets located in the surface of plastically deforming workpieces are recognised to improve the performance of fluid lubrication in a metal-forming process. This work investigates the joint influence of pocket geometry and process working conditions on micro-lubrication mechanism...

  10. Lubrication in Hot Tube Extrusion of Superalloys and Ti Alloys

    2001-01-01

    Tubular products made of superalloys and titanium alloys usually work in high temperature environment and applied heavy loading. Hot extrusion is the best technology to form tubular billets with fine microstructures and good mechanical properties. Lubrication is one of the key techniques in hot extrusion, glass lubricants are most suitable for hot extrusion. Lubrication technique in hot extrusion is dealt with in this paper, the lubrication principle of hot tube extrusion is presented. Experiments of glass lubricated backward tube extrusion of titanium alloys and forward tube extrusion of superalloys are also discussed.

  11. Application of contamination control of lubricant to proactive maintenance

    Lubricant management is very important to maintain the integrity of rotating equipment Lubricant is periodically replaced and monitored on its aging degradation between replacement times. On the other hand, only the confirmation of specification document has been performed as acceptance inspection in case of new lubricant. However, a comparatively large amount of impurity substances has been found in new lubricant by sample analysis. Therefore, the introduction of contamination control of new lubricant is programmed as a step of proactive maintenance, and the outline of the program is described in this paper. (author)

  12. Slippery but Tough: The Rapid Fracture of Lubricated Frictional Interfaces

    Bayart, E.; Svetlizky, I.; Fineberg, J.

    2016-05-01

    We study the onset of friction for rough contacting blocks whose interface is coated with a thin lubrication layer. High speed measurements of the real contact area and stress fields near the interface reveal that propagating shear cracks mediate lubricated frictional motion. While lubricants reduce interface resistances, surprisingly they significantly increase the energy dissipated Γ during rupture. Moreover, lubricant viscosity affects the onset of friction but has no effect on Γ . Fracture mechanics provide a new way to view the otherwise hidden complex dynamics of the lubrication layer.

  13. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 1

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    The objective of this study was to investigate the film formation properties of refrigeration lubricants using the ultrathin film elastohydrodynamic (EHD) interferometry technique and to study the effects of refrigerants on film formation. Film thickness measurements were conducted as a function of lubricant viscosity, speed, temperature, and refrigerant concentration. Based on the EHD film thickness data, effective pressure-viscosity coefficients were calculated for the test fluids at different temperatures and the effects of refrigerants on pressure-viscosity properties were investigated.

  14. Improvement of lubricant materials using ruthenium isomerization

    Production of an effective industrial lubricant additive from vegetable oils is a high profile and difficult undertaking. One candidate is alkyl 9(10)-dibutylphosphonostearate, which has been made through a radical transformation of alkyl 9-cis-octadecanoate. It is effective, but still suffers from ...

  15. Lubricant test for punching and blanking

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    di $cult work piece materials like stainless steels.For this group of materials few alternatives exist as regards appropriate lubricants and many companies apply the environmentally hazardous chlorinated para $n oils in order to insure a uccessful production.In connection with development of...

  16. Lubricant effect of rate-of-loading

    A series of tests were conducted to establish the performance of a motor operated valve (MOV) stem lubricant. Battelle has assembled a MOV test stand to provide a means to test valve actuators and stems with representative valve load profiles and to accurately measure the actuator performance. The facility duplicates an actual MOV except that the stem thrust loads are generated hydraulically and seating loads are generated by mechanical stops. These tests were conducted at a high torque switch setting on a Limitorque SMB-0. Stem-stemnut pairs with known rate-of-loading (ROL) effects ranging from approximately zero to 30% were tested. The stems were lubricated with Mobil 28; a nuclear-grade synthetic grease. A test with a slow, linearly increasing load profile with torque switch trip occurring prior to seating (ramp test), was used to establish the magnitude of the ROL effect for a particular stem-stemnut. Data from these experiments were compared with results of similar EPRI tests which used different stem lubricants. Results with Mobil 28 yielded unexpected, consistent reduced ROL effects. In addition, the thread pressure threshold for limiting ROL effects was significantly reduced. A model of the squeeze film phenomena was developed to explain the experimental results. The model shows that the basic rheological properties of the lubricant, the thread composite surface roughness, and the thread type all have a significant influence on the magnitude of ROL effects

  17. 7 CFR 2902.14 - Penetrating lubricants.

    2010-01-01

    ... re-refined lubricating oil products. Under the Resource Conservation and Recovery Act of 1976... ingredients, re-refined oil, and/or any other recovered material, in addition to biobased ingredients, and... Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW...

  18. 7 CFR 2902.47 - Gear lubricants.

    2010-01-01

    ... lubricating oils and which product should be afforded the preference in purchasing. Note to paragraph (d... whether or not the product contains any recovered material, in addition to biobased ingredients, and... Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT...

