WorldWideScience

Sample records for active lubricated multirecess

  1. Feasibility of Influencing the Dynamic Fluid Film Coefficients of a Multirecess Journal Bearing by means of Active Hybrid Lubrication

    Santos, Ilmar; Watanabe, F. Y.

    2003-01-01

    The main objective of this research project is the investigation of multirecess hydrostatic journal bearings with active hybrid (hydrostatic and hydrodynamic) lubrication. This paper gives a theoretical contribution to the modeling of this kind of bearing, combining computational fluid dynamics a...... significant modifications of active hybrid forces, which can be useful while reducing vibration and stabilizing rotating machines.......The main objective of this research project is the investigation of multirecess hydrostatic journal bearings with active hybrid (hydrostatic and hydrodynamic) lubrication. This paper gives a theoretical contribution to the modeling of this kind of bearing, combining computational fluid dynamics and...

  2. Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings using Active Hybrid Lubrication

    Santos, Ilmar; Watanabe, F.Y.

    2004-01-01

    Fluid film forces are generated in hydrostatic journal bearings by two types of lubrication mechanisms: the hydrostatic lubrication in the bearing recesses and hydrodynamic lubrication in the bearing lands, when operating in rotation. The combination of both lubrication mechanisms leads to hybrid...... journal bearings (HJB). When part of hydrostatic pressure is also dynamically modified by means of hydraulic control systems, one refers to the active lubrication. The main contribution of the present theoretical work is to show that it is possible to reduce cross-coupling stiffness and increase the...... direct damping coefficients by means of the active lubrication, what leads to rotor-bearing systems with larger threshold of stability....

  3. Effect of Elasticity on Capillary Compensated Flexible Multi-recess Hydrostatic Journal Bearing Operating with Micropolar Lubricant

    Verma, Suresh; Kumar, Vijay; Gupta, Kapil Dev

    2016-01-01

    This paper presents a theoretical study of the effects of bearing shell deformation upon the performance characteristics of a capillary compensated multi-recess hydrostatic journal bearing system operating with micropolar lubricant. The finite element method has been used to solve the modified Reynolds' equation governing the micropolar lubricant flow in the bearing and the three dimensional elasticity equations governing the displacement field in the bearing shell. The elasto-hydrostatic performance characteristics of the bearing are presented for various values of micropolar parameters ( l m and N 2) and for a wide range of the deformation coefficient bar{C}d which takes into account the flexibility of the bearing shell. The computed results indicate that the influence of the bearing shell flexibility is quite significant on the performance characteristics of recessed hydrostatic journal bearing system operating with micropolar lubricant.

  4. Schemes for applying active lubrication to main engine bearings

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The work presented here is a theoretical study that describes two different schemes for the oil injection system in actively lubricated main engine bearings. The use of active lubrication in journal bearings helps to enhance the hydrodynamic fluid film by increasing the fluid film thickness and...... orifices circumferentially located around the bearing surface. The pressure distribution of the hydrodynamic fluid film in journal bearings is governed by the Reynolds equation, which is modified to accommodate the dynamics of active lubrication, and which can be numerically solved using finite...... consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically modified hydrostatic lubrication. In this case, the hydrostatic lubrication is modified by injecting oil at controllable pressures, through...

  5. Load-Induced Confinement Activates Diamond Lubrication by Water

    Zilibotti, G.; Corni, S.; Righi, M. C.

    2013-10-01

    Tribochemical reactions are chemical processes, usually involving lubricant or environment molecules, activated at the interface between two solids in relative motion. They are difficult to be monitored in situ, which leaves a gap in the atomistic understanding required for their control. Here we report the real-time atomistic description of the tribochemical reactions occurring at the interface between two diamond films in relative motion, by means of large scale ab initio molecular dynamics. We show that the load-induced confinement is able to catalyze diamond passivation by water dissociative adsorption. Such passivation decreases the energy of the contacting surfaces and increases their electronic repulsion. At sufficiently high coverages, the latter prevents surface sealing, thus lowering friction. Our findings elucidate effects of the nanoscale confinement on reaction kinetics and surface thermodynamics, which are important for the design of new lubricants.

  6. Three Types of Active Lubrication Systems for the Main Bearings of Reciprocating Machines

    Santos, Ilmar; Pulido, E. E.

    2010-01-01

    In the paper the authors investigate three different schemes for the realization of the controllable oil injection system to be couple to the main engine bearings. The use of active lubrication in fluid film bearings helps to enhance the hydrodynamic fluid film by increasing the fluid film...... engine, where the conventional lubrication of the main bearing is modified by applying radial oil injection. The performance of such a hybrid bearing is compared to an equivalent conventional lubricated bearing in terms of the maximum fluid film pressures, minimum fluid film thicknesses and reduction of...... thickness and consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically modified hydrostatic lubrication. In this case, the hydrostatic lubrication is modified by injecting oil at controllable...

  7. Actively lubricated bearings applied as calibrated shakers to aid parameter identification in rotordynamics

    Santos, Ilmar; Cerda Varela, Alejandro Javier

    2013-01-01

    between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. An accurate characterization of the active oil film forces is of fundamental importance to elucidate the feasibility of applying the active lubrication as non......-invasive perturbation forces, or in other words, as a "calibrated shaker", to perform in-situ rotordynamic tests. The main original contributions of this paper are three: a) the experimental characterization of the active fluid film forces generated in an actively-lubricated tilting-pad journal bearing in the frequency...... systems; c) experimental indication of how small such active fluid film forces (perturbation forces) should be, in order to perturb the rotor-journal bearing system without significantly changing its dynamic characteristics. To validate the experimental procedure and results obtained via actively-lubricated...

  8. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....

  9. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication....... For further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0 to 80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated...

  10. Experimental Identification of Dynamic Coefficients of Tilting-Pad Bearings with Active Lubrication

    Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar

    supply unit, b) servovalves, c) radial injection nozzles, d) displacement sensors and e) well-tuned digital controllers which turn the bearing static and dynamic properties controllable. A scaled-down industrial rotor, composed by a flexible rotor supported by a four rocker LBP tilting-pad journal......This article presents the experimental identification of the equivalent dynamic coefficients of an activelylubricated bearing under different lubrication regimes, namely: passive (no injection flow), hybrid (constant injection flow) and feedback-controlled (variable injection flow) lubrication. The...... bearing featuring active lubrication under light load conditions, is used for such a goal. The experimental identification is performed in the frequency domain by means of the measured FRFs and a finite element model of the rotor. The comparison between results under the different lubrication regimes...

  11. Lubrication fundamentals

    Pirro, DM

    2001-01-01

    This work discusses product basics, machine elements that require lubrication, methods of application, lubricant storage and handling, and lubricant conservation. This edition emphasizes the need for lubrication and careful lubricant selection.

  12. Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity.

    Dezzutti, Charlene S; Brown, Elizabeth R; Moncla, Bernard; Russo, Julie; Cost, Marilyn; Wang, Lin; Uranker, Kevin; Kunjara Na Ayudhya, Ratiya P; Pryke, Kara; Pickett, Jim; Leblanc, Marc-André; Rohan, Lisa C

    2012-01-01

    Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9), KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm. PMID:23144863

  13. Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity.

    Charlene S Dezzutti

    Full Text Available Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC aqueous- (n = 10, lipid- (n = 2, and silicone-based (n = 2 products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9, KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm.

  14. Feasibility of Applying Active Lubrication to Reduce Vibration in Industrial Compressors

    Santos, Ilmar; Nicoletti, Rodrigo; Scalabrin, A.

    2004-01-01

    the orifices distributed over the sliding surface. The dynamic coefficients of tilting-pad bearings with and without active lubrication and their influence on an industrial compressor of 391 Kg, which operates with a maximum speed of 10,200 rpm, are analyzed. In the original compressor design, the...... bearing housings are mounted on squeeze-film dampers in order to ensure reasonable stability margins during full load condition (high maximum continuous speed). Instead of having a combination of tilting-pad bearings and squeeze-film dampers, another design solution is proposed and theoretically......In this paper the complete set of modified Reynolds´ equations for the active lubrication is presented. The solution of such a set of equations allows the determination of stiffness and damping coefficients of actively lubricated bearings. These coefficients are not just dependent on Sommerfeld...

  15. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    Nicoletti, Rodrigo; Santos, Ilmar

    2005-01-01

    In the present paper the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... active lubricated tilting-pad bearing. By applying a simple proportional controller it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the...

  16. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication. For...... further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an...

  17. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    In the present paper, the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... lubricated tilting-pad bearing. By applying a simple proportional controller, it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the feasibility...

  18. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility o...

  19. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility o...

  20. Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

    Nicoletti, Rodrigo; Santos, Ilmar

    In the present paper, the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted...... into the model by using two different approaches: (a) linearized active oil film forces and the assumption that the hydrodynamic forces and the active hydraulic forces can be decoupled; (b) equivalent dynamic coefficients of the active oil film and the solution of the modified Reynolds' equation for...... the active lubrication. The second approach based on the equivalent dynamic coefficients leads to more accurate results since it includes the frequency dependence of the active hydraulic forces. Theoretical and experimental results reveal the feasibility of reducing resonance peaks by using the active...

  1. Linear and non-linear control techniques applied to actively lubricated journal bearings

    Nicoletti, R.; Santos, I. F.

    2003-03-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can use the conventional hydrodynamic lubrication. For further reduction of shaft vibrations one can use the active lubrication action, which is based on injecting pressurized oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and a non-linear controller, applied to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an effective vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0-80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated, illustrating clearly one of its most promising applications.

  2. Lubrication fundamentals

    This book is organized under the following headings: lubricating oils; lubricating greases; synthetic lubricants; machine elements; lubricant application; internal combustion engines; stationary gas turbines; steam turbines; hydraulic turbines; nuclear power plants; automotive chassis components; automotive power transmissions; compressors; handling, storing, and dispensing lubricants, in-plant handling for lubricant conservation

  3. Lubricants and lubrication

    Mang, T.; Dresel, W. [eds.] [Fuchs Petrolub AG, Mannheim (Germany)

    2001-07-01

    The use of lubricants is as old as mankind but the scientific analysis of lubrication, friction and wear, as an aspect of tribology is relatively new. Only recently have lubricants begun to be viewed as functional elements in engineering and this group of substances is also receiving increased attention from engineers. This book provides chemists and engineers with a clear interdisciplinary introduction and orientation to all major lubricant applications, focusing not only on the various products but also on specific application engineering criteria. (orig.)

  4. Active lubrication applied to radial gas journal bearings. Part 2: Modelling improvement and experimental validation

    Pierart, Fabián G.; Santos, Ilmar F.

    2016-01-01

    Actively-controlled lubrication techniques are applied to radial gas bearings aiming at enhancing one of their most critical drawbacks, their lack of damping. A model-based control design approach is presented using simple feedback control laws, i.e. proportional controllers. The design approach...... combines three main domains: tribology, dynamics and control. The Reynolds equation with radial injection, including piezoelectrically controlled jet, describes the non-linear interaction between bearing surface and rotating shaft. Dynamics of the flexible shaft and rotating parts are modelled aid by...... finite element method and the global model is used as control design tool. Active lubrication allows for significant increase in damping factor of the rotor-bearing system. Very good agreement between theory and experiment is obtained, supporting the multi-physic design tool developed....

  5. Exploring integral controllers in actively-lubricated tilting-pad journal bearings

    Salazar, Jorge Andrés González; Santos, Ilmar

    2015-01-01

    Active tilting-pad journal bearings with radial oil injection combine good stability properties of conventional tilting-pad journal bearings with the capability of improving their dynamic properties even more by control techniques. The main contribution of this work is the experimental...... investigation of integral controllers for feedback-controlled lubrication with the aim of: a) presetting the static journal center and consequently exploring the changes of bearing dynamic properties; b) obtaining an integral controller capable of re-positioning the static journal eccentricity for matching...... equilibria under conventional hydrodynamic and feedback-controlled lubrication regimes. A novel application is proposed, that tries to build non-invasive perturbation forces and uses the active fluid film forces of the bearing as a calibrated shaker....

  6. Active lubrication applied to internal combustion engines - evaluation of control strategies

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The performance of fluid film bearings in a combustion engine affects key functions such as durability, noise and vibration. Therefore, this work evaluates different control strategies for applying active radial oil injection in the main bearings of internal combustion engines with the aim of...... reducing friction losses and vibrations between the crankshaft and the bearings. The conventional hydrodynamic lubrication is combined with hydrostatic lubrication which is actively modified by radially injecting oil at controllable pressures, through orifices circumferentially located around the bearing...... surface. The behaviour of a main bearing of a medium size combustion engine, operating with radial oil injection and with four different control strategies is analyzed, giving some insights into the minimum fluid film thickness, maximum fluid film pressure, friction losses and maximum vibration levels...

  7. Actively lubricated bearings applied as calibrated shakers to aid parameter identification in rotordynamics

    Santos, Ilmar; Cerda Varela, Alejandro Javier

    2013-01-01

    -invasive perturbation forces, or in other words, as a "calibrated shaker", to perform in-situ rotordynamic tests. The main original contributions of this paper are three: a) the experimental characterization of the active fluid film forces generated in an actively-lubricated tilting-pad journal bearing in the frequency......The servo valve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling...... domain and the application of such a controllable bearing as a calibrated shaker aiming at determining the frequency response function (FRF) of rotordynamic systems; b) experimental quantification of the influence of the supply pressure and servo valve input signal on the FRF of rotor-journal bearing...

  8. Comparative evaluation of tableting compression behaviors by methods of internal and external lubricant addition: Inhibition of enzymatic activity of trypsin preparation by using external lubricant addition during the tableting compression process

    Otsuka, Makoto; Sato, Mitsuyo; Matsuda, Yoshihisa

    2001-01-01

    This study evaluated tableting compression by using internal and external lubricant addition. The effect of lubricant addition on the enzymatic activity of trypsin, which was used as a model drug during the tableting compression process, was also investigated. The powder mixture (2% crystalline trypsin, 58% crystalline lactose, and 40% microcrystalline cellulose) was kneaded with 5% hydroxypropyl cellulose aqueous solution and then granulated using an extruding granulator equipped with a 0.5-...

  9. Is Wetter Better? An Evaluation of Over-the-Counter Personal Lubricants for Safety and Anti-HIV-1 Activity

    Dezzutti, Charlene S.; Brown, Elizabeth R.; Bernard Moncla; Julie Russo; Marilyn Cost; Lin Wang; Kevin Uranker; Kunjara Na Ayudhya, Ratiya P.; Kara Pryke; Jim Pickett; Marc-André Leblanc; Rohan, Lisa C.

    2012-01-01

    Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmo...

  10. Adjustable ETHD lubrication applied to the improvement of dynamic performance of flexible rotors supported by active TPJB

    Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2013-01-01

    pressurized oil directly into the bearing clearance through a nozzle placed in a radial bore at the middle of the pad and connected to a high pressure supply unit by servovalves. The theoretical model is based on a finite element model, where the active TPJB with adjustable lubrication is included using...

  11. Tilting-Pad Journal Bearings with Active Lubrication Applied as Calibrated Shakers: Theory and Experiment

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    In recent years, a continuous research effort has transformed the conventional tilting-pad journal bearing into a mechatronic machine element. The addition of electromechanical elements provides the possibility of generating controllable forces over the rotor as a function of a suitable control...... dependent calibration function, i.e. the transfer function between control signal and force over the rotor. This work presents a theoretical model of the calibration function for a tilting-pad journal bearing with active lubrication. The bearing generates controllable forces by injecting pressurized oil...... signal. Such forces can be applied in order to perform parameter identification procedures in-situ, which enables evaluation of the mechanical condition of the machine in a non-invasive way. The usage of a controllable bearing as a calibrated shaker requires obtaining the bearing specific frequency...

  12. Lubrication background

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Surface topography, including the various physical methods of measuring surfaces, and the various lubrication regimes (hydrodynamic, elastohydrodynamic, boundary, and mixed) are discussed. The historical development of elastohydrodynamic lubrication is outlined. The major accomplishments in four periods, the pre-1950's, the 1950's, the 1960's, and the 1970's are presented.

  13. Lubrication a practical guide to lubricant selection

    Lansdown, A R

    1982-01-01

    Lubrication: A Practical Guide to Lubricant Selection provides a guide to modern lubrication practice in industry, with emphasis on practical application, selection of lubricants, and significant factors that determine suitability of a lubricant for a specific application. Organized into 13 chapters, this book begins with a brief theoretical opening chapter on the basic principles of lubrication. A chapter then explains the choice of lubricant type, indicating how to decide whether to use oil, grease, dry lubricant, or gas lubrication. Subsequent chapters deal with detailed selection of lubric

  14. Developments in lubricant technology

    Srivastava, S P

    2014-01-01

    Provides a fundamental understanding of lubricants and lubricant technology including emerging lubricants such as synthetic and environmentally friendly lubricants Teaches the reader to understand the role of technology involved in the manufacture of lubricants Details both major industrial oils and automotive oils for various engines Covers emerging lubricant technology such as synthetic and environmentally friendly lubricants Discusses lubricant blending technology, storage, re-refining and condition monitoring of lubricant in equipment

  15. Marine Lubricants

    Carter, B. H.; Green, D.

    Marine diesel engines are classified by speed, either large (medium speed) or very large (slow speed) with high efficiencies and burning low-quality fuel. Slow-speed engines, up to 200 rpm, are two-stroke with separate combustion chamber and sump connected by a crosshead, with trunk and system oil lubricants for each. Medium-speed diesels, 300-1500 rpm, are of conventional automotive design with one lubricant. Slow-speed engines use heavy fuel oil of much lower quality than conventional diesel with problems of deposit cleanliness, acidity production and oxidation. Lubricants are mainly SAE 30/40/50 monogrades using paraffinic basestocks. The main types of additives are detergents/dispersants, antioxidants, corrosion inhibitors, anti-wear/load-carrying/ep, pour-point depressants and anti-foam compounds. There are no simple systems for classifying marine lubricants, as for automotive, because of the wide range of engine design, ratings and service applications they serve. There are no standard tests; lubricant suppliers use their own tests or the Bolnes 3DNL, with final proof from field tests. Frequent lubricant analyses safeguard engines and require standard sampling procedures before determination of density, viscosity, flash point, insolubles, base number, water and wear metal content.

  16. Active lubrication applied to radial gas journal bearings. Part 1: Modeling

    Morosi, Stefano; Santos, Ilmar

    2011-01-01

    regulating radial injection of lubricant through the means of piezoelectric actuators mounted on the back of the bearing sleeves. A feedback law is used to couple the dynamic of a simplified rotor-bearing system with the pneumatic and dynamic characteristics of a piezoelectric actuated valve system. Selected...

  17. Aviation Lubricants

    Lansdown, A. R.; Lee, S.

    Aviation lubricants must be extremely reliable, withstand high specific loadings and extreme environmental conditions within short times. Requirements are critical. Piston engines increasingly use multi-grade oils, single grades are still used extensively, with anti-wear and anti-corrosion additives for some classes of engines. The main gas turbine lubricant problem is transient heat exposure, the main base oils used are synthetic polyol esters which minimise thermal degradation. Aminic anti-oxidants are used together with anti-wear/load-carrying, corrosion inhibitor and anti-foam additives. The majority of formulation viscosities are 5 cSt at 100°C. Other considerations are seal compatibility and coking tendency.

  18. Tractor Mechanics. Maintaining and Servicing the Engine, Learning Activity Packages 78-89; Lubricating the Tractor, Learning Activity Packages 90-94; Painting the Tractor, Learning Activity Packages 95-96.

    Clemson Univ., SC. Vocational Education Media Center.

    This series of learning activity packages focuses on three areas of tractor mechanics: (1) maintaining and servicing the engine, (2) lubricating the tractor, and (3) painting the tractor. Each of the nineteen illustrated learning activity packages follows a typical format: introduction, directions, objectives, learning activities, tools and…

  19. New lubricating material for hydraulic turbine equipment

    The release of lubricant into the water stream after passage through hydraulic turbines is an environmental issue of concern. To address concerns about the self-lubricating bearing materials being used to replace the standard grease lubricated bronze bearings for wicket gates, a survey was carried out to determine the availability and use of self-lubricating bearing materials. Included in the survey were users, bearing suppliers and turbine manufacturers. Information derived from the survey included extent of use, historical data, bearing design parameters, lubrication practices, maintenance activity, and environmental issues. Results of the survey are tabulated. It was found that the use of self-lubricating bearing materials is the predominant technology available to satisfy environmental concerns for hydraulic equipment. A number of materials are available based on both metallic and polymer materials. A numer of materials are available that have demonstrated satisfactory service life for at least 10 years. As an alternative, hydraulic equipment can be lubricated with an environmentally friendly lubricant, although there are none commercially available that are biodegradable and non-toxic. In new equipment the cost of using self-lubricating bearings could be less than grease lubricated bronze bearings with automatic lubrication system. 3 refs., 4 figs., 3 tabs

  20. Lubricant composition

    Lubricating compositions and shaped articles composed thereof are described which consist essentially of about 30 to about 60% by weight of an oil of lubricating viscosity, about 20 to about 50% by weight of a high molecular weight polymer, and about 20 about 50% by weight of a heat conductive agent capable of conducting heat away from a bearing surface where it is generated. The high molecular weight polymer may, for example, be polyethylene, having average molecular weights in the range from about 1.0 X 105 to about 5.0 X 106. The oil may be a mineral oil, a diester oil or preferably a synthetic hydrocarbon oil having a viscosity in the range from about 13 to about 1200 mm''/s (Mm2/s) at 380C. (1000F.) the heat conductive agent may be powdered zinc oxide, aluminum powder, or equivalents thereof in this invention. The compositions are semi-rigid gels which may be formed in a mold and used as is, or which may be shaped further after molding. The gels are formed by blending the heat conductive agent and polymer and then blending that mixture with the oil and heating to a temperature above the softening temperature of the polymer for a period of time (About 5 to about 75 minutes) sufficient that the mixture will form a firm, tough solid gel on cooling having an oily surface provided by oil exuding from the gel thus producing a lubricative mass operable for extended periods of time. The heat conductive substance dispersed in the gel aids in dissipating heat produced at the bearing surfaces during use thus improving the performance of the gel both in withstanding higher bulk operating temperatures and in resisting breakdown of the gel under prolonged use

  1. Impact of Lubricant Additives on thePhysicochemical Properties and Activity of Three‐Way Catalysts

    Chao Xie

    2016-04-01

    Full Text Available As alternative lubricant anti‐wear additives are sought to reduce friction and improve overall fuel economy, it is important that these additives are also compatible with current emissions control catalysts. In the present work, an oil‐miscible phosphorous‐containing ionic liquid (IL, trihexyltetradecylphosphonium bis(2‐ethylhexyl phosphate ([P66614][DEHP], is evaluated for its impact on three‐way catalysts (TWC and benchmarked against the industry standard zinc‐dialkyl‐dithio‐phosphate (ZDDP. The TWCs are aged in different scenarios: neat gasoline (no‐additive, or NA, gasoline+ZDDP, and gasoline+IL. The aged samples, along with the as‐received TWC, are characterized through various analytical techniques including catalyst reactivity evaluation in a bench‐flow reactor. The temperatures of 50% conversion (T50 for the ZDDP‐aged TWCs increased by 30, 24, and 25 °C for NO, CO, and C3H6, respectively, compared to the no‐additive case. Although the IL‐aged TWC also increased in T50 for CO and C3H6, it was notably less than ZDDP, 7 and 9 °C, respectively. Additionally, the IL‐aged samples had higher water‐gas‐shift reactivity and oxygen storage capacity than the ZDDP‐aged TWC. Characterization of the aged samples indicated the predominant presence of CePO4 in the ZDDP‐aged TWC aged by ZDDP, while its formation was retarded in the case of IL where higher levels of AlPO4 is observed. Thus, results in this work indicate that the phosphonium‐phosphate IL potentially has less adverse impact on TWC than ZDDP.

  2. Elasto-hydrodynamic lubrication

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  3. Lubricants in Pharmaceutical Solid Dosage Forms

    Jinjiang Li

    2014-02-01

    Full Text Available Lubrication plays a key role in successful manufacturing of pharmaceutical solid dosage forms; lubricants are essential ingredients in robust formulations to achieve this. Although many failures in pharmaceutical manufacturing operations are caused by issues related to lubrication, in general, lubricants do not gain adequate attention in the development of pharmaceutical formulations. In this paper, the fundamental background on lubrication is introduced, in which the relationships between lubrication and friction/adhesion forces are discussed. Then, the application of lubrication in the development of pharmaceutical products and manufacturing processes is discussed with an emphasis on magnesium stearate. In particular, the effect of its hydration state (anhydrate, monohydrate, dihydrate, and trihydrate and its powder characteristics on lubrication efficiency, as well as product and process performance is summarized. In addition, the impact of lubrication on the dynamics of compaction/compression processes and on the mechanical properties of compacts/tablets is presented. Furthermore, the online monitoring of magnesium stearate in a blending process is briefly mentioned. Finally, the chemical compatibility of active pharmaceutical ingredient (API with magnesium stearate and its reactive impurities is reviewed with examples from the literature illustrating the various reaction mechanisms involved.

  4. Control System Design for Active Lubrication with Theoretical and Experimental Examples

    Santos, Ilmar; Scalabrin, A.

    2003-01-01

    This work focuses on the theoretical and experimental behavior of rigid rotors controlled by tilting-pad journal bearings with active oil injection. Initially the mathematical model of the active bearing is presented: The equations that describe the dynamics of hydraulic actuators are introduced...... the control system of the active bearing based on root locus curves. The active system stability is analyzed by calculating its eigenvalues and frequency response curves. The theoretical and experimental results show that this kind of bearing can significantly reduce the vibration level of rotating...

  5. Control system design for flexible rotors supported by actively lubricated bearings

    Nicoletti, Rodrigo; Santos, Ilmar

    2008-01-01

    and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are...... displacement and velocity of the shaft at the bearing positions....

  6. Dynamic Coefficients of a Tilting Pad With Active Lubrication: Comparison Between Theoretical and Experimental Results

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2015-01-01

    This paper deals with the validation of the mathematical model for predicting the equivalent stiffness and damping of an active tilting-pad bearing. The active bearing design includes an injection nozzle in the pad and a hydraulic supply system featuring a servovalve, which enables to modify...

  7. Solid Lubricant For Alumina

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1993-01-01

    Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.

  8. Active Lubrication for Reducing Wear and Vibration: A combination of Fluid Power Control and Tribology

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...

  9. From Hybrid to Actively-Controlled Gas Lubricated Bearings – Theory and Experiment

    Morosi, Stefano

    bearings, tilting pad and flexure pivot gas bearings. These solutions proved to be effective in improving static and dynamic properties of the bearings, however issues related to the manufacturing and accuracy of predictions has so far limited their applications. Another drawback is that passive bearings...... determined by the appearance of subsynchronous whirl instability. In fact, postponing the onset speed of instability poses one of the greatest challenges in high-speed gas bearing design. A great deal of research is devoted to attack such issues, where most propose passive designs such as compliant foil...... offer a low degree of robustness, meaning that an accurate optimization is necessary for each application. Another way of improving gas bearings operation performance is by using active control systems, transforming conventional gas bearings in an electro-mechanical machine component. In this framework...

  10. The determination of trace elements in new and used lubricating oils by neutron activation analysis

    The trace elements on unused and used motor oils of different brands utilized in different light, medium and heavy weight vehicles by neutron activation analysis(N A A) has been measured. To find out the exact amount of trace elements in used motor oil only due to erosion was investigated both qualitatively and quantitatively through neutron activation analysis by thermal neutrons and X ray fluorescence analysis. Forty sample of motor oil with natural basis and ten samples with synthetic basis, plus thirteen samples as filters, gas and oil rings, fix and moving bearing has been provided. For determining the quality of elements in the given samples the time of radiation for short lived elements was from one minute to ten minutes in 1 MW reactor power, using pneumatic rabbit system. The elements Al, V, Ca, and specially S have been recognized. For long lived elements the irradiation time was one hour, one and a half hour and 2 hours. As a whole, for all samples 250 time radiations have been determined. Counting of samples have been done by multichannel analyzers connected to computer P D P/11 and IBM/P C at different times from 200 seconds to 4000 seconds. The time interval between the end of irradiation till start of counting, was from three minutes to a year. Analysis of samples have been provided by software O R A C L in computer P D P/11 and software M A S T E R O in computer IBM/P C. As a whole, nine hundred spectra and analysis have been provide. Thirty one elements have been identified. They are as follows. Al, V, S, Cu, Ca, Mg, Cl, In, Mn, K, Na, As, Br, Cd, Cr, Fe, Sb, Sc, Zn, Ag, Co, Ni, Au, Cs, Eu, Sm, Lu, La, W, Xe, Ba, Hf. These elements were found in all samples. But elements La, Lu, Au, Cs, Ni, Eu, Xe, W, Ba, and Hf were found in some samples. By comparing methods with standards and using thermal neutron flux, the quantitative amounts of elements were found. By using X-ray fluorescence Zn was found in some samples and in some others (used oil) Zn, Br

  11. CALCIUM SOAP LUBRICANTS

    Alaz, Izer; Tugce, Nefise; Devrim, Balköse

    2014-01-01

    The article studies the properties of calcium stearate (CaSt2) and lubricants produced on its basis. These lubricants were prepared using sodium stearate and calcium chloride by subsidence from aqueous solutions. The CaSt2 and the light fraction of crude oil were mixed together to obtain lubricating substances. The article shows that CaSt2 had the melting temperature of 142.8 C that is higher than the melting temperature of crude oil (128 C). The compositions of obtained lubricants were stu...

  12. Grease lubrication in rolling bearings

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  13. Feasibility of Applying Controllable Lubrication Techniques to Reciprocating Machines

    Pulido, Edgar Estupinan

    The use of active lubrication in journal bearings helps to enhance the thin fluid films by increasing the fluid film thickness and consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically...... conventional lubrication conditions, a mathematical model of a reciprocating mechanism connected to a rigid / flexible rotor via thin fluid films was developed. The mathematical model involves the use of multibody dynamics theory for the modelling of the reciprocating mechanism (rigid bodies), finite elements...... method for the modelling of the flexible rotor (crankshaft) and hydrodynamic fluid film theory for describing the dynamics of the thin fluid films. When active lubrication is introduced to modify conventional hydrodynamic lubrication, by means of aplying radial oil injection at controllable oil pressures...

  14. Metal forming and lubrication

    Bay, Niels

    2000-01-01

    Lubrication is essential in most metal forming processes. The lubricant film has two basic functions, [1]: i. to separate the work piece and tool surfaces and ii. to cool the workpiece and the tool. Separation of the two surfaces implies lower friction facilitating deformation and lowering the tool...

  15. Dairy Equipment Lubrication

    1978-01-01

    Lake To Lake Dairy Cooperative, Manitowoc, Wisconsin, operates four plants in Wisconsin for processing milk, butter and cheese products from its 1,300 member farms. The large co-op was able to realize substantial savings by using NASA information for improved efficiency in plant maintenance. Under contract to Marshall Space Flight Center, Midwest Research Institute compiled a handbook consolidating information about commercially available lubricants. The handbook details chemical and physical properties, applications, specifications, test procedures and test data for liquid and solid lubricants. Lake To Lake's plant engineer used the handbook to effect savings in maintenance labor and materials costs by reducing the number of lubricants used on certain equipment. Strict U.S. Department of Agriculture and Food and Drug Administration regulations preclude lubrication changes n production equipment, but the co-op's maintenance chief was able to eliminate seven types of lubricants for ancillary equipment, such as compressors and high pressure pumps. Handbook data enabled him to select comparable but les expensive lubricants in the materials consolidation process, and simplified lubrication schedules and procedures. The handbook is in continuing use as a reference source when a new item of equipment is purchased.

  16. PRODUCTION OF HIGH QUALITY LUBRICATING BASE OIL

    2001-01-01

    @@High VI lubricating oil is produced in hydrocracker through hydrocracking (HDC) and hydroisome-rization reactions. In order to effectively produce high VI component, such as iso-pafaffins and monocyclic naphtenes, it is important to load suitable HDC catalysts and operate them in the appropriate reaction conditions.   Nippon Mitsubishi Oil Corporation (NMOC) and its affiliate company, Nippon Mitsubishi Petroleum Refining Company (NMPRC) reported their original HDC catalysts four years ago in this Japan-China joint se-minar in Beijing[1]. NMOC and NMPRC operate their hydrocracker both in fuel oil production mode and in lubricating oil production mode. In lubricating oil production mode, high VI lubricating oil called VHDC are produced.   In this paper, at first, the advantages of high VI lubricating oil are described. And then it is announced that NMOC and NMPRC have developed a new generation of HDC catalyst with higher cracking activity, higher middle distillate selectivity and longer life than the other commercial HDC catalysts. In addition to those properties, the catalyst is able to yield high VI lubricating oil as well.

  17. Potential of palm kernel activated carbon epoxy (PKAC-E composite as solid lubricant: Effect of load on friction and wear properties

    K.W. Chua

    2014-09-01

    Full Text Available The aim of this study is to investigate the effect of load on the friction and wear properties of palm kernel activated carbon epoxy (PKAC-E composite. The PKAC-E composite specimen was fabricated by hot compression molding method. Dry sliding test was performed by using a pin-on-disc tribometer at various load conditions with constant sliding speed and distance. The experimental results show that wear rate and friction coefficient of PKAC-E composite decreases with applied load. However, at higher load, friction coefficient increases slightly and remains almost invariant with applied load. In addition, some adhesive and abrasive wear types were identified on the worn surfaces. The main conclusion of this work is that PKAC-E composite show unique properties as solid lubricant at low load under unlubricated conditions.

  18. Importance of lubricant analysis

    Sreten R. Perić

    2012-04-01

    Full Text Available Monitoring the performance of lubricants in practical application has multiple significance for both the consumer and the lubricant manufacturer. The primary significance for the consumer is extended life and timely change of lubricants, which keeps the costs of maintenance down. The lubricant manufacturer gains by creating a partner relationship with the consumer, as well as creating the possibility of gathering information about the performance of his product which will serve as the foundation for its further improvement and development. If we wish to maintain technical systems so that they have minimum halts and costs caused by halt removal or system failures, we must monitor data indicating equipment condition throughout the system operation. It is especially difficult to obtain data on equipment condition for parts which cannot be observed due to their position. In such cases, the oil analysis enables a continuous equipment condition monitoring and timely response in order to prevent undesirable prolonged halts.

  19. Fuels and Lubricants Facility

    Federal Laboratory Consortium — Modern naval aircraft and turbine-powered craft require reliable and high-quality fuels and lubricants to satisfy the demands imposed upon them for top performance...

  20. Lubrication by glycoprotein brushes.

    Zappone, Bruno; Ruths, Marina; Greene, George W.; Israelachvili, Jacob

    2006-03-01

    Grafted polyelectrolyte brushes show excellent lubricating properties under water and have been proposed as a model to study boundary lubrication in biological system. Lubricin, a glycoprotein of the synovial fluid, is considered the major boundary lubricant of articular joints. Using the Surface Force Apparatus, we have measured normal and friction forces between model surfaces (negatively charged mica, positively charged poly-lysine and aminothiol, hydrophobic alkanethiol) bearing adsorbed layers of lubricin. Lubricin layers acts like a versatile anti-adhesive, adsorbing on all the surfaces considered and creating a repulsion similar to the force between end-grafted polymer brushes. Analogies with polymer brushes also appear from bridging experiment, where proteins molecules are end-adsorbed on two opposing surfaces at the same time. Lubricin `brushes' show good lubricating ability at low applied pressures (P<0.5MPa), especially on negatively charged surfaces like mica. At higher load, the adsorbed layers wears and fails lubricating the surfaces, while still protecting the underlying substrate from wearing. Lubricin might thus be a first example of biological polyelectrolytes providing `brush-like' lubrication and wear-protection.

  1. Power system with an integrated lubrication circuit

    Hoff, Brian D.; Akasam, Sivaprasad; Algrain, Marcelo C.; Johnson, Kris W.; Lane, William H.

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  2. Vibration active control of tilting pad journal bearing rotor system based on the active lubrication%基于主动润滑可倾瓦轴承转子系统的振动主动控制

    刘宏; 宫晓春; 王晋麟

    2011-01-01

    研究一类可倾瓦支承的单盘非对称转子系统的振动主动控制问题.首先建立了系统的非线性动力学方程,针对主动润滑控制系统设计了BP神经网络PID控制器对转子系统进行振动主动控制.通过计算分析可知,采用基于BP-PID的主动润滑系统能够很好的抑制系统的振幅,使系统在很高的转速时才发生油膜失稳,拓宽转子系统稳定运转的转速范围,在转子系统发生油膜失稳时系统的振幅也能够得到极大程度的控制.%The vibration active control of an unsymmetrical rotor supported by two tilting pad journal bearings is investigated in this paper. Firstly, the nonlinear governing equation of the rotor system is formulated. Then the BP neural network PID controller is designed with regard to the active lubricated control system is applied to suppress the vibration of the concerning rotor system. After calculation and analysis the persuasive results are obtained. The vibration amplitude of the rotor system is greatly reduced by means of the active lubricated control system through the BP neural network PID controller. The whip instability of the controlled system occurs at a very high rotational speed and the stable operation range is greatly broadened. The vibration amplitude can be significantly suppressed by the active lubricated control system when the rotor runs up against the whip instability.

  3. Computational Chemistry and Lubrication

    Zehe, Michael J.

    1998-01-01

    Members of NASA Lewis Research Center's Tribology and Surface Science Branch are applying high-level computational chemistry techniques to the development of new lubrication systems for space applications and for future advanced aircraft engines. The next generation of gas turbine engines will require a liquid lubricant to function at temperatures in excess of 350 C in oxidizing environments. Conventional hydrocarbon-based lubricants are incapable of operating in these extreme environments, but a class of compounds known as the perfluoropolyether (PFAE) liquids (see the preceding illustration) shows promise for such applications. These commercially available products are already being used as lubricants in conditions where low vapor pressure and chemical stability are crucial, such as in satellite bearings and composite disk platters. At higher temperatures, however, these compounds undergo a decomposition process that is assisted (catalyzed) by metal and metal oxide bearing surfaces. This decomposition process severely limits the applicability of PFAE's at higher temperatures. A great deal of laboratory experimentation has revealed that the extent of fluid degradation depends on the chemical properties of the bearing surface materials. Lubrication engineers would like to understand the chemical breakdown mechanism to design a less vulnerable PFAE or to develop a chemical additive to block this degradation.

  4. Mixed lubricated line contacts

    Faraon, Irinel Cosmin

    2005-01-01

    The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is ess

  5. Temperature dependence on the synthesis of Jatropha bio lubricant

    Full text: Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha bio lubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH3) catalyst. The effects of temperature on the synthesis were studied at a range between 120 degree Celsius and 200 degree Celsius with pressure kept at 10 mbar. The conversion of JME to jatropha bio lubricant was found to be the highest (47 %) at 200 degree Celsius. However, it was suggested that the optimum temperature of the reaction is at 150 degree Celsius due to insignificant improvement in bio lubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10-1 (% wt/ wt.min.degree Celsius)-1. The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha bio lubricant was at -3 degree Celsius and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha bio lubricant, pour point and viscosities are found comparable to other plant based bio lubricant, namely palm oil and soybean based bio lubricant. (author)

  6. Glass microsphere lubrication

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  7. Carbon-based tribofilms from lubricating oils.

    Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2016-08-01

    Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid 'tribofilms', which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant's anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon-carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm. PMID:27488799

  8. Limits of Lubrication in

    Olsson, David Dam

    Strategic stainless steel surfaces have been developed and investigated during the project in close cooperation with the Department of Chemistry, DTU with the purpose of enhancing the tribological properties. This has been achieved successfully by applying electrochemical treatments of normal as...... delivered stainless steel surfaces implying microstructure changes in terms of larger ratio of closed lubricant pockets due to selective grain boundary etching. Strategic surfaces have also been created by macroscopic texturing using spherical indentations having a very small edge slope in order to promote...... using plain mineral oil is possible without any lubricant breakdown. In deep drawing, 2mm stainless steel blanks can be drawn to drawing ratio of DR=2.0 over a die entry radius of rd=3mm again using a plain mineral oil containing no additives. In stretch forming, friction is reduced considerably by...

  9. Cooling lubricants; Kuehlschmierstoffe

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  10. Green Lubricants for Metal Forming

    Bay, Niels

    The increasing focus on legislation towards diminishing the impact on working environment as well as external environment has driven efforts to develop new, environmentally benign lubricants for metal forming. The present paper gives an overview of these efforts to substitute environmentally haza...... hazardous lubricants in cold, warm and hot forging as well as sheet forming and punching/blanking with new, less harmful lubricants.......The increasing focus on legislation towards diminishing the impact on working environment as well as external environment has driven efforts to develop new, environmentally benign lubricants for metal forming. The present paper gives an overview of these efforts to substitute environmentally...

  11. Improved Ionic Liquids as Space Lubricants Project

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  12. High Performing PFPE Nanofluid Lubricants Project

    National Aeronautics and Space Administration — Space missions could benefit from improved lubricant technology. PSI intends to develop novel liquid lubricant formulations which are applicable for future NASA...

  13. Carbon-based tribofilms from lubricating oils

    Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L.; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K. R. S.

    2016-08-01

    Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid ‘tribofilms’, which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant’s anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon–carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm.

  14. Evaluating Solid-Lubricant Films

    Fusaro, Robert L.

    1988-01-01

    Report describes experimental techniques for measuring properties of solid-lubricant films. Discusses experimental parameters. Reviews basic pin-on-disk configurations and methods of preparing disks and applying solid lubricants. Techniques for constant-temperature testing, low-contact-stress testing, and temperature-versus-time testing presented. Suggests methods of measuring pin-wear volume and recommends ways of presenting data.

  15. Self lubricating fluid bearings

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid

  16. Lubrication of soft viscoelastic solids

    Pandey, Anupam; Venner, Kees; Snoeijer, Jacco

    2015-01-01

    Lubrication flows appear in many applications in engineering, biophysics, and in nature. Separation of surfaces and minimisation of friction and wear is achieved when the lubrication fluid builds up a lift force. In this paper we analyse soft lubricated contacts by treating the solid walls as viscoelastic: soft materials are typically not purely elastic, but dissipate energy under dynamical loading conditions. We present a method for viscoelastic lubrication and focus on three canonical examples, namely Kelvin-Voigt-, Standard Linear-, and Power Law-rheology. It is shown how the solid viscoelasticity affects the lubrication process when the timescale of loading becomes comparable to the rheological timescale. We derive asymptotic relations between lift force and sliding velocity, which give scaling laws that inherit a signature of the rheology. In all cases the lift is found to decrease with respect to purely elastic systems.

  17. Technological lubricating means: Evolution of materials and ideas

    Godlevskiy, Vladimir A.

    2016-03-01

    The main stages of technological lubricating material development from ancient times to date are described. How the chemical composition of these products changed with time, how new ideas revealing the physical and chemical basics of external media that influence the mechanical processing of materials appeared, how these ideas explained the differences between traditional tribology and specific technology of metal processing are discussed. The question of the possible realization of Rehbinder's adsorption effect in contact zone is also stated. The description of a very captivating problem is related to the explanation of the mechanism of lubricant penetration into the contact zone between the material being processed and the tool. The birth and development of the hypothesis of microcapillary penetration of the lubricant into the dynamically changed intersurface clearance that has finally led to formulating the "necessary kinetic condition of the lubricating activity" is relayed.

  18. Automotive gear oil lubricant from soybean oil

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  19. Advances in lubrication technology and modelling. Novel nanoscale friction modifiers - Piezoviscosity effect in EHL contacts

    Petrone, Vincenzo

    2014-01-01

    2012 - 2013 Lubricant additives have an important influence on the lubrication performances. These additives are active ingredients which can be added during a blending process to base oils in order either to enhance the existing performance of the base fluids or to impart new properties that the base fluids lack. In modern industry, the ever growing demand on the duration and efficiency of machineries stimulates the research for lubricant additives with better performance. At the same tim...

  20. Controllable Lubrication for Main Engine Bearings Using Mechanical and Piezoelectric Actuators

    Estupinan, Edgar; Santos, Ilmar

    2012-01-01

    Although mechatronic systems are nowadays implemented in a large number of systems in vehicles, active lubrication systems are still incipient in industrial applications. This study is an attempt to extend the active lubrication concept to combustion engines and gives a theoretical contribution t...

