WorldWideScience

Sample records for active inspection fission

  1. Active inspection fission signatures for the detection, quantification and identification of fissionable materials

    Recently there has been heightened interest in active inspection techniques that can nondestructively detect, identify and quantify fissionable materials for security, nonproliferation and nuclear forensics applications. These active techniques use a source of neutrons or high energy photons to stimulate nuclear reactions in the inspection object and then monitor the emitted secondary radiation for unique fissionable material signatures. These signatures are based on detecting emissions from fission reactions (e.g., prompt and delayed neutrons) and/or non fission reactions (e.g., nuclear resonance fluorescence). In this presentation, the authors will present recent experimental results using prompt neutrons, delayed neutrons and delayed γ rays as fissionable material signatures. The research first focused on how to detect these emissions in an intense radiation environment and the algorithms required to produce unique fissionable material signatures. The sensitivity, accuracy, speed and isotope specificity of each signature was then explored. Current work is focusing on how to effectively combine multiple signatures. (author)

  2. Calculation code of the fission products activity

    The document describes the two codes for the calculation of the fission products activity. The ''Pepin le bref'' code gives the exact value of the beta and gamma activities of completely known fission products. The code ''Plus Pepin'' introduces the beta and gamma activities whose properties are partially known. (A.L.B.)

  3. Food Service Establishment Inspections: Beginning 2005 (ACTIVE)

    U.S. Department of Health & Human Services — This data includes the name and location of active food service establishments and the violations that were found at the time of the inspection. Active food service...

  4. Inspection of licensee - Maintenance programme and activities

    An effective maintenance programme is critical to sustained safe and reliable operation of nuclear power plants. The Working Group on Inspection Practices (WGIP) concluded that when a licensee has an effective maintenance programme, the overall operating safety of the plant is improved and the protection of public health and safety enhanced. All Regulatory Bodies (RB) consider maintenance to be an important area for oversight. Although a variety of inspection practices are being used; RB are actively monitoring licensee performance. Specifically the following conclusions were reached and commendable practices identified: - Maintenance oversight by regulators appears to be in a stable continuous improvement state. Most regulators are executing inspection oversight based on an existing regulatory framework. - The performance of a licensee's maintenance programme is recognized as important part of maintaining nuclear safety. The result of the maintenance program assessment is included in the overall performance assessment of a license. - Maintenance inspection activities are recognized as an important part of the regulatory oversight process. Inspection activities are based on the safety significance and nature of work being performed by the licensee. - The effectiveness of the maintenance inspection activities is recognized to rely on properly qualified inspectors; who are adequately supported by specialists. Training and qualification of inspectors should be based on how the RB reviews and inspects licensee maintenance programmes. - Reporting requirements are identified to provide information on the licensees maintenance programme, and to help guide inspection activities. - Performance Indicators are recognized as a useful tool for helping focus regulatory activities. Basic PI are identified and tracked by the RB, and use of PI by the licensee is monitored. - Inspections are designed to confirm that the licensee is planning and scheduling maintenance with due

  5. Fission investigations and evaluation activities at IRMM

    The IRMM has a longstanding tradition in the field of neutron induced fission physics studies. It is especially well equipped with world-class facilities as the high resolution neutron time-of-flight spectrometer GELINA and the 7 MV Van de Graaff accelerator for the quasi-monoenergetic neutron production. During the past decade several neutron induced fission reactions have been studied in the energy range from eV up to 6 MeV and spontaneous fission. The isotopes under investigation were 235,238 U(n,f), 239 Pu(n,f), 237 Np(n,f), 252 Cf(SF) and 233 Pa(n,f). For all isotopes but 233 Pa, the fission fragment mass-yield and total kinetic energy distributions were measured. 233 Pa was only investigated for the fission cross-section. The results have been described within the multi-modal fission model. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) as well as the the symmetric superlong mode were used for all the isotopes but 252 Cf. For this isotope at least one other fission mode had to be taken into account, the so--called standard III (S3) mode. Since the theoretical interpretation of experimental results was rather successful also an attempt was made to improve the evaluation of the respective fission cross-section as well as their neutron multiplicities and spectra. Here, the statistical model for fission cross-section evaluation was extended by including the multi-modality concept for fission. Based on the underlying model, separate outer fission barriers have been considered for each mode, while the inner barriers and isomeric wells are assumed to be the same. The self-consistent calculations of the fission cross-section as well as total, capture, elastic and inelastic cross-sections were in good agreement with the experimental data and evaluated nuclear data libraries. As a side product, also fission fragment mass yield distributions have been deduced at incident neutron energies hitherto unaccessible. Very

  6. Inspection of licensee activities in emergency planning

    The CNRA believes that safety inspections are a major element in the regulatory authority's efforts to ensure the safe operation of nuclear facilities. Considering the importance of these issues, the Committee has established a special Working Group on Inspection Practices (WGIP). The purpose of WGIP, is to facilitate the exchange of information and experience related to regulatory safety inspections between CNRA Member countries Following discussions at several meetings on the topic of what is expected by the regulatory body regarding inspection criteria, WGIP proposed putting together a compilation of Member countries practices on regulatory inspection practices with respect to licensee emergency planning. CNRA approved this task and this report. Information was collected from a questionnaire which was issued in 1996. The report presents information on regulatory inspection activities with respect to emergency planning in NEA Member countries. The focus of the report is on the third section. It reviews the similarities and differences in inspection practices to evaluate compliance with the requirements over which the regulatory body (RB) has jurisdiction

  7. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  8. RPII Inspection and Licensing Activities and Annual Inspection Programme for 2013

    The objective of this report is to provide an overview of inspection activities of the Radiological Protection Institute of Ireland RPII, to examine the evolution in licensee numbers and to outline the rationale in developing annual inspection programmes. All inspection activities are now carried out within the framework of a quality management system including inspection planning, the training of inspectors, the conduct of inspections as well as post inspection follow up and review. This report also provides an overview of the main features of the quality system

  9. Comparison of activation in fission and fusion spectrum neutron beams

    The materials used in the construction of fusion reactors have to satisfy a number of criterions, one of the important being low activation due to neutron irradiation. Experimental analysis of the activation of candidate materials for the first wall is performed with the irradiation of samples in various neutron fields, frequently in the field of a fission reactor. In the present work a calculation is performed to compare the expected activation of candidate materials intended to be used for the first wall in fusion reactors with the activation of a sample of the same material in a fission reactor beam. The FISPACT code is used for activation calculations. An investigation, to what extent the results of activation in a fission spectrum neutron beam, where most neutrons have energies of less than 2 MeV, mimic the real situation in a fusion reactor with the peak neutron energy around 14 MeV, is performed. (author)

  10. On the potential of active coincidence counting using a spontaneous fission source to induce fission

    Using the one-group point-model equations as a guide, we compare the active neutron Doubles rate from a multiplying item interrogated with a spontaneous fission neutron source with that of a random neutron source of equal emission rate. We find that, especially for highly multiplying items, 252Cf is likely to provide a viable alternative to the commonly used Am/Li interrogation source. We conclude that detailed design studies and experiments are warranted to develop this concept into practical assay tools. Keywords: coincidence counting; active interrogation; 252Cf active driver; point-model; collar detector

  11. Developing inspection strategies to support local activities

    Jensen, Per Langå

    2003-01-01

    An analysis of the Danish development in regulatory praxsis within occupational health and safety with a detailed description of Adapted Inspection.......An analysis of the Danish development in regulatory praxsis within occupational health and safety with a detailed description of Adapted Inspection....

  12. Irradiation effects upon activities of fission product iodine

    This report describes the experimental study of the irradiation effects upon activities of fission product iodine made in the period from June, 1981 to March, 1982. Chemical transport of iron was studied under irradiation of cesium iodide by electron beam. Deposited ion was identified on the high temperature surface, which can be taken to certify the appropriateness of the model of the iodine-including chemical transport of stainless-steel cladding components to fuel in the LMFBR fuel pins. (author)

  13. Telomerase activation after recruitment in fission yeast.

    Armstrong, C. A.; Pearson, S R; Amelina, H.; Moiseeva, V.; Tomita, K.

    2014-01-01

    Summary Current models depict that telomerase recruitment equates to activation. Telomeric DNA-binding proteins and the telomerase accessory proteins coordinate the recruitment of telomerase to the ends of chromosomes in a telomere length- and cell-cycle-dependent manner [1–4]. Recent studies have demonstrated that the telomeric protein TPP1 and its binding protein TIN2 are key proteins for both telomerase recruitment and processivity in mammalian cells [5–7]. Although the precise molecular m...

  14. Delayed fission

    Delayed fission is a nuclear process that couples beta decay and fission. In the delayed fission process, a parent nucleus undergoes beta decay or electron capture and thus populates excited states in the daughter nucleus. This review covers experimental methods for detecting and measuring delayed fission. Experimental results (ECDF activities and beta-DF activities) and theory are presented. The future prospects for study of delayed fission are discussed. 50 refs., 8 figs., 2 tabs

  15. U.S. Industry Activities on Inspection of CRDM Penetrations

    The discovery of primary water stress corrosion cracking (PWSCC) in control rod drive mechanisms (CRDM) penetrations in U.S. and European plants prompted the U.S. nuclear industry to focus considerable effort on development and implementation of effective inspection methods. In particular, cracking was discovered in butt welds connecting reactor vessel nozzles to main coolant piping and in control rod drive mechanism (CRDM) head penetration base material and attachment welds. The EPRI Materials Reliability Program (EPRI-MRP) formed an Inspection Committee to address development of industry guidance for inspection of these components, development of effective non-destructive examination (NDE) methods, and demonstration of inspection processes. This paper discusses the MRP activities pertaining to inspection of CRDM penetrations. Results of demonstrations and field inspections conducted will also be summarized. (authors)

  16. Fission and spallation data evaluation using induced-activity method

    Karapetyan, G S

    2015-01-01

    The induced-activity investigations in off-line analysis performed in different experiments, concerning pre-actinide and actinide nuclei, are here presented and discussed. Generalized expressions for the determination of independent yields/cross sections of radioactive nuclei, formed in the targets, are derived and analysed. The fragment mass distribution from U-238, Th-232 and Ta-181 photofission at the bremsstrahlung end-point energies of 50 and 3500 MeV, and from Am-241, U-238 and Np-237 fission induced by 660-MeV protons, are scrutinized from the point of view of the multimodal fission approach. The results of these studies are hence compared with theoretical model calculations using the CRISP code. We subsequently discuss the complex particle-induced reaction, such as heavy-ions and deuterons, by using the thick-target thick-catcher technique and the two-step vector model framework as well. This is accomplished in order to present the investigation of the main processes (fission, spallation and (multi)fr...

  17. Covariances for measured activation and fission ratios data

    Methods which are routinely used in the determination of covariance matrices for both integral and differential activation and fission-ratios data acquired at the Argonne National Laboratory Fast-Neutron Generator Facility (FNG) are discussed. Special consideration is given to problems associated with the estimation of correlations between various identified sources of experimental error. Approximation methods which are commonly used to reduce the labor involved in this analysis to manageable levels are described. Results from some experiments which have been recently carried out in this laboratory are presented to illustrate these procedures. 13 refs., 1 fig., 5 tabs

  18. Integrated separation scheme for measuring a suite of fission and activation products from a fresh mixed fission and activation product sample

    Mixed fission and activation materials resulting from various nuclear processes and events contain a wide range of isotopes for analysis spanning almost the entire periodic table. This work describes the production of a complex synthetic sample containing fission products, activation products, and irradiated soil, and determines the percent chemical recovery of select isotopes through the integrated chemical separation scheme. Based on the results of this experiment, a complex synthetic sample can be prepared with low atom/fission ratios and isotopes of interest accurately and precisely measured following an integrated chemical separation method. (author)

  19. Approximation of the decay of fission and activation product mixtures

    The decay of the exposure rate from a mixture of fission and activation products is a complex function of time. The exact solution of the problem involves the solution of more than 150 tenth order Bateman equations. An approximation of this function is required for the practical solution of problems involving multiple integrations of this function. Historically this has been a power function, or a series of power functions, of time. The approach selected here has been to approximate the decay with a sum of exponential functions. This produces a continuous, single valued function, that can be made to approximate the given decay scheme to any desired degree of closeness. Further, the integral of the sum is easily calculated over any period. 3 refs

  20. Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials

    Using a beam of tagged 14.1 MeV neutrons to probe for the presence of fissionable materials, we have measured n-γ-γ coincidences from depleted uranium (DU). The multiple coincidence rate is substantially above that measured from lead, tungsten, and iron. The presence of coincidences involving delayed gammas in the DU time spectra provides a signature for fissionable materials that is distinct from non-fissionable ones. In addition, the information from the tagged neutron involved in the coincidence gives the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is more compact and that produces much less radiation than other solutions

  1. Implementation of a Quality Management System in regulatory inspection activities

    The Institute for Radioprotection and Dosimetry - IRD -, of the Brazilian National Nuclear Energy Commission, CNEN, started in 2001, the implementation of a quality management system (SGQ), in the inspection, testing and calibration activities. The SGQ was an institutional guideline and is inserted in a larger system of management of the IRD started in 1999, with the adoption of the National Quality Award criteria - PNQ, within the Project for Excellence in Technological Research of Associacao Brasileira das Instituicoes de Pesquisas Tecnologicas - ABIPTI (Brazilian Association of Technological Research institutions). The proposed quality management system and adopted at the IRD was developed and implemented in accordance with the requirements of NBR ISO/IEC 17025 - General requirements for the competence of testing and calibration laboratories, and ISO/IEC 17020 - General criteria for operation of various types of bodies performing inspections. For regulatory inspection activities, the quality system was implemented on three program inspection services of radiological protection led, respectively, by clinics and hospitals that operate radiotherapy services; industries that use nuclear gauges in their control or productive processes and power reactor operators (CNAAA) - just the environmental part. It was formed a pioneering team of inspectors for standardizing the processes, procedures and starting the implementation of the system in the areas. This work describes the implementation process steps, including difficulties, learning and advantages of the adoption of a quality management system in inspection activities

  2. Treatment and solidification of high active fission product solutions

    On reprocessing spent fuel elements, > 97% of the fission products are found in the high active waste (HAW) solution. In order to avoid large amounts of sludge formation arising from phosphates produced by TBP degradation during evaporation and storage of these high level wastes, the suspended and dissolved TBP must be removed immediately from the HAW. It is proposed to separate the TBP by steam-stripping. The the HAW will be concentrated in an evaporator, the concentration factor depending on the amount of sludge formation and the heat content of the concentrate. These concentrates may be stored for short periods in stainless steel tanks. Acid concentration and waste volume may be further reduced by in-tank denitration and evaporation. For vitrification of the HAW liquid feed, ceramic melters are being developed universally. The first active plant to use a liquid feed ceramic melter is the German plant PAMELA, which is being built at Mol in Belgium, with an operational date of 1985

  3. Confidence building in and through fission and fusion activities

    The peaceful uses of atomic energy are most suitable for achieving worldwide confidence building for the following reasons. (1) In spite of the need for peaceful uses of nuclear energy, the world is facing difficulties in the public perception and acceptance of nuclear works and facilities. (2) The above difficulties are due to many factors, such as the two sides of nuclear energy peaceful and military, the possibility of a large-scale reactor accident, the lack of understanding about radiation and radioactivity, and finally, emotion and egoism. Some of these factors are unique to nuclear-energy, but in other cases of public reactions, there are many facets similar to the above factors. (3) The public concern about safety is at its highest, broadest and severest point ever, coincident with the highest life expectancy in history. Over-precaution and over-protection about certain things may sometimes spoil one's health. Nuclear energy is most definitely suffering from such a trend. As a result, a severe nuclear accident in any country results in severe damage worldwide no manner in what form the real physical effects reach other countries. (4) The huge science and technology efforts required for fission and fusion activities cannot be fully achieved by one country. Explanations of some of the above factors are given. 2 refs

  4. Role of independent inspections in verification activities

    Verification activities have an important place in the activities associated with the implementation of a quality assurance programme and concern the compliance of all work with clearly defined requirements. In the first part of this paper the author reviews these requirements, classifying them into four groups: specific requirements of the product in question, particular requirements of the organization responsible for manufacturing the product, requirements of successive customers, and regulatory requirements. The second part of the paper examines the two approaches which can be adopted to establish verification systems outside the organizational structure. The first approach is to pool or organize the monitoring resources of different bodies with common requirements (electricity producer and its principal contractors); the second consists in using an external monitoring body. The third part of the paper describes the system used in France, which is the first of the methods described above. It requires constant co-operation between the different parties involved, and these have established two associations for the purpose of applying the system - AFCEN (nuclear) and AFCEC (conventional). The advantages and disadvantages of the two possible approaches to verification of activities must be assessed within their industrial and commercial regulatory context. In France the best method has proved to be the pooling of resources. This has led to a direct and fruitful dialogue between customers and suppliers aimed at defining common requirements (Design and Construction Regulations (RCC)) and monitoring their application. (author)

  5. Active Classification: Theory and Application to Underwater Inspection

    Hollinger, Geoffrey A; Sukhatme, Gaurav S

    2011-01-01

    We discuss the problem in which an autonomous vehicle must classify an object based on multiple views. We focus on the active classification setting, where the vehicle controls which views to select to best perform the classification. The problem is formulated as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We formally analyze the benefit of acting adaptively as new information becomes available. The analysis leads to a probabilistic algorithm for determining the best views to observe based on information theoretic costs. We validate our approach in two ways, both related to underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship hull inspection with imaging sonar. These tasks encompass both the planning and recognition aspects of the active classification problem. The results demonstrate that actively planning for informative views can reduce the number of necessary views by up to 80% when compared to passive methods...

  6. Active, Non-Intrusive Inspection Technologies for Homeland Defense

    James L. Jones

    2003-06-01

    Active, non-intrusive inspection or interrogation technologies have been used for 100 years - with the primary focus being radiographic imaging. During the last 50 years, various active interrogation systems have been investigated and most have revealed many unique and interesting capabilities and advantages that have already benefited the general public. Unfortunately, except for medical and specific industrial applications, these unique capabilities have not been widely adopted, largely due to the complexity of the technology, the overconfident reliance on passive detection systems to handle most challenges, and the unrealistic public concerns regarding radiation safety issues for a given active inspection deployment. The unique homeland security challenges facing the United States today are inviting more "out-of-the-box" solutions and are demanding the effective technological solutions that only active interrogation systems can provide. While revolutionary new solutions are always desired, these technology advancements are rare, and when found, usually take a long time to fully understand and implement for a given application. What's becoming more evident is that focusing on under-developed, but well-understood, active inspection technologies can provide many of the needed "out-of-the-box" solutions. This paper presents a brief historical overview of active interrogation. It identifies some of the major homeland defense challenges being confronted and the commercial and research technologies presently available and being pursued. Finally, the paper addresses the role of the Idaho National Engineering and Environmental Laboratory and its partner, the Idaho Accelerator Center at Idaho State University, in promoting and developing active inspection technologies for homeland defense.

  7. Active, Non-Intrusive Inspection Technologies for Homeland Defense

    Active, non-intrusive inspection or interrogation technologies have been used for 100 years - with the primary focus being radiographic imaging. During the last 50 years, various active interrogation systems have been investigated and most have revealed many unique and interesting capabilities and advantages that have already benefited the general public. Unfortunately, except for medical and specific industrial applications, these unique capabilities have not been widely adopted, largely due to the complexity of the technology, the overconfident reliance on passive detection systems to handle most challenges, and the unrealistic public concerns regarding radiation safety issues for a given active inspection deployment. The unique homeland security challenges facing the United States today are inviting more ''out-of-the-box'' solutions and are demanding the effective technological solutions that only active interrogation systems can provide. While revolutionary new solutions are always desired, these technology advancements are rare, and when found, usually take a long time to fully understand and implement for a given application. What's becoming more evident is that focusing on under-developed, but well-understood, active inspection technologies can provide many of the needed ''out-of-the-box'' solutions. This paper presents a brief historical overview of active interrogation. It identifies some of the major homeland defense challenges being confronted and the commercial and research technologies presently available and being pursued. Finally, the paper addresses the role of the Idaho National Engineering and Environmental Laboratory and its partner, the Idaho Accelerator Center at Idaho State University, in promoting and developing active inspection technologies for homeland defense

  8. Proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications

    These proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications are divided into 4 sessions bearing on: - data needs: 4 conferences - experimental work: 11 conferences - theoretical work: 4 conferences - evaluation work: 5 conferences

  9. Multistep Phosphorelay Proteins Transmit Oxidative Stress Signals to the Fission Yeast Stress-activated Protein Kinase

    Nguyen, Aaron Ngocky; Lee, Albert; Place, Warren; Shiozaki, Kazuhiro

    2000-01-01

    In response to oxidative stress, eukaryotic cells induce transcription of genes required for detoxification of oxidants. Here we present evidence that oxidative stress stimuli are transmitted by a multistep phosphorelay system to the Spc1/Sty1 stress-activated protein kinase in the fission yeast Schizosaccharomyces pombe. The fission yeast mpr1+ gene encodes a novel protein with a histidine-containing phosphotransfer domain homologous to the budding yeast Ypd1. Spc1 activation upon oxidative ...

  10. Recent Experiments on the Beta Activity of Fission Products from the Thermal-Neutron Fission of U233, U235 and Pu239

    The build-up of beta-activity of fission products from the low-energy fission of U233 and U235 has been measured as a function of the lime t after starting the irradiation of the fissionable material with thermal neutrons. By differentiating the beta-activity divided by the constant fission product rate one obtains the mean beta-decay rate β(t) per fission as a function of the time t after fission. The uranium targets were mounted within a 4π proportional counter, coincident conversion electrons and γ-rays being thereby eliminated. The background of fast neutrons and γ-rays was strongly reduced by using a neutron beam tube with a liquid nitrogen-cooled bismuth single crystal filter. The fission product rate was measured with the same counter. The measurements cover the time interval from 0.01 s to 10 h. The results are compared with other experimental data and existing theories. The total number of beta-decays per fission was found to be 5.25 ± 0.2 and 5.93 ± 0.2 for U233 and U235 respectively compared with theoretical values of 5.27 and 6.10 respectively. (author)

  11. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress

    Courchet, Julien; Lewis, Tommy L.; Losón, Oliver C.; Hellberg, Kristina; Young, Nathan P.; Chen, Hsiuchen; Polleux, Franck; Chan, David C.; Shaw, Reuben J.

    2016-01-01

    Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA–linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)–activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission. PMID:26816379

  12. Tax Evasion Dynamics in Romania Reflected by Fiscal Inspection Activities

    CORINA-MARIA ENE

    2010-06-01

    Full Text Available The paper aims to provide a panoramic view of the dynamics of tax evasion in Romania, reflected in terms of fiscal inspection activities. The author used the official data published by the institutions with attributions on the line of identification and fighting against tax evasion (National Agency of Fiscal Administration and Financial Guard with the view to reflect the real situation concerning the number of inspections, quantify and sanction tax evasion for 2003-2008 periods. Although the number of fiscal inspections and the number of tax payers who have violated the rules of fiscal discipline decreased compared with 2003, the frequency of tax evasion remained. At the same time, based on the data referring to the level and dynamics of the tax dodger phenomenon appreciations have been made regarding the fiscal discipline of the Romanian tax payer and to the attitude of the qualified institutions in discovering and sanctioning the fraudulent tax evasion. In this respect, the author observed that the level of willingness of tax legislation in relation to the Romanian tax payer has not changed considerably.The level of identified tax evasion reported to real GDP increased slightly. This situation can be interpreted as a success of institutions in charge of identification and fighting of tax evasion, a result of the increase of fiscal inspection number and detection probability, but also a result of GDP growth at a rate lower than the identified tax evasion. The author has also tried to find a causality relation between the option for tax evasion and corruption. The author found that a corrupt environment facilitates the decision to evade depending on detection probability, penalty system and bribery level as discouraging factors for tax evasion. The level of identified tax evasion is smaller than the real level of entire tax evasion, an important part being impossible to determine because of corruption.

  13. Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy

    A new method has been developed for separation and purification of fission 99Mo from neutron activated uranium–aluminum alloy. Alkali dissolution of the irradiated target (100 mg) results in aluminum along with 99Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of 99Mo was carried out using anion exchange method. The radiochemical yield of fission 99Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. - Highlights: • 99Mo separation, purification method developed from neutron activation of 100 g U–Al alloy. • Uranium, fission, activation product decontamination by alkali dissolution of activated target. • Purification by Al(OH)3, AgI/AgIO3, Mo-α-benzoin oxime precipitation and anion exchange. • Very high decontamination factors for alpha activity obtained. • Final 99Mo product (recovery >80%) complied with international pharmacopoeia standards

  14. Regulatory inspection activities related to inspection planning, plant maintenance and assessment of safety. Proceedings of an international workshop

    The NEA Committee on Nuclear Regulatory Activities (CNRA) believes that an essential factor in ensuring the safety of nuclear installations is the continuing exchange and analysis of technical information and data. To facilitate this exchange the Committee has established Working Groups and Groups of Experts in specialised topics. CNRA believes that safety inspections are a major element in the regulatory authority's efforts to ensure the safe operation of nuclear facilities. Considering the importance of these issues, the Committee has established a special Working Group on Inspection Practices (WGIP). The purpose of WGIP, is to facilitate the exchange of information and experience related to regulatory safety inspections between CNRA Member countries. This was the 3. international workshop held by the WGIP on regulatory inspection activities. The focus of this workshop was on 3 main topics; Inspection Planning, Plant Maintenance and Assessment of Safety. This document presents the proceedings from the workshop, including: workshop programme, results and conclusions, papers and presentations and the list of participants. The main purpose of the Workshop is to provide a forum of exchange of information on the regulatory inspection activities

  15. Power Installations based on Activated Nuclear Reactions of Fission and Synthesis

    Grigoriev, Yuriy

    2016-01-01

    The general scheme of power installations based on nuclear reactions of fission and synthesis activated by external sources is analyzed. The external activation makes possible to support nuclear reactions at temperatures and pressures lower than needed for chain reactions, so simplifies considerably practical realization of power installations. The possibility of operation on subcritical masses allows making installations compact and safe at emergency situations. Installations are suitable for transmutation of radioactive nuclides, what solves the problem of utilization of nuclear waste products. It is proposed and considered schemes of power installations based on nuclear reactions of fission and fusion, activated by external sources, different from ADS systems. Variants of activation of nuclear reactions of fission (U-235, 238, Pu-239) and fusion (Li-6,7, B-10,11) are considered.

  16. Multiple scattering Compton camera with neutron activation for material inspection

    We designed a multiple scattering Compton camera (MSCC) based on a lanthanum bromide (LaBr3:Ce) scintillator to detect neutron-activated prompt gamma-rays for material inspection. The system parameters such as detector thickness and inter-detector distances were optimized on the basis of figure of merit (FOM). The FOM was maximized when the inter-detector distance and detector thickness were 18 cm and 1.5 cm, respectively. Under the optimized conditions, energy spectra and spatial images were obtained to identify various substances, and the results matched well with theoretical data. The probability of multiple Compton scattering was higher than that of conventional Compton scattering at high energies (~MeV), which proved the effectiveness of MSCC to detect prompt gamma-rays. Simulations with realistic conditions showed the feasibility of using the MSCC investigate of materials in field applications

  17. PEPIN, Methodology for Computing Concentrations, Activities, Gamma-Ray Spectra, and Residual Heat from Fission Products

    1 - Description of program or function: The concentrations, activities, gamma-ray spectra and residual heat from fission products can be calculated as a function of time for instantaneous fission or for one or more irradiation steps. 2 - Methods: Using the basic data in the libraries, the PEPIN code solves the differential equations satisfied by the fission product concentrations. Data Libraries: Independent Yields Library: 8 independent yields for 235U, 238U, 239U, 232U, 233U. Chain library: Precursor chain file for 635 nuclides. Gamma-Ray Energies Library: Average beta and gamma-ray energies in increasing order. 3 - Restrictions on the complexity of the problem: The number of nuclides must not exceed 650. The number of Gamma-Rays must not exceed 8500. The number of decay times must not exceed 59. The number of irradiation steps must not exceed 40

  18. Measurement of the neutron activity of a 252Cf source relative to the average number of prompt neutrons emitted per fission for the spontaneous fission

    A method was developed for measuring the absolute neutron activity of a large 252Cf source. The neutron counting assembly is composed of eight BF3 counters mounted in a large tank filled with water which is used as a moderator. The detection efficiency is determined using a low activity 252Cf source. The method is based on the identification of every fission event, followed by the counting of the fission neutrons detected by the BF3 counters during a time interval equal to the maximum neutron lifetime in the moderator. The efficiency is thus obtained relative to the average number of prompt neutrons emitted per 252Cf spontaneous fission which is commonly used as a standard. The measurement accuracy is estimated to be of the order of 1%

  19. Risk informed approach to the in-service inspection activities

    In the present paper, the aspects of Risk Informed In-Service Inspection (RI-ISI) are discussed. Slovenian Nuclear Safety Administration (SNSA) and its authorized organization for the ISI activities, Institute of Metals and Technologies (IMT), are actually permanently involved in the ISI processes of the nuclear power plant (NPP) Krsko. Based on the previous experience on the ISI activities, evaluation of the results and review of the existing practice in nuclear world, the activities are started to asses the piping of systems in the light of probability of failure. This is so called Risk Informed approach. By the design established criteria, standards and practice gives good fundaments for the improvements implementation. Improvements can be done on the way that the more broad knowledge about safety important components of the systems shall bee added to the basic practice. It is necessary to identify conditions of the safety important components, such as realistic stress and fatigue conditions, material properties changes due aging processes, the temperature cycling effects, existing flaws characterization in the light of the previous detection and equipment technique used, assessment of the measurement accuracy on the results etc. In addition to this deterministic approach, the principles of risk evaluation methods should be used. NPP Krsko has, as practically majority of NPP's, probabilistic risk assessment (PRA) studies for all safety important systems and components. The methods and results from these studies can be efficiently used to upgrade classical deterministic results, based on which the in-service program as a whole is usually done. In addition to the above mentioned, risk assessment and evaluation of the piping shall be done, which is not covered by the existing PRA analysis. To do this it is necessary to made risk evaluation of the piping segments, based on previous structural element probability assessment. Probabilistic risk assessment is important

  20. The determination of age of the fault activities of Shougou Hill, Guangzhou by thermoluminescence dating and nuclear fission track dating

    The age of the fault activities had been determined by TL dating and nuclear fission track dating. The results show that the fault of Shougou Hill had large and intense activities in mid-cenozoic era, however, intense activities still occurred in early pleistocene and mid-pleistocene. The last activity of the fault occurred 430 000 years ago. The data of TL dating are conformable with data of nuclear fission track dating

  1. Assessment of failed fuel and tramp uranium based on the activity of fission products in the primary circuit

    We have proposed a model for the nuclear fuel state of the operating power reactor from the physical characteristics of nuclear fission products which have been produced by nuclear reaction between neutron and uranium-235. The model equation for nuclear fission products release has been split into size independent steps: 1) calculation of the fission products generation inside the solid nuclear fuel, 2) release from the fuel to the fuel surface in three different ways, 3) release between the fuel surface and gap, 4) release from the defective nuclear fuel to the reactor coolant, 5) mass balance in the coolant taking into account the purification rate, 6) separation of fission products sources with two parts, i.e. fuel and tramp uranium. We have solved the equation of the model, calculated the activity of fission products released from the defected fuel to coolant and put the experimental activity data of the nuclear fission products in the primary coolant to determine the number of defective fuel and amount of tramp uranium by using the computer. The measurement and analysis of nuclear fission products in the primary coolant of nuclear power reactors have been carried out at the pressurized water reactor, Korea Nuclear Unit 2, 7 and 8. We have used the iodine isotopes among the nuclides of fission products. The analysis results have been well agreed with the results of diffusion model and of kinetics model. (author). 7 refs, 2 figs, 8 tabs

  2. Application of the activation analysis using the method of retarded fission neutrons counting for the determination of some fissionable nuclides

    A system for the detection and counting of delayed neutrons which allows the analysis of some fissile and fertile nuclides, in samples of milligram size, was developed. This was applied for the analysis of natural uranium and thorium and also for determining the 235U/238U ratio in non-irradiated samples which contain uranium with different degrees of enrichment in 235U. The spectrum of activated neutrons was varied in order to discriminate the nuclides, by covering or not the sample with a material (cadmium or boron) able to absorb low energy neutrons. Determination of 235U/238U ratios, through the number of delayed neutrons, was made by drawing a calibration curve using standards ranging from 0.5% to 93% on 235U; the accuracy of the method was also examined. In a first step, conditions for a simultaneous and non-destructive analysis of uranium and thorium were developed. The interference between these two nuclides was studied, using simulated samples. Real samples were provided by Nuclemon and IAEA. For samples with uranium concentration in the range of percentages and thorium concentration of some ppm, uranium interferes in the determination of thorium through the non-destructive analytical method. For this case, a fast and quantitative chemical method was studied which allows for the separation of thorium from uranium before the determination of throrium concentration by counting the delayed fission neutrons. It was found that the results obtained by both destructive and non-destructive methods are very consistent and can be considered statistically equivalent within a confidence level of 95%. (Author)

  3. Actinides separation and long-lived fission products from the high activity effluent

    The aim of this document is to study the decontamination of a high activity effluent in minor actinides-α transmitters (241Am, 243Am, 243Cm, 245Cm, 237Np, 238Pu, 242Pu, 235U, 238U) and long-life fissions products (133Cs, 137Cs) and then the separation of Am, Cm, Np, Cs and Pu, U traces. (TEC). 16 figs., 1 tab

  4. Regulatory inspection activities on nuclear power plant sites during construction in the United Kingdom

    The work of regulatory inspection of the construction of the plant on the site is performed not only by the inspector who has been allocated to inspection duties for that site but also by the specialist staff who are involved with the safety assessment of the plant. The coordination of this work is described in the paper and examples are given of inspection activities associated with the enforcement requirements of license conditions as well as those related to the inspection of the plant itself

  5. Instrumental neutron activation analysis in geochemistry. Emphasis on spectral and uranium fission product interferences

    Full text: Since the advent of semiconductor detectors, several contributions to the INAA methodology allowed to resolve and analyse complex gamma ray spectra enhancing thus, the reliability of this analytical technique. Despite attainable performances, some difficulties due to spectral and fission product interferences remain affecting thus the reliability of analytical results. A typical case is that discussed by Landsberger et al. on the determination of Sm in the presence Gd, U and Th. In practice spectral interferences in INAA are resolved by allowing shorter-lived radionuclides to decay and counting the remaining long-lived radionuclides. It is also proceeded to the subtraction of contributions of interfering radionuclides using their interference free analytical photopeaks. Both of them are tedious and time consuming, particularly if radionuclides of interest have similar γray spectra, as is the case for 153Sm and 153Gd to which further interferences come from 239Np and 233Pa. On the other hand, the presence of fissionable products such as U and Th in geological samples, and particularly in high grade U and Th samples, enhances difficulties in the accuracy attainable by instrumental neutron activation analysis. They give rise, during irradiation, to identical (n,γ) products from isotopes of natural elements. The present contribution deals with 2 aspects of resolution of interferences in instrumental neutron activation analysis: 1. The application of a multicomponent method for the resolution of spectral interferences in gamma spectrometry using simultaneous equations method. Assume m elements are to be determined by INAA whose (n,γ) products interfere at their n analytical γ-rays. An overall analytical response can be assumed to consist of several additive individual responses from m interfering radionuclides. The mathematical terms can be expressed by means of the following equation: Pn=k+Σain Aiεi Pn = Photopeak area at the specific interfering n

  6. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming.

    Prieto, Javier; León, Marian; Ponsoda, Xavier; Sendra, Ramón; Bort, Roque; Ferrer-Lorente, Raquel; Raya, Angel; López-García, Carlos; Torres, Josema

    2016-01-01

    During the process of reprogramming to induced pluripotent stem (iPS) cells, somatic cells switch from oxidative to glycolytic metabolism, a transition associated with profound mitochondrial reorganization. Neither the importance of mitochondrial remodelling for cell reprogramming, nor the molecular mechanisms controlling this process are well understood. Here, we show that an early wave of mitochondrial fragmentation occurs upon expression of reprogramming factors. Reprogramming-induced mitochondrial fission is associated with a minor decrease in mitochondrial mass but not with mitophagy. The pro-fission factor Drp1 is phosphorylated early in reprogramming, and its knockdown and inhibition impairs both mitochondrial fragmentation and generation of iPS cell colonies. Drp1 phosphorylation depends on Erk activation in early reprogramming, which occurs, at least in part, due to downregulation of the MAP kinase phosphatase Dusp6. Taken together, our data indicate that mitochondrial fission controlled by an Erk-Drp1 axis constitutes an early and necessary step in the reprogramming process to pluripotency. PMID:27030341

  7. Determination of uranium fission products interference factors in neutron activation analysis

    Neutron activation analysis is a method used in the determination of several elements in different kinds of matrices. However, when the sample contains high U levels the problem of 235U fission interference occurs. A way to solve this problem is to perform the correction using the interference factor due to U fission for the radionuclides used on elemental analysis. In this study was determined the interference factor due to U fission for the radioisotopes 141Ce, 143Ce, 140La, 99Mo, 147Nd, 153Sm and 95Zr in the research nuclear reactor IEA-R1 on IPEN-CNEN/SP. These interference factors were determined experimentally, by irradiation of synthetic standards for 8 hours in a selected position in the reactor, and theoretically, determining the epithermal to neutron fluxes ratio in the same position where synthetic standards were irradiated and using reported nuclear parameters on the literature. The obtained interference factors were compared with values reported by other works. To evaluate the reliability of these factors they were applied in the analysis of studied elements in the certified reference materials NIST 8704 Buffalo River Sediment, IRMM BCR- 667 Estuarine Sediment e IAEA-SL-1 Lake Sediment. (author)

  8. Improving of methods and organization of the inspection activity of The Bank of Russia

    Fedulov Vladislav Igorevich

    2011-10-01

    Full Text Available The article presents information about the main causes of bank failures at present, that has been taken to find some lacks of modern organization of the Bank of Russia inspection activity. In order to eliminate the revealed lacks we supplied some methods for increasing the effectiveness of the unscheduled narrowly focused thematic inspections that are held to update opinions of supervisor about the risks and to obtain quickly reliable information about specific areas of the bank. Such an approach to organization of inspection activities is more in line with the concept of risk-focused supervision.

