WorldWideScience

Sample records for active gpr17 splice

  1. Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants

    Benned-Jensen, Tau; Rosenkilde, M M

    2010-01-01

    In humans and non-human primates, the 7TM receptor GPR17 exists in two isoforms differing only by the length of the N-terminus. Of these, only the short isoform has previously been characterized. Hence, we investigated gene expression and ligand-binding profiles of both splice variants and furthe...

  2. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation.

    Meraviglia, Veronica; Ulivi, Alessandro Francesco; Boccazzi, Marta; Valenza, Fabiola; Fratangeli, Alessandra; Passafaro, Maria; Lecca, Davide; Stagni, Fiorenza; Giacomini, Andrea; Bartesaghi, Renata; Abbracchio, Maria P; Ceruti, Stefania; Rosa, Patrizia

    2016-08-01

    The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460. PMID:27270750

  3. A promiscuous recognition mechanism between GPR17 and SDF-1: Molecular insights.

    Parravicini, Chiara; Daniele, Simona; Palazzolo, Luca; Trincavelli, Maria Letizia; Martini, Claudia; Zaratin, Paola; Primi, Roberto; Coppolino, Giusy; Gianazza, Elisabetta; Abbracchio, Maria P; Eberini, Ivano

    2016-06-01

    Recent data and publications suggest a promiscuous behaviour for GPR17, a class-A GPCR operated by different classes of ligands, such as uracil nucleotides, cysteinyl-leukotrienes and oxysterols. This observation, together with the ability of several class-A GPCRs to form homo- and hetero-dimers, is likely to unveil new pathophysiological roles and novel emerging pharmacological properties for some of these GPCRs, including GPR17. This receptor shares structural, phylogenetic and functional properties with some chemokine receptors, CXCRs. Both GPR17 and CXCR2 are operated by oxysterols, and both GPR17 and CXCR ligands have been demonstrated to have a role in orchestrating inflammatory responses and oligodendrocyte precursor cell differentiation to myelinating cells in acute and chronic diseases of the central nervous system. Here, by combining in silico modelling data with in vitro validation in (i) a classical reference pharmacological assay for GPCR activity and (ii) a model of maturation of primary oligodendrocyte precursor cells, we demonstrate that GPR17 can be activated by SDF-1, a ligand of chemokine receptors CXCR4 and CXCR7, and investigate the underlying molecular recognition mechanism. We also demonstrate that cangrelor, a GPR17 orthosteric antagonist, can block the SDF-1-mediated activation of GPR17 in a concentration-dependent manner. The ability of GPR17 to respond to different classes of GPCR ligands suggests that this receptor modifies its function depending on the extracellular mileu changes occurring under specific pathophysiological conditions and advocates it as a strategic target for neurodegenerative diseases with an inflammatory/immune component. PMID:26971834

  4. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    Davide Lecca

    promoted the expression of myelin basic protein, confirming progression toward mature oligodendrocytes. Thus, GPR17 may act as a "sensor" that is activated upon brain injury on several embryonically distinct cell types, and may play a key role in both inducing neuronal death inside the ischemic core and in orchestrating the local remodeling/repair response. Specifically, we suggest GPR17 as a novel target for therapeutic manipulation to foster repair of demyelinating wounds, the types of lesions that also occur in patients with multiple sclerosis.

  5. Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach

    Fantucci Piercarlo

    2010-03-01

    Full Text Available Abstract Background GPR17 is a hybrid G-protein-coupled receptor (GPCR activated by two unrelated ligand families, extracellular nucleotides and cysteinyl-leukotrienes (cysteinyl-LTs, and involved in brain damage and repair. Its exploitment as a target for novel neuro-reparative strategies depends on the elucidation of the molecular determinants driving binding of purinergic and leukotrienic ligands. Here, we applied docking and molecular dynamics simulations (MD to analyse the binding and the forced unbinding of two GPR17 ligands (the endogenous purinergic agonist UDP and the leukotriene receptor antagonist pranlukast from both the wild-type (WT receptor and a mutant model, where a basic residue hypothesized to be crucial for nucleotide binding had been mutated (R255I to Ile. Results MD suggested that GPR17 nucleotide binding pocket is enclosed between the helical bundle and extracellular loop (EL 2. The driving interaction involves R255 and the UDP phosphate moiety. To support this hypothesis, steered MD experiments showed that the energy required to unbind UDP is higher for the WT receptor than for R255I. Three potential binding sites for pranlukast where instead found and analysed. In one of its preferential docking conformations, pranlukast tetrazole group is close to R255 and phenyl rings are placed into a subpocket highly conserved among GPCRs. Pulling forces developed to break polar and aromatic interactions of pranlukast were comparable. No differences between the WT receptor and the R255I receptor were found for the unbinding of pranlukast. Conclusions These data thus suggest that, in contrast to which has been hypothesized for nucleotides, the lack of the R255 residue doesn't affect the binding of pranlukast a crucial role for R255 in binding of nucleotides to GPR17. Aromatic interactions are instead likely to play a predominant role in the recognition of pranlukast, suggesting that two different binding subsites are present on GPR17.

  6. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors

    Ranghino Graziella

    2008-06-01

    Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist

  7. EBI2, GPR18 and GPR17--three structurally related, but biologically distinct 7TM receptors

    Nørregaard, Kristine; Benned-Jensen, Tau; Rosenkilde, Mette Marie

    2011-01-01

    have been deorphanized, many remain orphan, and these orphan receptors constitute a large pool of potential drug targets. This review focuses on one of these orphan targets, the Epstein-Barr Virus-induced receptor 2, EBI2 (or GPR183), together with two structurally related receptors, GPR17 and GPR18...

  8. The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration

    Choudhury, Rajarshi; Roy, Sreerupa Ghose; Tsai, Yihsuan S.; Tripathy, Ashutosh; Graves, Lee M.; Wang, Zefeng

    2014-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a critical stage of gene regulation in response to environmental stimuli. Here we show that DAZAP1, an RNA-binding protein involved in mammalian development and spermatogenesis, promotes inclusion of weak exons through specific recognition of diverse cis-elements. The carboxy-terminal proline-rich domain of DAZAP1 interacts with and neutralizes general splicing inhibitors, and is sufficient to activate splicing when recruited to pre-mRNA. This domain is phosphorylated by the MEK/Erk (extracellular signal-regulated protein kinase) pathway and this modification is essential for the splicing regulatory activity and the nuclear/cytoplasmic translocation of DAZAP1. Using mRNA-seq, we identify endogenous splicing events regulated by DAZAP1, many of which are involved in maintaining cell growth. Knockdown or over-expression of DAZAP1 causes a cell proliferation defect. Taken together, these studies reveal a molecular mechanism that integrates splicing control into MEK/Erk-regulated cell proliferation.

  9. Design of a Split Intein with Exceptional Protein Splicing Activity.

    Stevens, Adam J; Brown, Zachary Z; Shah, Neel H; Sekar, Giridhar; Cowburn, David; Muir, Tom W

    2016-02-24

    Protein trans-splicing (PTS) by split inteins has found widespread use in chemical biology and biotechnology. Herein, we describe the use of a consensus design approach to engineer a split intein with enhanced stability and activity that make it more robust than any known PTS system. Using batch mutagenesis, we first conduct a detailed analysis of the difference in splicing rates between the Npu (fast) and Ssp (slow) split inteins of the DnaE family and find that most impactful residues lie on the second shell of the protein, directly adjacent to the active site. These residues are then used to generate an alignment of 73 naturally occurring DnaE inteins that are predicted to be fast. The consensus sequence from this alignment (Cfa) demonstrates both rapid protein splicing and unprecedented thermal and chaotropic stability. Moreover, when fused to various proteins including antibody heavy chains, the N-terminal fragment of Cfa exhibits increased expression levels relative to other N-intein fusions. The durability and efficiency of Cfa should improve current intein based technologies and may provide a platform for the development of new protein chemistry techniques. PMID:26854538

  10. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    GilLevkowitz

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  11. Differential connectivity of splicing activators and repressors to the human spliceosome

    Akerman, Martin; Fregoso, Oliver I.; Das, Shipra; Ruse, Cristian; Jensen, Mads A.; Pappin, Darryl J.; Zhang, Michael Q.; Krainer, Adrian R.

    2015-01-01

    Background During spliceosome assembly, protein-protein interactions (PPI) are sequentially formed and disrupted to accommodate the spatial requirements of pre-mRNA substrate recognition and catalysis. Splicing activators and repressors, such as SR proteins and hnRNPs, modulate spliceosome assembly and regulate alternative splicing. However, it remains unclear how they differentially interact with the core spliceosome to perform their functions. Results Here, we investigate the protein connec...

  12. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells

    Meininger, Isabel; Griesbach, Richard A.; Hu, Desheng; Gehring, Torben; Seeholzer, Thomas; Bertossi, Arianna; Kranich, Jan; Oeckinghaus, Andrea; Eitelhuber, Andrea C; Greczmiel, Ute; Gewies, Andreas; Schmidt-Supprian, Marc; Ruland, Jürgen; Brocker, Thomas; Heissmeyer, Vigo

    2016-01-01

    MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify...