  1. Structural lubricity under ambient conditions

    Cihan, Ebru; İpek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-01-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000–130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold–graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions. PMID:27350035

  2. Biodegradable lubricants for road vehicles

    Schramm, J. [Denmark Technical Univ., Lyngby (Denmark). Dept. of Mechanical Engineering

    2004-07-01

    This presentation outlined the characteristics of biolubricants and their use in vehicles. Experiments with compression ignition (CI) and spark ignition (SI) engines were also presented. Biolubes can be used in 4-stroke and 2-stroke engines, bearing compressors and hydraulic equipment. Studies have shown that biolubes do not cause unusual engine wear. They are produced from biomass, with the base material being vegetable oils and synthetic esters. Conventional lubricants are produced from fossil fuels, with the base material being mineral oils, polyglycol or synthetic ester. This presentation rated the characteristics of various lubricants in terms of viscosity temperature behaviour, low temperature behaviour, liquid range, oxidation stability, thermal stability, volatility, fire resistance, hydrolytic stability, corrosion protection, seal material compatibility, paints compatibility, miscibility with mineral oil, solubility of additives, lubricating properties, toxicity, and biodegradability. The environmental impacts of biolubes regarding emissions of carbon dioxide, nitrous oxide and particulate matter were discussed along with the impact of combining biolubes with alternative fuels. The future beneficial applications include outboard engines, off road vehicle engines and road vehicle engines. Currently, vegetable oil based biolubricants are 2 to 3 times more expensive than mineral based oils, and synthetic lubricants are even more expensive. It was suggested that future studies should examine the biodegradability of used lubricants, the performance of biodegradable lubricants, alternative fuels and fuel economy. tabs., figs.

  3. Analysis on mechanism of thin film lubrication

    ZHANG Chaohui; LUO Jianbin; HUANG Zhiqiang

    2005-01-01

    It is an important concern to explore the properties and principles of lubrication at nano or molecularscale. For a long time, measurement apparatus for filmthickness of thin film lubrication (TFL) at nano scale havebeen devised on the basis of superthin interferometry technique. Many experiments were carried out to study the lubrication principles of TFL by taking advantages of aforementioned techniques, in an attempt to unveil the mechanism of TFL. Comprehensive experiments were conducted to explore the distinctive characteristics of TFL. Results show that TFL is a distinctive lubrication state other than any known lubrication ones, and serves as a bridge between elastohydrodynamic lubrication (EHL) and boundary lubrication (BL). Two main influence factors of TFL are the solid surface effects and the molecular properties of the lubricant, whose combination effects result in alignment of liquid molecules near the solid surfaces and subsequently lubrication with ordered film emerged. Results of theoretical analysis considering microstructure are consistent with experimental outcomes, thus validating the proposed mechanism.

  4. Investigation of the Wheel-Flange Lubrication of Railway Trains

    A tracer method was applied to investigate the wheel-flange lubrication action of the new Austrian multiple-unit train ''Transalpin''. On electric engines the flanges of the first pair of wheels are lubricated by a pendulum oil pump. This pump starts to work when there is lateral movement of the engine in curves or at high speed on straight lines. The lubricating oil is transferred, while the train is underway, from the first wheel to the inner surface of the rail. From there it should be taken up by the following wheels of the train. In this way the friction between the rails and the wheel flanges can be reduced and as a consequence the wear of material is decreased. Until the present investigation it has not been possible to get quantitative information about the action of this type of lubrication. By adding the tracer 198Au in the form of a colloid to the lubricating oil (specific activity 0.5 Ci/litre), quantitative measurements of the oil transport mechanism could be made on the moving train. The detection of the labelled lubricant was possible even on the last wheels of a train of 44 axles. The oil films which were still detectable on the wheel flanges had a thickness of about 0. 3 microns. By this tracer method, the dependence of lubrication on the speed and the line conditions can also be determined. The tracer method has a wide range of applications in the study of underway conditions in railroad operation including the investigation of the sine movement of trains. (author)

  5. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    Qu, J. [ORNL; Viola, M. B. [General Motors Company

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

  6. Cost-Cutting Powdered Lubricant

    2005-01-01

    Scientists at NASA's Glenn Research Center developed a high-temperature, solid lubricant coating material that is saving the manufacturing industry millions of dollars. The material came out of 3 decades of tribological research, work studying high-temperature friction, lubrication, and the wearing of interacting surfaces that are in relative motion. It was developed as a shaft coating deposited by thermal spraying to protect foil air bearings used in oil-free turbomachinery, like gas turbines, and is meant to be part of a larger project: an oil-free aircraft engine capable of operating at high temperatures with increased reliability, lowered weight, reduced maintenance requirements, and increased power. This advanced coating, PS300, is a self-lubricating bearing material containing chromium oxide, with additions of a low-temperature start up lubricant (silver) and a high-temperature lubricant, making it remarkably stable at high temperatures, and better suited than previously available materials for high-stress conditions. It improves efficiency, lowers friction, reduces emissions, and has been used by NASA in advanced aeropropulsion engines, refrigeration compressors, turbochargers, and hybrid electrical turbogenerators. PS300 is ideal in any application where lowered weight and reduced maintenance are desired, and high-temperature uses and heavy operating speeds are expected. It has notable uses for the Space Agency, but it has even further-reaching potential for the industrial realm.

  7. Top-of-Rail lubricant

    Alzoubi, M. F.; Fenske, G. R.; Erck, R. A.; Boparai, A. S.

    2000-07-14

    Analysis of the volatile and semivolatile fractions collected after use of the TOR lubricant indicated that other than contaminants in the collection laboratory, no compounds on the EPA's Target Compound Lists (Tables 2 and 5) were detected in these fractions. The data of these qualitative analyses, given in the various tables in the text, indicate only the relative amounts of the tentatively identified compounds. The authors recommend that quantitative analysis be performed on the volatile and semivolatile fractions to allow confirmation of the tentatively identified compounds and to obtain absolute amounts of the detected compounds. Additionally, the semivolatile fraction should be analyzed by liquid chromatography/mass spectrometry to identify compounds that are not chromatographable under the temperature program used for determination of semivolatile compounds. Introducing the top-of-rail (TOR) lubricant into the wheel/rail interface results in a reduction of almost 60% of lateral friction force over the forces encountered under dry conditions. This reveals good potential for energy savings, as well as wear reduction, for railroad companies. In TOR lubrication, an increase in the angle of attack and axle load results in increased lateral friction and rate of lubricant consumption. The most efficient TOR lubricant quantity to be used in the wheel/rail interface must be calculated precisely according to the number of cars, axle loads, train speed, and angle of attack.

  8. Metalworking corrosion inhibition/drawing lubricant

    Lipinski, H.F.; Wantling, S.J.

    1980-05-06

    A metalworking lubricant composition is disclosed which is effective as both a corrosion inhibitor and drawing lubricant and comprises a mineral oil and an additive combination of barium lanolate soap and barium sulfonate.

  9. Biodegradation and toxicological evaluation of lubricant oils

    Ivo Shodji Tamada; Paulo Renato Matos Lopes; Renato Nallin Montagnolli; Ederio Dino Bidoia

    2012-01-01

    The aim of this work was to compare different toxicity levels of lubricant oils. The tests were performed using the earthworm (Eisenia andrei), arugula seeds (Eruca sativa) and lettuce seeds (Lactuca sativa), with three types of contaminants (mineral lubricant oil, synthetic lubricant oil and used lubricant oil) for various biodegradation periods in the soil. The toxicity tests indirectly measured the biodegradation of the contaminants. The samples were analyzed at t0, t60, t120 and t180 days...

  10. Effect of surface condition on the formation of solid lubricating films at high temperatures

    Hanyaloglu, Bengi; Graham, E. E.

    1992-01-01

    Solid films were produced on active metal or ceramic surfaces using lubricants (such as tricresyl phosphate) delivered as a vapor at high temperatures, and the lubricity of these deposits under different dynamic wear conditions was investigated. A method is described for chemically activating ceramic surfaces resulting in a surface that could promote the formation of lubricating polymeric derivative of TCP. Experiments were carried out to evaluate the wear characteristics of unlubricated cast iron and of Sialon ceramic at 25 and 280 C, and lubricated with a vapor of TCP at 280 C. It is shown that continuous vapor phase lubrication of chemically treated Sialon reduced its coefficient of friction from 0.7 to less than 0.1.

  11. CYLINDER AND SYSTEM LUBRICATING OILS

    ION ADRIAN GIRBA

    2016-06-01

    Full Text Available Increased thermal efficiency, savings in the fuel consumption and the possibility to burn low quality fuels conducted to an intense development of marine engines in past 20 years, this progress being emphasized by the increased combustion pressures and better combustion properties. These improvements represent a continuous challenge for lubricating oil manufacturers: the rise in combustion temperatures and pressures is making difficult to preserve the oil film in critical areas and the longer strokes of the piston leads to issues of spreading the oil. Adding here the new type of engines using gas or biofuel which requires different types of lubricating oils. Therefore, the success of new generation of engines will depend on lubricating oils quality. :

  12. Tethered Lubricants for Small Systems

    Lynden A. Archer

    2006-01-09

    The objective of this research project is two-fold. First, to fundamentally understand friction and relaxation dynamics of polymer chains near surfaces; and second, to develop novel self-lubricated substrates suitable for MEMS devices. During the three-year performance period of this study the PI and his students have shown using theory and experiments that systematic introduction of disorder into tethered lubricant coatings (e.g. by using self-assembled monolayer (SAM) mixtures or SAMs with nonlinear, branched architectures) can be used to significantly reduce the friction coefficient of a surface. They have also developed a simple procedure based on dielectric spectroscopy for quantifying the effect of surface disorder on molecular relaxation in lubricant coatings. Details of research accomplishments in each area of the project are described in the body of the report.

  13. Laboratory services series: a lubrication program

    Bowen, H.B.; Miller, T.L.

    1976-05-01

    The diversity of equipment and operating conditions at a major national research and development laboratory requires a systematic, effective lubrication program. The various phases of this program and the techniques employed in formulating and administering this program are discussed under the following topics: Equipment Identification, Lubrication Requirements, Assortment of Lubricants, Personnel, and Scheduling.

  14. A new lubricant carrier for metal forming

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben;

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers with a s...... extrusion at high reduction and excessive stroke comparing with conventionally lubrication using phosphate coating and soap....

  15. Growth and opportunities in the lubricants business in Asia

    The demand for lubricants is increasing faster in Asia than any other part of the world. This development is being propelled largely by the expansion of the transportation and manufacturing sectors. By the year 2000, lubricant consumption in Asia will exceed that of Western Europe, Africa and the Middle East combined. Aside from this growth, most of the region is shifting from very low quality to higher quality value-added products. In view of these factors, there has been an explosion of activity over the past few years as lubricant blenders and additive suppliers attempt to position themselves within the market. Over the past year, Chem Systems has undertaken an extensive study of the lubricants business in East Asia, focusing on the evolution of this complex market structure and the identification of attractive opportunities. The overview presented in this paper is a product of these efforts. Whether you are a multinational oil company, independent blender, national oil company or multinational additive suppler, the questions are the same when developing a strategy for the region: regional overview of lubricant business structure; outlook for Asian demand; profile of lube/additives businesses; and successful competition--what is required?

  16. Lubrication greases for nuclear reactors

    Lubricating greases are essential components of many machines used in nuclear power plants. Where these machines are subject to radiation the life of the grease will be reduced due to deterioration of the components of the grease. According to the chemical nature of the grease used a greater or lesser resistance to radiation will be observed. Tests and techniques to evaluate the performance of greases before and after irradiation are described. The results of these tests show that conventional premium greases will resist comparatively low levels of irradiation, whilst greases formulated from correctly selected components can tolerate quite high levels of radiation permitting the machines they lubricate to attain their designed service lives

  17. New approach in lubrication engineering using neutron reflectometry

    According to historic papers in lubrication engineering, lubrication modes between two solids are essentially classified into three groups - boundary lubrication, mixed lubrication and full-film lubrication. This paper proposed some novel approaches for elucidation of lubrication phenomena using neutron reflectometry. For the studies on boundary lubrication, the neutron reflectometry is helpful to in-situ observe the 'absorbed layer' near the solid surface, while for the studies on full-film lubrication, it can reveal the density of lubricants at the solid-liquid interface. Those information will help to clarify the friction mechanism under lubrication in the field of tribology. (author)

  18. Self lubrication of bitumen froth in pipelines

    Joseph, D.D. [Univ. of Minnesota, Minneapolis, MN (United States)

    1997-12-31

    In this paper I will review the main properties of water lubricated pipelines and explain some new features which have emerged from studies of self-lubrication of Syncrudes` bitumen froth. When heavy oils are lubricated with water, the water and oil are continuously injected into a pipeline and the water is stable when in a lubricating sheath around the oil core. In the case of bitumen froth obtained from the Alberta tar sands, the water is dispersed in the bitumen and it is liberated at the wall under shear; water injection is not necessary because the froth is self-lubricating.

  19. Vegetable oil basestocks for lubricants

    Garces, R.; Martinez-Force, E.; Salas, J.

    2011-07-01

    The use of vegetable biodegradable basestocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for biolubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed. (Author).

  20. Longevity Of Dry Film Lubricants

    Kannel, J. W.; Stockwell, R. D.

    1993-01-01

    Report describes evaluation of dry film lubricants candidate for use in rotary joints of proposed Space Station. Study included experiments and theoretical analyses focused on longevity of sputtered molybdenum disulfide films and ion-plated lead films under conditions partially simulating rolling contact.

  1. Thin Film Solid Lubricant Development

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  2. Automotive Cooling and Lubricating Systems.

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide new mechanics with a source of study materials to assist them in becoming more proficient in their jobs. The course contains four study units covering automotive cooling system maintenance, cooling system repair, lubricating systems, and lubrication…

  3. Full Life Wind Turbine Gearbox Lubricating Fluids

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearbox reliability. Thus, verifying and quantifying the potential of PFPE fluid to effect gearbox reliability is the key assumption that would need to be further validated. In summary the proof of concept to use PFPE fluid as wind turbine gear box lubricant was validated with this project. The increase in life time was qualitatively demonstrated and this supports the need for future activity of field trials and laboratory aging studies to quantify the predicted 20 year life. With micro-pitting being the major failure mechanism in the last years, recent publications show that white etch cracking of bearings seem to have the highest impact on wind turbine reliability. With its higher film thicknesses compared to PAO reference oils, PFPE fluids have the potential to reduce this failure occurrence as well.

  4. Friction Regimes in the Lubricants Solid-State Regime

    Schipper, D.J.; Maathuis, O.; Dowson, D; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughness on this transition. The friction measurements showed that in the lubricants solid-state region three lubrication modes can be distinguished: A) full-film lubrication; separation is maintained b...

  5. Lubricated friction between incommensurate substrates

    Vanossi, Andrea; Santoro, Giuseppe E.; Manini, Nicola; Tosatti, Erio; Braun, O. M.

    2007-01-01

    This paper is part of a study of the frictional dynamics of a confined solid lubricant film - modelled as a one-dimensional chain of interacting particles confined between two ideally incommensurate substrates, one of which is driven relative to the other through an attached spring moving at constant velocity. This model system is characterized by three inherent length scales; depending on the precise choice of incommensurability among them it displays a strikingly different tribological beha...

  6. Used lubricants and ecological problems

    This planet is undergoing a severe ecological crisis. The consequent problems include not only how to prevent the destruction of contemporary civilization, but also how to preserve mankind as a biological species. In the onset of this crisis, used lubricants (ULs) play a role that is by no means the least important. Every year, the worldwide discharge of petroleum products to the biosphere is approximately 6 million tonnes, of which more than 50% consists of ULs. The ecologically dangerous components of both commercial lubricants and used lubricants are the polycyclic aromatic hydrocarbons (PAHs) that are originally present in crude oil; polyhalobiphenyls, mainly polychlorobiphenyls (PCBs) of anthropogenic origin; sulfur- and chlorine-containing additives; a number of biocides; organic compounds of metals (lead, barium, antimony, zinc); and nitrites. These substances are distributed in the atmosphere, water, and soil, entering the food chain and appearing in foodstuffs. Moreover, hydrocarbons of petroleum and synthetic oils with a low degree of biodegradability (10-30%) accumulate in the environment and may shift the ecological equilibrium (accelerated multiplication and mutation of microorganisms that assimilate petroleum products). 32 refs., 1 fig

  7. Wet friction materials and lubricants

    Matsumoto, Takayuki

    1988-02-01

    There are wet and dry friction materials used for friction clutches and friction brakes. Wet friction materials include sintered alloys and semimetallic substances. Paper friction materials which are the most common wet friction materials used in automobiles were studied for their performance and their relation to lubricants. All present paper friction materials are non-asbestos paper friction materials. The requirements for paper friction material performance are as follows: (1) The heat resistance and durability are so high that the material can stand sliding for a long time. (2) The friction curve is flat. (3) The mechanical strength, wear resistance, and resistance to oil pressure are high. (4) The coefficient of friction (particularly, of static friction) is very high. (5) Variations in the coefficient of friction with time are low. The friction characteristics and wear of paper friction materials are influenced by the lubricant used together with the paper friction materials. It is necessary to develop materials which are immune to the influence of the lubricant. (11 figs, 3 tabs, 21 refs)

  8. Effect of Lubricant Additives on the WDLC Coating Structure When Tested in Boundary Lubrication Regime

    Yang, L; Neville, A; Brown, A; Ransom, P; Morina, A

    2015-01-01

    Improvements in coating deposition technology enable the mass production of high-quality diamond-like carbon (DLC) coatings at an industrial scale and also increase their use in lubricated contacts. However, the understanding of the interactions of different lubricant additives with this material is not yet fully developed. This study focuses on several fundamental aspects of the tungsten-doped DLC coating (denoted as WDLC) behaviour under boundary lubrication conditions with model lubricants...

  9. Experimental identification of dynamic coefficients of lightly loaded tilting-pad bearings under several lubrication regimes

    Salazar, Jorge G.; Santos, Ilmar F.

    2016-01-01

    ) radial injection nozzles, (d) displacement sensors and (e) well-tuned digital controllers. A scaled-down industrial rotor featuring active lubrication, composed of a flexible rotor supported by a four-rocker load-between-pads tilting-pad bearing under light load condition, is used for this objective. The......This paper presents the identified dynamic coefficients of a lightly loaded actively lubricated bearing under three lubrication regimes: passive, hybrid and feedback-controlled. The goal is to experimentally demonstrate the feasibility of modifying the bearing dynamic properties via active...... lubrication. Dominated by the latest two regimes, the bearing properties become adjustable or controllable due to the injection of either a constant or variable pressurized oil flow. Such a flow is regulated by a hydraulic control system composed of (a) a high-pressure oil supply unit, (b) servovalves, (c...

  10. Influence of Lubricant Pocket Geometry upon Lubrication Mechanisms on Tool-Workpiece Interfaces in Metal Forming

    Shimizu, I; Martins, P.A.F.; Bay, Niels; Andreasen, Jan Lasson; Bech, Jakob I.

    Micro lubricant pockets located on the surface of plastically deforming workpieces are recognized to improve the performance of fluid lubrication in a metal forming processes. This work investigates the joint influence of pocket geometry and process working conditions on micro lubrication mechani...

  11. Lubricant for cold stamping of metal

    Tulik, V.T.; Movshovich, V.S.; Speranskiy, B.S.; Tseloval' nikov, V.M.; Yudovich, S.Z.

    1980-03-19

    Hydrogenated thermally thickened vegetable oil and the product of condensation of triethanolamine with the bottoms of synthetic fatty acids are added to the oil, which contains petroleum oil, lanolin and a nonionogenic wetting agent, in order to increase the lubricating properties and to give it mothballing properties. The contents of the components are in %: lanolin, 10-20; nonionogenic wetting agent, 1-5; vegetable oil, 10-50; product of condensation, 1-5 and petroleum oil to 100%. The lubricant is produced through the introduction of the cited components in petroleum oil heated to 65-75/sup 0/C with careful mixing. Comparative laboratory tests of the lubricant samples were conducted through identifying the degree of drawing, the drawing force and the degree of deformation. The tests showed that the new lubricant has high lubricating and washing properties. Also studied was the corrosion stability in a moisture chamber as compared with I-20 A lubricant. The time after which the corrosion appeared in days for the I-20 A is 1 and the sample of the lubricant, 28. Industrial tests showed that the proposed lubricant may be used in sheet stamping production in the manufacture of complex parts of motor vehicles without the additional application of industrial lubricant in conditions of press production.

  12. Solid lubrication technology of HTGR under helium

    Because Helium is used as coolant in High Temperature Gas-cooled Reactor (HTGR), the change of tribological properties of HTGR structure component under Helium is a big problem. Under Helium, tribological properties of material becomes worse and fluid lubrication can not be used. Bonded solid lubrication film and fusion sintering solid film are used in control rod and can solve the tribological problem well. Methods of replenishment solid lubricant are discussed for continuously operating friction components. The necessity and possibility for solid lubrication film used in Helium fan is also discussed

  13. Lubrication System with Tolerance for Reduced Gravity

    Portlock, Lawrence E. (Inventor); McCune, Michael E. (Inventor); Dobek, Louis J. (Inventor)

    2013-01-01

    A lubrication system includes an auxiliary lubricant tank 48, a supply conduit 58 extending from a source of lubricant 26 to the auxiliary lubricant tank. A reduced-G bypass line 108 branches from the conduit and enters the auxiliary tank at a first elevation E.sub.1. The system also includes an auxiliary tank discharge conduit 116, a portion of which resides within the tank. The resident portion has an opening 122 at least partially at a second elevation E.sub.2 higher than the first elevation.

  14. Aqueous lubrication natural and biomimetic approaches

    Spencer, Nicholas D

    2014-01-01

    Man lubricates mostly with oil. Nature lubricates exclusively with water. Pure water is a poor lubricant, but the addition of proteins, especially glycoproteins, can modify surfaces to make them far more lubricating at slow speeds. Understanding how nature does this, and the physical structures involved, is not only important for the understanding of diseases such as osteoarthritis, but also essential for the successful application of articulating implants, such as hips and knees, as well as the development of medical devices such as catheters and contact lenses. A host of important applicati

  15. Ecotoxicological study of used lubricating oil

    Used lubricating oil is more toxic than crude oil and fuel oil since it contains comparatively high levels of heavy metals and polycyclic aromatic hydrocarbons (PAHs). No detail toxicological study has been conducted to evaluate the hazards of used lubricating oil to the environment. This study reports a battery of bioassays using bacteria (Microtox test and Mutatox test), algae, amphipod and shrimp larvae to determine the toxicity of water soluble fraction of used lubricating oil. The results will be used to formulate a complete and extensive ecotoxicological assessment of the impacts of used lubricating oil on aquatic environment

  16. Direct observation of lubricant additives using tomography techniques

    Chen, Yunyun; Sanchez, Carlos; Parkinson, Dilworth Y.; Liang, Hong

    2016-07-01

    Lubricants play important roles in daily activities such as driving, walking, and cooking. The current understanding of mechanisms of lubrication, particularly in mechanical systems, has been limited by the lack of capability in direct observation. Here, we report an in situ approach to directly observe the motion of additive particles in grease under the influence of shear. Using the K-edge tomography technique, it is possible to detect particular additives in a grease and observe their distribution through 3D visualization. A commercial grease as a reference was studied with and without an inorganic additive of Fe3O4 microparticles. The results showed that it was possible to identify these particles and track their movement. Under a shear stress, Fe3O4 particles were found to adhere to the edge of calcium complex thickeners commonly used in grease. Due to sliding, the grease formed a film with increased density. This approach enables in-line monitoring of a lubricant and future investigation in mechanisms of lubrication.

  17. Estimation of appropriate lubricating film thickness in ceramic-on-ceramic hip prostheses

    Tauviqirrahman, M.; Muchammad, Bayuseno, A. P.; Ismail, R.; Saputra, E.; Jamari, J.

    2016-04-01

    Artificial hip prostheses, consisting of femoral head and acetabular cup are widely used and have affected the lives of many people.However, the primary issue associated with the long term performance of hip prostheses is loosening induced by excessive wear during daily activity. Therefore, an effective lubrication is necessary to significantly decrease the wear. To help understand the lubricating performance of such typical hip joint prostheses, in the present paper a hydrodynamic lubrication model based on Reynolds equationwas introduced. The material pairs of ceramic acetabular cup against ceramic femoral head was investegated.The main aim of this study is to investigate of the effect of loading on the formation of lubricating film thickness.The model of a ball-in-socket configuration was considered assuming that the cup was stationary while the ball was to rotate at a steady angular velocityvarying loads.Based on simulation result, it was found that to promote fluid film lubrication and prevent the contacting components leading to wear, the film thickness of lubricant should be determined carefully based on the load applied. This finding may have useful implication in predicting the failure of lubricating synovial fluid film and wear generation in hip prostheses.

  18. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties

    Gupta, Bhavana; Kumar, N.; Panda, Kalpataru; Dash, S.; Tyagi, A. K.

    2016-01-01

    Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication.

  19. Dynamics of SAMs in Boundary Lubrication

    J. Manojlović

    2013-09-01

    Full Text Available Surfactant molecules have some properties responsible for a number ofremarkable phenomena, such as oriented adsorption of surfactants at surfaces and interfaces. The capability to self -assemble into well- defined structures is often seen as being more important than their surface activity. When a surfactant solution is in contact with a solid surface, the surfactant molecules adsorb onto the surface, ideally forming an adsorbed layer of a high order, termed as a self- assembled monolayer (SAM. Many surface properties are influenced bysuch a film, and therefore, SAMs offer the capability to form ordered organic surface coatings, suitable for various applications, such as wetting or corrosion protection. Due to the flexibility in choosing the molecular architecture, organic molecules have many interesting applications, such as biosensors, in Photoelectronics, in controlling water adsorption or boundary lubricant coating. This paper Focuses on cationic surfactants (quaternary ammonium surfactants with some unique properties that are not present in other surfactants.

  20. Experimental study and modelling of mixed particulate lubrication with MoS2 powder solid lubricant

    H. Wiśniewska-Weinert

    2011-12-01

    Full Text Available Purpose: The purpose of the paper is experimental study and modelling of mixed particulate lubrication with MoS2 powder solid lubricant.Design/methodology/approach: In the present investigation, ball-on-disc experiments were carried out to determine the lubrication performance of MoS2 solid lubricant powder that could be used for hard PVD coatings applied for forging and stamping tools.Findings: The proposed solid lubricant nano- and submicroparticles mixture demonstrates excellent potential for use in mixed lubrication regimes The quasi-hydrodynamic behaviour of solid lubricant and wear debris particles results in low friction coefficients of hard coating – steel ball friction pairs.Research limitations/implications: The solid lubricant particle exfoliation and formation of tribofilms on micro-asperities allow to achieve the boundary lubrication effects which is found to more preferable for steel contacts rather than for hard coatings.Originality/value: The model of mixed lubrication based on non Newtonian behaviour of powder solid lubricant was validated based on the experimental results. Results of calculation of Stribeck curves demonstrate the potential of modelling of friction process by sharing boundary and quasi-hydrodynamic processes.

  1. Pressure-viscosity coefficient of biobased lubricants

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  2. 30 CFR 56.14204 - Machinery lubrication.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery lubrication. 56.14204 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Practices and Operational Procedures § 56.14204 Machinery lubrication. Machinery...

  3. 30 CFR 57.14204 - Machinery lubrication.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery lubrication. 57.14204 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Practices and Operational Procedures § 57.14204 Machinery lubrication. Machinery...

  4. Lubricity studies with biodiesel and related compounds

    Biodiesel, the alkyl esters of vegetable oils or animal fats, possesses excellent lubricity. This feature has rendered biodiesel of special interest for blending with ultra-low sulfur diesel fuels with poor lubricity. However, some minor components, mainly free fatty acids and monoacylglycerols, of ...

  5. An emulsion lubricant for metallic molds

    Dovzhik, O.I.; Cherkayev, V.G.; Min' kovskiy, M.M.; Romanyuk, V.G.; Shapiro, L.D.; Sokolov, V.A.

    1980-02-26

    An emulsion lubricant for metallic molds used in production of concrete products for eliminating adhesion of concrete with the metallic mold, and to eliminate potential for air pore formation on surface of product, contains lanolin production waste materials. Compos. of lubricant %: Synthetic emulsol oxide 5-10; wastes from lanolin production in conversion to wax 5-10; water the rest.

  6. A Biomimetic Approach to Lubricate Engineering Materials

    Røn, Troels

    electrostatic repulsion between charged PAA blocks, hindering the facile formation of the lubricating layer under cyclic tribological stress. It is well known that graft copolymers anchor more efficiently to surfaces than their diblock counterparts, thus the synthesis and study on lubricating capabilities of...

  7. VOLATILIZED LUBRICANT EMISSIONS FROM STEEL ROLLING OPERATIONS

    The report gives results of a study of the volatilization of lubricants used in steel rolling. Data from nine steel mills were used to: define the volatilized portion of lubricants used in rolling; and prepare total oil, grease, and hydraulic material balances for actual and typi...

  8. Turbulence Models of Hydrodynamic Lubrication

    张直明; 王小静; 孙美丽

    2003-01-01

    The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang' s combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.

  9. New lubricating material for hydraulic turbine generators

    The current state-of-the-art of lubricating practices for major hydraulic equipment which is in contact with water, such as wicket gates, were surveyed by the Canadian Electrical Association by means of a questionnaire. Participants in the survey included owners and operators, designers and bearing and lubricant suppliers. Current practices, major technical issues and potential constraints of using alternative, environmentally friendly lubricant practices were identified. It was found that self lubricating bearing materials were commonly used to address environmental concerns. Results of the survey also revealed that regulations for underwater hydraulic equipment have not been established in Canada nor the U.S. Several recommendations for adopting environmentally friendly lubricants into current practices were made

  10. Biodegradation and toxicological evaluation of lubricant oils

    Ivo Shodji Tamada

    2012-12-01

    Full Text Available The aim of this work was to compare different toxicity levels of lubricant oils. The tests were performed using the earthworm (Eisenia andrei, arugula seeds (Eruca sativa and lettuce seeds (Lactuca sativa, with three types of contaminants (mineral lubricant oil, synthetic lubricant oil and used lubricant oil for various biodegradation periods in the soil. The toxicity tests indirectly measured the biodegradation of the contaminants. The samples were analyzed at t0, t60, t120 and t180 days of biodegradation. The used lubricant oil was proved very toxic in all the tests and even after biodegradation its toxicity was high. The mineral and synthetic oils were biodegraded efficiently in the soil although their toxicity did not disappear completely after 180 days.

  11. Squeezing Molecularly thin Lubricant Films between curved Corrugated Surfaces with long range Elasticity

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    The present work investigates the ability of two nm thick lubrication films to stay in a contact and thereby to prevent excessive wear of the surfaces. At this thickness the film is no longer a fluid but it is the very important intermediate between the lubricated and the dry regimes, the latter...... one being associated with devastating wear progress. The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the roughness, curvature and elastic properties of the solid surfaces. We consider linear alkanes of different chain lengths, C......3H8, C4H10, C8H18, C9H20, C10H22, C14H30 and C16H34, confined between corrugated gold surfaces. Well defined molecular layers develop in the lubricant film when the width is of the order of a few atomic diameters. An external squeezing pressure induces discontinuous, thermally activated changes in...

  12. Process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium

    Ginosar, Daniel M.; Fox, Robert V.

    2005-05-03

    A process for producing alkyl esters useful in biofuels and lubricants by transesterifying glyceride- or esterifying free fatty acid-containing substances in a single critical phase medium is disclosed. The critical phase medium provides increased reaction rates, decreases the loss of catalyst or catalyst activity and improves the overall yield of desired product. The process involves the steps of dissolving an input glyceride- or free fatty acid-containing substance with an alcohol or water into a critical fluid medium; reacting the glyceride- or free fatty acid-containing substance with the alcohol or water input over either a solid or liquid acidic or basic catalyst and sequentially separating the products from each other and from the critical fluid medium, which critical fluid medium can then be recycled back in the process. The process significantly reduces the cost of producing additives or alternatives to automotive fuels and lubricants utilizing inexpensive glyceride- or free fatty acid-containing substances, such as animal fats, vegetable oils, rendered fats, and restaurant grease.

  13. Application of a Biodegradable Lubricant in a Diesel Vehicle

    Schramm, Jesper

    2003-01-01

    , NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...

  14. Friction Regimes in the Lubricants Solid-State Regime

    Schipper, D.J.; Maathuis, O.; Dowson, D.; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughn

  15. Determining the Thermal Properties of Space Lubricants

    Maldonado, Christina M.

    2004-01-01

    Many mechanisms used in spacecrafts, such as satellites or the space shuttle, employ ball bearings or gears that need to be lubricated. Normally this is not a problem, but in outer space the regular lubricants that are used on Earth will not function properly. Regular lubricants will quickly vaporize in the near vacuum of space. A unique liquid called a perfluoropolyalkylether (PFPE) has an extremely low vapor pressure, around l0(exp -10) torr at 20 C, and has been used in numerous satellites and is currently used in the space shuttle. Many people refer to the PFPEs as "liquid Teflon". PFPE lubricants however, have a number of problems with them. Lubricants need many soluble additives, especially boundary and anti-wear additives, in them to function properly. All the regular known boundary additives are insoluble in PFPEs and so PFPEs lubricate poorly under highly loaded conditions leading to many malfunctioning ball bearings and gears. JAXA, the Japanese Space Agency, is designing and building a centrifuge rotor to be installed in the International Space Station. The centrifuge rotor is part of a biology lab module. They have selected a PFPE lubricant to lubricate the rotor s ball bearings and NASA bearing experts feel this is not a wise choice. An assessment of the centrifuge rotor design is being conducted by NASA and part of the assessment entails knowing the physical and thermal properties of the PFPE lubricant. One important property, the thermal diffusivity, is not known. An experimental apparatus was set up in order to measure the thermal diffusivity of the PFPE. The apparatus consists of a constant temperature heat source, cylindrical Pyrex glassware, a thermal couple and digital thermometer. The apparatus was tested and calibrated using water since the thermal diffusivity of water is known.

  16. The role of lubricant analysis in maximizing lubricant and equipment life

    Lubricant analysis has always played an important yet somewhat invisible role in equipment health monitoring. At its most primitive, simple observations and field testing alert equipment operators to changing conditions. At its most advanced, data from performance and analytical tests are used to develop or select optimum lubricants for service, stretch drain intervals, predict remaining equipment life and identify potential equipment or system problems at an incipient stage. Coupled with thermography and vibration analysis, lubricant analysis can become a major component of a comprehensive predictive maintenance (PM) program. Ontario Hydro finds itself at a turning point regarding the use and monitoring of lubricants. Increasing emphasis on equipment reliability and plant life extension, coupled with major, recent changes in lubricant composition in response to environmental, energy and safety concerns, forces an upgrading of many aspects of lubricant monitoring so that it may establish itself as a key part of modern PM practices. This paper discusses some of these aspects. (author)

  17. Potential of Palm Olein as Green Lubricant Source: Lubrication Analysis and Chemical Characterisation

    Palm olein (POo) is widely used as edible oil in tropical countries. The lubrication properties and chemical compositions of POo being considered to be used as renewable raw material for bio lubricant synthesis. POo is suitable to be used directly as bio lubricant for medium temperature industrial applications. Palm olein has good viscosity index, oxidative stability, flash and fire point as a lubricant source. POo contains unsaturated triacylglycerols (TAG): Palmitin-Olein-Olein, POO (33.3 %), Palmitin-Olein-Palmitin, POP (29.6 %), which are very important to produce good lubricant properties. This unsaturated bond is preferable in chemical modification to produce bio lubricant. The chemical compositions of POo were tested by using high performance liquid chromatography (HPLC) and gas chromatography (GC) techniques. (author)

  18. Immobilisation of alpha contaminated lubricating oils in cement matrix

    Alpha contaminated lubricating oil wastes are generated from the reprocessing plants and other alpha handling facilities. Incineration of these spent lubricating oils requires specially designed facility to handle the aerosols of actinide oxides released to the off-gases. Hence immobilisation of these wastes into cement matrix could be a viable alternative. Work was therefore initiated to examine the possibility of immobilising such waste in cement matrix with the help of suitable additives. This work led to the selection of sodium hydroxide and silica fumes as additives for their distinct role in immobilization of such waste in cement. The selected formulation was tested extensively both on laboratory scale and full scale for acceptable waste form. The leach test on laboratory scale indicated negligible release of alpha and beta gamma activity after 180 days. This report gives a brief on the formulation of the admixture and its effect on the immobilization of waste. (author)

  19. Graphite and Hybrid Nanomaterials as Lubricant Additives

    Zhenyu J. Zhang

    2014-04-01

    Full Text Available Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inorganic part is responsible for hardness. The relationship between the design parameters of the organic coatings, such as molecular architecture and the lubrication performance, however, remains to be fully elucidated. A survey of current understanding of hybrid nanoparticles as lubricant additives is presented in this review.

  20. PetroChina Continues to Restructure Lubricants Assets

    Zhang Bingxing

    2002-01-01

    @@ PetroChina has recently separated the lubricants assets of the two oil refining enterprises at Liaohe Oil Field and Yumen Oil Field and transferred them to PetroChina Lubricating Oil Company. As a result,the lubricating oil company has currently nine regional lubricants production plants nationwide with six regional sales centers and two research centers,forming a large-scale lubricants complex with integration of production, marketing and technical development.

  1. Developments and unsolved problems in nano-lubrication*

    2001-01-01

    The main achievements in the area of nano liquid film, e.g. the distinction between different lubrication regimes, properties of thin film lubrication, the transition between liquid and solid state, ordered and disordered state, the failure of thin lubricant film, the equivalent viscosity and flowing characteristics of micro-fluid, the influence of solid surfaces on nano-lubrication, thin film lubrication of polymer, superlubricity, have been reviewed and some unsolved problems are discussed.

  2. Device for lubricating sealed support of a cutter bit

    Grushkin, B.N.; Balabashin, B.P.; Popov, L.N.; Spivak, A.I.; Yudin, A.S.; Zhulayev, V.P.

    1982-01-01

    A device is proposed for lubricating the sealed support of a cutter bit. It contains a vessel arranged in the bit clamp for supplying the lubricant material, a pump with piston and a closed system of lubricant-supplying channels. In order to improve the efficiency of lubrication during drilling with above-bit shock absorbers by accelerating the circulation of the lubricating material, the pump piston is installed with the potential of interacting with the shock absorber.

  3. Vegetable oil basestocks for lubricants

    Garcés, Rafael

    2011-03-01

    Full Text Available The use of vegetable biodegradable basestocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for biolubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed.

    El uso de bases vegetales biodegradables para aceites lubricantes presenta varias ventajas sobre las mucho más extendidas bases minerales. Estas ventajas se centran sobre todo en su biodegradabilidad, en ser un recurso renovable de producción local, en su lubricidad y en su índice de viscosidad, presentando además costes más bajos que las bases sintéticas. Sin embargo, estas ventajas no han extendido el uso de bases vegetales ni en industria ni en automoción debido a su menor estabilidad y sus mayores puntos críticos de fluidez. Los aceites vegetales son ésteres de ácidos grasos y glicerol y sus propiedades físico-químicas dependen principalmente de su composición acílica. Así, para asegurar los máximos niveles de

  4. A randomized controlled trial comparing nonoxynol-9 lubricated condoms with silicone lubricated condoms for prophylaxis

    Roddy, R E; M. Cordero; Ryan, K.A.; Figueroa, J.

    1998-01-01

    OBJECTIVE: We tested the effect of nonoxynol-9 (N-9) in condom lubrication on the risk of acquiring STD and genital discomfort. METHODS: The study was a triple masked, randomised controlled trial comparing N-9 lubricated condoms with plain silicone lubricated condoms among Dominican female sex workers. RESULTS: Randomisation provided two groups (313 for N-9 and 322 for plain) similar in baseline characteristics, but extensive loss to follow up occurred (56 women in each group completed ...

  5. Upgrading the lubricity of bio-oil via homogeneous catalytic esterification under vacuum distillation conditions

    In order to accelerate the application of bio-oil in the internal combustion engines, homogeneous catalytic esterification technology under vacuum distillation conditions was used to upgrade the crude bio-oil. The lubricities of the crude bio-oil (BO) and refined bio-oil with homogeneous catalytic esterification (RBOhce) or refined bio-oil without catalyst but with distillation operation (RBOwc) were evaluated by a high frequency reciprocating test rig according to the ASTM D 6079 standard. The basic physiochemical properties and components of the bio-oils were analyzed. The surface morphology, contents and chemical valence of active elements on the worn surfaces were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy, respectively. The results show that RBOhce has better lubricities than those of BO, but RBOwc has worse lubricities than those of BO. The tribological mechanisms of the bio-oils are attributed to the combined actions of lubricating films and factors that will break the film. Compared with BO, plenty of phenols in RBOwc results in corrosion of the substrate and destroys the integrity of the lubricating films, which is responsible for its corrosive wear. However, more esters and alkanes in RBOhce contribute to forming a complete boundary lubricating film on the rubbed surfaces which result in its excellent antifriction and antiwear properties. - Highlights: • Refined bio-oil was prepared through homogeneous catalytic esterification technology. • Properties of the bio-oils before and after refining were assessed by HFRR. • Refined bio-oil showed better lubricities than crude bio-oil. • More esters and alkanes in refined bio-oil contributed to forming superior boundary lubrication

  6. Solid lubricating films for extreme environments

    Advances in solid lubricating films for vacuum and high temperature applications are reviewed. Traditional lubricants (e.g. graphite and dichalcogenides) are being improved and new lubricating materials (e.g. amorphous carbons) are being discovered with the aid of recent developments in deposition processes and surface analytical methods. Ion bombardment treatments have increased film adhesion, lowered friction coefficients and enhanced the wear life of MoS2 films, as well as created new forms of lubricating carbons (amorphous, polymeric and diamond-like). Composite films and multilayer coating treatments are providing extra protection for surface and films against environmental degradation. Ultralow friction coefficients (2 as well as diamond-like carbon films. Material selection, in some cases (e.g. thin metal films), can now be made on scientific, principles, although many tribomaterials are still being developed by trial and error methods

  7. Ionic Liquids as Advanced Lubricant Fluids

    Francisco-José Carrión

    2009-08-01

    Full Text Available Ionic liquids (ILs are finding technological applications as chemical reaction media and engineering fluids. Some emerging fields are those of lubrication, surface engineering and nanotechnology. ILs are thermally stable, non-flammable highly polar fluids with negligible volatility, these characteristics make them ideal candidates for new lubricants under severe conditions, were conventional oils and greases or solid lubricants fail. Such conditions include ultra-high vacuum and extreme temperatures. Other very promising areas which depend on the interaction between IL molecules and material surfaces are the use of ILs in the lubrication of microelectromechanic and nanoelectromechanic systems (MEMS and NEMS, the friction and wear reduction of reactive light alloys and the modification of nanophases.

  8. Numerical Simulation of Piston Ring Lubrication

    Felter, Christian Lotz

    2006-01-01

    and the angle between the normals of the solid and the free surface. The numerical model is compared with the results from an analytical solution of Reynolds equation for a fixed incline slider bearing. Then results from a more compli- cated simulation of piston ring lubrication is given and discussed.......This paper describes a numerical method that can be used to model the lubrication of piston rings. Classical lubrication theory is based on the Reynolds equation which is ap- plicable to confined geometries and open geometries where the flooding conditions are known. Lubrication of piston rings...... extended to include also the oil film outside the piston rings. The numerical model consists of a 2D free surface code that solves the time dependent compressible Navier-Stokes equations. The equations are cast in Lagrangian form and discretized by a meshfree moving least squares method using the primitive...

  9. Biodegradable lubricants - ''the solution for future?''

    The environmental impact of lubricants use concern the direct effects from spills but also the indirect effects such as their lifetime and the emissions from thermal engines. The biodegradable performances and the toxicity are the environmental criteria that must be taken into account in the development and application of lubricants together with their technical performances. This paper recalls first the definition of biodegradable properties of hydrocarbons and the standardized tests, in particular the CEC and AFNOR tests. Then, the biodegradable performances of basic oils (mineral, vegetal, synthetic esters, synthetic hydrocarbons etc..), finite lubricants (hydraulic fluids..) and engine oils is analyzed according to these tests. Finally, the definition of future standards would take into account all the environmental characteristics of the lubricant: biodegradable performances, energy balance (CO2, NOx and Hx emissions and fuel savings), eco-toxicity and technical performances (wearing and cleanliness). (J.S.)