  9. SSNTD study of the probable influence of alpha activity on the mass distribution of 252Cf fission fragments

    The SSNTD has come a long way in its application for the study of nuclear phenomena. Spontaneous fission of transuranic elements is one such phenomena wherein use of SSNTD offers easy registration of the signature of the fission fragments. The object of the present study is to explore whether any one of the track parameters such as the diameter can be used to estimate the atomic mass ratios of the spontaneous fission fragments. The spontaneous fission data from 252Cf recorded almost at the end of one and four half-life periods for alpha decay are analysed, taking a plot of the number of tracks versus the track diameter. From these plots it is seen that initially, when significant alpha activity of 252Cf persists, the fission fragments appear to cluster into two predominant groups as indicated by two peaks. The ratio of the diameters at these peak positions appear to be related to the ratio of average mass numbers of the light and heavy groups of fission fragments. However, absence of two peaks for similar plots at the end of about four half-life periods for alpha decay suggests that presumably the presence of alphas influence the mass distribution of the fission fragments

  10. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  11. IAEA activity on partitioning and transmutation of actinides and fission products

    In 1990, the IAEA received a request from Member States to review the status of research and development on partitioning and transmutation of actinides and fission products. In response to this request the Advisory Group Meeting (AG) was held in the fall of 1991. AG advised the Agency to play an active role in coordinating international activities in this area. A series of meetings that followed identified considerable interest among many Member States and international organizations in the P and T options as a potential complement to the reference concepts of the back-end of nuclear fuel cycle. Inherent difficulties for the Agency to actively explore this programme were identified including non-proliferation concerns from some Member States about partitioning technology and possible duplication of effort in other international organizations, especially OECD/NEA. But, there remain fundamental questions to be addressed on the objectives of and motivations for P and T and it is clear that some common international understanding would be necessary. In order to contribute to the solution of this problem, and considering the existence of programmes being implemented by OECD/NEA, the Agency has initiated a new CRP entitled 'Safety, environmental and non-proliferation aspects of partitioning and transmutation of actinides and fission products' (1994-1998). This presentation will explain about this Agency's new CRP and how the Agency's work is co-ordinated with other international activities. (author)

  12. Air activity variations as estimation of inhalation dose for the gases fission products

    This article presents that dissolved impurities are responsible for water activity and the release of fission gases Radon and Thoron into the reactor hall atmosphere. In normal operation of the reactor at 400 kilowatts, wide fluctuations in airborne activity (gross beta) between 15,000-200,000 dpm/m3 have been noticed. The aerosol concentration, reactor hall temperature, relative humidity and ventilation rate are the factors influencing the levels of airborne activity in the reactor hall atmosphere. These parameters are discussed in relation to the observed air activities. The diffusion coefficient of the decay products and the unattached fraction of the decay products are necessary parameters for the estimation of lung dose. These have been measured. Internal exposure results from the deposition of radioactive material within the body through inhalation, ingestion and absorption. A recent study has indicated that inhalation is the main route of entry, and nearly 75% of the cases of internal contamination are attributable to inhalation. It has been demonstrated that the inert fission gases like Radon and Thoron do not contribute significantly to the dose due to inhalation to the working personnel in reactors, but their decay products which are particulate β emitters, contribute significant inhalation dose

  13. Development of calculation code of fission products specific activity in primary coolant

    Based on an assumption of that there is a design basis fuel defect level from reactor startup, calculation method of fission products specific activities in primary coolant is studied. Time-dependent nuclide activities in defect fuel are calculated by ORIGEN code, and nuclide releases from the defect fuel are considered. After processed by interface codes, data are used by PCFPA code which is used to calculate nuclide activities in the coolant. PCFPA solves differential equations by unit of decay chain, and totally considers decay's contribution to nuclide activities, and considers different system design between secondary and third generation plants such as AP1000. The method could provide the maximum of specific activity during plant operation and their results are consistent with data in AP1000 DCD(Rev.16). The method could be applicable to shielding design in secondary and third generation plants such as AP1000. (authors)

  14. Neutron capture cross-section of fission products in the European activation file EAF-3

    This paper contains a description of the work performed to extend and revise the neutron capture data in the European Activation File (EAF-3) with emphasis on nuclides in the fission-product mass range. The starter was the EAF-1 data file from 1989. The present version, EAF/NG-3, contains (n,γ) excitation functions for all nuclides (729 targets) with half-lives exceeding 1/2 day in the mass range from H-1 to Cm-248. The data file is equipped with a preliminary uncertainty file, that will be improved in the near future. (author). 19 refs.; 5 figs.; 3 tabs

  15. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A; Formiggini, Fabio; Polishchuk, Roman S; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  16. Forecasting the Quantity and Activity of Fission Products in France in Future Years in the Light of Atomic Energy Development

    With the aid of Wigner and Way's formula it is possible to predict theoretically the activity of the complex mixture of fission products originating in a reactor. Account is taken in the study of prospective nuclear power production in France up to 1975. It is assumed that the uranium stays in the reactor for periods of three and of six months. It is also possible to determine the activity of a given fission product and to calculate its decay time. The substance selected was strontium for an activation period of three months. Each group of curves shows total activity at any moment and the activity of particular fission products over a given period. (author)

  17. Inspection planning

    Slovenian Nuclear Safety Administration (SNSA) division of nuclear and radiological safety inspection has developed systematic approach to their inspections. To be efficient in their efforts regarding regular and other types of inspections, in past years, the inspection plan has been developed. It is yearly based and organized on a such systematic way, that all areas of nuclear safety important activities of the licensee are covered. The inspection plan assures appropriate preparation for conducting the inspections, allows the overview of the progress regarding the areas to be covered during the year. Depending on the licensee activities and nature of facility (nuclear power plant, research reactor, radioactive waste storage, others), the plan has different levels of intensity of inspections and also their frequency. One of the basic approaches of the plan is to cover all nuclear and radiological important activities on such way, that all regulatory requests are fulfilled. In addition, the inspection plan is a good tool to improve inspection effectiveness based on previous experience and allows to have the oversight of the current status of fulfillment of planned inspections. Future improvement of the plan is necessary in the light of newest achievements on this field in the nuclear world, that means, new types of inspections are planned and will be incorporated into plan in next year.(author)

  18. Steam generator inspection activities at the EPRI NDE center

    This report describes a multi-tasked project under the joint sponsorship of EPRI and EPRI Steam Generator Owners Group II. The overall project objectives include the evaluation and transfer of steam generator tube inspection NDE technology. Including the Center's first offering of the eddy current data analysis course on steam generator tubing in July-August 1985, the data analysis program has been offered six times to a total of 31 students. The students are from seven utilities, four vendors, and the NDE Center. To maximize the effectiveness of the course, a students-to-instructor ratio no greater than seven is typically maintained for each class. The program is fully compatible with the existing hardware/software being used in the industry and can be given in either analog or digital format, depending on the student's selection of eddy current analysis equipment

  19. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up

  20. Construction appraisal team inspection results on welding and nondestructive examination activities

    This report summarizes data and findings on deficiencies and discrepancies in welding and nondestructive examination (NDE) activities identified by the US Nuclear Regulatory Commission Construction Appraisal Team (CAT) during its inspection of 11 plants. The CAT reviewed selected welds and NDE packages in its inspection of the following plant areas: piping and pipe supports and/or restraints; modification and installation of reactor internals; electrical installations and electrical supports; instrumentation tubing and supports; heating, ventilation, and air conditioning (HVAC) systems and supports; fabrication and erection of structural steel; fabrication of refueling cavity and spent fuel pool liner; containment liner and containment penetrations; and fire protection systems. The CAT inspected both structural welds and pressure-retaining welds and reviewed welder qualification test records and welding procedure documents for code compliance. The NDE activities that were evaluated included visual examination, magnetic particle examination, liquid penetrant examination, ultrasonic examination, and radiographic examination of welds. 4 refs., 14 figs., 15 tabs

  1. Observation of new spontaneous fission activities from elements 100 to 105

    Somerville, L.P.

    1982-03-01

    Several new Spontaneous Fission (SF) activities have been found. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include /sup 257/Rf(3.8 s, 14% SF), /sup 258/Rf(13 ms), /sup 259/Rf(approx. 3 s, 8% SF), /sup 260/Rf(approx. 20 ms), and /sup 262/Rf(approx. 50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (/sup 260/104) was not observed. A difficulty exists in the interpretation that /sup 260/Rf is a approx. 20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV /sup 18/O + /sup 248/Cm, 88- to 100-MeV /sup 15/N + /sup 249/Bk, and 96-MeV /sup 18/O + /sup 249/Cf must be other nuclides due to their large production cross sections, or the cross sections for production of /sup 260/Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx. 1% electron-capture branch in /sup 258/Lr(4.5 s) to the SF emitter /sup 258/No(1.2 ms) and an upper limit of 0.05% for SF branching in /sup 254/No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s (/sup 18/O + /sup 248/CM), indications of a approx. 47-s SF activity (75-MeV /sup 12/C + /sup 249/Cf), and two or more SF activities with 3 s less than or equal to T/sub 1/2/ less than or equal to 60 s (/sup 18/O + /sup 249/Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element 104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically and attributed to the disappearance of the second hump of the double-humped fission barrier.

  2. Remote systems for inspection and repair of a highly active dissolver

    An integrated remote handling system has been built to carry out inspections inside a nuclear fuel dissolver vessel. Tooling is provided to effect repairs to the dissolver if required. The system incorporates a novel manipulator, closed circuit television (CCTV), endoscopes, ultrasonic inspection probes, remote machining and remote tungsten inert gas (TIG) welding packages. An advanced computer control system is provided to allow the operator to monitor, interlock and control the complex equipment. Technique research is complete and non-active test results to date are reported. (Author)

  3. Inspection of surveillance activities and administrative leave policy at Bonneville Power Administration, Portland, Oregon

    1994-04-01

    The authors conducted an inspection of surveillance activities and administrative leave policy at the Bonneville Power Administration, Portland, Oregon. The purpose of their inspection was to determine if a covert video surveillance operation conducted at Bonneville Power Administration was consistent with Department of Energy policies and procedures and other applicable regulations and procedures, and to determine if administrative leave policies and procedures used at Bonneville Power Administration in a specific instance were consistent with Department of Energy requirements and the Code of Federal Regulations. This inspection focused on a specific incident that occurred in 1989 on the 5th floor of the BPA Headquarters Building located in Portland, Oregon. The incident involved the soiling of an employee`s personal property with what appeared to be urine.

  4. Status of fission yield measurements

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  5. Ternary Fission

    The fission process in which heavy nuclei fragment into three large charged panicles, in place of the usual two, has been studied in the case of thermal-neutron-induced fission of U235 and the spontaneous fission of Cf252. Solid-state detectors, a fast triple coincidence system and a three-coincident-parameter analyser were used to measure the three fission fragment energies parallel with the detection of each ternary fission event. Experimental evidence is presented supporting the existence of ternary fission by specifically excluding recoil phenomena and accidental events as contributing to the observed three-fold coincidence events. Mass-energy-angular correlations of ternary fission have been determined and are summarized as follows: The total kinetic energy release in ternary fission appears to be slightly higher (by approximately 10 MeV) than that for binary fission. In the case of the spontaneous ternary fission of Cf252, the frequency of occurrence is observed to be greater than 2.2 x 10-6 ternary fission events per binary fission event. Tripartition of Cf252 results preferentially in division into two medium mass particle (one of which has a mass number near 56) and one larger mass. In the case of thermal-neutron-induced fission of U235, the frequency of occurrence is observed to be greater than 1.2 x 10-6 ternary fission events per binary fission event. Ternary fission of U236: results in the formation of one light fragment (near mass 36) and two large fragments or, as in the case of Cf252, two medium fragments and one large one. These results indicate that axially asymmetric distortion modes are possible in the pre-scission configurations of the fissioning nucleus. A description is given of experiments designed to radiochemically detect the light fragment resulting from ternary fission. (author)

  6. Progress in fission product nuclear data

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  7. Establish Techniques for Small Scale Indigenous Molybdenum-99 Production Using LEU Fission or Neutron Activation [Country report: Pakistan

    Low enriched uranium foil (19.99% 235U) may be used as target material for the production of fission molybdenum-99 (99Mo) in the Pakistan Research Reactor-1 (PARR-1). LEU foil annular targets or LEU foil plate targets can be irradiated in PARR-1 for the production of >100 Ci of 99Mo at the end of irradiation. Neutronic and thermal hydraulic analysis for the fission 99Mo production at PARR-1 has been performed. Power levels in the foil targets and their corresponding irradiation time durations were initially determined by neutronic analysis to have the required neutron fluence. Finally the thermal hydraulic analysis has been carried out for the proposed designs of the target holders using LEU foil for fission 99Mo production at PARR-1. Data shows that LEU foil targets can be safely irradiated in PARR-1 for production of desired amount of fission 99Mo. Although Pakistan is producing 99Mo by the irradiation of HEU uranium alloy plates with aluminium clad targets in PARR-1 to meet the demands of 99Mo/99mTc generators in the country, it intends to use LEU aluminide targets in coming years. In this perspective, R&D work on fabrication of LEU target for 99Mo using natural uranium has been initiated at PINSTECH. Preliminary results of LEU target plate manufactured indigenously at PINSTECH show quite good separation of 99Mo from target matrix activity. (author)

  8. Method for measuring prompt fission neutron energy spectrum by means of threshold activation detectors

    Prompt fission neutron energy spectrum as a function of energies of neutron inducing fission has been calculated on the basis of the Madland-Nix(MN) model. The resultant spectra have been weighted to excitation functions of 27Al(n,α), 32S(n,p) and 115In(n,n) threshold reactions in order to get the average cross sections and then spectral indices which are defined as the average cross section ratio for two selective threshold reactions among the above three. It is appeared that spectral indices together with the neutron spectra are varying with energies of neutron inducing fission. This may indicate that the prompt fission neutron energy spectrum can be determined by measuring experimentally the spectral index.(Author)

  9. IAEA CRP on Fission Yield Data and activity of WG in Japanese Nuclear Data Committee

    The outline of the coordinate research program on fission yield data organized by International Atomic Energy Agency and the working group on the subject newly organized in Japanese Nuclear Data Committee are presented. (author)

  10. Nuclear fission

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.)

  11. New light sources and sensors for active optical 3D inspection

    Osten, Wolfgang; Jueptner, Werner P. O.

    1999-11-01

    The implementation of active processing strategies in optical 3D-inspection needs the availability of flexible hardware solutions. The system components illumination and sensor/detector are actively involved in the processing chain by a feedback loop that is controlled by the evaluation process. Therefore this article deals with new light sources and sensor which appeared recently on the market and can be applied successfully for the implementation of active processing principles. Some applications where such new components are used to implement an active measurement strategy are presented.

  12. Radioactive fission and activation products: Transport from soil to plant under swedish field conditions

    The uptake of four activation products: 57 Co, 54 Mn, 65 Zn and 63 Ni, and two fission products: 90 Sr and 137 Cs by different crops was studied in a long term field experiment. Some of the soils used were sampled in the vicinity of nuclear power plants, while the others represented the most frequent types of agricultural soils occurring in Sweden. Data on the uptake by clover, timothy and wheat during the period 1976-84 were used for the calculation of soil-plant transfer factors of these nuclides. The temporal distribution of the transfer factors and the variations exhibited by the different nuclides were examined, as well as the differences between crops. The increased uptake at the early stage of the experiment observed in clover and to some extent in wheat is discussed. The soil characteristics that most influenced the uptake are the pH and the soil content of calcium, potassium and clay. The nuclide fractionation in soil was evaluated and regression analyses were employed to quantify the dependence of uptake on soil parameters. The nuclide fractions delivered to consumption through grain foods was calculated, highlighting the temporal variation of this contribution. 112 refs., 23 figs., 39 tabs

  13. Inspection of surveillance equipment and activities at DOE Field Office, Richland

    1991-09-30

    The purpose of this inspection was to review surveillance activities by the Department of Energy's (DOE) Field Office, Richland (RL) and contractor employees at the RL Hanford site for efficiency and economy and compliance with laws and regulations. The scope included surveillance activities, procedures, training, types of surveillance equipment, and management controls over the equipment and activities. We also looked at Departmental policies and procedures regarding the equipment and activities. Allegations of illegal surveillance that came to our attention during the course of this inspection were referred to the Department of Justice. As part of our review, inspectors were on-site at RL from February 11, 1991, through March 1, 1991. Follow-up trips to RL were also made in April, May, and June 1991. We also conducted interviews at Albuquerque, Savannah River, and Germantown of former RL employees and RL contractors who were on travel. Officials from DOE's Office of General Counsel (OGC), Office of Security Affairs, and Office of Safeguards and Security (S S) were also interviewed regarding the Department's purchase and possession of wiretapping and eavesdropping devices. We obtained 75 signed sworn statements from 55 individuals during the course of the inspection. 1 fig., 1 tab.

  14. Measurements of the neutron-spectra on the nuclear plants by means of the activation and fission detectors

    Here are presented the results of the neutron spectra determinations on the nuclear plants HPRR(USA), SILEN (FRANCE), and VIPER (GREAT BRITAIN) by means of a method developed in the Institute for Nuclear Sciences BORIS KIDRIC, Vinca based on the measurements of the induced activities in the activation detectors, created number of fissions in the fission detectors as well as on the measurements of the specific activity Na-24 in a phantom of BOMAB type. The measurements of the neutron spectra by means of the activation and fission detectors is particularly convenient on the nuclear plants operating on an impulse rate, where exist neutron fields of relatively high intensities. The forms of the neutron spectra on these plants measured by the method developed in the Institute BORIS KIDRIC for the needs of the accidental dosimetry are used to determine the mean values of the conversion factors fluens - absorbed dose of the neutrons for the energy interval 1 keV - 14 MeV. The results are compared with the values obtained by the other authors and in most cases the departures were within 10%. (author)

  15. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    Willerslev Eske

    2010-03-01

    Full Text Available Abstract Background Retrotransposons are transposable elements that proliferate within eukaryotic genomes through a process involving reverse transcription. The numbers of retrotransposons within genomes and differences between closely related species may yield insight into the evolutionary history of the elements. Less is known about the ongoing dynamics of retrotransposons, as analysis of genome sequences will only reveal insertions of retrotransposons that are fixed - or near fixation - in the population or strain from which genetic material has been extracted for sequencing. One pre-requisite for retrotransposition is transcription of the elements. Given their intrinsic sequence redundancy, transcriptome-level analyses of transposable elements are scarce. We have used recently published transcriptome data from the fission yeast Schizosaccharomyces pombe to assess the ability to detect and describe transcriptional activity from Long Terminal Repeat (LTR retrotransposons. LTR retrotransposons are normally flanked by two LTR sequences. However, the majority of LTR sequences in S. pombe exist as solitary LTRs, i.e. as single terminal repeat sequences not flanking a retrotransposon. Transcriptional activity was analysed for both full-length LTR retrotransposons and solitary LTRs. Results Two independent sets of transcriptome data reveal the presence of full-length, polyadenylated transcripts from LTR retrotransposons in S. pombe during growth phase in rich medium. The redundancy of retrotransposon sequences makes it difficult to assess which elements are transcriptionally active, but data strongly indicates that only a subset of the LTR retrotransposons contribute significantly to the detected transcription. A considerable level of reverse strand transcription is also detected. Equal levels of transcriptional activity are observed from both strands of solitary LTR sequences. Transcriptome data collected during meiosis suggests that transcription

  16. Nuclear fission

    V.M. STRUTINSKY's semi-classical method is the most precise to determine the energy of the different states along the fission way. The double-humped fission barrier explains fission isomerism. V.M. STRUTINSKY's barrier explains the ''intermediate structure'' observed in the cross section under the threshold; it provides also the observed effect of ''vibrational resonances'' with an interpretation. Taking an asymmetry parameter in consideration, a triple-humped fission barrier seems to be essential now for the light actinides. There is still a microscopic fission barrier to be explained

  17. Compilation of Data on Radionuclide Data for Specific Activity, Specific Heat and Fission Product Yields

    Gibbs, A.; Thomason, R.S.

    2000-09-05

    This compilation was undertaken to update the data used in calculation of curie and heat loadings of waste containers in the Solid Waste Management Facility. The data has broad general use and has been cross-checked extensively in order to be of use in the Materials Accountability arena. The fission product cross-sections have been included because they are of use in the Environmental Remediation and Waste Management areas where radionuclides which are not readily detectable need to be calculated from the relative fission yields and material dispersion data.

  18. Compilation of Data on Radionuclide Data for Specific Activity, Specific Heat and Fission Product Yields

    This compilation was undertaken to update the data used in calculation of curie and heat loadings of waste containers in the Solid Waste Management Facility. The data has broad general use and has been cross-checked extensively in order to be of use in the Materials Accountability arena. The fission product cross-sections have been included because they are of use in the Environmental Remediation and Waste Management areas where radionuclides which are not readily detectable need to be calculated from the relative fission yields and material dispersion data

  19. Determination of fission and activation products in nearly fresh fuel elements by self-calibration

    Gamma spectra at several axial positions of the BR02 fuel element X133 have been measured and the concentration of 137Cs has been determined directly. On basis of this determination and some assumptions of the irradiation history, the concentrations of other fission products, relevant for the cold reprocessing process, have been calculated. On the basis of ORIGEN-type calculations the concentration of some relevant transuranics has been estimated. Both the concentrations of the fission products and of the transuranics appeared to be below the threshold values. Therefore it could be decided that cold reprocessing was feasible for all old BR02 fuel elements. (author)

  20. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-01-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeast Schizosaccharomyces pombe. Genome-wide studies of the Crz1 and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2 and tunicamycin treatment, as well as a ∆pmr1 genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of the Saccharomyces cerevisiae ortholog Crz1. These genes were functionally enriched for Crz1-conserved processes such as cell-wall biosynthesis. Overexpression of prz1+ increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of the O-mannosyltransferase encoding gene omh1+. Loss of omh1+ abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss of prz1+ resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the ∆prz1 strain was abrogated by the loss of gsf2+ or cbf12+. This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes between Crz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network. PMID:26896331

  1. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast.

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-04-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeastSchizosaccharomyces pombe Genome-wide studies of theCrz1and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2and tunicamycin treatment, as well as a∆pmr1genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of theSaccharomyces cerevisiaeorthologCrz1 These genes were functionally enriched forCrz1-conserved processes such as cell-wall biosynthesis. Overexpression ofprz1(+)increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of theO-mannosyltransferase encoding geneomh1(+) Loss ofomh1(+)abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss ofprz1(+)resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the∆prz1strain was abrogated by the loss ofgsf2(+)orcbf12(+) This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes betweenCrz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network. PMID:26896331

  2. Properties and detection of ionizing radiation resulting from instantaneous fission and fission product mixture

    The different types of ionizing radiation accompanying fission and mixtures of fission products, their activity, the determination of the age of fission products and the biological hazard of radiation caused by instantaneous fission are described. The possibility is described of detection, and of the dosimetry of ionizing radiation resulting from instantaneous fission and emitted by a mixture of fission products, the determination of the dose of neutron radiation, surface contamination, internal contamination and the contamination of water and foods. (J.P.)

  3. Experience from the Inspection of Licensees' Outage Activities, Including Fire Protection Programmes, Event Response Inspections, and the Impact of the Fukushima Daiichi NPP Accident on Inspection Programmes. Workshop Proceedings, Chattanooga, Tennessee, United States, 7-10 April 2014

    The main purpose of the workshop was to provide a forum of exchange of information on the regulatory inspection activities. Participants had the opportunity to meet with their counterparts from other countries and organisations to discuss current and future issues on the selected topics. They developed conclusions regarding these issues and hopefully, identified methods to help improve their own inspection programmes. The NEA Committee on Nuclear Regulatory Activities (CNRA) believes that an essential factor in ensuring the safety of nuclear installations is the continuing exchange and analysis of technical information and data. To facilitate this exchange the Committee has established working groups and groups of experts in specialised topics. The Working Group on Inspection Practices (WGIP) was formed in 1990 with the mandate '..to concentrate on the conduct of inspections and how the effectiveness of inspections could be evaluated..'. The WGIP facilitates the exchange of information and experience related to regulatory safety inspections between CNRA member countries. These proceedings cover the 12. International Workshop held by WGIP on regulatory inspection activities. This workshop, which is the twelfth in a series, along with many other activities performed by the Working Group, is directed towards this goal. The consensus from participants at previous workshops, noted that the value of meeting with people from other inspection organisations was one of the most important achievements. The focus of this workshop was on experience gained from regulatory inspection activities in three areas: - Inspection of Outage Activities Including Fire Protection Programmes. - Event Response Inspections. - The Impact of Inspection Programmes of the Fukushima Daiichi Nuclear Power Plant (NPP) Accident. The main objectives of the WGIP workshops are to enable inspectors to meet with inspectors from other organisations, to exchange information regarding regulatory inspection

  4. Spontaneous fission

    Recent experimental results for spontaneous fission half-lives and fission fragment mass and kinetic-energy distributions and other properties of the fragments are reviewed and compared with recent theoretical models. The experimental data lend support to the existence of the predicted deformed shells near Z = 108 and N = 162. Prospects for extending detailed studies of spontaneous fission properties to elements beyond hahnium (element 105) are considered. (orig.)

  5. The fission yeast git5 gene encodes a Gbeta subunit required for glucose-triggered adenylate cyclase activation.

    Landry, S; Pettit, M T; Apolinario, E; Hoffman, C. S.

    2000-01-01

    Fission yeast adenylate cyclase is activated by the gpa2 Galpha subunit of a heterotrimeric guanine-nucleotide binding protein (G protein). We show that the git5 gene, also required for this activation, encodes a Gbeta subunit. In contrast to another study, we show that git5 is not a negative regulator of the gpa1 Galpha involved in the pheromone response pathway. While 43% identical to mammalian Gbeta's, the git5 protein lacks the amino-terminal coiled-coil found in other Gbeta subunits, yet...

  6. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  7. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    Hunt, Alan [Idaho State Univ., Pocatello, ID (United States). Idaho Accelerator Center, Dept. of Physics; Reedy, E. T.E. [Idaho State Univ., Pocatello, ID (United States). Dept. of Phyics, Idaho Accelerator Center; Mozin, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, S. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Nonproliferation

    2015-02-12

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  8. The use of NPAR [Nuclear Plant Aging Research] results in plant inspection activities

    The US NRC's Nuclear Plant Aging Research (NPAR) Program is a hardware oriented research program which has produced a large data base of equipment and system operating, maintenance, and testing information. Equipment and systems which have a propensity for age related degradation are identified, and methods for detecting and mitigating aging effects have been evaluated. As plants age, it becomes increasingly important that NRC inspectors be cognizant of plant aging phenomena. This paper describes the NPAR information which can enhance inspection activities, and provides a mechanism for making pertinent research available to the inspectors. 7 refs., 2 figs

  9. The use of NPAR (Nuclear Plant Aging Research) results in plant inspection activities

    Gunther, W.; Taylor, J.

    1989-01-01

    The US NRC's Nuclear Plant Aging Research (NPAR) Program is a hardware oriented research program which has produced a large data base of equipment and system operating, maintenance, and testing information. Equipment and systems which have a propensity for age related degradation are identified, and methods for detecting and mitigating aging effects have been evaluated. As plants age, it becomes increasingly important that NRC inspectors be cognizant of plant aging phenomena. This paper describes the NPAR information which can enhance inspection activities, and provides a mechanism for making pertinent research available to the inspectors. 7 refs., 2 figs.

  10. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe.

    Ayako Chino

    Full Text Available BACKGROUND: Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC, is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date. METHODOLOGY/PRINCIPAL FINDINGS: We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp. No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Delta mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe. CONCLUSIONS/SIGNIFICANCE: We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different

  11. Isotopic compositions of inventory designations, open-quote mixed fission product close-quote and open-quote mixed activation product close-quote

    The Area G Performance Assessment requires that the entire inventory be specified in terms of specific nuclide activities. The inventory data base has historically allowed some less specific inventory designations including Mixed Fission Products (MFP), Mixed Activation Products (MAP), several Material Type (MT) designations and others. This report describes the assignment of specific nuclide activities from the listed activity amounts in two of the inventory data base categories, MFP and MAP. The MFP nuclide assignment is based on standard fission product yield data and normalized to total activity at two years post-fission. The MAP assignment is based on site-specific analyses conducted by the major generator of the activation products at Los Alamos, the LAMPE

  12. Spontaneous Fission

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  13. Delayed-neutron activities produced in fission: Mass range 122--146

    Delayed-neutron emission from mass separated heavy fission products has been studied using a sensitive neutron counter. Twelve new delayed-neutron precursors have been found, namely 122Ag, 123Ag, 127In, 128Cd (or 128In/sub m/), 128In, 129In (two isomers), 130In, 131In, 132In, 133Sn, and 136Sb. The half-life determination for 11 other precursors has been improved

  14. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    Mourier, Tobias; Willerslev, Eske

    2010-01-01

    ABSTRACT: BACKGROUND: Retrotransposons are transposable elements that proliferate within eukaryotic genomes through a process involving reverse transcription. The numbers of retrotransposons within genomes and differences between closely related species may yield insight into the evolutionary......-requisite for retrotransposition is transcription of the elements. Given their intrinsic sequence redundancy, transcriptome-level analyses of transposable elements are scarce. We have used recently published transcriptome data from the fission yeast Schizosaccharomyces pombe to assess the ability to detect and describe...

  15. Fission gas activities in the fuel-to-clad gap calculated with the code FUROM

    The fuel behaviour code FUROM (FUel ROd Model) has been in use and under improvement for several years at the Hungarian Academy of Sciences KFKI Atomic Energy Research Institute. Several new features are added to it each year. In the present paper an extended fission gas release model is introduced. This model is suitable for the calculation of the release of not only stable but also radioactive isotopes. Code calculations are compared to international results. (authors)

  16. Separation of transuranium elements and fission products from medium activity aqueous liquid wastes

    In the course of work performed between January 1981 and June 1985 on the separation of TRU elements and fission products three liquid alpha containing waste streams were treated: - medium level waste solutions, - waste solutions from the acid digestion of burnable alpha containing solid residues, - waste solutions from mixed oxide fuel element fabrication. The method of separation was initially developed and optimized with simulating substances. Subesequently it was tested with real waste solutions

  17. Amount and activity of fission products which will be obtainable in France in the immediate future taking into account the development of atomic energy

    By using the Wigner and Way formula, the activity of the complex mixture of fission products produced in a pile may be estimated theoretically in advance. This study was carried out on the basis of forecasts, in the case of France for the production of electricity of atomic origin up to the year 1975. The uranium was assumed to be in the pile during periods of three months and six months. It is also possible to find the activity of a particular fission product and to give its decay rate. The element chosen is strontium for a three months' activation period. Each set of curves gives at any moment the total activity accumulated, and the characteristic activity of the fission products corresponding to a given half-life. (author)

  18. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  19. Monitoring and inspection techniques for long term storage of higher activity waste packages

    In 2009, following recent changes in United Kingdom (UK) Government Policy, the Nuclear Decommissioning Authority (NDA) identified a knowledge gap in the area of long term interim storage of waste packages. A cross-industry Integrated Project Team (IPT) for Interim Storage was created with responsibility for delivering Industry Guidance on the storage of packaged Higher Activity Waste (HAW) for the current UK civil decommissioning and clean-up programmes. This included a remit to direct research and development projects via the NDA's Direct Research Portfolio (DRP) to fill the knowledge gap. The IPT for Interim Storage published Industry Guidance in 2012 which established a method to define generic package performance criteria and made recommendations on monitoring and inspection. The package performance method consists of the following steps; identification of the package safety function, identification of evolutionary processes that may affect safety function performance, determination of measurable indicators of these evolutionary processes and calibration of the indicators into package performance zones. This article provides an overview of three projects funded by the NDA's DRP that the UK National Nuclear Laboratory (NNL) have completed to address monitoring and inspection needs of waste packages in interim storage. (orig.)

  20. Apatite fission track analysis on tectonic activities and paleotopography in southern Altai region, Xinjiang, China

    This work engages apatite fission track evidences on thermotectonic history, rock uplift rate, denudation extent southeastern Altai region. Fission track ages of 14 samples range from (59.4±5.8) Ma to (109.7±8.1) Ma and the length is between (12.0±2.5) μm and (13.7±1.5) μm. Thermal modeling reveals that the samples have a three-stage of uplift-cooling history. The first stage is in an overall initial uplift before 108 Ma, the second stage from 108 Ma to 28 Ma experiences a slow cooling phase, and the last stage through a rapid-cooling process since 28 Ma with a cooling rate 1.25 1.61 ℃/Ma and denudation amount 1.17-1.50 km, the fast exhumation period in the area. The sample ages could be divided into 4 age groups, reflecting multiple tectonic events with different uplift rates. The paleotopography altitude changes from 3895 m to 821 m, 2250 m to 762 m etc., and the amplitude of changes reaches to 3300-1400 m since 90 Ma. The phenomenon of Alpine turning to valley and valley uplifting is visible in the studied area, indicating various stages of paleotopography. Based on inversion of ancient landforms and equilibrium correction, the equilibrium rebound would play an important role in the rock uplift during the Altai post-orogenic period. (authors)

  1. Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    Bromberger, B; Brandis, M; Dangendorf, V; Goldberg, M B; Kaufmann, F; Mor, I; Nolte, R; Schmiedel, M; Tittelmeier, K; Vartsky, D; Wershofen, H

    2012-01-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. T...

  2. Contribution to the study of nuclear fission

    The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)

  3. NRC inspections of licensee activities to improve the performance of motor-operated valves

    The NRC regulations require that components important to the safe operation of a nuclear power plant be treated in a manner that provides assurance of their proper performance. Despite these regulatory requirements, operating experience and research programs have raised concerns regarding the performance of motor-operated valves (MOVs) in nuclear power plants. In June 1990, the staff issued NUREG-1352, Action Plans for Motor-Operated Valves and Check Valves, which contains planned actions to organize the activities aimed at resolving the concerns about MOV performance. A significant task of the MOV action plan is the staff's review of the implementation of Generic Letter (GL) 89-10 (June 28, 1989), 'Safety-Related Motor-Operated Valve Testing and Surveillance,' and its supplements, by nuclear power plant licensees. The NRC staff has issued several supplements to GL 89-10 to provide additional guidance for use by licensees in responding to the generic letter. The NRC staff has conducted initial inspections of the GL 89-10 programs at most licensee facilities. This paper outlines some of the more significant findings of those inspections. For example, licensees who have begun differential pressure and flow testing have found some MOVs to require more thrust to operate than predicted by the standard industry equation with typical valve factors assumed in the past. The NRC staff has found weaknesses in licensee procedures for conducting the differential pressure and flow tests, the acceptance criteria for the tests in evaluating the capability of the MOV to perform its safety function under design basis conditions, and feedback of the test results into the methodology used by the licensee in predicting the thrust requirements for other MOVs. Some licensees have not made adequate progress toward resolving the MOV issue for their facilities within the recommended schedule of GL 89-10

  4. Ternary fission

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  5. Progress in fission product nuclear data

    This is the 12th issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the IAEA. The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The type of activities included are: measurements, compilations and evaluations of fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and lumped fission product data (decay heat, absorption etc.). The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences

  6. Comparison of fission signatures from β− delayed γ-ray and neutron emissions

    The delayed γ-ray and neutron fission signals utilized in active inspection techniques were measured simultaneously in order to directly compare their detection sensitivities. Fissionable and non-fissionable targets were irradiated by a 15-Hz pulsed bremsstrahlung beam operating at endpoint energies from 7 to 22 MeV. The fissionable mass detection limits for both these signals decreased approximately three orders of magnitude as the irradiation energy was increased with the delayed γ-ray limits 4.3–8.2 times smaller. The signals from the non-fissionable targets were consistent with the natural passive backgrounds for irradiation energies up to 16 MeV. At higher bremsstrahlung energies, there was a target independent active background in the delayed γ-ray signal that accounted for 35% of the gross yield. In addition, these higher irradiation energies resulted in products from 9Be(γ,p)8Li and 18O(γ,p)17N reactions interfering with the delayed γ-ray and neutron fission signals, respectively

  7. Regulation of the fission product activity in the primary coolant and assessment of defective fuel rod characteristics in steady-state WWER-type reactor operation

    Regulation of the maximum limiting levels of fuel cladding failure and normalizing of the fission product activity in the primary coolant of WWER-type reactors for steady-state reactor operation is considered. It is shown that for the advanced nuclear power plants with WWER-type reactors the maximum permissible level of fuel rod failure and fission product activity in the primary coolant must be determined taking into account the actual level of the fuel rod reliability, possible failures of other reactor equipment (steam generator tubes) and efficiency of the primary and secondary coolant purification systems. The computer code TIMS developed in RRC 'Kurchatov Institute' for the assessment of the number of failed fuel rods and defect characteristics by comparing measured and calculated values of fission product activities in primary coolant is described. The important feature of the code is the increase of reliability of assessment by taking into account the actual errors of fission product activity measurements and possible contamination of primary circuit. (author)

  8. Benchmarking Nuclear Fission Theory

    G. F. Bertsch(INT, Seattle, USA); Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-01-01

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  9. Fission Spectrum

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  10. Singlet Fission

    Smith, M. B.; Michl, Josef

    2010-01-01

    Roč. 110, č. 11 (2010), s. 6891-6936. ISSN 0009-2665 Grant ostatní: Department of Energy(US) DE-FG36-08GO18017 Institutional research plan: CEZ:AV0Z40550506 Keywords : solar energy conversion * photovoltaics * singlet fission Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010

  11. Ideological Fission

    Christiansen, Steen Ledet

    materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However, it is...