  13. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors

    Hu, Yi, E-mail: yihooyi@gmail.com; Ericsson, Ida, E-mail: ida.ericsson@ntnu.no; Doseth, Berit, E-mail: berit.doseth@ntnu.no; Liabakk, Nina B., E-mail: nina.beate.liabakk@ntnu.no; Krokan, Hans E., E-mail: hans.krokan@ntnu.no; Kavli, Bodil, E-mail: bodil.kavli@ntnu.no

    2014-03-10

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation.

  14. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation

  15. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer.

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E; Lapin, Morten; Kristjansdottir, Karen; Petersen, Ulrika S S; Bang, Jeanne Mari V; Guerra, Barbara; Andersen, Henriette Skovgaard; Dobrowolski, Steven F; Carey, John C; Yu, Ping; Vaughn, Cecily; Calhoun, Amy; Larsen, Martin R; Dyrskjøt, Lars; Stevenson, David A; Andresen, Brage S

    2016-05-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping. PMID:27195699

  16. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer.

    Anne-Mette Hartung

    2016-05-01

    Full Text Available Costello syndrome (CS may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE and creation of an Exonic Splicing Silencer (ESS. We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.

  17. An Alternate Splicing Variant of the Human Telomerase Catalytic Subunit Inhibits Telomerase Activity

    Xiaoming Yi

    2000-09-01

    Full Text Available Telomerase, a cellular reverse transcriptase, adds telomeric repeats to chromosome ends. In normal human somatic cells, telomerase is repressed and telomeres progressively shorten, leading to proliferative senescence. Introduction of the telomerase (hTERT cDNA is sufficient to produce telomerase activity and immortalize normal human cells, suggesting that the repression of telomerase activity is transcriptional. The telomerase transcript has been shown to have at least six alternate splicing sites (four insertion sites and two deletion sites, and variants containing both or either of the deletion sites are present during development and in a panel of cancer cell lines we surveyed. One deletion (β site and all four insertions cause premature translation terminations, whereas the other deletion (α site is 36 by and lies within reverse transcriptase (RT motif A, suggesting that this deletion variant may be a candidate as a dominant-negative inhibitor of telomerase. We have cloned three alternately spliced hTERT variants that contain the α,β or both α and,β deletion sites. These alternate splicing variants along with empty vector and wild-type hTERT were introduced into normal human fibroblasts and several telomerase-positive immortal and tumor cell lines. Expression of the α site deletion variant (hTERT α− construct was confirmed by Western blotting. We found that none of the three alternate splicing variants reconstitutes telomerase activity in fibroblasts. However, hTERT α− inhibits telomerase activities in telomerase-positive cells, causes telomere shortening and eventually cell death. This alternately spliced dominant-negative variant may be important in understanding telomerase regulation during development, differentiation and in cancer progression.

  18. Multiple determinants of splicing repression activity in the polypyrimidine tract binding proteins, PTBP1 and PTBP2.

    Keppetipola, Niroshika M; Yeom, Kyu-Hyeon; Hernandez, Adrian L; Bui, Tessa; Sharma, Shalini; Black, Douglas L

    2016-08-01

    Most human genes generate multiple protein isoforms through alternative pre-mRNA splicing, but the mechanisms controlling alternative splicing choices by RNA binding proteins are not well understood. These proteins can have multiple paralogs expressed in different cell types and exhibiting different splicing activities on target exons. We examined the paralogous polypyrimidine tract binding proteins PTBP1 and PTBP2 to understand how PTBP1 can exhibit greater splicing repression activity on certain exons. Using both an in vivo coexpression assay and an in vitro splicing assay, we show that PTBP1 is more repressive than PTBP2 per unit protein on a target exon. Constructing chimeras of PTBP1 and 2 to determine amino acid features that contribute to their differential activity, we find that multiple segments of PTBP1 increase the repressive activity of PTBP2. Notably, when either RRM1 of PTBP2 or the linker peptide separating RRM2 and RRM3 are replaced with the equivalent PTBP1 sequences, the resulting chimeras are highly active for splicing repression. These segments are distinct from the known region of interaction for the PTBP1 cofactors Raver1 and Matrin3 in RRM2. We find that RRM2 of PTBP1 also increases the repression activity of an otherwise PTBP2 sequence, and that this is potentially explained by stronger binding by Raver1. These results indicate that multiple features over the length of the two proteins affect their ability to repress an exon. PMID:27288314

  19. Age-related nuclear translocation of P2X6 subunit modifies splicing activity interacting with splicing factor 3A1.

    Juan Ignacio Díaz-Hernández

    Full Text Available P2X receptors are ligand-gated ion channels sensitive to extracellular nucleotides formed by the assembling of three equal or different P2X subunits. In this work we report, for the first time, the accumulation of the P2X6 subunit inside the nucleus of hippocampal neurons in an age-dependent way. This location is favored by its anchorage to endoplasmic reticulum through its N-terminal domain. The extracellular domain of P2X6 subunit is the key to reach the nucleus, where it presents a speckled distribution pattern and is retained by interaction with the nuclear envelope protein spectrin α2. The in vivo results showed that, once inside the nucleus, P2X6 subunit interacts with the splicing factor 3A1, which ultimately results in a reduction of the mRNA splicing activity. Our data provide new insights into post-transcriptional regulation of mRNA splicing, describing a novel mechanism that could explain why this process is sensitive to changes that occur with age.

  20. Modulation of Transcriptional Activation and Coactivator Interaction by a Splicing Variation in the F Domain of Nuclear Receptor Hepatocyte Nuclear Factor 4α1

    Sladek, Frances M.; Ruse, Michael D.; Nepomuceno, Luviminda; Huang, Shih-Ming; Stallcup, Michael R.

    1999-01-01

    Transcription factors, such as nuclear receptors, often exist in various forms that are generated by highly conserved splicing events. Whereas the functional significance of these splicing variants is often not known, it is known that nuclear receptors activate transcription through interaction with coactivators. The parameters, other than ligands, that might modulate those interactions, however, are not well characterized, nor is the role of splicing variants. In this study, transient transf...

  1. Enhanced expression of Rubisco activase splicing variants differentially affects Rubisco activity during low temperature treatment in Lolium perenne.

    Jurczyk, Barbara; Pociecha, Ewa; Grzesiak, Maciej; Kalita, Katarzyna; Rapacz, Marcin

    2016-07-01

    Alternative splicing of the Rubisco activase gene was shown to be a point for optimization of photosynthetic carbon assimilation. It can be expected to be a stress-regulated event that depends on plant freezing tolerance. The aim of the study was to examine the relationships among Rubisco activity, the expression of two Rubisco activase splicing variants and photoacclimation to low temperature. The experiment was performed on two Lolium perenne genotypes with contrasting levels of freezing tolerance. The study investigated the effect of pre-hardening (15°C) and cold acclimation (4°C) on net photosynthesis, photosystem II photochemical activity, Rubisco activity and the expression of two splicing variants of the Rubisco activase gene. The results showed an induction of Rubisco activity at both 15°C and 4°C only in a highly freezing-tolerant genotype. The enhanced Rubisco activity after pre-hardening corresponded to increased expression of the splicing variant representing the large isoform, while the increase in Rubisco activity during cold acclimation was due to the activation of both transcript variants. These boosts in Rubisco activity also corresponded to an activation of non-photochemical mechanism of photoacclimation induced at low temperature exclusively in the highly freezing-tolerant genotype. In conclusion, enhanced expression of Rubisco activase splicing variants caused an increase in Rubisco activity during pre-hardening and cold acclimation in the more freezing-tolerant Lolium perenne genotype. The induction of the transcript variant representing the large isoform may be an important element of increasing the carbon assimilation rate supporting the photochemical mechanism of photosynthetic acclimation to cold. PMID:27152456

  2. Mutations in Tau Gene Exon 10 Associated with FTDP-17 Alter the Activity of an Exonic Splicing Enhancer to Interact with Tra2β*

    Jiang, Zhihong; Tang, Hao; Havlioglu, Necat; Zhang, Xiaochun; Stamm, Stefan; Yan, Riqiang; Jane Y Wu

    2003-01-01

    Mutations in the human tau gene leading to aberrant splicing have been identified in FTDP-17, an autosomal dominant hereditary neurodegenerative disorder. Molecular mechanisms by which such mutations cause tau aberrant splicing were not understood. We characterized two mutations in exon 10 of the tau gene, N279K and Del280K. Our results revealed an exonic splicing enhancer element located in exon 10. The activity of this AG-rich splicing enhancer was altered by N279K and Del280K mutations. Th...

  3. Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing.

    Kim, S. H.; Lin, R J

    1996-01-01

    In addition to small nuclear RNAs and spliceosomal proteins, ATP hydrolysis is needed for nuclear pre-mRNA splicing. A number of RNA-dependent ATPases which are involved in several distinct ATP-dependent steps in splicing have been identified in Saccharomyces cerevisiae and mammals. These so-called DEAD/H ATPases contain conserved RNA helicase motifs, although RNA unwinding activity has not been demonstrated in purified proteins. Here we report the role of one such DEAH protein, PRP2 of S. ce...

  4. Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2β in development.

    Sushma Grellscheid

    2011-12-01

    Full Text Available Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10 is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10(fl/fl; Nestin-Cre(tg/+. This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein.

  5. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice.