  10. Advanced lubrication systems and materials. Final report

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  11. Boundary friction on molecular lubricants: rolling mode?

    A theoretical model is proposed for low-temperature friction between two smooth rigid solid surfaces separated by lubricant molecules, admitting their deformations and rotations. The appearance of different modes of energy dissipation (by 'rocking' or 'rolling' of lubricants) at slow relative displacement of the surfaces is shown to be accompanied by stick-and-slip features and reveals a nonmonotonic (mean) friction force vs external load

  12. New Lubricants Protect Machines and the Environment

    2007-01-01

    In 1994, NASA and Lockheed Martin Space Operations commissioned Sun Coast Chemicals of Daytona Inc to develop a new type of lubricant that would be safe for the environment and help "grease the wheels" of the shuttle-bearing launcher platform. Founded in 1989, Sun Coast Chemicals is known amongst the racing circuit for effective lubricants that help overcome engine and transmission problems related to heat and wear damage. In a matter of weeks, Sun Coast Chemical produced the biodegradable, high-performance X-1R Crawler Track Lube. In 1996, Sun Coast Chemical determined there was a market for this new development, and introduced three derivative products, Train Track Lubricant, Penetrating Spray Lubricant, and Biodegradable Hydraulic Fluid, and then quickly followed with a gun lubricant/cleaner and a fishing rod and reel lubricant. Just recently, Sun Coast introduced the X-1R Corporation, which folds the high-performance, environmentally safe benefits into a full line of standard automotive and specially formulated racing products. The entire X-1R automotive product line has stood up to rigorous testing by groups such as the American Society of Mechanical Engineers, the Swedish National Testing and Research Institute, the Department of Mechanical Engineering at Oakland University (Rochester, Michigan), and Morgan-McClure Motorsports (Abingdon, Virginia). The X-1R Corporation also markets "handy packs" for simple jobs around the house, consisting of a multi-purpose, multi-use lubricant and grease. In 2003, The X-1R Corporation teamed up with Philadelphia-based Penn Tackle Manufacturing Co., a leading manufacturer of fishing tackle since 1932, to jointly develop and market a line of advanced lubrication products for saltwater and freshwater anglers

  13. The use of radioactive tracers in lubrication and wear research

    In many lubrication and wear problems, processes occurring on a very small scale have to be studied and the great sensitivity of radioactive tracer methods has been successfully applied. Several examples of such applications are cited from the work of the Lubrication and Wear Division of the National Engineering Laboratory in the United Kingdom. The quantitative relation between metal transfer and boundary friction is studied as a function of sliding velocity, surface roughness and the presence of lubricants. In order to study the distribution of wear, cast iron plugs containing Ir192 are inserted in the liners of a Diesel engine and the radioactivity present in oil samples is measured. Radioactive iron and iron oxide particles are used to study then role in the wear process. The reactivity of strained metal surface is studied with the aid of C14- labelled stearic acid and of S35 in solution. The reaction rates of gear oil additive are being studied by passing short electric-current pulses through metal wires immersed in solutions of compounds labelled with S35 and P32. The build-up of anti-wear films on the surface of gear teeth is being studied as a function of lead, speed and running time. A problem encountered in many of these applications is the conversion of the measured activity into absolute quantities of materials present in surface films or in wear debris. Calibration methods have been developed for this purpose. (author)

  14. A formula for lubrication of journal boxes

    Gimayev, R.N.; Aliyev, R.A.; Dolukhanov, R.Ts.; Kondrasheva, N.K.; Ol' kov, P.L.; Rogacheva, O.I.; Spivak, Ye.A.

    1982-01-01

    In order to improve lubricating properties of oils used for journal boxes, an extract that boils off at 275-470/sup 0/, 60-75, is used, with a thermal cracking residue that is ADS 25-40. The latter consists of oil fraction extracts in a mixture with a catalytically cracked heavy gasoil (low-coking). Thus, content of aromatic hydrocarbons and asphalt-tar substances determines its positive lubricating properties. Example: the lubricant derived by direct compounding of a selectively cleaned oil fraction extract (SE), having a boiling temp. of 275-470/sup 0/, thermal ADS cracking residue and density of 1.100 is prepared with a component ratio 75:25. The derived oil has a viscosity of 42.0 sSt/50/sup 0/; dynamic viscosity 110 pz/-10/sup 0/; boiling temp. in an open crucible is 140/sup 0/; congelation temp. -42/sup 0/; critical loading, determined by a four-bearing friction machine, 85 kgs; thickness of lubricating layer, determined by centrifuge, 3.35 mkm. Comparison of physicochemical properties of the given and known lubricants shows that the tested item has better viscosity and lubricating characteristics. Oil test samples satisfy all GOST 610-72 requirements for summer-type axle oils.

  15. Foaming characteristics of refigerant/lubricant mixtures

    Goswami, D.Y.; Shah, D.O.; Jotshi, C.K.; Bhagwat, S.; Leung, M.; Gregory, A.

    1997-04-01

    The air-conditioning and refrigeration industry has moved to HFC refrigerants which have zero ozone depletion and low global warming potential due to regulations on CFC and HCFC refrigerants and concerns for the environment. The change in refrigerants has prompted the switch from mineral oil and alkylbenzene lubricants to polyolester-based lubricants. This change has also brought about a desire for lubricant, refrigerant and compressor manufacturers to understand the foaming properties of alternative refrigerant/ lubricant mixtures, as well as the mechanisms which affect these properties. The objectives of this investigation are to experimentally determine the foaming absorption and desorption rates of HFC and blended refrigerants in polyolester lubricant and to define the characteristics of the foam formed when the refrigerant leaves the refrigerant/ lubricant mixture after being exposed to a pressure drop. The refrigerants being examined include baseline refrigerants: CFC-12 (R-12) and HCFC-22 (R-22); alternative refrigerants: HFC-32 (R-32), R-125, R-134a, and R-143a; and blended refrigerants: R-404A, R-407C, and R-410A. The baseline refrigerants are tested with ISO 32 (Witco 3GS) and ISO 68 (4GS) mineral oils while the alternative and blended refrigerants are tested with two ISO 68 polyolesters (Witco SL68 and ICI RL68H).

  16. Solubility modeling of refrigerant/lubricant mixtures

    Michels, H.H.; Sienel, T.H.

    1996-12-31

    A general model for predicting the solubility properties of refrigerant/lubricant mixtures has been developed based on applicable theory for the excess Gibbs energy of non-ideal solutions. In our approach, flexible thermodynamic forms are chosen to describe the properties of both the gas and liquid phases of refrigerant/lubricant mixtures. After an extensive study of models for describing non-ideal liquid effects, the Wohl-suffix equations, which have been extensively utilized in the analysis of hydrocarbon mixtures, have been developed into a general form applicable to mixtures where one component is a POE lubricant. In the present study we have analyzed several POEs where structural and thermophysical property data were available. Data were also collected from several sources on the solubility of refrigerant/lubricant binary pairs. We have developed a computer code (NISC), based on the Wohl model, that predicts dew point or bubble point conditions over a wide range of composition and temperature. Our present analysis covers mixtures containing up to three refrigerant molecules and one lubricant. The present code can be used to analyze the properties of R-410a and R-407c in mixtures with a POE lubricant. Comparisons with other models, such as the Wilson or modified Wilson equations, indicate that the Wohl-suffix equations yield more reliable predictions for HFC/POE mixtures.

  17. Characteristics of lubrication at nanoscale in two-phasefluid system

    ZHANG; Chaohui(张朝辉); WEN; Shizhu(温诗铸); LUO; Jianbin(雒建斌)

    2002-01-01

    Thin film lubrication (TFL) is a condition in which the lubricating features between two surfaces in relative motion are determined by the combination of the properties of the surfaces and the lubricant and viscosity of the lubricant. The effects imposed by couple stress on lubrication characteristics cannot be disregarded in this regime where the ordered molecules dominate the fluid field. There are different tensor measures and constitutive equations in this case other than Newtonian case. The lubrication of two-phase (solid phase and liquid phase) fluid is investigated in this paper. The existence of couple stress will enhance the lubricant viscosity and hence increase the film thickness and improve the load-carrying capability. Size-dependent effects can be seen in the lubrication with couple stress, and the thinner the lubricating film is, the more obvious the effect will be.

  18. STARCH-LUBRICANT COMPOSITION FOR IMPROVED LUBRICITY AND FLUID LOSS IN WATER-BASED DRILLING MUDS

    Water-based mud systems that approach the performance of oil-based muds are an ongoing effort. Starch-lubricant compositons were developed as environmentally safe, non-toxic, stable dispersions in water-based drilling muds. Starch-lubricant compositions were prepared by jet cooking mixtures of wat...

  19. Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1

    Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

    1997-07-01

    Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

  20. Mechanisms of lubrication and wear of a bonded solid lubricant film

    Fusaro, R. L.

    1980-01-01

    To obtain a better understanding of how bonded solid lubricant films lubricate and wear (in general), the tribological properties of polyimide-bonded graphite fluoride films were studied (in specific). A pin-on-disk type of testing apparatus was used; but in addition to sliding a hemispherically tipped rider, a rider with a 0.95 mm diameter flat area was slid against the film. This was done so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurred. In the first, the film supported the load. The lubricating mechanism consisted of the shear of a thin surface layer (of the film) between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress.

  1. Lubricity of bio-based lubricant derived from chemically modified jatropha methyl ester

    N.W.M. Zulkifli

    2014-06-01

    Full Text Available Many studies have been undertaken with a view to using chemically modified vegetable oil as a bio-based lubricant. This research focused on tribological properties of trimethylolpropane (TMP ester, which is derived from renewable resource. This TMP ester was produced from jatropha methyl ester; it is biodegradable and has high lubricity properties. Two different conditions of lubrication are being investigated: extreme pressure and anti-wear. It was found that the TMP ester (Jatropha has better lubricity in terms of wear and friction compared to paraffin oil under extreme pressure conditions. TMP ester (Jatropha has similar characteristics to fully formulated lubricant (FFL, in terms of the coefficient of friction (CoF. In terms of the anti-wear condition, TMP ester (Jatropha has the lowest CoF; however it also has the high wear scar diameter. This is due to corrosion and chemical attack.

  2. Determination of service life of aviation lubricants

    Kuznetsov, V.G.; Novosartov, G.T.; Echin, A.I.; Bakunin, V.N.

    1985-11-01

    A method of evaluating the quality of expensive lubricants was developed based on determination of thermo-oxidative stability on a TSM-1 apparatus. This allowed measurement of the content of additives and qualitative properties associated with them during oxidation under laboratory conditions. By developing graphs showing dependence of operating properties sharply degrade was determined. This minimum additive content became the criterion for assessing the working capability of the lubricant and determining the limiting length of its service. Thus, for lubricant B-3V, the most important operating characteristics are thermooxidative stability and critical loading. Samples were tested for the additives PODFA and kaptaks and for indicators of antioxidative and antiseizing properties. Experiments showed little change in characteristics during 10 h of oxidation. Laboratory tests showed that the critical loading began to drop when the kaptaks level fell below 0.2%, so this was taken as the minimal acceptable level. Similarly, for lubricant IPM-10, the most important operating property is its thermo-oxidative stability. Tests showed that indicators of thermo-oxidative stability all began to fall when the antioxidative additive fell below 0.1%. This approach allows rapid determination of service criteria for any aviation lubricant with critical additives. In a practical test, B-3V lubricant had been changed in the MI-8 helicopter every 200-300 h, although its kaptaks level was still 0.65%; even at 900 hours it had fallen to only 0.36%. This would allow the service life to be tripled, a conclusion verified by determination of physicochemical and operating properties of the lubricant at that point. 4 references, 2 figures.

  3. Potentially useful polyolester lubricant additives an overview of antioxidants, antiwear and antiseize compounds

    Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

    1996-11-01

    Reliable service lubrication of compressors with polyolesters that do not contain additives is the optimal goal for hermetic compressor use. Chlorine derived from CFC and HCFC refrigerants is reported to have effective antiwear properties and negates the widespread use of additives in mineral oil lubricated systems. The use of antioxidants for mineral oil and polyolesters have been reported; antioxidant additive activity seems essential for polyolesters.- Antiwear and antiseize additives seem to be a short term goal for use with polyolesters. High silicone aluminum to steel wear seems to be a primary target for additive use. The interaction of specific heteroatom organic compounds with highly polar surface active synthetic polyolester lubricants is complex. Results of an extensive literature search describe results from a service base determined at ambient conditions. Known lubricant additives used in the hermetic compressor industry, the. mode of action of several types of additives and some lubricant additive chemistry that demonstrates selective thermal stability in conjunction with the chemical structure are examined.

  4. Liquid-liquid extraction and adsorption on solid surfaces applied to used lubricant oils recovery

    J. L. Assunção Filho

    2010-12-01

    Full Text Available In this work, the recovery of base oils from waste lubricants following the steps of solvent extraction, adsorption on solids and solvent removal by evaporation was evaluated. In the step of solvent extraction, the most efficient was 1-butanol, followed by tert-butanol, 2-propanol and ethanol; for the step of adsorption, activated carbon was the most effective solid for PAH removal, confirming the similarity of these compounds with petroleum aromatic fractions. Thus, the optimum solvent-adsorbent pair for the recovery of used lubricant oils through the proposed methodology was 1-butanol/activated carbon. At the end of the process, it was possible to establish a set of steps that permit the recovery of lubricant base oils with lower content of contaminants.

  5. Vegetable oil base stocks for lubricants

    Garces, R.; Martinez-Force, E.; Salas, J.

    2011-07-01

    The use of vegetable biodegradable base stocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for bio lubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed. (Author).

  6. Asphalt modification with used lubricating oil

    Villanueva, A.; Ho, S.; Zanzotto, L. [Calgary Univ., AB (Canada). Schulich School of Engineering, Bituminous Materials Research Laboratory

    2008-02-15

    A method of recycling waste lubricating oil from vehicles was presented. Various asphalt materials were modified with different amounts of lubricating oil and analyzed using standard Superpave tests. Dynamic shear rheometer (DSR) tests were then conducted to in order to obtain high temperature samples. Bending beam rheometer (BBR) and direct tension tests (DTT) were used to obtain low temperature sample profiles. Potential applications for the materials were reviewed. Environmental impacts and costs associated with using the materials were also presented. The study demonstrated that waste lubricating oil can be used as a softening agent in modified asphalt binders using a low temperature grade technique. It was concluded that the low cost of waste lubricating oil in Alberta makes it a potential resource for asphalt modification. The oil modified samples lowered the high-temperature grade and did not improve the overall quality of the asphalt. Further testing is needed to examine the quality and consistency of lubricating oils. 19 refs., 7 tabs., 12 figs.

  7. Lubrication control of motors in paper mills

    Kano, Yasuo

    1987-12-01

    This review is focused lubrication control of motors in paper mills. Smaller motors use deep groove ball bearings and lubricating grease. They need no make-up grease. Medium-size motors incorporate both sealed and open bearings or only open bearings and the grade, make-up intervals and make-up volume of the lubricating grease to be used are specified. Methods for automatic grease supply include the use of an automatic grease cup with improved injection mechanism, use of an injection pump for automatic supply to each motor, and group-control for parallel supply to several motors through distribution valves. For large-size motors, oil-bath lubricating is usually adopted in combination with a circulating oil supply device, etc. Improved techniques are currently available for automatization of the main systems and for automatization and reduction in cost of electric instrumentation. However, grease up of bearings, especially for medium-size motors, is performed by hand. Effective lubrication control and increased productivity are expected to be achieved by the combined use of automatic oil supply and monitoring devices. (14 figs, 4 tabs)

  8. Nanoscale Organic−Inorganic Hybrid Lubricants

    Kim, Daniel

    2011-03-15

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona brush that stabilizes them against aggregation. When these hybrid particles are dispersed in poly-α-olefin (PAO) oligomers, they form homogeneous nanocomposite fluids at both low and high particle loadings. By varying the volume fraction of the SiO2 nanostructures in the PAO nanocomposites, we show that exceptionally stable hybrid lubricants can be created and that their mechanical properties can be tuned to span the spectrum from simple liquids to complex gels. We further show that these hybrid lubricants simultaneously exhibit lower interfacial friction coefficients, enhanced wear and mechanical properties, and superior thermal stability in comparison with either PAO or its nanocomposites created at low nanoparticle loadings. Profilometry and energy dispersive X-ray spectroscopic analysis of the wear track show that the enhanced wear characteristics in PAO-SiO2 composite lubricants originate from two sources: localization of the SiO2 particles into the wear track and extension of the elastohydrodynamic lubrication regime to Sommerfeld numbers more than an order of magnitude larger than for PAO. © 2011 American Chemical Society.

  9. High temperature solid lubricants - When and where to use them.

    Sliney, H. E.

    1973-01-01

    This paper reviews the state of the art of solid lubrication for moderate to extremely high temperature lubrication (to 1600 F). Lubricating characteristics, stability in various environments, and relevant machine design considerations are discussed. Lubricating materials discussed include MoS2, WS2, graphite, graphite fluoride, the high temperature polymide polymer, and calcium fluoride based coatings and composites. The scope of the information includes results from wear testers, ball bearings, and journal bearings.

  10. Practical Applications and Uses of Solid Lubricant Films

    Stupp, B. C.

    1984-01-01

    Practical applications are illustrated with discussions covering the reasons for use of solid lubricants, required performance, lubricant selection, and results obtained for the various examples shown. The applications described cover a broad range of solid lubricants. Included are soft lamellar compounds, organic polymers, soft elemental metals, oxides and compounds for high temperature use. The illustrations selected cover a broad range of lubricant application techniques delineating the reasons for the different processing procedures which include bonded films, plasma spraying, sputtering, ion plating and electrodeposition.

  11. Data on radiation resistance of lubricating oil

    This report presents data of radiation resistance of commercial lubricating oils. Data included are the radiation induced change of properties such as kinematic viscosity, total acid number, flash point, pour point, specific gravity and color, and the results by instrumental analysis such as gas analysis by gas chromatography, ESR spectra, infrared spectra, mass spectra, and molecular weight distribution by liquid chromatography. Twenty-seven different kinds of commercial lubricating oils including mineral oils, a synthetic hydrocarbon oil, ester lubricants, a polyether, silicone oils, florinated oils and aromatic oils were irradiated with 60Co γ-rays at room temperature in a vacuum, in air and under bubbling oxygen. The irradiation was carried out up to 30 MGy at a dose rate of 10 kGy/h. (author)

  12. Rheology and lubricity of hyaluronic acid

    Liang, Jing; Krause, Wendy E.

    2007-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan) is an important component in synovial fluid (i.e., the fluid that lubricates our freely moving joints). Its presence results in highly viscoelastic solutions. In comparison to healthy synovial fluid, diseased fluid has a reduced viscosity and loss of lubricity. In osteoarthritis the reduction in viscosity results from a decline in both the molecular weight and concentration of HA. In our investigation, we attempt to correlate the rheological properties of HA solutions to changes in lubrication and wear. A nanoindenter will be used to evaluate the coefficient of friction and wear properties between the nanoindenter tip and ultrahigh molecular weight polyethylene in both the presence and absence of a thin film of HA solution.

  13. Compatibility of refrigerants and lubricants with elastomers

    Hamed, G.R.; Seiple, R.H.

    1992-10-01

    Information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on the availability of additional quantities of R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  14. Compatibility of refrigerants and lubricants with elastomers

    Hamed, G.R.; Seiple, R.H.

    1993-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  15. Electrophoretically-deposited solid film lubricants

    Dugger, M.T.; Panitz, J.K.J.; Vanecek, C.W.

    1995-04-01

    An aqueous-based process that uses electrophoresis to attract powdered lubricant in suspension to a charged target was developed. The deposition process yields coatings with low friction, complies with environmental safety regulations, requires minimal equipment, and has several advantages over processes involving organic binders or vacuum techniques. This work focuses on development of the deposition process, includes an analysis of the friction coefficient of the material in sliding contact with stainless steel under a range of conditions, and a functional evaluation of coating performance in a precision mechanical device application. Results show that solid lubricant films with friction coefficients as low as 0.03 can be produced. A 0.03 friction coefficient is superior to solid lubricants with binder systems and is comparable to friction coefficients generated with more costly vacuum techniques.

  16. The Lubrication Qualities of Dimethyl Ether (DME)

    Sivebæk, Ion Marius; Sorenson, Spencer C; Jakobsen, J.

    2002-01-01

    Dimethyl Ether (DME) has been recognised as a clean alternative for diesel oil for some years now. Fuelling diesel engines with DME solves their two most significant problems: The emission of particulate matter is virtually eliminated and the level of NOx can be reduced considerably by exhaust gas...... the viscosity, which plays a major role in the hydrodynamic lubrication regime. The lubricity of DME has been established by the medium frequency pressurised reciprocating rig (MFPRR) to be very low compared to the one of diesel oil. But the DME film limits the wear extent significantly compared to...... the case of dry sliding. By mixing DME with additives, the lubricity level is easily raised even above the one of diesel oil. The viscosity of DME has been established by the volatile fuel viscometer (VFVM) to be as low as 0.185 cSt @ 25 oC. It is also shown that this viscosity cannot be raised...

  17. Sputtering technology in solid film lubrication

    Spalvins, T.

    1978-01-01

    Potential and present sputtering technology is discussed as it applies to the deposition of solid film lubricants particularly MoS2, WS2, and PTFE. Since the sputtered films are very thin, the selection of the sputtering parameters and substrate condition is very critical as reflected by the lubricating properties. It was shown with sputtered MoS2 films that the lubricating characteristics are directly affected by the selected sputtering parameters (power density, pressure, sputter etching, dc-biasing, etc.) and the substrate temperature, chemistry, topography and the environmental conditions during the friction tests. Electron microscopy and other surface sensitive analytical techniques illustrate the resulting changes in sputtered MoS2 film morphology and chemistry which directly influence the film adherence and frictional properties.

  18. Developments of New Lubricants for Cold Forging of Stainless Steel

    Steenberg, Thomas; Christensen, Erik; Olesen, P.;

    1997-01-01

    Two new lubricant systems for cold forging of stainless steel have been developed. The main component of these systems are FeCl3 and ZnCa2(PO4)2, respectively. Both lubricant systems have been tested using a backward extrusion test. The results show excellent lubricating properties with respect to...

  19. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  20. Ultrasonic monitoring of lubricating conditions of hydrodynamic bearing

    The performance of a hydrodynamic bearing is illustrated by the lubricating conditions which transfer from ones to another when working condition is changed. The thickness of lubricant film is the key parameter of lubricating conditions. The lubricating conditions of hydrodynamic bearing can be monitored by the measured film thickness and the relationship between them. For thin lubricant film layers less than ultrasonic wavelength, the spring model method is applied to measure the film thickness. The proportion of the ultrasound reflected from film layer, depended on the film stiffness, is determined and then can be readily converted to the film thickness. For the thicker films ranging from several microns to tens microns, ultrasonic resonance method was employed. An adaptive measurement algorithm is presented to automatically choice appropriate ultrasonic measurement method according to the different lubricating stage. All the range of lubricant film thickness of a hydrodynamic bearing can then be measured by the automatic selection of spring model and resonance methods. Simulation device of lubricant film layers with PZT positioning stage is designed to verify the accuracy of the adaptive measurement algorithm. Hydrodynamic bearing experimental setup is used to generate varies of lubricating condition by changing the shaft speed, radial direction loading force, and lubricant temperature. The lubricating condition of hydrodynamic bearing is then evaluated according to the measured lubricant film thickness and the working conditions.

  1. Deposited Micro Porous Layer as Lubricant Carrier in Metal Forming

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben; Jensen, Jørgen Dai; Paldan, Nikolas Aulin; Mizushima, Io; Eriksen, Rasmus Solmer

    lubricant reservoirs. Conventional friction tests for cold forming; ring compression and double cup extrusion tests are carried out with Molykote DX paste and mineral oil as lubricant. Both lubricants act as intended for the ring compressions test whereas only the low viscosity oil perform successfully in...

  2. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  3. Self-lubricating non-oxidizing composites

    Aluminum nitride - boron nitride ceramic composites were fabricated by pressureless sintering following the method of X. E. Chen et al. It is believed that hexagonal boron nitride incorporated into an aluminum nitride matrix will produce a composite that exploits desirable properties of both materials. The composite should exhibit lubricating qualities of the boron nitride and hardness of the aluminum nitride. The material was studied by X-ray analysis, flexure strength testing and friction testing. This composite has potential use for wear applications in oxidizing environments, where high temperatures prevent the use of conventional lubricants

  4. Lubrication Oil Flow Simulation in Connecting Rod

    Alendal, Ivar Audun Lothe

    2015-01-01

    Lubrication oil-flow in the crank system of an medium size diesel engine running at 750 RPM was modeled and analyzed. The model was built up by combining models from several studies in both engine lubrication systems and pipe flow modal analysis. The model is first used to analyze a system where the oil supply lines are fully open during the complete engine cycle. The result showed that these designs need a very high oil supply pressure to maintain a positive pressure in the connecting rod at...

  5. Ionic liquid lubrication at electrified interfaces

    Kong, Lingling; Huang, Wei; Wang, Xiaolei

    2016-06-01

    The lubrication performances of ionic liquids at electrified interfaces have been investigated by using a reciprocating sliding tribometer. Experimental results indicated that the lubricity of the confined ionic liquids was markedly affected by the application of external electric field and strong interface electric field strength could result in high friction. The influence was more pronounced for the ionic liquid with a shorter alkyl side chain in particular. The main reason of the friction increment might be ascribed to the electrically influenced surface adsorption where the charged ions were structured to form robust and ordered layers.

  6. Modes of lubrication in human hip joints.

    Roberts, B J; Unsworth, A; Mian, N.

    1982-01-01

    Cadaveric hip joints were tested in a hip function simulator which subjected the femoral head to a cycle of loading and oscillation similar to that experienced during walking and measured the frictional torque transmitted to the acetabulum. Silicone fluids with viscosities from 10-2 Pa s (pascal second) to 30 Pa s were used as lubricants and the transition from mixed to full fluid film lubrication was observed around 5 x 10(-2) Pa s. Sodium carboxymethylcellulose solutions were also tested at...

  7. Alkylphenoxyalkylstannanes as biocidal additives to lubricants

    Belov, P.S.; Gulo, R.A.; Komarova, N.N.; Korenev, K.D.; Poddubnyi, V.N.; Tsvetkov, O.N.

    1980-01-01

    The synthesis of akylphenoxyalkylstannanes with different numbers and lengths of akyl radicals on the tin atom and different structures and lengths of radicals on the aromatic ring is described. They were investigated as biocidal additives to lubricants. Alkylphenoxytriethylstannanes have the best protective properties. In 0.25% concentration (by wt) neither the structure nor the alkyl substituent (C/sub 1/-C/sub 16/) length has an effect on their antiseptic properties. From the results of the conducted studies, for antiseptization of lubricating compositions, the additive AFOTAS a reaction product of an industrial alkylphenol and bis(triethylol) oxide is recommended.

  8. Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2003-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26 and C14......H30 confined between smooth gold surfaces. In most cases we observe well defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of...... lubricant layers. We find that with increasing alkane chain length, the transition from n to n-1 layers occurs at higher pressure, as expected based on the increasing wettability ~or spreading pressure with increasing chain length. Thus, the longer alkanes are better boundary lubricants than the shorter...

  9. Influences of lubricant pocket geometry and working conditions upon micro lubrication mechanisms in upsetting and strip drawing

    Shimizu, Ichiro; Martins, P. A. F.; Bay, Niels; Andresen, Jan Lasson; Bech, Jakob Ilsted

    2010-01-01

    Micro-lubricant pockets located in the surface of plastically deforming workpieces are recognised to improve the performance of fluid lubrication in a metal-forming process. This work investigates the joint influence of pocket geometry and process working conditions on micro-lubrication mechanism...

  10. Slippery but Tough: The Rapid Fracture of Lubricated Frictional Interfaces

    Bayart, E.; Svetlizky, I.; Fineberg, J.

    2016-05-01

    We study the onset of friction for rough contacting blocks whose interface is coated with a thin lubrication layer. High speed measurements of the real contact area and stress fields near the interface reveal that propagating shear cracks mediate lubricated frictional motion. While lubricants reduce interface resistances, surprisingly they significantly increase the energy dissipated Γ during rupture. Moreover, lubricant viscosity affects the onset of friction but has no effect on Γ . Fracture mechanics provide a new way to view the otherwise hidden complex dynamics of the lubrication layer.

  11. Lubrication in Hot Tube Extrusion of Superalloys and Ti Alloys

    2001-01-01

    Tubular products made of superalloys and titanium alloys usually work in high temperature environment and applied heavy loading. Hot extrusion is the best technology to form tubular billets with fine microstructures and good mechanical properties. Lubrication is one of the key techniques in hot extrusion, glass lubricants are most suitable for hot extrusion. Lubrication technique in hot extrusion is dealt with in this paper, the lubrication principle of hot tube extrusion is presented. Experiments of glass lubricated backward tube extrusion of titanium alloys and forward tube extrusion of superalloys are also discussed.

  12. Application of contamination control of lubricant to proactive maintenance

    Lubricant management is very important to maintain the integrity of rotating equipment Lubricant is periodically replaced and monitored on its aging degradation between replacement times. On the other hand, only the confirmation of specification document has been performed as acceptance inspection in case of new lubricant. However, a comparatively large amount of impurity substances has been found in new lubricant by sample analysis. Therefore, the introduction of contamination control of new lubricant is programmed as a step of proactive maintenance, and the outline of the program is described in this paper. (author)

  13. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 1

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    The objective of this study was to investigate the film formation properties of refrigeration lubricants using the ultrathin film elastohydrodynamic (EHD) interferometry technique and to study the effects of refrigerants on film formation. Film thickness measurements were conducted as a function of lubricant viscosity, speed, temperature, and refrigerant concentration. Based on the EHD film thickness data, effective pressure-viscosity coefficients were calculated for the test fluids at different temperatures and the effects of refrigerants on pressure-viscosity properties were investigated.

  14. 7 CFR 2902.14 - Penetrating lubricants.

    2010-01-01

    ... re-refined lubricating oil products. Under the Resource Conservation and Recovery Act of 1976... ingredients, re-refined oil, and/or any other recovered material, in addition to biobased ingredients, and... Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW...

  15. 7 CFR 2902.47 - Gear lubricants.

    2010-01-01

    ... lubricating oils and which product should be afforded the preference in purchasing. Note to paragraph (d... whether or not the product contains any recovered material, in addition to biobased ingredients, and... Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT...

  16. Biobased Lubricant Development - Problems and Opportunities

    Biobased lubricants are those comprising ingredients derived from natural sources such as those harvested from farms, forests, etc. Biolubricants provide a number of economic, environmental and health benefits over petroleum-based products. Among these are: biodegradability, renewability and non-t...

  17. Current Trends in Biobased Lubricant Development

    Biobased lubricants are those comprising ingredients derived from natural raw materials such as those harvested from farms, forests, etc. Biolubricants provide a number of benefits over petroleum-based products including: biodegradability, renewability, and non-toxicity. As a result, manufacture ...

  18. Lubricant effect of rate-of-loading

    A series of tests were conducted to establish the performance of a motor operated valve (MOV) stem lubricant. Battelle has assembled a MOV test stand to provide a means to test valve actuators and stems with representative valve load profiles and to accurately measure the actuator performance. The facility duplicates an actual MOV except that the stem thrust loads are generated hydraulically and seating loads are generated by mechanical stops. These tests were conducted at a high torque switch setting on a Limitorque SMB-0. Stem-stemnut pairs with known rate-of-loading (ROL) effects ranging from approximately zero to 30% were tested. The stems were lubricated with Mobil 28; a nuclear-grade synthetic grease. A test with a slow, linearly increasing load profile with torque switch trip occurring prior to seating (ramp test), was used to establish the magnitude of the ROL effect for a particular stem-stemnut. Data from these experiments were compared with results of similar EPRI tests which used different stem lubricants. Results with Mobil 28 yielded unexpected, consistent reduced ROL effects. In addition, the thread pressure threshold for limiting ROL effects was significantly reduced. A model of the squeeze film phenomena was developed to explain the experimental results. The model shows that the basic rheological properties of the lubricant, the thread composite surface roughness, and the thread type all have a significant influence on the magnitude of ROL effects

  19. Classification of lubricants according to cavitation criteria

    Meged, Y.; Venner, C.H.; Napel, ten W.E

    1995-01-01

    Cavitation in lubrication liquids has long been known to be detrimental to components in hydraulic systems. Damage has been detected in journal bearings, especially under severe dynamic loading, gears, squeeze film dampers and valves. These findings have led to intensive studies of metal resistance

  20. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  1. Study on Lubricating Oil Monitoring Technology

    LIU Feng-bi

    2006-01-01

    Lubricating oil monitoring has been proven to be an effective method for detecting and diagnosing machinery failures and essential for realizing condition based maintenance. In this paper, mathematical statistics methods for determining the oil parameters featuring machinery failures and the parameters' probability distribution functions and their thresholds are put forward.

  2. Lubricant Test Methods for Sheet Metal Forming

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...

  3. A quantitative lubricant test for deep drawing

    Olsson, David Dam; Bay, Niels; Andreasen, Jan L.

    2010-01-01

    A tribological test for deep drawing has been developed by which the performance of lubricants may be evaluated quantitatively measuring the maximum backstroke force on the punch owing to friction between tool and workpiece surface. The forming force is found not to give useful information...

  4. Improvement of lubricant materials using ruthenium isomerization

    Production of an effective industrial lubricant additive from vegetable oils is a high profile and difficult undertaking. One candidate is alkyl 9(10)-dibutylphosphonostearate, which has been made through a radical transformation of alkyl 9-cis-octadecanoate. It is effective, but still suffers from ...

  5. Exploring Low Emission Lubricants for Diesel Engines

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  6. Lubricant test for punching and blanking

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    di $cult work piece materials like stainless steels.For this group of materials few alternatives exist as regards appropriate lubricants and many companies apply the environmentally hazardous chlorinated para $n oils in order to insure a uccessful production.In connection with development of...

  7. Friction and lubrication in artificial joints

    Vocel, Jan; Musil, Jan; Šída, V.

    Vol. 2. Brno: VUT, 1999 - (Kratochvíl, C.; Kotek, V.; Krejsa, J.), s. 31-34 ISBN 80-214-1325-5. [International conference Engineering mechanics '99.. Svratka (CZ), 17.05.1999-20.05.1999] R&D Projects: GA ČR GA106/98/1373 Keywords : synovial fluid * tribology * lubrication Subject RIV: BO - Biophysics

  8. AFM study of polymer lubricants on hard disk surfaces

    Bao, G. W.; Troemel, M.; Li, S. F. Y.

    Thin liquid films of PFPE (perfluoropolyether) lubricants dip-coated on hard disk surfaces were imaged with non-contact mode AFM. Demnum lubricants with phosphazene additives exhibited strong interactions with a silicon tip due to the formation of liquid bridges between the lubricants and the tip, as indicated by a remarkable hysteresis loop between approach and retraction curves in force vs. distance measurements. Features resulting from capillary forces due to tip tapping to the lubricants were revealed, which demonstrated that the capillary forces could be used to lock the non-contacting tip at a certain separation from the substrate surface to obtain AFM images. Force vs. distance curves for Fomblin Z-dol lubricants showed negligible hysteresis effects and features corresponding to lateral distortion of the tip by the lubricants only were observed. In both cases, only when the tip was positioned far above the surfaces could the natural distributions of the lubricants be imaged.

  9. A dynamic rheological model for thin-film lubrication

    Zhang Xiang-Jun; Huang Ying; Guo Yan-Bao; Tian Yu; Meng Yong-Gang

    2013-01-01

    In this study,the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated.The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region,which is desired for its lower energy dissipation.A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation.This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film,as well as their dependences on the lubricant film thickness.The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing.Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number.The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0,indicating a liquid-to-solid transition of the confined lubricant film.Furthermore,the two proposed parameters in the dynamic rheological model,namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ0,were found to determine the minimum COF and the width of the low-COF region,both of which were required to optimize the shape of the Stribeck curve.The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.

  10. A dynamic rheological model for thin-film lubrication

    In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ0, were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime. (condensed matter: structural, mechanical, and thermal properties)

  11. A dynamic rheological model for thin-film lubrication

    Zhang, Xiang-Jun; Huang, Ying; Guo, Yan-Bao; Tian, Yu; Meng, Yong-Gang

    2013-01-01

    In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ0, were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.

  12. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-11-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440 C stainless steel (SS) ball and a 440 C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants.

  13. Investigation of lubrication in natural joints by neutron reflectometry

    Kaltofen, T.; Dahint, R. [Angewandte Physikalische Chemie, Univ. Heidelberg (Germany); Gutberlet, T. [Paul-Scherrer-Inst., Villigen (Switzerland); Wolff, M. [Experimentalphysik IV - Festkoerperphysik, Univ. Bochum (Germany); Steitz, R. [Hahn-Meitner-Inst., Berlin (Germany)

    2007-07-01

    Despite their high medical relevance, the principles of lubrication in natural joints are still unclear. It is generally accepted, that the presence of hyaluronic acid (HA), the main component of the synovial liquid, plays an important role for the low friction observed. Furthermore, it is assumed that surface active lipids participate in the lubrication. Using a model system of lipid bilayers deposited on a polyelectrolyte (PE) cushion and in contact with HA solution, we started to investigate the effects of pressure and shear forces, as experienced by natural joints, on the internal structure of the SiO{sub 2}/PE/lipid/HA interface and the bulk HA solution by neutron reflectometry (NR), complemented by in situ ellipsometry and quartz crystal microbalance (QCM-D) measurements. Only on positively charged polyelectrolyte surfaces, the successful build-up of the model system could be demonstrated. By NR, the existence of an irreversibly absorbed, highly hydrated HA layer on top of the lipid membrane was proven. For shear rates above 2.5 min{sup -1} a swelling of the HA layer has been observed. Pressure dependent studies are presently underway. (orig.)

  14. Research on Friction Properties of Mineral Lubricants in Thin-Film-Lubricating Regime

    Zhang Jie; Guan Tingting; Piao Jicheng

    2014-01-01

    On the basis of thin iflm lubrication theory, the inlfuence of lfuid iflm (disordered iflm), ordered iflm and ad-sorbed iflm on tribological behavior of lubricating oil in thin-iflm lubrication (TFL) regime was studied. Theμ-L (friction coefifcient versus load) curves of different oil viscosity and additive dosage were obtained by a high frequency reciprocat-ing test rig and the adsorption capacity of additive on steel surface were measured by QCM-D. Based on the Stribeck curve and thin iflm lubrication theory model, some conclusions can be drawn up, namely:(1) Theμ-L curves and the parameters of L0 andμ0, obtained from the high frequency reciprocating test rig with ball-disc contact, can be used to study tribologi-cal behaviors of lubricating oil under TFL conditions. (2) In comparison with the high viscosity base lfuid, the lower one can enter into TFL regime under lower load and keeps a lower friction coefifcient in TFL regime. (3) The polar molecules in additive formulation produce ordered adsorbed layer on steel surface to reduce friction coefifcient. And in TFL regime, the molecule’s polarity, layer thickness and saturation degree on steel surface probably can inlfuence lubricant’s tribological behaviors between the moving interfaces. Moreover, the further study would be focused on the competitive adsorption of different additives, the formation of dual-and/or tri-molecular adsorption layers, and other aspects.

  15. Lubricant additive concentrate containing isomerized jojoba oil

    Arndt, G.

    1987-05-12

    This patent describes a crankcase motor oil additive concentrate intended to be added to a conventional crankcase motor oil to improve its ability to lubricate and protect the engine. The additive concentrate comprises the following components: A petroleum base stock of lubricating quality and viscosity. The base stock comprises from about 13.5 to 90 weight percent of the additive concentrate; a detergent-inhibitor package. The package is present at from about 7 to about 40 weight percent of the concentrate; a supplemental antiwear additive selected from the salts of dialkyl dithiophosporic acids. The additive is present at a level of from about 1 to about 10 weight percent of the concentrate; and a supplemental antiwear additive selected from the class of sulfurized olefins. The additive is present at a level of from about 1 to about 10 weight percent of the concentrate.

  16. Graphene oxide film as solid lubricant.

    Liang, Hongyu; Bu, Yongfeng; Zhang, Junyan; Cao, Zhongyue; Liang, Aimin

    2013-07-10

    As a layered material, graphene oxide (GO) film is a good candidate for improving friction and antiwear performance of silicon-based MEMS devices. Via a green electrophoretic deposition (EPD) approach, GO films with tunable thickness in nanoscale are fabricated onto silicon wafer in a water solution. The morphology, microstructure, and mechanical properties as well as the friction coefficient and wear resistance of the films were investigated. The results indicated that the friction coefficient of silicon wafer was reduced to 1/6 its value, and the wear volume was reduced to 1/24 when using GO film as solid lubricant. These distinguished tribology performances suggest that GO films are expected to be good solid lubricants for silicon-based MEMS/NEMS devices. PMID:23786494

  17. Water lubricates hydrogen-bonded molecular machines.

    Panman, Matthijs R; Bakker, Bert H; den Uyl, David; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Geenevasen, Jan A J; Woutersen, Sander

    2013-11-01

    The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the 'lubricant of life'. PMID:24153370

  18. Water lubricates hydrogen-bonded molecular machines

    Panman, Matthijs R.; Bakker, Bert H.; den Uyl, David; Kay, Euan R.; Leigh, David A.; Buma, Wybren Jan; Brouwer, Albert M.; Geenevasen, Jan A. J.; Woutersen, Sander

    2013-11-01

    The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the ‘lubricant of life’.

  19. Lubricants for Metal Belt Continuously Variable Transmissions

    Keiichi Narita

    2014-02-01

    Full Text Available This paper reviews the effects of lubricant additives and base stock used in metal belt continuously variable transmissions (CVT fluids on the CVT transmission torque capacity. Additive formulation composed of phosphorus anti-wear agent, calcium detergent, and dispersant improved the friction coefficient between the metals. The analysis on the post-test surface suggests that the friction behavior strongly depends on the local morphology of the tribofilms derived from lubricant additives. Examining the effect of base stock on the torque capacity in actual belt CVTs revealed that SN (synthetic naphthene exhibited 10% higher torque capacity than that of PAO (polyalphaolefin. It is believed that the difference in the torque capacity is due to the difference in the oil-film shearing force generated by the relative sliding between the belt and pulley.

  20. Biopolymer Green Lubricant for Sustainable Manufacturing

    Shih-Chen Shi; Fu-I Lu

    2016-01-01

    We report on the preparation of a biopolymer thin film by hydroxypropyl methylcellulose (HPMC), which can be used as a dry green lubricant in sustainable manufacturing. The thin films were characterized through scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy; the films showed desirable levels of thickness, controllability, and uniformity. Tribology tests also showed desirable tribological and antiwear behaviors, caused by the formation of transfer layers. ...

  1. Technology development for indigenous water lubricated bearings

    Water Lubricated Bearings (WLB) are used in various mechanisms of fuel handling systems of PHWRs and AHWR. Availability and random failures of these bearings was a major factor in refuelling operations. Indigenous development of these bearings was taken up and 7 types of antifriction bearings in various sizes (totaling 37 variants) for PHWR, AHWR and Dhruva applications were successfully developed. This paper deals with various aspects of WLB development. (author)

  2. Classification of lubricants according to cavitation criteria

    Meged, Y.; Venner, C.H.; Napel, ten, H.M.Th.D.

    1995-01-01

    Cavitation in lubrication liquids has long been known to be detrimental to components in hydraulic systems. Damage has been detected in journal bearings, especially under severe dynamic loading, gears, squeeze film dampers and valves. These findings have led to intensive studies of metal resistance to cavitation erosion, in order to minimize the damage. Results of these studies have been: 1. (a) classification of known materials according to their resistance to cavitation erosion; 2. (b) deve...

  3. Nanoscale lubricating film formation by linear polymer in aqueous solution

    Liu, Shuhai; Guo, Dan; Xie, Guoxin

    2012-11-01

    Film-forming properties of polymer in aqueous solution flowing through a nanogap have been investigated by using a thin film interferometry. The film properties of linear polymer in aqueous solution flowing through a confined nanogap depend on the ratio of water film thickness to averaged radius of polymer chains H0/RPolymer. It was found that the lubrication film thickness of linear polymer in aqueous solution decreases as the polymer molecular weight increasing when H0/RPolymer < 2 ˜ 3. A new lubrication map was proposed, which includes the lubrication regime of weak confinement influence, the lubrication regime of strong confinement influence (LRSCI), and the transition regime of confinement influence. It is very difficult to increase the lubrication film thickness using the higher molecule weight in the LRSCI regime. The lubrication mechanism inferred from our experimental results may help to better understand the dynamic film properties of linear polymer in aqueous solution flowing through a nanogap.