  12. Mobile neutron/gamma waste assay system for characterization of waste containing transuranics, uranium, and fission/activation products

    A new integrated neutron/gamma assay system has been built for measuring 55-gallon drums at Pacific Northwest Laboratory. The system is unique because it allows simultaneous measurement of neutrons and gamma-rays. This technique also allows measurement of transuranics (TRU), uranium, and fission/activation products, screening for shielded Special Nuclear Material prior to disposal, and critically determinations prior to transportation. The new system is positioned on a platform with rollers and installed inside a trailer or large van to allow transportation of the system to the waste site instead of movement of the drums to the scanner. The ability to move the system to the waste drums is particularly useful for drum retrieval programs common to all DOE sites and minimizes transportation problems on the site. For longer campaigns, the system can be moved into a facility. The mobile system consists of two separate subsystems: a passive Segmented Gamma Scanner (SGS) and a open-quotes clam-shellclose quotes passive neutron counter. The SGS with high purity germanium detector and 75Se transmission source simultaneously scan the height of the drum allowing identification of unshieled open-quotes hot spotsclose quotes in the drum or segments where the matrix is too dense for the transmission source to penetrate. Dense segments can flag shielding material that could be used to hide plutonium or uranium during the gamma analysis. The passive nuetron counter with JSR-12N Neutron Coincidence Analyzer measures the coincident neutrons from the spontaneous fission of even isotopes of plutonium. Because high-density shielding produces minimal absorption of neutrons, compared to gamma rays, the passive neutron portion of the system can detect shielded SNM. Measurements to evaluate the performance of the system are still underway at Pacific Northwest Laboratory

  13. A MODEL FOR PREDICTING FISSION PRODUCT ACTIVITIES IN REACTOR COOLANT: APPLICATION OF MODEL FOR ESTIMATING I-129 LEVELS IN RADIOACTIVE WASTE

    Lewis, B.J.; Husain, A.

    2003-02-27

    A general model was developed to estimate the activities of fission products in reactor coolant and hence to predict a value for the I-129/Cs-137 scaling factor; the latter can be applied along with measured Cs-137 activities to estimate I-129 levels in reactor waste. The model accounts for fission product release from both defective fuel rods and uranium contamination present on in-core reactor surfaces. For simplicity, only the key release mechanisms were modeled. A mass balance, considering the two fuel source terms and a loss term due to coolant cleanup was solved to estimate fission product activity in the primary heat transport system coolant. Steady state assumptions were made to solve for the activity of shortlived fission products. Solutions for long-lived fission products are time-dependent. Data for short-lived radioiodines I-131, I-132, I-133, I-134 and I-135 were analyzed to estimate model parameters for I-129. The estimated parameter values were then used to determine I-1 29 coolant activities. Because of the chemical affinity between iodine and cesium, estimates of Cs-137 coolant concentrations were also based on parameter values similar to those for the radioiodines; this assumption was tested by comparing measured and predicted Cs-137 coolant concentrations. Application of the derived model to Douglas Point and Darlington Nuclear Generating Station plant data yielded estimates for I-129/I-131 and I-129/Cs-137 which are consistent with values reported for pressurized water reactors (PWRs) and boiling water reactors (BWRs). The estimated magnitude for the I-129/Cs-137 ratio was 10-8 - 10-7.

  14. A model for predicting fission product activities in reactor coolant: application of model for estimating I-129 levels in radioactive waste

    A general model was developed to estimate the activities of fission products in reactor coolant and hence to predict a value for the I-129/Cs-137 scaling factor. The latter can be applied along with measured Cs-137 activities to estimate I-129 levels in reactor waste. The model accounts for fission product release from both defective fuel rods and uranium contamination present on in-core reactor surfaces. For simplicity, only the key release mechanisms were modeled. A mass balance, considering the two fuel source terms and a loss term due to coolant cleanup was solved to estimate fission product activity in the primary heat transport system coolant. Steady state assumptions were made to solve for the activity of short-lived fission products. Solutions for long-lived fission products are time-dependent. Data for short-lived radioiodines I-131, I-132, I-133, I-134 and I-135 were analysed to estimate model parameters for I-129. The estimated parameter values were then used to determine I-129 coolant activities. Because of the chemical affinity between iodine and cesium, estimates of Cs-137 coolant concentrations were also based on parameter values similar to those for the radioiodines. This assumption was tested by comparing measured and predicted Cs-137 coolant concentrations. Application of the derived model to Douglas Point and Darlington Nuclear Generating Station plant data yielded estimates for I-129/I-131 and I-129/Cs-137, which are consistent with values reported for pressurised water reactors (PWRs) and boiling water reactors (BWRs). The estimated magnitude for the I-129/Cs-137 ratio was10-8 - 10-7. (author)

  15. A MODEL FOR PREDICTING FISSION PRODUCT ACTIVITIES IN REACTOR COOLANT: APPLICATION OF MODEL FOR ESTIMATING I-129 LEVELS IN RADIOACTIVE WASTE

    A general model was developed to estimate the activities of fission products in reactor coolant and hence to predict a value for the I-129/Cs-137 scaling factor; the latter can be applied along with measured Cs-137 activities to estimate I-129 levels in reactor waste. The model accounts for fission product release from both defective fuel rods and uranium contamination present on in-core reactor surfaces. For simplicity, only the key release mechanisms were modeled. A mass balance, considering the two fuel source terms and a loss term due to coolant cleanup was solved to estimate fission product activity in the primary heat transport system coolant. Steady state assumptions were made to solve for the activity of shortlived fission products. Solutions for long-lived fission products are time-dependent. Data for short-lived radioiodines I-131, I-132, I-133, I-134 and I-135 were analyzed to estimate model parameters for I-129. The estimated parameter values were then used to determine I-1 29 coolant activities. Because of the chemical affinity between iodine and cesium, estimates of Cs-137 coolant concentrations were also based on parameter values similar to those for the radioiodines; this assumption was tested by comparing measured and predicted Cs-137 coolant concentrations. Application of the derived model to Douglas Point and Darlington Nuclear Generating Station plant data yielded estimates for I-129/I-131 and I-129/Cs-137 which are consistent with values reported for pressurized water reactors (PWRs) and boiling water reactors (BWRs). The estimated magnitude for the I-129/Cs-137 ratio was 10-8 - 10-7

  16. NECTAR: Radiography and tomography station using fission neutrons

    Bücherl, Thomas; Söllradl, Stefan

    2015-01-01

    NECTAR, operated by the Technische Universität München, is a versatile facility for the non-destructive inspection of various objects by means of fission neutron radiography and tomography, respectively.

  17. Constitutive Activation of the Fission Yeast Pheromone-Responsive Pathway Induces Ectopic Meiosis and Reveals Ste11 as a Mitogen-Activated Protein Kinase Target

    Kjærulff, Søren; Lautrup-Larsen, I.; Truelsen, S.;

    2005-01-01

    In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase...... kinase (MAP3K) Byr2 can induce ectopic meiosis directly in haploid cells. We find that the Ste11 transcription factor becomes constitutively expressed in these cells and that the expression of pheromone-responsive genes no longer depends on nitrogen starvation. Epistasis analysis revealed that these...... conditions bypassed the requirement for the meiotic activator Mei3. Since Mei3 is normally needed for inactivation of the meiosis-repressing protein kinase Pat1, this finding suggests that the strong Byr2 signal causes inactivation of Pat1 by an alternative mechanism. Consistent with this possibility, we...

  18. Fission product yields from 22 MeV neutron-induced fission of 235U

    The chain yields of 28 product nuclides were determined for the fission of 235U induced by 22 MeV neutrons for the first time. Absolute fission rate was monitored with a double-fission chamber. Fission product activities were measured by HPGe γ-ray spectrometry. Time of flight technique was used to measure the neutron spectrum in order to estimate fission events induced by break-up neutrons and scattering neutrons. A mass distribution curve was obtained and the dependence of fission yield on neutron energy is discussed

  19. Fission product yields from 19.1 MeV neutron induced fission of 238U

    36 chain yields were determined for the fission of 238U induced by 19.1 MeV neutrons for the first time. Absolute fission rate was monitored with a double-fission chamber. Fission product activities were measured by HPGe γ-ray spectrometry. Threshold detector method was used to measure the neutron spectrum in order to estimate the fission events induced by break-up neutrons and scattering neutrons. A mass distribution curve was obtained and the dependence of fission yield on neutron energy was discussed

  20. Measurement of fission cross sections

    A review is presented on the recent progress in the experiment of fission cross section measurement, including recent activity in Japan being carried out under the project of nuclear data measurement. (author)

  1. Fission meter

    Rowland, Mark S.; Snyderman, Neal J.

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  2. Progress in fission product nuclear data

    This is the eleventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS

  3. Current activities and challenges of the European network for inspection and qualification (ENIQ)

    Martin, Oliver [European Commission, Joint Research Centre (JRC), Petten (Netherlands). Institute for Energy and Transport (IET); Martin, Etienne [EDF, St Denis (France). Direction Production Ingenierie; Booler, Russ [AMEC Clean Energy Europe, Warrington (United Kingdom); Zetterwall, Tommy [Swedish Qualification Centre, Taeby (Sweden); Walker, Tony [Rolls-Royce Submarines, Derby (United Kingdom)

    2014-10-15

    This article describes the development of the European Network for Inspection and Qualification (ENIQ) since the previous presentation of the network in the 2011 April/May edition of this journal, covering mainly the new technical challenges facing the network and resulting projects as well as the establishment of the new Task Group for Inspection Qualification Bodies. ENIQ is a utility-driven network dealing with the reliability and effectiveness of non-destructive testing (NDT) for nuclear power plants (NPP). ENIQ is recognised as one of the main contributors to today's global qualification codes and guidelines for in-service inspection (ISI) and has published nearly 50 documents. Among them are the 'European Methodology for Qualification of Non-Destructive Testing', the first qualification methodology based on technical justifications, the 'European Framework Document for Risk-Informed In-Service Inspection (RI-ISI)', and various recommend practices. In addition ENIQ has carried out two pilot studies and a number of surveys. In 2012, ENIQ joined the European based R and D association on Gen II and III reactors, NUGENIA, making ENIQ its 8{sup th} technical area. Following the entry into NUGENIA, ENIQ members have updated the ENIQ roadmap and included a number of new technical challenges facing its members in the near future. Also ENIQ established a third task group in 2013, the Task Group for Inspection Qualification Bodies (TGIQB), which should serve as an exchange forum for inspection qualification bodies. ENIQ is currently preparing or performing new projects and studies to tackle these challenges and new recommended practices and reports are likely to evolve from these projects, which will enable ENIQ to maintain its role as one of the main contributors to today's global qualification codes and guidelines for ISI.

  4. Measurement of fission product activity in the Peach Bottom Reactor primary coolant loop

    The distribution of gamma-emitting radionuclides deposited in the primary circuit of the Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR) at end-of-life has been determined by in situ gamma scanning. The work was part of the Peach Bottom End-of-Life Program and was performed by the IRT Corporation under subcontract to General Atomic Company. The measurements were made to support a design method verification exercise. The specific activity on the ducts was measured by external scans at local points with a Ge(Li) detector and by internal scans with a travelling intrinsic germanium detector (after destructive removal of trepan samples); the activity on the steam generator tube bundle was determined by traversing selected tubes with travelling CdTe detectors from the water side. Calibration measurements on mockups allowed reduction of the spectra to specific activity

  5. Experience from the Inspection of Licensees' Outage Activities, Including Fire Protection Programmes, Event Response Inspections, and the Impact of the Fukushima Daiichi NPP Accident on Inspection Programmes. Workshop Proceedings, Chattanooga, Tennessee, United States, 7-10 April 2014 - Appendix: Compilation of Survey Responses

    This appendix provides the complete compilation of responses received to the questionnaire issued in conjunction with the workshop announcements. The responses are provided as received, with changes made only to the formatting. The OECD Nuclear Energy Agency (NEA) Committee on Nuclear Regulatory Activities (CNRA) Working Group on Inspection Practices (WGIP) sponsored the 12. International Workshop on Nuclear Regulatory Inspection Activities. The workshop was hosted by the U.S. NRC, in Chattanooga, Tennessee, United States of America on 7 -10 April 2014. The three workshop topics that were addressed were as follows: - Inspection of Outage Activities Including Fire Protection Programmes. - Event Response Inspections. - The Impact of Inspection Programmes of the Fukushima Daiichi NPP Accident. Each of the respondents was given the following instructions in relation to their response: - Only one response per country is required. If more than one person from your country is participating, please co-ordinate the responses accordingly. - Please provide responses on separate sheet and clearly identify the questionnaire part and topic. For preparation of the workshop, participants are invited to supply their national inspection approaches used in inspection of events and incidents according to the surveys. Actual issues that were discussed during the workshop were generated by the topic leaders based on the responses submitted by participants with their registration forms. This formats helps to ensure that issues considered most important by the workshop participants are covered during the group discussions. (authors)

  6. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  7. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  8. 78 FR 48180 - Consolidation of Officer in Charge, Marine Inspection For Outer Continental Shelf Activities...

    2013-08-07

    ... Act notice regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR...) to oversee marine inspections for all Mobile Offshore Drilling Units and Floating Outer Continental... Coast in Mobile, Alabama; New Orleans, Louisiana; Morgan City, Louisiana; Port Arthur, Texas;...

  9. Recent developments for an active UF6 gas target for photon-induced fission experiments

    Freudenberger M.

    2013-12-01

    Full Text Available Recent developments for an active uranium-hexafluoride-loaded gas target as well as results on the detector gas properties are presented. The gas of choice is a mixture of argon with small amounts of UF6. This contribution presents the experimental setup and focusses on the electron drift velocity with increasing UF6 content. A time-dependent decrease in electron drift velocity is observed in our setup.

  10. Recent developments for an active UF6 gas target for photon-induced fission experiments

    Freudenberger M.; Eckardt C.; Enders J.; Göök A.; von Neumann-Cosel P.; Oberstedt A.; Oberstedt S.

    2013-01-01

    Recent developments for an active uranium-hexafluoride-loaded gas target as well as results on the detector gas properties are presented. The gas of choice is a mixture of argon with small amounts of UF6. This contribution presents the experimental setup and focusses on the electron drift velocity with increasing UF6 content. A time-dependent decrease in electron drift velocity is observed in our setup.

  11. Apatite fission-track data from upper Cretaceous formations in the Yuan'an Graben (China): Constraints on the timing of synsedimentary fault activity

    Apatite fission-track signatures of upper Cretaceous Formations in the Yuan'an Graben are made to constraint on the timing of the Yuan'an and Tongchenghe synsedimentary fault activity. The apatite fission-track ages range from 102.0 ± 14.6 to 84.1 ± 3.7 Ma with P(χ2) >0.05; the mean confined track lengths of 14.18 ± 0.09 and 14.16 ± 0.08 μm with mean Dpar values of 2.25 ± 0.02 and 2.26 ± 0.03 μm, respectively. These data are interpreted as dating their source-area exhumation, recording the exhumation and cooling of the footwall during major normal faulting. The results indicate that the timing of the Yuan'an and Tongchenghe synsedimentary fault activity occurred at 117–82 Ma and the intensive movement at 100–82 Ma; the onset time of extension in Jianghan Basin is ca. 117 Ma, which is related to the lithospheric extension associated with the subduction of the Pacific Plate beneath the Asian Plate. - Highlights: ► Apatite fission-track dating is used to constraint on the timing of fault activity. ► The onset time of extension in Jianghan Basin is ca. 117 Ma. ► Combination of AFT and ESR to determine a Graben evolution

  12. Monitoring of Scrap Metal - Experience with Radioactive Sources and Activation/Fission Products

    Conclusions: RPMs at entrance gates of scrap yards, steelworks, foundries etc.; • generally capable of detecting dangerous activity levels - preventing radioactive sources from entering the facility; • help avoiding harm to workers and general public; • help averting financial disaster for the facility caused by melting a large radiation source. • RPMs: • are reliable; • can detect sufficiently low activities of gamma emitting nuclides even in larger scrap loads; • generally operated with individual settings; • absence of an alarm does not mean absence of activity. Metal industry: • generally considers a scrap load to contain radioactivity if RPM produces an alarm - alarms based on increase in dose rate above background; • accepts material where no measurable increase in dose rate is detected; • procedure laid down in standard contracts. • Nuclear industry: • needs clearance as integral part of material management; • cleared material will usually not trigger alarms at RPM if “general clearance levels” are used (0.1 Bq/g Co-60); • has agreed special procedures with some scrap dealers to accept material even cleared with higher clearance levels

  13. Extraction and recovery of nuclear fission products using hydrophobic, redox-active organometallic complexes

    We are investigating a new strategy for liquid-liquid extraction and recovery of Cs-137 and Sr-90 from aqueous nuclear waste and contaminated groundwater. The extractants are hydrophobic, redox-active derivatives of Ni(C2B9H11) and FeCp(C2B9H11). They are activated for extraction by reduction to the corresponding monoanions. The cesium and strontium cations are recovered from the organic phase by reoxidation (deactivation) of the anionic extractants back to the neutral species, which also allows for recovery and reuse (i.e., recycling) of the extractants. The reduction potentials of the parent compounds are 0.18 V and -0.08V respectively (acetonitrile, SCE). Therefore, the derivatives can be easily reduced and re-oxidized by many common substances. The redox potentials, relative solubilities in organic solvents and aqueous solution, and D values for extraction and recovery, which vary as a function of substituent groups on the ligands, will be discussed

  14. The IAEA coordinated research project: Production of Mo-99 using LEU fission or neutron activation

    Since late 2004, the IAEA has been planning and organizing a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of Mo-99 obtained by neutron activation of molybdenum trioxide target, e.g. through the use of gel generators. The work initiated with a significant consultancy meeting in Vienna directly following the RERTR 2004 International Meeting, and continued with a Mo-99 Potential Producers Workshop held in Buenos Aires, Argentina 17-20 May 2005. Five technology donor countries have been awarded IAEA Research Agreements, and five institutions in four countries have been awarded IAEA Research Contracts (a sixth institution is expected to be awarded a contract in the near future). The First Research Coordination Meeting (RCM) for this CRP will be held in Vienna December 6-9, 2005. The paper describes the background and history of the CRP, its planning and formulation, including the Buenos Aires workshop, plans for the first RCM, and the content of the project as well as the activities likely to take place over the next year. The results and experience gained from the CRP will help strengthen local capability for undertaking small scale Mo-99 production in participant countries. (author)

  15. Inspection Database

    U.S. Department of Health & Human Services — FDA is disclosing the final inspection classification for inspections related to currently marketed FDA-regulated products. The disclosure of this information is...

  16. Actinide, Activation Product and Fission Product Decay Data for Reactor-based Applications

    The UK Activation Product Decay Data Library was first released in September 1977 as UK-PADD1, to be followed by regular improvements on an almost yearly basis up to the assembly of UKPADD6.12 in March 2013. Similarly, the UK Heavy Element and Actinide Decay Data Library followed in December 1981 as UKHEDD1, with the implementation of various modifications leading to UKHEDD2.6, February 2008. Both the data content and evaluation procedures are defined, and the most recent evaluations are described in terms of specific radionuclides and the resulting consistency of their recommended decay-data files. New versions of the UKPADD and UKHEDD libraries are regularly submitted to the NEA Data Bank for possible inclusion in the JEFF library

  17. Comparative study of 99Mo/99mTc generators at base of synthesized gels starting from activation and fission 99Mo

    The 99mTc is used for diagnostic and therapy. It is produced starting from 99Mo, absorbed in chromatographic columns, loaded with alumina that absorb only 0.2% of 99Mo with high specific activities of 99Mo, obtained from the 235U fission. Given these conditions and limitations, new preparation procedures of 99Mo/99mTc generators, its have been developed, using zirconium molybdates gels that incorporates until 30% of 99Mo, conserve similar characteristics of quality and purity that the traditional generator. The radiochemical characteristics of the 99mTc elution, depend strongly on the gel preparation conditions. In particular, the present work has by object to determine the influence of the 99Mo used type, fission or activation product, during the gels synthesis, as well as the used air flow for the agitation in the gels preparation and its influence in the 99Mo/99mTc generators quality. When diminishing the flow of agitation air the efficiency it increases and in the radionuclide purity of the eluates and when using 99Mo from fission for the gels production it increases in an important way the elutriation efficiency, the radiochemical and radionuclide purity of the 99mTc eluates. (Author)

  18. Inspection Activities on Archeological Areas in Milan. Documents’ Analysis, Decay and Risks Conditions Evaluation

    Chiara Livraghi; Fabiana Pianezze; Matteo Scaltritti

    2015-01-01

    The project "Milano Archeologia" concerning the remains of the city of Milan in the Roman age, was based on specific methods and tools, such as the collection of data through the previous archive research, and the feedback of information through inspections and then direct contact with monuments. A very interesting and significant case is the funerary complex area of “San Vittore al Corpo”, in which are also preserved the remains of an impressive Imperial Mausoleum. The curtain, that defines ...

  19. NRU light water reflector inspections

    In 2009 May, the National Research Universal (NRU) calandria leaked. In the next year the calandria was inspected with six new techniques, repaired, and the repair inspected with four additional new techniques. The calandria is surrounded by a light water reflector vessel. Concerns that the same corrosion mechanism may have damaged the reflector vessel led to plans to inspect the full circumference of the reflector wall for corrosion damage, through a 64 mm diameter port, from 10 m away, while inspecting from the corroded surface. The ultrasonic technique is intended to produce a very fine inspection grid, through the corroded surface, using a very small probe body over the approximately 5 m2 to be inspected. The calandria vessel inspections were successfully performed, in a short time period, under difficult conditions. This paper will discuss Operating Experience (OPEX) from the 2009/2010 calandria wall inspections and industry dialogue that were applied to the Reflector Wall Inspection (RWI) project. Interaction with the CANDU Inspection Qualification Bureau (CIQB) on procedures, training plans, and mock-up training, led to improvements in how these activities were performed for the RWI project. Experience with shift turnover meetings led to improvements in how the inspection team captures lessons learned, trends issues, and eliminates reoccurring design and procedure problems. Experience with collected and analyzed data, inspection shift logs, and video captured from inspections and repairs, were used to improve inspection performance. Finally, OPEX from radiation/activation and the calibration process reduced dose through tool design and procedure changes. (author)

  20. Fission Research at IRMM

    Al-Adili A.; Fabry I.; Borcea R.; Zeynalov S.; Kornilov N.; Hambsch F.-J.; Oberstedt S.

    2010-01-01

    Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f), 234 U(n,f), prompt neutron emission in fission of 252 Cf(SF) as well as the prompt fission neutron spectrum of 235 U(n,f) and is presenting the most important results.

  1. Determination of uranium fission products interference factors in neutron activation analysis; Determinacao de fatores de interferencia de produtos de fissao de uranio na analise por ativacao neutronica

    Ribeiro Junior, Ibere Souza

    2014-09-01

    Neutron activation analysis is a method used in the determination of several elements in different kinds of matrices. However, when the sample contains high U levels the problem of {sup 235}U fission interference occurs. A way to solve this problem is to perform the correction using the interference factor due to U fission for the radionuclides used on elemental analysis. In this study was determined the interference factor due to U fission for the radioisotopes {sup 141}Ce, {sup 143}Ce, {sup 140}La, {sup 99}Mo, {sup 147}Nd, {sup 153}Sm and {sup 95}Zr in the research nuclear reactor IEA-R1 on IPEN-CNEN/SP. These interference factors were determined experimentally, by irradiation of synthetic standards for 8 hours in a selected position in the reactor, and theoretically, determining the epithermal to neutron fluxes ratio in the same position where synthetic standards were irradiated and using reported nuclear parameters on the literature. The obtained interference factors were compared with values reported by other works. To evaluate the reliability of these factors they were applied in the analysis of studied elements in the certified reference materials NIST 8704 Buffalo River Sediment, IRMM BCR- 667 Estuarine Sediment e IAEA-SL-1 Lake Sediment. (author)

  2. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β− particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β− particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as εBaF2 / εEJ−313−5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency εBaF2 / εEJ−313−5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility

  3. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  4. Development of an active 238uranium(VI)-fluoride detector chamber for precision experiments in photon-induced fission at the S-DALINAC

    The polarized injector SPIN at the S-DALINAC provides spin polarized electrons for circularly polarized bremsstrahlung with a high degree of polarization near the endpoint energy of the spectrum, enabling the search for forward-backward asymmetries of the light and heavy fission fragment originating from parity non-conservation in the photon-induced fission process of 238U. An active 238uranium(VI)-fluoride gas target has been developed along the lines of a simple Frisch grid ionization chamber to raise the luminosity and to study the properties of an 238uranium(VI)-fluoride/argon gas mixture. The active 238uranium(VI)-fluoride gas target has been filled with argon and 238uranium(VI)-fluoride using mass flow controllers. At different settings data has been acquired and interpreted. Instantly after filling the chamber with some 238uranium(VI)-fluoride the anode and cathode signal are severely lowered and gain only slowly. Apparently the 238uranium(VI)-fluoride acts as a very efficient electron collector because of its complexity and the high amount of fluorine and its electronegativity. Over time, the amount of gaseous 238uranium(VI)-fluoride is reduced and different processes are possible to explain this effect. In the present configuration of the active 238uranium(VI)-fluoride gas target no sound quantitative information on the properties of an 238uranium(VI)-fluoride/argon gas mixture can be given. Raising the luminosity for precision experiments in photon-induced fission at the S-DALINAC with an active 238uranium(VI)-fluoride gas target appears to be impossible.

  5. Energy released in fission

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  6. Determination of fission cross-section and absolute fission yields using track-cum gamma-ray spectrometric technique

    The fission cross-section of 233Pa(2nth, f) using fission track technique has been determined for the first time using thermal neutron flux of the reactor APSARA. This is important from the point of view of advance heavy water reactor (AHWR), which is to be described. On the other hand, the yields of fission products in the fast neutron induced fission of minor actinides are important from the point accelerator driven sub critical system (ADSS). In view of that, absolute yields of fission products in the fast neutron induced fission of 238U, 237Np, 238,240Pu, 243Am and 244Cm have been determined using the fission track-cum gamma-ray spectrometric technique. The total number of fission occurring in the target was estimated by track technique, whereas the activities of the fission products have been determined using gamma-ray spectrometric technique. Detailed procedure and its importance are to be discussed. (author)

  7. Two non-destructive neutron inspection techniques: prompt gamma-ray activation analysis and cold neutron tomography

    Baechler, Sébastien; Dousse, Jean-Claude; Jolie, Jan

    2005-01-01

    Deux techniques d’inspection non-destructives utilisant des faisceaux de neutrons froids ont été développées à la source de neutrons SINQ de l’Institut Paul Scherrer : (1) l’analyse par activation neutronique prompte (PGAA) et (2) la tomographie neutronique. L’analyse par PGA (Prompt Gamma-ray Activation) est une méthode nucléaire qui permet de déterminer la concentration d’éléments présents dans un échantillon. Cette technique consiste à détecter les rayons gamma prompts émis par l’échantill...

  8. Activation analysis and waste management for blanket materials of multi-functional experimental fusion–fission hybrid reactor (FDS-MFX)

    The preliminary studies of the activation analysis and waste management for blanket materials of the multi-functional experimental fusion–fission hybrid reactor, i.e. Multi-Functional eXperimental Fusion Driven Subcritical system named FDS-MFX, were performed. The neutron flux of the FDS-MFX blanket was calculated using VisualBUS code and Hybrid Evaluated Nuclear Data Library (HENDL) developed by FDS Team. Based on these calculated neutron fluxes, the activation properties of blanket materials were analyzed by the induced radioactivity, the decay heat and the contact dose rate for different regions of the FDS-MFX blanket. The safety and environment assessment of fusion power (SEAFP) strategy, which was developed in Europe, was applied to FDS-MFX blanket for the management of activated materials. Accordingly, the classification and management strategy of activated materials after different cooling time were proposed for FDS-MFX blanket

  9. Fission fragment angular distributions and fission cross section validation

    surrounded by enriched uranium 235U so as to approach criticality with fast neutrons. The simulation predicts a multiplication factor keff in better agreement with the experiment (the deviation of 750 pcm is reduced to 250 pcm) when we replace the ENDF/B- VII.0 evaluation of the 237Np fission cross section by the n-TOF data. We also explore the hypothesis of deficiencies of the inelastic cross section in 235U which has been invoked by some authors to explain the deviation of 750 pcm. The large distortion that should be applied to the inelastic cross sections in order to reconcile the critical experiment with its simulation is incompatible with existing measurements. Also we show that the ν-bar of 237Np can hardly be incriminated because of the high accuracy of the existing data. Fission rate ratios or averaged fission cross sections measured in several fast neutron fields seem to give contradictory results on the validation of the 237Np cross section but at least one of the benchmark experiments, where the active deposits have been well calibrated for the number of atoms, favors the n-TOF data set. These outcomes support the hypothesis of a higher fission cross section of 237Np. (author)

  10. Evaluation for the status of the IAEA inspection at PIEF and UF4 conversion plant (2001-2006)

    Kim, Hyun Sook; Lee, Byung Doo

    2007-12-15

    Safeguards implementation of nuclear material was carried out at facility level in an effort to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol and bilateral nuclear cooperation agreements. IAEA inspection is the most important and basic factor of the safeguard implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at PIEF and UF4 conversion plant during the period from 2001 to 2006 is evaluated in this report.

  11. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report

  12. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  13. Fission Mass Yield Studies

    Mass yields from fission induced by a span of neutron energies up to 18 MeV have been measured for Th232, U235 and U238 target nuclei. Particular attention has been given to the dependence of symmetric fission yields on energy. To study the effect of angular momentum, fission yields from the U236 compound nucleus formed by alpha-particle irradiations of Th232 were also studied over the same span of excitation energies. A standard set of Pd109, Ag111, Pd112 and Ag113 symmetric fission yields was generally measured for all irradiations. In addition, yields of Eu156, Cs136 and 2.3-d Cd115 were measured for some selected combinations of projectile, energy and target nucleus. Assays for Zr97 and sometimes also Ba139 served as fission monitors. Altogether 150 fission yields were measured for these combinations of target nucleus, projectile and incident energy. About one-third of these were checked by replicated irradiations. At highest energies for the U236 compound nucleus the symmetric fission yield from alpha-particle-induced fission is about 13% higher than for neutron-induced fission. Dips in symmetric fission yield were observed at the energy onset of third-chance fission for each target and projectile. Some indication of a small central peak in the mass distribution was observed in the yields from U236 compound nucleus fission, but not from the Th233 compound nucleus fission. Detailed mathematical methods have been developed to separate the effects of fissions preceding and following neutron emission. These methods were used to remove the effects of second- and third-chance fissions from the measured symmetric fission yields. These calculated yields for first-chance fission show no dips with energy. The calculations also show that perhaps half the difference between symmetric yields for alpha- particle-induced fission of Th232 and neutron-induced fission of U235 is attributable to angular momentum effects. Both calculated first-chance yields and measured yields

  14. Fission Research at IRMM

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  15. Complex fission phenomena

    Poenaru, D N; Greiner, W

    2005-01-01

    Complex fission phenomena can be studied in a unified way. Very general reflection asymmetrical equilibrium (saddle-point) nuclear shapes, may be obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in cold fission phenomena can be explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are outlined. Predictions of two alpha accompanied fission are experimentally confirmed.

  16. To fission or not to fission

    Pomorski, Krzysztof; Ivanyuk, Fedir A

    2016-01-01

    The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.

  17. Inspection and teachers’ emotions: An emotional evaluation of inspection

    Binali Tunç

    2015-02-01

    Full Text Available In the study, inspection is discussed in relation to the teachers’ feelings and emotions it creates before inspection, during inspection and after inspection process. Teacher’s emotions have been investigated intentionally as emotional side of education has been neglected. Education is closely related to the emotions of teachers, who are the most important producers of educational activities.Educational activities are reduced to standard activities and defined with simple explanations or single labels such as ‘good-bad’, ‘successful-unsuccessful’, ‘adequate-inadequate’. Inspection causes emotions to be neglected. Moreover, recently, it has been discussed that there are approaches and systems that suggest constant and multi-dimensional inspection instead of traditional inspection.Qualitative research model was used to understand of teacher emotions. A semi structured form was used for the 38 primary school teachers’ interviews. After teacher interviews were completed, we analyzed and compared the interviews. Participants’ expressions were checked in terms of correctness, potential validity and reliability problems such as misinterpretation.   The results of the study can be summarized as follows: There were no positive expressions related to the emotional impact of inspection on teachers. In addition, teachers felt that the inspectors were stressed, anxious, uneasy, accusatory, coercive, looking for defect and areas of unsuccessful teaching performance. Most of teachers reported that being observed and evaluated caused them to have negative emotions.Teachers’ perceptions about inspection are found to be negative. There are no statements that indicate there is a positive impression of inspection on teachers. The emotions that are experienced before inspection: pressure, hurry, stress, concern, tension, anxiety, worry, uncertainty; during inspection: stress, tension, anger, loss of strength, humiliation and lack of self

  18. How spontaneous fission was discovered

    The 70th anniversary of the discovery of spontaneous fission by the young Russian physicists Konstantin A. Petrzhak and Georgii N. Flerov is commemorated. The situation in the 1940s is described and the activities of the 2 scientists, including their involvement in the development of the A-bomb, is outlined. (P.A.)

  19. Progress in fission product nuclear data

    This is the seventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The sixth issue of this series has been published in June 1980 as INDC(NDS)-113/G+P. The present issue includes contributions which were received by NDS between 1 August 1980 and 25 May 1981

  20. Progress in fission product nuclear data

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  1. Optimal allocation of inspection resources

    Allocation of inspection resources for international safeguards is considered as the problem of designing a complex system that is composed of individual inspection activities and that has the objective of detecting material loss. Optimization theory is applied in selecting those inspection activities that maximize a system performance measure within resource constraints. The method is applicable to a global allocation problem in which inspection resources are distributed throughout a hierarchy consisting of multiple countries, multiple facilities within each country, and multiple activities within each facility. 9 references

  2. Hospital Inspections

    U.S. Department of Health & Human Services — Welcome to hospitalinspections.org, a website run by the Association of Health Care Journalists (AHCJ) that aims to make federal hospital inspection reports easier...

  3. Heuristic use of mental map information gained from behavioural inspection of routines in daily activities (HUMMINGBIRDS)

    HANNES, Els; JANSSENS, Davy; Wets, Geert

    2007-01-01

    This research project aims at identifying the critical spatial factors in an individual’s mental map which influence daily activity travel behaviour in order to improve the agent-based modelling of activity travel behaviour by means of a computational process model. A qualitative travel survey and in depth interviews are used to identify the spatial factors that appear in the destination and travel mode choice heuristics of experts when discussing their activity space. Recorded interviews are...