    Twishasri Dasgupta

    Full Text Available Members of the CUG-BP, Elav-like family (CELF regulate alternative splicing in the heart. In MHC-CELFΔ transgenic mice, CELF splicing activity is inhibited postnatally in heart muscle via expression of a nuclear dominant negative CELF protein under an α-myosin heavy chain promoter. MHC-CELFΔ mice develop dilated cardiomyopathy characterized by alternative splicing defects, enlarged hearts, and severe contractile dysfunction. In this study, gene expression profiles in the hearts of wild type, high- and low-expressing lines of MHC-CELFΔ mice were compared using microarrays. Gene ontology and pathway analyses identified contraction and calcium signaling as the most affected processes. Network analysis revealed that the serum response factor (SRF network is highly affected. Downstream targets of SRF were up-regulated in MHC-CELFΔ mice compared to the wild type, suggesting an increase in SRF activity. Although SRF levels remained unchanged, known inhibitors of SRF activity were down-regulated. Conversely, we found that these inhibitors are up-regulated and downstream SRF targets are down-regulated in the hearts of MCKCUG-BP1 mice, which mildly over-express CELF1 in heart and skeletal muscle. This suggests that changes in SRF activity are a consequence of changes in CELF-mediated regulation rather than a secondary result of compensatory pathways in heart failure. In MHC-CELFΔ males, where the phenotype is only partially penetrant, both alternative splicing changes and down-regulation of inhibitors of SRF correlate with the development of cardiomyopathy. Together, these results strongly support a role for CELF-mediated alternative splicing in the regulation of contractile gene expression, achieved in part through modulating the activity of SRF, a key cardiac transcription factor.

  6. Engineering splicing factors with designed specificities

    Wang, Yang; Cheong, Cheom-Gil; Hall, Traci M Tanaka; Wang, Zefeng

    2009-01-01

    Alternative splicing is generally regulated by trans-acting factors that specifically bind pre-mRNA to activate or inhibit the splicing reaction. This regulation is critical for normal gene expression, and dysregulation of splicing is closely associated with human diseases. Here we engineer artificial splicing factors by combining sequence-specific RNA-binding domains of human Pumilio1 with functional domains that regulate splicing. We applied these factors to modulate different types of alte...

  7. S6K1 Alternative Splicing Modulates Its Oncogenic Activity and Regulates mTORC1

    Vered Ben-Hur

    2013-01-01

    Full Text Available Ribosomal S6 kinase 1 (S6K1 is a major mTOR downstream signaling molecule that regulates cell size and translation efficiency. Here, we report that short isoforms of S6K1 are overproduced in breast cancer cell lines and tumors. Overexpression of S6K1 short isoforms induces transformation of human breast epithelial cells. The long S6K1 variant (Iso-1 induced opposite effects. It inhibits Ras-induced transformation and tumor formation, while its knockdown or knockout induces transformation, suggesting that Iso-1 has a tumor-suppressor activity. Furthermore, we found that S6K1 short isoforms bind and activate mTORC1, elevating 4E-BP1 phosphorylation, cap-dependent translation, and Mcl-1 protein levels. Both a phosphorylation-defective 4E-BP1 mutant and the mTORC1 inhibitor rapamycin partially blocked the oncogenic effects of S6K1 short isoforms, suggesting that these are mediated by mTORC1 and 4E-BP1. Thus, alternative splicing of S6K1 acts as a molecular switch in breast cancer cells, elevating oncogenic isoforms that activate mTORC1.

  8. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    Wada, Akihiro, E-mail: a-wada@nagasaki-u.ac.jp [Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Wong, Pooi-Fong [Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Hojo, Hironobu [Department of Applied Biochemistry, Institute of Glycoscience, Tokai University, Kanagawa 2591292 (Japan); Hasegawa, Makoto [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga 5260829 (Japan); Ichinose, Akitoyo [Electron Microscopy Shop Central Laboratory, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Llanes, Rafael [Institute Pedro Kouri, Havana (Cuba); Kubo, Yoshinao [Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 8528523 (Japan); Senba, Masachika [Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Ichinose, Yoshio [Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan)

    2013-05-03

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.

  9. An imaging agent to detect androgen receptor and its active splice variants in prostate cancer

    Imamura, Yusuke; Tien, Amy H.; Pan, Jinhe; Leung, Jacky K.; Banuelos, Carmen A.; Jian, Kunzhong; Wang, Jun; Mawji, Nasrin R.; Fernandez, Javier Garcia; Lin, Kuo-Shyan; Andersen, Raymond J.; Sadar, Marianne D.

    2016-01-01

    Constitutively active splice variants of androgen receptor (AR-Vs) lacking ligand-binding domain (LBD) are a mechanism of resistance to androgen receptor LBD–targeted (AR LBD–targeted) therapies for metastatic castration-resistant prostate cancer (CRPC). There is a strong unmet clinical need to identify prostate cancer patients with AR-V–positive lesions to determine whether they will benefit from further AR LBD–targeting therapies or should receive taxanes or investigational drugs like EPI-506 or galeterone. Both EPI-506 (NCT02606123) and galeterone (NCT02438007) are in clinical trials and are proposed to have efficacy against lesions that are positive for AR-Vs. AR activation function-1 (AF-1) is common to the N-terminal domains of full-length AR and AR-Vs. Here, we provide proof of concept for developing imaging compounds that directly bind AR AF-1 to detect both AR-Vs and full-length AR. 123I-EPI-002 had specific binding to AR AF-1, which enabled direct visualization of CRPC xenografts that express full-length AR and AR-Vs. Our findings highlight the potential of 123I-EPI-002 as an imaging agent for the detection of full-length AR and AR-Vs in CRPC.

  10. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    Nagashima, Yukihiro

    2011-07-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor.

  11. Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density.

    Tan, Gregory Ming Yeong; Yu, Dejie; Wang, Juejin; Soong, Tuck Wah

    2012-01-01

    The Ca(V)1.4 voltage-gated calcium channel is predominantly expressed in the retina, and mutations to this channel have been associated with human congenital stationary night blindness type-2. The L-type Ca(V)1.4 channel displays distinct properties such as absence of calcium-dependent inactivation (CDI) and slow voltage-dependent inactivation (VDI) due to the presence of an autoinhibitory domain (inhibitor of CDI) in the distal C terminus. We hypothesized that native Ca(V)1.4 is subjected to extensive alternative splicing, much like the other voltage-gated calcium channels, and employed the transcript scanning method to identify alternatively spliced exons within the Ca(V)1.4 transcripts isolated from the human retina. In total, we identified 19 alternative splice variations, of which 16 variations have not been previously reported. Characterization of the C terminus alternatively spliced exons using whole-cell patch clamp electrophysiology revealed a splice variant that exhibits robust CDI. This splice variant arose from the splicing of a novel alternate exon (43*) that can be found in 13.6% of the full-length transcripts screened. Inclusion of exon 43* inserts a stop codon that truncates half the C terminus. The Ca(V)1.4 43* channel exhibited robust CDI, a larger current density, a hyperpolarized shift in activation potential by ∼10 mV, and a slower VDI. Through deletional experiments, we showed that the inhibitor of CDI was responsible for modulating channel activation and VDI, in addition to CDI. Calcium currents in the photoreceptors were observed to exhibit CDI and are more negatively activated as compared with currents elicited from heterologously expressed full-length Ca(V)1.4. Naturally occurring alternative splice variants may in part contribute to the properties of the native Ca(V)1.4 channels. PMID:22069316

  12. FgPrp4 Kinase Is Important for Spliceosome B-Complex Activation and Splicing Efficiency in Fusarium graminearum

    Jiang, Cong; Li, Yang; Li, Chaohui; Liu, Huiquan; Kang, Zhensheng; Xu, Jin-Rong

    2016-01-01

    PRP4 encodes the only kinase among the spliceosome components. Although it is an essential gene in the fission yeast and other eukaryotic organisms, the Fgprp4 mutant was viable in the wheat scab fungus Fusarium graminearum. Deletion of FgPRP4 did not block intron splicing but affected intron splicing efficiency in over 60% of the F. graminearum genes. The Fgprp4 mutant had severe growth defects and produced spontaneous suppressors that were recovered in growth rate. Suppressor mutations were identified in the PRP6, PRP31, BRR2, and PRP8 orthologs in nine suppressor strains by sequencing analysis with candidate tri-snRNP component genes. The Q86K mutation in FgMSL1 was identified by whole genome sequencing in suppressor mutant S3. Whereas two of the suppressor mutations in FgBrr2 and FgPrp8 were similar to those characterized in their orthologs in yeasts, suppressor mutations in Prp6 and Prp31 orthologs or FgMSL1 have not been reported. Interestingly, four and two suppressor mutations identified in FgPrp6 and FgPrp31, respectively, all are near the conserved Prp4-phosphorylation sites, suggesting that these mutations may have similar effects with phosphorylation by Prp4 kinase. In FgPrp31, the non-sense mutation at R464 resulted in the truncation of the C-terminal 130 aa region that contains all the conserved Prp4-phosphorylation sites. Deletion analysis showed that the N-terminal 310-aa rich in SR residues plays a critical role in the localization and functions of FgPrp4. We also conducted phosphoproteomics analysis with FgPrp4 and identified S289 as the phosphorylation site that is essential for its functions. These results indicated that FgPrp4 is critical for splicing efficiency but not essential for intron splicing, and FgPrp4 may regulate pre-mRNA splicing by phosphorylation of other components of the tri-snRNP although itself may be activated by phosphorylation at S289. PMID:27058959