  4. Phenomenological theory of kinetic friction for the solid lubricant film

    Molecular dynamics based on the Langevin equations with the coordinate- and velocity-dependent damping coefficients is used to investigate the friction properties of a 'hard' lubricant film confined between two solids, when the lubricant remains in the solid state during sliding. The dependence of the friction force on the temperature and sliding velocity in the smooth sliding regime is studied in detail for all three states of the lubricant: a lubricant with a crystalline structure, when the system exhibits a very low friction (superlubricity), an amorphous lubricant structure, which results in a high friction, and the liquid state of the lubricant film at high temperatures or velocities. A phenomenological theory of the kinetic friction is developed, which allows us to explain the simulation results and predict a variation of the friction properties with model parameters analytically

  5. Property Analysis of the Agricultural Machinery Lubricants

    Tone Ploj

    2000-03-01

    Full Text Available We need to produce enough healthy and cheap food as well as to preserve the ecologic equilibrium. This can be achived by using modern machinery and up- to-date knowledge and technology. Agricultural machinery, in which 40-60% of all funds are invested, is poorly maintained and underused. The main causes for this are poor knowledge and extensive farm land fragmentation. The fact that over 140,000 tractors in Slovenia are on average 9.6 years old, i.e. that more than 80% of overall agricultural machinery is obsolete, should be a matter of serious concern. In the paper we follow tribological conditions in particular tractor assemblies. In the first part of the paper we have treated the required conditions of tractor manufacturers in Europe and primarily in Slovenia, what has served us in the final phase of the research for elaboration of the model. In this way we have got data about the presence of particular tractor types. We have separately elaborated the necessary specifications of engine lubricants, transmission, gears, hydraulics and wet breaks. We have carried out chemical and mechanical analyses of all accessible lubricants in agricultural mechanisation. The results of the new oils were coordinated with the required specifications of tractor manufacturers and so we have got such a model, that certainly meet all lubricating requirements of our tractors.

  6. Lubricant for hot processing of metals

    Forostyan, Yu.N.; D' yachenko, K.A.; Grudev, A.P.; Lobarev, M.I.; Sigalov, Yu.B.

    1980-04-30

    The compositon of lubricant for hot processing of metals is based on water, hydrolysis lignin, phosphoric acid salt and an antiseptic. In order to increase the wear resistance of the instrument, it contains Ca(OH)/sub 2/, a soap stock of vegetable oil (SRM), dichlorstearic acid (I), tetrachlorstearic acid (II) and as the phosphoric acid salt, the lubricant contains trisodium phosphate. The % composition of the content are: hydrolysis lignin, 5-25; trisodium phosphate, 1-5; Ca(OH)/sub 2/, 0-5; vegetable oil soap stock, 10-30; I, 0.5-2; II, 0.5-10; antiseptic, 0.01-5 and water to 100%. The calculated volumes of lignin, Ca(OH)/sub 2/ and water are ground in a ball mill to a powder dispersion of 10-20 mkm, after which the SRM and the trisodium phosphate are added and the griding is continued for 1.5-2 hours. The formed mixture is reloaded into the reactor, heated to 75-80/sup 0/C with mixing, I and II, preheated to 70-80/sup 0/C are introduced. The heating and mixing are continued until the formation of a uniform gel. After cooling, the antiseptic is added. The use of the lubricant provides for a reduction in the rolling pressures from 17.3 to 15.6-16.8 t.

  7. Influence of electric double layer on thin film lubrication and elastohydrodynamic lubrication

    2001-01-01

    In the present paper, the influence of electric double layer (EDL) on thin film lubricationand elastohydrodynamic lubrication is studied. With modified Reynolds equation for electric doublelayer, the effect of zeta-potential on the film thickness and pressure is numerically calculated. Theresults show that the influence of electric double layer on the lubrication film thickness is significantonly for thin film. The minimum film thickness will increase greatly if the influence of EDL is con-sidered. As the initial film thickness increases, the effect will greatly decrease. The existence ofEDL will decrease the friction coefficient of the lubrication film. Furthermore, the above tendency isstill applicable even if the materials of the friction pair are different.

  8. Mechanisms of lubrication and wear of a bonded solid-lubricant film

    Fusaro, R. L.

    1980-01-01

    The tribological properties of polyimide-bonded graphite fluoride films were investigated. A pin-on-disk type of testing apparatus was used; in addition to sliding a hemispherically tipped rider, a rider with a 0.95-mm-diameter flat area was slid against the film so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurred: in the first, the film supported the load and the lubricating mechanism consisted of the shear of a thin surface layer between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress.

  9. Molecular dynamics simulations of elasto-hydrodynamic lubrication and boundary lubrication for automotive tribology

    Friction control of machine elements on a molecular level is a challenging subject in vehicle technology. We describe the molecular dynamics studies of friction in two significant lubrication regimes. As a case of elastohydrodynamic lubrication, we introduce the mechanism of momentum transfer related to the molecular structure of the hydrocarbon fluids, phase transition of the fluids under high pressure, and a submicron thickness simulation of the oil film using a tera-flops computer. For boundary lubrication, the dynamic behavior of water molecules on hydrophilic and hydrophobic silicon surfaces under a shear condition is studied. The dynamic structure of the hydrogen bond network on the hydrophilic surface is related to the low friction of the diamond-like carbon containing silicon (DLC-Si) coating

  10. An Advanced Microturbine System with Water-Lubricated Bearings

    Susumu Nakano; Tadaharu Kishibe; Tomoaki Inoue; Hiroyuki Shiraiwa

    2009-01-01

    A prototype of the next-generation, high-performance microturbine system was developed for laboratory evaluation. Its unique feature is its utilization of water. Water is the lubricant for the bearings in this first reported application of water-lubricated bearings in gas turbines. Bearing losses and limitations under usage conditions were found from component tests done on the bearings and load tests done on the prototype microturbine. The rotor system using the water-lubricated bearings ach...

  11. Modeling Bearing and Shear Forces in Molecularly Thin Lubricants

    Vakis, Antonis I.; Eriten, Melih; Polycarpou, Andreas A.

    2011-01-01

    Under the effects of high shear rate and confinement between solid surfaces, the behavior of a thin lubricant film deviates from that of the bulk, resulting in significant increases of lubricant viscosity and interfacial slip. A semi-empirical model accounting for the breakdown of continuum theory at the nanoscale is proposed—based on film morphology and chemistry from available experimental and molecular dynamics simulation data—to describe lubricant behavior under shear. Viscosity stiffenin...

  12. Feedback-Controlled Lubrication for Reducing the Lateral Vibration of Flexible Rotors supported by Tilting-Pad Journal Bearings

    Salazar, Jorge Andrés González; Santos, Ilmar

    2014-01-01

    In this work, the feedback-controlled lubrication regime, based on a model-free designed proportional-derivative (PD) controller, is studied and experimentally tested in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing (active TPJB). With such a lubrication regime......, both the resulting pressure distribution over the pads and hence the bearing dynamic properties are dynamically modified. The control strategy is focused on reducing the system lateral vibration around its operational equilibrium position in a wide frequency range. For this purpose, servovalves are...... to experimentally characterized multi-input multi-output systems is used to determine the stabilizing PD gain domain. The main contribution of this work is to demonstrate the enhancement of the dynamic response of a flexible rotor-bearing system supported by an active TPJB by means of the feedback...

  13. MISCIBILITY, SOLUBILITY, AND VISCOSITY MEASUREMENTS FOR R-236EA WITH POTENTIAL LUBRICANTS

    The report gives results of miscibility, solubility, and viscosity measurements of refrigerant R-236ea with three potential lubricants. (NOTE: The data were needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The lubricants...

  14. Lubricating graphene with a nanometer-thick perfluoropolyether

    Due to its atomic thickness (thinness), the wear of graphene in nanoscale devices or as a protective coating is a serious concern. It is highly desirable to develop effective methods to reduce the wear of graphene. In the current paper, the effect of a nano-lubricant, perfluoropolyether, on the wear of graphene on different substrates is investigated. Graphene was synthesized by chemical vapor deposition (CVD) and characterized by Raman spectroscopy. The nano-lubricant is applied on the graphene by dip-coating. The friction and wear of graphene samples are characterized by nanotribometer, AFM, optical microscopy and Raman spectroscopy. The results showed that lubricating silicon/graphene with nano-lubricant reduces the friction but increases the wear. However, lubricating nickel/graphene with nano-lubricant has little effect on the friction but reduce the wear significantly. The underlying mechanism has been discussed on the basis of the graphene–substrate adhesion and the roughness. The current study provides guidance to the future design of graphene-containing devices. - Highlights: • The effect of a nano-lubricant on the friction and wear of CVD graphene was studied. • Lubricating Graphene/Si results in lower friction but higher wear. • Lubricating Ggraphene/Ni results in lower wear but unchanged friction. • The mechanisms were discussed based on the roughness and interfacial adhesion

  15. Lubricating graphene with a nanometer-thick perfluoropolyether

    Kozbial, Andrew [Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Zhiting [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Iasella, Steven; Taylor, Alexander T.; Morganstein, Brittni; Wang, Yongjin [Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Jianing [J.A. Woollam Co., Inc., 645 M Street, Suite 102, Lincoln, NE 68508 (United States); Zhou, Bo; Randall, Nicholas X. [CSM Instruments, 197 1st Avenue, Needham, MA 02494 (United States); Liu, Haitao, E-mail: hliu@pitt.edu [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Li, Lei, E-mail: lel55@pitt.edu [Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2013-12-31

    Due to its atomic thickness (thinness), the wear of graphene in nanoscale devices or as a protective coating is a serious concern. It is highly desirable to develop effective methods to reduce the wear of graphene. In the current paper, the effect of a nano-lubricant, perfluoropolyether, on the wear of graphene on different substrates is investigated. Graphene was synthesized by chemical vapor deposition (CVD) and characterized by Raman spectroscopy. The nano-lubricant is applied on the graphene by dip-coating. The friction and wear of graphene samples are characterized by nanotribometer, AFM, optical microscopy and Raman spectroscopy. The results showed that lubricating silicon/graphene with nano-lubricant reduces the friction but increases the wear. However, lubricating nickel/graphene with nano-lubricant has little effect on the friction but reduce the wear significantly. The underlying mechanism has been discussed on the basis of the graphene–substrate adhesion and the roughness. The current study provides guidance to the future design of graphene-containing devices. - Highlights: • The effect of a nano-lubricant on the friction and wear of CVD graphene was studied. • Lubricating Graphene/Si results in lower friction but higher wear. • Lubricating Ggraphene/Ni results in lower wear but unchanged friction. • The mechanisms were discussed based on the roughness and interfacial adhesion.

  16. Lubricants based on synthetic esters; Schmierstoffe auf Basis synthetischer Ester

    Fahl, J. [Forschung und Entwicklung Kaeltemaschinenoele, Fuchs DEA Schmierstoffe GmbH, Hamburg (Germany)

    2000-07-01

    This article describes the synthetic esters that are being used in refrigeration applications that use chlorine-free working fluids. The chemical basics involved in these high-performance lubricants, their manufacture and their lubricating properties are looked at in detail. The history of their development from their use as machining oils, lubricants for weapons and two-stroke engines through to turbine lubricants and as hydraulic oil in aeronautics is reviewed. Modern neopentyl-polyol esters used in refrigeration applications are described. Further, the chemical structures and applications of complex esters, carbonate esters, aromatic and silicate esters are looked at.

  17. Lubricants for HFC-134a Compatible Rotary Compressors

    Takaichi, Kenji; Sakai, Hisakazu

    In replacing CFC-12 with HFC-134a for refrigerator compressors, the compatibility with lubricating oil, and lubrication in general, are of major concern. HFC-134a dose not have adequate solubility with current lubricating oils because of its molecular structure. Current oils also do not provide enough lubricating action when using HFC-134a. A new oil and new materials have to be utilized in order to use HFC-134a. Developing a new lubricating oil involved numerous tests of different combinations of many polyolester synthetic oils and additives. One of the pre-evaluated methods was pursued via sealed tube tests. Lubricated parts were selected by studies involving a plane-on-roller type of wear test machine and by analyzing the traces of acid material commonly created during the lubricating action. The matrices of new lubricating oils and new lubricated materials were estimated based on durability tests conducted on compressors and refrigerators. Results showed that polyolester synthetic oils having a low total acid value and including certain quantities of additives did not break down into a tar-like substance and they did not produce composite particles in the operating compressors and refrigerators. The study also found that ceramics and anti-corrosion alloy steel possessed good adrasion-reducing qualities. Based on our evaluation, we will implement compressor reliability tests and apply HFC-134a to rotary compressors for refrigerators.

  18. High Performing, Low Temperature Operating, Long Lifetime, Aerospace Lubricants Project

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to synthesize, characterize, and test new ionic liquids and formulations as lubricants for aerospace applications. The...

  19. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    Dugger, Michael T.; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  20. The effect of alternative fuels on the stability and lubricity of crankcase lubricants. Final report, September 1992--September 1993

    Klaus, E.E.; Duda, J.L.; Shah, R.J.

    1994-03-01

    The purpose of this research is to study the effect of alternative fuels on the functioning of crankcase lubricants with these three main goals: Develop simple, rapid test protocols to evaluate the influence of alternative fuels on the stability and lubricity of lubricants under conditions simulating engine operation. The objective is to have these test protocols serve industry as a precursor evaluation procedure before expensive engine tests are conducted. The reliability of these test procedures to predict the influence of additives on lubricant performance under actual operating conditions will be determined by comparison of these test results with available engine and fleet tests. Use the developed test procedures to evaluate commercially available lubricants for applications with alternative fuels and determine the influence of various bearing materials, including conventional steel as well as advanced ceramic materials. Use the test procedures to evaluate classes of lubricants and lubricant additives as well as fuel additives, and develop lubricants and additives for comparability with specific alternative fuels. Test procedures have been developed to produce lubricant fractions which can be caused by contact with alternative fuels in the crankcase and the area of the fuel injector. Associated test procedures have also been developed so that the oxidative stability and the wear characteristics of the lubricant fractions from the extraction protocol can be evaluated. Although these test procedures have been used to evaluate some lubricants, the significant impact of these tests on the development and evaluation of lubricants for alternatively fueled engines has only been initiated, and these tests should be the basis for extensive future studies.

  1. Numerical analysis of capillary compensated micropolar fluid lubricated hole-entry journal bearings

    Nathi Ram

    2016-06-01

    Full Text Available The micropolar lubricated symmetric/asymmetric hole-entry bearings using capillary restrictor have been analyzed in the present work. Reynolds equation for micropolar lubricant has been derived and solved by FEM. The results have been computed using selected parameters of micropolar lubricant for hole-entry hydrostatic/hybrid journal bearings. A significant increase in damping and stiffness coefficients is observed for bearings having micropolar parameter N2=0.9, lm=10 than similar bearings under Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant.

  2. Modified Ionic Liquid-Based High-Performance Lubricants for Robotic Operations Project

    National Aeronautics and Space Administration — NASA needs an advanced lubrication solution for its future robotic systems and planetary surface assets. The required lubrication technology must offer...

  3. Feedback-controlled lubrication for reducing the lateral vibration of flexible rotors supported by tilting-pad journal bearings

    Salazar, Jorge Andrés González; Santos, Ilmar

    2015-01-01

    The feedback-controlled lubrication regime, based on a model-free designed proportional–derivative controller, is experimentally investigated in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing. With such a lubrication regime, both the resulting pressure distribution...... function is optimized in the stabilizing gain domain and then chosen from a subdomain imposed by servovalve restrictions. This work demonstrates enhancements of the dynamic response of flexible rotor-bearing systems supported by an active tilting-pad journal bearing by means of the feedback...... over the pads and hence the bearing dynamic properties are dynamically modified. The control strategy is focused on reducing the lateral vibrations of the system around its operational equilibrium within a wide frequency range. To synthesize the proportional–derivative controller gains, an objective...

  4. Role of water lubricated bearings in Candu reactors

    During the twentieth century a great emphasis was placed in understanding and defining the operating regime of oil and grease lubricated components. Major advances have been made through elastohydrodynamic lubrication theory in the quantifying the design life of heavily loaded components such as rolling element bearings and gears. Detailed guidelines for the design of oil and grease lubricated components are widely available and are being applied to the successful design of these components. However similar guidelines for water lubricated components are either not available or not well documented. It is often forgotten that the water was used as a lubricant in several components as far back as 1884 B.C. During the twentieth century the water lubricated components continued to play a major role in some high technology industries such as in the power generation plants. In CANDU nuclear reactors water lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication. This paper presents some examples of the major water lubricated components in a CANDU reactors. Major part of the paper is focused on presenting an example of successful operating history of water lubricated bearings used in the HT pumps are presented. Both types of bearings have been qualified by tests for operation under normal as well as under more severe postulated condition of loss-of-coolant-accident (LOCA). These bearings have been designed to operate for the 30 years in the existing CANDU 6 (600 MW) reactors. However for the next generation of CANDU 6 reactors which go into service in the year 2003, the HT pump bearing life has been extended to 40 years. (author)

  5. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg-1 and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg-1, the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant ≥2 mg kg-1. There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia. - Vegetable-based lubricating oils appear to cause a tropical fish species less stress than mineral oils

  6. Deposited Micro Porous Layer as Lubricant Carrier in Metal Forming

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben;

    2008-01-01

    A new porous coating for carrying lubricant in metal forming processes is developed. The coating is established by simultaneous electrochemical deposition of two pure metals. One of them is subsequently etched away leaving a porous surface layer. Lubricant can be trapped in the pores acting as lu...

  7. China's Privately-owned Lubricants Producer Plans IPO

    2004-01-01

    @@ Beijing Monarch Petroleum Chemical Co Ltd,China's largest privately-owned lubricant oil producer, plans to list on an overseas stock market by the end of 2006, according to Li Jia, general manager of Monarch Lubricant Oil, who told the news media in a recent interview.

  8. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  9. Talc as a Substitute for Dry Lubricant (an Overview)

    Abdulkareem, Suleiman; Orkuma, Gideon I.; Apasi, Adaokoma A.

    2011-01-01

    All metal surfaces, irrespective of their surface integrity, appear as a series of peaks and valleys under close examination. The objective of lubrication is to separate these peaks and valleys so that contact is avoided in metal to metal, hence greatly reduce or eliminate wear. A lubricant may be gas, liquid, semi-solid, or solid that permits free action of mechanical devices and prevents damage by abrasion and seizing of metal or other components through unequal expansion caused by heat. Among the solid (dry) lubricants includes: graphite, glass, boron nitride, polytetrafluoroethene (PTFE-Teflon), molybdenum disulfide, tungsten disulfide, lime, talc, etc. Solid (dry) lubricants differ significantly from liquid lubricants, in that liquid lubricants reduce friction due to their fluidity and viscosity. However, solid lubricants have neither of these properties but they are still capable of reducing friction and wear in metal. In this work, the study of the property characteristics of talc as a substitute for graphite in dry lubrication (an overview) was carried out and reported in this paper.

  10. Modeling Bearing and Shear Forces in Molecularly Thin Lubricants

    Vakis, Antonis I.; Eriten, Melih; Polycarpou, Andreas A.

    2011-01-01

    Under the effects of high shear rate and confinement between solid surfaces, the behavior of a thin lubricant film deviates from that of the bulk, resulting in significant increases of lubricant viscosity and interfacial slip. A semi-empirical model accounting for the breakdown of continuum theory a

  11. Piston ring lubrication and hydrocarbon emissions from internal combustion engines

    Froelund, K.

    1997-11-01

    Is it the intention with this project to improve the existing hydrocarbon emission model at the Institute by combining it with a model for predicting the piston ring lubrication. The piston ring lubrication model should be experimentally verified to ensure the validity of the model. The following items were the objectives of the current study: Develop a piston ring lubrication model. This implies the development of a ring-pack gas flow model; Examine the response of the piston ring lubrication model to changing engineer conditions. Especially, it would be interesting to look at the engine warm-up phase since this is the phase where the engine-out emissions are highest and where the commonly used three way catalyst is not capable of converting the engine-out emissions, thereby leading the engine-out emissions directly out in to the environment with the exhaust gases; In order to verify the piston ring lubrication model the lubricant distribution on the cylinder liner should be investigated experimentally. Here again it would be of great interesting to look at the engine warm-up phase; The piston ring lubrication model should be adjusted for application together with the new hydrocarbon emission model for SI-engines at the Institute in order to increase the accuracy of the latter; The piston ring lubrication model could be used for describing the transport of PAH`s in diesel engines. (EG)

  12. Lubricants for drill bit bearings and requirements for them

    Postash, S.I.; Baryl' nik, V.N.; Berko, N.Ya.; Dzugkoyev, T.D.; Postash, A.S.; Sheykin, F.I.

    1984-01-01

    Lubricants for drill bit bearings are divided by properties into lubricants for sealed (low-rotary drill bit) and unsealed (high-rotary drill bit) bearings. The operating mode of the bearings of both types of supports is heavily loaded and high-temperature; therefore, the lubricants must have high anti-wear properties and thermal resistance. Improving the reliability of the bits with sealed bearings is attained by using normal lubricants as well as special ones. Work is underway to seal the bit bearings for high-rotary drilling, but it is economically more justified to have high-rotary drilling with unsealed bearings of increased (20-30%) stability, which is achieved by using special lubricants KP, KPO, as well as hardening lubricants based on mineral oil, molybdenum disulfide and epoxy composites. In this case, the hardening lubricants which in the flowing state fill the entire cavity of the bearings not only lubricate the rocking bodies and running tracks during hardening, but also seal the cavity of the bearings and separate the rocking bodies.

  13. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  14. Design and fundamental understanding of Minimum Quantity Lubrication (MQL) assisted grinding using advanced nanolubricants

    Kalita, Parash

    Abrasive grinding is widely used across manufacturing industry for finishing parts and components requiring smooth superficial textures and precise dimensional tolerances and accuracy. Unlike any other machining operations, the complex thermo-mechanical processes during grinding produce excessive friction-induced energy consumption, heat, and intense contact seizures. Lubrication and cooling from grinding fluids is crucial in minimizing the deleterious effects of friction and heat to maximize the output part quality and process efficiency. The conventional flood grinding approach of an uneconomical application of large quantities of chemically active fluids has been found ineffective to provide sufficient lubrication and produces waste streams and pollutants that are hazardous to human health and environment. Application of Minimum Quantity Lubrication (MQL) that cuts the volumetric fluid consumption by 3-4 orders of magnitude have been extensively researched in grinding as a high-productivity and environmentally-sustainable alternative to the conventional flood method. However, the lubrication performance and productivity of MQL technique with current fluids has been critically challenged by the extreme thermo-mechanical conditions of abrasive grinding. In this research, an MQL system based on advanced nanolubricants has been proposed to address the current thermo-mechanical challenges of MQL grinding and improve its productivity. The nanolubricants were composed of inorganic Molybdenum Disulphide nanoparticles (≈ 200 nm) intercalated with organic macromolecules of EP/AW property, dispersed in straight (base) oils---mineral-based paraffin and vegetable-based soybean oil. After feasibility investigations into the grindability of cast iron using MQL with nanolubricants, this research focused on the fundamental understanding of tribological behavior and lubricating mechanisms of nanolubricants as a method to improve the productivity of MQL-assisted surface grinding

  15. Hydrophobins as aqueous lubricant additive for a soft sliding contact

    Lee, Seunghwan; Røn, Troels; Pakkanen, Kirsi I.;

    2015-01-01

    Two type II fungal hydrophobins, HFBI and FpHYD5, have been studied as aqueous lubricant additive at a nonpolar, compliant sliding contact (self-mated poly(dimethylsiloxane) (PDMS) contact) at two different concentrations, 0.1 mg/mL and 1.0 mg/mL. The two hydrophobins are featured as non......-PDMS sliding interface was effectively lubricated by the hydrophobin solutions, and showed a reduction in the coefficient of friction by as much as ca. two orders of magnitude. Higher concentration solution (1.0 mg/mL) provided a superior lubrication, particularly in low-speed regime, where boundary...... lubrication characteristic is dominant via ‘self-healing’ mechanism. FpHYD5 revealed a better lubrication than HFBI presumably due to the presence of glycans and improved hydration of the sliding interface. Two type II hydrophobins function more favorably compared to a synthetic amphiphilic copolymer, PEO...

  16. Creation of solid lubricant firms by nanostructure control

    The friction coefficient can be decreased by increasing the hardness of a sliding plane while maintaining low shear resistance parallel to its substrate using nanostructural control techniques. Herein, nanoperiodic multilayer films composed of solid lubricant materials were proposed to develop a new solid lubricant film having lower friction than that of conventional solid lubricant films. The applied solid lubricant materials were soft metals including Au and Ag, polymers such as PTFE (polytetrafluoroethylene), and crystallizing layered inorganic compounds such as MoS2 (molybdenum disulfide), WS2 (tungsten disulfide), graphite, and hexagonal-BN. The nanoindentation properties of the obtained films were evaluated. Multilayered films with a suitable period showed a high hardness and elastic modulus. These nanoperiod multilayer solid lubricant films exhibited lower friction, higher nanowear resistance, and superior friction endurance than those of monolayer films. (author)

  17. Analysis and treatment for abnormal loss of RCP motor lubrication

    RCP, as the 'heat' of a nuclear power plant, is one of the vital equipment of RCP Coolant System, ensuring the regular coolant flow for core heat transmission. In this case, it is a must to ensure the safety and reliability of RCP operation. During the 11th cycle of QNPC, the lubrication of RCP-A motor lost abnormally. To ensure normal operation of the motor, we performed 5 emergency lubrication-feeding. Against this problem, we analyzed the cause of abnormal lubrication loss of RCP motor and the transfer pathway for oil-gas, and according to the analysis we performed RCP motor disassembly maintenance during refueling overhaul. The paper discusses the specific treatment for the abnormal lubrication loss. It was testified useful to control the abnormal lubrication loss by the specific treatment. (authors)

  18. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  19. Effects of lubricants on binary direct compression mixtures.

    Uğurlu, T; Halaçoğlu, M D; Türkoğlu, M

    2010-04-01

    The objective of this study was to investigate the effects of conventional lubricants including a new candidate lubricant on binary direct compression mixtures. Magnesium stearate (MGST), stearic acid (STAC), glyceryl behenate (COMP) and hexagonal boron nitride (HBN) were tested. The binary mixtures were 1:1 combinations of spray dried lactose (FlowLac 100), dicalcium phosphate dihydrate (Emcompress), and modified starch (Starch 1500) with microcrystalline cellulose (Avicel PH 102). Tablets were manufactured on a single-station instrumented tablet press with and without lubricants. In the case of unlubricated granules, the modified starch-microcrystalline cellulose mixture provided the highest percent compressibility value at 8.25%, spray dried lactose-microcrystalline cellulose mixture was 7.33%, and the dialcium phosphate dihydrate-microcrystalline cellulose mixture was 5.79%. Their corresponding tablet crushing strength values were: 104 N, 117 N, and 61 N, respectively. The lubricant concentrations studied were 0.5, 1, 2, and 4%. Effects of lubricant type and lubricant concentration on crushing strength were analyzed using a factorial ANOVA model. It was found that the Avicel PH 102-Starch 1500 mixture showed the highest lubricant sensitivity (110 N vs. 9 N), the least affected formulation was FlowLac-Avicel PH 102 mixture (118 N vs. 62 N). The crushing strength vs. concentration curve for MGST showed a typical biphasic profile, a fast drop up to 1% and a slower decline between 1 and 4%. The STAC, COMP, and HBN for all formulations showed a shallow linear decline of tablet crushing strength with increasing lubricant concentration. The HBN was as effective as MGST as a lubricant, and did not show a significant negative effect on the crushing strength of the tablets. The COMP and STAC also did not interfere with the crushing strength, however, they were not as effective lubricants as MGST or HBN. PMID:22491169

  20. ELASTOHYDRODYNAMIC LUBRICATION OF LOGARITHMIC PROFILE ROLLER CONTACTS

    2001-01-01

    An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller, which is rolling over a flat plane,is givenThe analysis takes account of sidew ays flow of lubricant in the inlet region of the contactWhen the results are p resented in suitable nondimensional groups,it is shown that more uniformly pre ssure and shape of the film distributing in axial direction is taken place under light loadingAs the increase of the load,the end closure is displayed and the oil pressure rises sharply at the endsThe seal action formed by the end closu re makes the film thickness a littleAnd the minimum film thickness is transfer red from the central to the ends and the value is reduced rapidlyAs the increa se of the speed,the end closure becomes much seriousThe optimum crowning value obtained in EHL state is larger than the design value obtained in elastostatic contact state for the same working conditionsIn order to verify the correctnes s of theory,optical interferometry is applied to measure the oil film thickness between a logarithmic profiled roller and a glass plate under pure rolling condi tionsIt is found the agreement between numerical solutions and experiments is very good

  1. Liquid-liquid extraction and adsorption on solid surfaces applied to used lubricant oils recovery

    J. L. Assunção Filho; L. G. M. Moura; A.C.S. RAMOS

    2010-01-01

    In this work, the recovery of base oils from waste lubricants following the steps of solvent extraction, adsorption on solids and solvent removal by evaporation was evaluated. In the step of solvent extraction, the most efficient was 1-butanol, followed by tert-butanol, 2-propanol and ethanol; for the step of adsorption, activated carbon was the most effective solid for PAH removal, confirming the similarity of these compounds with petroleum aromatic fractions. Thus, the optimum solvent-adsor...

  2. Novel method for separation and screening of lubricant-degrading microorganisms and bacterial biodegradation☆

    Yan Jiang; Hui Qi; Xianming Zhang

    2016-01-01

    With the rapid increase of lubricant consumption, oil contamination becomes more serious. Biotreatment is an important method to remove oil contamination with some advantages. In this study, acclimatized oil-contaminated soil and used lubricating oil were sampled to isolate lubricant-degrading strains by several methods. 51 isolates were obtained and 24-well plates were employed to assess bacterial potential in high-throughput screening. The method was noted for the prominence of oil–water two-phase system with saving chemicals, shortening cycles and lessening workloads. In order to decrease inaccuracy, subculture and resting cells were inoculated into mineral salt medium with 200μl oil in well plates for the cultivation at 37 °C for 5 and 7 days, and the biodegradation potential was characterized by the changes of oil film and cell density. With appropriate evaluation by shaking flask tests, 5 isolates were retained for their potentials with the maxi-mum biodegradation from 1500 to 2200 mg · L−1 and identified as Acidovorax citrul i, Pseudomonas balearica, Acinetobacter johnsoni (two isolates with different biodegradation potentials) and Acidovorax avenae using 16S rRNA sequencing analysis. Also, lipase activity was determined using indicator titration and p-nitrophenyl palmitate (p-NPP) methods. The results indicated that only p-NPP was successful to test lipase activity with the range of 1.93–6.29 U · ml−1. Although these five strains could degrade 1000 mg · L−1 lubricating oil in 158–168 h, there existed distinct difference in enzyme activity, which demonstrates that lipase activity could not be used as the criterion to evaluate microbial biodegradation potential for petroleum hydrocarbons.

  3. Synthesis of fatty monoester lubricant base oil catalyzed by Fe-Zn double-metal cyanide complex

    Ravindra K Raut; Mehejabeen Shaikh; Srinivas Darbha

    2014-07-01

    Fatty monoester lubricant base oils as high as 96.7 mol% were prepared by reacting methyl oleate with long-chain alcohols viz., 2-ethyl-1-hexanol (C8−OH), 1-decanol (C10OH) and 1-dodecanol (C12OH) in the presence of a solid Fe-Zn double-metal cyanide (DMC) complex catalyst. Unlike many other acid catalysts, DMC doesn't produce undesired ether side products. The catalyst was reusable in four recycling experiments with little loss in catalytic activity and ester yield. The long-chain esters prepared in the study have the desired physical properties for their application as lubricant base oils.

  4. The influence of lubricant carrier and lubrication conditions on mechanical-technological properties of high carbon steel wires

    M. Suliga

    2016-10-01

    Full Text Available In this paper the effect of the type of soap powder and lubricant carriers on lubrication conditions in multipass drawing process of high carbon steel wires has been determined. The wire drawing process was conducted in industrial conditions by means of a modern multi-die Koch drawing machine. For wires drawn on borax and phosphate lubricant carriers the mechanical-technological properties have been carried out, in which yield stress, tensile strength, uniform elongation, number of twists and number of bends were assessed. It has been proved that the application of phosphate lubricant carrier and also the rotary die in the first draft in an essential way improve the lubrication condition in high speed multipass drawing process and makes it possible to refine the mechanical properties of wires.

  5. New lubricant systems for cold and warm forging – advantages and limitations

    Bay, Niels

    2011-01-01

    present paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging by new, more harmless lubricants. Introduction of these new lubricants, however, has some drawbacks due to lower limits of lubrication leading to risk of pick-up, poor product...

  6. Lubricant replacement in rolling element bearings for weapon surety devices

    Steinhoff, R.; Dugger, M.T.; Varga, K.S. [Sandia National Laboratories, Albuquerque, NM (United States)

    1996-05-01

    Stronglink switches are a weapon surety device that is critical to the nuclear safety theme in modem nuclear weapons. These stronglink switches use rolling element bearings which contain a lubricant consisting of low molecular weight polytetrafluoroethylene (PTFE) fragments. Ozone-depleting solvents are used in both the manufacture and application of this lubricant. An alternate bearing lubrication for stronglink switches is needed that will provide long-term chemical stability, low migration and consistent performance. Candidates that were evaluated include bearings with sputtered MoS{sub 2} on the races and retainers, bearings with TiC-coated balls, and bearings with Si{sub 3}N{sub 4} balls and steel races. These candidates were compared to the lubricants currently used which are bearings lubricated with PTFE fragments of low molecular weight in a fluorocarbon solvent. The candidates were also compared to bearings lubricated with a diester oil which is representative of bearing lubricants used in industrial applications. Evaluation consisted of cycling preloaded bearings and subjecting them to 23 gRMS random vibration. All of the candidates are viable substitutes for low load application where bearing preload is approximately 1 pound. For high load applications where the bearing preload is approximately 10 pounds, bearings with sputtered MoS{sub 2} on the races and retainers appear to be the best substitutes. Bearings with TiC-coated balls also appear to be a viable candidate but these bearings did not perform as well as the sputtered MoS{sub 2}.

  7. Direct observation of drops on slippery lubricant-infused surfaces.

    Schellenberger, Frank; Xie, Jing; Encinas, Noemí; Hardy, Alexandre; Klapper, Markus; Papadopoulos, Periklis; Butt, Hans-Jürgen; Vollmer, Doris

    2015-10-14

    For a liquid droplet to slide down a solid planar surface, the surface usually has to be tilted above a critical angle of approximately 10°. By contrast, droplets of nearly any liquid "slip" on lubricant-infused textured surfaces - so termed slippery surfaces - when tilted by only a few degrees. The mechanism of how the lubricant alters the static and dynamic properties of the drop remains elusive because the drop-lubricant interface is hidden. Here, we image the shape of drops on lubricant-infused surfaces by laser scanning confocal microscopy. The contact angle of the drop-lubricant interface with the substrate exceeds 140°, although macroscopic contour images suggest angles as low as 60°. Confocal microscopy of moving drops reveals fundamentally different processes at the front and rear. Drops recede via discrete depinning events from surface protrusions at a defined receding contact angle, whereas the advancing contact angle is 180°. Drops slide easily, as the apparent contact angles with the substrate are high and the drop-lubricant interfacial tension is typically lower than the drop-air interfacial tension. Slippery surfaces resemble superhydrophobic surfaces with two main differences: drops on a slippery surface are surrounded by a wetting ridge of adjustable height and the air underneath the drop in the case of a superhydrophobic surface is replaced by lubricant in the case of a slippery surface. PMID:26291621

  8. Pipe flow of pumping wet shotcrete based on lubrication layer.

    Chen, Lianjun; Liu, Guoming; Cheng, Weimin; Pan, Gang

    2016-01-01

    Wet shotcrete can reduce dust and improve supporting strength, however, safe and efficient pipage is a key technical part of wet shotcrete process. The paper studied the pipe flow law of wet shotcrete based on lubrication layer by build the experimental pumping circuit of wet shotcrete that can carry out a number of full-scale pumping tests. The experimental results show there was a linear relationship between pressure loss and flow rate. Combined with the Buckingham rheological equation, the computing equations of the yield shear stress and plastic viscosity were deduced through linear regression. A simple analytical method allowing for a rough estimation of the pumping pressure was proposed and used when considering the lubrication layer of wet shotcrete in pipes. In addition, two kinds of particulate distributive models were established along the time axial to analyze the formation of lubrication layer which is related with particles migration. By computational fluid dynamics simulation, the lubrication layer thickness of different mix proportions was estimated. A new method for measuring the thickness of lubrication layer was proposed to verify it by binarization processing. Finally, according to the comparative analysis of experiments, simulation and computed value, it can be seen that the lubrication layer plays a key role in the process of wet shotcrete flow and with the increase of lubrication layer thickness pipe pressure declines gradually. PMID:27386389

  9. Soliton dynamics in a solid lubricant during sliding friction

    Vigentini, Anna; Van Hattem, Barbara; Diato, Elena; Ponzellini, Paolo; Meledina, Tommaso; Vanossi, Andrea; Santoro, Giuseppe; Tosatti, Erio; Manini, Nicola

    2014-03-01

    Recent highly idealized model studies of lubricated nanofriction for two crystalline sliding surfaces with an interposed thin solid crystalline lubricant layer showed that the overall relative velocity of the lubricant vlub/vslider depends only on the ratio of the lattice spacings, and retains a strictly constant value even when system parameters are varied within a wide range. This peculiar "quantized" dynamical locking was understood as due to the sliding-induced motion of misfit dislocations, or soliton structures. So far the practical relevance of this concept to realistic sliding three-dimensional crystals has not been demonstrated. In this work, by means of classical molecular dynamics simulations and theoretical considerations, we realize a realistic three-dimensional crystal-lubricant-crystal geometry. Results show that the flux of lubricant particles associated with the advancing soliton lines gives rise here too to a quantized-velocity ratio. Moreover, depending on the interface lattice spacing mismatch, both forward and backward quantized motion of the lubricant is predicted. The persistence under realistic conditions of the dynamically pinned state and quantized sliding is further investigated by varying sliding speed, temperature, load, and lubricant film thickness. The possibilities of experimental observation of quantized sliding are also discussed.

  10. Simulations on Various Lubrication Boundaries between Diamond-like Carbon Films

    LAN Huiqing; KATO Takahisa

    2011-01-01

    Molecular dynamics(MD)simulations were used to study a sliding friction process between DLC films on various boundary conditions.The experimental results revealed that,in the absence of a lubricant,a transfer film between the DLC films was formed.In contrast,when the oil or water lubricants were added to lubricate between the DLC films,a boundary lubrication layer was found.The friction forces on the water and oil lubrication were almost the same,but the friction force in the absence of a lubricant was larger than those on the water and oil lubrication.The conclusions were in good agreement with the experiments.

  11. Die wall lubricated warm compaction behavior of non-lubricant admixed iron powders

    YE Tu-ming; YI Jian-hong; CHEN Shi-jin; PENG Yuan-dong; LI Li-ya; XIA Qing-lin

    2005-01-01

    The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07-0.22 g/cm 3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm 3 at 120 ℃, and the maximum sintered density is 7.18 g/cm 3 at 80 ℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrepancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.

  12. Design of lubricating equipment of stud hole's threads of reactor pressure vessel

    It is determined that lubrication method of reactor pressure vessel (RPV) stud hole's thread is brushing lubrication by flow test of N5000 grease. The basic requirements of RPV stud hole's thread lubrication are all-surface and uniformity of greasing. The RPV stud hole lubricating machine is mainly composed of control panel, cable hanging device, automatic trolley and lubricating device. The lubricating device is the key part of RPV stud hole lubricating machine, therefore, the structure and principle of lubricating device are described. Besides, its operating principle, technical characteristics and design features are briefly described. During refuelling and repairing of No.1 unit of Daya Bay Nuclear Power Plant RPV, stud hole's lubricating machine are practically used. The practical using of RPV stud hole's lubricating machine proved that its all technical characteristics and functions have already met requirements of technical specification of the proprietor

  13. On the chemical nature of boundary lubrication of stainless steel by chlorine - and sulfur-containing EP-additives

    Petrushina, Irina; Christensen, Erik; Bergqvist, Rene Stig; Møller, Poul Bildsøe; Bjerrum, Niels; Høj, Jakob Weiland; Kann, G.; Chorkendorff, Ib

    paraffin was equally active with iron, chromium and nickel. The better lubrication performance demonstrated by chlorinated paraffin compared to dialkylpolysulfides was attributed to the chemical activity of the chlorinated paraffin with all the main components of stainless steel. The depth profiles of the...... the Me-powder (where Me = iron, chromium or nickel)-dialkylpolysulfide (or chlorinated paraffin) mixtures have shown that dialkylpolysulfide was chemically active with iron and nickel (the highest activity was with nickel). Chromium was practically nonactive with dialkylpolysulfide. Chlorinated...

  14. Influence of Base Oil Polarity on the Transient Shear Flow of Biodegradable Lubricating Greases

    Martin Fiedler

    2015-09-01

    Full Text Available The scope of this study is to elucidate the physical mechanisms influencing the transient flow behavior of lubricating greases based on biogenic oleochemicals from a polarity point of view. This includes the mutually interacting influence of base oil polarity and thickening agents on the rheologically-measured mechanical structural degradation in transient shear flow. Due to the high temperature dependence of Keesom forces in the background of polar-active bond mechanisms, the analysis of the transient flow response as a function of temperature allows to attribute the observed influences to differences in base oil polarity. In general, clay-thickened greases show a greater tendency to be rheologically influenced by base oil polarities than soap-thickened lubricating greases.

  15. Enhanced Biodegradability, Lubricity and Corrosiveness of Lubricating Oil by Oleic Acid Diethanolamide Phosphate

    Fang Jianhua

    2012-09-01

    Full Text Available Impacts of oleic acid diethanolamide phosphate (abbreviated as ODAP as an additive on biodegradability, anti-wear capacity, friction-reducing ability and corrosiveness of an unreadily biodegradable HVI 350 mineral lubricating oil was studied. The biodegradabilities of neat lubricating oil and its formulations with ODAP were evaluated on a biodegradation tester. Furthermore, the anti-wear and friction-reducing abilities and the corrosiveness of neat oil and the formulated oils were determined on a four-ball tribotester and a copper strip corrosion tester, respectively. The results indicated that ODAP markedly enhanced biodegradability as well as anti-wear and friction-reducing abilities of the lubricating oil. On the other hand, excellent color ratings of copper strips for both neat oil and the ODAP-doped oil were obtained in the corrosion tests, demonstrating that the corrosiveness of neat oil and the doped oil was negligible, although the latter seemed to provide slightly better anti-corrosion ability.

  16. Amine-intercalated α-zirconium phosphates as lubricant additives

    In this study, three types of amines intercalated α-zirconium phosphate nanosheets with different interspaces were synthesized and examined as lubricant additives to a mineral oil. Results from tribological experiments illustrated that these additives improved lubricating performance. Results of rheological experiments showed that the viscosity of the mineral oil was effectively reduced with the addition of α-zirconium phosphate nanosheets. The two-dimensional structure, with larger interspaces, resulting from amine intercalation, exhibited improved effectiveness in reducing viscosity. This study demonstrates that the nanosheet structure of α-zirconium phosphates is effective in friction reduction. The manufacture of lubricants with tailored viscosity is possible by using different intercalators

  17. Analysis of Two-Layered Journal Bearing Lubricated with Ferrofluid

    Rao T. V. V. L. N.

    2014-07-01

    Full Text Available The present study investigates the load capacity and friction coefficient for a two-layered journal bearing lubricated with ferrofluid. A modified Reynolds equation for a two-layered ferrofluid is derived using displaced infinitely long wire magnetic field model. Reynolds boundary conditions are used to obtain nondimensional pressure and shear stress expressions. Nondimensional load capacity and coefficient of friction are analyzed under the influence of lubricant layer’s thickness, viscosities, magnetic field intensity and distance ratio parameter. Ferrofluid lubrication under the influence of magnetic field has potential to enhance load carrying capacity and reduce coefficient of friction for two-layered journal bearing.