  19. Biobased Lubricant Development - Problems and Opportunities

    Biobased lubricants are those comprising ingredients derived from natural sources such as those harvested from farms, forests, etc. Biolubricants provide a number of economic, environmental and health benefits over petroleum-based products. Among these are: biodegradability, renewability and non-t...

  20. Current Trends in Biobased Lubricant Development

    Biobased lubricants are those comprising ingredients derived from natural raw materials such as those harvested from farms, forests, etc. Biolubricants provide a number of benefits over petroleum-based products including: biodegradability, renewability, and non-toxicity. As a result, manufacture ...

  1. A quantitative lubricant test for deep drawing

    Olsson, David Dam; Bay, Niels; Andreasen, Jan L.

    2010-01-01

    A tribological test for deep drawing has been developed by which the performance of lubricants may be evaluated quantitatively measuring the maximum backstroke force on the punch owing to friction between tool and workpiece surface. The forming force is found not to give useful information...

  2. Exploring Low Emission Lubricants for Diesel Engines

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  3. Lubricant Test Methods for Sheet Metal Forming

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...

  4. Classification of lubricants according to cavitation criteria

    Meged, Y.; Venner, C.H.; Napel, ten W.E

    1995-01-01

    Cavitation in lubrication liquids has long been known to be detrimental to components in hydraulic systems. Damage has been detected in journal bearings, especially under severe dynamic loading, gears, squeeze film dampers and valves. These findings have led to intensive studies of metal resistance

  5. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  6. Study on Lubricating Oil Monitoring Technology

    LIU Feng-bi

    2006-01-01

    Lubricating oil monitoring has been proven to be an effective method for detecting and diagnosing machinery failures and essential for realizing condition based maintenance. In this paper, mathematical statistics methods for determining the oil parameters featuring machinery failures and the parameters' probability distribution functions and their thresholds are put forward.

  7. Friction and lubrication in artificial joints

    Vocel, Jan; Musil, Jan; Šída, V.

    Vol. 2. Brno: VUT, 1999 - (Kratochvíl, C.; Kotek, V.; Krejsa, J.), s. 31-34 ISBN 80-214-1325-5. [International conference Engineering mechanics '99.. Svratka (CZ), 17.05.1999-20.05.1999] R&D Projects: GA ČR GA106/98/1373 Keywords : synovial fluid * tribology * lubrication Subject RIV: BO - Biophysics

  8. AFM study of polymer lubricants on hard disk surfaces

    Bao, G. W.; Troemel, M.; Li, S. F. Y.

    Thin liquid films of PFPE (perfluoropolyether) lubricants dip-coated on hard disk surfaces were imaged with non-contact mode AFM. Demnum lubricants with phosphazene additives exhibited strong interactions with a silicon tip due to the formation of liquid bridges between the lubricants and the tip, as indicated by a remarkable hysteresis loop between approach and retraction curves in force vs. distance measurements. Features resulting from capillary forces due to tip tapping to the lubricants were revealed, which demonstrated that the capillary forces could be used to lock the non-contacting tip at a certain separation from the substrate surface to obtain AFM images. Force vs. distance curves for Fomblin Z-dol lubricants showed negligible hysteresis effects and features corresponding to lateral distortion of the tip by the lubricants only were observed. In both cases, only when the tip was positioned far above the surfaces could the natural distributions of the lubricants be imaged.

  9. A dynamic rheological model for thin-film lubrication

    Zhang Xiang-Jun; Huang Ying; Guo Yan-Bao; Tian Yu; Meng Yong-Gang

    2013-01-01

    In this study,the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated.The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region,which is desired for its lower energy dissipation.A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation.This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film,as well as their dependences on the lubricant film thickness.The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing.Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number.The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0,indicating a liquid-to-solid transition of the confined lubricant film.Furthermore,the two proposed parameters in the dynamic rheological model,namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ0,were found to determine the minimum COF and the width of the low-COF region,both of which were required to optimize the shape of the Stribeck curve.The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.

  10. A dynamic rheological model for thin-film lubrication

    In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ0, were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime. (condensed matter: structural, mechanical, and thermal properties)

  11. A dynamic rheological model for thin-film lubrication

    Zhang, Xiang-Jun; Huang, Ying; Guo, Yan-Bao; Tian, Yu; Meng, Yong-Gang

    2013-01-01

    In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ0, were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.

  12. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-11-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440 C stainless steel (SS) ball and a 440 C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants.