  13. FgPrp4 Kinase Is Important for Spliceosome B-Complex Activation and Splicing Efficiency in Fusarium graminearum.

    Gao, Xuli; Jin, Qiaojun; Jiang, Cong; Li, Yang; Li, Chaohui; Liu, Huiquan; Kang, Zhensheng; Xu, Jin-Rong

    2016-04-01

    PRP4 encodes the only kinase among the spliceosome components. Although it is an essential gene in the fission yeast and other eukaryotic organisms, the Fgprp4 mutant was viable in the wheat scab fungus Fusarium graminearum. Deletion of FgPRP4 did not block intron splicing but affected intron splicing efficiency in over 60% of the F. graminearum genes. The Fgprp4 mutant had severe growth defects and produced spontaneous suppressors that were recovered in growth rate. Suppressor mutations were identified in the PRP6, PRP31, BRR2, and PRP8 orthologs in nine suppressor strains by sequencing analysis with candidate tri-snRNP component genes. The Q86K mutation in FgMSL1 was identified by whole genome sequencing in suppressor mutant S3. Whereas two of the suppressor mutations in FgBrr2 and FgPrp8 were similar to those characterized in their orthologs in yeasts, suppressor mutations in Prp6 and Prp31 orthologs or FgMSL1 have not been reported. Interestingly, four and two suppressor mutations identified in FgPrp6 and FgPrp31, respectively, all are near the conserved Prp4-phosphorylation sites, suggesting that these mutations may have similar effects with phosphorylation by Prp4 kinase. In FgPrp31, the non-sense mutation at R464 resulted in the truncation of the C-terminal 130 aa region that contains all the conserved Prp4-phosphorylation sites. Deletion analysis showed that the N-terminal 310-aa rich in SR residues plays a critical role in the localization and functions of FgPrp4. We also conducted phosphoproteomics analysis with FgPrp4 and identified S289 as the phosphorylation site that is essential for its functions. These results indicated that FgPrp4 is critical for splicing efficiency but not essential for intron splicing, and FgPrp4 may regulate pre-mRNA splicing by phosphorylation of other components of the tri-snRNP although itself may be activated by phosphorylation at S289. PMID:27058959

  14. Glucocorticoid receptor beta splice variant expression in patients with high and low activity of systemic lupus erythematosus.

    Pawel P Jagodzinski

    2008-01-01

    Full Text Available The glucocorticoid receptor (GR occurs mainly in two alternative splice variants encoding GRalpha and GRbeta. The GRbeta variant does not contain a GC binding domain and cannot mediate anti-inflammatory GC effects. Peripheral blood mononuclear cells (PBMCs were isolated from venous whole blood of twelve patients with SLE. Ten of the SLE patients exhibited low disease activity while two patients displayed highly active stage of the disease. The quantitative analysis of GRalpha and GRbeta transcripts in PBMC was performed by reverse transcription and real-time quantitative PCR SYBR Green I system. The protein level of GRalpha and GRbeta isoforms in PBMCs was determined by western blotting analysis. We found that the two SLE patients with high disease activity exhibited significantly elevated GRbeta transcript levels and corresponding protein levels in PBMCs. These preliminary findings suggest that increased expression of GRbeta isoform may be associated with relatively more severe clinical presentation of SLE syndrome.

  15. Control of Alternative Splicing by Signal-dependent Degradation of Splicing-regulatory Proteins*S⃞

    Katzenberger, Rebeccah J.; Marengo, Matthew S.; Wassarman, David A.

    2009-01-01

    Alternative pre-mRNA splicing is a major gene expression regulatory mechanism in metazoan organisms. Proteins that bind pre-mRNA elements and control assembly of splicing complexes regulate utilization of pre-mRNA alternative splice sites. To understand how signaling pathways impact this mechanism, an RNA interference screen in Drosophila S2 cells was used to identify proteins that regulate TAF1 (TBP-associated factor 1) alternative splicing in response to activation o...

  16. Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-β1-mediated gene activation

    Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of α-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-β1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against α-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-β1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.

  17. Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease

    Vissing, John; Duno, Morten; Schwartz, Marianne;

    2009-01-01

    features of two patients with a variant form of McArdle disease, associated with unusually high exercise capacity. Physiologic findings were compared to those in 47 patients with typical McArdle disease, and 17 healthy subjects. Subjects performed an ischaemic forearm exercise test to assess lactate...... and ammonia production. Peak oxidative capacity (VO2max) and cardiac output were determined, using cycle ergometry as the exercise modality. The two patients with atypical McArdle disease carried common mutations on one allele (R50X and G205S), and novel splice mutations in introns 3 [IVS3-26A>G (c.425-26A......>G)] and 5 [IVS5-601G>A (c.856-601G>A)] on the other allele. Plasma lactate after ischaemic exercise decreased in all typical McArdle patients, but increased in the two atypical McArdle patients (10% of that in healthy subjects). Peak workload and oxidative capacity were 2-fold higher in patients...

  18. Splicing Programs and Cancer

    Sophie Germann; Lise Gratadou; Martin Dutertre; Didier Auboeuf

    2012-01-01

    Numerous studies report splicing alterations in a multitude of cancers by using gene-by-gene analysis. However, understanding of the role of alternative splicing in cancer is now reaching a new level, thanks to the use of novel technologies allowing the analysis of splicing at a large-scale level. Genome-wide analyses of alternative splicing...

  19. Regulatory Implications of Non-Trivial Splicing: Isoform 3 of Rab1A Shows Enhanced Basal Activity and Is Not Controlled by Accessory Proteins.

    Schöppner, Patricia; Csaba, Gergely; Braun, Tatjana; Daake, Marina; Richter, Bettina; Lange, Oliver F; Zacharias, Martin; Zimmer, Ralf; Haslbeck, Martin

    2016-04-24

    Alternative splicing often affects structured and highly conserved regions of proteins, generating so called non-trivial splicing variants of unknown structure and cellular function. The human small G-protein Rab1A is involved in the regulation of the vesicle transfer from the ER to Golgi. A conserved non-trivial splice variant lacks nearly 40% of the sequence of the native Rab1A, including most of the regulatory interaction sites. We show that this variant of Rab1A represents a stable and folded protein, which is still able to bind nucleotides and co-localizes with membranes. Nevertheless, it should be mentioned that compared to other wild-typeRabGTPases, the measured nucleotide binding affinities are dramatically reduced in the variant studied. Furthermore, the Rab1A variant forms hetero-dimers with wild-type Rab1A and its presence in the cell enhances the efficiency of alkaline phosphatase secretion. However, this variant shows no specificity for GXP nucleotides, a constantly enhanced GTP hydrolysis activity and is no longer controlled by GEF or GAP proteins, indicating a new regulatory mechanism for the Rab1A cycle via alternative non-trivial splicing. PMID:26953259

  20. Alternatively Spliced Tissue Factor Promotes Plaque Angiogenesis Through the Activation of HIF-1α and VEGF Signaling

    Giannarelli, Chiara; Alique, Matilde; Rodriguez, David T.; Yang, Dong Kwon; Jeong, Dongtak; Calcagno, Claudia; Hutter, Randolph; Millon, Antoine; Kovacic, Jason C.; Weber, Thomas; Faries, Peter L.; Soff, Gerald A.; Fayad, Zahi A.; Hajjar, Roger J.; Fuster, Valentin; Badimon, Juan J.

    2014-01-01

    Background Alternatively Spliced Tissue Factor (asTF) is a novel isoform of full-length Tissue Factor (fl-TF) that exhibits angiogenic activity. Although asTF has been detected in human plaques, it is unknown whether its expression in atherosclerosis causes increased neovascularization and an advanced plaque phenotype. Methods and Results Carotid (n=10) and coronary specimens (n=8), from patients with stable or unstable angina, were classified as complicated or uncomplicated based on plaque morphology. Analysis of asTF expression and cell type –specific expression revealed a strong expression and co-localization of asTF with macrophages and neovessels within complicated, but not un-complicated, human plaques. Our results showed that the angiogenic activity of asTF is mediated via HIF-1α up-regulation through integrins and activation of phosphatidylinositol-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) pathways. HIF-1α up-regulation by asTF also was associated with increased VEGF expression in primary human endothelial cells, and VEGF-Trap significantly reduced the angiogenic effect of asTF in vivo. Furthermore, asTF gene transfer significantly increased neointima formation and neovascularization following carotid wire injury in ApoE−/− mice. Conclusions The results of this study provide strong evidence that asTF promotes neointima formation and angiogenesis in an experimental model of accelerated atherosclerosis. Herein, we demonstrate that the angiogenic effect of asTF is mediated via the activation of the HIF-1/VEGF signaling. This mechanism may be relevant to neovascularization, progression and associated complications of human atherosclerosis as suggested by the increased expression of asTF in complicated vs. uncomplicated human carotid and coronary plaques. PMID:25116956

  1. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E;

    2016-01-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We ident...

  2. Activation of c-myb by 5' retrovirus promoter insertion in myeloid neoplasms is dependent upon an intact alternative splice donor site (SD') in gag

    Alternative splicing in Mo-MuLV recruits a splice donor site, SD', within the gag that is required for optimal replication in vitro. Remarkably, this SD' site was also found to be utilized for production of oncogenic gag-myb fusion RNA in 100% of murine-induced myeloid leukemia (MML) in pristane-treated BALB/c mice. Therefore, we investigated the influence of silent mutations of SD' in this model. Although there was no decrease in the overall incidence of disease, there was a decrease in the incidence of myeloid leukemia with a concomitant increase in lymphoid leukemia. Importantly, there was a complete lack of myeloid tumors associated with 5' insertional mutagenic activation of c-myb, suggesting the specific requirement of the SD' site in this mechanism

  3. Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors

    Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.