  18. Studies on micro plasto hydrodymic lubrication in metal forming

    Bay, Niels; Bech, Jakob Ilsted; Andreasen, Jan Lasson; Shimizu, I

    The influence of work piece surface topography on friction and lubrication and final surface quality in metal forming operations is well known and has been pointed out by many researchers, see Schey (1983) and Bay and Wanheim (1990). This is especially the case when liquid lubrication is applied,......, friction and pocket geometry and establishing a mathematical model predicting the onset of lubricant escape. The present paper presents an overview of these studies on MPHDL in metal forming carried out at the Technical University of Denmark....

  19. Nanomaterials in Lubricants: An Industrial Perspective on Current Research

    Boris Zhmud

    2013-11-01

    Full Text Available This paper presents an overview on the use of various classes of nanomaterials in lubricant formulations. The following classes of nanomaterials are considered: fullerenes, nanodiamonds, ultradispersed boric acid and polytetrafluoroethylene (PTFE. Current advances in using nanomaterials in engine oils, industrial lubricants and greases are discussed. Results of numerous studies combined with formulation experience of the authors strongly suggest that nanomaterials do indeed have potential for enhancing certain lubricant properties, yet there is a long way to go before balanced formulations are developed.

  20. Squeezing molecularly thin alkane lubrication films: Layering transistions and wear

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C(3)H(8); C(4)H(10); C(8)H(18); C(9)H(20); C(10)H......(22); C(12)H(26), and C(14)H(30) confined between smooth gold surfaces. We observe well-defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous changes in the number n of lubricant...

  1. A new Friction and Lubrication Test for Cold Forging

    Bay, Niels; Wibom, Ole; Aalborg Nielsen, J

    1995-01-01

    This paper presents a new friction and lubrication test for cold forging. The test allows controlled variation of the surface expansion in the range 0-2000%, the tool temperature in the range 20-270°C and the sliding length between 0 and infinite. Friction is decreasing with increasing temperature...... in the range 30-150°C. Above this temperature range friction increases. As regards lubricant performance Lubrication Limit Curves (LLC) are plotted in a sliding length-surface enlargement diagram with the tool temperature as a parameter. Larger tool temperature implies lower acceptable surface...

  2. Refrigerant and Lubricant Mass Distribution in a Convertible Split System Residential Air-Conditioner

    Wujek, Scott S.; Bowers, Chad D.; Powell, Joshua W.; Urrego, Roberto A.; Hessell, Edward T.; Benanti, Travis L.

    2014-01-01

    Lubricants are utilized in air-conditioning systems for the purpose of decreasing friction and wear within the compressor. While ideally the lubricant remains in the compressor, some lubricant is entrained and transported by the refrigerant to the other system components. During operational transients, the lubricant is redistributed throughout the various system components. The equilibrium distribution of lubricant depends among other things on fluid properties, phase change processes, flow r...

  3. Analysis of the effect of lubrication performance on motor operated valve actuator output thrust

    Kim, Dae-Woong, E-mail: kimdw2@khnp.co.kr [Nuclear Engineering and Technology Institute, Korea Hydro and Nuclear Power Co., 305-343 (Korea, Republic of); Park, Sun-Geun; Kang, Sin-Cheul; Lee, Sang-Guk [Nuclear Engineering and Technology Institute, Korea Hydro and Nuclear Power Co., 305-343 (Korea, Republic of); Hong, Sung-Yull, E-mail: syhong@yu.ac.kr [School of Mechanical Engineering of Yeungnam University, Gyeongsan, 712-749 (Korea, Republic of)

    2011-08-15

    Highlights: > We performed theoretical analysis and test to identify an effect that lubricant performance has on actuator output thrust of MOV. > An effect of lubrication performance can be analyzed quantitatively by using SFC concept. > The SFC value of old lubricant appeared higher than that of new lubricant at TST point. > EP1 lubricant maintained the lowest SFC among the three kinds of lubricants. > Lubrication performance was found to be best in the range of 100-150 times operation. - Abstract: In this study, we performed theoretical analysis and test to identify an effect that lubricant performance has on actuator output thrust of MOV. Particularly, we introduced Stem Friction Coefficient (SFC) concept that means friction coefficient between a stem nut and a stem screw. By using SFC concept, an effect of lubricant performance on the actuator output thrust was analyzed quantitatively. The first phase test was performed to compare the lubrication performance between new lubricant and old lubricant and the second phase test was performed to compare the lubrication performance for the three kinds of representative lubricants (EP0, EP1, EP2) being used in Korea nuclear power plants. According to the test results, SFC value of old lubricant appeared higher than that of new lubricant and a old lubricant at TST point generated lower thrust value than a new lubricant at the same torque value. We can verify that the effect of lubrication performance has on power generated in an actuator was very large and SFC was a very useful variable in analyzing lubrication performance quantitatively.

  4. Analysis of the effect of lubrication performance on motor operated valve actuator output thrust

    Highlights: → We performed theoretical analysis and test to identify an effect that lubricant performance has on actuator output thrust of MOV. → An effect of lubrication performance can be analyzed quantitatively by using SFC concept. → The SFC value of old lubricant appeared higher than that of new lubricant at TST point. → EP1 lubricant maintained the lowest SFC among the three kinds of lubricants. → Lubrication performance was found to be best in the range of 100-150 times operation. - Abstract: In this study, we performed theoretical analysis and test to identify an effect that lubricant performance has on actuator output thrust of MOV. Particularly, we introduced Stem Friction Coefficient (SFC) concept that means friction coefficient between a stem nut and a stem screw. By using SFC concept, an effect of lubricant performance on the actuator output thrust was analyzed quantitatively. The first phase test was performed to compare the lubrication performance between new lubricant and old lubricant and the second phase test was performed to compare the lubrication performance for the three kinds of representative lubricants (EP0, EP1, EP2) being used in Korea nuclear power plants. According to the test results, SFC value of old lubricant appeared higher than that of new lubricant and a old lubricant at TST point generated lower thrust value than a new lubricant at the same torque value. We can verify that the effect of lubrication performance has on power generated in an actuator was very large and SFC was a very useful variable in analyzing lubrication performance quantitatively.

  5. Lubrication of modified perfluoropolyether on magnetic media

    Kondo, H.; Hisamichi, Y.; Kamei, T.

    1996-03-01

    The effect of the polar group of perfluoropolyether (PFPE) on the friction of metal evaporated (ME) tape is presented in this paper. The newly synthesized amine salt has a better frictional characteristic than other conventional polar groups in 100 reciprocating motions and even shows a coefficient of 0.21, which becomes over 0.3 for the PFPE, and the difference is enhanced with surface smoothness. Stick-slip motion was not observed even for the smooth surface for the modified PFPE tape. The relation between the surface energy and friction is complicated, but the amine salt being tightly anchored to the rubbing surface covers uniformly which leads to better lubricity. Moreover, the modified PFPE are dissolved in alcohol and hexane, which makes practical use convenient without any environmental problems.

  6. Similarity theory of lubricated Hertzian contacts

    Snoeijer, J. H.; Eggers, J.; Venner, C. H.

    2013-10-01

    We consider a heavily loaded, lubricated contact between two elastic bodies at relative speed U, such that there is substantial elastic deformation. As a result of the interplay between hydrodynamics and non-local elasticity, a fluid film develops between the two solids, whose thickness scales as U3/5. The film profile h is selected by a universal similarity solution along the upstream inlet. Another similarity solution is valid at the outlet, which exhibits a local minimum in the film thickness. The two solutions are connected by a hyperbolic problem underneath the contact. Our asymptotic results for a soft sphere pressed against a hard wall are shown to agree with both experiment and numerical simulations.

  7. 关节轴承固体润滑处理工艺%Research on Solid-lubrication Craft of Joint Bearing

    段欣生; 陈蓉; 买楠楠; 王子君

    2015-01-01

    A solid-lubrication technology of joint bearing was introduced.A solid lubrication film was prepared,which used inorganic salt and active metal ions as the binders to improve the compression strength and heat resistance properties of film layer,used graphite and molybdenum disulfide composite materials as the lubricant to improve the bearing loading capacity and the lubrication performance of the joint bearings under different working conditions.The lubrication film of the bearing inner ring surface treated by solid lubrication is uniform and has good use effect.Test result shows that the formed solid lubrication film has strong binding force with the metal substrate,which can meet the requirements of bearing loading capacity and lubrication performance of joint bearing under the special working conditions.%介绍一种关节轴承固体润滑处理技术,制备的固体润滑膜以无机盐和活性金属离子为黏结剂,提高了膜层的耐压强度和耐温性能;以石墨和二硫化钼复合材料为润滑剂,提高了关节轴承在不同工况条件下的承载能力和润滑性。经固体润滑处理的轴承内圈外表面润滑膜层均匀、外观细致,实际使用效果良好。经检测,形成的固体润滑膜与金属基体有较强的结合力,在特殊工况条件下能够满足承载和润滑性能的要求。

  8. Research on Solid-lubrication Craft of Joint Bearing%关节轴承固体润滑处理工艺

    段欣生; 陈蓉; 买楠楠; 王子君

    2015-01-01

    介绍一种关节轴承固体润滑处理技术,制备的固体润滑膜以无机盐和活性金属离子为黏结剂,提高了膜层的耐压强度和耐温性能;以石墨和二硫化钼复合材料为润滑剂,提高了关节轴承在不同工况条件下的承载能力和润滑性。经固体润滑处理的轴承内圈外表面润滑膜层均匀、外观细致,实际使用效果良好。经检测,形成的固体润滑膜与金属基体有较强的结合力,在特殊工况条件下能够满足承载和润滑性能的要求。%A solid-lubrication technology of joint bearing was introduced.A solid lubrication film was prepared,which used inorganic salt and active metal ions as the binders to improve the compression strength and heat resistance properties of film layer,used graphite and molybdenum disulfide composite materials as the lubricant to improve the bearing loading capacity and the lubrication performance of the joint bearings under different working conditions.The lubrication film of the bearing inner ring surface treated by solid lubrication is uniform and has good use effect.Test result shows that the formed solid lubrication film has strong binding force with the metal substrate,which can meet the requirements of bearing loading capacity and lubrication performance of joint bearing under the special working conditions.

  9. Suitability of Alternative Lubricants for Automotive Gear Applications

    Amit Suhane

    2014-03-01

    Full Text Available Rising environmental concerns due to the problems associated with conventional mineral lubricants has renewed interest in usage of alternative resources. Various attempts have been made to explore the possibilities of utilizing vegetable oils for range of applications. Properties like excellent viscosity features, higher biodegradability, lower toxicity, better renewability & natural lubricity etc shows its potential as lubricants inspite of certain technical problems. Critical issues like lower oxidation stability , poor cold temperature properties affects the performance of vegetable oils and restricts its application to limited range . Gear oils are the hidden workhorses of automotive applications. This article highlights the suitability of various vegetable oils for lubricant formulation as an alternative in automotive gearing applications.

  10. Autoradiographic investigations of lubricant layers on friction samples

    Investigations of sliding wear of steel were performed on a disk-ball apparatus. As a model lubricant hexadecane with radioactive labelled zinc-dicylohexyl-dithiophosphate (Zndtp) additive was used. For the measurement of the amount of lubricant components adhering not washably to the disk in the sliding track and to the surface outside of the track three methods are discussed: determination of the lubricant in the track as a difference between radioactivity of disks with and without sliding track, G. -M.-counting with and without an absorber on the sliding track (example: 14C-labelled Zn dtp), and determination of the lubricant distribution on the disk by the aid of photometry (example: 65Zn dtp). (author)

  11. Friction and Lubrication of Large Tilting-Pad Thrust Bearings

    Michał Wasilczuk

    2015-04-01

    Full Text Available Fluid film bearings have been extensively used in the industry because of their unbeatable durability and extremely low friction coefficient, despite a very low coefficient of friction dissipation of energy being noticeable, especially in large bearings. Lubricating systems of large tilting pad thrust bearings utilized in large, vertical shaft hydrogenerators are presented in this paper. A large amount of heat is generated due to viscous shearing of the lubricant large tilting pad thrust bearings, and this requires systems for forced cooling of the lubricant. In the dominant bath lubrication systems, cooling is realized by internal coolers or external cooling systems, with the latter showing some important advantages at the cost of complexity and also, potentially, lower reliability. Substantial losses in the bearings, reaching 1 MW in extreme cases, are a good motivation for the research and development aimed at reducing them. Some possible methods and their potential efficiency, along with some effects already documented, are also described in the paper.

  12. Compatibility of refrigerants and lubricants with elastomers. Final report

    Hamed, G.R.; Seiple, R.H.; Taikum, Orawan

    1994-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. In part I of the program the swell behavior in the test fluids has been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed fro the refrigerant test fluids and 24 hours after removal from the lubricants. Part II of the testing program includes the evaluation of tensile strength, hardness, weight, and dimensional changes after immersion aging in refrigerant/lubricant mixtures of selected elastomer formulations at elevated temperature and pressure.

  13. Mixed Lubrication Analysis for Journal Bearings in Rotary Compressors

    Hattori, Hitoshi; Ito, Yasutaka; Hirayama, Takuya; Miura, Kazuhiko

    This paper describes the numerical analysis of mixed lubrication and the calculated results for journal bearings in rotary compressors. In this analysis, the modified Reynolds equation and the elastic contact equation, considering the effect of surface roughness, are solved as a coupled problem, and then influences of the elastic deformation of the bearing surface and the motion of the rotating shaft with bending deformation are also considered. The appearance of solid contact in hydrodynamic lubrication can be addressed by the analysis. Influences of the rotating speed and the surface roughness on the lubrication characteristics of the journal bearing were investigated by using the mixed lubrication analysis. As the results, it is made clear that the solid contact on the bearing surface occurs in the discharge process of rotary compressors. Furthermore, the contact pressure and the contact area decrease, even though the oil film thickness decreases, when the surface roughness becomes small.

  14. Self-lubricating Hard Coatings for Extreme Environment Project

    National Aeronautics and Space Administration — This program will develop low friction hard coatings for lubricating mechanical and tribological components used for exploring Mars, the Moon, asteroids, comets and...

  15. Tribological Properties of Metal V-Belt Type CVT Lubricant

    Keiichi Narita

    2012-01-01

    Full Text Available The priority for lubricant performance for metal V-belt-type CVT (B-CVTFs should be the improvement of transmittable torque capacity between the belt and pulley plus excellent antishudder properties for lockup clutch used in B-CVTs. This study intends to investigate the effect of lubricant additives for improving these performances of B-CVTs. In addition, surface analysis techniques were utilized to gain a novel insight into the chemical composites and morphology of the tribofilms. As a result, it is vital for greater torque capacity to give higher boundary friction coefficient between the metal contacting interfaces, and the process of boundary lubricant film formation derived from antiwear additives used in B-CVTFs strongly impacts on the torque capacity. Moreover, it is found that a sort of lubricant formulation gave an excellent antishudder performance for wet clutch with keeping higher friction coefficient between the metals, which would result in improving the performance of B-CVTs.

  16. Resin additive improves performance of high-temperature hydrocarbon lubricants

    Johnson, R. L.; Loomis, W. R.

    1971-01-01

    Paraffinic resins, in high temperature applications, improve strength of thin lubricant film in Hertzian contacts even though they do not increase bulk oil viscosity. Use of resin circumvents corrosivity and high volatility problems inherent with many chemical additives.

  17. Analysis of Two-Layered Journal Bearing Lubricated with Ferrofluid

    Rao T. V. V. L. N.; Rani A. M. A.; Nagarajan T.; Hashim F. M.

    2014-01-01

    The present study investigates the load capacity and friction coefficient for a two-layered journal bearing lubricated with ferrofluid. A modified Reynolds equation for a two-layered ferrofluid is derived using displaced infinitely long wire magnetic field model. Reynolds boundary conditions are used to obtain nondimensional pressure and shear stress expressions. Nondimensional load capacity and coefficient of friction are analyzed under the influence of lubricant layer’s thickness, viscositi...

  18. Lubricant for deep extraction of complex metallic profiles

    Markov, I.I.; Gindov, A.V.; Shangov, V.I.

    1979-08-30

    Lubricant contains solid hydrocarbons of petroleum origin, e.g. ceresine and paraffin, lanolin and petroleum oil; 1-6% of polyethelene is used as anti-wear, anti-scuff additive. Example (%). Lubricant contains: lanolin 45, polyethelene 1.5, ceresine 10, petroleum oil (viscosity 50 sst/50/sup 0/) 43.5 and has the following properties: penetration 209 mm/10 at 25/sup 0/, drop temperature 76/sup 0/.

  19. How Polymers Behave as Viscosity Index Improvers in Lubricating Oils

    Michael J. Covitch; Kieran J. Trickett

    2015-01-01

    One of the requirements of engine lubricating oil is that it must have a low enough viscosity at low temperatures to assist in cold starting and a high enough viscosity at high temperatures to maintain its load-bearing characteristics. Viscosity Index (VI) is one approach used widely in the lubricating field to assess the variation of viscosity with temperature. The VI of both mineral and synthetic base oils can be improved by the addition of polymeric viscosity modifiers (VMs). VI improvemen...

  20. LG Group Taps Lubricating Oil Market in China

    Shi Wei

    2002-01-01

    @@ Based on the information made available from a joint new conference sponsored by Beijing Haiyuancang Commercial and Trade Co Ltd and ROK-based LG Group held on May 17, Beijing Haiyuancang Commercial and Trade Co Ltd has formally become an agent of LG Group for distribution of LG lubricants in China, indicating that the lubricants from Republic of Korea starts to enter the Chinese market on a large scale.

  1. Tribological Properties of Metal V-Belt Type CVT Lubricant

    Keiichi Narita

    2012-01-01

    The priority for lubricant performance for metal V-belt-type CVT (B-CVTFs) should be the improvement of transmittable torque capacity between the belt and pulley plus excellent antishudder properties for lockup clutch used in B-CVTs. This study intends to investigate the effect of lubricant additives for improving these performances of B-CVTs. In addition, surface analysis techniques were utilized to gain a novel insight into the chemical composites and morphology of the tribofilms. As a resu...

  2. Experimental Study of Castor Oil Based Lubricant for Automotive Applications

    Amit Suhane; R.M.Sarviya

    2014-01-01

    Vegetable oils due to their better natural propertiescan be used as an alternative to reduce the dependency on the conventional lubricants. With the depletion of conventional resources at faster pace, need of hour is to approach the safer alternatives for ensuring the availability of such resources for longer periods with lesser harm to the mankind and sorroundings.This workevaluates the prospects of Castor oil based lubricant for automotive applications in contrast to the ava...

  3. Synthesis of new calixarene-based lubricant additives

    Burlini, Alessandro

    2016-01-01

    The lubricants are normally composed by base oils and a number of additives which are added to improve the performances of the final product. In this work, which is due to the collaboration between ENI S.p.A. and Prof. Casnati’s group, significant results in the application of calixarene structures to two classes of lubricant additives (viscosity index improvers and detergents) were shown. In particular, several calix[8]arene derivatives were synthesized to use as core precursors in the...

  4. Re-Refining of Waste Lubricating Oil by Solvent Extraction

    Hassan Ali Durrani; Muhammed Ibrahim Panhwar; Rafique Akthar Kazi

    2011-01-01

    Re-refining of waste lubricating oil by solvent extraction is one of the potential techniques. The advantages of solvent extraction technique practically offers from environmental and economic points of view have received due attention. In this paper selection of composite solvent and technique to upgrade the used lubricant oil into base oil has been made. The composite solvent 2-propanol, 1-butanol and butanone have two alcohols that make a binary system reasonably effective. ...

  5. Effects of used lubricating oil on two mangroves Aegiceras corniculatum and Avicennia marina

    2007-01-01

    An outdoor experiment was set up to investigate the effects of used lubricating oil (5 L/m2) on Aegiceras corniculatum Blanco. and Avicennia marina (Forsk) Vierh., two salt-excreting mangroves. A. marina was more sensitive to used lubricating oil than A. corniculatum and canopy-oiling resulted in more direct physical damage and stronger lethal effects than base-oiling. When treated with canopy-oiling, half of A. corniculatum plants survived for the whole treatment time (90 d); but, for A. marina, high mortality (83%) resulted from canopy-oiling within 3 weeks and no plants survived for 80 d. Base-oiling had no lethal effects on A. corniculatum plants even at the termination of this experiment, but 83% of A. marina plants died 80 d after treatment. Forty days after canopy-oiling, 93% of A. corniculatum leaves fell and no live leaves remained on A. marina plants. By the end of the experiment, base-oiling treatment resulted in about 45% of A. corniculatum leaves falling, while all A. marina leaves and buds were burned to die. Lubricating oil resulted in physiological damage to A. corniculatum leaves, including decreases in chlorophyll and carotenoid contents, nitrate reductase, peroxidase and superoxide dismutase activities, and increases in malonaldehyde contents. For both species, oil pollution significantly reduced leaf, root, and total biomass, but did not significantly affect stem biomass. Oil pollution resulted in damage to the xylem vessels of fine roots but not to those of mediate roots.

  6. Treating vulvovaginal atrophy/genitourinary syndrome of menopause: how important is vaginal lubricant and moisturizer composition?

    Edwards, D.; Panay, N.

    2016-01-01

    Abstract Vaginal dryness is a common condition that is particularly prevalent during and after the menopause, and is one of the symptoms of vulvovaginal atrophy/genitourinary syndrome of menopause. The impact of vaginal dryness on interpersonal relationships, quality of life, daily activities, and sexual function can be significant, but is frequently underestimated. Furthermore, barriers exist to treatment-seeking, and this condition is often underreported and undertreated. Greater education about vaginal dryness and the range of available treatments is essential to encourage more women to seek help for this condition. Personal lubricants and moisturizers are effective at relieving discomfort and pain during sexual intercourse for women with mild to moderate vaginal dryness, particularly those who have a genuine contraindication to estrogen, or who choose not to use estrogen. However, there is a distinction between lubricants and moisturizers, and notable differences between commercially available products. Women should be advised to choose a product that is optimally balanced in terms of both osmolality and pH, and is physiologically most similar to natural vaginal secretions. A series of recommendations for the use of vaginal lubricants and moisturizers, either on their own or in combination with systemic or topical hormone replacement therapy, is presented. PMID:26707589

  7. Calibration of the ultrasonic lubricant-film thickness measurement technique

    Zhang, Jie; Drinkwater, Bruce W.; Dwyer-Joyce, Rob S.

    2005-09-01

    This paper describes an experimental apparatus and procedure for the calibration of the ultrasonic lubricant-film thickness measurement technique. It also presents a study of the accuracy of the technique. The calibration apparatus is demonstrated on a three layer steel-mineral oil-steel system. This was chosen to be representative of a typical bearing system which is the industrial application of the technique. In such bearing systems the lubricant-film thickness typically ranges from 0.1 to 100 µm. The calibration apparatus uses a high precision piezoelectric displacement translator to controllably displace one of the steel surfaces relative to the other and hence alter the lubricant-film thickness by a known amount. Through-thickness resonant frequency measurements are then used to accurately measure a thick lubricant film (h > 10 µm). These resonant frequency measurements form the starting point of the calibration. The displacement translator is then used to reduce the lubricant-film thickness into the, more practically interesting, low micron range. In this range the amplitude of the measured reflection coefficient is used via a spring interface model to calculate the lubricant-film thickness. Issues of ultrasonic beam alignment and frequency of operation are discussed. A detailed study of the effect of reflection-coefficient errors on the resultant thickness measurement is presented. Practical guidelines for use of the calibration are then defined and calibration is demonstrated experimentally over the range 0.5-1.3 µm.

  8. A review of recent advances in solid film lubrication

    Spalvins, T.

    1987-01-01

    Thin, adherent sputtered MoS2 and ion plated metallic (Au, Ag, Pb) lubricating films are primarily used in precision contacting triboelement surfaces where wear debris formation is critical and high reliability requirements have to be satisfied. Detailed structural and compositional characterization of solid film lubricants is of prime importance. It is this information from the nano-micro-macro level which is needed to interpret and improve the frictional behavior and assure long endurance lives. The purpose of this paper is to summarize in a concise review the solid lubricant film structure and morphology and their effects on the tribological properties of the lubricant systems. The tribological performance of thin lubricating films has significantly advanced through progressive understanding of the film parameters such as adhesion, cohesion, interface formation, nucleation and microstructural growth, critical film thickness and substrate finish, and temperature. Sputtered MoS2 and ion plated Au, Ag, and Pb films are separately discussed and evaluated in terms of the above film parameters to establish the most desirable film structures and thicknesses in order to achieve effective lubrication.

  9. Lubricating layer formed on porous anodic alumina template due to pore effect at water lubricated sliding and its properties

    A porous anodic alumina (PAA) template was manufactured to investigate the pore effect on the formation of lubricating layers. A PAA template with 260 nm pores was manufactured by two-step anodization using phosphoric acid. A sliding wear test was carried out using a ball-on-disk tester. Due to the pore effect, an aluminum hydroxide film; i.e., the lubricating layer, was formed at a specific condition. The PAA template has a low friction regime because of the aluminum hydroxide film. The adhesion and friction forces of the aluminum hydroxide film were measured using atomic force microscopy (AFM), and the adhesion and friction forces of the lubricating layer were lower than that of a typical oxide layer. Using AFM analysis, the existence of a lubricating layer can be verified.

  10. Effects of Water in Synthetic Lubricant Systems and Clathrate Formation: A Literature Search and Review

    Rohatgi, Ngoc Dung T.

    2001-08-08

    An extensive literature search and a confidential survey were critically analyzed to determine the effects of water on the stability of hydrofluorocarbon/synthetic lubricant systems and to identify key areas requiring further investigation. Following are highlights from the analysis: Clathrate hydrates are solid solutions formed when water molecules are linked through hydrogen bonding creating cavities that can enclose various guest molecules from hydrate formers, such as hydrofluorocarbons R-32, R-125, R-134a, R-407C and R-410A. The four methods for preventing clathrate formation were drying the gas, heating it, reducing its pressure, or using inhibitors. The hydrolysis of polyolester lubricants was mostly acid-catalyzed and its reaction rate constant typically followed the Arrhenius equation of an activated process. Hydrolytic stability improved with hindered molecular structures, and with the presence of acid catcher additives and desiccants. Water vapor can effect the adsorption of long-chain fatty acids and the chemistry of formation of protective oxide film. However, these effects on lubrication can be either positive or negative. Fifty to sixty percent of the moisture injected into an air-conditioning system remained in the refrigerant and the rest mixed with the compressor oil. In an automotive air-conditioning system using R-134a, ice would form at 0 C evaporating temperature when the water content in the vapor refrigerant on the low-pressure side was more than 350 ppm. Moisture would cause the embrittlement of polyethylene terephthalate and the hydrolysis of polyesters, but would reduce the effect of amine additives on fluoroelastomer rubbers. The reactions of water with refrigerants and lubricants would cause formicary and large-pit corrosion in copper tubes, as well as copper plating and sludge formation. Moreover, blockage of capillary tubes increased rapidly in the presence of water. Twenty-four companies responded to the survey. From the responses

  11. The binding of lubricating films to ceramic and refractory materials

    In order to better understand the chemical bonding forces which control lubricating film stability and adhesion, the binding of lead and tin atoms on the ceramics alumina and silica was investigated by laser induced thermal evaporation combined with mass spectrometric detection of the evaporated species. The interaction between lead or tin and alumina and silica was studied as a function of coverage. The sticking probability for the interaction was measured and found to be temperature and coverage dependent. At low coverage the binding energy of lead to alumina and silica was determined as 237 and 246 kJ mol -1 respectively, while the binding energy of tin to alumina and silica is 313 and 331 kJ mol -1, respectively. A binding energy model based on thermochemical and crystallographic data is used to predict corresponding values which agree with the experimental values. In addition, the authors report temperature programmed desorption and/or decomposition (This patent describes) used to investigate the thermal and/or chemical stability of MoS2 films on molybdenum supports. The TPD spectra for S2 from Mos2 were analyzed, and activation energies found to be dependent on the film application technique

  12. High temperature lubricants from biodeuterated materials produced by algae

    The lubrication of materials at elevated temperatures is one of the primary barriers to the successful development of advanced heat engines. Such engines are being designed to operate at higher temperatures to attain higher efficiencies. In the near future, designs requiring liquid lubricants capable of sustained operation at temperatures in the range 300 degree C to 500 degree C can be expected. Such lubricants may also have applications in bearing systems where the objective is longer service life rather than higher operating temperatures. In both applications, oxidation reactions limit the capabilities of the lubricant. Consequently, producing a greater stability against oxidative degradation is one of the primary goals of lubrication research. The present paper investigates the potential for producing a lubricating basestock in which the oxidative stability has been improved by means of the process of deuteration. An alternative to the conventional chemical synthesis of deuterated materials is to employ microorganisms adapted to growth in pure deuterium oxide (D2O). Possible advantages are lower costs, greater ease of production, and assurance of complete deuteration compared to conventional hydrogen-deuterium exchange reactions employing high temperatures, prolonged reaction times, and proprietary catalysts. The biosynthetic approach may also make possible the synthesis of deuterated compounds too labile for chemical synthetic methods. In this investigation algal species and growth conditions in 100% D2O were sought which would result in large amounts of fatty acids suitable for synthesis of deuterated lubricants. Possible routes of synthesis of deuterated tetrahexanoate esters of pentaerythritol were explored. Tests for high temperature resistance to oxidation, friction and ware were made on the deuterated product made from algal lipids and compared with results on the hydrogen analog

  13. Molecular-Scale Lubricants for Micromachine Applications: Final Report

    Burns, A.R.; Dugger, M.T.; Houston, J.E.; Lopez, G.P.; Mayer, T.M.; Michalske, T.A.; Miller, S.L.; Sniegowski, J.J.; Stevens, M.J.; Zhou, Y.

    1998-12-01

    The nature of this work was to develop the physics and chemistry base for understanding molecular-scale lubricants used to reduce of friction- and adhesion-induced failure in silicon micromachines (MEMS). We acquired this new knowledge by tailoring the molecular properties of the lubricants, applying local probes that can directly monitor the response of lubricants in contact conditions, and evaluating the performance of model lubricants MEMS devices. Model lubricants under investigation were the silane coupling agents that form monolayer films on native oxide silicon surfaces, which is the substrate in MEMS. These molecules bind via strong surface bonds and produce a layer of hydro- or fluoro-carbon chains normal to the substrate. "Tailoring" the lubricants entails modifying the chain length, the chain chemical reactivity (H or F), and the density of chain structures. Thus much effort went into understanding the surface chemistry of silane-silicon oxide coupling. With proximal probes such as atomic force microscopy (AFM), interracial force microscopy (FM), and shear force microscopy in combination with IFM, we examined the frictional and adhesive properties of the silane films with very high spatial resolution (< 100 nm) and sensitivity. MEMS structures are treated with silanes under identical conditions, and examined for friction and adhesion under operating conditions. Proper assessment of the lubricants required quantitative analysis of MEMS performance at high speeds and long operating times. Our proximal probe measurements and WS performance analyses form a very important link for future molecular dynamics simulations, that, in turn, should be able to predict MEMS performance under all conditions.

  14. Forging tools modification with graphene-like solid lubricant nanoparticles

    V. Leshchynsky

    2010-11-01

    Full Text Available Purpose: Working conditions of forging tools have become severer with the years. To increase their wear andheat resistance the surface of the tool is coated by CVD/PVD methods. Relatively high friction coefficientof coatings results in high friction losses and low durability of coating films due to high shear stress at tool–workpiece interface. That is why improved self-lubricating system should be developed. Combination of moderncoatings (nanostructured, nanolayers, nanocomposites, etc. with self-lubricating tool design and application ofsolid lubricant MoS2 and WS2 graphene-like nanoparticles is very promising and effective way to solve existingforging tool problems.Design/methodology/approach: Laser micro-machining technology was applied to fabricate the network ofmicro-channels which serve like reservoirs for encapsulation of solid lubricant nanoparticles into tool body.Wide ranges of tribological tests on T-10 ball-on-disc tester were carried out to define the optimal geometryand network configuration of micro-channels ensuring generation of a lubricious transfer film at the tribologicalcontact.Findings: As a result, increased tool durability and high forging precision could be reached. Analysis of failuremechanisms for different forging tools were carried out. It was found that one of the important reasons of toolwear is a high friction coefficient between treated material and the tool. Graphene-like nanoparticles of MoS2solid lubricant were produced by Rolling Cleavage Technology. Paper consist SEM, TEM and AFM analysis ofapplied coatings and solid lubricant particles.Research limitations/implications: The continuous supply to a sliding area of nanoparticles will be for thefirst time applied to decrease high shear stress at an interface between forging tool and treated material.Thenext research step will be the transfer of the developed methods of self-lubrication from samples to real coldforging tools.Originality/value: Analysis of

  15. ES and H-compatible lubrication for duplex bearings

    Steinhoff, R.G.

    1997-10-01

    Two ES and H-compatible lubricants (environment, safety, and health) for duplex bearing applications and one hybrid material duplex bearing were evaluated and compared against duplex bearings with trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon), which is an ozone-depleting solvent. Vydax has been used as a bearing lubricant in strong link mechanisms since 1974. Hybrid duplex bearings with silicon nitride balls and molded glass-nylon-Teflon retainers, duplex bearings lubricated with sputtered MoS{sub 2} on races and retainers, and duplex bearings lubricated with electrophoretic deposited MoS{sub 2} were evaluated. Bearings with electrophoretic deposited MoS{sub 2} performed as well as bearings with Freon deposition of PTFE from Freon-based Vydax. Hybrid bearings with silicon nitride balls performed worse than bearings lubricated with Vydax, but their performance would still be acceptable for most applications. Bearings lubricated with sputtered MoS{sub 2} on the races and retainers had varying amounts of film on the bearings. This affected the performance of the bearings. Bearings with a uniform coating performed to acceptable levels, but bearings with no visible MoS{sub 2} on the races and retainers did not perform as well as bearings with the other coatings. Unless process controls are incorporated in the sputtering process or the bearings are screened, they do not appear to be acceptable for duplex bearing applications.

  16. Optical Imaging of Water Condensation on Lubricant Impregnated Micropillar Arrays

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2015-11-01

    We explored the condensation of water drops on a lubricant-impregnated surface, i.e., a micropillar patterned surface impregnated with a ionic liquid. Growing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. On a lubricant-impregnated hydrophobic micropillar array, different stages of condensation can be discriminated: - Nucleation on a lubricant surface. - Regular alignement between micropillars and formation of a three-phase contact line on a bottom of the substrate. - Deformation and bridging by coalescence, leading to a detachment of the drops from the bottom substrate to pillars'top faces. However, on a lubricant-impregnated hydrophilic micropillar array, the condensed water covers the micropillars by dewetting the lubricant. As a result, the surface loses its slippery property. Our results provide fundamental concepts how these solid/liquid hybrid surfaces can be applied for facile removal of condensed water, as well as necessity of the appropriate surface treatment. Financial support from ERC for the advanced grant 340391-SUPRO is gratefully acknowledged.

  17. EXPERIMENTAL INVESTIGATION OF MINIMUM QUANTITY LUBRICANTS IN ALLOY STEEL TURNING

    L B Abhang

    2010-07-01

    Full Text Available To eliminate health and environmental problems caused by using conventional cutting fluid in the metal cutting industry, a new economical and practical approach to minimum quantity of lubrication machining technique is developed. Turning is a widely used metal removal process in manufacturing industry that involves generation of high cutting forces and temperature. Lubrication becomes critical to minimize the effects of these forces and temperature on cutting tool and work piece. Strained environment is a global problem. In metalcutting industry the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8-16 % of the total production costs. Development of lubricants that is eco-friendly and economically is acquiring importance. In this context, using minimum quantity of lubrication of boric acid mixed with base oil SAE 40 has proved to be a feasible alternative to the conventional cutting fluid. In the present work 10% boric acid by weight mixed with base oil SAE 40 is used as a MQL in turning process. Variations in cutting (lubricant force, cutting temp, chip thickness and surface roughness are studied under different machining conditions. The results indicate that there is a considerable improvement in machining performance with MQL assisted machining compared to dry machining.

  18. Compatibility of refrigerants and lubricants with engineering plastics. Final report

    Cavestri, R.C.

    1993-12-01

    23 plastics have been subjected to immersion studies using 7 different lubricants at 60 C and 100 C, and 10 different refrigerants at ambient and 60 C. In the first part of the study, 22 hermetic stress crack-creep rupture test chambers were used to determine dynamic effects of a constant dead weight load on plastic test bars immersed at 20 C in a 40% refrigerant 32 ISOVG branched acid polyolester lubricant. The creep modulus data of the 10 refrigerants, using a dead weight load of 25% of ultimate tensile, are compared to values for air and HCFC-22. In the second part, the plastic test bars were aged for 14 d at constant refrigerant pressure 300 psia with 17 refrigerant lubricant combinations at 150 C. Additional evaluations were conducted to elucidate the effects of temperature, refrigerant, and lubricant on the plastics. At 150 C, high acid formation (high TAN) was further examined with dehydrated plastics. These evaluations indicate that dehydrating the plastics reduced, but did not eliminate, high TAN values and that heat alone caused the lost physicals. Alternative HFC refrigerants had little impact on plastics; some polyolester lubricants caused identifiable changes.

  19. Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation

    Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo

    2011-01-01

    An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.

  20. Boundary and mixed lubrication friction modeling under forming process conditions

    Meinders, V. T.; Hol, J.; van den Boogaard, A. H.

    2013-12-01

    A multi-scale friction model for large-scale forming simulations is presented. A framework has been developed for the boundary and mixed lubrication regime, including the effect of surface changes due to normal loading, sliding and straining the underlying bulk material. Adhesion and ploughing effects have been accounted for to characterize friction conditions on the micro scale. To account for the lubricant effects special hydrodynamic contact elements have been developed. Pressure degrees of freedom are introduced to capture the pressure values which are computed by a finite element discretization of the 2D averaged Reynolds equations. The boundary friction model and the hydrodynamic friction model have been coupled to cover the boundary and mixed lubrication regime. To prove the numerical efficiency of the multi-scale friction model, finite element simulations have been carried out on a top hat section. The computed local friction coefficients show to be dependent on the punch stroke, punch speed and location in the product, and are far from constant. The location and range of friction coefficient values are in the order of what to expect from practice. The agreement between the numerical results and the experiments for different lubrication types and amount of lubrication is good. The multi-scale friction model proves to be stable, and compared to a Coulomb-based FE simulation, with only a modest increase in computation time.

  1. Lubrication of soft and hard interfaces with thermo-responsive F127 hydrogel

    Røn, Troels; Chronakis, Ioannis S.; Lee, Seunghwan

    2014-01-01

    In this study, we have investigated the lubricating properties of an aqueous fluid prepared with polyoxamer triblock copolymer in water, namely “F127-20” (F127 at the concentration of 20% wt./vol.). In coherence with its well-known thermo-responsive rheological properties, lubricating properties of...... F127-20 also displayed varying lubricating properties, both in the lubricating mechanism and efficacy, as a function of temperature, speed and tribopairs. F127-20 was most effective in lubricating a soft interface (PDMSePDMS) based on its gel-forming properties in 22.5-60 °C and feasible formation...... lubricating films. At temperatures lower or higher than temperature range 22.5-60 °C, F127-20 behaved as a liquid, and boundary lubrication became the dominant lubrication mechanism. © 2014 Elsevier Ltd. All rights reserved....

  2. Lubricants Optimized for use with R-32 and Related Low GWP Refrigerant Blends

    Hessell, Edward T.; Urrego, Roberto A.; Benanti, Travis L.

    2014-01-01

    Lubricants are important components of almost all air conditioning and refrigeration systems. Their primary function is to lubricate the compressor, provide sealing of clearances between low and high pressure sides of the compressor and remove frictional heat. But the lubricant is in contact with refrigerant at all times and plays a thermo-fluidic role in the air conditioning system that can impact both system capacity and coefficient of performance (COP). Lubricants can influence capacity by...

  3. Nanorheometry of Molecularly Thin Liquid Lubricant Films Coated on Magnetic Disks

    Shintaro Itoh; Yuya Hamamoto; Koki Ishii; Kenji Fukuzawa; Hedong Zhang

    2012-01-01

    Molecularly thin lubricant films are used for the lubrication of head disk interfaces in hard disk drives. The film thickness is reduced to 1-2 nm to minimize the magnetic spacing, and optimal, precise design is required to obtain sufficient lubrication. However, until now, there was no generally applicable method for investigating such thin films. Therefore, we developed a highly sensitive shear force measuring method and have applied it to the viscoelastic measurement of lubricant films coa...

  4. Relationship between molecular structure and tribological properties of phosphazene lubricants

    2001-01-01

    Cyclotriphosphazene lubricants were synthesized and the relationship between theirstructures and tribological properties was investigated using an Optimol SRV oscillating frictionand wear tester and one-way reciprocating friction tester. It was found that aryloxyphosphazenewith polar substituent as a lubricant of steel/steel and steel/aluminum pair gave low wear, whilearyloxyphosphazene with nonpolar group on the phenyl pendant led to high wear. Phosphazeneprovides poor lubricity for steel/aluminum system under low load (0.5-3 N). The XPS analyticalresults of the antiwear films generated on the steel and aluminum surface indicate that phos-phazene reacted with steel or aluminum counterface and formed a surface protecting film consist-ing of fluoride and organic compounds containing O, C, F, N, P during friction. This contributes tcreduce the friction and wear of steel/aluminum system.

  5. Thermal, Squeezing and Compressibility Effects in Lubrication of Asymmetric Rollers

    D. Prasad

    2014-09-01

    Full Text Available Hydrodynamically heavily loaded rigid cylindrical rollers, lubricated by a thin compressible fluid film, are investigated for normal squeezing motion and cavitations. The lubricant is assumed to follow the non-Newtonian power-law fluid model where consistency and density of the lubricant vary with one dimensional pressure and temperature. The modified Reynolds pressure equation and thermal energy equation are derived and solved simultaneously by R-K Fehlberg method. Secant method is also applied in order to enforce the boundary condition at the outlet. It is observed that temperature has significant effects on consistency and density both. It is also to be noted that compressibility effect is even more significant when squeezing is taken into account.

  6. Determination of zinc (II) in lubricant oils by stripping chronopotentiometry.

    Lo Coco, Filippo; Rizzotti, Silvia; Locatelli, Clinio; Novelli, Veronica; Ceccon, Luciano

    2003-03-01

    A method for the determination of zinc (II) in lubricant oils by stripping chronopotentiometry is described. The only necessary sample pretreatment was the extraction of zinc (II) from the corresponding alkyl derivatives by hot concentrated hydrochloric acid in a suitable extractor. The metal ions were concentrated as the corresponding metals on a glassy carbon working electrode and then stripped by a suitable oxidant. Quantitative analysis was carried out by the method of standard additions; a good linearity was obtained in the range of concentrations examined. Recoveries of 94% were obtained from a lubricant oil spiked at different levels. The detection limit was 0.02 mg g(-1) and the coefficient of variation (mean of nine determinations) was 5.2%. Results obtained on commercial lubricant oils were not significantly different from those obtained by atomic absorption spectrometry. PMID:12737491

  7. Polymer-brush lubrication: a review of recent theoretical advances.

    Kreer, T

    2016-04-13

    This review compiles recent theoretical advances to describe compressive and shear forces of polymer-brush bilayers, which consist of two opposing brushes in contact. Such model systems for polymer-brush lubrication are frequently used as a benchmark to gain insight into biological problems, e.g., synovial joint lubrication. Based on scaling theory, I derive conformational and collective properties of polymer-brush bilayers in equilibrium and out-of-equilibrium situations, such as shear forces in the linear and nonlinear response regimes of stationary shear and under non-stationary shear. Furthermore, I discuss the influence of macromolecular inclusions and electrostatic interactions on polymer-brush lubrication. Comparisons to alternative analytical approaches, experiments and numerical results are performed. Special emphasis is given to methods for simulating polymer-brush bilayers using molecular dynamics simulations. PMID:27029521

  8. Interaction between Lubricants Containing Phosphate Ester Additives and Stainless Steels

    David W. Johnson

    2013-05-01

    Full Text Available One way to improve fuel efficiency in today’s jet aircraft engines is to create an environment for higher operating temperatures and speeds. New and improved lubricants and bearing materials must be developed to remain stable in these elevated operating temperatures. Three lubricants, with varying amounts of tricresyl phosphate added as an anti-wear/extreme pressure additive were tested on two different stainless steels at varying temperatures ranging from 300 °C to 350 °C in vacuum. Significant decomposition of the lubricant base-stocks and the phosphate ester additive did occur in most of the trials resulting in the formation of carboxylic acids and phenols. In these cases a film containing phosphorus was deposited onto the stainless steel substrate.