  13. Investigation of lubrication in natural joints by neutron reflectometry

    Kaltofen, T.; Dahint, R. [Angewandte Physikalische Chemie, Univ. Heidelberg (Germany); Gutberlet, T. [Paul-Scherrer-Inst., Villigen (Switzerland); Wolff, M. [Experimentalphysik IV - Festkoerperphysik, Univ. Bochum (Germany); Steitz, R. [Hahn-Meitner-Inst., Berlin (Germany)

    2007-07-01

    Despite their high medical relevance, the principles of lubrication in natural joints are still unclear. It is generally accepted, that the presence of hyaluronic acid (HA), the main component of the synovial liquid, plays an important role for the low friction observed. Furthermore, it is assumed that surface active lipids participate in the lubrication. Using a model system of lipid bilayers deposited on a polyelectrolyte (PE) cushion and in contact with HA solution, we started to investigate the effects of pressure and shear forces, as experienced by natural joints, on the internal structure of the SiO{sub 2}/PE/lipid/HA interface and the bulk HA solution by neutron reflectometry (NR), complemented by in situ ellipsometry and quartz crystal microbalance (QCM-D) measurements. Only on positively charged polyelectrolyte surfaces, the successful build-up of the model system could be demonstrated. By NR, the existence of an irreversibly absorbed, highly hydrated HA layer on top of the lipid membrane was proven. For shear rates above 2.5 min{sup -1} a swelling of the HA layer has been observed. Pressure dependent studies are presently underway. (orig.)

  14. Research on Friction Properties of Mineral Lubricants in Thin-Film-Lubricating Regime

    Zhang Jie; Guan Tingting; Piao Jicheng

    2014-01-01

    On the basis of thin iflm lubrication theory, the inlfuence of lfuid iflm (disordered iflm), ordered iflm and ad-sorbed iflm on tribological behavior of lubricating oil in thin-iflm lubrication (TFL) regime was studied. Theμ-L (friction coefifcient versus load) curves of different oil viscosity and additive dosage were obtained by a high frequency reciprocat-ing test rig and the adsorption capacity of additive on steel surface were measured by QCM-D. Based on the Stribeck curve and thin iflm lubrication theory model, some conclusions can be drawn up, namely:(1) Theμ-L curves and the parameters of L0 andμ0, obtained from the high frequency reciprocating test rig with ball-disc contact, can be used to study tribologi-cal behaviors of lubricating oil under TFL conditions. (2) In comparison with the high viscosity base lfuid, the lower one can enter into TFL regime under lower load and keeps a lower friction coefifcient in TFL regime. (3) The polar molecules in additive formulation produce ordered adsorbed layer on steel surface to reduce friction coefifcient. And in TFL regime, the molecule’s polarity, layer thickness and saturation degree on steel surface probably can inlfuence lubricant’s tribological behaviors between the moving interfaces. Moreover, the further study would be focused on the competitive adsorption of different additives, the formation of dual-and/or tri-molecular adsorption layers, and other aspects.

  15. Lubricant additive concentrate containing isomerized jojoba oil

    Arndt, G.

    1987-05-12

    This patent describes a crankcase motor oil additive concentrate intended to be added to a conventional crankcase motor oil to improve its ability to lubricate and protect the engine. The additive concentrate comprises the following components: A petroleum base stock of lubricating quality and viscosity. The base stock comprises from about 13.5 to 90 weight percent of the additive concentrate; a detergent-inhibitor package. The package is present at from about 7 to about 40 weight percent of the concentrate; a supplemental antiwear additive selected from the salts of dialkyl dithiophosporic acids. The additive is present at a level of from about 1 to about 10 weight percent of the concentrate; and a supplemental antiwear additive selected from the class of sulfurized olefins. The additive is present at a level of from about 1 to about 10 weight percent of the concentrate.

  16. Water lubricates hydrogen-bonded molecular machines.

    Panman, Matthijs R; Bakker, Bert H; den Uyl, David; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Geenevasen, Jan A J; Woutersen, Sander

    2013-11-01

    The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the 'lubricant of life'. PMID:24153370

  17. Water lubricates hydrogen-bonded molecular machines

    Panman, Matthijs R.; Bakker, Bert H.; den Uyl, David; Kay, Euan R.; Leigh, David A.; Buma, Wybren Jan; Brouwer, Albert M.; Geenevasen, Jan A. J.; Woutersen, Sander

    2013-11-01

    The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the ‘lubricant of life’.

  18. Lubricants for Metal Belt Continuously Variable Transmissions

    Keiichi Narita

    2014-02-01

    Full Text Available This paper reviews the effects of lubricant additives and base stock used in metal belt continuously variable transmissions (CVT fluids on the CVT transmission torque capacity. Additive formulation composed of phosphorus anti-wear agent, calcium detergent, and dispersant improved the friction coefficient between the metals. The analysis on the post-test surface suggests that the friction behavior strongly depends on the local morphology of the tribofilms derived from lubricant additives. Examining the effect of base stock on the torque capacity in actual belt CVTs revealed that SN (synthetic naphthene exhibited 10% higher torque capacity than that of PAO (polyalphaolefin. It is believed that the difference in the torque capacity is due to the difference in the oil-film shearing force generated by the relative sliding between the belt and pulley.