    1994-09-01

    The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.

  4. TRIMe7-CypA, an alternative splicing isoform of TRIMCyp in rhesus macaque, negatively modulates TRIM5α activity

    Na, Lei [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Tang, Yan-Dong [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Biotechnology Institute of Southern Medical University, Guangzhou 510515 (China); Liu, Jian-Dong; Yu, Chang-Qing; Sun, Liu-Ke; Lin, Yue-Zhi; Wang, Xue-Feng [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Wang, Xiaojun, E-mail: xjw@hvri.ac.cn [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Zhou, Jian-Hua, E-mail: jianhua_uc@126.com [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Harbin Pharmaceutical Group Biovaccine Company, Harbin 150069 (China)

    2014-04-04

    Highlights: • TRIMe7-CypA expresses in rhesus and pig-tailed, but not long-tailed macaques. • TRIMe7-CypA does not show the restriction to a HIV-GFP report virus in vitro. • It acts as a negative modulator to TRIM5α likely by competitive inhibition. - Abstract: The existence of innate, host-specific restriction factors is a major obstacle to the development of nonhuman primate models for AIDS studies, and TRIM5α is one of the most important of these restriction factors. In recent years, a TRIM5 chimeric gene that was retrotransposed by a cyclophilin A (CypA) cDNA was identified in certain macaque species. The TRIM5α-CypA fusion protein, TRIMCyp, which was expressed in these monkeys, had lost its restriction ability toward HIV-1. We previously found that TRIMe7-CypA, an alternative splicing isoform of the TRIMCyp transcripts, was expressed in pig-tailed and rhesus macaques but absent in long-tailed macaques. In this study, the anti-HIV-1 activity of TRIMe7-CypA in the rhesus macaque (RhTRIMe7-CypA) was investigated. The over-expression of RhTRIMe7-CypA in CrFK, HeLa and HEK293T cells did not restrict the infection or replication of an HIV-1-GFP reporter virus in these cells. As a positive control, rhesus (rh)TRIM5α strongly inhibited the reporter virus. Intriguingly, the anti-HIV-1 activity of RhTRIM5α was significantly reduced in a dose-dependent manner by the co-repression of RhTRIMe7-CypA. Our data indicate that although the RhTRIMe7-CypA isoform does not appear to restrict HIV-1, it may act as a negative modulator of TRIM family proteins, presumably by competitive inhibition.

  5. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig

    Vanessa J. Hall

    2015-10-01

    Full Text Available Animal models of familial juvenile onset of Alzheimer's disease (AD often fail to produce diverse pathological features of the disease by modification of single gene mutations that are responsible for the disease. They can hence be poor models for testing and development of novel drugs. Here, we analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw. We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model of the disease. Finally, it might be possible to use large mammal models to model familial AD by insertion of only a single mutation.

  6. TRIMe7-CypA, an alternative splicing isoform of TRIMCyp in rhesus macaque, negatively modulates TRIM5α activity

    Highlights: • TRIMe7-CypA expresses in rhesus and pig-tailed, but not long-tailed macaques. • TRIMe7-CypA does not show the restriction to a HIV-GFP report virus in vitro. • It acts as a negative modulator to TRIM5α likely by competitive inhibition. - Abstract: The existence of innate, host-specific restriction factors is a major obstacle to the development of nonhuman primate models for AIDS studies, and TRIM5α is one of the most important of these restriction factors. In recent years, a TRIM5 chimeric gene that was retrotransposed by a cyclophilin A (CypA) cDNA was identified in certain macaque species. The TRIM5α-CypA fusion protein, TRIMCyp, which was expressed in these monkeys, had lost its restriction ability toward HIV-1. We previously found that TRIMe7-CypA, an alternative splicing isoform of the TRIMCyp transcripts, was expressed in pig-tailed and rhesus macaques but absent in long-tailed macaques. In this study, the anti-HIV-1 activity of TRIMe7-CypA in the rhesus macaque (RhTRIMe7-CypA) was investigated. The over-expression of RhTRIMe7-CypA in CrFK, HeLa and HEK293T cells did not restrict the infection or replication of an HIV-1-GFP reporter virus in these cells. As a positive control, rhesus (rh)TRIM5α strongly inhibited the reporter virus. Intriguingly, the anti-HIV-1 activity of RhTRIM5α was significantly reduced in a dose-dependent manner by the co-repression of RhTRIMe7-CypA. Our data indicate that although the RhTRIMe7-CypA isoform does not appear to restrict HIV-1, it may act as a negative modulator of TRIM family proteins, presumably by competitive inhibition

  7. Genome-wide lentiviral shRNA screen identifies serine/arginine-rich splicing factor 2 as a determinant of oncolytic virus activity in breast cancer cells.

    Workenhe, S T; Ketela, T; Moffat, J; Cuddington, B P; Mossman, K L

    2016-05-12

    Oncolytic human herpes simplex virus type 1 (HSV-1) shows promising treatment efficacy in late-stage clinical trials. The anticancer activity of oncolytic viruses relies on deregulated pathways in cancer cells, which make them permissive to oncolysis. To identify pathways that restrict HSV-1 KM100-mediated oncolysis, this study used a pooled genome-wide short hairpin RNA library and found that depletion of the splicing factor arginine-rich splicing factor 2 (SRSF2) leads to enhanced cytotoxicity of breast cancer cells by KM100. Serine/arginine-rich (SR) proteins are a family of RNA-binding phosphoproteins that control both constitutive and alternative pre-mRNA splicing. Further characterization showed that KM100 infection of HS578T cells under conditions of low SRSF2 leads to pronounced apoptosis without a corresponding increase in virus replication. As DNA topoisomerase I inhibitors can limit the phosphorylation of SRSF2, we combined a topoisomerase I inhibitor chemotherapeutic with KM100 and observed synergistic anticancer effect in vitro and prolonged survival of tumor-bearing mice in vivo. PMID:26257065

  8. Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron.

    Monachello, Dario; Michel, François; Costa, Maria

    2016-03-01

    When assayed in vitro, group IIC self-splicing introns, which target bacterial Rho-independent transcription terminators, generally fail to yield branched products during splicing despite their possessing a seemingly normal branchpoint. Starting with intron O.i.I1 from Oceanobacillus iheyensis, whose crystallographically determined structure lacks branchpoint-containing domain VI, we attempted to determine what makes this intron unfit for in vitro branch formation. A major factor was found to be the length of the helix at the base of domain VI: 4 base pairs (bp) are required for efficient branching, even though a majority of group IIC introns have a 3-bp helix. Equally important for lariat formation is the removal of interactions between ribozyme domains II and VI, which are specific to the second step of splicing. Conversely, mismatching of domain VI and its proposed first-step receptor in subdomain IC1 was found to be detrimental; these data suggest that the intron-encoded protein may promote branch formation partly by modulating the equilibrium between conformations specific to the first and second steps of splicing. As a practical application, we show that by making just two changes to the O.i.I1 ribozyme, it is possible to generate sufficient amounts of lariat intron for the latter to be purified and used in kinetic assays in which folding and reaction are uncoupled. PMID:26769855

  9. A Novel Type of Splicing Enhancer Regulating Adenovirus Pre-mRNA Splicing

    Mühlemann, Oliver; Yue, Bai-Gong; Petersen-Mahrt, Svend; Akusjärvi, Göran

    2000-01-01

    Splicing of the adenovirus IIIa pre-mRNA is subjected to a temporal regulation, such that efficient IIIa 3′ splice site usage is confined to the late phase of the infectious cycle. Here we show that IIIa pre-mRNA splicing is activated more than 200-fold in nuclear extracts prepared from late adenovirus-infected cells (Ad-NE) compared to uninfected HeLa cell nuclear extracts (HeLa-NE). In contrast, splicing of the β-globin pre-mRNA is repressed in Ad-NE. We constructed hybrid pre-mRNAs between...

  10. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms.

    T. Tanaka; Tanaka, K; Ogawa, S.; M. Kurokawa; Mitani, K; Nishida, J; Shibata, Y; Yazaki, Y.; Hirai, H

    1995-01-01

    The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) and (3;21)(q26;q22) translocations associated with myelogenous leukemias and encodes a DNA binding protein. From the AML1 gene, two representative forms of proteins, AML1a and AML1b, are produced by alternative splicing. Both forms have a DNA binding domain but, unlike AML1b, AML1a lacks a putative transcriptional activation domain. Here we demonstrate that overexpressed AML1a totally suppresses granulocytic differentiation an...

  11. Complex Alternative Splicing

    Park, Jung Woo; Graveley, Brenton R.

    2007-01-01

    Alternative splicing is a powerful means of controlling gene expression and increasing protein diversity. Most genes express a limited number of mRNA isoforms, but there are several examples of genes that use alternative splicing to generate hundreds, thousands, and even tens of thousands of isoforms. Collectively such genes are considered to undergo complex alternative splicing. The best example is the Drosophila Down syndrome cell adhesion molecule (Dscam) gene, which can generate 38,016 is...