  9. Feasibility study of self-lubrication by chlorine implantation

    Akhajdenung, T.; Aizawa, T.; Yoshitake, M.; Mitsuo, A.

    2003-05-01

    Implantation of chlorine into titanium nitride (TiN) coating on the high-speed steel substrate has succeeded in significant reduction of wear rate and friction coefficient for original TiN under dry wear condition. Through precise investigation on the surface reaction in the wear track, in situ formation of oxygen-deficient titanium oxides was found to play a role as a lubricious oxide. In the present paper, this self-lubrication mechanism is further investigated for various wearing conditions. For wide range of sliding speed and normal load in the wear map, the wear volume of a counter material is actually reduced with comparison to the un-implanted TiN. Effect of the ion implantation dose on this self-lubrication mechanism is also studied for practical use. Some comments are made on further application of this self-lubrication to manufacturing.

  10. Feasibility study of self-lubrication by chlorine implantation

    Implantation of chlorine into titanium nitride (TiN) coating on the high-speed steel substrate has succeeded in significant reduction of wear rate and friction coefficient for original TiN under dry wear condition. Through precise investigation on the surface reaction in the wear track, in situ formation of oxygen-deficient titanium oxides was found to play a role as a lubricious oxide. In the present paper, this self-lubrication mechanism is further investigated for various wearing conditions. For wide range of sliding speed and normal load in the wear map, the wear volume of a counter material is actually reduced with comparison to the un-implanted TiN. Effect of the ion implantation dose on this self-lubrication mechanism is also studied for practical use. Some comments are made on further application of this self-lubrication to manufacturing

  11. Lubricity properties of additives based on higher fatty acids

    Lykov, O.P.; Sashevskii, V.V.; Vishnyakova, T.P.; Zaitseva, L.S.

    1983-03-01

    This article investigates possible lubricity additive applications for a number of products separated from a C/sub 17/-C/sub 20/ fraction and still-bottoms in synthetic fatty acids (SFA) production. Each additive (MKNK, DKK, NKK and FKKO) was dissolved in a hydrotreated T-7 fuel, and lubricity properties were evaluated by the KIIGA-2 method. Finds that the branched-chain monocarboxylic and unsaturated acids recovered from the C/sub 17/-C/sub 20/ SFA fraction, and also the fraction of acids from the SFA still-bottoms, form rather strong chemisorbed films on metal surfaces, and fuel formations based on these materials have a high level of lubricity.

  12. An Advanced Microturbine System with Water-Lubricated Bearings

    Susumu Nakano

    2009-01-01

    Full Text Available A prototype of the next-generation, high-performance microturbine system was developed for laboratory evaluation. Its unique feature is its utilization of water. Water is the lubricant for the bearings in this first reported application of water-lubricated bearings in gas turbines. Bearing losses and limitations under usage conditions were found from component tests done on the bearings and load tests done on the prototype microturbine. The rotor system using the water-lubricated bearings achieved stable rotating conditions at a rated rotational speed of 51,000 rpm. An electrical output of 135 kW with an efficiency of more than 33% was obtained. Water was also utilized to improve electrical output and efficiency through water atomizing inlet air cooling (WAC and a humid air turbine (HAT. The operation test results for the WAC and HAT revealed the WAC and HAT operations had significant effects on both electrical output and electrical efficiency.

  13. Influence of bio-lubricants on the orthodontic friction.

    Dridi, A; Bensalah, W; Mezlini, S; Tobji, S; Zidi, M

    2016-07-01

    The Friction force of Stainless Steel (SS) and Nickel-Titanium (Ni-Ti) rectangular archwires against stainless steel brackets was investigated. Two types of brackets were used namely: Self-ligating brackets (SLB) and conventional brackets (CB). The friction tests were conducted on an adequate developed device under dry and lubricated conditions. Human saliva, olive oil, Aloe Vera oil, sesame oil and sunflower oil were used as bio-lubricants. The friction force was examined as a function of the ligation method and oil temperature. It is found that under oil lubrication, the friction behavior in the archwire/bracket assembly were the best. The SLB ligation was better than the conventional ligation system. The enhancement of the frictional behavior with natural oils was linked to their main components: fatty acids. PMID:26773645

  14. Modelling Hermetic Compressors Using Different Constraint Equations to Accommodate Multibody Dynamics and Hydrodynamic Lubrication

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    elements are supported by fluid film bearings, where the hydrodynamic interaction forces are described by the Reynolds equation. The system of nonlinear equations is numerically solved for three different restrictive conditions of the motion of the crank, where the third case takes into account lateral and...... tilting oscillations of the extremity of the crankshaft. The numerical results of the behaviour of the journal bearings for each case are presented giving some insights into design parameters such as, maximum oil film pressure, minimum oil film thickness, maximum vibration levels and dynamic reaction...... forces among machine components, looking for the optimization and application of active lubrication towards vibration reduction....

  15. Determination of wear metals in lubricating oil by X-Ray fluorescence analysis

    Energy dispersive X-Ray Flourescence (EDXRF) method was used to analyze Cr, Fe, Pb and Zn in lubricating oil, associated with engine components, since it requires a small amount of sample and minimal samples preparation. Methodology was developed for the use of a Mo filter for the determination of Cr, Fe and Zn, while a Cd filter allowed the determination of Pb. the results obtained, for the most part, were good agrrement with the results obtained by the Atomic Absorption (AA) and Neutron Activation Analysis (NAA) methods. (author), 26 refs, 3 tabs, 3 figs

  16. Delayed lubricant depletion on liquid-infused randomly rough surfaces

    Kim, Jeong-Hyun; Rothstein, Jonathan P.

    2016-05-01

    In this study, pressure drops on liquid-infused superhydrophobic surfaces were measured through a microchannel. A number of different superhydrophobic surfaces were prepared and tested. These surfaces included several PDMS surfaces containing precisely patterned microposts and microridges as well as a number of PTFE surfaces with random surface roughness created by sanding the PTFE with different sandpapers. Silicone oil was selected as the lubricant fluid and infused into the microstructures of the superhydrophobic surfaces. Several aqueous glycerin solutions with different viscosities were used as working fluids so that the viscosity ratio between the lubricant and the working fluid could be varied. The lubricant layer trapped within the precisely patterned superhydrophobic PDMS surfaces was found to be easily depleted over a short period of time even in limit of low flow rates and capillary numbers. On the other hand, the randomly rough superhydrophobic PTFE surfaces tested were found to maintain the layer of lubricant oil even at moderately high capillary numbers resulting in drag reduction that was found to increase with increasing viscosity ratio. The pressure drops on the liquid-infused PTFE surfaces were measured over time to determine the longevity of the lubricant layer. The pressure drops for the randomly rough PTFE surfaces were found to initially diminish with time before reaching a short-time plateau which is equivalent to maximum drag reduction. This minimum pressure drop was maintained for at least three hours in all cases regardless of feature size. However, as the depletion of the oil from the lubricant layer was initiated, the pressure drop was observed to grow slowly before reaching a second long-time asymptote which was equivalent to a Wenzel state.

  17. Predictive modelling of fatigue failure in concentrated lubricated contacts.

    Evans, H P; Snidle, R W; Sharif, K J; Bryant, M J

    2012-01-01

    Reducing frictional losses in response to the energy agenda will require use of less viscous lubricants causing hydrodynamically-lubricated bearings to operate with thinner films leading to "mixed lubrication" conditions in which a degree of direct interaction occurs between surfaces protected only by boundary tribofilms. The paper considers the consequences of thinner films and mixed lubrication for concentrated contacts such as those occurring between the teeth of power transmission gears and in rolling element bearings. Surface fatigue in gears remains a serious problem in demanding applications, and its solution will become more pressing with the tendency towards thinner oils. The particular form of failure examined here is micropitting, which is identified as a fatigue phenomenon occurring at the scale of the surface roughness asperities. It has emerged recently as a systemic difficulty in the operation of large scale wind turbines where it occurs in both power transmission gears and their support bearings. Predictive physical modelling of these contacts requires a transient mixed lubrication analysis for conditions in which the predicted lubricant film thickness is of the same order or significantly less than the height of surface roughness features. Numerical solvers have therefore been developed which are able to deal with situations in which transient solid contacts occur between surface asperity features under realistic engineering conditions. Results of the analysis, which reveal the detailed time-varying behaviour of pressure and film clearance, have been used to predict fatigue and damage accumulation at the scale of surface asperity features with the aim of improving understanding of the micropitting phenomenon. The possible consequences on fatigue of residual stress fields resulting from plastic deformation of surface asperities is also considered. PMID:23285624

  18. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground storage, lubricating oil and grease... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1104 Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and...

  19. Application of strip-reduction-test in hte evaluation of lubricants developed in Enform project

    Andreasen, Jan Lasson; Olsson, David Dam; Gazvoda, S.

    2001-01-01

    lubrication in forming of stainless steel by quantification of the degree of galling. The present results show that the test methodology to some extend can be used in testing of lubricants for Zinc coated steels whereas the lubricant performance in forming of steel is more complicated to quantify since...

  20. Influence of Workpiece Surface Topography on the Mechanisms of Liquid Lubrication in Strip Drawing

    Shimizu, I; Andreasen, Jan Lasson; Bech, Jakob Ilsted; Bay, Niels

    2001-01-01

    The workpiece surface topography is an important factor controlling the mechanisms of lubrication in metal forming processes. In the present work, the microscopic lubrication mechanisms induced by lubricant trapped in pockets of the surface in strip drawing are studied. The experiments are perfor...

  1. LUBRICATION BASIS THEORY OF WORM PAIR AND TEMPERATURE DISTRIBUTION ON WORM GEAR SURFACE

    1998-01-01

    The lubrication basis theory of worm pair is given. The lubrication state of worm gear is analyzed. It is found that the temperature distribution on the tooth surface of worm gear is closely related with the lubrication state and that the temperature on the tooth surface of worm gear is consistent with the characteristic term of mesh and motion of worm pair.

  2. Thermo-gravimetric analysis of a new organic admixed powder lubricant

    The present paper discusses the Thermo-gravimetric Analysis(TGA) of a New Organic Admixed Powder Lubricant used in pelletization of Uranium Oxide (UO2) powder at Nuclear Fuel Complex(NFC). The several advantages of this new lubricant over regularly used zinc stearate is discussed. Also, comparison of Thermo Gravimetric Analysis (TGA) of these two lubricants is seen. (author)

  3. Effect of two synthetic lubricants on life of AISI 9310 spur gears

    Townsend, Dennis P.; Shimski, John

    1991-01-01

    Spur-gear fatigue tests were conducted with two lubricants using a single lot of consumable-electrode vacuum-melted (CVM) AISI 9310 spur gears. The gears were case carburized and hardened to Rockwell C60. The gear pitch diameter was 8.89 cm. The lot of gears was divided into two groups, each of which was tested with a different lubricant. The test lubricants can be classified as synthetic polyol-ester-based lubricants. One lubricant was 30 percent more viscous that the other. Both lubricants have similar pressure viscosity coefficients. Test conditions included a bulk gear temperature of 350 K, a maximum Hertz stress of 1.71 GPa at the pitch line, and a speed of 10,000 rpm. The surface fatigue life of gears tested with one lubricant was approximately 2.4 times that for gears tested with the other lubricant. The lubricant with the 30 percent higher viscosity gave a calculated elastohydrodynamic (EHD) film thickness that was 20 percent higher than the other lubricant. This increased EHD film thickness is the most probable reason for the improvement in surface fatigue life of gears tested with this lubricant over gears tested with the less viscous lubricant.

  4. TRIBOLOGICAL PROPERTIES OF CrN COATING UNDER LUBRICATION CONDITIONS

    JANUSZ LUBAS

    2012-01-01

    The paper presents research results of the influence of CrN coating on the friction parameters in friction pairs under lubricated friction conditions. The formed CrN homogeneous coating and CrN-steel 46Cr2 "ring" structure coating was matched under test conditions with a counterpart made from SAE-48 and SAE-783 bearing alloys. Tested sliding pairs were lubricated with 5W/40 Lotos synthetic engine oil. The tribological test was conducted on block-on-ring tester. The applied modification techno...

  5. Industrial tribology tribosystems, friction, wear and surface engineering, lubrication

    Mang, Theo; Bartels, Thorsten

    2010-01-01

    Integrating very interesting results from the most important R & D project ever made in Germany, this book offers a basic understanding of tribological systems and the latest developments in reduction of wear and energy consumption by tribological measures. This ready reference and handbook provides an analysis of the most important tribosystems using modern test equipment in laboratories and test fields, the latest results in material selection and wear protection by special coatings and surface engineering, as well as with lubrication and lubricants.This result is a quick introductio

  6. Squeezing molecular thin alkane lubrication films: layering transition and wear

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2003-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26, and C14H30 confined between smooth gold surfaces. In most cases we observe well defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters....

  7. Advances in sputtered and ion plated solid film lubrication

    Spalvins, T.

    1985-01-01

    The glow discharge or ion assisted vacuum deposition techniques, primarily sputtering and ion plating, have rapidly emerged and offer great potential to deposit solid lubricants. The increased energizing of these deposition processes lead to improved adherence and coherence, favorable morphological growth, higher density, and reduced residual stresses in the film. These techniques are of invaluable importance where high precision machines tribo-components require very thin, uniform lubricating films (0.2 m), which do not interface with component tolerances. The performance of sputtered MoS2 films and ion plated Au and Pb films are described in terms of film thickness, coefficient of friction, and wear lives.

  8. Materials compatibility and lubricants research on CFC-refrigerant substitutes

    Szymurski, S. R.; Hawley, M.; Hourahan, G. C.; Godwin, D. S.

    1994-08-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  9. Testing of Lubricant Performance in Sheet Metal Forming

    Bay, Niels; Olsson, David Dam; Friis, Kasper Leth

    2008-01-01

    of the lubricant film causing pick-up of work piece material on the tool surface and scoring of subsequent work piece surfaces. The present paper gives an overview of more than 10 years work by the authors’ research group through participation in national as well as international framework programmes...... as well as numerical modelling experts simulating fundamental lubrication mechanisms and computing basic process parameters. The authors’ group has especially been involved in the development of a system of tribo-tests for sheet metal forming and in testing and modelling of friction and limits of...

  10. The effect of nanoparticles on thin film elasto-hydrodynamic lubrication

    Ghaednia, Hamed; Babaei, Hasan; Jackson, Robert L.; Bozack, Michael J.; Khodadadi, J. M.

    2013-12-01

    Carefully conducted friction tests of a nano-lubricant in the thin film elasto-hydrodynamic lubrication regime showed that the presence of nanoparticles reduces friction. By using surface analyses techniques and molecular dynamics simulations, we explored the effectiveness of different interactions in the system, namely the interactions between nanoparticles with the lubricant or surfaces. Based on the results, the friction reduction mechanism was found to be that the nanoparticles induce an obstructed flow (plug flow) in the thin film between lubricated surfaces. This reduces friction by forcing only a few layers of lubricant molecules to slide on each other.

  11. Lubricative coated steel sheets with oil-free formability; Oiru furi seikei kanona junkatsu gohan

    Miyauchi, Y.; Kanai, H.; Taira, T.; Katsumi, T.; Kikuchi, I.

    1998-05-31

    With the recent heightening of awareness regarding environmental protection, the manufacturing industry has investigated actions to several problems. One of the problems is discontinuing the use ozone depleting substances. The press forming process needs the lubrication and cleaning of oil after forming. However, the 1,1,1-trichloroethane and special fluoro-hydrocarbon are prohibited by law from 1996 because they are ozone depleting substances. For this reason, we developed the lubricative coated steel sheets which have formability without pressing oil. The lubricative coated steel sheets have self-lubricating ability in dry press forming process without cleaning agents. In this paper, we introduce the performance of lubricative coated steel sheets. (author)

  12. Synthetics, mineral oils, and bio-based lubricants chemistry and technology

    Rudnick, Leslie R

    2005-01-01

    As the field of tribology has evolved, the lubrication industry is also progressing at an extraordinary rate. Updating the author's bestselling publication, Synthetic Lubricants and High-Performance Functional Fluids, this book features the contributions of over 60 specialists, ten new chapters, and a new title to reflect the evolving nature of the field: Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. The book contains chapters on all major lubricant fluids used in a wide range of applications. For each type of lubricant, the authors discuss the historical develo

  13. Phase and viscosity behaviour of refrigerant-lubricant mixtures

    Cisneros, Sergio; Garcia, J.; Fernandez, J.;

    2005-01-01

    , mainly as a function of the molecular asymmetry. This also has a profound effect in the mixture transport properties. Thus, in this work the general aspects of phase and viscosity behaviour linked to the type of asymmetry found in refrigerant-lubricant mixtures are discussed in the context of phase...

  14. Research on radiation detectors, boiling transients, and organic lubricants

    1974-01-01

    The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

  15. 40 CFR 1065.122 - Engine cooling and lubrication.

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Engine cooling and lubrication. 1065.122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling...

  16. Making Self-Lubricating Parts By Powder Metallurgy

    Sliney, Harold E.; Dellacorte, Christopher

    1990-01-01

    Compositions and parameters of powder-metallurgical fabrication processes determined for new class of low-friction, low-wear, self-lubricating materials. Used in oxidizing or reducing atmospheres in bearings and seals, at temperatures from below 25 degrees C to as high as 900 degrees C. Thick parts made with minimal waste.

  17. Ancient origin of lubricated joints in bony vertebrates

    Askary, Amjad; Smeeton, Joanna; Paul, Sandeep; Schindler, Simone; Braasch, Ingo; Ellis, Nicholas A; Postlethwait, John; Miller, Craig T; Crump, J Gage

    2016-01-01

    Synovial joints are the lubricated connections between the bones of our body that are commonly affected in arthritis. It is assumed that synovial joints first evolved as vertebrates came to land, with ray-finned fishes lacking lubricated joints. Here, we examine the expression and function of a critical lubricating protein of mammalian synovial joints, Prg4/Lubricin, in diverse ray-finned fishes. We find that Prg4 homologs are specifically enriched at the jaw and pectoral fin joints of zebrafish, stickleback, and gar, with genetic deletion of the zebrafish prg4b gene resulting in the same age-related degeneration of joints as seen in lubricin-deficient mice and humans. Our data support lubricated synovial joints evolving much earlier than currently accepted, at least in the common ancestor of all bony vertebrates. Establishment of the first arthritis model in the highly regenerative zebrafish will offer unique opportunities to understand the aetiology and possible treatment of synovial joint disease. DOI: http://dx.doi.org/10.7554/eLife.16415.001 PMID:27434666

  18. Base Oil-Extreme Pressure Additive Synergy in Lubricants

    Extreme pressure (EP) additives are those containing reactive elements such as sulfur, phosphorus, and chlorine. In lubrication processes that occur under extremely severe conditions (e.g., high pressure and/or slow speed), these elements undergo chemical reactions generating new materials (tribofi...

  19. Multilayered antifriction nanostraction covering for lubrication in the tribocoupling

    Vladimir KOLESNIKOV

    2010-01-01

    Full Text Available In article principles of creation of a new way of the lubrication a wheel-rail tribosystem by drawing on a lateral side of a rail head of a multilayered antifriction nanostructurial covering possessing property of blocking negative segregation phenomena in metals of a wheel and a rail are considered.

  20. A Fuel Economy Study in Heavy Duty Diesel Engine Lubricants

    Hiroshi Watanabe; Wim van Dam; Gary Parsons; Peter Kleijwegt

    2011-01-01

    Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests.

  1. Development and Implementation of Environmentally Compatible Solid Film Lubricants

    Novak, Howard L.; Hall, Phillip B.

    1999-01-01

    Multi-body launch vehicles require the use of Solid Film Lubricants (SFLs) to allow for unrestricted relative motion between structural assemblies and components during lift-off and ascent into orbit. The Space Shuttle Solid Rocket Booster (SRB), uses a dual coat, ceramic-bonded high temperature SFL in several locations such as restraint hardware between the SRB aft skirt and the Mobile Launch Platform (MLP), the aft SRB/External Tank (ET) attach struts, and the forward skirt SRB/ET attach ball assembly. Future launch systems may require similar applications of SFLs for attachment and restraint hardware. A family of environmentally compatible non-lead/antimony bearing alternative SFLs have been developed including a compatible repair material. In addition, commercial applications for SFLs on transportation equipment, all types of lubricated fasteners, and energy related equipment allow for wide usage's of these new lubricants. The new SFLs trade named BOOSTERLUBE is a family of single layer thin film (0.001 inch maximum) coatings that are a unique mixture of non-hazardous pigments in a compatible resin system that allows for low temperature curing (450 F). Significant savings in energy and processing time as well as elimination of hazardous material usage and disposal would result from the non-toxic one-step SFL application. Compatible air-dry field repair lubricants will help eliminate disassembly of launch vehicle restraint hardware during critical time sensitive assembly operations.

  2. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.

    Valle-Delgado, Juan José; Johansson, Leena-Sisko; Österberg, Monika

    2016-02-01

    The development of materials that combine the excellent mechanical strength of cellulose nanofibrils (CNF) with the lubricating properties of hyaluronic acid (HA) is a new, promising approach to cartilage implants not explored so far. A simple, solvent-free method to produce a very lubricating, strong cellulosic material by covalently attaching HA to the surface of CNF films is described in this work. A detailed analysis of the tribological properties of the CNF films with and without HA is also presented. Surface and friction forces at micro/nanoscale between model hard surfaces (glass microspheres) and the CNF thin films were measured using an atomic force microscope and the colloid probe technique. The effect of HA attachment, the pH and the ionic strength of the aqueous medium on the forces was examined. Excellent lubrication was observed for CNF films with HA attached in conditions where the HA layer was highly hydrated. These results pave the way for the development of new nanocellulose-based materials with good lubrication properties that could be used in biomedical applications. PMID:26674836

  3. Development of a quantitative lubricant test for deep drawing

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2004-01-01

    A tribological test for deep drawing has been developed by which the performance of lubricants may be evaluated quantitatively measuring the maximum backstroke force on the punch due to sliding friction between tool and work piece surface. The forming force is found not to give useful information...

  4. Room-temperature ionic liquids: a novel versatile lubricant.

    Ye, C; Liu, W; Chen, Y; Yu, L

    2001-11-01

    Alkylimidazolium tetrafluoroborates are promising versatile lubricants for the contact of steel/steel, steel/aluminium, steel/copper, steel/SiO2, Si3N4/SiO2, steel/Si(100), steel/sialon ceramics and Si3N4/sialon ceramics; they show excellent friction reduction, antiwear performance and high load-carrying capacity. PMID:12240132

  5. Surface profiles and modulation of ultra-thin perfluoropolyether lubricant in contact sliding

    Deformation in shear and associated tribological behaviours of ultra-thin lubricants are of significant importance for the lubrication of magnetic hard disks and for other applications such as micro-electromechanical systems, nano-fluidics and nanotechnology. This paper presents the characteristics of the perfluoropolyether ultra-thin lubricant, in terms of its surface profiles when subjected to a contact sliding test. The results indicate that for a several-monolayers thick (∼4.0-4.5 nm) lubricant film, sliding produces a considerable amount of surface roughness due to peaks of lubricant that persist during sliding; however, it can flow back or return to a smooth profile after a lapse of time when the sliding is stopped. For a monolayer-thin (∼1.4-1.57 nm) film, the lubricant flow is restricted, and the rough profile created due to sliding persists and almost becomes permanent on the wear track. During sliding, due to high shear stress, a characteristic feature of lubricant profile modulation is observed. This modulation, or waviness, is due to the accumulation of lubricant in piles or islands, giving certain amplitudes and frequencies, which themselves depend upon the percentage of lubricant molecules that are chemically bonded to the substrate and the lubricant thickness. The results indicate that ultra-thin lubricants (monolayer and thicker) behave more like a semi-solid (having some sliding characteristics similar to those of rubbers) than a liquid when subjected to a high shear rate during contact sliding

  6. Solid film lubricants and thermal control coatings flown aboard the EOIM-3 MDA sub-experiment

    Murphy, Taylor J.; David, Kaia E.; Babel, Hank W.

    1995-01-01

    Additional experimental data were desired to support the selection of candidate thermal control coatings and solid film lubricants for the McDonnell Douglas Aerospace (MDA) Space Station hardware. The third Evaluation of Oxygen Interactions With Materials Mission (EOIM-3) flight experiment presented an opportunity to study the effects of the low Earth orbit environment on thermal control coatings and solid film lubricants. MDA provided five solid film lubricants and two anodic thermal control coatings for EOIM-3. The lubricant sample set consisted of three solid film lubricants with organic binders one solid film lubricant with an inorganic binder, and one solid film lubricant with no binder. The anodize coating sample set consisted of undyed sulfuric acid anodize and cobalt sulfide dyed sulfuric acid anodize, each on two different substrate aluminum alloys. The organic and inorganic binders in the solid film lubricants experienced erosion, and the lubricating pigments experienced oxidation. MDA is continuing to assess the effect of exposure to the low Earth orbit environment on the life and friction properties of the lubricants. Results to date support the design practice of shielding solid film lubricants from the low Earth orbit environment. Post-flight optical property analysis of the anodized specimens indicated that there were limited contamination effects and some atomic oxygen and ultraviolet radiation effects. These effects appeared to be within the values predicted by simulated ground testing and analysis of these materials, and they were different for each coating and substrate.

  7. Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey

    Miyoshi, Kazuhisa

    2007-01-01

    An investigation was conducted to survey anticipated requirements for solid lubricants in lunar and Martian environments, as well as the effects of these environments on lubricants and their performance and durability. The success of habitats and vehicles on the Moon and Mars, and ultimately, of the human exploration of and permanent human presence on the Moon and Mars, are critically dependent on the correct and reliable operation of many moving mechanical assemblies and tribological components. The coefficient of friction and lifetime of any lubricant generally vary with the environment, and lubricants have very different characteristics under different conditions. It is essential, therefore, to select the right lubrication technique and lubricant for each mechanical and tribological application. Several environmental factors are hazardous to performance integrity on the Moon and Mars. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings (thermal cycling), solar flux, cosmic radiation, and large quantities of dust. The surface of Mars has the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. Solid lubricants and coatings are needed for lunar and Martian applications, where liquid lubricants are ineffective and undesirable, and these lubricants must perform well in the extreme environments of the Moon, Mars, and space, as well as on Earth, where they will be assembled and tested. No solid lubricants and coatings and their systems currently exist or have been validated that meet these requirements, so new solid lubricants must be designed and validated for these applications.

  8. Rheology and tribology of lubricants with polymeric viscosity modifiers

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the

  9. Adhesion Performance of Solid Film Lubricants on Substrates Cleaned With Environmentally Compliant Cleaners

    Hall, P. B.; Thom, R. L.

    1997-01-01

    Solid film adhesion testing was used to determine the effect different environmentally compliant cleaners have on the adhesion properties of solid film lubricants used for several NASA programs. In an action to remove ozone depleting chemicals from aerospace processes, a replacement cleaner must be identified that does not affect the adhesion of solid film lubricants used on flight critical NASA hardware. ASTM D251083 Standard Test Method for Adhesion of Solid Film Lubricants was used to evaluate the cleaners. Two different lubricants - Inlox 88 and Boosterlube - were tested using various commercially available cleaners. Inlox 88 is produced by E/M Corporation and is a liquid oxygen compatible lubricant used in the Space Shuttle Main Engine, and Boosterlube is a new lubricant being implemented for use on the Space Shuttle Solid Rocket Booster. These lubricants were selected because of their specific use on flight critical NASA components. Results of this testing are presented in the paper.

  10. Evaluation of PS 212 Coatings Under Boundary Lubrication Conditions with an Ester-based Oil to 300 C

    Sliney, Harold E.; Loomis, William R.; Dellacorte, Christopher

    1994-01-01

    High friction and wear of turbine engine components occur during high temperature excursions above the oxidation threshold of the liquid lubricant. This paper reports on research to study the use of a high temperature self lubricating coating, PS 212 for back-up lubrication in the event of failure of the liquid lubricant. Pin on disk tests were performed under dry and boundary-lubricated conditions at disk temperatures up to 300 C. The liquid lubricant was a formulated polyol ester qualified under MIL L-23699. At test temperatures above the oil's thermal degradation level, the use of PS 212 reduced wear, providing a back-up lubricant effect.

  11. The effect of the viscosity-pressure behaviour of lubricants on the film thickness in elastohydrodynamically lubricated line contacts

    Schipper, D.J.; Napel, ten W.E; Dowson, D.

    1998-01-01

    In this paper the influence of the viscosity-pressure relationship on the film thickness for the line contact situation is presented. The viscosity-pressure behaviour of many lubricants differs significantly from the behaviour according to Barus which is commonly used in EHL. This topic is of intere

  12. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    Blau, Peter Julian [ORNL

    2012-03-01

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining and grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.

  13. Boundary lubrication of stainless steel and CoCrMo alloy based on phosphorous and boron compounds in oil-in-water emulsion

    Yan, Jincan [Laboratory for Surface Technology and Tribology, University of Twente (Netherlands); School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication, Shanghai Jiao Tong University (China); Zeng, Xiangqiong, E-mail: X.Zeng@utwente.nl [Laboratory for Surface Technology and Tribology, University of Twente (Netherlands); School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication, Shanghai Jiao Tong University (China); Ren, Tianhui [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication, Shanghai Jiao Tong University (China); Heide, Emile van der [Laboratory for Surface Technology and Tribology, University of Twente (Netherlands); TNO (Netherlands)

    2014-10-01

    Highlights: • The boundary lubrication behaviour of three O/W emulsions was investigated. • The interactions between O/W emulsions and CoCrMo surfaces were studied. • Three different additives containing P and B were added in the emulsions. • The tribologcial performance of oil lubricant and emulsion was compared. • The friction profile of emulsion shows three stages due to spreading and plate-out. - Abstract: Emulsion lubrication is widely used in metal forming operations and has potential applications in the biomedical field, yet the emulsion lubrication mechanism is not well understood. This work explores the possibilities of three different oil-in-water (O/W) emulsions containing dibutyl octadecylphosphoramidate (DBOP), 6-octadecyl-1,3,6,2-dioxazaborocan-2-ol calcium salt (ODOC) and 2-(4-dodecylphenoxy)-6-octadecyl-1,3,6,2-dioxazaborocane (DOB) to generate boundary films on stainless steel AISI 316 and CoCrMo alloy surfaces. Experimental results show lower friction values for the emulsions in combination with CoCrMo compared to AISI 316. The different performance of the additives is related to the composition of the adsorption and reaction film on the interacting surfaces, which was shown to be dependent on the active elements and molecular structure of the additives. The friction profile of the emulsions indicates that the emulsion appears to be broken during the rubbing process, then the additives adsorb onto the metal surface to form protecting boundary layers. The XPS analysis shows that for boundary lubrication conditions, the additive molecules in the emulsion first adsorb on the metal surface after the droplet is broken, and then decompose and react with the metal surface during the rubbing process to form stable lubricating films on the rubbed surfaces.

  14. Boundary lubrication of stainless steel and CoCrMo alloy based on phosphorous and boron compounds in oil-in-water emulsion

    Highlights: • The boundary lubrication behaviour of three O/W emulsions was investigated. • The interactions between O/W emulsions and CoCrMo surfaces were studied. • Three different additives containing P and B were added in the emulsions. • The tribologcial performance of oil lubricant and emulsion was compared. • The friction profile of emulsion shows three stages due to spreading and plate-out. - Abstract: Emulsion lubrication is widely used in metal forming operations and has potential applications in the biomedical field, yet the emulsion lubrication mechanism is not well understood. This work explores the possibilities of three different oil-in-water (O/W) emulsions containing dibutyl octadecylphosphoramidate (DBOP), 6-octadecyl-1,3,6,2-dioxazaborocan-2-ol calcium salt (ODOC) and 2-(4-dodecylphenoxy)-6-octadecyl-1,3,6,2-dioxazaborocane (DOB) to generate boundary films on stainless steel AISI 316 and CoCrMo alloy surfaces. Experimental results show lower friction values for the emulsions in combination with CoCrMo compared to AISI 316. The different performance of the additives is related to the composition of the adsorption and reaction film on the interacting surfaces, which was shown to be dependent on the active elements and molecular structure of the additives. The friction profile of the emulsions indicates that the emulsion appears to be broken during the rubbing process, then the additives adsorb onto the metal surface to form protecting boundary layers. The XPS analysis shows that for boundary lubrication conditions, the additive molecules in the emulsion first adsorb on the metal surface after the droplet is broken, and then decompose and react with the metal surface during the rubbing process to form stable lubricating films on the rubbed surfaces

  15. 水溶性润滑添加剂的研究现状及发展趋势%Research Status and Development Tendency of Water Solubility Lubrication Additive

    刘鲤粽

    2011-01-01

    The paper analyzed the research status and features of the water solubility lubrication additives at home and abroad and in detail introduced the research and applications of the carboxylic and salt water solubility lubrication additive, water solubility organic metal type lubrication additive, the sulfur, phosphorus and other active element content water solubility lubrication additive, the boron content water solubility lubrication additive and the nano water solubility lubrication additive at home and abroad.Meanwhile in combination with the compatibility complexity existed in the study of the present water solubility lubrication additive and the limitation of the experiment synthesis and the theoretical discovery stage, the paper analyzed and predicted the additive development tendency with the multi functions integrated with the lubrication, rust prevention, biological degradation and other features.%分析了国内外水溶性润滑添加剂的研究现状及特点,并对羧酸及其盐类水溶性润滑添加剂、水溶性有机金属型润滑添加剂、含硫磷等活性元素的水溶性润滑添加剂、含硼水溶性润滑添加剂和纳米水溶性润滑添加剂的国内外研究应用情况进行了详细介绍,同时结合目前水溶性润滑添加剂研究存在的配伍复杂性及停留在试验合成和理论探索阶段的局限,对其向集润滑、防锈和可生物降解等特性于一身的多功能发展趋势作了分析和预测.

  16. ROLLING CONTACT FATIGUE BEHAVIOR OF CERAMIC BALLS LUBRICATED BY LUBRICANTS WITH EXTREME PRESSURE ADDITIVES

    ZHANG Feng; SONG Baoyu; QU Jianjun; LIU Weimin

    2006-01-01

    An experiment is conducted to investigate the effects of lubricant10#, which contains extreme pressure additives T304 and T305, on the rolling contact fatigue (RCF) life of the contact pairs of a Si3N4 ceramic ball and a steel rod. The experimental investigation is carried out using a ball-rod RCF test rig. The results show that the extreme pressure additives increase the anti-contact-fatigue performance of ceramic balls; When the content of the additives varies from 1% to 5%, the increasing gradient of the RCF life curve decreases; And the oil sample with 1% T305 additive corresponds to the maximal gradient of the RCF life curve, with the RCF life being increased by about 10.77 times.The fatigue surface of the ceramic ball is analyzed with scanning electron microscope (SEM) and X-ray electron dispersion analysis(EDAX), and the physical model of extreme pressure additives'increasing the RCF life of the ceramic ball is proposed. It is found that the extreme pressure additives form a corrosive film and a transfer film on the surface of the ceramic ball, which decrease the surface tangential stress, and to increase the surface energy is the most effective means for increasing the RCF life.

  17. Characterization of used lubricating oil by spectrometric techniques

    Souza, Andressa Moreira de, E-mail: andressa@ctaa.embrapa.br [Embrapa Agroindustria de Alimentos, Guaratiba, Rio de Janeiro, RJ (Brazil); Correa, Sergio Machado [Faculdade de Engenharia. Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Silva, Glauco Correa da [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The engine lubricating oil drags all kinds of impurities generated by wear of internal components. Thus, it is necessary to monitor the physical and chemical properties and concentration of metals in lubricants used to determine the appropriate time to replace them. Moreover, one can monitor the wear of the engines through the levels of metals in oils. To achieve these goals, some detection techniques such as Flame atomic absorption spectrometry (FAAS), Inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray fluorescence (XRF), have been widely used to determine metals in lubricating oils and also in other oil derivatives. Thus, some of these techniques were used in this study. Also the technique used was Gas chromatography mass spectrometry (GC / MS) for characterization of chromatographic profile of the engine lubricating oil after use. Through the technique of ICP-OES for method of United States Environmental Protection Agency (USEPA) METHOD 6010B - Inductively coupled plasma optical emission spectrometry was performed to characterize metals in lubricating oil motor, using equipment from ICP-OES Perkin-Elmer{sup R} OPTIMA 3000 ICP-Winlab and software, obtaining the following identification of metals: barium (Ba), calcium (Ca), lead (Pb), copper (Cu), Chromium (Cr), iron (Fe), magnesium (Mg), molybdenum (Mo) and zinc (Zn). Using the XRF technique, through the equipment EDFRX Shimadzu{sup R} model 800HS EDX, Rh tube, applied voltage of 50kV, amperage 100{mu}A, detector Si (Li) cooled with liquid nitrogen and collimator 10mm, we analyzed all the components comprised in the range of Ti to U and Na to SC, identified the following metals: calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), molybdenum (Mo) and nickel (Ni). The characterization was performed by chromatographic methods: USEPA METHOD 5021A - Volatile organic compounds in various sample matrices using equilibrium headspace analysis, USEPA METHOD 8015B - Nonhalogenated Organics

  18. Characterization of used lubricating oil by spectrometric techniques

    Full text: The engine lubricating oil drags all kinds of impurities generated by wear of internal components. Thus, it is necessary to monitor the physical and chemical properties and concentration of metals in lubricants used to determine the appropriate time to replace them. Moreover, one can monitor the wear of the engines through the levels of metals in oils. To achieve these goals, some detection techniques such as Flame atomic absorption spectrometry (FAAS), Inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray fluorescence (XRF), have been widely used to determine metals in lubricating oils and also in other oil derivatives. Thus, some of these techniques were used in this study. Also the technique used was Gas chromatography mass spectrometry (GC / MS) for characterization of chromatographic profile of the engine lubricating oil after use. Through the technique of ICP-OES for method of United States Environmental Protection Agency (USEPA) METHOD 6010B - Inductively coupled plasma optical emission spectrometry was performed to characterize metals in lubricating oil motor, using equipment from ICP-OES Perkin-ElmerR OPTIMA 3000 ICP-Winlab and software, obtaining the following identification of metals: barium (Ba), calcium (Ca), lead (Pb), copper (Cu), Chromium (Cr), iron (Fe), magnesium (Mg), molybdenum (Mo) and zinc (Zn). Using the XRF technique, through the equipment EDFRX ShimadzuR model 800HS EDX, Rh tube, applied voltage of 50kV, amperage 100μA, detector Si (Li) cooled with liquid nitrogen and collimator 10mm, we analyzed all the components comprised in the range of Ti to U and Na to SC, identified the following metals: calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), molybdenum (Mo) and nickel (Ni). The characterization was performed by chromatographic methods: USEPA METHOD 5021A - Volatile organic compounds in various sample matrices using equilibrium headspace analysis, USEPA METHOD 8015B - Nonhalogenated Organics Using GC

  19. Nanoscale friction and wear properties of silicon wafer under different lubrication conditions

    Chen, Xiaochun; Zhao, Yongwu; Wang, Yongguang; Zhou, Hailan; Ni, Zhifeng; An, Wei

    2013-10-01

    The nanoscale friction and wear properties of single crystal silicon wafer under different lubrication conditions are studied in this paper. The experiments were performed with Si3N4 ball sliding on the surface of silicon wafer under four different lubrication conditions: dry friction, water lubrication, hydrogen peroxide lubrication and the static hydrogen peroxide dry friction. The results from the experiments have been analyzed showing the different friction and wear properties of the silicon wafer in different lubrication conditions. It is concluded that the wear rates under the water lubrication and under the hydrogen peroxide lubrication are both small, the chemical reactions are facilitated by the mechanical processes when the load and the sliding speed reach certain levels. This is mainly resulted by the enhanced lubricant performance with the formed silicon hydroxide Si(OH)4 film. Under the water lubrication, the wear is found in a way of material removed in molecule scale. Under the hydrogen peroxide lubrication, the wear is mainly caused by the spalling of micro-cracks. Under the dry friction condition, the wear is found being adhesive wear. And under the static peroxide dry friction, the wear is prevailing adhesive wear. These results are essential and valuable to the development of the efficient and environmental-friendly slurry for the chemical mechanical polishing (CMP) process.

  20. Influence of service temperature on tribological characteristics of self-lubricant coatings: A review

    Jun-Feng YANG; Yan JIANG; Jens HARDELL; Braham PRAKASH; Qian-Feng FANG

    2013-01-01

    Self-lubricating coatings have been widely used to reduce friction in moving machine assemblies. However, the tribological performance of these coatings is strongly dependent on the service temperature. In this paper, an extensive review pertaining to the influence of operating service temperature on tribological performance of self-lubricating coatings has been carried out. Based on the effective lubricating temperature range, the self-lubricating coatings developed in the past have been divided into three groups: low temperature lubricant coating (from -200℃ to room temperature), moderate temperature lubricant coating (from room temperature to 500℃) and high temperature lubricant coating (〉 500℃). Ideas concerning possible ways to extend the operating temperature range of self-lubricating coatings have been presented as follows: hybridized tribological coating, adaptive tribological coatings, and diffusion rate limited solid lubricant coating, in addition, a new self-lubricating coating formulation for potential application at a wide operating temperature range has been proposed.

  1. Assessment of Useful Life of Lubricants Using Analytical Hierarchy Process (AHP and Vector Projection Approach (VPA

    Surachai Bovornsethanant

    2010-01-01

    Full Text Available Problem statement: In general, engine oil is usually changed as defined by car or lubricant manufacturers, which is according to mileage. However, it was found from past researches that, at the predefined mileage or timeframe, most lubricant is still acceptably usable and efficient. Approach: This research aimed to calculate useful life of lubricant in order to reach its maximum usefulness. The method of study began by collecting data that indicates deterioration of lubricant by increasing mileage which includes total base number, viscosity, iron and flash point. Then the data was analyzed by means of Analysis Hierarchy Process (AHP. These variables were used to construct a model for calculating appropriate useful life of lubricant by using vector projection approach. It was found from this study that the defined mileage for changing lubricant, which is generally at 5,000 km, is not appropriate. Results: Results of the study suggest that the most appropriate mileage for change of lubricant is at 12,000 km. Conclusion: It could be concluded that collection of data about characteristics of lubricant and use of model for calculating useful life of lubricant can define appropriate interval change of lubricant.

  2. Physics of lubricated impact of a sphere on a plate in a narrow continuum to gaps of molecular dimensions

    This paper investigates the phenomenon of lubricated impact dynamics of ellipsoidal bodies upon semi-infinite elastic solids, giving rise to Hertzian contact conditions. The analysis conforms to the numerical predictions and experimental findings of others, when the physics of motion of the lubricant can be described through Newtonian continuum mechanics, with the dominant viscous action embodied in the transient solution of Reynolds' equation. The equivalence of squeeze film action under impacting conditions with that of a converging gap in pure entraining motion is shown. This concept is extended to study the accelerative nature of the lubricant film surface, and its concordance with Reynolds' assumption through use of a relativistic frame of reference and hyperbolic geometry. When the investigation is extended to the case of ultra-thin film conjunctions of the order of a few to several molecular diameters of the intervening fluid layer, the physics of fluid film motion through impact involves more complex kinetic interactions. These include the effect of structural force of solvation, as well as that of a meniscus force, formed in such narrow conjunctions. The former, through active dispersion, tends to promote a structureless environment, whilst the latter through wetting action encourages the formation of a coherent film. This paper shows the interplay between these competing kinetics. (author)

  3. Self-lubricating carbon nanotube reinforced nickel matrix composites

    Nickel (Ni)--multiwalled carbon nanotube (CNT) composites have been processed in a monolithic form using the laser-engineered net shape (LENS) processing technique. Auger electron spectroscopy maps determined that the nanotubes were well dispersed and bonded in the nickel matrix and no interfacial chemical reaction products were determined in the as-synthesized composites. Mechanisms of solid lubrication have been investigated by micro-Raman spectroscopy spatial mapping of the worn surfaces to determine the formation of tribochemical products. The Ni-CNT composites exhibit a self-lubricating behavior, forming an in situ, low interfacial shear strength graphitic film during sliding, resulting in a decrease in friction coefficient compared to pure Ni.