  19. Graphene oxide film as solid lubricant.

    Liang, Hongyu; Bu, Yongfeng; Zhang, Junyan; Cao, Zhongyue; Liang, Aimin

    2013-07-10

    As a layered material, graphene oxide (GO) film is a good candidate for improving friction and antiwear performance of silicon-based MEMS devices. Via a green electrophoretic deposition (EPD) approach, GO films with tunable thickness in nanoscale are fabricated onto silicon wafer in a water solution. The morphology, microstructure, and mechanical properties as well as the friction coefficient and wear resistance of the films were investigated. The results indicated that the friction coefficient of silicon wafer was reduced to 1/6 its value, and the wear volume was reduced to 1/24 when using GO film as solid lubricant. These distinguished tribology performances suggest that GO films are expected to be good solid lubricants for silicon-based MEMS/NEMS devices. PMID:23786494

  20. Technology development for indigenous water lubricated bearings

    Water Lubricated Bearings (WLB) are used in various mechanisms of fuel handling systems of PHWRs and AHWR. Availability and random failures of these bearings was a major factor in refuelling operations. Indigenous development of these bearings was taken up and 7 types of antifriction bearings in various sizes (totaling 37 variants) for PHWR, AHWR and Dhruva applications were successfully developed. This paper deals with various aspects of WLB development. (author)

  1. Biopolymer Green Lubricant for Sustainable Manufacturing

    Shih-Chen Shi; Fu-I Lu

    2016-01-01

    We report on the preparation of a biopolymer thin film by hydroxypropyl methylcellulose (HPMC), which can be used as a dry green lubricant in sustainable manufacturing. The thin films were characterized through scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy; the films showed desirable levels of thickness, controllability, and uniformity. Tribology tests also showed desirable tribological and antiwear behaviors, caused by the formation of transfer layers. ...

  2. Classification of lubricants according to cavitation criteria

    Meged, Y.; Venner, C.H.; Napel, ten, H.M.Th.D.

    1995-01-01

    Cavitation in lubrication liquids has long been known to be detrimental to components in hydraulic systems. Damage has been detected in journal bearings, especially under severe dynamic loading, gears, squeeze film dampers and valves. These findings have led to intensive studies of metal resistance to cavitation erosion, in order to minimize the damage. Results of these studies have been: 1. (a) classification of known materials according to their resistance to cavitation erosion; 2. (b) deve...

  3. Phenomenological theory of kinetic friction for the solid lubricant film

    Molecular dynamics based on the Langevin equations with the coordinate- and velocity-dependent damping coefficients is used to investigate the friction properties of a 'hard' lubricant film confined between two solids, when the lubricant remains in the solid state during sliding. The dependence of the friction force on the temperature and sliding velocity in the smooth sliding regime is studied in detail for all three states of the lubricant: a lubricant with a crystalline structure, when the system exhibits a very low friction (superlubricity), an amorphous lubricant structure, which results in a high friction, and the liquid state of the lubricant film at high temperatures or velocities. A phenomenological theory of the kinetic friction is developed, which allows us to explain the simulation results and predict a variation of the friction properties with model parameters analytically

  4. Nanoscale lubricating film formation by linear polymer in aqueous solution

    Liu, Shuhai; Guo, Dan; Xie, Guoxin

    2012-11-01

    Film-forming properties of polymer in aqueous solution flowing through a nanogap have been investigated by using a thin film interferometry. The film properties of linear polymer in aqueous solution flowing through a confined nanogap depend on the ratio of water film thickness to averaged radius of polymer chains H0/RPolymer. It was found that the lubrication film thickness of linear polymer in aqueous solution decreases as the polymer molecular weight increasing when H0/RPolymer < 2 ˜ 3. A new lubrication map was proposed, which includes the lubrication regime of weak confinement influence, the lubrication regime of strong confinement influence (LRSCI), and the transition regime of confinement influence. It is very difficult to increase the lubrication film thickness using the higher molecule weight in the LRSCI regime. The lubrication mechanism inferred from our experimental results may help to better understand the dynamic film properties of linear polymer in aqueous solution flowing through a nanogap.

  5. Property Analysis of the Agricultural Machinery Lubricants

    Tone Ploj

    2000-03-01

    Full Text Available We need to produce enough healthy and cheap food as well as to preserve the ecologic equilibrium. This can be achived by using modern machinery and up- to-date knowledge and technology. Agricultural machinery, in which 40-60% of all funds are invested, is poorly maintained and underused. The main causes for this are poor knowledge and extensive farm land fragmentation. The fact that over 140,000 tractors in Slovenia are on average 9.6 years old, i.e. that more than 80% of overall agricultural machinery is obsolete, should be a matter of serious concern. In the paper we follow tribological conditions in particular tractor assemblies. In the first part of the paper we have treated the required conditions of tractor manufacturers in Europe and primarily in Slovenia, what has served us in the final phase of the research for elaboration of the model. In this way we have got data about the presence of particular tractor types. We have separately elaborated the necessary specifications of engine lubricants, transmission, gears, hydraulics and wet breaks. We have carried out chemical and mechanical analyses of all accessible lubricants in agricultural mechanisation. The results of the new oils were coordinated with the required specifications of tractor manufacturers and so we have got such a model, that certainly meet all lubricating requirements of our tractors.