  12. Where splicing joins chromatin

    Hnilicová, Jarmila; Staněk, David

    2011-01-01

    There are numerous data suggesting that two key steps in gene expression—transcription and splicing influence each other closely. For a long time it was known that chromatin modifications regulate transcription, but only recently it was shown that chromatin and histone modifications play a significant role in pre-mRNA splicing. Here we summarize interactions between splicing machinery and chromatin and discuss their potential functional significance. We focus mainly on histone acetylation and...

  13. EVOLUTION OF SR PROTEIN AND HnRNP SPLICING REGULATORY FACTORS

    Busch, A.; Hertel, KJ

    2011-01-01

    The splicing of pre-mRNAs is an essential step of gene expression in eukaryotes. Introns are removed from split genes through the activities of the spliceosome, a large ribonuclear machine that is conserved throughout the eukaryotic lineage. While unicellular eukaryotes are characterized by less complex splicing, pre-mRNA splicing of multicellular organisms is often associated with extensive alternative splicing that significantly enriches their proteome. The alternative selection of splice s...

  14. Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy.

    Shabanpoor, Fazel; McClorey, Graham; Saleh, Amer F; Järver, Peter; Wood, Matthew J A; Gait, Michael J

    2015-01-01

    The potential for therapeutic application of splice-switching oligonucleotides (SSOs) to modulate pre-mRNA splicing is increasingly evident in a number of diseases. However, the primary drawback of this approach is poor cell and in vivo oligonucleotide uptake efficacy. Biological activities can be significantly enhanced through the use of synthetically conjugated cationic cell penetrating peptides (CPPs). Studies to date have focused on the delivery of a single SSO conjugated to a CPP, but here we describe the conjugation of two phosphorodiamidate morpholino oligonucleotide (PMO) SSOs to a single CPP for simultaneous delivery and pre-mRNA targeting of two separate genes, exon 23 of the Dmd gene and exon 5 of the Acvr2b gene, in a mouse model of Duchenne muscular dystrophy. Conjugations of PMOs to a single CPP were carried out through an amide bond in one case and through a triazole linkage ('click chemistry') in the other. The most active bi-specific CPP-PMOs demonstrated comparable exon skipping levels for both pre-mRNA targets when compared to individual CPP-PMO conjugates both in cell culture and in vivo in the mdx mouse model. Thus, two SSOs with different target sequences conjugated to a single CPP are biologically effective and potentially suitable for future therapeutic exploitation. PMID:25468897

  15. spliceR

    Vitting-Seerup, Kristoffer; Porse, Bo Torben; Sandelin, Albin;

    2014-01-01

    RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing...

  16. Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals

    Elela Sherif

    2006-01-01

    Full Text Available Abstract Background We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. Results We show that an oligonucleotide with a 5' tail containing the human β-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. Conclusion Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.

  17. Group II Intron Self-Splicing.

    Pyle, Anna Marie

    2016-07-01

    Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography. These studies reveal a dynamic machine that cycles progressively through multiple conformations as it stimulates the various stages of splicing. A central active site, containing a reactive metal ion cluster, catalyzes both steps of self-splicing. These studies provide insights into RNA structure, folding, and catalysis, as they raise new questions about the behavior of RNA machines. PMID:27391926

  18. Cross-kingdom patterns of alternative splicing and splice recognition

    Pearson, Matthew D.; McGuire, Abigail M; Neafsey, Daniel Edward; Galagan, James E.

    2007-01-01

    Background: Variations in transcript splicing can reveal how eukaryotes recognize intronic splice sites. Retained introns (RIs) commonly appear when the intron definition (ID) mechanism of splice site recognition inconsistently identifies intron-exon boundaries, and cassette exons (CEs) are often caused by variable recognition of splice junctions by the exon definition (ED) mechanism. We have performed a comprehensive survey of alternative splicing across 42 eukaryotes to gain ins...

  19. SpliceDisease database: linking RNA splicing and disease

    WANG, Juan; Jie ZHANG; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2011-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associa...

  20. Splicing regulators: targets and drugs

    Yeo, Gene Wei-Ming

    2005-01-01

    Silencing of splicing regulators by RNA interference, combined with splicing-specific microarrays, has revealed a complex network of distinct alternative splicing events in Drosophila, while a high-throughput screen of more than 6,000 compounds has identified drugs that interfere specifically and directly with one class of splicing regulators in human cells.

  1. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues

  2. Tissue-specific splicing factor gene expression signatures

    Grosso, A. R.; Gomes, Anita; Barbosa-Morais, Nuno; Caldeira, Sandra; Thorne, Natalie; Grech, Godfrey; Lindern, Marieke; Carmo-Fonseca, Maria

    2008-01-01

    textabstractThe alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific splicing decisions most likely result from differences in the concentration and/or activity of these proteins. However, large-scale data to systematically address this issue have just recently...

  3. Optical Fiber Fusion Splicing

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  4. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren;

    2008-01-01

    promoter docking of transcription initiation factors TFIID, TFIIB, and TFIIH on a gene containing a functional 5′ splice site. In addition to their promoter association, the TFIID and TFIIH components, TBP and p89, are specifically recruited to the 5′ splice site region. Our data suggest a model in which a......Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin m......RNAs, harboring wild-type or various 5′ splice site mutations, we demonstrate a strong positive correlation between splicing efficiency and transcription activity. Interestingly, a 5′ splice site can stimulate transcription even in the absence of splicing. Chromatin immunoprecipitation experiments show enhanced...

  5. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells.

    Ma, Zhiwei; Yao, Wenliang; Chan, Chi-Chao; Kannabiran, Chitra; Wawrousek, Eric; Hejtmancik, J Fielding

    2016-06-01

    βγ-Crystallins, having a uniquely stable two domain four Greek key structure, are crucial for transparency of the eye lens,. Mutations in lens crystallins have been proposed to cause cataract formation by a variety of mechanisms most of which involve destabilization of the protein fold. The underlying molecular mechanism for autosomal dominant zonular cataracts with sutural opacities in an Indian family caused by a c.215+1G>A splice mutation in the βA3/A1-crystallin gene CRYBA1 was elucidated using three transgenic mice models. This mutation causes a splice defect in which the mutant mRNA escapes nonsense mediated decay by skipping both exons 3 and 4. Skipping these exons results in an in-frame deletion of the mRNA and synthesis of an unstable p.Ile33_Ala119del mutant βA3/A1-crystallin protein. Transgenic expression of mutant βA3/A1-crystallin but not the wild type protein results in toxicity and abnormalities in the maturation and orientation of differentiating lens fibers in c.97_357del CRYBA1 transgenic mice, leading to a small spherical lens, cataract, and often lens capsule rupture. On a cellular level, the lenses accumulated p.Ile33_Ala119del βA3/A1-crystallin with resultant activation of the stress signaling pathway - unfolded protein response (UPR) and inhibition of normal protein synthesis, culminating in apoptosis. This highlights the mechanistic contrast between mild mutations that destabilize crystallins and other proteins, resulting in their being bound by the α-crystallins that buffer lens cells against damage by denatured proteins, and severely misfolded proteins that are not bound by α-crystallin but accumulate and have a direct toxic effect on lens cells, resulting in early onset cataracts. PMID:26851658

  6. Galactosemia caused by a point mutation that activates cryptic donor splice site in the galactose-1-phosphate uridyltransferase gene

    Wadelius, C.; Lagerkvist, A. (Univ. Hospital, Uppsala (Sweden) Uppsala Univ. (Sweden)); Molin, A.K.; Larsson, A. (Univ. Hospital, Uppsala (Sweden)); Von Doebeln, U. (Karolinska Institute, Stockholm (Sweden))

    1993-08-01

    Galactosemia affects 1/84,000 in Sweden and is manifested in infancy when the child is exposed to galactose in the diet. If untreated there is a risk of severe early symptoms and, even with a lactose-free diet, late symptoms such as mental retardation and ovarial dysfunction may develop. In classical galactosemia, galactose-1-phosphate uridyltransferase (GALT) (EC 2.7.7.12) is defective and the normal cDNA sequence of this enzyme has been characterized. Recently eight mutations leading to galactosemia were published. Heparinized venous blood was drawn from a patient with classical galactosemia. In the cDNA from the patient examined, an insertion of 54 bp was found at position 1087. Amplification of the relevant genomic region of the patient's DNA was performed. Exon-intron boundaries and intronic sequences thus determined revealed that the 54-bp insertion was located immediately downstream of exon 10. It was further found that the patient was heterozygous for a point mutation, changing a C to a T (in 5 of 9 clones) at the second base in the intron downstream of the insertion. This alteration creates a sequence which, as well as the ordinary splice site, differs in only two positions from the consensus sequence. It was found that the mutation occurred in only one of the 20 alleles from galactosemic patients and in none of the 200 alleles from normal controls. The mutation is inherited from the mother, who also was found to express the 54-bp-long insertion at the mRNA level. Sequences from the 5[prime] end of the coding region were determined after genomic amplification, revealing a sequence identical to that reported. The mutation on the paternal allele has not been identified. 9 refs., 1 fig.

  7. Alternative splicing and muscular dystrophy

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2010-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, musc...

  8. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    Serena Bonomi; Stefania Gallo; Morena Catillo; Daniela Pignataro; Giuseppe Biamonti; Claudia Ghigna

    2013-01-01

    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer ...