  4. Ordered molecular layer structure of lubricating oil adsorbed films

    2001-01-01

    Low-angle X-ray diffraction has been applied to analyze the structure of stearic acid LB films and self-grown surface adsorbed films of aluminium product metalworking lubricants. The results show that LB films exhibit a good layer-like ordered structure in the normal direction of film-carrying surface, while in the tangential direction, they do not show a cyclically ordered molecular arrangement; as for the self-grown surface adsorbed films of aluminium sheet and strip metalworking lubricants, their molecules are orderly arranged to certain degree in both the tangential and the normal directions of film-carrying surface, and they have a short-range ordered structure. Moreover, the better the orientation of normal molecules is, the higher the oil film strength is, and the smaller the friction factor is.

  5. Resistance reduction by bionic coupling of the earthworm lubrication function

    2010-01-01

    Based on the biological coupling theory, the resistance reduction characteristic of the surface morphology and surface wettability of the earthworm were studied in this paper. The parameters of surface dorsal pore and corrugation were extracted. According to these parameters, the lubrication mechanism of the earthworm surface was analyzed. The distribution of the pores and surface morphology were designed and the bionic coupling samples were prepared. The positive pressure, lubricant flow rate and advancing velocity were selected as the experiment factors while the soil friction resistance as observed object. According to the obtained data of bionic coupling samples from the testing system of biologic signal for tiny soil adhesion test, the optimal samples from the bionic coupling resistance reduction tests were selected through the range analysis. Compared to the normal ones, the soil resistance of bionic coupling samples was reduced by 76.8%. This is of great significance and offers bright prospects for reducing energy loss in terrain mechanics.

  6. PERFORMANCE OF LUBRICATING OIL FILM IN ALUMINIUM FOIL ROLLING

    1999-01-01

    The surface of the aluminum foil rolled has been observed with microscope on the basis of industrial experiments, and the structure of the surface adsorption film has been analyzed by means of low angle X-ray diffraction. It is advanced that the lubrication in aluminum foil rolling is in the state of thin film lubrication, surface adsorption film is an ordered multi-layered molecule film with more than 7 layers; and the layers of the ordered molecule film is influenced by the concentration of the additive in certain range; the concentration of the additive in oil is the main factor affecting the stability of rolling, controling the concentration of the additive can control the ratio of fluid friction, boundary friction, and local holding-on in deformation zone,thus obtaining good rolling deformation conditions.

  7. Development of seismic support snubber using solid lubricant

    Solid lubricant MoS2 films deposited by radio-frequency sputtering and a new physical process were applied to bearings and ball screws used in seismic support mechanical snubbers. The lubricity of MoS2 films was maintained throughout 720 hours of exposure at a temperature of 200 degC. The endurance life of MoS2 films using both radio-frequency sputtering and a new physical process was investigated by subjecting the mechanical snubber to a drag force test. Cumulative drag length reached 100 meters and 400 meters, respectively, for the two methods. The dynamic characteristics and durability of mechanical snubbers in an abnormal environment were also investigated. (author)

  8. Experimental Study of Castor Oil Based Lubricant for Automotive Applications

    Amit Suhane,

    2014-01-01

    Full Text Available Vegetable oils due to their better natural propertiescan be used as an alternative to reduce the dependency on the conventional lubricants. With the depletion of conventional resources at faster pace, need of hour is to approach the safer alternatives for ensuring the availability of such resources for longer periods with lesser harm to the mankind and sorroundings.This workevaluates the prospects of Castor oil based lubricant for automotive applications in contrast to the available commercial servo gear oil. Experimentation has been performed on four ball tester set up.Material used is carbon steel balls. Refined castor and mahua oils are blended in fixed ratios and subjected to friction and wear tests. Experimentation reveals that castor mahua oil blend possess immense potential in contrast to servo gear oil due to good wear reducing traits apart from environmental benefits.

  9. Investigation on Capability of Reaming Process using Minimal Quantity Lubrication

    De Chiffre, Leonardo; Tosello, Guido; Piska, Miroslav; Müller, Pavel

    parameters were calculated, and uncertainty budgeting was performed for all measurands. Results show that reaming operations at lower cutting speed and feed produce low process scatter. The use of smaller depth of cut (i.e. smaller reamer diameter) resulted in larger reaming torque scatter than when a larger......An investigation on reaming using minimal quantity lubrication (MQL) was carried out with the scope of documenting process capability using a metrological approach. Reaming tests were carried out on austenitic stainless steel, using HSS reamers with different cutting data and lubrication conditions...... depth of cut was employed. The suitability of MQL for reaming was proven under the investigated process conditions, concerning both the quality of the machined holes, in terms of geometrical characteristics and surface finishing, and the process quality, with respect to reaming torque and thrust, along...

  10. Feasibility of Applying Controllable Lubrication to Dynamically Loaded Journal Bearings

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    fluid films, based on fluid film theory. For a dynamically loaded journal bearing, the fluid film pressure distribution can be computed by numerically solving the Reynolds equation, by means of finite-difference method. Particularly, in this study the main focus is on the lubrication behavior of the...... reaction forces in a reciprocating compressor have a cyclic behavior, periodic oil pressure injection rules based on the instantaneous crank angle and load bearing condition can be established. In this paper, several bearing configurations working under different oil pressure injection rules conditions are...... analyzed. The behavior of the following parameters is investigated when the system operates with hybrid controllable lubrication conditions: a) maximum fluid film pressure, b) minimum fluid film thickness, c) maximum vibration levels and d) injection oil pressures....

  11. Self-sustained lift and low friction via soft lubrication.

    Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Mahadevan, L

    2016-05-24

    Relative motion between soft wet solids arises in a number of applications in natural and artificial settings, and invariably couples elastic deformation fluid flow. We explore this in a minimal setting by considering a fluid-immersed negatively buoyant cylinder moving along a soft inclined wall. Our experiments show that there is an emergent robust steady-state sliding regime of the cylinder with an effective friction that is significantly reduced relative to that of rigid fluid-lubricated contacts. A simple scaling approach that couples the cylinder-induced flow to substrate deformation allows us to explain the elastohydrodynamic lift that underlies the self-sustained lubricated motion of the cylinder, consistent with recent theoretical predictions. Our results suggest an explanation for a range of effects such as reduced wear in animal joints and long-runout landslides, and can be couched as a design principle for low-friction interfaces. PMID:27162361

  12. Optimized Liquid-Liquid Extractive Rerefining of Spent Lubricants

    2014-01-01

    Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R 2 = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent rati...

  13. Experimental rig for measuring lubricant film thickness in rolling bearings

    Zhang, Xingnan; Jablonka, Karolina Anna; Glovnea, Romeo

    2014-01-01

    Electrical capacitance has been applied in the past for measuring the lubricant film thickness in rolling element bearings. The main difficulty arises from the fact that the measured capacitance is a combination of the capacitances of many rolling elements, which come in contact with both the inner and outer rings. Besides, the capacitance of the Hertzian contact itself and the surrounding area must also be separated. It results in a complex system which, in order to be solved for the film ...

  14. Aging of HDPE Pipes Exposed to Diesel Lubricant

    Habas-Ulloa, Amelia; Moraes D'Almeida, Jose Roberto; Habas, Jean-Pierre

    2011-01-01

    The effects caused upon the physicochemical behavior of high-density polyethylene pipes by exposure to a diesel lubricant were investigated, as a function of time and temperature, by thermogravimetric and gravimetric analysis and by FT-IR. The gravimetric data were satisfactorily described using Fick's law. The fitting of the experimental points showed that diesel, which can be regarded as a model fluid to analyze the effects caused by aromatic units present in oil derivatives, has a high dif...

  15. Considerations for the design of gas-lubricated slider bearings

    Smith, Paul Wesley

    1988-01-01

    An approach is developed that simplifies calculation of the dynamic characteristics of a self-acting, gas-lubricated slider bearing system. This technique avoids a lengthy simultaneous solution of the equations of motion of the slider and the time-dependent Reynolds' equation, while providing additional design information that is otherwise unobtainable. The equilibrium pressure distribution in the gas film is obtained using the Bunov-Galerkin formulation of the finite element method. By c...

  16. Low Voltage Reversible Electrowetting Exploiting Lubricated Polymer Honeycomb Substrates

    Bormashenko, Edward; Pogreb, Roman; Bormashenko, Yelena; Grynyov, Roman; Gendelman, Oleg

    2014-01-01

    Low-voltage electrowetting-on-dielectric scheme realized with lubricated honeycomb polymer surfaces is reported. Polycarbonate honeycomb reliefs manufactured with the breath-figures self-assembly were impregnated with silicone and castor oils. The onset of the reversible electrowetting for silicone oil impregnated substrates occurred at 35 V, whereas for castor oil impregnated ones it took place at 80 V. The semi-quantitative analysis of electrowetting of impregnated surfaces is proposed.

  17. Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil.

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-04-01

    This study aimed at investigating the application of biosurfactant from Sphingobacterium spiritivorum AS43 using molasses as a substrate and fertilizer to enhance the biodegradation of used lubricating oil (ULO). The cell surface hydrophobicity of bacteria, the emulsification activity, and the biodegradation efficiency of ULO were measured. The bacterial adhesion in the hydrocarbon test was used to denote the cell surface hydrophobicity of the used bacterial species. The results indicate a strong correlation between cell surface hydrophobicity, emulsification activity, and the degree of ULO biodegradation. The maximum degradation of ULO (62 %) was observed when either 1.5 % (w/v) of biosurfactant or fertilizer was added. The results also revealed that biosurfactants alone are capable of promoting biodegradation to a large extent without added fertilizer. The data indicate the potential for biosurfactant production by using low-cost substrate for application in the bioremediation of soils contaminated with petroleum hydrocarbons or oils. PMID:24590892

  18. Influence of lubricants and scale on the friction during hot rolling of pipes

    Consideration is given to the force characteristic of the contact friction between the rollers and the arbor in the process of tube hot rolling depending on the simultaneous action of the rolling lubricants and scale. The effect has been established of various lubricants, reduction temperature at the equal oxidation degree of carbon steel in the same amount of lubricants, and also of the various proportions of lubricants and scale on the contact surface during hot rolling. It has been found that the contact friction becomes lower with higher temperatures and greater amounts of effective rolling lubricants, and, in contrast, it becomes higher with thick scale layers. The best results have been achieved by using tripolyphosphate lubricants

  19. Contact ratio and deformation of asperity in nano-partia lubrication

    2001-01-01

    Partial lubrication or mixed lubrication in the nano-scale is discussed, which is consti-tuted from dry contact, boundary lubrication, thin film lubrication. A dynamic contact ratio has beenused to describe such lubrication, and the relationship between the contact ratio and its influencefactors was investigated. Experimental results indicate that the dynamic contact ratio increaseswith the decrease of film thickness by the exponential function. The decrease of speed and lubri-cant viscosity, and the increase of loads will enlarge the value of the contact ratio. When the polaradditives are added into the basic oil, the contact ratio decreases. In addition, the contact ratio ofthe surfaces with small roughness is larger than that of the surfaces with large roughness at verylow speed. However, the contact ratio of smooth surfaces decreases more quickly with speed thanthat of rough surfaces, and therefore, it will become smaller than that of rough surfaces after speedincreases over a certain degree.

  20. Tribological characteristic enhancement effects by polymer thickened oil in lubricated sliding contacts

    Pratomo, Ariawan Wahyu; Muchammad, Tauviqirrahman, Mohammad; Jamari, Bayuseno, Athanasius P.

    2016-04-01

    Polymer thickened oils are the most preferred materials for modern lubrication applications due to their high shear. The present paper explores a lubrication mechanism in sliding contact lubricated with polymer thickened oil considering cavitation. Investigations are carried out by using a numerical method based on commercial CFD (computational fluid dynamic) software ANSYS for fluid flow phenomenon (Fluent) to assess the tribological characteristic (i.e. hydrodynamic pressure distribution) of lubricated sliding contact. The Zwart-Gerber-Belamri model for cavitation is adopted in this simulation to predict the extent of the full film region. The polymer thickened oil is characterized as non-Newtonian power-law fluid. The simulation results show that the cavitation lead lower pressure profile compared to that without cavitation. In addition, it is concluded that the characteristic of the lubrication performance with polymer thickened oil is strongly dependent on the Power-law index of lubricant.

  1. Microscopic aspects of the effect of friction reducers at the lubrication limit. Ph.D. Thesis

    Mansot, J. L.

    1984-01-01

    An attempt is made to analytically model the physicochemical properties of lubricants and their capacity to reduce friction. A technique of frozen fracturing of the lubricants was employed to study the dispersion of additives throughout a lubricant. Adsorption was observed at the liquid-solid interface, which was the region where the solid and lubricant met, and the molecular dispersion of the additive enhanced the effectiveness of the lubricant. The electrically conductive characteristics of the lubricant at the friction interface indicated the presence of tunneling effects. The Bethe model was used to examine the relationship between the coefficient of friction and the variation of interface thickness. The electron transport permitted an inelastic tunnel electron spectroscopic investigation of the molecular transformations undergone by the additive during friction episodes.

  2. Investigation on the lubrication properties of biodiesel made of Camelina Sativa and Lard esters

    Kreivaitis, Raimondas; Padgurskas, Juozas [Aleksandras Stulginskis Univ., Kaunas (Lithuania). Inst. of Power and Transport Machinery; Gumbyte, Milda [Aleksandras Stulginskis Univ., Kaunas (Lithuania). Inst. of Environment and Ecology

    2013-06-01

    The ethyl esters can be produced from renewable resources while methyl esters have petroleum based methyl part. Camelina Sativa is the potential source of oilseeds. The oil has similar properties as that of rapeseed oil. Animal fats are cheap raw material and there esters were suggested as a fuel for diesel engine by many authors. The objective of this study would be the lubrication properties of ethyl esters made of Camelina Sativa and Lard. The lubrication properties investigated using High-Frequency Reciprocating Rig (HFRR) method. The wear scar diameter represents the lubrication properties. The observed lubrication results are compared with lubrication properties of conventional diesel fuel obtained from manufacturer ''ORLEN Lietuva'' Lithuania. The results show that mixtures of diesel and biodiesel improve the lubrication properties. (orig.)

  3. An integrated lubricant oil conditioning sensor using signal multiplexing

    One effective approach to detect signs of potential failure of a rotating or reciprocating machine is to examine the conditions of its lubrication oil. Here we present an integrated oil condition sensor for detecting both wear debris and lubricant properties. The integrated sensor consists of miniature multiplexed sensing elements for detection of wear debris and measurements of viscosity and moisture. The oil debris sensing element consists of eight sensing channels to detect wear debris in parallel; the elements for measuring oil viscosity and moisture, based on interdigital electrode sensing, were fabricated using micromachining. The integrated sensor was installed and tested in a laboratory lubricating system. Signal multiplexing was applied to the outputs of the three sensing elements such that responses from all sensing elements were obtained within two measurements, and the signal-to-noise ratio was improved. Testing results show that the integrated sensor is capable of measuring wear debris (>50 µm), moisture (>50 ppm) and viscosity (>12.4 cSt) at a high throughput (200 ml min−1). The device can be potentially used for online health monitoring of rotating machines. (paper)

  4. Earthquake lubrication and healing explained by amorphous nanosilica

    Rowe, C. D.; Lamothe, K. G.; Rempe, M.; Andrews, M.; Mitchell, T. M.; Di Toro, G.; White, J. C.

    2015-12-01

    Earthquake slip and rupture propagation require fault strength to decrease during slip. Extreme shear weakening observed in laboratory friction experiments on silica-rich rocks has been explained by the formation of a hydrated amorphous 'silica gel' on the slip surface, but the mode of formation and deformation behavior of this material are not known. In addition, the wear material displays time-dependent strengthening on timescales of hours to days. We performed shearing experiments on chert rocks and analyzed the wear material formed at a range of slip rates from 10-4 - 10-1 m/s. We show by transmission electron microscopy (TEM) and X-ray diffraction that silica lubrication is the result of the formation of amorphous nanopowder rather than a gel. The nanopowder has distinct structure and properties when compared to commercially available amorphous silica nanoparticles, which result from the degree and distribution of hydration and the style of bond strain within particles (observed by Raman spectroscopy and FTIR). The lubrication effect is due to intra-particle plasticity, even at low temperature and interparticle lubrication caused by trapping of water layers between hydrated surfaces. The hours to days timescale of healing may be explained by the natural time-dependent sintering between the hydrated surfaces of the nanopowder. Formation of amorphous silica nanopowders during slip can explain the general characteristics of earthquake ruptures, including the timescales of coseismic weakening and post-seismic healing.

  5. Regeneration of Spent Lubricant Refining Clays by Solvent Extraction

    Yan-zhen Wang

    2015-01-01

    Full Text Available Step-by-step solvent extraction was used to regenerate spent clay by recovering the adsorbed oil in lubricating oil refining clay. Several polar and nonpolar solvents were tested, and petroleum ether (90–120°C and ethanol (95 v% were selected as the nonpolar and polar solvents, respectively. The spent clay was first extracted using petroleum ether (90–120°C to obtain ideal oil and then extracted with a mixed solvent of petroleum ether (90–120°C and ethanol (95 v% two or three times to obtain nonideal oil before being extracted with ethanol and water. Finally, the clay was dried at 130°C to obtain regenerated clay. The total oil recovery can be more than 99 wt% of the adsorbed oil. The recovered ideal oil can be used as lubricating base oil. Shorter storage times for spent clay produce better regeneration results. The regenerated clay can be reused to refine the lubricating base oils.

  6. A MIXED LUBRICATION MODEL MODIFIED BY SURFACES' FRACTAL CHARACTERISTICS

    孟凡明; 张有云

    2003-01-01

    Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal parameters into the mixed lubrication equation, the relationship between flow factors and fractal dimensions is analyzed. The results show that the pressure flow factors' values increase, while the shear flow factor decreases, with the increasing length to width ratio of a representative asperity γ at the same fractal dimension. It can be also found that these factors experience more irregular and significant variations and show the higher resolution and the local optimal and the worst fractal dimensions, by a fractal dimension D, compared with the oil film thickness to roughness ratio h/Rq. As an example of application of the model to solve the lubrication of the piston skirt in an engine, the frictional force and the load capacity of the oil film in a cylinder were analyzed. The results reveal that the oil film frictional force and the load capacity fluctuate with increasing fractal dimension, showing big values at the small D and smaller ones and slightly variable in the range of bigger one, at the same crank angle.

  7. Polyurethane unicondylar knee prostheses: simulator wear tests and lubrication studies

    Many materials are used as artificial joint bearing surfaces; these include conventional stainless steel or CoCrMo-on-ultra-high molecular weight polyethylene (UHMWPE), CoCrMo on itself and alumina-on-alumina. However, these joints have a limited lifespan resulting in failure of the prosthesis and the need for revision surgery. A number of materials have been introduced recently in an attempt to overcome these problems. Polycarbonate urethane (PU) is a compliant material that can be used as an artificial joint bearing surface which has been developed to mimic the natural synovial joint more accurately by promoting fluid film lubrication. Tribological tests were performed on CoCrMo-on-PU unicondylar knee prostheses to assess their performance in vitro. The wear produced by these components was considerably lower than that found for conventional joints. They also exhibited low friction and operated close to full-fluid film lubrication with viscosities of lubricant similar to those found in patients with arthritis. These tests gave encouraging results for the tribological performance of this material couple for use as an alternative bearing combination

  8. Polyurethane unicondylar knee prostheses: simulator wear tests and lubrication studies

    Scholes, S C [Centre for Biomedical Engineering, Durham University, DH1 3LE (United Kingdom); Unsworth, A [Centre for Biomedical Engineering, Durham University, DH1 3LE (United Kingdom); Jones, E [Stryker Orthopaedics, Limerick (United Kingdom)

    2007-01-07

    Many materials are used as artificial joint bearing surfaces; these include conventional stainless steel or CoCrMo-on-ultra-high molecular weight polyethylene (UHMWPE), CoCrMo on itself and alumina-on-alumina. However, these joints have a limited lifespan resulting in failure of the prosthesis and the need for revision surgery. A number of materials have been introduced recently in an attempt to overcome these problems. Polycarbonate urethane (PU) is a compliant material that can be used as an artificial joint bearing surface which has been developed to mimic the natural synovial joint more accurately by promoting fluid film lubrication. Tribological tests were performed on CoCrMo-on-PU unicondylar knee prostheses to assess their performance in vitro. The wear produced by these components was considerably lower than that found for conventional joints. They also exhibited low friction and operated close to full-fluid film lubrication with viscosities of lubricant similar to those found in patients with arthritis. These tests gave encouraging results for the tribological performance of this material couple for use as an alternative bearing combination.

  9. Behavior of an IC Engine Turbocharger in Critical Conditions of Lubrication

    Galindo, José; Serrano Cruz, José Ramón; Dolz Ruiz, Vicente; LÓPEZ HIDALGO, MIGUEL ANDRÉS; Bouffaud, F.

    2013-01-01

    Problems in the turbocharger lubrication system can cause serious deterioration in their overall performance and even their complete destruction. The paper describes several tests with different critical lubrication conditions, in order to determine the thresholds at which the operation may be appropriate. In an IC engine, these problems can be produced mainly by several factors: the decreasing in the supply pressure of the oil, a delay in the lubrication oil pressure and...

  10. The lubrication of DLC coatings with mineral and biodegradable oils having different polar and saturation characteristics

    Barriga, J.; Vižintin, Jože; Vercammen, K.; Arnšek, Aleš; Kalin, Mitjan

    2015-01-01

    Due to improved performance over the last decade, diamond-like carbon (DLC) coatings are more frequently used in highly loaded mechanical components that sometimes need to operate under boundary- or mixed-lubrication conditions. However, DLC coatings are considered as "inert" coatings with a low surface energy and their lubrication ability according to conventional metal-lubrication mechanisms is therefore questionable. In order to investigate whether the base oil polarity and saturation char...

  11. Relationship between Supplied Oil Flow Rates and Oil Film Thicknesses under Starved Elastohydrodynamic Lubrication

    Taisuke Maruyama; Tsuyoshi Saitoh

    2015-01-01

    Many studies have already considered starved lubrication. However, there have been no reports on the oil film thicknesses under steady starved EHL (elastohydrodynamic lubrication), where the ultra-low volume of oil supplied per unit time is uniform. The present study examined the relationship between the supplied oil flow rate and oil film thickness under steady starved lubrication. A ball-on-disk testing machine was used in experiments to measure the oil film thickness by means of optical in...

  12. Numerical analysis of capillary compensated micropolar fluid lubricated hole-entry journal bearings

    Nathi Ram

    2016-01-01

    The micropolar lubricated symmetric/asymmetric hole-entry bearings using capillary restrictor have been analyzed in the present work. Reynolds equation for micropolar lubricant has been derived and solved by FEM. The results have been computed using selected parameters of micropolar lubricant for hole-entry hydrostatic/hybrid journal bearings. A significant increase in damping and stiffness coefficients is observed for bearings having micropolar parameter N2=0.9, lm=10 than similar bearings ...

  13. Integrated Mechanical Pulse Jet Coolant Delivery System Performance for Minimal Quantity Lubrication

    Nik Fazli Sapian; Badrul Omar; Mohd Hamdi Abd Shukor

    2010-01-01

    Minimum quantity lubrication (MQL) machining is one of the promising solutions to the requirement for decrease in cutting fluid consumption. This research describes MQL machining in a range of lubricant consumption 2.0ml/h, which is 10–100 times smaller than the consumption usually adopted in industries. MQL machining in this range is called pulse jet coolant delivery system in this research. A specially designed system was used for concentrating small amounts of lubricant onto the cutting in...

  14. Squeezing Molecularly thin Lubricant Films between curved Corrugated Surfaces with long range Elasticity

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    The present work investigates the ability of two nm thick lubrication films to stay in a contact and thereby to prevent excessive wear of the surfaces. At this thickness the film is no longer a fluid but it is the very important intermediate between the lubricated and the dry regimes, the latter one being associated with devastating wear progress. The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the roughness, curvature ...

  15. Acoustic measurement of lubricant-film thickness distribution in ball bearings

    Zhang, J.; Drinkwater, B. W.; Dwyer-Joyce, R.S.

    2006-01-01

    An oil-film thickness monitoring system capable of providing an early warning of lubrication failure in rolling element bearings has been developed. The system is used to measure the lubricant-film thickness in a conventional deep groove ball bearing (shaft diameter 80 mm, ball diameter 12.7 mm). The measurement system comprises a 50 MHz broadband ultrasonic focused transducer mounted on the static outer raceway of the bearing. Typically the lubricant-films in rolling element bearings are bet...

  16. Nanorheometry of Molecularly Thin Liquid Lubricant Films Coated on Magnetic Disks

    Shintaro Itoh

    2012-01-01

    Full Text Available Molecularly thin lubricant films are used for the lubrication of head disk interfaces in hard disk drives. The film thickness is reduced to 1-2 nm to minimize the magnetic spacing, and optimal, precise design is required to obtain sufficient lubrication. However, until now, there was no generally applicable method for investigating such thin films. Therefore, we developed a highly sensitive shear force measuring method and have applied it to the viscoelastic measurement of lubricant films coated on magnetic disk surfaces. In this paper, we review the method and summarize the useful findings we have demonstrated so far.

  17. The influence of molecule size and structure on the lubricity of liquids: An experimental study

    Sivebæk, Ion Marius; Sorenson, Spencer C

    2002-01-01

    of the fuel. The lubricity of a liquid is defined as its ability to protect the surfaces in the boundary lubrication regime. The wear was reduced, as it is today, by addition of anti-wear agents to the fuel. In order to establish the adequate amount of additive, laboratory tests appeared based on a steel ball...... to stay liquid. Recently a lubricity test capable of handling DME was developed [1], as well as a volatile fuel viscometer [2]. As a result of this development it has become possible to test the lubricity of small hydrocarbons such as propane and butane as well as liquids with larger molecules...

  18. Influence of temperature on cam-tappet lubrication in an internal combustion engine

    CHANG Qiuying; YANG Peiran; CHEN Quanshi; WANG Jing

    2007-01-01

    The transient thermo-elastohydrodynamic (TEHL)lubrication simulation and isothermal elastohydrodynamic (EHL) simulation were performed on the exhausting camtappet friction pair of an internal combustion engine.Although by employing the two models the center pressure,the thickness of the lubricant film and friction coefficient obtained were similar in the changing trend during a rotating cycle, the parameters make a great difference, especially for the thickness of the lubricant film; the TEHL was four times thicker than the EHL. These results show that the temperature should not be neglected in the study of the lubrication of cam-tappet pairs.

  19. Elastohydrodynamic lubrication for line and point contacts asymptotic and numerical approaches

    Kudish, Ilya I

    2013-01-01

    Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches describes a coherent asymptotic approach to the analysis of lubrication problems for heavily loaded line and point contacts. This approach leads to unified asymptotic equations for line and point contacts as well as stable numerical algorithms for the solution of these elastohydrodynamic lubrication (EHL) problems. A Unique Approach to Analyzing Lubrication Problems for Heavily Loaded Line and Point Contacts The book presents a robust combination of asymptotic and numerical techniques to solve EHL p

  20. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating

    Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, Lasse

    2000-01-01

    The lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings sliding against hardened steel discs was studied, in a pin-on-disc set-up. The multilayered coatings had been deposited on mild steel pins by pulse plating and they consisted of ternary Ni-P-W layers of high and low W...... lubrication regimes. The wear mechanisms in each lubrication regime were studied and in mixed lubrication regime, the effect of normal load and sliding speed on wear volume and friction coefficient was also studied. (C) 2000 Elsevier Science S.A. All rights reserved....

  1. Effect of Bearing Compliance on Thermo-hydrodynamic Lubrication of High Speed Misaligned Journal Bearing Lubricated with Bubbly Oil

    Basim Ajeel Abass

    2015-03-01

    Full Text Available In the present work the effect of bearing compliance on the performance of high speed misaligned journal bearing lined with a compliant PTFE liner lubricated with bubbly oil at high speeds has been studied. The effect of induced oil film temperature due to shearing effect has been implemented. Hydrodynamic effect of the complaint bearing and the influence of aerated oil have been examined by the classical thermohydrodynamic lubrication theory modified to include the effect of oil film turbulence and oil film temperature with suitable models for bubbly oil viscosity and density. The effect of liner elastic deformation has been implemented by using Winkler model. The effects of variable density and specific heat on the most importantbearing parameters such as maximum pressure, maximum temperature, bearing load carrying capacity and power losses have been investigated.The results obtained show that the oil film pressure and load carrying capacity increased for the bearing lubricated with bubbly oil of higher aeration level and smaller size of air bubbles. Including the effect of elastic deformation of the bearing liner reduces the oil film pressure, load carrying capacity and frictional power loss for the misaligned bearing working at the same circumstances

  2. Friction-reducing and antiwear behavior of metal halide-stabilized linear phosphazene derivatives as lubricants for a steel-on-steel contact

    ZHU; Jiamei; LIU; Weimin; LIANG; Yongmin

    2005-01-01

    A series of novel metal halide-stabilized linear phosphazene derivatives were synthesized. The friction-reducing and antiwear abilities of the resulting products as the lubricants for a steel-on-steel contact were comparatively investigated on an Optimol SRV oscillating friction and wear tester. The morphology of the worn steel surface was observed on a scanning electron microscope, while the chemical states of some typical elements on the worn steel surface were examined by means of X-ray photoelectron spectroscopy. It was found that both the side branch structures and central metals influenced the friction-reducing and antiwear behaviors of the synthetic derivatives as the lubricants, which was related to the different adsorption activities of the organic compounds composed of different organic ingredients and metallic ions on a nascent metal surface. All the synthetic lubricants except for the iron (III) derivative showed increased antiwear abilities with increasing metallic ionic radius. A protective layer originated from the tribochemical reaction together with the adsorbed boundary lubricating layer containing organic fluorine compounds, nitrogen oxide, and Fe3(PO4)2 plays an important role in improving the friction and wear behavior of the steel-on-steel system.

  3. In situ lubricant degradation in Antarctic marine sediments. 1. Short-term changes.

    Thompson, Belinda A W; Davies, Noel W; Goldsworthy, Paul M; Riddle, Martin J; Snape, Ian; Stark, Jonathan S

    2006-02-01

    A large-scale, in situ experiment was set up near the Bailey Peninsula area (Casey Station, East Antarctica) to monitor the natural attenuation of synthetic lubricants in marine sediments over five years. Here, we report the short-term changes after 5 and 56 weeks. The lubricants tested were an unused and used Mobil lubricant (0W/40; Exxon Mobil, Irving, TX, USA) and a biodegradable alternative (0W/20; Fuchs Lubricants, Harvey, IL, USA). Clean sediment was collected, contaminated with the lubricants, and deployed by divers onto the seabed in a randomized block design. The sampled sediments were analyzed by gas chromatography-flame-ionization detector and gas chromatography-mass spectrometry with selective ion monitoring. The base fluid of all lubricant treatments did not decrease significantly after 56 weeks in situ. Alkanoate esters of 1,1,1-tris(hydroxymethyl)propane in the biodegradable and unused lubricants were degraded extensively in situ; however, these esters constituted only a minor proportion of the lubricant volume. The additives, alkylated naphthalenes and substituted diphenylamines, were fairly resistant to degradation, which is of environmental concern because of their toxicity. The biodegradable lubricant did not break down to recognized biodegradable thresholds and, as such, should not be classified as biodegradable under Antarctic marine conditions. A separate experiment was conducted to determine the influence of sediment preparation and deployment on compound ratios within the lubricants, and we found that preparation and deployment of the contaminated sediments had only a minor effect on compound recovery. Further monitoring of this in situ experiment will provide much needed information about the long-term natural attenuation of lubricants. PMID:16519295

  4. Electrophoretic deposition of pure MoS2 dry film lubricant coatings

    Electrophoresis can be employed to deposit a wide variety of materials including MoS2 coatings that exhibit properties comparable to the properties of sputtered MoS2 coatings used as lubricants for vacuum applications. Coatings which display coefficients of friction as low as 0.03 can be deposited from an aqueous suspension containing approximately 2.5 wt %, micrometer-sized MoS2 particles stablized with approximately 500 ppm of a nonionic surfactant. Uniform coatings with appropriate thicknesses can be deposited on nonplanar surfaces in minutes with minimal equipment. The morphology of the as-deposited coatings suggest that MoS2 is electrophoretically active as a result of a net positive surface charge along the basal plane

  5. Assessment of boundary lubrication in biodiesels by nanotribological tests

    Nanoscale measurements using atomic force microscopy are performed in order to scrutinize the friction phenomena observed in microscale ball-on-disc tribological tests under (boundary lubrication) BL regime. Two reference biodiesels, one derived from a vegetable source (soybean) and the other from animal fat, are compared. A linear dependence of the friction coefficient (μ) with the Stribeck parameter (S = viscosity × velocity/load) is observed: μ = 0.11 − 26.54 × S for the animal fat and μ = 0.12 − 51.56 × S for the soybean biodiesel. The nanotribological tests allowed highlighting the cohesion component of friction force in the BL regime that is associated to the intrinsic characteristics of the biodiesels, the respective friction coefficients being μ = 0.0206 for the animal fat and μ = 0.0233 for the soybean biodiesel. The better lubricity of the animal fat biodiesel compared to the soybean observed in microscale is attributed to the presence of sulfur and to the higher amount of mono- and di-glycerides contaminants in it. The polarity and/or chemical affinity of the respective sulfur and OH groups facilitate them to reacting with the steel surfaces during the rubbing action. At nanoscale level, the same ranking in friction is observed among the biodiesels, being that here the friction phenomena are attributed to the cohesive forces other than those related to viscosity. - Highlights: • The frictional behavior of standard reference biodiesels is studied. • Nanotribology tests help scrutinizing microscale friction in boundary lubrication. • AFM tests allowed highlighting the cohesion component of friction in the BL regime. • Animal fat biodiesel promotes lower and more stable friction than soybean biodiesel

  6. MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236EA WITH FOUR DIFFERENT EXXON LUBRICANTS

    The report discusses miscibility, solubility, viscosity, and density data for the refrigerant hydrofluorocarbon (HFC)-236ea (or R-236ea) and four lubricants supplied by Exxon Corporation. Such data are needed to determine the suitability of refrigerant/lubricant combinations for ...

  7. MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236FA WITH POTENTIAL LUBRICANTS

    The report gives results of miscibility, solubility, viscosity, and density measurements for refrigerant R-236fa and two potential lubricants . (The data are needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The tested oi...

  8. High paraffin Kumkol petroleum processing under fuel and lubricant petroleum scheme

    Technological opportunity of high paraffin Kumkol petroleum processing under the fuel and lubricant scheme with production of lubricant materials in short supply, combustible materials and technical paraffin is shown. Mini petroleum block putting into operation on Kumkol deposit is reasonable economically and raises profitableness of hydrocarbon raw material production. (author)

  9. Assessing Boundary Film Forming Behavior of Phosphonium Ionic Liquids as Engine Lubricant Additives

    Mayank Anand

    2016-05-01

    Full Text Available The reduction of friction and wear losses in boundary lubrication regime of a piston ring-cylinder liner tribo-system has always been a challenge for engine and lubricant manufacturers. One way is to use lubricant additives, which can form boundary film quickly and reduce the direct contact between asperities. This article focuses on the assessment of boundary film forming behavior of two phosphonium-based ionic liquids (ILs as additives in engine-aged lubricant to further improve its film forming capabilities and hence reduce friction and wear of contacting surfaces. A reciprocating piston ring segment-on-flat coupon under fully flooded lubrication conditions at room temperature (approx. 25 °C was employed. The trihexyltetradecyl phosphonium bis(2-ethylhexyl phosphate and trihexyltetradecyl phosphonium bis(2,4,4-tri-methylpentyl phosphinate ionic liquids were used as additives in 6 vol. % quantity. Benchmark tests were conducted using fully formulated new lubricant of same grade (with and without ILs. Results revealed that the addition of phosphonium ILs to engine-aged lubricant led to quicker initiation of boundary film forming process. In addition, friction and wear performance of engine-aged lubricant improved by the addition of both ILs and these mixtures outperformed the fresh fully formulated oil. Chemical analysis showed higher concentration of phosphorus element on the worn surface indicating presence of ILs in the formed tribofilms.

  10. Identification of lubricants. A new approach; Identifizierung von Schmierstoffen. Ein neuer Ansatz

    Luther, R. [Fuchs Europe Schmierstoffe GmbH, Mannheim (Germany)

    2008-01-15

    Lubricants become more and more parts of the construction in tribological systems. But in case of an oil change: How the performance of the fresh lubricant can be guaranteed? A novel approach from Fuchs for the online-identification of engine oils while filling fresh oil will be presented. (orig.)

  11. Reliability model for helicopter main gearbox lubrication system using influence diagrams

    The loss of oil from a helicopter main gearbox (MGB) leads to increased friction between components, a rise in component surface temperatures, and subsequent mechanical failure of gearbox components. A number of significant helicopter accidents have been caused due to such loss of lubrication. This paper presents a model to assess the reliability of helicopter MGB lubricating systems. Safety risk modeling was conducted for MGB oil system related accidents in order to analyse key failure mechanisms and the contributory factors. Thus, the dominant failure modes for lubrication systems and key contributing components were identified. The Influence Diagram (ID) approach was then employed to investigate reliability issues of the MGB lubrication systems at the level of primary causal factors, thus systematically investigating a complex context of events, conditions, and influences that are direct triggers of the helicopter MGB lubrication system failures. The interrelationships between MGB lubrication system failure types were thus identified, and the influence of each of these factors on the overall MGB lubrication system reliability was assessed. This paper highlights parts of the HELMGOP project, sponsored by the European Aviation Safety Agency to improve helicopter main gearbox reliability. - Highlights: • We investigated methods to optimize helicopter MGB oil system run-dry capability. • Used Influence Diagram to assess design and maintenance factors of MGB oil system. • Factors influencing overall MGB lubrication system reliability were identified. • This globally influences current and future helicopter MGB designs

  12. 49 CFR 1242.59 - Train inspection and lubrication (account XX-51-62).

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Train inspection and lubrication (account XX-51-62). 1242.59 Section 1242.59 Transportation Other Regulations Relating to Transportation (Continued) SURFACE...-Transportation § 1242.59 Train inspection and lubrication (account XX-51-62). Separate common expenses on...

  13. Wear characteristics of bonded solid film lubricant under high load condition

    Hiraoka, Naofumi; Sasaki, Akira; Kawashima, Noritsugu; Honda, Toshio

    1991-01-01

    Wear properties of phenolic resin bonded molybdenum disulfide film lubricant were studied. In-vacuo journal bearing tests were performed to evaluate the wear-life of this film lubricant. The wear-life depends on substrate materials and on sliding velocity. Pretreated substrate surfaces were examined to reveal the reasons for these results. Additionally, investigations on film wear mechanisms were made.

  14. Solid-film lubricant is effective at high temperatures in vacuum

    Sliney, H. E.

    1966-01-01

    Calcium fluoride with a suitable inorganic binder forms a stable solid-film lubricant when fused to the surface to be lubricated. It is effective in environments at elevated temperatures and gas pressures ranging from atmospheric to high vacuum. It is not stable in reducing atmospheres.

  15. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. Dry lubricants reduce friction between two metal surfaces. This research investigated the inhibition of corrosive behavior a dry lubricant formulation consisting of jet-cooked corn starch and soyb...

  16. Effect of multi-walled carbon nanotubes on tribological properties of lubricant

    CHEN Chuan-sheng; CHEN Xiao-hua; HU Jing; ZHANG Hua; LI Wen-hua; XU Long-shan; YANG Zhi

    2005-01-01

    After purified by mixture of sulfuric acid and nitric acid, the multi-walled carbon nanotubes(MWNTs)were modified with stearic acid(SA). The modified carbon nanotubes as lubricant additive were utilized to prepare lubricant, and the effects of carbon nanotubes on the tribological properties were investigated by using a pin-on-plate wear tester. The surface structure of MWNTs was examined by transmission electron microscopy, Raman spectroscopy and infrared spectroscopy. The results show that the surfaces of MWNTs are coated with a modified layer of SA. Furthermore, the modified MWNTs as lubricant additive can effectively improve the friction-reduction and antiwear ability of lubricant. The friction coefficient of base lubricant decreases by about 10% and the wear loss of base lubricant decreases by 30%-40% when the concentration of modified MWNTs in lubricant is 0.45%. In addition,the mass ratio of SA to MWNTs influences the friction-reduction and anti-wear ability of the modified MWNTs as lubricant additive. The optimum mass ratio of MWNTs to stearic acid is about 3: 8 - 1 : 2.

  17. Lubricating grease shear flow and boundary layers in a concentric cylinder configuration

    Li, J.X.; Westerberg, L.G.; Höglund, E.; Lugt, P.M.; Baart, P.

    2014-01-01

    Grease is extensively used to lubricate various machine elements such as rolling bearings, seals, and gears. Understanding the flow dynamics of grease is relevant for the prediction of grease distribution for optimum lubrication and for the migration of wear and contaminant particles. In this study,

  18. Contribution of surface analysis spectroscopic methods to the lubrication field

    The analytical surface technics such as ESCA, AES and SIMS are tested to be applied to a particular lubrication field. One deals with a 100 C6 steel surface innumered in tricresylphosphate at 1100C for 15 days. The nature of the first layers is studied after relevant solvant cleaning. An iron oxide layer is produced on the bearing surface, namely αFe2-O3. ESCA, AES and SIMS studies show an overlayer of iron phosphate. The exact nature of iron phosphate is not clearly established but the formation of a ferrous phosphate coating can be assumed from ESCA analysis

  19. Viscoelastic machine elements elastomers and lubricants in machine systems

    MOORE, D F

    2015-01-01

    Viscoelastic Machine Elements, which encompass elastomeric elements (rubber-like components), fluidic elements (lubricating squeeze films) and their combinations, are used for absorbing vibration, reducing friction and improving energy use. Examplesinclude pneumatic tyres, oil and lip seals, compliant bearings and races, and thin films. This book sets out to show that these elements can be incorporated in machine analysis, just as in the case of conventional elements (e.g. gears, cogs, chaindrives, bearings). This is achieved by introducing elementary theory and models, by describing new an

  20. Biosorption of diesel and lubricating oil on algal biomass

    Mishra, Praveen Kumar; Mukherji, Suparna

    2012-01-01

    Algae are widely used as biosorbent for the sorption of heavy metals, however sorption of oil on algae has not been explored. Algae in marine and fresh water environment may affect the fate and transport of spilled oil. Sorption of diesel and lubricating oil was studied using dead biomass of Spirulina sp. and Scenedesmus abundans. The rate and extent of sorption was studied in well mixed batch systems containing oil (0.1–2 %, v/v) and biomass (0.1 %) suspended in water. Sorption of diesel on ...

  1. Regeneration of Spent Lubricant Refining Clays by Solvent Extraction

    Yan-zhen Wang; Hai-long Xu; Li Gao; Meng-meng Yan; Hong-ling Duan; Chun-min Song

    2015-01-01

    Step-by-step solvent extraction was used to regenerate spent clay by recovering the adsorbed oil in lubricating oil refining clay. Several polar and nonpolar solvents were tested, and petroleum ether (90–120°C) and ethanol (95 v%) were selected as the nonpolar and polar solvents, respectively. The spent clay was first extracted using petroleum ether (90–120°C) to obtain ideal oil and then extracted with a mixed solvent of petroleum ether (90–120°C) and ethanol (95 v%) two or three times to ob...

  2. Scale effects in metal-forming friction and lubrication

    Nielsen, Peter Søe; Paldan, Nikolas Aulin; Calaon, Matteo;

    2011-01-01

    equipment is developed for studies of the size effect in metal-forming friction in the range from macro-to microscale. Investigations confirm a significant friction increase when downscaling. Visual inspection of the workpieces shows this to be explained by the amount of open and closed lubricant pockets.......Downscaling of metal-forming operations from macro-to microscale implies significant changes caused by size effects. Among these, the friction increases as reported by researchers using indirect test methods such as the ring-compression test and double-cup-extrusion test. In this study, a new test...

  3. Characterization of lubricated bearing surfaces operated under high loads

    Lauer, J. L.; Marxer, N.; Jones, W. R., Jr.

    1985-01-01

    The composition and surface profiles of M-50 steel surfaces were measured after operation at high loads in a bearing contact simulator. An ester lubricant (trimethyolpropane triheptanoate) was used with and without various additives. Optical profiles were obtained + or - to 30 depth resolution with a phase-locked interference microscope in 10 micron diameter areas within and outside the wear tracks. Optical constants and surface film thickness were measured in the same areas with an electronic scanning ellipsometer. Film composition was measured with a scanning Auger electron spectrometer. It is concluded that metal oxide formation is accelerated within the wear tracks.