  6. Lubricant for hot processing of metals

    Forostyan, Yu.N.; D' yachenko, K.A.; Grudev, A.P.; Lobarev, M.I.; Sigalov, Yu.B.

    1980-04-30

    The compositon of lubricant for hot processing of metals is based on water, hydrolysis lignin, phosphoric acid salt and an antiseptic. In order to increase the wear resistance of the instrument, it contains Ca(OH)/sub 2/, a soap stock of vegetable oil (SRM), dichlorstearic acid (I), tetrachlorstearic acid (II) and as the phosphoric acid salt, the lubricant contains trisodium phosphate. The % composition of the content are: hydrolysis lignin, 5-25; trisodium phosphate, 1-5; Ca(OH)/sub 2/, 0-5; vegetable oil soap stock, 10-30; I, 0.5-2; II, 0.5-10; antiseptic, 0.01-5 and water to 100%. The calculated volumes of lignin, Ca(OH)/sub 2/ and water are ground in a ball mill to a powder dispersion of 10-20 mkm, after which the SRM and the trisodium phosphate are added and the griding is continued for 1.5-2 hours. The formed mixture is reloaded into the reactor, heated to 75-80/sup 0/C with mixing, I and II, preheated to 70-80/sup 0/C are introduced. The heating and mixing are continued until the formation of a uniform gel. After cooling, the antiseptic is added. The use of the lubricant provides for a reduction in the rolling pressures from 17.3 to 15.6-16.8 t.

  7. Influence of electric double layer on thin film lubrication and elastohydrodynamic lubrication

    2001-01-01

    In the present paper, the influence of electric double layer (EDL) on thin film lubricationand elastohydrodynamic lubrication is studied. With modified Reynolds equation for electric doublelayer, the effect of zeta-potential on the film thickness and pressure is numerically calculated. Theresults show that the influence of electric double layer on the lubrication film thickness is significantonly for thin film. The minimum film thickness will increase greatly if the influence of EDL is con-sidered. As the initial film thickness increases, the effect will greatly decrease. The existence ofEDL will decrease the friction coefficient of the lubrication film. Furthermore, the above tendency isstill applicable even if the materials of the friction pair are different.

  8. Molecular dynamics simulations of elasto-hydrodynamic lubrication and boundary lubrication for automotive tribology

    Friction control of machine elements on a molecular level is a challenging subject in vehicle technology. We describe the molecular dynamics studies of friction in two significant lubrication regimes. As a case of elastohydrodynamic lubrication, we introduce the mechanism of momentum transfer related to the molecular structure of the hydrocarbon fluids, phase transition of the fluids under high pressure, and a submicron thickness simulation of the oil film using a tera-flops computer. For boundary lubrication, the dynamic behavior of water molecules on hydrophilic and hydrophobic silicon surfaces under a shear condition is studied. The dynamic structure of the hydrogen bond network on the hydrophilic surface is related to the low friction of the diamond-like carbon containing silicon (DLC-Si) coating

  9. Mechanisms of lubrication and wear of a bonded solid-lubricant film

    Fusaro, R. L.

    1980-01-01

    The tribological properties of polyimide-bonded graphite fluoride films were investigated. A pin-on-disk type of testing apparatus was used; in addition to sliding a hemispherically tipped rider, a rider with a 0.95-mm-diameter flat area was slid against the film so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurred: in the first, the film supported the load and the lubricating mechanism consisted of the shear of a thin surface layer between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress.

  10. Feedback-Controlled Lubrication for Reducing the Lateral Vibration of Flexible Rotors supported by Tilting-Pad Journal Bearings

    Salazar, Jorge Andrés González; Santos, Ilmar

    2014-01-01

    In this work, the feedback-controlled lubrication regime, based on a model-free designed proportional-derivative (PD) controller, is studied and experimentally tested in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing (active TPJB). With such a lubrication regime......, both the resulting pressure distribution over the pads and hence the bearing dynamic properties are dynamically modified. The control strategy is focused on reducing the system lateral vibration around its operational equilibrium position in a wide frequency range. For this purpose, servovalves are...... to experimentally characterized multi-input multi-output systems is used to determine the stabilizing PD gain domain. The main contribution of this work is to demonstrate the enhancement of the dynamic response of a flexible rotor-bearing system supported by an active TPJB by means of the feedback...