  4. The experience of Russian Federation in organization of customs control of fissionable and other radioactive materials

    Among the routine inspection tasks of customs offices are tasks stemming from international commitments of Russia to prevent proliferation of nuclear weapons and material that can be used for making these weapons. These tasks are: radiation monitoring of all vehicles, passengers, their luggage and goods crossing the state border; inspection of fissionable and radioactive materials (FRM) legally transported by participants in the foreign trade activities with a view to checking that the declared data fully correspond to the actual radioactive cargo. Organizational measures involve the Sheremetyevo customs office has a department whose personnel is specially trained in radiation monitoring and can operate radiometric and spectrometric instruments. These specialists are included in shifts on duty responsible for customs clearing and inspection and carry out continuous radiation monitoring of passengers and their luggage, vehicles and goods crossing the border. They work on the 24-hour basis, which allows quickly and skillfully localizing the detected radiation source and avoiding direct contact of customs, officers, airport personnel, and passengers with the radioactive item. Technical measures include provision and everyday use of radiation monitoring instrumentation, classified as: stationary equipment of primary radiation monitoring (SEPRM); hand-held instruments for additional radiation monitoring (RM); spectrometric equipment for control of legal FRM transport. The customs procedure for monitoring of fissionable and radioactive materials is divided into three stages. Stage I, primary RM is carried out by stationary FRM detection systems Yantar for customs applications installed on the customs inspection line next to the X-ray inspection equipment (XIE). Stage II, additional RM is carried out by officer who uses hand-held instruments to check the passenger's luggage for surface contamination; to perform primary identification of the detected radioactive source

  5. Information-Driven Inspections

    New uranium enrichment capacity is being built worldwide in response to perceived shortfalls in future supply. To meet increasing safeguards responsibilities with limited resources, the nonproliferation community is exploring next-generation concepts to increase the effectiveness and efficiency of safeguards, such as advanced technologies to enable unattended monitoring of nuclear material. These include attribute measurement technologies, data authentication tools, and transmission and security methods. However, there are several conceptual issues with how such data would be used to improve the ability of a safeguards inspectorate such as the International Atomic Energy Agency (IAEA) to reach better safeguards conclusions regarding the activities of a State. The IAEA is pursuing the implementation of information-driven safeguards, whereby all available sources of information are used to make the application of safeguards more effective and efficient. Data from continuous, unattended monitoring systems can be used to optimize on-site inspection scheduling and activities at declared facilities, resulting in fewer, better inspections. Such information-driven inspections are the logical evolution of inspection planning - making use of all available information to enhance scheduled and randomized inspections. Data collection and analysis approaches for unattended monitoring systems can be designed to protect sensitive information while enabling information-driven inspections. A number of such inspections within a predetermined range could reduce inspection frequency while providing an equal or greater level of deterrence against illicit activity, all while meeting operator and technology holder requirements and reducing inspector and operator burden. Three options for using unattended monitoring data to determine an information-driven inspection schedule are to (1) send all unattended monitoring data off-site, which will require advances in data analysis techniques to

  6. Information-Driven Inspections

    Laughter, Mark D [ORNL; Whitaker, J Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA

    2010-01-01

    New uranium enrichment capacity is being built worldwide in response to perceived shortfalls in future supply. To meet increasing safeguards responsibilities with limited resources, the nonproliferation community is exploring next-generation concepts to increase the effectiveness and efficiency of safeguards, such as advanced technologies to enable unattended monitoring of nuclear material. These include attribute measurement technologies, data authentication tools, and transmission and security methods. However, there are several conceptual issues with how such data would be used to improve the ability of a safeguards inspectorate such as the International Atomic Energy Agency (IAEA) to reach better safeguards conclusions regarding the activities of a State. The IAEA is pursuing the implementation of information-driven safeguards, whereby all available sources of information are used to make the application of safeguards more effective and efficient. Data from continuous, unattended monitoring systems can be used to optimize on-site inspection scheduling and activities at declared facilities, resulting in fewer, better inspections. Such information-driven inspections are the logical evolution of inspection planning - making use of all available information to enhance scheduled and randomized inspections. Data collection and analysis approaches for unattended monitoring systems can be designed to protect sensitive information while enabling information-driven inspections. A number of such inspections within a predetermined range could reduce inspection frequency while providing an equal or greater level of deterrence against illicit activity, all while meeting operator and technology holder requirements and reducing inspector and operator burden. Three options for using unattended monitoring data to determine an information-driven inspection schedule are to (1) send all unattended monitoring data off-site, which will require advances in data analysis techniques to

  7. Fission neutron statistical emission

    The statistical model approach FINESSE (FIssion NEutronS' Statistical Emission) for the description of fission neutron multiplicities, energy spectra and angular distributions is described. Based on an extended Weisskopf ansatz and on a realistic temperature distribution it provides a fragment mass number dependent description of fission neutron data. Model parameters (optical potential, n/γ competition) were fixed on the basis of the 252Cf(sf) (nuclear data standard). Combined with a phenomenological fission model for predicting relevant fragment data as function of asymmetry. FINESSE can be applied to any fission reaction of actinides in the Th-Cf region without further parameter adjustment. Results are presented for 252Cf(sf) and neutron induced fission of 235U, 239Pu, 232Th. Effects of multiple-chance fission are discussed for 232Th(n,xnf) reacation. (author). 46 refs, 11 figs

  8. NRU light water reflector inspections

    Lumsden, R.H.; Hebert, H.; Zahn, N.; Simpson, N.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2011-07-01

    In 2009 May, the National Research Universal (NRU) calandria leaked. In the next year the calandria was inspected with six new techniques, repaired, and the repair inspected with four additional new techniques. The calandria is surrounded by a light water reflector vessel. Concerns that the same corrosion mechanism may have damaged the reflector vessel led to plans to inspect the full circumference of the reflector wall for corrosion damage, through a 64 mm diameter port, from 10 m away, while inspecting from the corroded surface. The ultrasonic technique is intended to produce a very fine inspection grid, through the corroded surface, using a very small probe body over the approximately 5 m{sup 2} to be inspected. The calandria vessel inspections were successfully performed, in a short time period, under difficult conditions. This paper will discuss Operating Experience (OPEX) from the 2009/2010 calandria wall inspections and industry dialogue that were applied to the Reflector Wall Inspection (RWI) project. Interaction with the CANDU Inspection Qualification Bureau (CIQB) on procedures, training plans, and mock-up training, led to improvements in how these activities were performed for the RWI project. Experience with shift turnover meetings led to improvements in how the inspection team captures lessons learned, trends issues, and eliminates reoccurring design and procedure problems. Experience with collected and analyzed data, inspection shift logs, and video captured from inspections and repairs, were used to improve inspection performance. Finally, OPEX from radiation/activation and the calibration process reduced dose through tool design and procedure changes. (author)

  9. 3 D localization system for inspection activities in metallic plates; Sistema de localizacao em tres dimensoes para auxilio na atividade de inspecao em chapas metalicas

    Bonacin, Mario Vicente; Polli, Helton Luis; Czaikowski, Daniel Irineu; Arruda, Lucia Valeria Ramos de; Neves Junior, Flavio; Oliveira, Daniel Rossato de [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, Parana (Brazil)

    2008-07-01

    This work presents the development of a 3D localization system based on inertial sensors. The prototype aims for its application in the oil and gas industry, which presents deficiencies on automation of inspection procedures. Recent advances on the field of Nondestructive Testing (NDT) have contributed to automation of these inspections, but installation and removal of NDT equipment, as well as location measurements and data acquired processing, are still highly dependent on labour-human. However, only the double integration of data from the inertial sensors - position determination - does not reach the precision level required by inspection activity. It requires the use of techniques and methods to minimize errors. Different models and techniques can be applied to minimize these undesired effects in addition with filters as the Kalman filter, widely used on problems of estimation of trajectories and fusion of sensors. This paper presents the modeling and implementation of some of these techniques, obtaining interesting results. (author)

  10. Slaughterhouse Inspection (Egypt). Training Manual : Guidelines for the Planning and Organisation of Training Activities

    Blomne Sopov, M.; Ghouti, C.A.; Benlafquih, R.; Vugt, Van, Jose; Latief, A.M.A.

    2014-01-01

    The training manual was prepared for the inspectors of slaughterhouses in Egypt to support the training activities of the General Organization for Veterinary Services (GOVS). The manual has two main parts: 1. Overview on how to design, organize, implement and evaluate training programs in general 2. Recommendation on how to design and facilitate training programs for the inspectors of slaughterhouses. Report CDI-14-004.

  11. Fast fission phenomena

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted

  12. Inspection scheme

    As part of the Danish RERTR Program, three fuel elements with LEU U3O8-Al fuel and three fuel elements with LEU U3Si2-Al fuel were manufactured by NUKEM for irradiation testing in the DR-3 reactor at the Risoe National Laboratory in Denmark. The inspection scheme for the elements with U3O8-Al fuel is presented here as an illustration only. The inspection scheme for the elements with U3Si2-Al fuel was very similar. In this example, all document numbers, drawing numbers, and form numbers have been deleted or replaced with a generic identification. (author)

  13. IAEA Inspections for Undeclared and Declared Activities: Is a More Robust Approach Needed?

    Mark Schanfein

    2009-07-01

    The United States has long supported a strong international safeguards system and for many years has served as the foremost supplier of technology, equipment, and training to the International Atomic Energy Agency (IAEA). In doing so, it drew in many instances on DOE sponsored R&D and training that was directed towards domestic safeguards and then adapted for IAEA purposes. This was relatively straightforward because of the strong overlap between the development of nuclear material accountancy measures needed for both domestic and international purposes. Two factors have emerged that have made this strong reliance on domestic measures less and less able to be a source of support for the IAEA. One is the shift by the IAEA safeguards system towards detecting undeclared activities. The second is the shift of domestic attention away from nuclear material accountancy and towards physical protection. As a result, a gap in US sponsored R&D and training relevant to international safeguards has developed. The NNSA Next Generation Safeguards Initiative and the DOE NA-22 Safeguards R&D program are intended to help fill this gap and, thereby, permit the U.S. to remain as the pre-eminent supplier of technology for international safeguards purposes. In this context, IAEA challenges have been examined from the perspective of detecting the diversion of nuclear material from declared stocks; detecting undeclared production of nuclear material and activities at locations declared under INFCIRC/153; and detecting undeclared nuclear material and activities elsewhere in a state. Of these, the detection of undeclared nuclear material and activities is, perhaps, the IAEA’s most significant challenge. It is a challenge that even the international community finds difficult to meet because of the scope and the geographic scale of the problem, the technical constraints, the knowledge required, and the significant resources needed to deploy effective systems world-wide (e.g., satellite

  14. Complex fission phenomena

    Poenaru, Dorin N.; Gherghescu, Radu A.; Greiner, Walter

    2005-01-01

    Complex fission phenomena are studied in a unified way. Very general reflection asymmetrical equilibrium (saddle point) nuclear shapes are obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in binary cold fission of Th and U isotopes is explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are ou...

  15. IMPROVEMENT OF THE PRINCIPLES OF THE ORGANIZATION OF INSPECTION AND SUPERVISING ACTIVITY OF BANK OF RUSSIA

    Виктор Макарович Заернюк

    2013-04-01

    Full Text Available In article established practices of the organization of control and supervision of Bank of Russia of activity of the Russian commercial banks are considered.  The analysis is carried out and the assessment of a level of development of a substantial component of bank regulation and supervision is given.Purpose: Research of tendencies and problems in the organization of control and supervising activity of Bank of Russia at the present stage.Methodology: General scientific methods were used: analysis and synthesis, comparisons, generalizations, system approach. In the course of use of the actual material methods of the economical and statistical analysis were used.Results: The conclusion that the excessive and bureaucratized control from the Central bank interferes with dynamic development of the banking sector is drawn. It is required to generation of the new thinking which is expressing in transfer of accent from need of strict, in many respects of formal, application of bank instructions and regulations on formation of professional opinion of the controler, increase of its responsibility for results of checks.DOI: http://dx.doi.org/10.12731/2218-7405-2013-3-1

  16. Intermediate energy nuclear fission

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  17. Fission product yields

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235U, 239Pu, 241Pu and for fast fission (approximately 1 MeV) of 235U, 238U, 239Pu, 241Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  18. Recent progress in analysis for fission products

    A great deal of progress has been achieved in analysis of fission products during the 1980s. In situ analysis of fission products and direct assay of radiowaste packages have been developed to meet the needs of radiowaste treatment and disposal. Activation analysis and non-radiometric method have been used to measure long-lived fission product nuclides. Their sensitivity is superior to that of traditional radiochemical analysis. Some new work on the Cherenkov counting technique and rapid radiochemical analysis has been published. The progress is reviewed from the point of view of methodology

  19. Thermal fission rates with temperature dependent fission barriers

    Zhu, Yi; Pei, Junchen

    2016-01-01

    The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective ...

  20. Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    Bromberger, B.; Bar, D.; Brandis, M.; Dangendorf, V.; Goldberg, M B; Kaufmann, F.; Mor, I.; Nolte, R.; SCHMIEDEL M.; Tittelmeier, K.; Vartsky, D.; H. Wershofen

    2012-01-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and ga...

  1. Inspecting the microstructure of electrically active defects at the Ge/GeOx interface

    Fanciulli, Marco; Baldovino, Silvia; Molle, Alessandro

    2012-02-01

    High mobility substrates are important key elements in the development of advanced devices targeting a vast range of functionalities. Among them, Ge showed promising properties promoting it as valid candidate to replace Si in CMOS technology. However, the electrical quality of the Ge/oxide interface is still a problematic issue, in particular for the observed inversion of the n-type Ge surface, attributed to the presence of dangling bonds inducing a severe band bending [1]. In this scenario, the identification of electrically active defects present at the Ge/oxide interface and the capability to passivate or anneal them becomes a mandatory issue aiming at an electrically optimized interface. We report on the application of highly sensitive electrically detected magnetic resonance (EDMR) techniques in the investigation of defects at the interface between Ge and GeO2 (or GeOx), including Ge dangling bonds and defects in the oxide [2]. In particular we will investigate how different surface orientations, e.g. the (001) against the (111) Ge surface, impacts the microstructure of the interface defects. [1] P. Tsipas and A. Dimoulas, Appl. Phys. Lett. 94, 012114 (2009) [2] S. Baldovino, A. Molle, and M. Fanciulli, Appl. Phys. Lett. 96, 222110 (2010)

  2. Progress in fission product nuclear data. No. 13

    This is the 13th issue of a report series published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission), neutron reaction cross-sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and bumped fission product data (decay heat, absorption, etc.). The first part of the report consists of unaltered original data which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. Part 3 contains requirements for further measurements

  3. Progress in fission product nuclear data. No. 14

    This is the 14th issue of a report series on Fission Product Nuclear Data published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of fission product yields, neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data from neutron induced and spontaneous fission, lumped fission product data. The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. The third part contains requirements for further measurements

  4. Energy partition in low energy fission

    Mirea, M.

    2011-01-01

    The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the another separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The fission path is obtained in the frame of the macroscopic-microscopic model. The single particle level schemes are obtained within the two ...

  5. Muon-induced fission

    A review of recent experimental results on negative-muon-induced fission, both of 238U and 232Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238U. (author)

  6. Fission gas detection system

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  7. Fission Xenon on Mars

    Mathew, K. J.; Marti, K.; Marty, B.

    2002-01-01

    Fission Xe components due to Pu-244 decay in the early history of Mars have been identified in nakhlites; as in the case of ALH84001 and Chassigny the fission gas was assimilated into indigenous solar-type Xe. Additional information is contained in the original extended abstract.

  8. Thermal fission rates with temperature dependent fission barriers

    Zhu, Yi

    2016-01-01

    \\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...

  9. Federal environmental inspections handbook

    This Federal Environmental Inspection Handbook has been prepared by the Department of Energy (DOE), Office of Environmental Guidance, RCRA/CERCLA Division (EH-231). It is designed to provide DOE personnel with an easily accessible compilation of the environmental inspection requirements under Federal environmental statutes which may impact DOE operations and activities. DOE personnel are reminded that this Handbook is intended to be used in concert with, and not as a substitute for, the Code of Federal Regulations (CFR). Federal Register (FR), and other applicable regulatory documents

  10. Monte-Carlo simulations of neutron-induced activation in a Fast-Neutron and Gamma-Based Cargo Inspection System

    Bromberger, B.; Bar, D.; Brandis, M.; Dangendorf, V.; Goldberg, M. B.; Kaufmann, F.; Mor, I.; Nolte, R.; Schmiedel, M.; Tittelmeier, K.; Vartsky, D.; Wershofen, H.

    2012-03-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.

  11. Decree-Law No. 48568 of 4 September 1968 - Competence of the J.E.N. to undertake scientific and technical inspections of private or public bodies involved in nuclear research or nuclear activities

    Under this Decree-Law, the Junta de Energia Nuclear (JEN) is empowered to inspect on a regular basis all establishments and installations involved in nuclear activities. These inspections are made to ensure that the installations are operated safely and efficiently and that radiation protection measures are properly applied. (NEA)

  12. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  13. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal

  14. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  15. Chemical activity of noble gases Kr and Xe and its impact on fission gas accumulation in the irradiated UO2 fuel

    It is generally accepted that most of the insoluble inert gas atoms Xe and Kr produced during fissioning are retained in the fuel irradiated at a temperature lower than the threshold. Experimental data imply that we can assume that after irradiation exposure in excess of 1018 fissions/cm3 the single gas atom diffusion can be disregarded in description of fission gas behaviour. It is assumed that the vicinity of the fission fragment trajectory is the place of intensive irradiation induced chemical interaction of the fission gas products with UO2. Significant part of fission gas product is thus expected to be chemically bound in the matrix of UO2. Experiments with mixture of noble gases, coupled with theoretical calculations, provide strong evidence for direct bonds between Ar, Kr, or Xe atoms and the U atom of the CUO molecule. Because of its positive charge, the UO22+ ion, which is isoelectronic with CUO, should form even stronger bonds with noble gas atoms, which could lead to a growing number of complexes that contain direct noble gas - to - actinide bonds. Considering the huge amount of gas immobilised in the UO2 fuel the solution process and in consequence the re-solution process of rare gases is to be replaced by the chemical bonding process. This explains the fission gas accumulation in the irradiated UO2 fuel. (author)

  16. Emission of fission products and other activities during the accident to Windscale Pile no. 1 in October 1957

    Information on the release of activity from Windscale during the accident of October 1957 is reviewed, and some previously unpublished data are given. The activities of 131I released to atmosphere, retained on the pile filters and washed out of the pile are compared with the activity in the channels involved in the fire. The information on the physical form of the released activity is summarised. (author)

  17. The non-proliferation experiment and gas sampling as an on-site inspection activity: A progress report

    The Non-proliferation Experiment (NPE) is contributing to the development of gas sampling methods and models that may be incorporated into future on-site inspection (OSI) activities. Surface gas sampling and analysis, motivated by nuclear test containment studies, have already demonstrated the tendency for the gaseous products of an underground nuclear test to flow hundreds of meters to the surface over periods ranging from days to months. Even in the presence of a uniform sinusoidal pressure variation, there will be a net flow of cavity gas toward the surface. To test this barometric pumping effect at Rainier Mesa, gas bottles containing sulfur hexaflouride and 3He were added to the pre-detonation cavity for the 1 kt chemical explosives test. Pre-detonation measurements of the background levels of both gases were obtained at selected sites on top of the mesa. The background levels of both tracers were found to be at or below mass spectrographic/gas chromatographic sensitivity thresholds in the parts-per-trillion range. Post-detonation, gas chromatographic analyses of samples taken during barometric pressure lows from the sampling sites on the mesa indicate the presence of significant levels (300--600 ppt) of sulfur hexaflouride. However, mass spectrographic analyses of gas samples taken to date do not show the presence of 3He. To explain these observations, several possibilities are being explored through additional sampling/analysis and numerical modeling. For the NPE, the detonation point was approximately 400 m beneath the surface of Rainier Mesa and the event did not produce significant fracturing or subsidence on the surface of the mesa. Thus, the NPE may ultimately represent an extreme, but useful example for the application and tuning of cavity gas detection techniques

  18. Phosphorylation-Independent Regulation of Atf1-Promoted Meiotic Recombination by Stress-Activated, p38 Kinase Spc1 of Fission Yeast

    Gao, Jun; Davidson, Mari K.; Wahls, Wayne P.

    2009-01-01

    Background Stress-activated protein kinases regulate multiple cellular responses to a wide variety of intracellular and extracellular conditions. The conserved, multifunctional, ATF/CREB protein Atf1 (Mts1, Gad7) of fission yeast binds to CRE-like (M26) DNA sites. Atf1 is phosphorylated by the conserved, p38-family kinase Spc1 (Sty1, Phh1) and is required for many Spc1-dependent stress responses, efficient sexual differentiation, and activation of Rec12 (Spo11)-dependent meiotic recombination hotspots like ade6-M26. Methodology/Principal Findings We sought to define mechanisms by which Spc1 regulates Atf1 function at the ade6-M26 hotspot. The Spc1 kinase was essential for hotspot activity, but dispensable for basal recombination. Unexpectedly, a protein lacking all eleven MAPK phospho-acceptor sites and detectable phosphorylation (Atf1-11M) was fully proficient for hotspot recombination. Furthermore, tethering of Atf1 to ade6 in the chromosome by a heterologous DNA binding domain bypassed the requirement for Spc1 in promoting recombination. Conclusions/Significance The Spc1 protein kinase regulates the pathway of Atf1-promoted recombination at or before the point where Atf1 binds to chromosomes, and this pathway regulation is independent of the phosphorylation status of Atf1. Since basal recombination is Spc1-independent, the principal function of the Spc1 kinase in meiotic recombination is to correctly position Atf1-promoted recombination at hotspots along chromosomes. We also propose new hypotheses on regulatory mechanisms for shared (e.g., DNA binding) and distinct (e.g., osmoregulatory vs. recombinogenic) activities of multifunctional, stress-activated protein Atf1. PMID:19436749

  19. Fission Fragments Discriminator

    Nuclear fission reaction between Uranium-235 nucleus and thermal neutron caused the high energy fission fragments with uncertainly direction. The particle direction discrimination was determined. The 2.5 x 3.0 mm2 polyethylene gratings with 1-6 mm thickness were used. The grating was placed between uranium screen that fabricated from ammonium-diurinate compound and polycarbonate nuclear track film recorder irradiated by neutron from Thai Research Reactor (TRR-1/M1) facility. The nuclear track density was inversely with grating thickness. It's only fission fragments normal to uranium screen pass through film recorder when grating thickness was 4-6 mm

  20. Activities with regard to research and development of technics for SNR 300 reactor vessel in-service inspection procedures

    During the development of SNR 300 in-service inspection equipment, several branches were tested by experiment. In this report special steps for testing of manipulation systems and additional engineering equipment for control systems, such as coupling fluid circuit or camera cooling system are considered more in detail

  1. Sea bed mapping and inspection

    NONE

    2006-07-01

    The conference has 24 presentations on the topics: Sea bed mapping, inspection, positioning, hydrography, marine archaeology, remote operation vehicles and computerized simulation technologies, oil field activities and plans, technological experiences and problems. (tk)

  2. Zircon and apatite fission track analyses on mineralization ages and tectonic activities of Tuwu-Yandong porphyry copper deposit in northern Xinjiang, China

    2007-01-01

    The mineralization ages reported in the past in the Tuwu-Yandong copper district not only are different, but also fall into the Hercynian epoch. This study has achieved 9 zircon and 7 apatite fission track analysis results. The zircon fission track ages range from 158 Ma to 289 Ma and the apatite ages are between 64 Ma and 140 Ma. The mineralization accords with the regional tectonics in the copper district. We consider that the zircon fission track age could reveal the mineralization age based on annealing zone temperature of 140-300℃ and retention temperature of ~250℃ for zircon fission track, and metallogenetic temperature of 120-350℃ in this ore district. Total three mineralization epochs have been identified, i.e., 289-276 Ma,232-200 Ma and 165-158 Ma, and indicate occurrence of the mineralization in the Indosinian and Yanshan epochs. Corresponding to apatite fission track ages, the three tectonic-mineralizing epochs are 140-132 Ma, 109-97 Ma and 64 Ma, which means age at about 100℃ after the mineralization. The three epochs lasted 146 Ma, 108 Ma and about 100 Ma from ~250℃ to ~100℃ and trend decrease from early to late. It is shown by the fission track modeling that this district underwent three stages of geological thermal histories, stable in Cretaceous and cooling both before Cretaceous and after 20 Ma.

  3. The fission fragment yields at the photofission of actinide nuclei

    The fission fragment yields of isotopes 101Mo, 135I, 135mCs were measured at the photo-fission of actinide nuclei 232Th, 238U, 237Np. These fission fragments have some peculiarities in nuclear structure or in practical using. The measurements were performed on the microtron bremsstrahlung at the Flerov Laboratory of Nuclear Reactions, JINR, at the electron energy 22 MeV. The activation method with an HPGe detector was used in these measurements of the yields

  4. Fission fragment rocket concept

    A new propulsion scheme is outlined which may permit interstellar missions for spacecraft. This scheme is based on the idea of allowing fission fragments to escape from the core of a nuclear reactor. (orig.)

  5. Fission Systems for Mars Exploration

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  6. A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission

    A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm2 of pure 238U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented

  7. A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission

    Ethvignot, T; Giot, L; Casoli, P; Nelson, R O

    2002-01-01

    A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm sup 2 of pure sup 2 sup 3 sup 8 U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented.

  8. Review of Fission Theory

    A survey of the present state of fission theory is attempted. The basic requirements of a theory of a physical process are outlined and against this background the state of fission theory is summarized, with special emphasis on developments in the past few years. An attempt is made to bring out the most important outstanding problems to be settled by future experiments and theory. (author)

  9. Fission product detection

    The response of photovoltaic cells to heavy ions and fission products have been tested on beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12ns (F.W.H.M.) have been measured between two cells

  10. Spontaneous fission half-lives and their systematics

    Spontaneous fission is a phenomenon exhibited by heavy nuclei, which can be a major mode of decay of nuclei of elements heavier than thorium and can be a determining factor in their stability. For purposes of this paper, spontaneous fission will be considered a process in which a nucleus breaks up into two approximately equal parts. The emission of light nuclei or heavy ions such as 12C, 16O, or 32S will not be considered. This radioactive decay mode is often much smaller than the spontaneous fission decay mode, although this is not true in all cases. Barwick noted that this might indicate that the assumed half-life for spontaneous fission of some older experiments might be partially due to heavy fragment radioactivity. Other than taking note of this potential correction to spontaneous fission half-lives, this decay mode of heavy fragment radioactivity will be ignored. Excited states of some heavy nuclei may decay via spontaneous fission. These so-called fission isomers will not be discussed here. Electron capture (EC) or beta-delayed fission is a process in which prompt fission of a sufficiently excited daughter state occurs following population by EC or beta decay. The fission activity will appear to decay with the half-life of the parent and was earlier confused in some cases with SF. This process has been discussed in detail in a review and will not be considered in this paper

  11. Fission gas release (FGASRL)

    During irradiation of water reactor fuel rods, gaseous fission products are produced in the fuel and are slowly released to various voipd volumes in the fuel rods. The released fission gases degrade the initial fill gas thermal conductivity and thus change the thermal response of the fuel rods. Moreover, fuel rod internal pressure is increased so that the cladding mechanical response is affected. The fission gas release subcode FGASRL is intended for use in analytical codes which predict water reactor fuel pin behavior. The development effort was directed primarily at improving code predictions of the gas release model used in FRAP-S3 which overpredicts release of fuels irradiated at relatively low operating temperatures and therefore small gas release fractions. The fission gas release subcode (FGASRL) presented in the report describes a two-step gas release process: (a) fission gas release from fuel grains to the grain boundaries, and (b) fission gas release from the grain boundaries to internal free volume of the fuel pin

  12. Towards high accurate neutron-induced fission cross sections of 240,242Pu: Spontaneous fission half-lives

    Salvador-Castiñeira P.; Bryś T.; Eykens R.; Hambsch F.-J.; Moens A.; Oberstedt S.; Pretel C.; Sibbens G.; Vanleeuw D.; Vidali M.;

    2013-01-01

    Fast spectrum neutron-induced fission cross sections of transuranic isotopes are being of special demand in order to provide accurate data for the new GEN-IV nuclear power plants. To minimize the uncertainties on these measurements accurate data on spontaneous fission half-lives and detector efficiencies are a key point. High α-active actinides need special attention since the misinterpretation of detector signals can lead to low efficiency values or underestimation in fission fragment detect...

  13. Nucleon-induced fission at intermediate energies

    The absence of a satisfactory theoretical description to predict isotope yields as well as the need for experimental fragment mass and charge distributions at intermediate-energies form the motivation of this work. Like the objects under study, the research presented in this thesis consists two main parts. Part 1 concerns an activation experiment that has been performed at the 'Kernfysisch Versneller Instituut' (Nuclear Physics Accelerator Institute) in Groningen, Netherlands, using the AGOR cyclotron. Fission product yields have been measured resulting from 190 MeV proton-induced fission of natW, 197Au, natPb, 208Pb and 232Th. In Chapter 2 the experimental set up is discussed, followed in Chapter 3 by a description of the data analysis. The results on the reconstructed mass yields and the total fission cross sections are presented in Chapter 4. Part 2 is of a theoretical nature. The objective is to compute fission product mass yields from intermediate-energy nucleon-induced reactions. In the approach presented here, two stages can be distinguished. In the first stage the fission cross section is determined for the various fissioning isotopes as a function of their excitation energy in competition with other processes like pre-equilibrium decay and particle evaporation. ALICE-91 is a nuclear reaction code that takes care of this first stage. The second stage consists of constructing the total fission-fragment mass and charge distributions from the different contributions of all the equilibrated fissioning systems. Hence, a model is needed that gives a prediction for the fission-product mass yields in a large range of mass, charge, and excitation energy of the fissioning nucleus. For this purpose, the multi-modal random neck-rupture model by Brosa is extended with temperature-dependent shell and pairing corrections and a temperature-dependent LDM. The combination of ALICE-91 and the modified Brosa approach is used for the analysis of the experiments given in the

  14. Prompt Neutrons from Fission

    A survey is given of the present state of knowledge of the spectrum, angular distribution and number of prompt fission neutrons, as functions of incident neutron energy and individual fragment mass, for low-energy fission. The energy spectrum of prompt neutrons has been found to be of the same form (nearly Maxwellian) for many different types of fission. It has been shown that this type of spectrum is to be expected on the basis of evaporation from moving fragments, and theoretical predictions of the spectrum agree very accurately with experimental data. Some data are now available on the variation of the neutron spectrum with fragment mass and angle of emission. Only recently has it become possible to take accurate data on the angular distribution of the neutrons. It appears that the neutrons have the angular distribution to be expected if emitted almost isotropically from the moving fragments, with a possibility that some small fraction are not emitted in this way, but directly from the fissioning nuclide. Much work has been done on the variation of fission neutron number v with incident neutron energy for neutron-induced fission. The neutron number increases roughly linearly with energy, with a slope of about 0.15 n/MeV. There is now evidence that this slope changes somewhat with energy. This change must be associated with other changes in the-fission process. The most interesting recent discovery concerning fission neutrons is the strong dependence of neutron number on individual fragment mass. The data are being rapidly improved by means of the newer techniques of determining fragment mass yields from velocity and pulse-height data, and of determining neutron yields from cumulative mass yields. There is evidence of similar dependence of neutron yield on fragment mass in a number of cases. It has been suggested that this property is directly connected with the deformability of the fragments, and in particular with the near-spherical shapes of magic

  15. Observation of attachment ratio of fission products on solution aerosol

    Attachment behavior of fission products to solution aerosols has been observed to elucidate the role of chemical effects in the generation mechanism of fissionproduct aerosols. Primary aerosols generated from aqueous solution of sodium chloride or ammonium sulfate were passed through a fission-product chamber, and radioactive aerosols were generated by attaching fission products to the primary aerosol particles. Attachment ratios of the fission products on aerosols were estimated from activity measurements. It was found that the attachment ratio of the sodium chloride solution aerosol is larger than that of the ammonium sulfate solution aerosol. (author)

  16. Forecasting the Quantity and Activity of Fission Products in France in Future Years in the Light of Atomic Energy Development

    One of the most important problems connected with the development of electrical production of nuclear origin is the disposal or utilization of radioactive waste. It is a new problem, with far-reaching economic and safety implications. There is thus real value in an attempt to evaluate, even approximately, the activities which may be expected in coming years, having regard to present plans for nuclear power installations in order to define the limits of research needed for a solution to the disposal of radioactive wastes

  17. Feasibility of Producing Molybdenum-99 on a Small Scale Using Fission of Low Enriched Uranium or Neutron Activation of Natural Molybdenum

    This publication documents the work performed within the IAEA coordinated research project (CRP) on Developing Techniques for Small Scale Indigenous Molybdenum-99 Production Using LEU Fission or Neutron Activation. The project allowed participating institutions to receive training and information on aspects necessary for starting production of molybdenum-99 (99Mo) on a small scale, that is, to become national level producers of this medical isotope. Stable production of 99Mo is one of the most pressing issues facing the nuclear community at present, because the medical isotope technetium-99m (99mTc), which decays from 99Mo, is one of the most widely used radionuclides in diagnostic imaging and treatment around the world. In the past five years, there have been widespread shortages of 99Mo owing to the limited number of producers, many of which use ageing facilities. To assist in stabilizing the production of 99Mo, and to promote the use of production methods that do not rely on the use of highly enriched uranium (HEU), the IAEA initiated the abovementioned CRP on small scale 99Mo production using low enriched uranium (LEU) fission or neutron activation methods. The intention was to enable participating institutions to gain the knowledge necessary to become national level producers of 99Mo in the event of further global shortages. Some of the institutions that participated in the CRP have continued their work on 99Mo production, and are enlisting the assistance of other CRP members and the IAEA’s technical cooperation programme to set up a small scale production capability. In total, the CRP was active for six years, and concluded in December 2011. During the CRP, fourteen IAEA Member States took part; four research coordination meetings were held, and four workshops were held on operational aspects of 99Mo production, LEU target fabrication and waste management. Most participants carried out work related to the entire production process, from target assembly to

  18. Fission waves can oscillate

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  19. Conceptual Analysis of Criticality Aspects of Fission Electric Cell Reactors

    The U.S. Department of Energy's Nuclear Energy Research Initiative Direct Energy Conversion project has a goal of developing direct energy conversion (DEC) processes suitable for commercial development. DEC is any fission process that returns usable energy with no intermediate thermal process. This project includes the study of the fission electric cell (FEC). In the FEC, fission fragments exit the fuel element cathode and are collected by the cell anode. Previous work [1] has shown the potential of FECs with theoretical efficiencies up to 60%. Inspection of this work indicates the need for additional system criticality studies prior to any conclusions regarding the final FEC reactor configuration. This paper outlines the development of models to facilitate reactor criticality design decisions. The models address criticality, design life, and reactor configuration. In addition, this paper proposes future work to complete the criticality model. The direct energy conversion concept converts nuclear energy to electrical energy without the use of a Carnot cycle based system. Kinetic energy of the highly charged fission fragments is converted directly into electrical potential using strong magnetic fields to separate the positive fission fragments from the electrons that are also produced during the fission process. A parametric analysis is performed using Monte Carlo N-Particle (MCNP) [2] simulations to calculate criticality for exact geometric models. The effect on criticality of changing enrichment, number of cells, size of cells, fuel thickness, and reactor size is determined. Heavy water, helium, and beryllium are each considered for a reflector design. (authors)

  20. Inspection technologies -Development of national safeguards technology-

    17 facility regulations prepared by nuclear facilities according to the Ministerial Notices were evaluated. Safeguards inspection activities under Safeguards are described. Safeguards inspection equipments and operation manuals to be used for national inspection are also described. Safeguards report are produced and submitted to MOST by using the computerized nuclear material accounting system at state level. National inspection support system are developed to produce the on-site information for domestic inspection. Planning and establishment of policy for nuclear control of nuclear materials, international cooperation for nuclear control, CTBT, strengthening of international safeguards system, and the supply of PWRs to North Korea are also described. (author). 43 tabs., 39 figs

  1. METHODS FOR RECONSTRUCTION OF RADIONUCLIDE COMPOSITION AND ACTIVITY OF FISSION PRODUCTS ACCUMULATED IN THE IRRADIATED URANIUM AT THE MOMENT OF ITS RADIOCHEMICAL REPROCESSING AT PLANT “B”, “MAYAK” PA IN THE EARLY 1950s

    Glagolenko, Y. V.; Drozhko, Evgeniy G.; Mokrov, Y.; Rovny, Sergey I.; Lyzhkov, A. V.; Anspaugh, L. R.; Napier, Bruce A.

    2008-06-01

    The article describes calculation procedure for reconstruction of radionuclide composition and activity of fission fragments accumulated in the irridated uranium from “Mayak” PA graphite-uranium reactors at the moment, when irradiation is completed, and at the moment, when the uranium is transferred to radiochemical processing (plant B) in the early 1950s. The procedure includes a reactor model and a cooling pool model. It is based on archive data on monthly uranium unloading and loading in the reactor and in the cooling pool of each reactor. The objects of reconstruction include: order of reloading of uranium versus its location radius in the reactor core; duration of irradiation and radionuclide composition of fission fragments for each radius; order of uranium removal from the cooling pool; effective time of uranium storage in the pool; radionuclide composition and activity of fission fragments in the irradiated uranium delivered to radiochemical reprocessing daily and on average for each month. The model is intended for use in reconstruction of parameters of radionuclide release source into the atmosphere and the source of liquid radioactive waste generation at the “Mayak” PA radiochemical plant.

  2. Methods For Reconstruction Of Radionuclide Composition And Activity Of Fission Products Accumulated In The Irradiated Uranium At The Moment Of Its Radiochemical Reprocessing At Plant 'B', 'Mayak' PA In The Early 1950s

    The article describes calculation procedure for reconstruction of radionuclide composition and activity of fission fragments accumulated in the irradiated uranium from 'Mayak' PA graphite-uranium reactors at the moment, when irradiation is completed, and at the moment, when the uranium is transferred to radiochemical processing (plant B) in the early 1950s. The procedure includes a reactor model and a cooling pool model. It is based on archive data on monthly uranium unloading and loading in the reactor and in the cooling pool of each reactor. The objects of reconstruction include: order of reloading of uranium versus its location radius in the reactor core; duration of irradiation and radionuclide composition of fission fragments for each radius; order of uranium removal from the cooling pool; effective time of uranium storage in the pool; radionuclide composition and activity of fission fragments in the irradiated uranium delivered to radiochemical reprocessing daily and on average for each month. The model is intended for use in reconstruction of parameters of radionuclide release source into the atmosphere and the source of liquid radioactive waste generation at the 'Mayak' PA radiochemical plant.