  9. Where splicing joins chromatin

    Hnilicová, Jarmila; Staněk, David

    2011-01-01

    Roč. 2, č. 3 (2011), s. 182-188. ISSN 1949-1034 R&D Projects: GA ČR GAP305/10/0424; GA AV ČR KAN200520801 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromatin * exon * alternative splicing * transcription * snRNP Subject RIV: EB - Genetics ; Molecular Biology

  10. Spliced leader trans-splicing in the nematode Trichinella spiralis uses highly polymorphic, noncanonical spliced leaders

    Pettitt, Jonathan; Müller, Berndt; Stansfield, Ian; Connolly, Bernadette

    2008-01-01

    The trans-splicing of short spliced leader (SL) RNAs onto the 5′ ends of mRNAs occurs in a diverse range of taxa. In nematodes, all species so far characterized utilize a characteristic, conserved spliced leader, SL1, as well as variants that are employed in the resolution of operons. Here we report the identification of spliced leader trans-splicing in the basal nematode Trichinella spiralis, and show that this nematode does not possess a canonical SL1, but rather has at least 15 distinct sp...

  11. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    Jonàs Juan-Mateu

    Full Text Available DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.

  12. Alternative splicing of SMPD1 in human sepsis.

    Marcel Kramer

    Full Text Available Acid sphingomyelinase (ASM or sphingomyelin phosphodiesterase, SMPD activity engages a critical role for regulation of immune response and development of organ failure in critically ill patients. Beside genetic variation in the human gene encoding ASM (SMPD1, alternative splicing of the mRNA is involved in regulation of enzymatic activity. Here we show that the patterns of alternatively spliced SMPD1 transcripts are significantly different in patients with systemic inflammatory response syndrome and severe sepsis/septic shock compared to control subjects allowing discrimination of respective disease entity. The different splicing patterns might contribute to the better understanding of the pathophysiology of human sepsis.

  13. Hepatitis B spliced protein (HBSP) promotes the carcinogenic effects of benzo [alpha] pyrene by interacting with microsomal epoxide hydrolase and enhancing its hydrolysis activity

    The risk of hepatocellular carcinoma (HCC) increases in chronic hepatitis B surface antigen (HBsAg) carriers who often have concomitant increase in the levels of benzo[alpha]pyrene-7,8-diol-9,10-epoxide(±) (BPDE)-DNA adduct in liver tissues, suggesting a possible co-carcinogenesis of Hepatitis B virus (HBV) and benzo[alpha]pyrene in HCC; however the exact mechanisms involved are unclear. The interaction between hepatitis B spliced protein (HBSP) and microsomal epoxide hydrolase (mEH) was confirmed using GST pull-down, co-immunoprecipitation and mammalian two-hybrid assay; the effects of HBSP on mEH-mediated B[alpha]P metabolism was examined by high performance liquid chromatography (HPLC); and the influences of HBSP on B[alpha]P carcinogenicity were evaluated by bromodeoxyuridine cell proliferation, anchorage-independent growth and tumor xenograft. HBSP could interact with mEH in vitro and in vivo, and this interaction was mediated by the N terminal 47 amino acid residues of HBSP. HBSP could greatly enhance the hydrolysis activity of mEH in cell-free mouse liver microsomes, thus accelerating the metabolism of benzo[alpha]pyrene to produce more ultimate carcinnogen, BPDE, and this effect of HBSP requires the intact HBSP molecule. Expression of HBSP significantly increased the formation of BPDE-DNA adduct in benzo[alpha]pyrene-treated Huh-7 hepatoma cells, and this enhancement was blocked by knockdown of mEH. HBSP could enhance the cell proliferation, accelerate the G1/S transition, and promote cell transformation and tumorigenesis of B[alpha]P-treated Huh-7 hepatoma cells. Our results demonstrated that HBSP could promote carcinogenic effects of B[alpha]P by interacting with mEH and enhancing its hydrolysis activity

  14. hnRNP H Is a Component of a Splicing Enhancer Complex That Activates a c-src Alternative Exon in Neuronal Cells

    Chou, Min-Yuan; Rooke, Nanette; Turck, Christoph W.; Black, Douglas L.

    1999-01-01

    The regulation of the c-src N1 exon is mediated by an intronic splicing enhancer downstream of the N1 5′ splice site. Previous experiments showed that a set of proteins assembles onto the most conserved core of this enhancer sequence specifically in neuronal WERI-1 cell extracts. The most prominent components of this enhancer complex are the proteins hnRNP F, KSRP, and an unidentified protein of 58 kDa (p58). This p58 protein was purified from the WERI-1 cell nuclear extract by ammonium sulfa...

  15. The neurogenetics of alternative splicing

    Vuong, CK; Black, DL; S. Zheng

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that r...

  16. A suppressive effect of Sp1 recruitment to the first leader 5' splice site region on L4-22K-mediated activation of the adenovirus major late promoter.

    Lan, Susan; Östberg, Sara; Punga, Tanel; Akusjärvi, Göran

    2015-12-01

    Transcription from the adenovirus major late promoter (MLP) requires binding of late phase-specific factors to the so-called DE element located approximately 100 base pairs downstream of the MLP transcriptional start site. The adenovirus L4-22K protein binds to the DE element and stimulates transcription from the MLP via a DE sequence-dependent mechanism. Here we use a transient expression approach to show that L4-22K binds to an additional site downstream of the MLP start site, the so-called R1 region, which includes the major late first leader 5' splice site. Binding of L4-22K to R1 has a suppressive effect on MLP transcription. L4-22K binds to the distal part of R1 and stimulates the recruitment of Sp1 and other cellular factors to a site overlapping the first leader 5' splice site. Binding of Sp1 to the 5' splice site region had an inhibitory effect on L4-22K-activated MLP transcription. PMID:26247419

  17. Fusion splicing of silicon optical fibres

    Xiao, L.M.; Healy, N; Gibson, U.; Hawkins, T.; Jones, M.; Ballato, J; A. C. Peacock

    2015-01-01

    The first splicing experiments between silicon optical fibres (SOFs) and conventional fibres are investigated. An optimized fusion splicing approach for a polycrystalline SOF is demonstrated and the material properties after splicing are characterized.

  18. Inverse splicing of a group II intron.

    Jarrell, K A

    1993-01-01

    I describe the self-splicing of an RNA that consists of exon sequences flanked by group II intron sequences. I find that this RNA undergoes accurate splicing in vitro, yielding an excised exon circle. This splicing reaction involves the joining of the 5' splice site at the end of an exon to the 3' splice site at the beginning of the same exon; thus, I term it inverse splicing. Inverse splicing provides a potential mechanism for exon scrambling, for exon deletion in alternative splicing pathwa...

  19. Characterization of Neuronal-Specific Tra2b Knock-Out Mice and Identification of Tra2b Splicing Targets

    Storbeck, Markus

    2013-01-01

    TRA2B is a serine-arginine-rich splicing factor that contributes to the alternative splicing of exons and depletion of Tra2b in the mouse causes early embryonic lethality. It modulates splice site selection in a concentration dependent fashion and associates to target exons either directly via GAA binding motifs or indirectly via interactions with other splice factors. TRA2B is highest expressed in neuronal tissue and testis and its expression and activation are controlled via an autoregulato...

  20. Identification of cis-Acting Elements and Splicing Factors Involved in the Regulation of BIM Pre-mRNA Splicing

    Juan, Wen Chun; Roca, Xavier; Ong, S. Tiong

    2014-01-01

    Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and spl...

  1. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes.

    Cornelius Schneider

    Full Text Available Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.

  2. Synaptic signaling and aberrant RNA splicing in autism spectrum disorders

    Ryan M Smith

    2011-01-01

    Full Text Available Interactions between presynaptic and postsynaptic cellular adhesion molecules drive synapse maturation during development. These trans-synaptic interactions are regulated by alternative splicing of cellular adhesion molecule RNAs, which ultimately determines neurotransmitter phenotype. The diverse assortment of RNAs produced by alternative splicing generates countless protein isoforms necessary for guiding specialized cell-to-cell connectivity. Failure to generate the appropriate synaptic adhesion proteins is associated with disrupted glutamatergic and gamma-aminobutyric acid signaling, resulting in loss of activity-dependent neuronal plasticity, and risk for developmental disorders, including autism. While the majority of genetic mutations currently linked to autism are rare variants that change the protein coding sequence of synaptic candidate genes, regulatory polymorphisms affecting constitutive and alternative splicing have emerged as risk factors in numerous other diseases, accounting for an estimated 40-60% of general disease risk. Here, we review the relationship between aberrant RNA splicing of synapse-related genes and autism spectrum disorders.

  3. Intronic Alus influence alternative splicing.

    Galit Lev-Maor

    Full Text Available Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.