  11. An Advanced Microturbine System with Water-Lubricated Bearings

    Susumu Nakano; Tadaharu Kishibe; Tomoaki Inoue; Hiroyuki Shiraiwa

    2009-01-01

    A prototype of the next-generation, high-performance microturbine system was developed for laboratory evaluation. Its unique feature is its utilization of water. Water is the lubricant for the bearings in this first reported application of water-lubricated bearings in gas turbines. Bearing losses and limitations under usage conditions were found from component tests done on the bearings and load tests done on the prototype microturbine. The rotor system using the water-lubricated bearings ach...

  12. Modeling Bearing and Shear Forces in Molecularly Thin Lubricants

    Vakis, Antonis I.; Eriten, Melih; Polycarpou, Andreas A.

    2011-01-01

    Under the effects of high shear rate and confinement between solid surfaces, the behavior of a thin lubricant film deviates from that of the bulk, resulting in significant increases of lubricant viscosity and interfacial slip. A semi-empirical model accounting for the breakdown of continuum theory at the nanoscale is proposed—based on film morphology and chemistry from available experimental and molecular dynamics simulation data—to describe lubricant behavior under shear. Viscosity stiffenin...

  13. MISCIBILITY, SOLUBILITY, AND VISCOSITY MEASUREMENTS FOR R-236EA WITH POTENTIAL LUBRICANTS

    The report gives results of miscibility, solubility, and viscosity measurements of refrigerant R-236ea with three potential lubricants. (NOTE: The data were needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The lubricants...

  14. Lubricating graphene with a nanometer-thick perfluoropolyether

    Due to its atomic thickness (thinness), the wear of graphene in nanoscale devices or as a protective coating is a serious concern. It is highly desirable to develop effective methods to reduce the wear of graphene. In the current paper, the effect of a nano-lubricant, perfluoropolyether, on the wear of graphene on different substrates is investigated. Graphene was synthesized by chemical vapor deposition (CVD) and characterized by Raman spectroscopy. The nano-lubricant is applied on the graphene by dip-coating. The friction and wear of graphene samples are characterized by nanotribometer, AFM, optical microscopy and Raman spectroscopy. The results showed that lubricating silicon/graphene with nano-lubricant reduces the friction but increases the wear. However, lubricating nickel/graphene with nano-lubricant has little effect on the friction but reduce the wear significantly. The underlying mechanism has been discussed on the basis of the graphene–substrate adhesion and the roughness. The current study provides guidance to the future design of graphene-containing devices. - Highlights: • The effect of a nano-lubricant on the friction and wear of CVD graphene was studied. • Lubricating Graphene/Si results in lower friction but higher wear. • Lubricating Ggraphene/Ni results in lower wear but unchanged friction. • The mechanisms were discussed based on the roughness and interfacial adhesion

  15. Lubricating graphene with a nanometer-thick perfluoropolyether

    Kozbial, Andrew [Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Zhiting [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Iasella, Steven; Taylor, Alexander T.; Morganstein, Brittni; Wang, Yongjin [Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Jianing [J.A. Woollam Co., Inc., 645 M Street, Suite 102, Lincoln, NE 68508 (United States); Zhou, Bo; Randall, Nicholas X. [CSM Instruments, 197 1st Avenue, Needham, MA 02494 (United States); Liu, Haitao, E-mail: hliu@pitt.edu [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Li, Lei, E-mail: lel55@pitt.edu [Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2013-12-31

    Due to its atomic thickness (thinness), the wear of graphene in nanoscale devices or as a protective coating is a serious concern. It is highly desirable to develop effective methods to reduce the wear of graphene. In the current paper, the effect of a nano-lubricant, perfluoropolyether, on the wear of graphene on different substrates is investigated. Graphene was synthesized by chemical vapor deposition (CVD) and characterized by Raman spectroscopy. The nano-lubricant is applied on the graphene by dip-coating. The friction and wear of graphene samples are characterized by nanotribometer, AFM, optical microscopy and Raman spectroscopy. The results showed that lubricating silicon/graphene with nano-lubricant reduces the friction but increases the wear. However, lubricating nickel/graphene with nano-lubricant has little effect on the friction but reduce the wear significantly. The underlying mechanism has been discussed on the basis of the graphene–substrate adhesion and the roughness. The current study provides guidance to the future design of graphene-containing devices. - Highlights: • The effect of a nano-lubricant on the friction and wear of CVD graphene was studied. • Lubricating Graphene/Si results in lower friction but higher wear. • Lubricating Ggraphene/Ni results in lower wear but unchanged friction. • The mechanisms were discussed based on the roughness and interfacial adhesion.