  3. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons. Pt. 3. Evaluation of the effect of the induced α and β activity on the chromosomal aberration yield

    Aim: Further experiments were performed to explain a difference in chromosomal aberration yield found between samples cultivated immediately after fission neutron irradiation and samples which were cultivated with 96 h delay after irradiation. Material and Method: Human peripheral blood samples were irradiated in mixed fission neutron/gamma field (1800 s) and biological effect assessed in the mean of analysis of unstable chromosome aberrations with a time delay in culturing cells of 12, 24, 48 and 96 h. Additional measurements were performed on irradiated and blank blood samples with the aim to detect any increase in α and β activity after fission neutron irradiation. No difference was found. Results were compared to theoretically calculated values of the α and β activity released from natural radioactive isotopes. Result and Conclusion: As a conclusion it is shown that in our experimental conditions the secondary effects resulting from nuclear transformations of natural or induced radioactive isotopes, recoil reactions and accompanying α, β, and γ radiation are not the reason for the increase observed in chromosomal aberration yield in blood samples cultured with a time delay of at least 24 hours. (orig.)

  4. Principles for National Inspections under IS Environment

    In 1997 the ROK introduced 'National Inspection' for nuclear material accountancy in its territory, and continues its independent verification activities besides the IAEA inspections. In 2004 the Additional Protocol was effectuated, and the IAEA finally decided to apply Integrated Safeguard to the ROK in 2008. This was a very significant milestone for Korea's nuclear transparency, which means that there are only nuclear activities with peaceful purposes and no more undeclared or suspicious nuclear activities. With this turning point, the previous inspection activities . IAEA and national inspections all together are to be adjusted to the new environment, i.e. Integrated Safeguards. Even for the SSAC, the objectives of national inspections are needed to be defined newly and its philosophy as well. In this paper, the principles of national inspections are suggested to address any verification challenges from the IS environment

  5. Current position on fission product behavior

    The following phenomena are treated and modeled: fission product release from fuel, both in-vessel and ex-vessel; fission product deposition in the primary system, fission product deposition in the containment, and fission product revolatization

  6. Development and characterisation of 9Cr ODS and reduced activation ferritic/martensitic steels for fast fission and fusion reactors

    This paper presents the results of the indigenous efforts at IGCAR towards developing a 9Cr Oxide Dispersion Strengthened (ODS) and Reduced Activation Ferritic Martensitic (RAFM) steels for the Fast Breeder Reactors (FBR) and fusion program in India. The sodium cooled fast reactors require development of high temperature radiation resistant materials for achieving high fuel burn-up of 200GWd/t (∼160 dpa) or higher, which is one of the key factors for their efficient and economical operation. Ferritic/Martensitic steels (9-12% Cr) although exhibit higher void swelling resistance than austenitics, have poor high temperature creep strength, which limits the operating temperatures to ∼550 deg. C. Oxide dispersion strengthening (ODS) is a promising means of extending the creep resistance of F/M steels beyond 650 deg. C together with the advantages of high thermal conductivity and low swelling. Based on these well known principles, a developmental effort has been taken up to fabricate clad tubes using the yttria strengthened 9Cr ferritic steel. A small amount of Ti addition resulted in very fine mixed oxide particles of Y and Ti, thus improving creep rupture strength significantly. The process of clad tubes fabrication involved mechanical milling of alloy powders, consolidation by hot extrusion and tube formation by cold pilgering. Further, the particle size distribution studied using Analytical and High Resolution Electron Microscopy at intermediate stages and in the product showed a distribution of Y2O3 particles predominantly in the size range of 5-20nm. The process parameters have been optimized and tubes of outer diameter 6.6 mm, thickness 0.48 mm and length 1500mm have been produced. The RAFM steel for the test blanket module of International Thermonuclear Experimental Reactor (ITER) project has also been developed. The steel conforming to specifications has been achieved by replacement of Mo and Nb (elements that lead to high induced radioactivity) by W and Ta

  7. Fission modelling with FIFRELIN

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  8. Fission modelling with FIFRELIN

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  9. Fission modelling with FIFRELIN

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e-). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  10. Characteristics of Coulomb fission

    Oberacker, Volker; Greiner, Walter; Kruse, Hans; Pinkston, William T.

    2006-01-01

    Within an extended semiquantal theory we perform large-sized coupled-channel calculations involving 260 collective levels for Coulomb fission of 238U. Differential Coulomb fission cross sections are studied as a function of bombarding energy and impact parameter for several projectiles. In the Xe + U case, total cross sections are also given. We find a strong dependence on projectile charge number, PCF(180°)∼(Zp)6 in the region 50≤Zp≤92 for a fixed ratio E/ECoul, which might...

  11. Fission product solvent extraction

    Two main objectives concerning removal of fission products from high-level tank wastes will be accomplished in this project. The first objective entails the development of an acid-side Cs solvent-extraction (SX) process applicable to remediation of the sodium-bearing waste (SBW) and dissolved calcine waste (DCW) at INEEL. The second objective is to develop alkaline-side SX processes for the combined removal of Tc, Cs, and possibly Sr and for individual separation of Tc (alone or together with Sr) and Cs. These alkaline-side processes apply to tank wastes stored at Hanford, Savannah River, and Oak Ridge. This work exploits the useful properties of crown ethers and calixarenes and has shown that such compounds may be economically adapted to practical processing conditions. Potential benefits for both acid- and alkaline-side processing include order-of-magnitude concentration factors, high rejection of bulk sodium and potassium salts, and stripping with dilute (typically 10 mM) nitric acid. These benefits minimize the subsequent burden on the very expensive vitrification and storage of the high-activity waste. In the case of the SRTALK process for Tc extraction as pertechnetate anion from alkaline waste, such benefits have now been proven at the scale of a 12-stage flowsheet tested in 2-cm centrifugal contactors with a Hanford supernatant waste simulant. SRTALK employs a crown ether in a TBP-modified aliphatic kerosene diluent, is economically competitive with other applicable separation processes being considered, and has been successfully tested in batch extraction of actual Hanford double-shell slurry feed (DSSF)

  12. Data summary report for fission product release test VI-4

    This was the fourth in a series of high-temperature fission product release tests in a vertical test apparatus. The test specimen, a 15.2-cm-long section of a fuel rod from the BR3 reactor in Belgium, had been irradiated to a burnup of 47 MWd/kg. In simulation of a severe accident in a light-water reactor, it was heated in hydrogen in a hot cell-mounted test apparatus to a maximum test temperature of 2400 K for a period of 20 min. The released fission products were collected on components designed to facilitate sampling and analysis. On-line radioactivity measurements and posttest inspection revealed that the fuel had partially collapsed at about the time the cladding melted. Based on fission product inventories measured in the fuel or calculated by ORIGEN2, analyses of test components showed total releases from the fuel of 85% for 85Kr, 106Ru, 3.9% for 125Sb, 96% for both 134Cs and 137Cs, and 13% for 154Eu. Large fractions of the released fission products (up to 96% of the 154Eu) were retained in the furnace. Small release fractions for several other fission products -- Rb, Br, Sr, Te, I, and Ba -- were detected also. In addition, very small amounts of fuel material -- uranium and plutonium -- were released. Total mass release from the furnace to the collection system, which included fission products, fuel material, and structural materials, was 0.40g, with 40% of this material being deposited as vapor and 60% of it being collected as aerosols. The results from this test were compared with previous tests in this series and with an in-pile test at similar conditions at Sandia National Laboratories. There was no indication that the mode of heating (fission heat vs radiant heat) significantly affected fission product release. 24 refs., 25 figs., 14 tabs

  13. Fission dynamics of hot nuclei

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  14. Discoveries of isotopes by fission

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  15. Microscopic Description of Induced Fission

    Schunck, N

    2013-01-01

    Selected aspects of the description of neutron-induced fission in 240Pu in the framework of the nuclear energy density functional theory at finite temperature are presented. In particular, we discuss aspects pertaining to the choice of thermodynamic state variables, the evolution of fission barriers as function of the incident neutron energy, and the temperatures of the fission fragments.

  16. An improved technique for fission track dating

    The necessity of improving the fission track dating (FTD) technique both at home and abroad is illustrated. The ways of making such improvement are also proposed. It is suggested to calibrate the constant b value of the uranium standard glass by using the method of fission products activity. The 3 kinds of uranium standard glass which have been calibrated are NBS SRM962a, UB1 and UB2. An established new method σ·Φ ρd/b, to measure neutron fluence, avoids the influence of the varying neutron spectrum on measuring neutron fluence. The improved etching technique for fission tracks in zircon adopted a two-step method which includes the molten alkali system etching using NaOH + KOH and the mixed acid system etching using HNO3 + HF; this technique results in adequate track etching, increased track clarity and less interference. In this way the intensity of tracks is authentically reflected. Dividing angular zone in accordance with the angular distribution of spontaneous fission track on the crystal surface of minerals to count the tracks and using the improved etching technique to remove the non-uniform angular distribution of spontaneous fission tracks in zircon, ensure the accuracy of tracks count. The improved FTD techniques were used to finish Laboratory Standardized Calibration. The tests using international FTD age standards samples have proved that above mentioned techniques are reliable and practical in obtaining the accurate FTD data. (8 tabs.; 3 figs.)

  17. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    Göök Alf; Hambsch Franz-Josef; Oberstedt Stephan

    2016-01-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For ...

  18. Lunar surface fission power supplies: Radiation issues

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  19. Fission product data library

    A library is described of data for 584 isotopes of fission products, including decay constants, branching ratios (both burn-up and decay), the type of emitted radiation, relative and absolute yields, capture cross sections for thermal neutrons, and resonance integrals. When a detailed decay scheme is not known, the mean energies of beta particles and neutrino and gamma radiations are given. In the ZVJE SKODA system the library is named BIBFP and is stored on film No 49 of the NE 803 B computer. It is used in calculating the inventory of fission products in fuel elements (and also determining absorption cross sections for burn-up calculations, gamma ray sources, heat generation) and in solving radioactivity transport problems in the primary circuit. It may also be used in the spectrometric method for burn-up determination of fuel elements. The library comprises the latest literary data available. It serves as the basis for library BIBGRFP storing group constants of fission products with independent yields of isotopes from fission. This, in turn, forms the basis for the BIBDN library collecting data on the precursors of delayed neutron emitters. (author)

  20. Fission yields in the thermal neutron fission of plutonium-239

    Fission yields for 27 mass numbers were determined in the thermal neutron fission of 239Pu using high resolution gamma ray spectrometry and radiochemical method. The results obtained using gamma ray spectrometry and from the investigations on the fission yield of 99Mo using radiochemical method were reported earlier. These data along with fission yields for 19 mass numbers determined using radiochemical method formed a part of Ph.D. thesis. The data given here are a compilation of all the results and are presented considering the neutron temperature correction to 239Pu fission cross-section which is used for calculating the total number of fissions in these studies. A comparison is made of the resulting fission yield values with the latest experimentally determined values and those given in two recent compilations. (author)

  1. Evaporation residue formation competing with the fission process in the 197Au+16O, 12C reactions and fission barriers at a specified J window

    Evaporation-residue excitation functions for 16O and 12C+197Au reactions were measured by means of the activation technique. The competition between evaporation and fission of the compound nuclei was studied by comparing the observed evaporation-residue data with the published fission excitation functions. A newly devised analysis was applied in order to deduce a fission barrier height at a specified angular momentum and determine the relevant fissioning nucleus as well. We found the fission barriers to be 8.2 MeV for the 211Fr nucleus at 16 ℎ and 8.2 MeV for the 207At nucleus at 27 ℎ. (orig.)

  2. A study on the development and application of models for the activities of long-lived fission products at operating PWR

    It requires estimating difficult-to-measure (DTM) radionuclides, especially PDTM (particularly DTM) radionuclides such as 129I and 99Tc, in the waste package generated from nuclear power plants (NPPs) prior to shipment to disposal facility. These radionuclides are critical nuclides for the disposal of low and intermediate level waste because they dominate radiation dose through ground water. Therefore, their activities in each waste package should be accurately identified prior to disposal. However, their activities cannot be analyzed by routine measurement techniques used in NPPs because these PDTM radionuclides are non-gamma emitters. Therefore, instead of direct measurement, scaling factor method is typically used to estimate the quantity of the PDTM radionuclides in the waste package. The scaling factor is empirically derived ratio or correlation between a reference gamma emitting radionuclide, which can be easily measured at NPPs, and the non-gamma emitting radionuclide. The scaling factor is typically derived from a set of waste samples analyzed at commercial laboratories for both gamma and DTM radionuclides. However, in general, the concentrations of PDTM radionuclides in low-level waste are too low to be detected by the conventional measurement techniques i.e., photon counting method. When the lower limit of detection rather than the actually analyzed concentration is used for scaling factor, the determination of the scaling factor value is difficult but also the value generally involves a large uncertainty. In addition, the activity of radionuclide in radioactive wastes can be highly overestimated. Therefore, theoretical approaches have been proposed as a means of estimating activity or scaling factor for PDTM radionuclides, especially 129I. Also, evaluations of the 129I inventory are generally based on the release of related fission products from the source term such as defective fuel and tramp uranium. However, in these approaches, the ratio of the

  3. Linac based photofission inspection system employing novel detection concepts

    Stevenson, John, E-mail: jstevenson@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Elsalim, Mashal; Condron, Cathie; Brown, Craig [Rapiscan Laboratories, Inc., 520 Almanor Avenue, Sunnyvale, CA 94085 (United States)

    2011-10-01

    MV Bremsstrahlung spectrum above the photofission 'threshold' of about 6 MeV, the X-ray beam induces numerous fissions if nuclear material is present. The PBAR system looks for the two most prolific fission signatures to confirm the presence of special nuclear materials (SNM). These are prompt neutrons and delayed gamma rays. The PBAR system uses arrays of two types of fast and highly efficient gamma ray detectors: plastic and fluorocarbon scintillators. The latter serves as a detector of fission prompt neutrons using the novel threshold activation detector (TAD) concept as well as a very efficient delayed gamma ray detector. The major advantage of TAD for detecting the prompt neutrons is its insensitivity to the intense source related backgrounds. The current status of the system and experimental results will be shown and discussed.

  4. Linac based photofission inspection system employing novel detection concepts

    Stevenson, John; Gozani, Tsahi; Elsalim, Mashal; Condron, Cathie; Brown, Craig

    2011-10-01

    Bremsstrahlung spectrum above the photofission "threshold" of about 6 MeV, the X-ray beam induces numerous fissions if nuclear material is present. The PBAR system looks for the two most prolific fission signatures to confirm the presence of special nuclear materials (SNM). These are prompt neutrons and delayed gamma rays. The PBAR system uses arrays of two types of fast and highly efficient gamma ray detectors: plastic and fluorocarbon scintillators. The latter serves as a detector of fission prompt neutrons using the novel threshold activation detector (TAD) concept as well as a very efficient delayed gamma ray detector. The major advantage of TAD for detecting the prompt neutrons is its insensitivity to the intense source related backgrounds. The current status of the system and experimental results will be shown and discussed.

  5. Linac based photofission inspection system employing novel detection concepts

    Bremsstrahlung spectrum above the photofission 'threshold' of about 6 MeV, the X-ray beam induces numerous fissions if nuclear material is present. The PBAR system looks for the two most prolific fission signatures to confirm the presence of special nuclear materials (SNM). These are prompt neutrons and delayed gamma rays. The PBAR system uses arrays of two types of fast and highly efficient gamma ray detectors: plastic and fluorocarbon scintillators. The latter serves as a detector of fission prompt neutrons using the novel threshold activation detector (TAD) concept as well as a very efficient delayed gamma ray detector. The major advantage of TAD for detecting the prompt neutrons is its insensitivity to the intense source related backgrounds. The current status of the system and experimental results will be shown and discussed.

  6. Aspects of Inspection Planning

    Faber, M. H.; Sørensen, John Dalsgaard

    Inspection planning for systems is considered with special emphasis to the effect of the quality of inspections on the system reliability and the probability of repair. Inspection quality is described and discussed in terms of inspection reliability and inspection coverage where the latter is set...... theoretical framework for updating of the reliability of components and systems on the basis of inspection results is outlined. Systems representative for inspection planning of different engineering systems subjected to typical deterioration processes are presented. Numerical simulation studies are performed...... on the presented systems and the effect of inspection reliability and coverage is investigated for systems of different sizes. The results of the studies illustrate the effect of inspections in practical inspection problems and can be used as an initial guideline for selecting the quality of...

  7. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  8. FISA-2009 Conference on Euratom Research and Training Activities: Nuclear Fission - Past, Present and Future (Generation-II, -III and -IV + Partitioning and Transmutation)

    This paper is an introduction to the research and training activities carried out under the Euratom 7th Framework Programme (FP7, 2007-2011) in the field of nuclear fission science and technology, covering in particular nuclear systems and safety, and including innovative reactor systems and partitioning and transmutation. It is based on the more than 40 invited lectures that were delivered by Euratom project coordinators and keynote speakers at the FISA-2009 Conference (), organised by the European Commission DG Research, 22-24 June 2009, Prague, Czech Republic. The Euratom programme must be considered in the context of current and future nuclear technology and the respective research effort: ·Generation-II (i.e. yesterday, NPP construction 1970-2000): safety and reliability of nuclear facilities and energy independence in order to ensure security of supply worldwide; ·Generation-III (i.e. today, construction 2000-2040+): continuous improvement of safety and reliability, and increased industrial competitiveness in a growing energy market; ·Generation-IV (i.e. tomorrow, construction from 2040) for increased sustainability though optimal utilisation of natural resources and waste minimisation, and increased proliferation resistance. Consequently, the focus of the lectures devoted to Generation-II and -III is on the major scientific challenges and technological developments needed to guarantee safety and reliability, in particular issues associated with plant lifetime extension and operation. The focus of the lectures devoted to Generation-IV is on the design objectives and associated research issues that have been agreed upon internationally, in particular the ambitious criteria and technology goals established at the international level by the Generation-IV International Forum (GIF). In the future, electricity must continue to be produced competitively, and in addition high temperature process heat may also be required, while exploiting a maximum of fissile and

  9. Fission modes of mercury isotopes

    Warda, M; Nazarewicz, W

    2012-01-01

    Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asymmetric fission in $^{180}$Hg [1] have stimulated renewed interest in the mechanism of fission in heavy nuclei. Here we study fission modes and fusion valleys in $^{180}$Hg and $^{198}$Hg using the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. We show that the observed transition from asymmetric fission in $^{180}$Hg towards more symmetric distribution of fission fragments in $^{198}$Hg can be explained in terms of competing fission modes of different geometries that are governed by shell effects in pre-scission configurations. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.

  10. Dynamical features of nuclear fission

    Santanu Pal

    2015-08-01

    It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.

  11. Quality assurance for IAEA inspection planning

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with states, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, we summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are: (1) administrative functions, such as arrangements for visas and travel, and communications with the state to confirm facility operating schedules and the state's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions, such as pre- and post-inspection briefings, where the planned and implemented inspection activities are reviewed

  12. Organization of customs control of fissionable and other radioactive materials

    Among the routine inspection tasks of the Sheremetyevo customs office are tasks stemming from international commitments of Russia to prevent proliferation of nuclear weapons and material that can be used for making these weapons. These tasks are: radiation monitoring of all vehicles, passengers, their luggage and goods crossing the state border; inspection of fissionable and radioactive materials (FRM) legally transported by participants in the foreign trade activities with a view to checking that the declared data fully correspond to the actual radioactive cargo. Organizational measures and technical measures at the Sheremetyevo customs office are described in detail. The efficiency of the scheme is illustrated by the following figures. In 1997, when appropriate technical means and trained personnel were lacking, there were only 2 events of detecting items with a rather high radioactivity level in the luggage. In 1999, after the entire radiation monitoring system was fully deployed (i.e. the flight checkpoint was equipped with technical means of radiation monitoring, personnel was trained, special technologies and algorithms were developed), there were 61 events of radiation detection, and in 2000 there have been 90 events, including breaches of legal FRM traffic regulations through disagreement of declared and actual parameters. We believe that the above-considered organization of radiation monitoring allows effective and quite reliable control of and adequate response to possible illicit transport of FRM through the airport Sheremetyevo to other countries, including CIS. In the near future we plan to increase the efficiency of the radiation monitoring by integrating the currently operational customs-used stationary FRM detection systems into a single information network capable of providing simultaneous video-aided continuous nuclear monitoring at three terminals (Sheremetyevo-1, Sheremetyevo-2, Sheremetyevo-Cargo) with display of information at the workstation

  13. Structures and properties of (U,Pu)O2 containing non-active fission products. A simulation of irradiated nuclear fuel

    We have made oxides with the same uranium and plutonium content, the same stoichiometry and the same fission product content as an oxide fuel (U0,8PuO2)O1,96 after 2 per cent burn up. We have calculated the stoichiometry changes due to irradiation and checked the calculation by X rays parameters measurements. We have calculated and measured the contraction of the oxide lattice due to fission products in solid solution. Microprobe analysis of precipitates have been made and have lead to the identification of non metallic barium containing compounds and have shown the particular behaviour of molybdenum. Some physical properties have been measured especially the electrical resistivity, the thermal diffusivity and the vapour pressure of zirconium in solid solution. (author)

  14. Measurement of the Ratio of Fissions in U238 to Fissions in U233 Using 1.60 Mev Gamma Rays of the Fission Product La140

    This paper describes a method for measuring δ28, the ratios of fissions in U238 to fissions in U235. The method was developed as a part of the D2O lattice programme at the Massachusetts Institute of Technology (MIT) ; however, it can be used for measurements in any thermal reactor of natural or slightly enriched uranium. The fast fission factor in uranium cannot be measured directly. It is, however, related to δ28 which can be measured: ϵ =1 + Cδ28 , where C is a constant involving nuclear properties of U238 and U235: Previous methods of measuring δ28 utilize a comparison of fission-product gamma or beta activity in foils of differing U235 concentration irradiated within a fuel rod in the lattice. A double fission chamber is then used to relate the U238 and U235 fission product activity to the ratio of the corresponding fission rates. Most of the experimental uncertainty associated with the measurement of δ28 a is generally attributed to the fission chamber calibration. The method developed at MIT avoids the need for a fission chamber calibration and is accomplished directly with foils irradiated within a fuel rod in the lattice. Two foils of differing U235 concentration are irradiated and allowed to cool for at least a week. The relative activity of the 1.60 MeV gamma ray of the fission product La140 is determined for the two foils. This ratio, the foil weights and atomic densities, and the ratio of fission yields β25/β28 for La140 are then used to determine δ28. This value of δ28 is used to calibrate simpler measurements in which the relative gamma activity above 0.72 MeV is determined for sets of foils irradiated in fuel rods of the lattices of interest. The energy 0.72 MeV is a convenient discrimination level, as it is the maximum energy of Bremsstrahlung from 2.3-d Np239. This method appears to offer the advantages of direct measurement and increased accuracy (the major uncertainty being the ratio of β25/β28 La140). In addition, the results can be

  15. The use of fission foils for plasma neutron diagnostics

    Commonly used fission foil materials have been examined for their application to plasma diagnostics as activation foils. Such foils have been used extensively in the past for fission reactor dosiemetry. They have very well known fission cross sections, and in most cases the fission yields are reasonably well known. The materials included in this study are 226Ra, 228Th, 232Th, 231Pa, 233U, 235U, 238U, 237Np, 238Pu, and 239Pu. Of these materials 232Th, 235U, and 238U are considered to be very good candidates for this application. The others have been eliminated because of high background radioactivity, impurities which present high backgrounds, or lack of knowledge about yield distribution of fission products. Production cross sections for fission products in the vicinity of the yield maxima (A = 85 - 101, 133 143) have been calculated from known fission cross sections and independent or cumulative yields at thermal energies (where applicable) and 14 MeV. Recent measurements at 2.5 MeV are also included. For one foil (232Th) results for 3 MeV and 11 MeV are also available. The decay schemes of the more prominent fission products have been thoroughly studied and good measurement precision should result from their use

  16. Towards high accurate neutron-induced fission cross sections of 240,242Pu: Spontaneous fission half-lives

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Moens, A.; Oberstedt, S.; Pretel, C.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    2013-12-01

    Fast spectrum neutron-induced fission cross sections of transuranic isotopes are being of special demand in order to provide accurate data for the new GEN-IV nuclear power plants. To minimize the uncertainties on these measurements accurate data on spontaneous fission half-lives and detector efficiencies are a key point. High α-active actinides need special attention since the misinterpretation of detector signals can lead to low efficiency values or underestimation in fission fragment detection. In that context, 240,242Pu isotopes have been studied by means of a Twin Frisch-Grid Ionization Chamber (TFGIC) for measurements of their neutron-induced fission cross section. Gases with different drift velocities have been used, namely P10 and CH4. The detector efficiencies for both samples have been determined and improved spontaneous fission half-life values were obtained.

  17. Towards high accurate neutron-induced fission cross sections of 240,242Pu: Spontaneous fission half-lives

    Salvador-Castiñeira P.

    2013-12-01

    Full Text Available Fast spectrum neutron-induced fission cross sections of transuranic isotopes are being of special demand in order to provide accurate data for the new GEN-IV nuclear power plants. To minimize the uncertainties on these measurements accurate data on spontaneous fission half-lives and detector efficiencies are a key point. High α-active actinides need special attention since the misinterpretation of detector signals can lead to low efficiency values or underestimation in fission fragment detection. In that context, 240,242Pu isotopes have been studied by means of a Twin Frisch-Grid Ionization Chamber (TFGIC for measurements of their neutron-induced fission cross section. Gases with different drift velocities have been used, namely P10 and CH4. The detector efficiencies for both samples have been determined and improved spontaneous fission half-life values were obtained.

  18. Fission product revaporization

    One of the major developmental advances in severe accident analysis since the Reactor Safety Study relates to the accounting for radionuclide retention in the reactor coolant system (RCS). The retention is predicted to occur as materials released during core heatup and degradation are transported through the RCS to the break (broken pipe, relief valve, etc.). For accidents involving relatively long RCS-transit times (e.g., station blackout in PWRs), the fraction of released material predicted to remain in the RCS can be large. For example, calculations for the Surry station blackout sequence showed retention of approximately 80% of the cesium and iodine species. Factors affecting fission product revaporization are post-vessel-failure thermal hydraulics, heat loss through vessel and pipe walls, and revaporization chemistry. The accident conditions relevant to this issue range from those present immediately after vessel failure to those present after containment failure. The factors that affect fission product revaporization are discussed

  19. Nuclear data in the problem of fission reactor decommissioning

    This report presents a review of the works published in Russia during last several years and devoted to the problem of nuclear data and calculations of nuclear facilities activation for fission reactor decommissioning. 6 refs

  20. Fission fragment angular distributions

    Recently a Letter appeared (Phys. Rev. Lett., 522, 414(1984)) claiming that the usual expression for describing the angula distribution of fission fragments from compound nuclear decay is not a necessarily valid limit of a more general expression. In this comment we wish to point out that the two expressions arise from distinctly different models, and that the new expression as used in the cited reference is internally inconsistent

  1. Statistical theory of fission

    In nuclear reactions where a compound nucleus is formed at high excitation energies, one is forced to use a statistical theory to explain the observables of the reaction. The statistical theory of fission of Weisskopf-Ewing-Newton and Ericson is applied to binary spallation of 16O, 20Ne, and 14N by protons in the proton energy range of 20 to 150 MeV, 0 to 105 MeV, and 0 to 41.9 MeV, respectively. The capture cross section of the incident proton is calculated from the reaction cross section using appropriate optical model potentials. The differential and total cross sections for binary fragmentation into near symmetric mass nuclei are calculated which are in reasonable agreement with experimental results. The kinetic energy spectrum and decay widths in the final channels are also calculated, however these have not been measured experimentally for comparison. All of these calculations are done using three different ion-ion optical potentials suggested by others. One then reformulated the statistical theory to include the second law of thermodynamics. Both theories are applied to neutron induced fission of 239Pu, 235U, 233U, 229Th, and 226Ra at several different neutron and alpha energies using the recently proposed external barrier between the saddle and the scission point. The transmission functions are calculated using a set of coupled equations in the exit channels. The computed results indicate that the model can account for the observed variation of the percentage mass yield spectra. Furthermore one calculated the most probable kinetic energy in the fission in all cases and found it to agree with the observation. The spontaneous and isomer fission half lives are calculated giving good agreement with experimental data. The kinetic energy spectrums are also computed for some representative daughter pairs. The inclusion of the second law of thermodynamics improves the agreement between theory and experiment

  2. Extended optical model for fission

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  3. A Robot Based Automatic Paint Inspection System

    Atkinson, R. M.; Claridge, J. F.

    1988-06-01

    The final inspection of manufactured goods is a labour intensive activity. The use of human inspectors has a number of potential disadvantages; it can be expensive, the inspection standard applied is subjective and the inspection process can be slow compared with the production process. The use of automatic optical and electronic systems to perform the inspection task is now a growing practice but, in general, such systems have been applied to small components which are accurately presented. Recent advances in vision systems and robot control technology have made possible the installation of an automated paint inspection system at the Austin Rover Group's plant at Cowley, Oxford. The automatic inspection of painted car bodies is a particularly difficult problem, but one which has major benefits. The pass line of the car bodies is ill-determined, the surface to be inspected is of varying surface geometry and only a short time is available to inspect a large surface area. The benefits, however, are due to the consistent standard of inspection which should lead to lower levels of customer complaints and improved process feedback. The Austin Rover Group initiated the development of a system to fulfil this requirement. Three companies collaborated on the project; Austin Rover itself undertook the production line modifications required for body presentation, Sira Ltd developed the inspection cameras and signal processing system and Unimation (Europe) Ltd designed, supplied and programmed the robot system. Sira's development was supported by a grant from the Department of Trade and Industry.

  4. ENIQ: European Network for Inspection Qualification

    Many countries are currently considering their own approach to inspection qualification and are carefully assessing experience to date. ENIQ, which stands for European Network for Inspection Qualification, groups the major part of the utilities in Western Europe. The general objective of ENIQ is to coordinate and manage at European level expertise and resources for the assessment and qualification of NDE inspection techniques and procedures, primarily for nuclear components. Also non-nuclear heavy duty components will be considered. Within ENIQ there is a growing consensus of opinion on the general principles of a European approach towards inspection qualification. In this paper the main activities, organization and actual status of ENIQ will be discussed

  5. Waste inspection tomography (WIT)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  6. Low-energy ternary fission

    With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23

  7. OSE inspection of protection program operations field perspective of inspections

    Protection Program Operations includes three functional areas: Physical Protection Systems, Protective Forces, and System Performance Testing. The Office of Security Evaluations (OSE) inspects field offices in these areas by evaluating programs relative to Standards and Criteria and by performing a variety of exercises and other types of tests to assure protective systems are effective and maintained at a proper level to meet the defined threat. Their perception of the OSE inspections has been positive. The approach taken by ID, with key areas/activities emphasized, during each phase of the field inspection process is described in this report. The most important areas for field offices to concentrate are: inspection preparations through self-evaluation, improving communications, assigning knowledgeable trusted agents, increasing awareness of facility procedures and operations, and assuring daily validations of inspected areas. Emphasis is placed on striving for a balance in reporting both positive and negative findings, and for consistency between ratings and the importance of report findings. OSE efforts to develop improved rating methodologies are encouraged

  8. Production of fission 131I

    A method of iodine separation from other radionuclides generated by 235U fission has been developed in order to explore the possibilities to obtain 131I as by-product of the 99Mo routine production in the Ezeiza Atomic Centre. The experiments were designed to remove this element to gas phase, and the recoveries were investigated both with and without carrier addition. High volatilization percentages were achieved in the presence of iodine carrier. Some other alternatives to increase the iodine displacement to the gaseous phase, namely vacuum distillation, addition of hydrogen peroxide and use of a carrier gas, were also studied. The method developed, which employs a carrier gas stream, without carrier addition, allows the recovery of about 97% of the 131I, with high specific activity, in a simple and clean way. (author)

  9. Study of the retention of fission products by a few common minerals. Application to the treatment of medium activity effluents (1962)

    The conditions in which strontium is fixed on calcite (the object of the Geneva report P/395 - USA - 1958) are more closely studied and the work is extended to five fission products present in the effluents, and to 17 common rocks and minerals. Although as it turns out this fixation is not suitable as a method of treating the S.T.E. effluents (i.e. those from the Effluent Treatment plant at Marcoule), the study shows that all the crystals considered are strongly contaminated by simple contact with the effluents. (author)

  10. Fission in Rapidly Rotating Nuclei

    A. K. Rhine Kumar

    2014-02-01

    Full Text Available We study the effect of rotation in fission of the atomic nucleus 256Fm using an independent-particle shell model with the mean field represented by a deformed Woods-Saxon potential and the shapes defined through the Cassinian oval parametrization. The variations of barrier height with increasing angular momentum, appearance of double hump in fission path are analysed. Our calculations explain the appearance of double hump in fission path of 256Fm nucleus. The second minimum vanishes with increase in angular momentum which hints that the fission barrier disappears at large spin.

  11. Hidden systematics of fission channels

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  12. Fission yield measurements at IGISOL

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  13. Fission yield measurements at IGISOL

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  14. Fission approach to cluster radioactivity

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  15. Software Formal Inspections Guidebook

    1993-01-01

    The Software Formal Inspections Guidebook is designed to support the inspection process of software developed by and for NASA. This document provides information on how to implement a recommended and proven method for conducting formal inspections of NASA software. This Guidebook is a companion document to NASA Standard 2202-93, Software Formal Inspections Standard, approved April 1993, which provides the rules, procedures, and specific requirements for conducting software formal inspections. Application of the Formal Inspections Standard is optional to NASA program or project management. In cases where program or project management decide to use the formal inspections method, this Guidebook provides additional information on how to establish and implement the process. The goal of the formal inspections process as documented in the above-mentioned Standard and this Guidebook is to provide a framework and model for an inspection process that will enable the detection and elimination of defects as early as possible in the software life cycle. An ancillary aspect of the formal inspection process incorporates the collection and analysis of inspection data to effect continual improvement in the inspection process and the quality of the software subjected to the process.

  16. Technical objectives of inspection

    The various technical objectives of inspection are discussed in a very general manner. The discussion includes how the inspection function is related to the assumed threat, the various degrees of assurance and reliance on criteria, and the hierarchy of assurance which is obtained from the various types or levels of inspection

  17. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  18. Determination of 140La fission product interference factor for INAA

    Instrumental Neutron Activation Analysis (INAA) is a technique widely used to determine the concentration of several elements in several kinds of matrices. However if the sample of interest has higher relative uranium concentration the obtained results can be interfered by the uranium fission products. One of these cases that is affected by interference due to U fission is the 140La, because this radioisotope used in INAA for the determination of concentration the La is also produced by the −β of 140Ba, an uranium fission product. The 140La interference factor was studied in this work and a factor to describe its time dependence was obtained

  19. Fast fission phenomenon

    In these lectures we have described two different phenomena occuring in dissipative heavy ion collisions : neutron-proton asymmetry and fast fission. Neutron-proton asymmetry has provided us with an example of a fast collective motion. As a consequence quantum fluctuations can be observed. The observation of quantum or statistical fluctuations is directly connected to the comparison between the phonon energy and the temperature of the intrinsic system. This means that this mode might also provide a good example for the investigation of the transition between quantum and statistical fluctuations which might occur when the bombarding energy is raised above 10 MeV/A. However it is by no means sure that in this energy domain enough excitation energy can be put into the system in order to reach such high temperatures over the all system. The other interest in investigating neutron-proton asymmetry above 10 MeV/A is that the interaction time between the two incident nuclei will decrease. Consequently, if some collective motion should still be observed, it will be one of the last which can be seen. Fast fission corresponds on the contrary to long interaction times. The experimental indications are still rather weak and mainly consist of experimental data which cannot be understood in the framework of standard dissipative models. We have seen that a model which can describe both the entrance and the exit configuration gives this mechanism in a natural way and that the experimental data can, to a good extend, be explained. The nicest thing is probably that our old understanding of dissipative heavy ion collisions is not changed at all except for the problems that can now be understood in terms of fast fission. Nevertheless this area desserve further studies, especially on the experimental side to be sure that the consistent picture which we have on dissipative heavy ion collisions still remain coherent in the future.

  20. The SPIDER fission fragment spectrometer for fission product yield measurements

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement

  1. The SPIDER fission fragment spectrometer for fission product yield measurements

    Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-11

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.