  4. Micro-lubrication of Directionally Oriented Contact Surfaces

    O. Maršálek

    2014-12-01

    Full Text Available A description of the set of software tools for detailed computational modelling of thin lubrication layers behaviour is presented in this paper. Individual chapters outline reasons for realization of its each part, explain the functionality of each software tool and the given mathematical definition or digital implementation of all important equations or formulae. The following are examples of partial results of the analysis carried out and the resulting flow factors databases for some kinds of rough surfaces, together with an example of the analysis result of the connecting rod sliding bearing of supercharged internal combustion engine.

  5. Biodegradation of a synthetic lubricant by Micrococcus roseus.

    Wright, M. A.; Taylor, F.; Randles, S J; Brown, D E; Higgins, I J

    1993-01-01

    A bacterium that was able to utilize Emkarate 1550 (E1550), a synthetic lubricant ester, as the sole source of carbon was isolated. The isolate was tentatively identified as Micrococcus roseus. The components of the E1550 ester, octanoate, decanoate, and 1,1,1-tris(hydroxymethyl)propane (TMP), were detected in the culture medium of cells growing on the ester. The TMP tertiary alcohol accumulated during growth and was not utilized by this isolate. The detection of the components of the ester i...

  6. Numerical calculation of elastohydrodynamic lubrication methods and programs

    Huang, Ping

    2015-01-01

    The book not only offers scientists and engineers a clear inter-disciplinary introduction and orientation to all major EHL problems and their solutions but, most importantly, it also provides numerical programs on specific application in engineering. A one-stop reference providing equations and their solutions to all major elastohydrodynamic lubrication (EHL) problems, plus numerical programs on specific applications in engineering offers engineers and scientists a clear inter-disciplinary introduction and a concise program for practical engineering applications to most important EHL problems

  7. Environmentally Benign Lubricant Systems For Cold, Warm And Hot Forging

    Bay, Niels

    The growing awareness of environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has initiated ever increasing efforts to develop new, environmentally benign tribological systems for metal forming. The present...... paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging. The paper is an extract of the keynote paper [3] written by the author together with eight co-authors referring to collected papers and other information from more than 30 different...

  8. Selection of lubricant material for the roller chains of the AHM grapple drive system for the CRBRP

    Properties of Anderol 732 lubricating grease are evaluated to meet the design requirements for the Clinch River Breeder Reactor Plant (CRBRP) auxiliary handling machine (AHM) chain lubrication. Based on the evaluation made in this report, the material is recommended as a lubricant for the specified application. The material is to be applied by the chain manufacturer prior to installation in the AHM. 1 tab

  9. A basic study of the influence of surface topography on mechanisms of liquid lubrication in metal forming

    Sørensen, C. G.; Bech, Jakob Ilsted; Andreasen, Jan Lasson; Bay, Niels; Engell, U.; Neudecker, T.

    1998-01-01

    ) and Micro Plasto HydroStatic Lubrication (MPHSL) is observed and quantified experimentally with respect to the lubricant pocket parameters, shape, volume, and angle to the edge. The two mechanisms have proved to depend very differently upon these parameters. The level at which the hydrostatic pressure.......Keywords: Lubrication mechanisms, Metal forming, Surface topography...

  10. Investigation of the Thermostability of Bovine Submaxillary Mucin (BSM) and its Impact on Lubrication

    Madsen, Jan Busk; Pakkanen, Kirsi I.; Lee, Seunghwan;

    2013-01-01

    Bovine Submaxillary Mucin (BSM) generates thin film layers via spontaneous adsorption onto hydrophobic surfaces such as Poly(dimethylsiloxane) (PDMS) and High Density Polyethylene (HDPE). A characteristic feature of mucin is its tribological- or lubricating properties. Circular dichroismspectrosc......Bovine Submaxillary Mucin (BSM) generates thin film layers via spontaneous adsorption onto hydrophobic surfaces such as Poly(dimethylsiloxane) (PDMS) and High Density Polyethylene (HDPE). A characteristic feature of mucin is its tribological- or lubricating properties. Circular...... dichroismspectroscopyrevealed that BSM is thermally stable over a wide range of temperatures (5–85°C) in its conformation, and Pin-on-Disk tribometry at low speeds showed negligible influence on lubricating properties. Employing the Mini Traction Machine, BSM was found to retain comparable lubricating properties after heating...... to 80°C and subsequent cooling. Random coiled secondary- and lack of tertiary structure in BSM is believed to contribute to the heat tolerance observed with regards to its conformational and lubrication properties....

  11. Rolling Friction Torque in Ball-Race Contacts Operating in Mixed Lubrication Conditions

    Mihaela Rodica D. Bălan

    2015-04-01

    Full Text Available Based on a theoretical model and an experimental methodology for defining the friction torque for lubricated conditions in a modified thrust ball bearing having only three balls, the authors experimentally investigated the influence of the lubricant parameter Λ on friction torque for mixed IVR (isoviscous rigid and EHL (elastohydrodynamic lubrication conditions. The experiments were conducted using ball diameters of 3 mm, 3.97 mm and 6.35 mm loaded at 0.125 N, 0.400 N and 0.633 N. Two oils of viscosity 0.08 Pa·s and 0.05 Pa·s were used and rotational speed was varied in the range 60–210 rpm to obtain a lubricant parameter Λ varying between 0.3 and 3.2. The experiments confirmed that the measured friction torque can be explained using hydrodynamic rolling force relationships respecting the transition from an IVR to an EHL lubrication regime.

  12. Stability analysis of slot-entry hybrid journal bearings operating with non-newtonian lubricant

    H.C. Garg

    2015-09-01

    Full Text Available This paper presents theoretical investigations of rheological effects of lubricant on stability parameters of various configurations of slot-entry hybrid journal bearing system. FEM has been used to solve Reynolds equation governing flow of lubricant in bearing clearance space along with restrictor flow equation using suitable iterative technique. The non-Newtonian lubricant has been assumed to follow cubic shear stress law. The stability parameters in terms of stiffness coefficients, damping coefficients, threshold speed and whirl frequency of different configurations of slot-entry hybrid journal bearing have been computed and presented for wide range of external load while operating with Newtonian and Non-Newtonian lubricants. The computed results reveal that variation of viscosity due to non-Newtonian behavior of lubricant affects bearing stability quite significantly. The results are presented in graphical form and logical conclusions are drawn to identify best possible configuration from stability point of view.

  13. On-Line Measurement of Lubricant Film Thickness Using Ultrasonic Reflection Coefficients

    The ultrasonic reflectivity of a lubricant layer between two solid bodies depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. In this paper, ultrasonic reflectivity measurements are used as a method for determining the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant film layer. For a particular lubricant film the reflected pulse is processed to give a reflection coefficient spectrum. The lubricant film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using static fluid wedges and the elastohydrodynamic film formed between a ball sliding on a flat. Film thickness values in the range 50-500 nm were recorded which agreed well with theoretical film formation predictions

  14. Effect of lubricant on pressure-stress parameters of hot rolling of chromium-nickel steels

    The results of the commercial investigation of water emulsions of the new process lubricants of Olon tekhnicheskii and of ET-2y emulsol in hot rolling of sheets made of 20Kh23N18 (EI 417) and 12Kh18N10T (EYa 1T) steels from 8 to 10 mm thick are presented. The experimental data indicate that the lubricants substantially lower the forward creep, contact friction coefficient, force, rolling moment and pressure of metal upon rolls. The effectiveness of the lubricants depends on the plastic properties of metal and thermal and mechanical deformation conditions. The lubricants also minimize transversal unequal thickness of hot-rolled sheets. The Olon lubricant has been introduced commercially in rolling of stainless steel

  15. Integrated Mechanical Pulse Jet Coolant Delivery System Performance for Minimal Quantity Lubrication

    Nik Fazli Sapian

    2010-06-01

    Full Text Available Minimum quantity lubrication (MQL machining is one of the promising solutions to the requirement for decrease in cutting fluid consumption. This research describes MQL machining in a range of lubricant consumption 2.0ml/h, which is 10–100 times smaller than the consumption usually adopted in industries. MQL machining in this range is called pulse jet coolant delivery system in this research. A specially designed system was used for concentrating small amounts of lubricant onto the cutting interface. The performance of concentrated spraying of lubricant in pulse jet coolant delivery system design was compared with that of current ‘Pulse Jet MQL’ systems. The concentrated spraying of lubricant with a specially designed of system was quite effective in increasing tool life in the pulse jet coolant delivery system range.

  16. In situ observation of the molecular ordering in the lubricating point contact area

    Zhang, Shaohua; Liu, Yuhong; Luo, Jianbin

    2014-07-01

    The organization of lubricant molecules confined between two solid surfaces when the lubricant film thickness is at the nanoscale is unknown. In this work, an ordering process of nematic liquid crystal molecules is observed by in situ polarized Raman spectroscopy of the lubricated point contact area. Our experimental results indicate that 4-n-pentyl-4'-cyanobiphenyl liquid crystal molecules orient along the rotation direction when the linear speed exceeds 12.6 mm/s, and the degree of order increases with linear speed. The relationship between the observed orientation and physical properties of the lubricant film is investigated. Isotropic orientation is observed at the outlet area of the contact region. The orientation behavior of liquid crystal molecules in a confined area is observed and the relationship between lubrication conditions and molecular orientation is discussed.

  17. How to evaluate solid lubricant films using a pin-on-disk tribometer

    Fusaro, R. L.

    1986-01-01

    Over the years, the author has evaluated and compared hundreds of solid lubricant films using a pin-on-disk tribometer. The intent of this paper is to describe to the reader experimental techniques and some of parameters that have been observed to be important for the evaluation and development of new solid lubricant films. Pin-on-disk tribometers will be described and discussed as will experimental methods for evaluating solid lubricant materials. Methods of preparing surfaces for the coating of the thin films and different methods for applying the films will be reviewed. Factors that affect solid lubricant performance will also be discussed. Two different macroscopic mechanisms of solid lubricant film wear exist. These will be characterized schematically, and methods of measuring wear will be examined.

  18. Influence of Temperature on the Frictional Properties of Water-Lubricated Surfaces

    Troels Røn

    2014-10-01

    Full Text Available The influence of temperature on the lubricating properties of neat water for tribopairs with varying bulk elasticity moduli and surface hydrophilicity, namely hard-hydrophobic interface (h-HB, hard-hydrophilic interface (h-HL, soft-hydrophobic interface (s-HB, and soft-hydrophilic interface (s-HL, has been investigated. With increasing temperature, the coefficients of friction generally increased due to the decreasing viscosity of water. This change was more clearly manifested from soft interfaces for more feasible formation of lubricating films. Nevertheless, dominant lubrication mechanism appears to be boundary and mixed lubrication even for soft interfaces at all speeds (up to 1200 mm/s and temperatures (1 to 90 °C investigated. The results from this study are expected to provide a reference to explore the temperature-dependent tribological behavior of more complex aqueous lubricants, e.g., those involving various additives, for a variety of tribosystems.

  19. Experimental studies on vibration characteristics on ball bearing operated with copper oxide nano particle mixed lubricant

    Prakash E

    2013-10-01

    Full Text Available The purpose of this paper is to investigate the vibration suppression characteristics of ball bearing supplied with nano-copper oxide (CuO mixed lubricant. CuO nanoparticles were synthesized by chemical method and characterized using XRD and TEM to study the crystallanity and ultrastructure. The synthesized CuO nanoparticles were of the size range 5-8 nm. 0.2%, 0.5%, and 1% (W/V of CuO nanoparticles was added to the lubricant (ISO VG 68 and was used for further analysis. The test rig setup consists of a ball bearing and loading arrangement operated by a DC motor. The bearing (New, Ball defect and Outer defect vibrations were measured using base lubricant and CuO lubricant mixture.Our results show a reduction of 41% vibration amplitude while using 0.2% (W/V CuO nanoparticles inouter case defected compared to base lubricant.

  20. Design considerations in mechanical face seals for improved performance. II - Lubrication

    Ludwig, L. P.; Greiner, H. F.

    1977-01-01

    The importance of sealing technology in the U.S. industrial chemical-orientated society in regard to maintenance and environmental contamination is pointed out. It is stated that seal performance (leakage, life) is directly related to seal lubrication, which is a mechanism not well understood. Current thinking in regard to seal lubrication is reviewed, the effect of energy dissipation in the thin lubricating film separating the sealing faces is pointed out, and the results of vaporization due to heating are illustrated. Also, hydrodynamic lubrication is reviewed, and an inherent tendency for the seal to operate with angular misalignment is pointed out. Recent work on hydrostatic effects is summarized and the conditions for seal instability are discussed. Four different modes of seal lubrication are postulated with the mode type being a strong function of speed and pressure.

  1. Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Final report

    Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

    1995-05-15

    The lubricants tested in this project were chosen based on the results of liquid/liquid miscibility tests. EMKARATE RL32S and Emery 2968A were selected. The Vapor Liquid Equilibrium (VLE) viscosity reduction and gas fractionation of each was measured with three different refrigerant blends: (1) R-404A; (2) R-507; and (3) R-407C. In addition, the four single refrigerants that make up the blends, HFC-32, HFC-125, HFC-134a, and HFC-143a, were also measured. Lubricants found to have the lowest liquid/liquid miscibilities had nearly equal viscosity reduction profiles as did the more miscible lubricants. Analytical methodology consisted of maintaining equally both the composition of the head space vapor above the lubricant/refrigerant mixture, and the composition of the liquid blend refrigerant. Blends with large temperature glides were re-evaluated in order to test the concept of head space quality and a vented piston hydraulic cylinder assembly was developed to perform this task. Fluid property data, above critical temperature and pressure conditions, is presented for the two lubricants with HFC-32, HFC-125, HFC-143a refrigerants. This research shows that the lubricant EMKARATE RL32S, which had the lowest (poorest) liquid/liquid miscibilities with the selected refrigerants, also had nearly equal viscosity reduction profiles to the more miscible Emery 2968A lubricant. The analytical methodology consisted of maintaining the composition of the refrigerant gas above the lubricant to be equal in composition to that of the pure liquid refrigerant blend being introduced into the lubricant. Refrigerant blends with large temperature glides were re-evaluated in order to validate the concept of the importance of the composition of the gas over the lubricant. To do perform this task, a special vented piston hydraulic cylinder assembly was developed. Fluid property data is also presented for HFC-32, HFC-125, and HFC-143a above the critical temperature and pressure of each.

  2. Wear reduction through piezoelectrically-assisted ultrasonic lubrication

    Traditional lubricants are undesirable in harsh aerospace environments and certain automotive applications. Ultrasonic vibrations can be used to reduce and modulate the effective friction coefficient between two sliding surfaces. This paper investigates the relationship between friction force reduction and wear reduction in ultrasonically lubricated surfaces. A pin-on-disc tribometer is modified through the addition of a piezoelectric transducer which vibrates the pin at 22 kHz in the direction perpendicular to the rotating disc surface. Friction and wear metrics including volume loss, surface roughness, friction forces and apparent stick-slip effects are measured without and with ultrasonic vibrations at three different sliding velocities. SEM imaging and 3D profilometry are used to characterize the wear surfaces and guide model development. Over the range of speeds considered, ultrasonic vibrations reduce the effective friction force up to 62% along with a wear reduction of up to 49%. A simple cube model previously developed to quantify friction force reduction is implemented which describes wear reduction within 15% of the experimental data. (paper)

  3. Fabrics coated with lubricated nanostructures display robust omniphobicity

    Shillingford, C; MacCallum, N; Wong, TS; Kim, P; Aizenberg, J

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e. g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  4. Engineered silica nanoparticles as additives in lubricant oils

    Díaz-Faes López, Teresa; Fernández González, Alfonso; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E.; Badía-Laíño, Rosana

    2015-10-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol-gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives.

  5. Sulphur removal from used automotive lubricating oil by ionizing radiation

    Following the worldwide evolution with the purpose of a higher control of vehicular emissions, the specialists have looked for clean technologies and efficient procedures to make vehicular emissions free of pollutants. Much attention is given to the sulphur concentration in the gasoline, diesel and lubricating oils. The ionizing radiation is a promising technology for the removal of this pollutant when compared to other conventional treatment methods. In this work, the ionizing radiation was used to remove in significant levels the presence of sulphur in automotive motor oil. A 1000 mL sample of used automotive lubricating oil from a gas station was collected. This sample was fractioned and irradiated with 10, 20 50, 100, 200 and 500 kGy doses in a 60Co irradiator (GAMMACELL-220 - 12 kCi). The 50 and 70% (v/v) of MilliQ water and 30% (v/v) of hydrogen peroxide was used to improve the radiolysis The sulphur element before and after the irradiation was determined by X-ray fluorescence technique (WDXRF) using the Fundamental Parameters Method. The results showed approximately 70% sulphur removal at 500 kGy irradiation dose with 70% (v/v) of MilliQ water addition. (author)

  6. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  7. Lubrication Mechanism of Micro/Nano-particles on Sialon

    ZHANGWen-guang; LIUWei-min

    2004-01-01

    The tribologieal properties of Sialon sliding against MS152100 steel bull under the lubrication of solid particle additives,, as micro-borate particle and nanoPbS particle, were evaluated by a SRV ball-on-disctest rig. The chemical composition of the worn surface was characterized by X-ray pohotoelectron spectroscopy(XPS).The morphologies of the wont surfaces of Sialon were analyzed by scanning electron microscopy (SEM).The results show that the particles can redace the friction coefficient of the pairs and the wear volume of Siulon significantly. The wear resitaace of micro-borate is superior to that of nano-PbS while the friction-reducing abilityof PBS is better than that of borate. According to the XPS and SEM results, the wear resistance of Pbs is mainly depended on the tribochemical film mainly composed of PbSO4, which deposited on the wont surface with goodbonding strength. No tribochemical reaction or deposited film was detected or observed on the worn surface of Sialon under the lubrication of borate, uidieating that the possible physically deposited film generated from micro particle can also greatly reduce the wear volume of Sialon, though the friction reducing ability of which is inferior to that of nano PbS particle.

  8. Synthesis and Physicochemical Studies of Suberate as Bio lubricant Basetock

    Synthesis of bio lubricant through chemically modified suberic acid (SA) with 3 different types of alcohols which are 1-octanol (Oc), 1-decanol (De) and 1-dodecanol (Do) was conducted with presence of 4 % p-toluenesulfonic acid (PTSA) as a catalyst. Preparation, characterization and physico-chemical properties of three types diesters (suberate) is discussed in this paper. The diesters products were confirmed by NMR and FTIR spectroscopic analysis. Addition of alcohols at the side chains of diacid increases the molecular weight and chain length resulted in the increment of viscosity index (VI), oxidative stability (OT) and flash point (FP) of the diesters. The result showed that 1,8-di octanyl suberate (DOS) exhibited the most favorable low temperature performance (PP -8.5 degree Celsius) while 1,8-decadienyl suberate (DDoS) exhibited higher OT (190 degree Celsius) and higher FP (224 degree Celsius) than the other di ester oils. On the other hand, the highest VI around 197 degree Celsius was obtained for 1,8-decadienyl suberate (DDS). These di ester oils have a good potential in formulation of industrial bio lubricants. (author)

  9. The solid lubricating material experiment device for Shenzhou-7 Spaceship

    2010-01-01

    A solid lubricating material exposure experiment in space is one of the missions during the seventh manned spaceflight of China,and the key is to develop a device which can be fixed reliably outside of the orbital module and can be fetched conveniently by an astronaut during space walk.The solid lubricating material experiment device needs to be locked reliably in a vibrating and impacting environment during the launch phase,and should meet the requirement that it can be unlocked and fetched reliably by the astronaut wearing an extravehicular spacesuit via simple operations in orbit in an environment of high and low temperature.As for the device we developed,the environmental characteristic of the mission was analyzed,the mechanical analysis and thermal analysis were carried out,and then a mechanism with functions of mechanical locking,structural self-locking and manual unlocking was designed.The device was verified by a sequence of experiments and was fetched by the astronaut during the flight of the Shenzhou-7 Spaceship.

  10. Fabrics coated with lubricated nanostructures display robust omniphobicity

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings. (paper)

  11. The Role of Solid Lubricants for Brake Friction Materials

    Werner Österle

    2016-02-01

    Full Text Available This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus, a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol % of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and minimum wear.

  12. Materials and lubrication for gear and bearing surfaces in uhv

    During design and construction of the SLAC polarized LEED (PLEED) system, a search was made for a dependable gear, bearing, and lubrication system for the computer-controlled Faraday cup used to measure diffracted beams. Components must be nonmagnetic, bakeable to 2500C, and at room temperature must operate at pressures in the 10-9 to 10-10 Pa range. A test system was constructed which incorporated a meshed pair of dissimilar pitch diameter spur gears, one of which was confined to (by bushings) and rotated on a fixed shaft, while the other gear was driven by a commercial rotary motion feedthrough which was rotated by a servo motor driven in sine fashion with a direction reversal every six turns and peak speeds of 50 rpm. The criterion for a successful pair was approx. 105 turns, the life rating for the feedthrough. Pairs had actual turn counts from less than 1 to 91,000. Materials for gears included stainless steel, beryllium copper, and aluminum alloys. Lubricants used singly and in concert were MoS2, WS2, Ag, hard chrome, and a MoS2-graphite-sodium silicate mixture. The successful gear pair was Ag-plated Al alloy and MoS2-graphite-sodium silicate-coated Be-Cu. Subsequent performance in the PLEED system after repeated bakeouts will also be discussed

  13. Fabrics coated with lubricated nanostructures display robust omniphobicity

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak-Sing; Kim, Philseok; Aizenberg, Joanna

    2014-01-01

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  14. Physical Mechanisms of Failure, Ultralow Partial Pressure Lubrication, and the Reservoir Effect in MEMS

    Hook, David Adam

    The aim of this work is to examine the effectiveness of self-assembled monolayer (SAM) coatings as long term lubrication coatings in microsystems, to examine the failure regimes of SAM coated devices, to examine the role of mobility in adsorbed lubricating films, and to examine evolution of the coefficient of friction of devices surrounded by ultralow partial pressures of alcohols up to saturation. Finally the role of self assembled monlayers in vapor phase lubrication is examined. Self-assembled monolayers are ubiquitous in fabrication of free-standing microdevices because of their ability to prevent release related and dormancy related stiction. However their ability to lubricate under sliding and normal contact conditions is not well documented. It can be shown that the energy dissipated per unit area in one sliding cycle due to friction is significant under general loading conditions. Therefore from an energy dissipated standpoint the bond energies of the silane molecules should not be enough to withstand even a short number of cycles. An extension of this is the energy imparted to the surface through a normal loading cycle through a loss of kinetic energy. It can also be shown that this is enough to break the silicon oxygen bonds however this is over a longer time scale than in sliding. Also there is an open question on the role of mobile and non-mobile adsorbed species on friction. Is the mobility of a molecule/layer on a surface an indicator of the effectiveness of the lubrication potential of the layer? Do submonolayer coverages of alcohols "lock-up" to contacting surfaces by disrupting non-corrogated potentials? Is there a distinct lowering of frictional forces at the formation of a monolayer? Controlled adsorption of mobile and non-mobile species on rubbing contacts is necessary to elucidate this physical relationship. To accomplish this one must take into account that friction measurements are highly scale dependant. Therefore to ensure the accuracy of

  15. New lubrication concepts for environmental friendly machines. Tribological, thermophysical and viscometric properties of lubricants interacting with triboactive materials

    Schmidt, R.; Klingenberg, G. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Woydt, M. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2006-07-01

    The present research report was elaborated in close cooperation with Renault SAS, FUCHS Petrolub AG and Ingenieurgesellschaft Auto und Verkehr (IAV). The use of alternative oils for the lubrication of automobile engines has a potential of ecological and technical advantages. It requires the detailed knowledge of several thermophysical and viscometric properties in a large temperature range (mapping). Therefore, the following properties of up to twenty-eight different oils have been measured in the temperature range from 22 C to 150 C: density, heat capacity, thermal conductivity, viscosity at ambient pressure, viscosity under shear rates above 10{sup 6} s{sup -1}, and the viscosity at elevated pressures (maximum 100 MPa). The last two have been measured with a substantially improved and a newly developed apparatus, respectively. The pressure-viscosity coefficient has been measured on four hydrocarbon-based, factory-fill oils, a paraffin oil and twenty-three alternative oils. Nine of the alternative oils are based partly or completely on esters, the other fourteen on polyglycols, two of them additionally on water. Based on the piston ring/cylinder liner simulation tests of BAM performed outside of engines and the SRV {sup registered} tests both performed only under conditions of mixed/boundary lubrication, it is reasonable that thermally sprayed TiO{sub x}-based, Ti{sub n-2}Cr{sub 2}O{sub 2n-1} and (Ti,Mo)(C,N)+23NiMo piston ring coatings, so called 'lubricious or triboactive oxides', can substitute common materials and serve as a promising alternative to commercial piston ring coatings made of strategic Molybdenum and super-finishing intensive blends of WC/Cr{sub 3}C{sub 2}. Some couples qualified for 'zero' wear. In combination with bionotox ester- and polyglycol-based lubricants the coefficient of friction can be reduced fulfilling simultaneously stronger European exhaust emission regulations. Thermally sprayed Ti-based coatings with their

  16. True Stability of Lubricants Determined Using the Ball-on-Disk Test

    Angela Maria Tortora

    2016-01-01

    Full Text Available True stability of lubricants can be determined when there is minimum change in the contact area and also the intervention of wear debris in the contact zone. Here, we have used the ball-on-disk instrument with the migrating point contact, that is, relative motion between the ball and disk condition to fix the contact area and minimize the wear debris at the contact zone. The jump in the friction coefficient indicates the film failure, which appeared earlier for the motor oil 5W30 compared to 5W40. Such profile was not recorded in absence of relative motion. Therefore, 5W40 was considered to have a better lubricant stability than 5W30. Applying the same test condition to the natural lubricants shows that glycerol has better lubricant stability than glycerol-water mixture. Superior true lubricant stability by glycerol and 5W40 can be related to its high viscosity. However, they were less wear resistant compared to low viscosity lubricants like 5W30 and glycerol-water. We suspect the role of microscopic wear debris at the contact zone for this behavior although it should have been avoided in the migrating point contact condition. Overall, ball-on-disk instrument with a migrating point contact condition is an effective technique to determine the stability of lubricants.

  17. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    Highlights: ► Sphingobium sp. P2 effectively degraded various lubricant samples. ► Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. ► High removal efficiency was due to both sorption and degradation processes. ► The immobilized bacteria (4 g L−1) were applied in internal loop airlift bioreactor. ► The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80–90% of the 200 mg L−1 total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L−1 immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 ± 5% TPH and 73 ± 11% chemical oxygen demand (COD) from the carwash wastewater with 25–200 mg L−1 amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  18. Tribological properties of solid lubricating film/microarc oxidation coating on Al alloys

    LUO Zhuang-zi; ZHANG Zhao-zhu; LIU Wei-min; TIAN Jun

    2005-01-01

    A process for preparation of solid lubricating films on micro-arc oxidation(MAO) coating was introduced to provide self-lubricating and wear-resistant multilayer coatings for aluminum alloys. The friction and wear behavior of various burnished and bonded solid lubricating films on the as-deposited and polished micro-arc oxidation coatings sliding against steel and ceramic counterparts was evaluated with a Timken tester and a reciprocating friction and wear tester, respectively. The burnished and bonded solid lubricating films on the polished micro-arc oxidation coatings are superior to the as-deposited ones in terms of the wear resistant behavior, because they lead to strengthened interfacial adhesion between the soft lubricating top-film and the hard polished MAO sub-coating, which helps increase the wear resistance of the solid lubricating film on multilayer coating. Thus the multilayer coatings are potential candidates as self-lubricating and wear-resistant coatings for Al alloy parts in engineering applications.

  19. Wear and transfer characteristics of carbon fiber reinforced polymer composites under water lubrication

    JIA Jun-hong; CHEN Jian-min; ZHOU Hui-di; CHEN Lei

    2004-01-01

    The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron microscopy (SEM) was utilized to examine composite microstructures and modes of failure. The typical chemical states of elements of the transfer film on the stainless steel were examined with X-ray photoelectron spectroscopy (XPS). Wear testing and SEM analysis show that all the composites hold the lowered friction coefficient and show much better wear resistance under water lubricated sliding against stainless steel than those under dry sliding. The wear of composites is characterized by plastic deformation, scuffing, micro cracking, and spalling under both dry-sliding and water lubricated conditions. Plastic deformation, scuffing, micro cracking, and spalling, however, are significantly abated under water-lubricated condition. XPS analysis conforms that none of the materials produces transfer films on the stainless steel counterface with the type familiar from dry sliding, and the transfer of composites onto the counterpart ring surface is significantly hindered while the oxidation of the stainless steel is speeded under water lubrication. The composites hinder transfer onto the steel surface and the boundary lubricating action of water accounts for the much smaller wear rate under water lubrication compared with that under dry sliding. The easier transfer of the composite onto the counterpart steel surface accounts for the larger wear rate of the polymer composite under dry sliding.

  20. Feasibility Study of Vapor-Mist Phase Reaction Lubrication Using a Thioether Liquid

    Morales, Wilfredo; Handschuh, Robert F.; Krantz, Timothy L.

    2007-01-01

    A primary technology barrier preventing the operation of gas turbine engines and aircraft gearboxes at higher temperatures is the inability of currently used liquid lubricants to survive at the desired operating conditions over an extended time period. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence, another form of lubrication is necessary. Vapor or mist phase reaction lubrication is a unique, alternative technology for high temperature lubrication. The majority of past studies have employed a liquid phosphate ester that was vaporized or misted, and delivered to bearings or gears where the phosphate ester reacted with the metal surfaces generating a solid lubricious film. This method resulted in acceptable operating temperatures suggesting some good lubrication properties, but the continuous reaction between the phosphate ester and the iron surfaces led to wear rates unacceptable for gas turbine engine or aircraft gearbox applications. In this study, an alternative non-phosphate liquid was used to mist phase lubricate a spur gearbox rig operating at 10,000 rpm under highly loaded conditions. After 21 million shaft revolutions of operation the gears exhibited only minor wear.

  1. Durability evaluation of perfluoropolyether-lubricant-coated protective diamond-like carbon film by the lateral vibration friction test

    An investigation of the perfluoropolyether (PFPE) lubricant effect on the tribological properties of diamond-like carbon (DLC) film magnetic hard disks was conducted. On the basis of friction force microscopy techniques, we carried out lateral oscillation wear tests to detect DLC film disks with and without PFPE lubricant. The results reveal that the DLC film without lubricant easily fractures and swells. In contrast, the transfer of free lubricant and the progressive destruction of bonding lubricant were observed on the DLC film coated with a PFPE lubricant. The dynamic deformation and durability evaluation of the PFPE lubricant and DLC film system were observed in the lateral oscillation wear test by changing the experimental load and amplitude of lateral vibration applied to a cantilever tip. The destruction of the PFPE-DLC film occurred in the test of the 10 nm oscillation amplitude due to the breaking off of the molecular chain of PFPE

  2. An analysis of used lubricant recycling, energy utilization and its environmental benefit in Taiwan

    Utilizing used lubricants as energy sources has been currently demonstrated to be one of the best available waste management methods. In this regard, used lubricants for use as energy sources in Taiwan thus became popular in recent years. The objective of this study was to present a comprehensive analysis of used lubricant-to-energy in Taiwan, which includes status of lubricant consumption, and used lubricant generation and its recycling (i.e., collection and treatment) management system. It was found that a major market for utilizing used lubricants in Taiwan (over 90%) was reused as fuel oils or auxiliary fuels in the cogeneration system. Under the regulatory authorization of the Waste Management Act and the Petroleum Administration Act, the central competent authorities encouraged the energy-intensive industries in the waste-to-energy through the excess electricity purchase and subsidiary incentives. Based on the certified volume of collected used lubricant and its energy use proportion in 2009, the total energy potential and the environmental benefit of mitigating CO2 emissions in place of fuel oils were preliminarily calculated to be around 9.4 x 102 TJ and 7.3 x 107 kg, respectively. -- Highlights: → A comprehensive analysis of used lubricant-to-energy in Taiwan was carried out, including generation and its recycling management system. → Legislative influences on used lubricant recycling are significant because of subsidiary incentives, including recycling fee submitting and surplus electricity selling. → Total energy potential and environmental benefit of mitigating CO2 emissions were preliminarily calculated to be around 9.4 x 102 TJ and 7.3 x 107 kg, respectively.

  3. Experimental study on molecular arrangement of nanoscale lubricant films—A review

    Zhang, Shaohua; Liu, Yuhong

    2015-09-01

    In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The results show that the variation rules of the friction force, film thicknessand viscosity of the lubricant at the nanoscale are different from elastohydrodynamic lubrication (EHL). It is speculated that these differences are attributed to the special arrangement of the molecules at the nanoscale. However, it is difficult to obtain the molecular orientation and distribution directly from the lubricant molecules in these experiments. In recent years, more and more attention has been paid to use new techniques to overcome the shortcomings of traditional experiments, including various spectral methods. The most representative achievements in the experimental research of molecular arrangement are reviewed in this paper: The change of film structure of a liquid crystal under confinement has been obtained using X-ray method. The molecular orientation change of lubricant films has been observed using absorption spectroscopy. Infrared spectroscopy has been used to measure the anisotropy of molecular orientation in the contact region when the lubricant film thickness is reduced to a few tens of nanometers. In situ Raman spectroscopy has been performed to measure the molecular orientation of the lubricant film semi-quantitatively. These results prove that confinement and shear in the contact region can change the arrangement of lubricant molecules. As a result, the lubrication characteristics are affected. The shortages of these works are also discussed based on practicable results. Further work is needed to separate the information of the solid-liquid interface from the bulk liquid film.

  4. Design of the GLARE tool. A grease lubrication apparatus for research and education

    The GLARE: Grease Lubrication Apparatus for Research and Education was designed as a fourth year thesis project with the University of Ontario Institute of Technology (UOIT). The purpose of the apparatus is to train Ontario Power Generation Nuclear (OPGN) staff to properly lubricate bearings with grease and to help detect early equipment failures. Proper re-lubrication is critical to the nuclear industry as equipment may be inaccessible for long periods of time. A secondary purpose for the tool is for UOIT research and undergraduate laboratories.This abstract provides an overview of the project and its application to the nuclear industry. (author)

  5. LUBRICATION FILM FORMATION MECHANISM OF SLIPPER PAIRS IN LOW SPEED HIGH TORQUE HYDRAULIC MOTORS

    LI Yong; SHI Guanglin; CHEN Zhaoneng

    2007-01-01

    Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.

  6. The optimisation of the viscosity of lubricating slags used in the continuous casting of steel

    Gheorghiu, Csaba Attila; Hepuť, Teodor; Popa, Erika

    2016-06-01

    In the steel continuous casting process, the mould lubrication has a very important technological role, with direct effects on the continuous cast blank quality. The lubrication process is directly influenced by the synthetic flux viscosity (slag thickness), which is determined on its turn by the chemical composition and the temperature. The researches made aimed to establish some correlation relationships between the viscosity, chemical composition and temperature, analytically and graphically expressed, by processing the data in the Matlab program. Based on these correlations the best chemical compositions of the lubrication fluxes are established.

  7. Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate

    Shih-Chen Shi

    2015-04-01

    Full Text Available A novel method for preparing eco-biodegradable lubricant based on hydroxypropyl methylcellulose (HPMC via hydration process is demonstrated. The smooth and homogeneous HPMC coating has a uniform thickness (~35 μm. It has been demonstrated that the preparation parameters play a critical role in controlling the lubricating behavior of the coating; in addition, excess HPMC and water concentration suppress the tribology properties. Nevertheless, a remarkable friction-reduction and anti-wear performance has been obtained. Impressively, the preparation parameter of 5% HPMC + 30 mL water significantly improves lubricant performance and durability. A simple approach for the water-degradability evaluation of HPMC is proposed.

  8. Surface restoration induced by lubricant additive of natural minerals

    Yu, Yang; Gu, Jialin; Kang, Feiyu; Kong, Xianqing; Mo, Wei

    2007-07-01

    The effect of a new-fashioned lubricant additive is studied. The additive is prepared out of natural minerals containing flaky silicate, schungite and some other catalyzers. Applications of the additive obviously improve the surface mechanics properties of steel-steel friction pairs, and the nanohardness and the modulus of the friction surface are increased by 67 and 90%, respectively. The friction surface is especially examined with the high resolution transmission electron microscope (HRTEM), and an amorphous restoration film mostly made up of C with some Si or Si-O amorphous structure doped was found. Considering all research results about the restoration film, this study suggests the film is a sort of diamond-like carbon film (DLC film).

  9. A water soluble lubricating material for high temperatures and pressures

    Fontanella, G.; Cioc, T.; Poenanu, V.; Stanescu, P.

    1980-09-30

    The patent deals with a water soluble lubricant for processing metals with pressure at high temperature, which consists of a mixture in percent of: 3 to 7 emulsified petroleum oil with a viscosity of 37.2 centistokes, 5 to 9 industrial olein, 3 to 7 industrial lanolin, 2 to 4 polyethylenglycol with a molecular weight of 600, 2 to 4 isooctylphenol ether or ethoxylated (8 to 9 moles of ethylenoxide) of isooctylphenyl ether, 13 to 17 colloidal graphite or molybdenum bisulfide and 60 to 64 sodium silicate. For example (kilograms), 490 kg of industrial olein is loaded into a mixture, it is mixed at a speed of 65 to 100 revolutions per minute and at 20 degrees 350 kg of petroleum oil with a viscosity of 37.2 centistokes per 50 degrees is added and then the 350 kg of industrial lanolin and 210 kg of polyethylenglycol.

  10. Leaping shampoo glides on a lubricating air layer

    Lee, S.; Li, E. Q.; Marston, J. O.; Bonito, A.; Thoroddsen, S. T.

    2013-06-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  11. Lubrication and tribology in seawater hydraulic piston pump

    WANG Dong; LI Zhuang-yun; ZHU Yu-quan

    2003-01-01

    Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.

  12. Lubricity Additives and Wear with DME in Diesel Injection Pumps

    Nielsen, Kasper; Sorenson, Spencer C.

    1999-01-01

    Ether as well as its low viscosity compared with conventional fuels. A test rig consisting of conventional fuel injection equipment was developed in order to test the wear-reducing effects of different boundary additives added to a 99.9 % pure Dimethyl Ether fuel base stock. Attempts to characterize...... wear of standard diesel jerk pump plungers elements were made with weight measurements, diameter measurements, 2-D and 3-D surface roughness measurements, and photography by a Michelson interferometer. Several lubricity additives were tested, but none reduced wear levels to those for diesel fuel......In recent years it has been demonstrated that Dimethyl Ether (DME) possess many characteristics that could make it a successful alternative to diesel in the next century. High wear of the fuel injection system has been reported. This is caused by lack of natural protective constituents of Dimethyl...

  13. Some observations in high pressure rheology of lubricants

    Bair, S.; Winer, W. O.

    1981-01-01

    Experimental data are presented on viscosity, elastic shear modulus, and limiting shear stress of 12 liquid lubricants. It is shown that transition histories do affect the limiting shear stress of the materials in the form of isothermal compression resulting in a lower density and lower limiting stress than isobaric cooling. The measured limiting shear stress agrees with EHD traction data at slide-to-roll ratios of 0.1 or more. In pressure viscosity measurements of the polymer solutions, it is found that for some temperatures, the pressure viscosity coefficient of the blend is slightly less than that of the base, which results in the crossing of the viscosity-pressure isotherms at high pressures.

  14. Eco-Friendly Multipurpose Lubricating Greases from Vegetable Residual Oils

    Ponnekanti Nagendramma

    2015-10-01

    Full Text Available Environmentally friendly multipurpose grease formulation has been synthesized by using Jatropha vegetable residual oil with lithium soap and multifunctional additive. The thus obtained formulation was evaluated for its tribological performance on a four-ball tribo-tester. The anti-friction and anti-wear performance characteristics were evaluated using standard test methods. The biodegradability and toxicity of the base oil was assessed. The results indicate that the synthesized residual oil grease formulation shows superior tribological performance when compared to the commercial grease. On the basis of physico-chemical characterization and tribological performance the vegetable residual oil was found to have good potential for use as biodegradable multipurpose lubricating grease. In addition, the base oils are biodegradable and non toxic.

  15. The State of the Art in Cold Forging Lubrication

    Bay, Niels

    1994-01-01

    The manufature of components in steel, aluminium and copper alloys by cold forging production has increased ever since the 1950's. Typical processes are forward rod extrusion and backward can extrusion, upsetting, ironing, tube extrusion and radial extrusion. The tribological conditions in cold...... conversion coatings are based on zinc phosphates but different requirements to the coating properties have to be met in different cold forging operations. This is obtained by adopting different oxidants leading to different composition, layer thickness and morphology of the conversion coatings. Concerning...... aluminium unalloyed and softer alloys like the AA 1000, 3000 and 6000 series can be cold forged with either grease, oil or zinc stearate whereas the harder alloys from series AA 2000, 5000 and 7000 require a conversion coating to carry the lubricant. Three different types of conversion coating are described...

  16. Simulation of temperature distribution of point contacts in mixed lubrication

    LIU; Yuchuan(刘雨川); HU; Yuanzhong(胡元中); WANG; Wenzhong; (王文中); WANG; Hui(王慧)

    2002-01-01

    The numerical simulation of temperature distribution of point contacts in mixed lubrication is presented. The calculating includes two steps. First, temperature rises on two surfaces are obtained by a temperature integration method of transient point heat source. Second, the partition coefficients of heat flux are determined by matching the temperature of two surfaces. Similar to the calculation of elastic deformation, double linear interpolation function is used to get a better accuracy, and moving grid method is used to increase the efficiency of the computation. Due to the symmetry of influence coefficient matrix in the direction perpendicular to the velocity, storage and computational work are further reduced by 50%. Numerical samples validate the algorithm and program. The calculating results of the cases of smooth surface and isotropic sinusoidal surface are presented.

  17. Enhanced DLC wear performance by the presence of lubricant additives

    Romina Paula de Castro Costa

    2011-01-01

    Full Text Available Lubricant additives play significant role for reducing friction and wear of mechanical elements. The additives presented in 5W30 oil were developed for metal surfaces. However, they have been used in engine pieces covered with DLC coatings because they also offer the potential to reduce friction losses and wear in automotive applications. The friction and wear tests were carried out by using a UMT-CETR ball-on-disk tribometer in rotational mode under 5W30 synthetic oil at 100 °C. The X-ray photoelectron spectroscopy (XPS showed the presence of Mo and S in the wear tracks. These elements are from decomposition of ZDDP and MoDTC additives producing MoS2 in DLC surface, which offers enhanced durability by low wear rate.

  18. Leaping shampoo glides on a lubricating air layer

    Lee, S.

    2013-06-10

    When a stream of shampoo is fed onto a pool in one\\'s hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  19. Auto-calibration of ultrasonic lubricant-film thickness measurements

    The measurement of oil film thickness in a lubricated component is essential information for performance monitoring and design. It is well established that such measurements can be made ultrasonically if the lubricant film is modelled as a collection of small springs. The ultrasonic method requires that component faces are separated and a reference reflection recorded in order to obtain a reflection coefficient value from which film thickness is calculated. The novel and practically useful approach put forward in this paper and validated experimentally allows reflection coefficient measurement without the requirement for a reference. This involves simultaneously measuring the amplitude and phase of an ultrasonic pulse reflected from a layer. Provided that the acoustic properties of the substrate are known, the theoretical relationship between the two can be fitted to the data in order to yield reflection coefficient amplitude and phase for an infinitely thick layer. This is equivalent to measuring a reference signal directly, but importantly does not require the materials to be separated. The further valuable aspect of this approach, which is demonstrated experimentally, is its ability to be used as a self-calibrating routine, inherently compensating for temperature effects. This is due to the relationship between the amplitude and phase being unaffected by changes in temperature which cause unwanted changes to the incident pulse. Finally, error analysis is performed showing how the accuracy of the results can be optimized. A finding of particular significance is the strong dependence of the accuracy of the technique on the amplitude of reflection coefficient input data used. This places some limitations on the applicability of the technique

  20. CONOCOPHILLIPS FUEL EFFICIENT HIGH-PERFORMANCE(FEHP) SAE 75W90 REAR AXLE GEAR LUBRICANT

    This report is on the Environmental Verification Test of a ConocoPhillips real axle gear lubricant to determine whether it could save vehicle fuel. It determined that a verifyable fuel savings could be measured.