  16. Lubricants based on synthetic esters; Schmierstoffe auf Basis synthetischer Ester

    Fahl, J. [Forschung und Entwicklung Kaeltemaschinenoele, Fuchs DEA Schmierstoffe GmbH, Hamburg (Germany)

    2000-07-01

    This article describes the synthetic esters that are being used in refrigeration applications that use chlorine-free working fluids. The chemical basics involved in these high-performance lubricants, their manufacture and their lubricating properties are looked at in detail. The history of their development from their use as machining oils, lubricants for weapons and two-stroke engines through to turbine lubricants and as hydraulic oil in aeronautics is reviewed. Modern neopentyl-polyol esters used in refrigeration applications are described. Further, the chemical structures and applications of complex esters, carbonate esters, aromatic and silicate esters are looked at.

  17. High Performing, Low Temperature Operating, Long Lifetime, Aerospace Lubricants Project

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to synthesize, characterize, and test new ionic liquids and formulations as lubricants for aerospace applications. The...

  18. Lubricants for HFC-134a Compatible Rotary Compressors

    Takaichi, Kenji; Sakai, Hisakazu

    In replacing CFC-12 with HFC-134a for refrigerator compressors, the compatibility with lubricating oil, and lubrication in general, are of major concern. HFC-134a dose not have adequate solubility with current lubricating oils because of its molecular structure. Current oils also do not provide enough lubricating action when using HFC-134a. A new oil and new materials have to be utilized in order to use HFC-134a. Developing a new lubricating oil involved numerous tests of different combinations of many polyolester synthetic oils and additives. One of the pre-evaluated methods was pursued via sealed tube tests. Lubricated parts were selected by studies involving a plane-on-roller type of wear test machine and by analyzing the traces of acid material commonly created during the lubricating action. The matrices of new lubricating oils and new lubricated materials were estimated based on durability tests conducted on compressors and refrigerators. Results showed that polyolester synthetic oils having a low total acid value and including certain quantities of additives did not break down into a tar-like substance and they did not produce composite particles in the operating compressors and refrigerators. The study also found that ceramics and anti-corrosion alloy steel possessed good adrasion-reducing qualities. Based on our evaluation, we will implement compressor reliability tests and apply HFC-134a to rotary compressors for refrigerators.

  19. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    Dugger, Michael T.; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  20. The effect of alternative fuels on the stability and lubricity of crankcase lubricants. Final report, September 1992--September 1993

    Klaus, E.E.; Duda, J.L.; Shah, R.J.

    1994-03-01

    The purpose of this research is to study the effect of alternative fuels on the functioning of crankcase lubricants with these three main goals: Develop simple, rapid test protocols to evaluate the influence of alternative fuels on the stability and lubricity of lubricants under conditions simulating engine operation. The objective is to have these test protocols serve industry as a precursor evaluation procedure before expensive engine tests are conducted. The reliability of these test procedures to predict the influence of additives on lubricant performance under actual operating conditions will be determined by comparison of these test results with available engine and fleet tests. Use the developed test procedures to evaluate commercially available lubricants for applications with alternative fuels and determine the influence of various bearing materials, including conventional steel as well as advanced ceramic materials. Use the test procedures to evaluate classes of lubricants and lubricant additives as well as fuel additives, and develop lubricants and additives for comparability with specific alternative fuels. Test procedures have been developed to produce lubricant fractions which can be caused by contact with alternative fuels in the crankcase and the area of the fuel injector. Associated test procedures have also been developed so that the oxidative stability and the wear characteristics of the lubricant fractions from the extraction protocol can be evaluated. Although these test procedures have been used to evaluate some lubricants, the significant impact of these tests on the development and evaluation of lubricants for alternatively fueled engines has only been initiated, and these tests should be the basis for extensive future studies.

  1. Modified Ionic Liquid-Based High-Performance Lubricants for Robotic Operations Project

    National Aeronautics and Space Administration — NASA needs an advanced lubrication solution for its future robotic systems and planetary surface assets. The required lubrication technology must offer...

  2. Numerical analysis of capillary compensated micropolar fluid lubricated hole-entry journal bearings

    Nathi Ram

    2016-06-01

    Full Text Available The micropolar lubricated symmetric/asymmetric hole-entry bearings using capillary restrictor have been analyzed in the present work. Reynolds equation for micropolar lubricant has been derived and solved by FEM. The results have been computed using selected parameters of micropolar lubricant for hole-entry hydrostatic/hybrid journal bearings. A significant increase in damping and stiffness coefficients is observed for bearings having micropolar parameter N2=0.9, lm=10 than similar bearings under Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant.