  2. Preventive and Predictive Maintenance, Warehousing of Spares, Periodic Testing and In-Service Inspection Activities at the Nigerian Research Reactor-1 Facility

    The Nigerian Research Reactor–1, or NIRR-1, is sited at Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. Activities on preventive or routine maintenance have been institutionalized since the commissioning of the reactor in February 2004. This has grossly reduced the rates of corrective maintenance activities and helped the reactor management a great deal in predicting failure rates of reactor components and other auxiliary units. Routine maintenance of systems and components are being carried out on a weekly, quarterly and annual basis based on manufacturer’s recommendations, which have been reviewed and improved over the years. The paper presents the implementation of maintenance activities in NIRR-1 from its initial criticality in 2004 till today and the new scheme for periodic testing and in-service-inspection developed after an IAEA Integrated Safety Assessment of Research Reactors mission. The measures put in place are envisaged to reduce the negative impact of ageing on NIRR-1 and its auxiliary systems. (author)

  3. Energy from nuclear fission(*

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  4. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  5. An investigation of the fission product release from the fuel pellet-cladding gap into the coolant through a cladding breach

    The fission product release from the fuel pellet-cladding gap into the coolant through a cladding breach has been investigated for two release processes, i.e., prompt and delayed release processes. For the prompt release process, a prompt fission gas release model that includes the resistance to gas flow in the gap has been developed and the effects of failure location on prompt fission gas release from the cladding breach have been assessed. A porous media concept (permeability) is used to define the resistance to the gas flow in the tortuous gap. The process of prompt fission gas release from the plenum and the gap into the coolant has been modeled in accordance with three major phenomena: (1) transient gas flow in the gap, (2) the growth of the fission gas bubble while it is still attached to the breach, and (3) the detachment of the fission gas bubble from the breach and mixing with the coolant. The fission gas bubble is assumed to be detached from the cladding of breach as soon as its diameter reaches the predictable detachment diameter. The plenum pressure history and the cumulative mass release fraction by the present model incorporating the friction in the gap have been calculated for the case of Yeonggwang 3 and 4 nuclear fuel rod as a typical example. The results show that the release behavior of the prompt fission gas with time is different from the frictionless model which has frequently been used in the simplified approach, and that the location of cladding failure is another key factor of the prompt fission gas release process due to the important role of the resistance in the gap on the prompt fission gas release process. For the delayed release process, a Windows computer code entitled as 'CAAP (Coolant Activity Analysis Program)' has been developed to evaluate the number, the degree of failures, and the location of failed fuel rods using primary coolant radioactivity data obtained from operating PWRs. New models are developed and

  6. Observation of cold fission in 242Pu spontaneous fission

    Coincidence γ-ray data from the spontaneous fission of 242Pu were collected at the Lawrence Berkeley Laboratory high purity Ge (HPGe) array, GAMMASPHERE. Data from several cold-fission (0 neutron emission) isotopic pairs were observed and are presented. An interesting trend in the fractional population of cold-fission events was observed and is discussed. Relative yields of Zr-Xe, Sr-Ba, and Mo-Te pairs were measured. The Zr-Xe system has the most complete data set. Some speculations on the trend in the number of neutrons emitted as a function of the mass of the Xe isotope populated are presented. Comparisons between the yields from the spontaneous fission of 242Pu and the yields from thermal-neutron-induced fission of 241Pu are also presented. copyright 1996 The American Physical Society

  7. Periodic and in-service inspection programs

    Periodic and in-service inspection programs for Cernavoda NPP consists of periodic inspections of CANDU NPP components CSAN N-285.4 and CSAN N-285.4, in-service inspections and repair and modifications general inspection. Periodic inspection program document (PIPD) determines the systems and components subject to inspection, the category of the inspection, techniques, areas and other details.The current status of the inspection programs is presented, including containment , erosion/corrosion, pressure vessel support and snubbers, main steam lines inspection programs. Qualification program in Cernavoda NPP involves equipment qualification in the on-site laboratory, yearly certification, special equipment qualification in the National Institute of Metrology. All procedures are approved by the ISCIR (regulatory body for pressure vessel and lifting equipment) and CNCAN (National Commission on Nuclear Activities Control). Qualification of the personnel is performed according to the ISCIR Technical prescription CR 11/82 for up to 3 year period. Final qualification and licensing is performed by CNCAN

  8. Robotic inspection technology-process an toolbox

    Hermes, Markus [ROSEN Group (United States). R and D Dept.

    2005-07-01

    Pipeline deterioration grows progressively with ultimate aging of pipeline systems (on-plot and cross country). This includes both, very localized corrosion as well as increasing failure probability due to fatigue cracking. Limiting regular inspecting activities to the 'scrapable' part of the pipelines only, will ultimately result into a pipeline system with questionable integrity. The confidence level in the integrity of these systems will drop below acceptance levels. Inspection of presently un-inspectable sections of the pipeline system becomes a must. This paper provides information on ROSEN's progress on the 'robotic inspection technology' project. The robotic inspection concept developed by ROSEN is based on a modular toolbox principle. This is mandatory. A universal 'all purpose' robot would not be reliable and efficient in resolving the postulated inspection task. A preparatory Quality Function Deployment (QFD) analysis is performed prior to the decision about the adequate robotic solution. This enhances the serviceability and efficiency of the provided technology. The word 'robotic' can be understood in its full meaning of Recognition - Strategy - Motion - Control. Cooperation of different individual systems with an established communication, e.g. utilizing Bluetooth technology, support the robustness of the ROSEN robotic inspection approach. Beside the navigation strategy, the inspection strategy is also part of the QFD process. Multiple inspection technologies combined on a single carrier or distributed across interacting container must be selected with a clear vision of the particular goal. (author)

  9. AECL experience in fuel channel inspection

    Inspection of CANDU fuel channels (FC) is performed to ensure safe and economic reactor operation. CANDU reactor FCs have features that make them a unique non-destructive testing (NDT) challenge. The thin, 4 mm pressure-tube wall means flaws down to about 0.1 mm deep must be reliably detected and characterized. This is one to two orders of magnitude smaller than is usually considered of significant concern for steel piping and pressure vessels. A second unique feature is that inspection sensors must operate in the reactor core--often within 20 cm of highly radioactive fuel. Work on inspection of CANDU reactor FCs at AECL dates back over three decades. In that time, AECL staff have provided equipment and conducted or supervised in-service inspections in about 250 FCs, in addition to over 8000 pre-service FCs. These inspections took place at every existing CANDU reactor except those in India and Romania. Early FC inspections focussed on measurement of changes in dimensions (gauging) resulting from exposure to a combination of neutrons, stress and elevated temperature. Expansion of inspection activities to include volumetric inspection (for flaws) started in the mid-1970s with the discovery of delayed hydride cracking in Pickering 3 and 4 rolled joints. Recognition of other types of flaw mechanisms in the 1980s led to further expansion in both pre-service and in-service inspections. These growing requirements, to meet regulatory as well as economic needs, led to the development of a wide spectrum of inspection technology that now includes tests for hydrogen concentration, structural integrity of core components, flaws, and dimensional change. This paper reviews current CANDU reactor FC inspection requirements. The equipment and techniques developed to satisfy these requirements are also described. The paper concludes with a discussion of work in progress in AECL aimed at providing state-of-the-art FC inspection services. (author)

  10. Approximations in Inspection Planning

    Engelund, S.; Sørensen, John Dalsgaard; Faber, M. H.; Bloch, Allan

    2000-01-01

    . One of the more important of these approximations is the assumption that all inspections will reveal no defects. Using this approximation the optimal inspection plan may be determined on the basis of conditional probabilities, i.e. the probability of failure given no defects have been found by the......Planning of inspections of civil engineering structures may be performed within the framework of Bayesian decision analysis. The effort involved in a full Bayesian decision analysis is relatively large. Therefore, the actual inspection planning is usually performed using a number of approximations...... inspection. In this paper the quality of this approximation is investigated. The inspection planning is formulated both as a full Bayesian decision problem and on the basis of the assumption that the inspection will reveal no defects....

  11. Proceedings of the specialists' meeting on physics and engineering of fission and spallation, 1989

    The third meeting was held on August 1, and the fourth meeting was held on December 12, 1989. The reports of the international conferences on 50 years research on nuclear fission in Germany and USA, and the reports on the nuclear data of fission-produced nuclei for evaluating reactor decay heat, the atomic mass formula considering proton-neutron interaction and unstable nuclei, research on short life fission fragments by on-line isotope separation process, the reactor physics on waste annihilation disposal and fuel breeding with an accelerator, the double differential cross section of back neutrons in nuclear spallation reaction, measurement of fission cross section and fission neutron spectra with fast neutrons, U-235 fission spectra by unfolding activation foil data and production mechanisms of intermediate mass fragments from hot nuclei-emission of complex and fission fragments for 84Kr+27Al at 10.6 MeV/u were made. (K.I.)

  12. Entrance-channel dependence of fission transients

    Charity, R. J.

    2004-01-01

    Fission transients describe the fission rate as it evolves towards the quasistationary value given by Kramers' formula. The nature of fission transients is dependent on the assumed initial distribution of the compound nuclei along the fission coordinate. Although the standard initial assumption of a near-spherical object leads to a transient suppression of the fission rate (fission delay), a moderate initial fissionlike deformation can reduce the magnitude of this suppression. For still large...

  13. Activities for turbine maintenance: planning, implementation and evaluation of inspection results; Actividades para el mantenimiento de la turbina: planificacion, ejecucion y evaluacion de resultados de las inspecciones

    Azcue, J.; Sanchez, M. A.; Alvaro, M.

    2014-04-01

    The article will cover the most significant aspects of how Tecnatom carry out the turbine maintenance work, both from the point of view of the inspection itself as the pre-and post tasks associated. Thus, the issues that will be part of the article are the Manual Inspection Service (MISI) and the inspection database, ISI WEB. These tools are essential for planning field work and serve as a guide to run later turbine inspections in different plants. Following this introduction the inspection teams and the techniques used by Tecnatom will be described. finally, the article will contain a small mention about management studies of life and integrity analysis of the turbine that can be performed, as well as involvement in its safe operation that is derived from them. Ultimately, the intention is to provide a comprehensive approach to the issue in question, the turbine maintenance work, so that the reader can get an ideal of the whole process. (Author)

  14. Studies on the Separation of Cesium From Fission Products

    QIANLi-juan; ZHANGSheng-dong; GUOJing-ru; CUIAn-zhi; YANGLei; WUWang-suo

    2003-01-01

    135Cs is a long-life fission product. When measuring its thermal cross section, we must separate radiochemical purity cesium from fission products. Except for decontaminating radio- nuclides, others which can be activated must be avoided to come into solution. So ion exchanger is used. Inorganic ion exchangers have received increased attention because of their high resistance to radiation and their very efficient separation of alkali metal ions.

  15. Fission throughout the periodic table

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  16. Fission fragment driven neutron source

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  17. Fission at high angular momenta

    By studies on the system 40Ar+165Ho by means of selected measuring methods which made a differential selection of certain angular momentum ranges and by this a discrimination between ''fast fission'' and compound-nucleus fission possible the validity of fundamental predictions of the model of the ''fast fission'' hitherto experimentally no yet confirmed was studied: 1) At the turning point of the trajectory for ''fast fission'' calculated by Gregoire the corresponding shape of which must be responsible for the angular distribution the centers of the two fragments must be separated by about 11 fm. 2) The widths of the mass distributions after ''fast fission'' and compound-nucleus fission must be different by a factor 2. The measurements of the angular dependence showed that both prediction cannot be simultaneously brought into accordance with the experimental results. The results of coincidence measurements between fission fragments and alpha particles confirmed the assumption mentioned under topic 2. The analysis of the angular dependence then yielded for the shape of the nuclear complex leading to ''fast fission'' a more compact shape than that indicated by Gregoire, namely with a distance of the fragments of about 7 fm. (orig.)

  18. Fission throughout the periodic table

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs.

  19. Fission of Halving Edges Graphs

    Khovanova, Tanya; Yang, Dai

    2013-01-01

    In this paper we discuss an operation on halving edges graph that we call fission. Fission replaces each point in a given configuration with a small cluster of k points. The operation interacts nicely with halving edges, so we examine its properties in detail.

  20. Fission Dynamics of Compound Nuclei

    Iwata, Yoritaka; Heinz, Sophia

    2012-01-01

    Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and quasi-fission events are expected to appear. In this paper, possible fission dynamics of compound nuclei is presented.

  1. Ternary fission of nuclei into comparable fragments

    Karpeshin, F. F., E-mail: fkarpeshin@gmail.com [D.I. Mendeleev Institute forMetrology (VNIIM) (Russian Federation)

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  2. Ternary fission of nuclei into comparable fragments

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values

  3. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites.

    Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N

    2015-01-01

    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. PMID:26609810

  4. Modeling of a highly enriched 235U fission chamber for spent fuel assay

    Highlights: • Accurate fission chamber models require accurate design information. • Fissile mass amount, active layer thickness and structural materials determine the detector sensitivity. • Fission products in fission chambers can be modeled and transported in a Monte Carlo code such as MCNPX. • Fission products transport plays a key role when determining a fission chamber sensitivity. • The model is in good agreement with experimental data. - Abstract: Fission chambers loaded with high enriched uranium are used for spent fuel measurements in the so-called Fork detector. The Fork detector is one of the work-horses used by safeguards inspectors for spent fuel measurements during verification activities in the framework of the Non-Proliferation and Euratom Treaties. Having an accurate and validated model of the measurement equipment is beneficial for the investigation of this type of applications. SCK• CEN is carrying out a significant effort to model the Fork detector with the MCNPX code. However, scarce information is known about the fission chambers. This work describes the impact of the design information of the fission chamber on the calculated detector sensitivity and, consequently, on the overall Fork detector response for neutrons, using Monte Carlo simulations. The heavy ions transport in the active layer of the fission chamber was also studied and the resulting fission product energy spectra were compared with the available experimental data

  5. Fifty years with nuclear fission

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  6. Effects of the radiation gamma on the activity and selectivity of the Al2 O3 in the retention of uranium and fission products

    The study that here comes constitute a contribution for the treatment of based on waste the properties of retention of the inorganic oxides. The effect induced of the radiation has been determined gamma of the 60 Co in the Al2 O3 and their influence in their capacity of retention of uranium and products of fission of watery solutions strongly alkaline. In order to obtain useful information it made the superficial characterizations, structural, crystalline and of retention by means of the techniques of superficial adsorption, spectroscopy infrared, rays-X diffraction, liquid twinkling and γ- spectrometry. The obtained results show that the treatment of the Al2 O3 this associated with slight changes in their structural characteristics and superficialities concluding that the molecular water present in the crystalline net of the oxide was not displaced radiolytic for effect, but rather, this spread in the volume of the oxide, blocking the change in the contribution to crystalline of the oxide. (Author)

  7. Complete and incomplete fusion competition in 11B-induced fission reaction on medium mass targets at intermediate energies

    Demekhina, N. A.; Karapetyan, G. S.; Balabekyan, A. R.

    2014-01-01

    The cross sections for the binary fission of 197Au, 181Ta and 209Bi targets induced by 11B ions were measured at intermediate energies. The fission products cross sections were studied by means of activation analysis in off-line regime observed gamma-ray spectra. The fission cross section is reconstructed on the basis of charge and mass distribution of the fission products.

  8. Prompt Fission Neutron Emission in Resonance Fission of 239Pu

    Hambsch, Franz-Josef; Varapai, Natallia; Zeinalov, Shakir; Oberstedt, Stephan; Serot, Olivier

    2005-05-01

    The prompt neutron emission probability from neutron-induced fission in the resonance region is being investigated at the time-of-flight facility GELINA of the IRMM. A double Frisch-gridded ionization chamber is used as a fission-fragment detector. For the data acquisition of both the fission-fragment signals as well as the neutron detector signals the fast digitization technique has been applied. For the neutron detection, large-volume liquid scintillation detectors from the DEMON collaboration are used. A specialized data analysis program taking advantage of the digital filtering technique has been developed to treat the acquired data. Neutron multiplicity investigations for actinides, especially in resonance neutron-induced fission, are rather scarce. They are, however, important for reactor control and safety issues as well as for understanding the basic physics of the fission process. Fission yield measurements on both 235U and 239Pu without prompt neutron emission coincidence have shown that fluctuation of the fission-fragment mass distribution exists from resonance to resonance, larger in the case of 235U. To possibly explain these observations, the question now is whether the prompt neutron multiplicity shows similar fluctuations with resonance energy.

  9. Inspection of environmental conditions 1991

    A comprehensive survey of environmentally protective activities (including inspections or surveillance, planning, the giving of guidelines and approvals) carried out by Danish local authorities and municipalities on pollutive/environmental conditions related to public services, companies and agriculture during 1991. Administrative details are given. The survey is based on the accounts of the inspections produced by the individual authorities. Information is given on the extent of these projects, the nature of the activities involved and the evaluation of them made by the (Danish) National Agency for Environmental Protection. In the appendices data is presented on the percentage of companies visited, the amounts of oil and chemical industrial wastes, the visited farms, the average number of domestic animals held, the nitrate content of drinking water in a number of specified waterworks, the number of objects of inspection, the number of enforcements in relation to the number of inspections and organic substances discharged from sewage works. Other related data, for example on the management of wastes, illustrate the detailed text. (AB)

  10. Fission fragment angular distribution in heavy ion induced fission

    S. Soheyli

    2006-06-01

    Full Text Available   We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a without neutron correction and b with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the average emitted neutron from compound nuclei considering the best fit for each system.

  11. Fission fragment angular distribution in heavy ion induced fission

    S. Soheyli; I. Ziaeian

    2006-01-01

      We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a) without neutron correction and b) with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the averag...

  12. Prompt fission neutron emission in resonance fission of 239Pu

    The prompt fission neutron emission probability was investigated at the time-of-flight facility GELINA at the IRMM. A double Frisch-gridded ionization chamber was used as a fission fragment detector. For the data acquisition of both fission fragment signals as well as the neutron detector signals the fast digitization technique has been applied. For the neutron detection large volume liquid scintillation detectors from the DEMON collaboration were used. A specialized data analysis program taking advantage of the digital filtering technique has been developed to treat the acquired data

  13. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion.

    Tangmansakulchai, Kulvadee; Abubakar, Zuroida; Kitiyanant, Narisorn; Suwanjang, Wilasinee; Leepiyasakulchai, Chaniya; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-09-01

    Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage. PMID:27453331

  14. Fission product release from fuel of water-cooled reactors

    The report contains a review of theoretical models and experimental works of gaseous and volatile fission products from uranium dioxide fuel. The experimental results of activity release at low burnup and the model of fission gas behaviour at initial stage of fuel operational cycle are presented. Empirical models as well as measured results of transient fission products release rate in the temperature up to UO2 melting point, with consideration of their chemical reactions with fuel and cladding, are collected. The theoretical and experimental data were used for calculations of gaseous and volatile fission products release, especially iodine and caesium, to the gas volume of WWER-1000 and WWER-440 type fuel rods at low and high burnup and their further release from defected rods at the assumed loss-of-coolant accident. (author)

  15. Fifty years with nuclear fission

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  16. Fission Yields of Some Isotopes in the Fission of Th232 by Reactor Neutrons

    The fission yields of the longer-lived isotopes produced in the fission of Th232 are not very well known; existing data show rather large discrepancies and/or uncertainties. Since we feel that at least some of these discrepancies arise from difficulties in measuring the absolute activities of the fission products, we measured the fission yield of 10 selected isotopes whose decay schemes are well understood. The thorium foils were irradiated in a position at the edge of the core of the SAPHIR swimming pool reactor. Following irradiation, the thorium was dissolved after addition of appropriate carriers. The fission products of interest were determined by conventional radiochemical methods that had to be modified slightly to ensure good decontamination from the abundantly formed Pa233 . The chemical yields were determined by gravimetric methods. Counting was done preferentially on a γ-spectrometer that had been calibrated at 11 different energies by standards either obtained from the IAEA or prepared by 4πβ-counting. In the case of Sr90, Ru106 and Ce144 a β-proportional counter was used that had been calibrated for these isotopes. In addition to the sought elements, Mo99 was isolated from each foil to serve as an internal monitor for the number of fissions taking place. The experiment thus gave the ratio of the yield of the sought element to the yield of Mo99. This ratio ''R'' was obtained for Sr90, Ru103, Ru106, Ag111, Pd112, I131, Cs137, Ba140, Ba141, Ce141 and Ce144, Results indicate the existence of a third peak in the yield mass curve in the region of symmetric fission. Yields of fission products relative to the Mo99 yields are given, and the absolute yields calculated by assuming y Mo99 = 2.78%. This number was derived from the work of Iyer et al., and was obtained by normalizing the area under the yield mass curve to 200%. (author)

  17. Fission of a multiphase membrane tube

    Allain, J M; Roux, A; Storm, C; Allain, Jean-Marc; Amar, Martine Ben; Proxy, Jean-Francois Joanny; Roux, Aurelien; Storm, Cornelis; ccsd-00001468, ccsd

    2004-01-01

    A common mechanism for intracellular transport is the use of controlled deformations of the membrane to create spherical or tubular buds. While the basic physical properties of homogeneous membranes are relatively well-known, the effects of inhomogeneities within membranes are very much an active field of study. Membrane domains enriched in certain lipids in particular are attracting much attention, and in this Letter we investigate the effect of such domains on the shape and fate of membrane tubes. Recent experiments have demonstrated that forced lipid phase separation can trigger tube fission, and we demonstrate how this can be understood purely from the difference in elastic constants between the domains. Moreover, the proposed model predicts timescales for fission that agree well with experimental findings.

  18. Production Pathways and Separation Procedures for High-Diagnostic-Value Activation Species, Fission Products, and Actinides Required for Preparation of Realistic Synthetic Post-Detonation Nuclear Debris: Status Report and FY16 Project Plan

    The objective of this project is to provide a comprehensive study on the production routes and chemical separation requirements for activation products, fission products, and actinides required for the creation of realistic post-detonation surrogate debris. Isotopes that have been prioritized by debris diagnosticians will be examined for their ability to be produced at existing irradiation sources, production rates, and availability of target materials, and chemical separation procedures required to rapidly remove the products from the bulk target matrix for subsequent addition into synthetic debris samples. The characteristics and implications of the irradiation facilities on the isotopes of interest will be addressed in addition to a summary of the isotopes that are already regularly produced. This is a planning document only.

  19. Production Pathways and Separation Procedures for High-Diagnostic-Value Activation Species, Fission Products, and Actinides Required for Preparation of Realistic Synthetic Post-Detonation Nuclear Debris: Status Report and FY16 Project Plan

    Faye, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaughnessy, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-19

    The objective of this project is to provide a comprehensive study on the production routes and chemical separation requirements for activation products, fission products, and actinides required for the creation of realistic post-detonation surrogate debris. Isotopes that have been prioritized by debris diagnosticians will be examined for their ability to be produced at existing irradiation sources, production rates, and availability of target materials, and chemical separation procedures required to rapidly remove the products from the bulk target matrix for subsequent addition into synthetic debris samples. The characteristics and implications of the irradiation facilities on the isotopes of interest will be addressed in addition to a summary of the isotopes that are already regularly produced. This is a planning document only.

  20. The spectroscopy of fission fragments

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  1. Fission track studies of tektites

    The fission track analysis method was used for the age determination of tektites. The tektite samples were obtained from Hainan Island and Leizhou Peninsula. The method consists in cutting and polishing two sections of a sample, irradiating one of these with a known thermal neutron flux (5.90 x 1015/cm2), etching each section identically with hydrofluoric acid, and then comparing the fission track densities in two cases with a microscope. Their fission track age is found to be around 0.7 Ma

  2. The spectroscopy of fission fragments

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  3. Change over from compound nuclear fission to quasi-fission

    Bhattacharya P; Golda K. S.; Rana T. K.; Mukhopadhyay S; Mukherjee G; Meena J. K.; Kundu S.; Bhattacharya S; Bhattacharya C.; Banerjee K; Ghosh T. K.

    2010-01-01

    Fission fragment mass distribution has been measured in two reactions to populate compound nucleus 246Bk. Both the target nuclei were deformed. However, entrance channel mass asymmetry of the two systems was on the either side of the Businaro Gallone mass asymmetry parameter. Near the Coulomb barrier, at similar excitation energies, the width of the fission fragment mass distribution was found to be significantly different for the 14N+232Th reaction compared to the 11B+235U reaction. T...

  4. FISPRO: a simplified computer program for general fission product formation and decay calculations

    This report describes a computer program that solves a general form of the fission product formation and decay equations over given time steps for arbitrary decay chains composed of up to three nuclides. All fission product data and operational history data are input through user-defined input files. The program is very useful in the calculation of fission product activities of specific nuclides for various reactor operational histories and accident consequence calculations

  5. Examples from Member State Inspection Programmes: Pakistan. Appendix V

    The legal framework (PNRA Ordinance) provides legal power to the Pakistan Nuclear Regulatory Authority (PNRA) to conduct inspections and take enforcement actions as required. The licensing regulations provide a more detailed framework for regulatory inspections during all licensing stages, including provisions for obtaining services of consultants for inspections. The PNRA performs regulatory inspections according to its inspection programme, which is also made available for the licensees. The programme is supplemented by detailed inspection plans, management and technical procedures, checklists and inspection guidelines. Detailed criteria have been established for inspectors' qualifications, and all inspections are conducted by PNRA inspectors. The PNRA performs management system inspections as well as inspections of technical areas. In addition, the PNRA performs general surveillances during all stages of the licensing process. The licensees are required to provide the necessary documentation and information about the schedule of their activities in advance to facilitate regulatory inspections. The main features of PNRA inspection activities during various licensing stages are described in the following subsections

  6. Chemical Production using Fission Fragments

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author)

  7. Background radiation from fission pulses

    England, T.R.; Arthur, E.D.; Brady, M.C.; LaBauve, R.J.

    1988-05-01

    Extensive source terms for beta, gamma, and neutrons following fission pulses are presented in various tabular and graphical forms. Neutron results from a wide range of fissioning nuclides (42) are examined and detailed information is provided for four fuels: /sup 235/U, /sup 238/U, /sup 232/Th, and /sup 239/Pu; these bracket the range of the delayed spectra. Results at several cooling (decay) times are presented. For ..beta../sup -/ and ..gamma.. spectra, only /sup 235/U and /sup 239/Pu results are given; fission-product data are currently inadequate for other fuels. The data base consists of all known measured data for individual fission products extensively supplemented with nuclear model results. The process is evolutionary, and therefore, the current base is summarized in sufficient detail for users to judge its quality. Comparisons with recent delayed neutron experiments and total ..beta../sup -/ and ..gamma.. decay energies are included. 27 refs., 47 figs., 9 tabs.

  8. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  9. Microscopic Description of Nuclear Fission Dynamics

    Umar, A. S.; Oberacker, V. E.; Maruhn, J. A.; Reinhard, P.-G.

    2010-01-01

    We discuss possible avenues to study fission dynamics starting from a time-dependent mean-field approach. Previous attempts to study fission dynamics using the time-dependent Hartree-Fock (TDHF) theory are analyzed. We argue that different initial conditions may be needed to describe fission dynamics depending on the specifics of the fission phenomenon and propose various approaches towards this goal. In particular, we provide preliminary calculations for studying fission following a heavy-io...

  10. Contineous inspection during fabrication

    The continuous inspection process is a method used in a Manufacturing plant in order to obtain a fast feed-back between inspection results and manufacturing process. It often requires a specific approach in design and a wide cooperation between Engineering and Manufacturing people. This method leads to additional advantages such as high motivation, and better quality knowledge. (orig.)

  11. Advanced Space Fission Propulsion Systems

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  12. Velocity fluctuations of fission fragment.

    Llanes Estrada, Felipe José; Martínez Carmona, Belén; Muñoz Martínez, José L.

    2016-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fr...

  13. Laser spectroscopy of fission fragments

    The study of the nuclear structure of fission fragments is discussed. They are neutron-rich nuclei the structure of which possesses some peculiarities. Two regions of fission fragments are discussed: near the shell closures N = 50 and N = 82 and at the boundary of the deformation. A view on the optical properties of these elements is presented and different laser spectroscopic methods for their investigation are proposed. (author)

  14. The microscopic theory of fission

    Younes, W.; Gogny, D.

    2009-01-01

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a $^{239}\\textrm{Pu}$ target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emi...

  15. Hidden systematics of fission channels

    Schmidt Karl-Heinz; Jurado Beatriz

    2013-01-01

    It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in th...

  16. Energy dependence of fission observables

    Paşca, Horia

    2016-01-01

    The mass, charge and isotopic distributions of fission fragments are studied within an improved scission-point statistical model in the reaction 235U+n at different energies of the incident neutron. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments. The calculated mass distribution of 238U+n is also compared with experimental data.

  17. Fission hindrance and nuclear viscosity

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  18. Superheavy nuclei and fission barriers

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.

  19. Dynamin-mediated membrane fission

    Morlot, Sandrine

    2012-01-01

    Membrane fission is required for vesicular traffic between intracellular compartments. Dynamin is a GTPase implicated in vesicle scission during Clathrin-mediated endocytosis. It polymerizes into a helix at the neck of endocytic buds. Upon GTP hydrolysis, conformational changes reduce the helical radius and pitch showing that fission proceeds through a constriction mechanism. We show that the deformation of Dynamin helices is highly concerted and damped by the friction between membrane and Dy...

  20. Tritium chemistry in fission and fusion reactors

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 1013Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 1010Bq (0.5 Ci) per day per ton of fuel

  1. Separation of fission molybdenum for the production of technetium generators

    There are two basically different methods for Mo-99 production: Activation of Mo-98 contained at about 24% in natural isotopic mixtures. Mo-98 enriched targets are irradiated in high-flux reactors in order to achieve the highest possible specific acitivity of the product. Isolation of fission molybdenum from irradiated nuclear fuel targets which have undergone short-term cooling. Maximum fission yields can be attained by irradiation of uranium-235 with the highest possible enrichment. On account of its approximately 1000 times higher specific activity, fission molybdenum has almost replaced worldwide the product fabricated by activation. However, fission molybdenum-99 production has as its prerequisite a suitably advanced technology by which the production process taking place under high activity conditions can be controlled. An integral part of the process consists in the retention of the fission gases the recycling of non-consumed nuclear fuel, and the treatment of the waste streams arising. Ths publication will deal with the individual steps in the process. (orig.)

  2. Alpha Particle Emission in Fission

    Soon after it was discovered that alpha particles are occasionally emitted in fission, it was concluded, on the basis of the energy and angular distributions of these particles, that they are emitted from the space between the fragments at times close to that of the snapping of the neck that connects them. It is shown that, independent of any (still unknown) dynamic features of the alpha-particle ejection process, the energy required to emit alpha particles from between the fragments at the indicated time is barely available. Presumably the rareness of alpha particles in fission, and the apparent absence of still heavier ''third'' particles, is associated with the marginal energy supply at the time of actual fragment division. The fact that the total kinetic energy release in so-called ternary fission is roughly equal to that in normal binary fission instead of being about 20 MeV larger is shown to imply that the mean fragment separation at the division time is larger in ternary fission. This is interpreted to indicate that alpha particles are emitted with greatest probability n those fissions where ample energy happens to be provided through the stretching of an abnormally long neck between the fragments before they actually divide. It is suggested that the release of the alpha particles is a sudden rather than adiabatic process. (author)

  3. Status of fission power

    Fission energy is reviewed from the viewpoints of technology, economics, politics, manufacturers, consumers, and foreign countries. Technically, the reactor program is operating and the light water reactor industry shows signs of maturing, although recent business has been disappointing. Marketing of gas-cooled reactors depends, not on technical, but economic and political issues. Liquid metal fast breeder reactors have been demonstrated worldwide, while the gas-cooled fast breeder remains an undemonstrated option. Nuclear plants, currently costing the same as coal plants with scrubbers, are the cheapest option for utilities because most of the cost is imbedded. The defeat of nuclear initiatives in seven states indicates that public feeling is not as anti-nuclear as opponents to nuclear power claim. The harshness of last winter demonstrated the advantages of a power source that is not so sensitive to the weather for reliable operation and transport, as well as low cost energy. Other nations are proceeding to build a nuclear capability, which the U.S. may jeopardize because of concerns about the fuel cycle, nuclear waste disposal, uranium reserves, and nuclear proliferation

  4. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2016-03-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  5. Investigating Prompt Fission Neutron Emission from 235U(n,f in the Resolved Resonance Region

    Göök Alf

    2016-01-01

    Full Text Available Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  6. Quality assurance inspections for shipping and storage containers

    Stromberg, H.M.; Roberts, G.D.; Bryce, J.H. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-04-01

    This is a guide for conducting quality assurance inspections of transportation packaging and dry spent fuel storage system suppliers. (Suppliers are defined as designers, fabricators, distributors, users or owners of those packaging and storage systems.) This guide may be used during inspection to determine regulatory compliance with 10 CFR, Part 71, Subpart H; 10 CFR, Part 72, Subpart G; 10 CFR, Part 21; and supplier`s quality assurance program commitments. It was developed to provide a structured, consistent approach to inspections. The guidance therein provides a framework for evaluation of transportation packaging and dry spent fuel storage systems quality assurance programs. Inspectors are provided with the flexibility to adapt the methods and concepts to meet inspection requirements for the particular facility. The method used in the guide treats each activity at a facility as a separate performance element and combines the activities within the framework of an ``inspection tree.``The method separates each performance element into several areas for inspection and identifies guidelines, based on regulatory requirements, to qualitatively evaluate each area. This guide also serves as a field manual to facilitate quality assurance inspection activities. This guide replaces an earlier one, NUREG/CR-5717 (Packing Supplier Inspection Guide). This replacement guide enhances the inspection activities for transportation packagings and adds the dry spent fuel storage system quality assurance inspection activities.

  7. Quality assurance inspections for shipping and storage containers

    This is a guide for conducting quality assurance inspections of transportation packaging and dry spent fuel storage system suppliers. (Suppliers are defined as designers, fabricators, distributors, users or owners of those packaging and storage systems.) This guide may be used during inspection to determine regulatory compliance with 10 CFR, Part 71, Subpart H; 10 CFR, Part 72, Subpart G; 10 CFR, Part 21; and supplier's quality assurance program commitments. It was developed to provide a structured, consistent approach to inspections. The guidance therein provides a framework for evaluation of transportation packaging and dry spent fuel storage systems quality assurance programs. Inspectors are provided with the flexibility to adapt the methods and concepts to meet inspection requirements for the particular facility. The method used in the guide treats each activity at a facility as a separate performance element and combines the activities within the framework of an ''inspection tree.''The method separates each performance element into several areas for inspection and identifies guidelines, based on regulatory requirements, to qualitatively evaluate each area. This guide also serves as a field manual to facilitate quality assurance inspection activities. This guide replaces an earlier one, NUREG/CR-5717 (Packing Supplier Inspection Guide). This replacement guide enhances the inspection activities for transportation packagings and adds the dry spent fuel storage system quality assurance inspection activities

  8. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Lee, Jae Sung; Park, W. S.; Cha, H. R.; Ham, Y. S.; Lee, Y. G.; Kim, K. P.; Hong, Y. D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  9. Advancement of safeguards inspection technology for CANDU nuclear power plants

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  10. Five decades ago: form the ''transuranics'' to nuclear fission

    The discovery of nuclear fission is one of the most outstanding episodes in the history of chemistry: It starts in the spring of 1934 when Enrico Fermi and his group irradiate uranium with neutrons and seem to succeed in going beyond uranium, the then heaviest known element, reaching the first transuranic element; it continues with Otto Hahn, Use Meilner and Fritz Slrassmann who believe to have found additional transuranic elements; with Irene Curie and Paul Saviich who observe an activity which somehow does not fit into that scheme; again with Otto Hahn and Fritz Slrassmann who first identify this activity as radium but then on the 17th of December 1938 after rigorous chemical tests realize that the activity is instead barium, thus discovering the fission of the uranium atom into two lighter nuclei; and with Use Meitner and Otto Robert Frisch who explain nuclear fission on the basis of an already known nuclear model; Otto Robert Frisch finally performs a physical experiment on the 13th of January 1939 which corroborates the fission of uranium. This discovery of nuclear fission is not only an event of historic dimensions, it is also an excellent example of how science evolves, not by successive logical steps but rather through strange detours. (orig.)

  11. Five decades ago: From the 'transuranics' to 'nuclear fission'

    The discovery of nuclear fission is one of the most outstanding episodes in the history of chemistry: It starts in the spring of 1934 when Enrico Fermi and his group irradiate uranium with neutrons and seem to succeed in going beyond uranium, the then heaviest known element, reaching the first transuranic element; it continues with Otto Hahn, Lise Meitner and Fritz Strassmann who believe to have found additional transuranic elements; with Irene Curie and Paul Savitch who observe an activity which somehow does not fit into that scheme; again with Otto Hahn and Fritz Strassmann who first identify this activity as radium but then on the 17th of December 1938 after rigorous chemical tests realize that the activity is instead barium, thus discovering the fission of the uranium atom into two lighter nuclei; and with Lise Meitner and Otto Robert Frisch who explain nuclear fission on the basis of an already known nuclear model; Otto Robert Frisch finally performs a physical experiment on the 13th of January 1939 which corroborates the fission of uranium. This discovery of nuclear fission is not only an event of historic dimensions, it is also an excellent example of how science evolves, not by successive logical steps but rather through strange detours. (orig.)

  12. Principles and applications of neutron based inspection techniques

    Neutron based explosive inspection systems can detect a wide variety of substances of importance for a variety of purposes from national security threats (e.g., nuclear materials, explosives, narcotics) to customs dutiable goods, to hazardous substances to protect the environment. The inspection is generally founded on the nuclear interactions of the neutrons with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete γ lines resulting from the thermal (n, γ) neutron capture process or inelastic neutron scattering (n, n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating γ rays in most inorganic substances and hydrogen. Fast neutrons inelastic scattering provide relatively strong γ-ray signatures in light elements such as carbon and oxygen. In some specific important cases, unique signatures are provided by the neutron (n, γ) process in light elements such as nitrogen, where unusually high-energy γ rays are produced. This forms the basis for key explosive detection techniques. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), is generally based on the fissions induced by the probing neutrons and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and prompt and delayed γ rays. These signatures are not discrete in energy (typically they are continua) but temporally and energetically significantly different from the background, thus making them readily distinguishable. The penetrability of fast neutrons as probes, and the γ rays and fission neutrons as signatures makes neutron interrogation applicable to the inspection of large conveyances such as cars, trucks, and marine containers. Neutron based inspection techniques have a broad applications. They can be used as stand-alone for complete scans of objects

  13. Hanford Facility resource conservation and recovery act permit general inspection plan

    The Hanford Facility Resource Conservation and Recovery Act Permit, General Inspection Requirements, includes a requirement that general facility inspections be conducted of the 100, 200 East, 200 West, 300, 400, and 1100 Areas and the banks of the Columbia River. This inspection plan describes the activities that shall be conducted for a general inspection of the Hanford Facility

  14. Devices for the contamination containment employees in the steam generator inspection

    The process of induced current inspection of the tubes of the steam generator is a typical programmed inspections at each refueling outages of pressurized water in nuclear power plants. components inspection being quite active, interested in the program of continuous improvement, further optimize the inspection system.

  15. Relative quantifying technique to measure mass of fission plate in a fission chamber

    Under the same neutron radiation conditions, fission counts are proportional to the number of fission nuclei. Based on this concept, a relative quantifying method has been developed to measure the mass of fission plate in fission chamber on a 14 MeV accelerator neutron source at the Neutron Physics Laboratory, INPC, CAEP. The experimental assembly was introduced and mass of the fission material in several fission chambers was measured. The results by this method agree well (within 1%) with the α-quantifying method. Therefore, it is absolutely feasible to quantify the fission plate mass in fission chambers. The measurement uncertainty is 2%-4%. (authors)

  16. Magnetic rubber inspection (MRI)

    Magnetic Rubber Inspection (MRI) was developed to inspect for small cracks and flaws encountered in high performance aircraft. A formula of very fine magnetic particles immersed in a room temperature curing rubber is catalysed and poured into dams (retainers) on the surface of the part to be inspected. Inducing a magnetic field then causes the particles to be drawn to discontinuities in the component under test. These indicating particles are held to the discontinuity by magnetic attraction, as the rubber cures. The solid rubber cast (Replica) is then removed and examined under a microscope for indicating lines of particle concentrations. 3 refs., 6 figs

  17. The latest progress of fission track analysis

    Fission track analysis as a new nuclear track technique is based on fission track annealing in mineral and is used for oil and gas exploration successfully. The west part of China is the main exploration for oil and gas. The oil and gas basins there experienced much more complicated thermal history and higher paleotemperature. In order to apply fission track analysis to these basins, following work was be carried out: 1. The decomposition of grain age distribution of zircon fission tracks. 2. Study on thermal history of Ordos basin using zircon fission track analysis. 3. The fission track study on the Qiang Tang basin in tibet

  18. Energy production using fission fragment rockets

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: approximately twice the efficiency if the fission fragment energy can be directly converted into electricity; reduction of the buildup of a fission fragment inventory in the reactor could avoid a Chernobyl type disaster; and collection of the fission fragments outside the reactor could simplify the waste disposal problem.

  19. Energy production using fission fragment rockets

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  20. Compact fission counter for DANCE

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF2 crystals with equal solid-angle coverage. DANCE is a 4π γ-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed γ-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture γ rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to α particles, which is important for experiments with α-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from α's. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable

  1. Compact fission counter for DANCE

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  2. Thorium-uranium fission radiography

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  3. Neutron emission prior to fission

    In recent years, many groups have measured neutrons and light charged particles in coincidence with fission fragments in heavy ion reactions. In most cases, particles emitted with an energy spectrum and angular distribution characteristic of that of compound nucleus evaporation have been measured in excess of statistical model predictions. They have chosen to investigate this effect in detail by studying neutron emission in the 158Er composite system. The advantage of this system is that it can be produced by a variety of projectile target combinations. They have chosen four combinations which form 158Er with similar critical angular momenta but varying excitation energy. The rationale is to form the same system with different neutron emission times; if the enhanced neutrons are being emitted during the fission process, the different emission time scales might possibly be used to time the fission process. In addition, they impose an additional constraint - that they have a significant fission barrier for most of the partial waves involved in the fission process. The reactions they have selected are 16O + 142Nd (207 MeV beam energy), 24Mg + 134Ba (180 MeV), 32S + 126Te (180 MeV), 50Ti + 108Pd (216 MeV)

  4. Guidelines for software inspections

    1983-01-01

    Quality control inspections are software problem finding procedures which provide defect removal as well as improvements in software functionality, maintenance, quality, and development and testing methodology is discussed. The many side benefits include education, documentation, training, and scheduling.

  5. Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2003

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-04-01

    This post-closure inspection report provides documentation of the semiannual inspection activities, maintenance and repair activities, and conclusions and recommendations for calendar year 2003 for eight corrective action units located on the Tonopah Test Range, Nevada.

  6. Change over from compound nuclear fission to quasi-fission

    Bhattacharya P.

    2010-03-01

    Full Text Available Fission fragment mass distribution has been measured in two reactions to populate compound nucleus 246Bk. Both the target nuclei were deformed. However, entrance channel mass asymmetry of the two systems was on the either side of the Businaro Gallone mass asymmetry parameter. Near the Coulomb barrier, at similar excitation energies, the width of the fission fragment mass distribution was found to be significantly different for the 14N+232Th reaction compared to the 11B+235U reaction. The entrance channel mass asymmetry was found to play a significant role in deciding the fusion process.

  7. Nuclear fission and neutron-induced fission cross-sections

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  8. Fuel performance and fission product behaviour in gas cooled reactors

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  9. Collection and collimation of fission fragments using electromagnetic fields

    Use of electromagnetic fields to collect and collimate energetic fission fragments into a charged particle beam has been proposed to either direct conversion to electrical power or, after neutralization, as a source of thrust for rocket propulsion systems. Highest efficiency for collection of the fragments produced in a fuel matrix is a very important requirement in this proposal. As Chapline and Matsuda of LLNL noted, the extraction of fission fragment power above way permits isotopic separation of fission fragments, leading to a convenient separation of more active radioisotopes from less active ones. However, it is also noted that there is no such thing as a quick trip to these high goals as this area of work is facing several inadequate methods and technologies. One of the major concerns is the stopping or energy degradation of fragments within the fuel matrix before they are collected

  10. Interpretation of fission product release from overheated fuel

    Recent laboratory data on the high temperature release of fission products from uranium dioxide can be described by intragranular diffusion. A first class of volatile fission products is characterized by interstitial transport with relatively small activation energy and diffusion entropy, the latter being determined by atomic sizes; chemically these products are unbound. A second class of non-volatile products is characterized by substitutional transport with relatively high activation energy and diffusion entropy; these products are bound to either oxygen or uranium. Releases predicted by this model for a certain temperature excursion of reactor fuel are compared with measurements taken during the severe fuel damage test and with computed source terms. It is concluded that only few volatile fission products will be released by the fuel and that most of them will be held back, even in the event of extreme accidents. (author)

  11. Search for spontaneous fission emitters in Atlantis II. Pt. 2

    In this paper we describe an attempt to isolate superheavy elements from Atlantis II hot brine deposits. Volatile, sulfidic elements (Cd,Pb) were isolated and investigated for spontaneous fission events with a mica-plastic solid state track detector sandwich. During nearly two years exposure time no spontaneous fission activity was observed. The upper limit for the concentration of superheavy elements (following this chemistry) in the Atlantis II-material is found to be 1.4 x 10-14 g/g. This limit is more than one order of magnitude lower than the concentration of a spontaneous fission activity in material from the Cheleken hot brine, as observed by Flerov and coworkers. (orig.)

  12. Regulatory aspects of fusion power-lessons from fission plants

    Natalizio, A.; Sood, S. K.; Brunnader, H.

    1993-06-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulator. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. These intrinsic features give fusion a significant safety and environmental advantage over fission. With such significant intrinsic safety advantages there is no a priori need to make fusion

  13. Wedges for ultrasonic inspection

    Gavin, Donald A. (Rexford, NY)

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  14. Source Inspection Scheduling Calendar

    Hollis, Brayden

    2011-01-01

    Quality is an essential component for creating flight hardware travelling through space since the hardware is extremely expensive and cannot be reworked or repaired once launched. An important step in this process is ensuring the quality of hardware procured from Jet Propulsion Laboratory's (JPL) suppliers. An important element of determining supplier quality is source inspection. Source inspections are performed at suppliers' facilities by JPL employeesto ensure that hardware characteristics are acceptable before being covered up and/or delivered to JPL.

  15. Inspection of tendons

    There is no reliable inspection method of tendons in use in Finland. In this research an inspection method was developed which can be applied when the sheath is of metallic material. The sheath is first revealed using a core cutter. A hole is then picked on the sheath and the condition of the injection grout and the tendons are inspected using an endoscope. A camera may be attached to the endoscope. To prevent the sheath from damaging during drilling a protective voltage is connected to the drill and the sheath is earthed. When the cutting edge hits the sheath the electric current is disconnected automatically. Experiments were made with the inspection method on three bridges one of which was still under construction and had no superstructure, one had just been constructed and one was 29 years old. The drillings for inspection were carried out on the top of the decks. The method worked as planned in all cases. In section 6 an example of corrosion classification is given which may be used when estimating whether the corrosion weakens the bearing capacity of the inspected tendons or not. (au) (1 ref., 25 figs.)

  16. Inspection and repair technology for BMI penetrations

    Historically, United States (US) nuclear power plant inspections of the reactor vessel bottom-mounted-instrument (BMI) penetrations have been limited to visual verification via a combination of walk-downs and pressure tests. However in France, more than 18 ultrasonic examination (UT) and weld-surface visual test (VT) campaigns had been performed to inspect the BMI penetration nozzles and welds since 1992 with no observed failures through 2002. In April 2003, South Texas Project Unit 1 discovered apparent leakage from two nozzles during a bare-metal examination. Based on the French inspection experience, Framatome-ANP was selected for inspection and repair services to address the leaking nozzles. Inspection activities included ultrasonic examination of the tube, enhanced visual test and eddy current testing (ECT) of the J-groove weld, bobbin ECT and profile measurement of the tube inside, helium leak test, phased-array UT, borescope VT, and boat-sample removal with destructive metallurgical analysis. Repair activities included sealing the top portion of the penetration, cutting out the old nozzles, and welding in new nozzles. This presentation discusses BMI inspection and repair technology focused particularly on the South Texas Project experience. (authors)

  17. Strategies to reduce PWR inspection time

    During last few years, a constant reduction in inspection time was clearly demanded by most nuclear plant owners. This requirement has to be accomplished without any impact in inspection quality that, in general, has also to be improved. All this in a market with increasing competition that forces price reductions. Under these new demands from our customers, Tecnatom reoriented its development efforts to improve his products and services to meet this challenges. Two of our main inspection activities that have clear impact in outage duration are Steam Generator and Vessel inspections. This paper describes the improvements made in these two activities as an example of the reorientation of our development efforts with a focus on the technical improvements made on the software and robotic tools applied as in the data acquisition and analysis systems. In the Steam Generator inspections, new robots with dual guide tubes are commonly used. New eddy current instruments and software were developed to keep up with the data rates produced by the faster acquisition system. Use of automatic analysis software is also helping to improve speed while reducing cost and improving overall job quality. Production rates are close to double from the previous inspection system. (author)

  18. Pre-service inspection and in-service inspection in Japan

    To ensure the safety of nuclear power plant, pre-service inspection/in-service inspection (PSI/ISI) has an important role, and informations obtained from various inspections during plant shut-down period are contributing to establish effective preventive maintenance activities for plant facilities. It might be said that the high level of availability of Japanese light-water nuclear power plants in these two or three years has been achieved by those efforts. In case of Japan, inspections to be carried out during scheduled plant shut-down period are not limited to code requirements but include many other inspections which are mostly reflected from troubles experienced in both domestic and overseas plants. Usually, those additional inspections are performed by Ministry of Trade and Industries' (MITI's) regulator and/or tentative requirement and considered as ISI in broad meaning. To achieve high availability of plant, it is essential to avoid unscheduled shut-down and to shorten inspection period. The developments of new technology to perform effective ISI for operating plants are continued, but on the other hand it is also very important to pay a great consideration to inspectability of the plants at the stage of plant engineering. With the leadership of MITI, improvement and standardization of light-water nuclear power plant has been proceeded and newly constructed plants have great advantage from the point of view on ISI

  19. Ternary fission of superheavy elements

    Balasubramaniam, M.; Vijayaraghavan, K. R.; Manimaran, K.

    2016-01-01

    Ternary fission of superheavy nuclei is studied within the three-cluster model potential energy surfaces (PESs). Due to shell effects, the stability of superheavy nuclei has been predicted to be associated with Z =114 , 120, and 126 for protons and N =184 for neutrons. Taking some representative nuclei we have extended the ternary fission studies to superheavy nuclei. We adopted two minimization procedures to minimize the potential and considered different arrangements of the fragments. The PES from one-dimensional minimization reveals a strong cluster region favoring various ternary breakups for an arrangement in which the lightest fragment is kept at the center. The PES obtained from two-dimensional minimization reveals strong preference of ternary fragmentation in the true ternary fission region. Though the dominant decay mode of superheavy nuclei is α decay, the α -accompanied ternary breakup is found to be a nonfavorable one. Further, the prominent ternary combinations are found to be associated with the neutron magic number.

  20. Status of fission yield data

    In this paper we summarize the current status of the recent US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized the recommended data will become part of Version VI of the US ENDF/B. Other major evaluations in progress that are included in a recently formed IAEA Coordinated Research Program are also summarized. In a second part we review two empirical models in use to estimate independent yields. Comparison of model estimates with measured data is presented, including a comparison with some recent data obtained from Lohengrin (Cf-249 T). 18 refs., 13 figs., 3 tabs

  1. Report of fission study meeting

    This book is the report of fission Study Meeting held from September 19 to 21, 1985 in the Research Center for Nuclear Physics, Osaka University. The objective of this study meeting was to stimulate the research on nuclear physics in Japan, which began to show new development accompanying the advance of the research on heavy ion nuclear reaction, and to make this a new starting point. More than 50 participants from physical, chemical and engineering fields, who have interest in the theory and experiment related to nuclear fission, gathered, and the meeting was a success beyond expectation. The contents covered a wide range including nuclear smashing reaction as well as nuclear fission in a narrow sense. In this book, the gists of 28 papers are collected. (Kako, I.)

  2. Monte Carlo parametric studies of neutron interrogation with the Associated Particle Technique for cargo container inspections

    Deyglun, Clément; Carasco, Cédric; Pérot, Bertrand

    2014-06-01

    The detection of Special Nuclear Materials (SNM) by neutron interrogation is extensively studied by Monte Carlo simulation at the Nuclear Measurement Laboratory of CEA Cadarache (French Alternative Energies and Atomic Energy Commission). The active inspection system is based on the Associated Particle Technique (APT). Fissions induced by tagged neutrons (i.e. correlated to an alpha particle in the DT neutron generator) in SNM produce high multiplicity coincidences which are detected with fast plastic scintillators. At least three particles are detected in a short time window following the alpha detection, whereas nonnuclear materials mainly produce single events, or pairs due to (n,2n) and (n,n'γ) reactions. To study the performances of an industrial cargo container inspection system, Monte Carlo simulations are performed with the MCNP-PoliMi transport code, which records for each neutron history the relevant information: reaction types, position and time of interactions, energy deposits, secondary particles, etc. The output files are post-processed with a specific tool developed with ROOT data analysis software. Particles not correlated with an alpha particle (random background), counting statistics, and time-energy resolutions of the data acquisition system are taken into account in the numerical model. Various matrix compositions, suspicious items, SNM shielding and positions inside the container, are simulated to assess the performances and limitations of an industrial system.

  3. The VERDI fission fragment spectrometer

    Frégeau M.O.; Bryś T.; Gamboni Th.; Geerts W.; Oberstedt S.; Oberstedt A.; Borcea R.

    2013-01-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This conf...

  4. Spontaneous fission of superheavy nuclei

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  5. Velocity fluctuations of fission fragments

    Llanes-Estrada, Felipe J; Martinez, Jose L Muñoz

    2015-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramer-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  6. Velocity fluctuations of fission fragments

    Llanes-Estrada, Felipe J.; Carmona, Belén Martínez; Martínez, Jose L. Muñoz

    2016-02-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  7. Advanced Fission Reactor Program objectives

    The objective of an advanced fission reactor program should be to develop an economically attractive, safe, proliferation-resistant fission reactor. To achieve this objective, an aggressive and broad-based research and development program is needed. Preliminary work at Brookhaven National Laboratory shows that a reasonable goal for a research program would be a reactor combining as many as possible of the following features: (1) initial loading of uranium enriched to less than 15% uranium 235, (2) no handling of fuel for the full 30-year nominal core life, (3) inherent safety ensured by core physics, and (4) utilization of natural uranium at least 5 times as efficiently as light water reactors

  8. Search for Singlet Fission Chromophores

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  9. Surface fission tracks in diamond

    Scanning Probe Microscope (SPM) images reveal important fingerprint features of latent tracks induced in diamond by fission fragments from a californium source. Collimated fission fragments with a binary distribution of the predominant energies of 79.4 and 103.8 MeV, are assumed. Cavities, reticular formations around these cavities, and black spots of graphite were found. A brief discussion on the possible track formation mechanism is given on the basis of the explosion spike theory; an attempt to determine latent track core and halo parameters is included

  10. The wastes of nuclear fission

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  11. Fission Yields in the Iodine Region

    Independent yields of all iodine isotopes from l118 to I134 except I122 (short-lived), I127(stable) and I129(long-lived) resulting from irradiating natural uranium with 590-MeV and 19-GeV protons have been measured. In addition, cross-sections (mostly cumulative) of many xenon and tellurium isotopes have been obtained. In the experiments extensive use has been made of an electromagnetic isotope separator, constructed at CERN for nuclear reaction studies, by which the iodine (or tellurium) isotopes were separated from samples chemically isolated from the irradiated targets. In the study of xenon isotopes the uranium target was heated in a small oven connected to the separator via a cold trap to stop unwanted activities. After the separation, the activity of the samples was measured by counting methods. In certain cases (I118, I119, I120,I121, Xe118, Xe119, Xe120, Xe121) spectroscopic investigations were performed to provide information for the conversion of the counting data to absolute counting-rates needed for the determination of the fission yields. The experiments show a significant shift in the isotopic cross-section distribution when the 19-GeV results are compared with those obtained at the lower irradiation energy. The yields far out ai the neutron-deficient wing increase considerably whereas the other part of the distribution is depressed. A comparison with spallation data indicates that the neutron-deficient part of the distribution might result from the spallation of uranium. Spallation gives negligible yields in the iodine regional 590 MeV, but at 19 GeV these cross-sections a re expected to be much larger. The competition with spallation decreases the probability for fission, and consequently the yields of the fission products will decrease. (author)

  12. Fission properties of the heaviest elements

    The authors discuss fission properties of the heaviest elements. In particular they focus on stability with respect to spontaneous fission and on the prospects of extending the region of known nuclei beyond the peninsula of currently known nuclides

  13. Absolute calibration technique for spontaneous fission sources

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  14. Examples from Member State Inspection Programmes: France. Appendix III

    The French Nuclear Safety Authority (Autorite de surete nucleaire, ASN) inspection aims to detect: - Any deviations revealing a potential deterioration in facility safety or the protection of individuals; - Any non-compliance with the legislative and regulatory requirements the licensee is bound to apply. The inspection (frequency and depth) is proportionate to the level of risk presented by the facility or activity. Hence, the inspection is neither systematic nor exhaustive. It is based on sampling and focuses on subjects for which the stakes are highest. However, to avoid ignoring activities of lesser significance, a part of the inspection programme is devoted to them through targeted actions. The ASN has no resident inspector at nuclear facilities: it considers that its inspectors must work within a structure large enough to allow the sharing of experience and that they must take part in inspections of different licensees and facilities. This also avoids confusion of responsibilities. To ensure greater efficiency, the ASN's action is organized on the following basis: - Inspections, according to a predetermined frequency, of nuclear activities and topics of particular health and environmental significance; - Inspections, on a sampling basis, of installations representative of other nuclear activities; - Systematic technical inspections of all facilities by approved organizations. Although the activities with the least implications are checked by approved organizations, they can also be the subject of targeted inspections by the ASN

  15. Incore inspection device

    The device of the present invention can inspect surfaces of equipments in reactor water in a nuclear reactor in a state of atmospheric air. Namely, an inspection device is movable forwardly and backwardly in a water-proof vessel. An annular sucker with pleats is disposed to the outer side of a lid of the water-proof vessel. A television camera for an under water monitoring is disposed to the inner side of the lid of the water-proof vessel by way of a partitioning wall with lid. Transferring screws are disposed at the back and on the side of the water-proof vessel. In the device having such a constitution, (1) the inside of the water-proof vessel is at first made water-tight by closing the partitioning wall with lid, (2) the back and the side screws are operated by the guide of the underwater monitoring television camera, to transfer the water-proof vessel to the surface of the reactor core to be inspected, (3) the annular sucker with pleats is urged on the surface to be inspected by the back screw, to fix the water-proof vessel, (4) reactor water in a space of the annular sucker with pleats is discharged and replaced with air, and (5) the lid of the partition wall with lid is opened and the inspection device is disposed at a position of the underwater monitoring television camera, to inspect the surface to be inspected in a state of atmospheric air. (I.S.)

  16. Inspection Strategies for Concrete Bridges

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented. The...... optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  17. Correlation measurements of fission-fragment properties

    Oberstedt A.; Martinez T.; Kis Z.; Karlsson J.; Hambsch F.-J.; Cano-Ott D.; Göök A.; Borcea R.; Billnert R.; Belgya T.; Oberstedt S.; Szentmiklosi L.; Takác K.

    2010-01-01

    For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energ...

  18. Shell effects and fission fragments angular anisotropy

    The impact of the shell corrections attenuation effect with growth of the fissionable nuclei temperature on the angular anisotropy of the fission fragments is considered. The experimental data on the anisotropy of the fission fragments angular distributions of the compound nucleus, formed in the 4He + 238U reactions, are analyzed within the frames of the transition states model in the fission barriers saddle point and statistic theory of nuclear reactions. The obvious kind of the shell corrections attenuation function is obtained

  19. Nuclear fission in covariant density functional theory

    The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission paths in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation. (authors)

  20. Superfluid fission dynamics with microscopic approaches

    Simenel, C; Lacroix, D; Umar, A S

    2016-01-01

    Recent progresses in the description of the latter stage of nuclear fission are reported. Dynamical effects during the descent of the potential towards scission and in the formation of the fission fragments are studied with the time-dependent Hartree-Fock approach with dynamical pairing correlations at the BCS level. In particular, this approach is used to compute the final kinetic energy of the fission fragments. Comparison with experimental data on the fission of 258Fm are made.

  1. Nuclear fission in covariant density functional theory

    Afanasjev A.V.; Abusara H.; Ring P.

    2013-01-01

    The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation.

  2. Proton-induced fission at 190 MeV of W-nat, Au-197, Pb-nat, Pb-208, and Th-232

    Duijvestijn, MC; Koning, AJ; Beijers, JPM; Gastal, M; van Klinken, J; Ostendorf, RW

    1999-01-01

    Proton-induced fission at 190 MeV of W-nat, Au-197, Pb-nat, Pb-208, and Th-232 is studied by means of an innovative method based on activation analysis. The fission-product mass distribution is reconstructed from the fission-product yields, which are obtained from off-line observed gamma-ray spectra

  3. Time Dependent Radio-toxicology of Fission Products

    Ionizing radiation, emitted by radiological materials, is known to cause damage to biological tissue. Prolonged exposure to radiation may cause a vast array of harmful medical effects, from enhancing future probability of cancer, up to Acute Radiation Syndrome resulting in multi-system failure. In complex radiologic release events involving fission products (nuclear fallout, reactor failures), the products' physical decay chains dictate a time dependent product inventory. As the ratios between different products vary, so does the toxicology of the radioactive inventory as a whole. The temporally varying toxicological factors should be taken into account when producing radiological risk assessments for populations. In this paper we study the time varying toxicology of fission products, using a specialized model named Koala, developed in Soreq NRC. A significant and monotonous rise in the aggregate toxicity of ingested fission products was noted. This result carries important implications for risk assessment, as it partially cancels out the fission product physical decay. A similar, albeit less pronounced rise was found for external exposure. Factoring activity and toxicity together allows computation of effective source terms for simple events involving fission products. We demonstrate one such source term, based on fallout from a nuclear explosion. This source term may be easily introduced into suitable atmospheric dispersion models

  4. LEUbased Fission Mo-99 Process with Reduced Solid Wastes

    99m Tc emits 140 keV of very low gamma-ray radiation energy, as low as conventional diagnostic X-ray, and has short half-life of 6.0058 hours. Therefore, as radioactive tracer, 99m Tc provides high quality diagnostic images but keeps total patient radiation exposure low. Depending on the tagging pharmaceuticals and procedures, 99m Tc can be applied for the diagnostics of various target organs and diseases: brain, myocardium, thyroid, lungs, liver, gallbladder, kidneys, skeleton, blood and tumors. More than 95% of 99Mo is produced through fission of 235U worldwide because, 99mo generated from the fission (fission 99Mo) exhibits very high specific activity (<100 Ci/g). Over 90% of fission 99Mo producers have been used highly enriched uranium (HEU) targets so far. However, the IAEA recommends the use of low enriched uranium (LEU) to the 99Mo producers for nonproliferation reason. These days, worldwide 99Mo supply is not only insufficient but also unstable. Because, most of the main 99Mo production reactors are about 50 years old and suffered from frequent and unscheduled shutdown. Planned weekly productivity of 2000 Ci fission 99Mo, in a 6-day reference, will cover 100% domestic demand of Korea, as well as 20% of international market. It is expected to replace 4.3 million USD ($800/Ci) of 99Mo import for domestic market while exporting 82.8 million USD for world market, annually

  5. Piping inspection round robin

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths

  6. Safety System functional inspections

    The basic purpose of Safety System Functional Inspections (SSFI) is to carry out an impartial and independent assessment of previously selected safety systems, in order to determine whether they have been installed, tested, operated and managed in accordance with the original Design Bases and with the applicable regulatory requirements, codes and standards, that is, their Licensing Bases. These functional inspections are performed within the framework established by the Quality Assurance Programmes of electric utility owners, and in accordance with specifically prepared procedures previously approved for each power plant. These SSFIs verify, for safety systems and their support systems (eg HVAC systems, etc), the operational availability of inspected systems of components by researching and determining whether there have been generic or programmed deficiencies in the course of Operation, that will prevent the systems from adequately performing the functions for which they were originally designed. PSA and IPE results are used as the basis for selecting the systems that should undergo functional inspections. As a consequence of these SSFIs, final reports will be prepared, summarizing actions taken at the plants and contemplating discrepancies or deviations detected during inspection. The necessary corrective actions for these discrepancies will be indicated in either the design documentation or the Operation and Maintenance Procedures. (Author)

  7. Inspection device in liquid

    The present invention provides an inspection device in PWR reactor core in which inspection operations are made efficient by stabilizing a posture of the device in front-to-back, vertical and left-to-right directions by a simple structure. When the device conducts inspection while running in liquid, the front and the back directions of the device main body are inspected using a visual device while changing the posture by operating a front-to-back direction propulsion device and a right-to-left direction propulsion device, and a vertical direction propulsion device against to rolling, pitching and yawing of the device main body. In this case, a spherical magnet moves freely in the gravitational direction in a vibration-damping fluid in a non-magnetic spherical shell following the change of the posture of the device main body, in which the vibrations due to the movement of the spherical magnet is settled by the vibration-damping fluid thereby stabilizing the posture of the device main body. At a typical inspection posture, the settling effect is enhanced by the attraction force between the spherical magnets in the spherical shell and each of magnetic force-attracted magnetic members disposed to the outer circumference of the shell, and the posture of the device main body can be confirmed in front-to-back, right-to-left and vertical directions by each of the posture confirming magnetic sensors. (N.H.)

  8. Integral measurement of fission products capture in fast breeder reactors

    For the SUPERPHENIX reactor project, it was necessary to know fission products capture with about 10% accuracy in the fast breeder reactor spectra. In this purpose, integral measurements have been carried out on the main separated products by different experimental technics (oscillation, activation and irradiation methods), but particularly on irradiated fuel pins from RAPSODIE and PHENIX reactors in order to directly obtain total effect of fission products. Same tendencies have been observed for both enriched uranium fuel and LMFBR characteristic plutonium fuel. All experimental results have been introduced in CARNAVAL cross section set

  9. Sequential Detection of Fission Processes for Harbor Defense

    Candy, J V; Walston, S E; Chambers, D H

    2015-02-12

    With the large increase in terrorist activities throughout the world, the timely and accurate detection of special nuclear material (SNM) has become an extremely high priority for many countries concerned with national security. The detection of radionuclide contraband based on their γ-ray emissions has been attacked vigorously with some interesting and feasible results; however, the fission process of SNM has not received as much attention due to its inherent complexity and required predictive nature. In this paper, on-line, sequential Bayesian detection and estimation (parameter) techniques to rapidly and reliably detect unknown fissioning sources with high statistical confidence are developed.

  10. Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission

    Rios Huguet, A; Stevenson, PD; Goddard, P.

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Met...

  11. Nuclear-fission studies with relativistic secondary beams: analysis of fission channels

    Boeckstiegel, C.; Steinhaeuser, S.; Schmidt, K.-H.; Clerc, H. -G.; Grewe, A.; Heinz, A.; de Jong, M; JUNGHANS A. R.; Mueller, J.; Voss, B.

    2007-01-01

    Nuclear fission of several neutron-deficient actinides and pre-actinides from excitation energies around 11 MeV was studied at GSI Darmstadt by use of relativistic secondary beams. The characteristics of multimodal fission of nuclei around 226Th are systematically investigated and interpreted as the superposition of three fission channels. Properties of these fission channels have been determined for 15 systems. A global view on the properties of fission channels including previous results is...

  12. The evolution of fission gas from overheated U02

    Recent developments in the theory of intragranular fission product evolution are reviewed. These are incorporated in the SINGAR model developed at SRD in order to analyse fission gas evolution in U02 undergoing transient heating. The rate controlling process in this model is thermal resolution of gas atoms from intragranular bubbles together with migration of single atoms to grain boundaries. The limitations of this description with particular emphasis on current and future research activity are discussed. The principal reason for interest in this modelling is to develop the capability to predict the likely clad damage resulting from fission-product-driven fuel swelling and pellet-clad interaction if fuel overheats. The main problems in this area are reviewed. (author)

  13. Underwater inspection robot - AIRIS 21''trademark''

    Highly reliable, cost-effective and extended examination coverage are three big demands for newly developed ISI equipment. AIRIS 21 (advanced inspection system for reactor pressure vessel and internals) which is a state-of-the-art next generation device, has been developed to reply to these demands. The device can reduce the inspection cost and increase the reliability and inspection coverage. The AIRIS 21 swims in the water toward an area to be inspected and sticks to the vessel wall using two propellers. After it sticks on the wall, the spinning speed of propellers is controlled to keep the device on the wall with constant vacuum force. Then it travels on the wall freely by two driving wheels and one trip measuring wheel. This manner of new examination system is quite different from the other conventional BWR-ID systems. This new inspection system is dramatically reduced its size [W550 x L600 x H55 (mm)] and weight [13.6 (kg)] compared with conventional system, and also saves ISI from being a critical path work because it needs no special tools, such as a large crane for handling. With AIRIS 21, it is possible to perform ID inspection of RPV welds in parallel with fuel shuffling and other core activities. (orig.)

  14. Brownian shape dynamics in fission

    Randrup Jørgen; Möller Peter

    2013-01-01

    It was recently shown that remarkably accurate fission-fragment mass distributions are obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potentialenergy surfaces; the current status of this novel method is described here.

  15. Brownian shape dynamics in fission

    Randrup Jørgen

    2013-12-01

    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions are obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potentialenergy surfaces; the current status of this novel method is described here.

  16. Search for singlet fission chromophores

    Havlas, Zdeněk; Akdag, Akin; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, Josef

    Philadelphia: American Chemical Society, 2012. 31PHYS. ISSN 0065-7727. [National Fall Meeting of the American Chemical Society /244./. 19.08.2012-23.08.2012, Philadelphia] Institutional support: RVO:61388963 Keywords : singlet fission * chromophores Subject RIV: CF - Physical ; Theoretical Chemistry

  17. Production techniques of fission 99Mo

    Generally two different techniques are available for molybdenum-99 production for use in medical technetium-99 generation. The first one is based on neutron irradiation of molybdenum targets of natural isotopic composition or enriched in molybdenum-98. In these cases the Mo-99 is generated via the nuclear reaction 98Mo (n,γ) 99Mo. Although this process can be carried out at low expenditure it gives a product of low specific activity and, hence, restricted applicability. In a second process Mo-99 is obtained as a result of the neutron induced fission of U-235 according to 235U (n,f) 99Mo. This technique provides a product with a specific activity several orders of magnitude higher than that obtained from the 98Mo (n,γ) 99Mo nuclear reaction and perhaps even more important up to several thousands curies of Mo-99 per production run. In this paper a modern production procedure of Mo-99 via the fission reaction, which was developed at the Institute of Radiochemistry of the Nuclear Research Centre Karlsruhe will be described. The targeting, irradiation of U-235, the separation and purification steps involved as well as the recycling of the non-converted U-235, which should be a major consideration in any production technique, will be discussed. (author). 24 refs, 14 figs, 1 tab

  18. Brief review of the fusion--fission hybrid reactor

    Much of the conceptual framework of present day fusion-fission hybrid reactors is found in the original work of the early 1950's. Present day motivations for development are quite different. The role of the hybrid reactor is discussed as well as the current activities in the development program

  19. MCNP6. Simulating Correlated Data in Fission Events

    Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sood, Avneet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-03

    This report is a series of slides discussing the MCNP6 code and its status in simulating fission. Applications of interest include global security and nuclear nonproliferation, detection of special nuclear material (SNM), passive and active interrogation techniques, and coincident neutron and photon leakage.

  20. Fission products analysis. Strontium 89 and strontium 90 radiometric determination

    Determination of strontium 89 et 90 in nitric solutions of fission products, suitable for strontium content giving a nuclear activity of at least 10-5 microcurie/ml. Calcium, barium, yttrium and rare earths are eliminated before beta counting with and without threshold

  1. Progress in fission product nuclear data. Issue no. 6

    This is the sixth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed

  2. Early results utilizing high-energy fission product gamma rays to detect fissionable material in cargo

    Full text: A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in inter modal cargo containers is described. It is based on interrogation with a pulsed beam of 6-8 MeV neutrons and fission events are identified between beam pulses by their β-delayed neutron emission or β -delayed high-energy γ-radiation. The high-energy γ-ray signature is being employed for the first time. Fission product γ-rays above 3 MeV are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. High-energy γ-radiation is nearly 10X more abundant than the delayed neutrons and penetrates even thick cargo's readily. The concept employs two large (8x20 ft) arrays of liquid scintillation detectors that have high efficiency for the detection of both delayed neutrons and delayed γ-radiation. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. This information, together with predicted signature strength, has been applied to the estimation of detection probability for the nuclear material and estimation of false alarm rates. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  3. Ball screw inspection setup

    Janusz, Rzepka; Sambor, Slawomir; Pienkowski, Janusz; Bielenin, Marcin

    2003-05-01

    In the following paper we describe arrangements of laser interferometer for investigation of screws and for inspection of ball screws. We have constructed two of them, namely: the technological setup for investigations of screw in process of production and the ball screw inspection setup. The former one is used to measure the pitch of screws. The data gathered during measurement is used to calculate the parameters for grinding machine. The later setup is used for testing parameters of complete ball screws. The software supporting this setup makes calculation of parameters of tested ball screw and creation of reports possible. Additionally, the inspection setup is the one that the torque measuring arrangements have been integrated on. Both the arrangements and the software allow for measurements of all parameters during movement of nut in full travel length of the ball screw and make charts and reports.

  4. Advances in inspection automation

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  5. Cronos, an advanced system for RCCA inspection

    The Rod Cluster Control Assembly (RCCA) is critical for the safe operation of nuclear power plants since its main function is to control neutron activity inside the core. These assemblies have a spider-shaped structure and are made up of a set of rods filled with a neutron absorbent. They are usually partially inserted in the fuel assemblies (normally only the lower part during normal operation) and may be completely inserted when necessary. The degradation mechanisms that may typically occur during the operation of the rod cluster control assemblies are as follows: - wear caused by friction of the rods against their guide structures; - increase in the diameter of the tips of the rods caused by irradiation-induced swelling of the absorbent. This increase in diameter causes deformation of the rod, which may generate cracks in the material of the rod and eventually hinder its insertion in the fuel assemblies. The RCCA's have traditionally been inspected with a view to verifying their correct status and guaranteeing their operability. Since the 1990's, Tecnatom has been performing eddy current inspections using systems based on different techniques (wrap-around, pancake and rotary probes). The new CRONOS inspection system (IS) developed by Tecnatom combines the eddy current (ET) and ultrasonic (UT) methods, incorporating the capacity to detect and characterise all the possible degradations that affect the RCCA's. At present Tecnatom has a mechanical system applicable to RCCA's for 17x17 fuel assemblies and is developing a second unit for 16x16 assemblies. Development of the CRONOS IS began in 2011 and the system has been used successfully in three inspections at Spanish NPPs (2 at Vandellos 2 and 1 at Asco 1) and one inspection in China (Ling Ao 2 NPP). The control cluster rods inspected are made of AISI304 or 316 stainless steel, with a chrome or nitride surface treatment, and have a nominal outer diameter of 9.68 mm and a thickness of between 0

  6. Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product.