  3. Feedback-controlled lubrication for reducing the lateral vibration of flexible rotors supported by tilting-pad journal bearings

    Salazar, Jorge Andrés González; Santos, Ilmar

    2015-01-01

    The feedback-controlled lubrication regime, based on a model-free designed proportional–derivative controller, is experimentally investigated in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing. With such a lubrication regime, both the resulting pressure distribution...... function is optimized in the stabilizing gain domain and then chosen from a subdomain imposed by servovalve restrictions. This work demonstrates enhancements of the dynamic response of flexible rotor-bearing systems supported by an active tilting-pad journal bearing by means of the feedback...... over the pads and hence the bearing dynamic properties are dynamically modified. The control strategy is focused on reducing the lateral vibrations of the system around its operational equilibrium within a wide frequency range. To synthesize the proportional–derivative controller gains, an objective...

  4. Role of water lubricated bearings in Candu reactors

    During the twentieth century a great emphasis was placed in understanding and defining the operating regime of oil and grease lubricated components. Major advances have been made through elastohydrodynamic lubrication theory in the quantifying the design life of heavily loaded components such as rolling element bearings and gears. Detailed guidelines for the design of oil and grease lubricated components are widely available and are being applied to the successful design of these components. However similar guidelines for water lubricated components are either not available or not well documented. It is often forgotten that the water was used as a lubricant in several components as far back as 1884 B.C. During the twentieth century the water lubricated components continued to play a major role in some high technology industries such as in the power generation plants. In CANDU nuclear reactors water lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication. This paper presents some examples of the major water lubricated components in a CANDU reactors. Major part of the paper is focused on presenting an example of successful operating history of water lubricated bearings used in the HT pumps are presented. Both types of bearings have been qualified by tests for operation under normal as well as under more severe postulated condition of loss-of-coolant-accident (LOCA). These bearings have been designed to operate for the 30 years in the existing CANDU 6 (600 MW) reactors. However for the next generation of CANDU 6 reactors which go into service in the year 2003, the HT pump bearing life has been extended to 40 years. (author)

  5. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg-1 and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg-1, the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant ≥2 mg kg-1. There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia. - Vegetable-based lubricating oils appear to cause a tropical fish species less stress than mineral oils

  6. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  7. Talc as a Substitute for Dry Lubricant (an Overview)

    Abdulkareem, Suleiman; Orkuma, Gideon I.; Apasi, Adaokoma A.

    2011-01-01

    All metal surfaces, irrespective of their surface integrity, appear as a series of peaks and valleys under close examination. The objective of lubrication is to separate these peaks and valleys so that contact is avoided in metal to metal, hence greatly reduce or eliminate wear. A lubricant may be gas, liquid, semi-solid, or solid that permits free action of mechanical devices and prevents damage by abrasion and seizing of metal or other components through unequal expansion caused by heat. Among the solid (dry) lubricants includes: graphite, glass, boron nitride, polytetrafluoroethene (PTFE-Teflon), molybdenum disulfide, tungsten disulfide, lime, talc, etc. Solid (dry) lubricants differ significantly from liquid lubricants, in that liquid lubricants reduce friction due to their fluidity and viscosity. However, solid lubricants have neither of these properties but they are still capable of reducing friction and wear in metal. In this work, the study of the property characteristics of talc as a substitute for graphite in dry lubrication (an overview) was carried out and reported in this paper.

  8. Deposited Micro Porous Layer as Lubricant Carrier in Metal Forming

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben;

    2008-01-01

    A new porous coating for carrying lubricant in metal forming processes is developed. The coating is established by simultaneous electrochemical deposition of two pure metals. One of them is subsequently etched away leaving a porous surface layer. Lubricant can be trapped in the pores acting as lu...

  9. China's Privately-owned Lubricants Producer Plans IPO

    2004-01-01

    @@ Beijing Monarch Petroleum Chemical Co Ltd,China's largest privately-owned lubricant oil producer, plans to list on an overseas stock market by the end of 2006, according to Li Jia, general manager of Monarch Lubricant Oil, who told the news media in a recent interview.

  10. Lubricants for drill bit bearings and requirements for them

    Postash, S.I.; Baryl' nik, V.N.; Berko, N.Ya.; Dzugkoyev, T.D.; Postash, A.S.; Sheykin, F.I.

    1984-01-01

    Lubricants for drill bit bearings are divided by properties into lubricants for sealed (low-rotary drill bit) and unsealed (high-rotary drill bit) bearings. The operating mode of the bearings of both types of supports is heavily loaded and high-temperature; therefore, the lubricants must have high anti-wear properties and thermal resistance. Improving the reliability of the bits with sealed bearings is attained by using normal lubricants as well as special ones. Work is underway to seal the bit bearings for high-rotary drilling, but it is economically more justified to have high-rotary drilling with unsealed bearings of increased (20-30%) stability, which is achieved by using special lubricants KP, KPO, as well as hardening lubricants based on mineral oil, molybdenum disulfide and epoxy composites. In this case, the hardening lubricants which in the flowing state fill the entire cavity of the bearings not only lubricate the rocking bodies and running tracks during hardening, but also seal the cavity of the bearings and separate the rocking bodies.