    Crews, C M; Erikson, R L

    1992-01-01

    We report the purification to near homogeneity of a 45-kDa phorbol ester-stimulated protein kinase that phosphorylates and activates the Erk-1 gene product. This kinase, which we provisionally denote MEK for MAPK/Erk kinase, phosphorylated kinase-inactive Erk-1 protein primarily on a tyrosine residue and, to a lesser extent, on a threonine. We extend our previous results and show that two forms of purified MEK activated the myelin basic protein kinase encoded by Erk-1. MEK was inactivated by ...

  7. Portable radioactive waste tracking and inspection system

    Hardware has components such as host computer, Personal Digital Assistant(PDA), bar code scanner, and digital camera. Software consists of database about radioactive waste which covers date, generator, container type, activity, images, physical characteristics, and nuclide. The portable radioactive waste tracking and inspection system needs programs such as web communication between the host computer and PDA, database application of PDA, processing of bar codes and images. The inspector can track, inspect, and modify information such as date, generator, container type, activity, images, physical characteristics, and nuclide by reading two dimensional bar code on container of radioactive waste with bar code scanner on PDA

  8. Principles and status of neutron-based inspection technologies

    Gozani, Tsahi

    2011-06-01

    Nuclear based explosive inspection techniques can detect a wide range of substances of importance for a wide range of objectives. For national and international security it is mainly the detection of nuclear materials, explosives and narcotic threats. For Customs Services it is also cargo characterization for shipment control and customs duties. For the military and other law enforcement agencies it could be the detection and/or validation of the presence of explosive mines, improvised explosive devices (IED) and unexploded ordnances (UXO). The inspection is generally based on the nuclear interactions of the neutrons (or high energy photons) with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete gamma lines resulting from the thermal neutron capture process (n,γ) or inelastic neutron scattering (n,n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating gamma rays in most inorganic substances and in hydrogen, while fast neutron inelastic scattering provides relatively strong gamma-ray signatures in light elements such as carbon and oxygen. In some specific important cases unique signatures are provided by the neutron capture process in light elements such as nitrogen, where unusually high-energy gamma ray is produced. This forms the basis for key explosive detection techniques. In some cases the elastically scattered source (of mono-energetic) neutrons may provide information on the atomic weight of the scattering elements. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), are generally based on the fissions induced by the probing neutrons (or photons) and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and gamma rays. These signatures are not discrete in energy (typically they are continua) but temporally

  9. Spontaneous fission. A many-body approach

    Iwamoto, Akira; Bonasera, A. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    We propose new model to calculate the fission phenomena in tunnel region. By the Vlasov equation and the imaginary time method, we could calculate actinides nuclear fission. This method makes possible to describe unified the motion of fission inside and outside of potential wall. The potential energy and mass parameters can be calculated by no means of the special model. The freedom of internal motion are calculated automatically both collective and a particle motion. Accordingly, particle released during fission process can be calculated. The kinetic energy of fragment after fission was very agreeable with the calculation results. (S.Y.)

  10. Inspection and test planning

    Purpose of Quality Plan - arrangement of all necessary tests or inspections as far as possible filted to certain components or systems. Subject of Quality Plan - precise determination of tests or inspections and - according to the actual safety significance - the certificates to be done. Disposition of Quality Plan - accommodation of tests to the actual state of fabrication. Application of Quality Plan - to any component or system that is regarded. Supervision of Employment - by authorized personnel of manufacturer, customer or authority providing exact employment of quality plan. Overservance of Instructions - certificates given by authorized personnel. (orig./RW)

  11. Exercise manual for the Augmented Computer Exercise for Inspection Training (ACE-IT) software

    Dobranich, P.R.; Widney, T.W.; Goolsby, P.T. [Sandia National Labs., Albuquerque, NM (United States). Cooperative Monitoring Center and Regional Security; Nelson, J.D.; Evanko, D.A. [Ogden Environmental and Energy Services, Inc., Albuquerque, NM (United States)

    1997-09-01

    The on-site inspection provisions in many current and proposed arms control agreements require extensive preparation and training on the part of both the Inspected Party and the Inspection Team. Current training techniques include table-top inspections and practice inspections. The Augmented Computer Exercise for Inspection Training (ACE-IT), an interactive computer training tool, increases the utility of table-top inspections. ACE-IT has been designed to provide training for a hypothetical challenge inspection under the Chemical Weapons Convention (CWC); however, this training tool can be modified for other inspection regimes. Although ACE-IT provides training from notification of an inspection through post-inspection activities, the primary emphasis of ACE-IT is in the inspection itself--particularly with the concept of managed access. ACE-IT also demonstrates how inspection provisions impact compliance determination and the protection of sensitive information. The Exercise Manual supplements the ACE-IT software by providing general information on on-site inspections and detailed information for the CWC challenge inspection exercise. The detailed information includes the pre-inspection briefing, maps, list of sensitive items, medical records, and shipping records.

  12. Neutronic analysis for the fission Mo-99 production by irradiation of a LEU target at RECH-1 reactor

    For the purpose of developing the capability to produce fission 99Mo, the Chilean Nuclear Energy Commission is participating in the IAEA Coordinated Research Project: 'Developing Techniques for Small Scale Indigenous Mo-99 Production using LEU Fission or Neutron Activation'. Fission 99Mo will be produced irradiating, at RECH-1 reactor, a target made of a LEU metallic uranium foil held between two concentric aluminum tubes. KAERI will provide the LEU foil. Neutronic calculations were performed to estimate the fission products activity for a 13 grams LEU foil annular target, which will be irradiated at the level power of 5 MW during 48 hours. (author)

  13. Inspection of Emergency Arrangements

    The Working Group on Inspection Practices (WGIP) was tasked by the NEA CNRA to examine and evaluate the extent to which emergency arrangements are inspected and to identify areas of importance for the development of good inspection practices. WGIP members shared their approaches to the inspection of emergency arrangements by the use of questionnaires, which were developed from the requirements set out in IAEA Safety Standards. Detailed responses to the questionnaires from WGIP member countries have been compiled and are presented in the appendix to this report. The following commendable practices have been drawn from the completed questionnaires and views provided by WGIP members: - RBs and their Inspectors have sufficient knowledge and information regarding operator's arrangements for the preparedness and response to nuclear emergencies, to enable authoritative advice to be given to the national coordinating authority, where necessary. - Inspectors check that the operator's response to a nuclear emergency is adequately integrated with relevant response organisations. - Inspectors pay attention to consider the integration of the operator's response to safety and security threats. - The efficiency of international relations is checked in depth during some exercises (e.g. early warning, assistance and technical information), especially for near-border facilities that could lead to an emergency response abroad. - RB inspection programmes consider the adequacy of arrangements for emergency preparedness and response to multi-unit accidents. - RBs assess the adequacy of arrangements to respond to accidents in other countries. - The RB's role is adequately documented and communicated to all agencies taking part in the response to a nuclear or radiological emergency. - Inspectors check that threat assessments for NPPs have been undertaken in accordance with national requirements and that up-to-date assessments have been used as the basis for developing emergency plans for

  14. Theory of nuclear fission. A textbook

    This book brings together various aspects of the nuclear fission phenomenon discovered by Hahn, Strassmann and Meitner almost 70 years ago. Beginning with an historical introduction the authors present various models to describe the fission process of hot nuclei as well as the spontaneous fission of cold nuclei and their isomers. The role of transport coefficients, like inertia and friction in fission dynamics is discussed. The effect of the nuclear shell structure on the fission probability and the mass and kinetic energy distributions of the fission fragments is presented. The fusion-fission process leading to the synthesis of new isotopes including super-heavy elements is described. The book will thus be useful for theoretical and experimental physicists, as well as for graduate and PhD students. (orig.)

  15. The nucleon phase of binary fission

    Full text: The main step of the fission process is a sharing-out of nucleons, within a 'nucleon-phase', between the valence shells of the primordial cluster of the internally-dissociated fissioning system and the valence shells of the 'A =126 nucleon core' of the nascent heavy fragment. The formation of an 'A = 82 nucleon core' in the nascent light fragment explains the asymmetric fission mode of the light actinide nuclei. The nucleon partition in the nucleon phase can be understood in the framework of chemical thermodynamics. The formation of an 'A = 126 nucleon core' in the nascent light fragment of heavier fissioning systems explains the symmetric fission mode of 258Fm and that of heavier nuclei. But the new phenomenon of 'barrier-free' fission, discovered in 258Fm (s.f.), plays in this system and all symmetrically fissioning superheavy nuclei a very important role. (author)

  16. Fission product behaviour in severe accidents

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  17. Fission dynamics at low excitation energy

    Aritomo, Y

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.

  18. The Fission of Thorium with Alpha Particles

    Newton, Amos S.

    1948-04-15

    The fission distribution of fission of thorium with alpha particle of average energy 37.5 Mev has been measured by the chemical method. The distribution found shows that the characteristic dip in the fission yield mass spectrum has been raised to within a factor of two of the peaks compared to a factor of 600 in slow neutron fission of U{sup 235}. The raise in the deip has caused a corresponding lowering in fission yield of these elements at the peaks. The cross section for fission of thorium with 37.5 Mev alphas was found to be about 0.6 barn, and the threshold for fission was found to be 23 to 24 Mev.

  19. A fission fragment detector for correlated fission output studies

    Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  20. A fission fragment detector for correlated fission output studies

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup

  1. Cluster fission from the standpoint of nuclear fission

    Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics

    1996-03-01

    Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)

  2. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  3. Production and release of the fission gas in (Th U)O2 fuel rods

    The volume, composition and release of the fission gas products were caculated for (Th, U)O2 fuel rods. The theorectical calculations were compared with experimental results available on the literature. In ThO2 + 5% UO2 fuel rods it will be produced approximated 5% more fission gas as compared to UO2 fuel rods. The fission gas composition or Xe to Kr ratio has showed a decreasing fuel brunup dependence, in opposition to that of UO2. Under the same fuel rod operational conditions, the (Th, U)O2 fission gas release will be smaller as compared to UO2. This behaviour of (Th, U)O2 fuel comes from smallest gas atom difusivity and higher activation energies of the processes that increase the fission gas release. (Author)

  4. Neutron-Induced Fission of Actinium-227, Protactinium-231 and Neptunium-237: Mass Distribution

    Results of radiochemical studies on the mass distribution in the neutron-induced fission of actinium-227, protactinium-231 and neptunium-237 have been presented. This work has been carried out as part of a programme to determine the mass distribution in the fission of heavy elements as a function of Z and A. All irradiations have been carried out in the core of the swimming-pool type reactor APSARA with cadmium shielding wherever necessary. Relative yields of several fission product nuclides have been obtained by a method involving a comparison of the fission product activities from the respective targets with those formed from uranium-235 simultaneously irradiated. Thermal-neutron fission yields of uranium-235 have been assumed. These results indicate a predominantly asymmetric mass distribution in all the three cases, and also a distinct though small symmetric peak in the case of actinium-227. (author)

  5. Inspection Technology, Detection and Compliance: Evidence from Florida Restaurant Inspections

    Jin, Ginger Zhe; Lee, Jungmin

    2013-01-01

    In this article, we show that a small innovation in inspection technology can make substantial differences in inspection outcomes. For restaurant hygiene inspections, the state of Florida has introduced a handheld electronic device, the portable digital assistant (PDA), which reminds inspectors of 1,000 potential violations that may be checked for. Using inspection records from July 2003 to June 2009, we find that the adoption of PDA led to 11% more detected violations and subsequently restau...

  6. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.

    2009-10-01

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the 252Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the 252Cf(SF) reaction with data available from literature.

  7. Additive Manufacturing Infrared Inspection

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  8. 14 CFR 91.409 - Inspections.

    2010-01-01

    ... detail— (i) An explanation of the progressive inspection, including the continuity of inspection... the name and address of the person responsible for scheduling the inspections required by the...

  9. Principles and applications of neutron based inspection techniques

    Neutron based explosive inspection systems can detect a wide variety of substances of importance, for a variety of purposes from national security threats (e.g., nuclear materials, explosives, narcotics) to customs duties, shipment control and validation, and for protection of the environment. The inspection is generally founded on the nuclear interactions of the neutrons with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete gamma lines resulting from the thermal (n,γ) neutron capture process or inelastic neutron scattering (n,n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating gamma rays in most inorganic substances and in hydrogen, while fast neutron inelastic scattering provides relatively strong gamma-ray signatures in light elements such as carbon and oxygen. In some specific important cases, though, unique signatures are provided by the neutron capture process in light elements such as nitrogen, where unusually high energy gamma rays are produced. This forms the basis for key explosive detection techniques. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), are generally based on the fissions induced by the probing neutrons and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and prompt and delayed gamma rays. These signatures are not discrete in energy (typically they are continua) but temporally and energetically significantly different from the background, thus making them readily distinguishable. The penetrability of fast neutrons as probes and the gamma rays and fission neutrons as signatures make neutron interrogation applicable for large conveyances such as cars, trucks and marine containers. The neutron-based techniques can be used in a variety of scenarios and operational modes. They can

  10. Promoting transparency: The Korean national inspection experience

    without nuclear materials. Ratification process is underway with amendment of appropriate laws and regulations. In preparation for the implementation stage of the Protocol in Korea, domestic facility operators are being organized to submit the expanded declaration and prepare for the complementary access if necessary. Main concern is the protection of commercially sensitive information. In line with the Integrated Safeguards concepts where the existing 153-type safeguards and the new 540-type Protocol are to be implemented in a integrated fashion, Korea is seeking active ways to enhance cooperation with IAEA- From the Agency's point of view, resource savings could be reached while maintaining the effectiveness when the SSAC is deemed credible. From the SSAC's point of view, the Agency inspection efforts could be reduced if the routine resource intensive interim inspections are substituted by the national inspection. Agency has limited experience on this type of resource sharing, only with the EURATOM's New Partnership Approach (NPA) up to now. However, onset of the Integrated Safeguards implementation is creating a proper environment for a wider application of NPA. (author)

  11. POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA FOR CALENDAR YEAR 2005

    NONE

    2006-06-01

    This post-closure inspection report includes the results of inspections, maintenance and repair activities, and conclusions and recommendations for Calendar Year 2005 for nine Corrective Action Units located on the Tonopah Test Range , Nevada.

  12. Ultrasonic inspection methodology

    Steam generator tubes are known to be susceptible to stress corrosion cracking (SCC). Primary water SCC (PWSCC) and more recently secondary water SCC (SWSCC) have been observed in some Belgian plants. To help dealing with these problems, Laborelec developed an ultrasonic (UT) inspection system. It has been used for the last two years on a sampling basis in several plants. The field and laboratory measurements confirmed the advantage of using UT for the early detection of small circumferential cracks while an excellent correlation was demonstrated between eddy current RPC and UT for axial PWSCC. In conclusion: The latest in-service inspections demonstrated an average measurement cycle of 50 to 60 seconds per tube including the manipulator displacement from tube to tube. A sample of about 250 tubes with axial cracks was measured on-site with the eddy current RPC technique and the new UT system. All the UT measured lengths were within ± 1.5 mm of the RPC results. The same results were obtained from the inspection of the tubes repaired with the nickel process (Doel 3). Some indications of circumferential secondary side stress corrosion cracking were recently observed. A comparison with the eddy current rotating pancake coil confirmed the improved detectability of the UT system. The field and laboratory results obtained with this UT inspection system demonstrated the advantage of applying the ultrasonic technique for the detection and sizing of small volume cracks like SCC. Also, the small focal spot of the UT beam provided a clear advantage for the detection of circumferential PWSCC in the presence of multiple axial cracks. With an average rate dose to 60 tubes per hour for the top of the tubesheet area, this UT system can be considered as an industrial tool for the inspection of steam generator tubes

  13. Big Lake Dam Inspection Report

    US Fish and Wildlife Service, Department of the Interior — This report summarizes an inspection of the Big Lake Dam that was done in September of 1983. The inspection did not reveal any conditions that constitute and...

  14. Visual inspection of vessel internals

    Visual inspection has matured to a qualified testing method and has become a standard method for inspection of reactor pressure vessels. Until today, all known defects in RPV internals have been detected by visual inspection. The codes KTA 3204 and DIN 25435-4 describe the framework conditions and requirements for visual inspections, which should be adhered to to the most possible extent. Visual inspections are carried by now at all RPV internals, also at those where access is difficult and limited. The inspection robot SUSI is applied in most cases. The camera and manipulator technology meanwhile has been upgraded to a standard performance quality allowing reliable, fast and easy visual inspection. The personnel is trained accordingly, so as to keep abreast with enhancements. Qualification of the inspection system has been simplified and standardised to a large extent. (orig/CB)

  15. Chapter 4. Assessment and inspection of safety at nuclear installations

    Supervisory activity of the Nuclear Regulatory Authority of the Slovak Republic (UJD) over the safety of nuclear installations in compliance with the 'Atomic Act' and other regulations includes also inspection and assessment activities of UJD. In 1999 the assessment activity were focused on newly constructed nuclear installations or their parts - Unit 2 of NPP Mochovce, National Repository of rad-waste in Mochovce, and the first phase of technology for treatment and conditioning of rad-waste in Jaslovske Bohunice. Inspection activity specified in the 'Atomic Act' is governed by internal guideline, an important part of which is an annual inspection plan that considers the routine inspections, special inspections, team inspections, and extraordinary inspections - there they are briefly described. Assessment as well as inspection activities in the NPP V-1 Bohunice, NPP V-2 Bohunice, NPP Mochovce, as well as NPP A-1 Bohunice (under decommissioning) are reviewed in detail. Assessment and inspection activities of UJD in the Interim spent fuel storage Bohunice, and in the nuclear facility 'Technology for treatment and conditioning of radioactive waste' Bohunice are described in detail, too. National radioactive waste repository Mochovce is determined for disposal low and intermediate radioactive waste. UJD issued a resolution on approval for commissioning of this nuclear facility in October 1999. VUJE bituminization facility was out of operation in 1999, The incinerator treated the burnable waste from NPP V-1 Bohunice. The technology of cementing sludge from NPP V-2 Bohunice was verified on cementing equipment. Assessment and inspection activities of UJD in 1999, which were completed by issuing UJD decisions are presented in the table form

  16. Nuclear Dissipation from Fission Time

    Gontchar, I.; Morjean, M.; Basnary, S. [GANIL DSM/CEA, IN2P3/CNRS, BP 5027, 14076 Caen Cedex 5 (France)

    2000-04-21

    Fission times, pre-scission neutron multiplicities and GDR pre-scission {gamma}-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T {approx} 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k{sub red} {approx} 0.45 {+-} 0.10 applied to the wall term for the mononuclear configuration. (authors)

  17. Licensee contractor and vendor inspection status report. Quarterly report, January-March 1986. Volume 10, No. 1

    The NRC vendor inspection focus has been shifted to vendor activities associated with nuclear plant operation, maintenance, and modifications, more than firms designing nuclear steam supply systems, architect engineering firms designing nuclear plants, and major equipment vendors. Results of 16 inspections are reported, giving for each organization inspected, their activity, inspection bases and scope, and any violations, nonconformances, or unresolved items found. The status of previous inspection findings are also given

  18. Fission Data and Nuclear Technology

    Accurate nuclear data for fissile nuclei are required not only by reactor designers, but also by reactor physicists for the interpretation of integral experiments, e.g. studies of the change of reactivity with irradiation. Some of the requests that have been made for such fission data, and the reasons behind them, are discussed, along with the progress that has been made towards their fulfilment. An attempt is made to outline those areas where better data are required. (author)

  19. The VERDI fission fragment spectrometer

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution. (authors)

  20. The VERDI fission fragment spectrometer

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  1. Sexual differentiation in fission yeast

    Egel, R; Nielsen, O; Weilguny, D;

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  2. Fundamental considerations of regulatory inspection for maintenance program

    The purpose of the regulatory inspection is the confirmation that utilities keep enough security through the evaluation of the validity and appropriateness to the maintenance activity of the utility who has the responsibility in security. This report describes the matter that had to be considered as effective and reasonable inspection related to the maintenance program. (author)

  3. Experimental techniques for fission data measurements

    Progresses in the development of experimental techniques or fission data measurements are reviewed briefly. This review comprises techniques for the preparation of special compound nuclei leading to fission (fission entrance) as well as experimental techniques which permit the measurement of the diversified characteristics of the emitted radiations in fission (fission exit). The latter developments are only considered when also other parameters than yield, mass, and energy of fission fragments are determined. Ionization chambers developed at CBNM are described in more detail. A simple ionization chamber with Frisch grid was used to determine fission layer characteristics, e.g. the number of fissile nuclei of a sample with an accuracy of smaller than 0.3 %. A twin ionization chamber is described which has an advantageous 2 x 2π solid angle for fission fragment detection, a timing jitter of less than 0.7 ns, an energy resolution of smaller than 500 keV for fission fragments, and an angular resolution of ΔcosΘ < 0.005. Also the nuclear charge distribution of the fragments can be determined. A pulse pile-up rejection circuit was developed, which reduces pulse pile-up by more than a factor 30. This detector is well suited for correlation measurements between fission fragment parameters, like mass and total kinetic energy, and the characteristics of the different radiations emitted from the fragments. This type of ionization chamber was successfully used in several experiments and some results are shown to demonstrate its capabilities. (author)

  4. Sensitivity of Makrofol fission track detectors

    Neutron fluence can be determined by means of fission track detectors consisting of fission foils in contact with suitable dielectrics (Makrofol E plastic was used in this case). Fission fragments emitted from the fissionable material into the plastic sheet generate permanent damage trails which can be made visible by an etching process. These tracks are then counted by means of an optical microscope or other methods and the number of tracks is proportional to the neutron fluence. The efficiency is defined as the ration of the number of tracks counted to the number of fissions in the fissionable layer. It is calculated from the mean range of the fission products in the fissionable material and in the plastic. The loss of very flat tracks with a small penetration angle caused by etching a certain bulk layer from the plastic foil is also taken into account. The formulas for the efficiency are deduced for thin fission layers and for thick fission foils. These calculations are made on the basis of the experimentally confirmed assumption that the ratio V of the track etching rate to the bulk etching rate is at least equal to 200. These high values for this ratio V are valid if an adequate period (several days) of oxygen influence to the damage trails is guaranteed. The calculated values of the efficiency are compared with experimental values and the uncertainty is discussed. (orig./HP)

  5. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  6. Waste Calcining Facility remote inspection report

    The purpose of the Waste Calcining Facility (WCF) remote inspections was to evaluate areas in the facility which are difficult to access due to high radiation fields. The areas inspected were the ventilation exhaust duct, waste hold cell, adsorber manifold cell, off-gas cell, calciner cell and calciner vessel. The WCF solidified acidic, high-level mixed waste generated during nuclear fuel reprocessing. Solidification was accomplished through high temperature oxidation and evaporation. Since its shutdown in 1981, the WCFs vessels, piping systems, pumps, off-gas blowers and process cells have remained contaminated. Access to the below-grade areas is limited due to contamination and high radiation fields. Each inspection technique was tested with a mock-up in a radiologically clean area before the equipment was taken to the WCF for the actual inspection. During the inspections, essential information was obtained regarding the cleanliness, structural integrity, in-leakage of ground water, indications of process leaks, indications of corrosion, radiation levels and the general condition of the cells and equipment. In general, the cells contain a great deal of dust and debris, as well as hand tools, piping and miscellaneous equipment. Although the building appears to be structurally sound, the paint is peeling to some degree in all of the cells. Cracking and spalling of the concrete walls is evident in every cell, although the east wall of the off-gas cell is the worst. The results of the completed inspections and lessons learned will be used to plan future activities for stabilization and deactivation of the facility. Remote clean-up of loose piping, hand tools, and miscellaneous debris can start immediately while information from the inspections is factored into the conceptual design for deactivating the facility

  7. Inspections Over Time: The Role of Information

    When inspections in nuclear plants are planned over time it has to be decided if the time points of all inspections are fixed at the beginning of the reference time interval, e.g. one year, or if they are fixed sequentially. In the latter case the time point for the second inspection is fixed only after the first one has been performed, the third after the second one, and so on. For that decision, not only organizational aspects have to be taken into account but also the role of information: Will the Inspectorate in the latter case be able to draw an advantage from the fact that after the first inspection it may know what the plant Operator's behaviour was so far? Vice versa, the same holds for the Operator in case he plans to start an undeclared activity in the course of the reference time interval. In this paper two general inspection schemes are analyzed: The Operator behaves sequentially in both cases, whereas the Inspectorate behaves sequentially in the one, and non-sequentially in the other case. It is shown that both schemes lead to the same optimal expected detection time which means that the Inspectorate may do what is easier from organizational and financial points of view. These results are discussed from the point of view of information which both parties may gain in the course of the inspection over time. With some care the essential arguments may also be applied to more complicated, i.e. realistic inspection schemes which cannot be analyzed quantitatively until now. (author)

  8. Comparative study of {sup 99}Mo/{sup 99m}Tc generators at base of synthesized gels starting from activation and fission {sup 99}Mo; Estudio comparativo de generadores {sup 99}Mo/{sup 99m}Tc a base de geles sintetizados a partir de {sup 99}Mo de activacion y de fision

    Lopez M, I.Z. [UAEM, Paseo Colon esq. Paseo Tollocan, 50120 Toluca, Estado de Mexico (Mexico); Monroy G, F.; Rivero G, T.; Rojas N, P. [ININ, Carretera Mexico -Toluca S/N, 52045 La Marquesa Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: Liris_zoet@hotmail.com

    2007-07-01

    The {sup 99m}Tc is used for diagnostic and therapy. It is produced starting from {sup 99}Mo, absorbed in chromatographic columns, loaded with alumina that absorb only 0.2% of {sup 99}Mo with high specific activities of {sup 99}Mo, obtained from the {sup 235}U fission. Given these conditions and limitations, new preparation procedures of {sup 99}Mo/{sup 99m}Tc generators, its have been developed, using zirconium molybdates gels that incorporates until 30% of {sup 99}Mo, conserve similar characteristics of quality and purity that the traditional generator. The radiochemical characteristics of the {sup 99m}Tc elution, depend strongly on the gel preparation conditions. In particular, the present work has by object to determine the influence of the {sup 99}Mo used type, fission or activation product, during the gels synthesis, as well as the used air flow for the agitation in the gels preparation and its influence in the {sup 99}Mo/{sup 99m}Tc generators quality. When diminishing the flow of agitation air the efficiency it increases and in the radionuclide purity of the eluates and when using {sup 99}Mo from fission for the gels production it increases in an important way the elutriation efficiency, the radiochemical and radionuclide purity of the {sup 99m}Tc eluates. (Author)

  9. Technical Application of Nuclear Fission

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  10. Status of fission yield evaluations

    Very few yield compilations are also evaluations, and very few contain an extensive global library of measured data and extensive models for unmeasured data. The earlier U.K. evaluations and US evaluations were comparable up to the retirements of the primary evaluators. Only the effort in the US has been continued and expanded. The previous U.K. evaluations have been published. In this paper we summarize the current status of the US evaluation, philosophy, and various integral yield tests for 34 fissioning nuclides at one or more neutron incident energies and/or for spontaneous fission. Currently there are 50 yield sets and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized, the recommended data will become part of the next version of the US Evaluated Nuclear Data File (ENDF/B-VI). The complete set of data, including the basic input of measured yields, will be issued as a sequel to the General Electric evaluation reports (better known by the authors' names: Rider - or earlier - Meek and Rider). 16 references

  11. The discovery of uranium fission

    Uranium was discovered 200 years ago. Its radioactive character was first demonstrated in 1896 and two years later radium was extracted from uranium minerals. In 1911 studies with alpha rays from radioactive decay led to the unexpected discovery of the atomic nucleus. Exposure of beryllium to alpha rays yielded neutrons, first detected in 1932. Starting in 1934, neutron irradiation of uranium produced radioactive substances erroneously attributed to transuranium elements but with confusing properties. Painstaking experiments by chemists left no doubt on 17 December 1938 that barium was produced by these irradiations: the neutrons had split some uranium nuclei. The physics of the fission process was understood two weeks later; after a few months, neutron multiplication was found to be probable. This review deals with the eminent scientists involved, their successes, errors and disappointments, and the unexpected insights which occurred on the paths and detours of scientific research. It is, therefore, instructive also to discuss how fission was not discovered. The momentous discovery must be considered inevitable; the great tragedy was that Germany started World War II just at the time when the possibility of nuclear chain reactions and bombs became known. The consequences and anxieties that remain after 50 years of nuclear fission demand that mankind act with reason and conscience to maintain peace. (author)

  12. Fission fusion hybrids- recent progress

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  13. Pipe contamination by fission products in PWRs. Profip code

    The estimate of fission products activities in a PWR primary circuit, in steady state and accidental conditions is necessary for protection and safety analysis. In the other hand the knowledge of these activities allow, if the release mechanisms are well described, to determine clad failures characteristics and to localize the failures in the reactor core. For this purpose, the computer code PROFIP has been developed which predict fission product activities in a PWR primary circuit dispending of fuel failures characteristics. In this paper the description of the PROFIP code is presented as well its application to fuel clad failures characterization in the Tihange 1 reactor. A method is then described, which allows to localize a failed rod on a of the core, using ratios of cesiums activities in the primary coolant

  14. Optical inspection of NGL masks

    Pettibone, Donald W.; Stokowski, Stanley E.

    2004-12-01

    For the last five years KLA-Tencor and our joint venture partners have pursued a research program studying the ability of optical inspection tools to meet the inspection needs of possible NGL lithographies. The NGL technologies that we have studied include SCALPEL, PREVAIL, EUV lithography, and Step and Flash Imprint Lithography. We will discuss the sensitivity of the inspection tools and mask design factors that affect tool sensitivity. Most of the work has been directed towards EUV mask inspection and how to optimize the mask to facilitate inspection. Our partners have succeeded in making high contrast EUV masks ranging in contrast from 70% to 98%. Die to die and die to database inspection of EUV masks have been achieved with a sensitivity that is comparable to what can be achieved with conventional photomasks, approximately 80nm defect sensitivity. We have inspected SCALPEL masks successfully. We have found a limitation of optical inspection when applied to PREVAIL stencil masks. We have run inspections on SFIL masks in die to die, reflected light, in an effort to provide feedback to improve the masks. We have used a UV inspection system to inspect both unpatterned EUV substrates (no coatings) and blanks (with EUV multilayer coatings). These inspection results have proven useful in driving down the substrate and blank defect levels.

  15. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity

  16. From Inspection to School Improvement? Evaluating the Accelerated Inspection Programme in Waltham Forest.

    Hopkins, David; Harris, Alma; Watling, Rob; Beresford, John

    1999-01-01

    Outlines the main findings from the evaluation of the Accelerated Inspection Programme (AIP) in Waltham Forest under three main phases (pre-inspection, inspection, and post inspection). Focuses on the relationship between inspection and school improvement. Discusses the recommendations. (CMK)

  17. INTERNATIONAL ENVIRONMENTAL COMPLIANCE INSPECTION TRAINING WORKSHOP.

    The first delivery of the Environmental Compliance Inspector Training Workshop was delivered in Kuala Lumpur, Malaysia on July 24-26, 2001. The topics covered included: Role of the Inspector; Enforceability of Requirements; Inspection Planning; Collecting Evidence; On-Site Activ...

  18. SKF assists TOTAL E&P Indonesia - Combined maintenance and inspection strategy program; Maintenance and inspection engineering

    Roberts, Colin

    2010-07-01

    All oil and gas exploration and processing projects should be supported with a tailored strategy for maintenance and inspection requirements. Facilities should be started up with a maintenance and inspection program properly defined by function and should be readied in systems that will support the execution of that work. These are typically large support activities covering all equipment and their subassemblies. (Author)

  19. Overview of the software inspection process

    Lane, G.L.; Dabbs, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    This tutorial introduces attendees to the Inspection Process and teaches them how to organize and participate in a software inspection. The tutorial advocates the benefits of inspections and encourages attendees to socialize the inspection process in their organizations.

  20. Eddy current inspection methodology

    World-wide operating experience with nuclear pressurized water reactors shows that most steam generators show evidence of major degradation phenomena. Laborelec has designed several automated inspection systems using eddy current (bobbin coil, pancake coils and rotating coil) and ultrasound techniques. The bobbin coil is mostly used as a fast and global detection method while dedicated sensors, like the rotating pancake coil, are applied for an improved defect characterization. Experience has demonstrated that significant advantages in accuracy, reliability and cost are intimately related to the automation process. In conclusion: The concept of a multipurpose inspection system satisfies the safety goal and the utility requirements for reliability, accuracy and lower costs. An optimum was reached by equipment modularity, computer control and integrated design of sensors and instrumentation. What previously required several man-weeks of work is now achieved within a few hours time. With a presently unparalleled field performance, Laborelec has set the basis of new industrial standards

  1. Collective spectra along the fission barrier

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  2. Radiochemical studies on nuclear fission at Trombay

    Asok Goswami

    2015-08-01

    Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.

  3. International conference on fifty years research in nuclear fission

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  4. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  5. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  6. Mechanisms of Mitochondrial Fission and Fusion

    van der Bliek, Alexander M.; Shen, Qinfang; Kawajiri, Sumihiro

    2013-01-01

    Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a hea...

  7. Measurements of Fission Cross Sections of Actinides

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  8. Fission product retention in HTGR fuels

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  9. Nuclear fission with a Langevin equation

    A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out and discussed. A strong friction coefficient, estimated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. The calculations are performed with a collective mass depending on the collective variable and with a constant mass. Fission rates calculated at different temperatures are shown and compared with previous available results. (author) 23 refs.; 7 figs

  10. Fission barriers and half-lives

    The authors briefly review the development of theoretical models for the calculation of fission barriers and half-lives. They focus on how results of actual calculations in a unified macroscopic-microscopic approach provide an interpretation of the mechanisms behind some of the large number of phenomena observed in fission. As instructive examples they choose studies of the rapidly varying fission properties of elements at the end of the periodic system

  11. Improved Calculation of Thermal Fission Energy

    Ma, X. B.; Zhong, W. L.; Wang, L. Z.; Y. X. Chen; Cao, J

    2012-01-01

    Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel isotopes, with improvements on three aspects. ...

  12. Fission of nuclei far from stability

    The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)

  13. Superfluid dynamics of 258Fm fission

    Scamps, Guillaume; Simenel, Cédric; Lacroix, Denis

    2015-01-01

    Theoretical description of nuclear fission remains one of the major challenges of quantum many-body dynamics. The slow, mostly adiabatic motion through the fission barrier is followed by a fast, non-adiabatic descent of the potential between the fragments. The latter stage is essentially unexplored. However, it is crucial as it generates most of the excitation energy in the fragments. The superfluid dynamics in the latter stage of fission is obtained with the time-dependent Hartree-Fock theor...

  14. Fission dynamics at low excitation energy

    Aritomo, Y.; Chiba, S.

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibrati...

  15. Rapid Separation of Fission Product 141La

    XIA; Wen; YE; Hong-sheng; LIN; Min; CHEN; Ke-sheng; XU; Li-jun; ZHANG; Wei-dong; CHEN; Yi-zhen

    2013-01-01

    141La was separated and purified from fission products in this work for physical measurements aimed at improving the accuracy of its decay parameters.As the impact of 142La and other fission products,cesium(141Cs,142Cs included)was rapid separated from the fission products,141Cs and 142Ba separation was prepared after a cooling time about 25 s when 142Cs decays to daughter 142Ba,141La purification then

  16. Pressurized water reactor inspection procedures

    Inspections of the reactor pressure vessels of pressurized water reactors (PWR) so far used to be carried out with different central mast manipulators. For technical reasons, parallel inspections of two manipulators alongside work on the refueling cavity, so as to reduce the time spent on the critical path in a revision outage, are not possible. Efforts made to minimize the inspection time required with one manipulator have been successful, but their effects are limited. Major reductions in inspection time can be achieved only if inspections are run with two manipulators in parallel. The decentralized manipulator built by GEC Alsthom Energie and so far emmployed in boiling water reactors in the USA, Spain, Switzerland and Japan allows two systems to be used in parallel, thus reducing the time required for standard inspection of a pressure vessel from some six days to three days. These savings of approximately three days are made possible without any compromises in terms of positioning by rail-bound systems. During inspection, the reactor refueling cavity is available for other revision work without any restrictions. The manipulator can be used equally well for inspecting standard PWR, PWR with a thermal shield, for inspecting the land between in-core instrumentation nozzles, BWR with and without jet pumps (complementary inspection), and for inspecting core support shrouds. (orig.)

  17. Inspection program for U.S. research reactors

    This paper presents an established program for inspection of nuclear research reactors to ensure that systems and techniques are in accordance with regulatory requirements and to provide protection for the health and safety of the public. The inspection program, implemented from the time a facility gets licensed, remains in effect through operations, shutdown, decommissioning, and until the license is terminated. The program establishes inspection methodology for operating, safeguards, and decommissioning activities. Using a performance- based approach, inspectors focus their attention on activities important to safety. Inspection procedures allow the inspectors to assess facility safety and compliance to applicable requirements. A well designed inspection program is an integral part of the mechanism to ensure that the level of performance in the strategic areas of reactor safety, radiation safety, and safeguards is acceptable and provides adequate protection of public health and safety. (author)

  18. Detecting fission from special nuclear material sources

    Rowland, Mark S.; Snyderman, Neal J.

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  19. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    Goddard, P. M.; Stevenson, P. D.; Rios, A.

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Method...

  20. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.