  4. MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery

    Kai WANG; Singh, Darshan; Zeng, Zheng; Coleman, Stephen J.; Huang, Yan; Savich, Gleb L.; He, Xiaping; Mieczkowski, Piotr; Grimm, Sara A; Perou, Charles M; MacLeod, James N; Chiang, Derek Y.; Prins, Jan F.; Liu, Jinze

    2010-01-01

    The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (

  5. Entropic contributions to the splicing process

    It has been recently argued that depletion attraction may play an important role in different aspects of cellular organization, ranging from the organization of transcriptional activity in transcription factories to the formation of nuclear bodies. In this paper, we suggest a new application of these ideas in the context of the splicing process, a crucial step of messenger RNA maturation in eukaryotes. We shall show that entropy effects and the resulting depletion attraction may explain the relevance of the aspecific intron length variable in the choice of splice-site recognition modality. On top of that, some qualitative features of the genome architecture of higher eukaryotes can find evolutionary realistic motivation in the light of our model

  6. Conserved RNA secondary structures promote alternative splicing

    Shepard, PJ; Hertel, KJ

    2008-01-01

    Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site stren...

  7. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    Zodwa Dlamini

    2015-11-01

    Full Text Available Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.

  8. Integrating many co-splicing networks to reconstruct splicing regulatory modules

    Dai Chao; Li Wenyuan; Liu Juan; Zhou Xianghong

    2012-01-01

    Abstract Background Alternative splicing is a ubiquitous gene regulatory mechanism that dramatically increases the complexity of the proteome. However, the mechanism for regulating alternative splicing is poorly understood, and study of coordinated splicing regulation has been limited to individual cases. To study genome-wide splicing regulation, we integrate many human RNA-seq datasets to identify splicing module, which we define as a set of cassette exons co-regulated by the same splicing f...

  9. Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets

    Sergio Barberan-Soler; Zahler, Alan M.

    2008-01-01

    Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18%) of the alternative splicing events studi...

  10. Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C.

    Durand, G M; Gregor, P.; X. Zheng; Bennett, M V; Uhl, G. R.; Zukin, R S

    1992-01-01

    Molecular cloning identified complementary DNA species, from a rat ventral midbrain library, encoding apparent splice variants of the N-methyl-D-aspartate (NMDA) receptor NMDAR1 (which we now term NR1a). Sequencing revealed that one variant, NR1b, differs from NR1a by the presence of a 21-amino acid insert near the amino end of the N-terminal domain and by an alternate C-terminal domain in which the last 75 amino acids are replaced by an unrelated sequence of 22 amino acids. NR1b is virtually...

  11. Inducible Expression and Splicing of Candida Group Ⅰ Ribozyme in E.coli

    SHANG Yuan; WANG Chen; ZHANG Yi

    2005-01-01

    The Ca. LSU intron flanking a 129 bp exon upstream and a 100 bp exon downstream was inserted into the lacZ gene on pRS426 to transform E. coli. Northern blot analysis and RT-PCR showed that splicing of Ca. LSU in E.coli is efficient upon inducible expression of the precursor RNA. In contrast, co-transcriptional self-splicing of the intron in vitro is much less active. Therefore, this E. coli splicing system can be used as a better model to investigate the effect of the ribozyme inhibitors on Ca. LSU splicing in living cell. We examined the effects of neomycin sulfate and pentamidine on Ca. LSU splicing in E. coli, and found that these drugs does-dependently inhibit the intron splicing.However, heomycin is more potent than pentamidine in this action.

  12. Genome-wide analysis of SRSF10-regulated alternative splicing by deep sequencing of chicken transcriptome

    Xuexia Zhou

    2014-12-01

    Full Text Available Splicing factor SRSF10 is known to function as a sequence-specific splicing activator that is capable of regulating alternative splicing both in vitro and in vivo. We recently used an RNA-seq approach coupled with bioinformatics analysis to identify the extensive splicing network regulated by SRSF10 in chicken cells. We found that SRSF10 promoted both exon inclusion and exclusion. Functionally, many of the SRSF10-verified alternative exons are linked to pathways of response to external stimulus. Here we describe in detail the experimental design, bioinformatics analysis and GO/pathway enrichment analysis of SRSF10-regulated genes to correspond with our data in the Gene Expression Omnibus with accession number GSE53354. Our data thus provide a resource for studying regulation of alternative splicing in vivo that underlines biological functions of splicing regulatory proteins in cells.

  13. Fractionation and characterization of a yeast mRNA splicing extract.

    S. C. Cheng; Abelson, J

    1986-01-01

    We have fractionated a yeast whole cell extract that can accurately splice synthetic actin and CYH2 pre-mRNAs. Three fractions, designated I, II, and III, have been separated by use of ammonium sulfate fractionation and chromatography on heparin agarose. Each fraction alone has no splicing activity. Fractions I and II allow the first step of the splicing reaction to proceed, giving rise to the splicing intermediates, free exon 1, and intron-exon 2. Addition of fraction III completes the react...

  14. Distinct mechanisms of splicing regulation in vivo by the Drosophila protein Sex-lethal

    Granadino, Begoña; Luiz O. F. Penalva; Green, Michael R.; Valcárcel, Juán; Sánchez, Lucas

    1997-01-01

    The protein Sex-lethal (SXL) controls pre-mRNA splicing of two genes involved in Drosophila sex determination: transformer (tra) and the Sxl gene itself. Previous in vitro results indicated that SXL antagonizes the general splicing factor U2AF65 to regulate splicing of tra. In this report, we have used transgenic flies expressing chimeric proteins between SXL and the effector domain of U2AF65 to study the mechanisms of splicing regulation by SXL in vivo. Conferring U2AF activity to SXL reliev...

  15. Spliced-leader trans-splicing in freshwater planarians.

    Zayas, Ricardo M; Bold, Tyler D; Newmark, Phillip A

    2005-10-01

    trans-Splicing, in which a spliced-leader (SL) RNA is appended to the most 5' exon of independently transcribed pre-mRNAs, has been described in a wide range of eukaryotes, from protozoans to chordates. Here we describe trans-splicing in the freshwater planarian Schmidtea mediterranea, a free-living member of the phylum Platyhelminthes. Analysis of an expressed sequence tag (EST) collection from this organism showed that over 300 transcripts shared one of two approximately 35-base sequences (Smed SL-1 and SL-2) at their 5' ends. Examination of genomic sequences encoding representatives of these transcripts revealed that these shared sequences were transcribed elsewhere in the genome. RNA blot analysis, 5' and 3' rapid amplification of cDNA ends, as well as genomic sequence data showed that 42-nt SL sequences were derived from small RNAs of approximately 110 nt. Similar sequences were also found at the 5' ends of ESTs from the planarian Dugesia japonica. trans-Splicing has already been described in numerous representatives of the phylum Platyhelminthes (trematodes, cestodes, and polyclads); its presence in two representatives of the triclads supports the hypothesis that this mode of RNA processing is ancestral within this group. The upcoming complete genome sequence of S. mediterranea, combined with this animal's experimental accessibility and susceptibility to RNAi, provide another model organism in which to study the function of the still-enigmatic trans-splicing. PMID:15972844

  16. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery.

    Wang, Kai; Singh, Darshan; Zeng, Zheng; Coleman, Stephen J; Huang, Yan; Savich, Gleb L; He, Xiaping; Mieczkowski, Piotr; Grimm, Sara A; Perou, Charles M; MacLeod, James N; Chiang, Derek Y; Prins, Jan F; Liu, Jinze

    2010-10-01

    The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (<75 bp) and long reads (≥ 75 bp). MapSplice is not dependent on splice site features or intron length, consequently it can detect novel canonical as well as non-canonical splices. MapSplice leverages the quality and diversity of read alignments of a given splice to increase accuracy. We demonstrate that MapSplice achieves higher sensitivity and specificity than TopHat and SpliceMap on a set of simulated RNA-seq data. Experimental studies also support the accuracy of the algorithm. Splice junctions derived from eight breast cancer RNA-seq datasets recapitulated the extensiveness of alternative splicing on a global level as well as the differences between molecular subtypes of breast cancer. These combined results indicate that MapSplice is a highly accurate algorithm for the alignment of RNA-seq reads to splice junctions. Software download URL: http://www.netlab.uky.edu/p/bioinfo/MapSplice. PMID:20802226

  17. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick;

    2007-01-01

    molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAP kappa and GFAP kappa transcripts. The GFAP kappa mRNA is distinct from GFAP epsilon mRNA given that it also includes intron 7a....... Polyadenylation at the exon 7a site is stimulated by the upstream splice site. Moreover, exon 7a splice enhancer motifs supported both exon 7a splicing and polyadenylation. SR proteins increased the usage of the exon 7a polyadenylation signal but not the exon 7a splicing, whereas the polypyrimidine tract binding...... (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model with the...

  18. The proper splicing of RNAi factors is critical for pericentric heterochromatin assembly in fission yeast.

    Scott P Kallgren

    Full Text Available Heterochromatin preferentially assembles at repetitive DNA elements, playing roles in transcriptional silencing, recombination suppression, and chromosome segregation. The RNAi machinery is required for heterochromatin assembly in a diverse range of organisms. In fission yeast, RNA splicing factors are also required for pericentric heterochromatin assembly, and a prevailing model is that splicing factors provide a platform for siRNA generation independently of their splicing activity. Here, by screening the fission yeast deletion library, we discovered four novel splicing factors that are required for pericentric heterochromatin assembly. Sequencing total cellular RNAs from the strongest of these mutants, cwf14Δ, showed intron retention in mRNAs of several RNAi factors. Moreover, introducing cDNA versions of RNAi factors significantly restored pericentric heterochromatin in splicing mutants. We also found that mutations of splicing factors resulted in defective telomeric heterochromatin assembly and mis-splicing the mRNA of shelterin component Tpz1, and that replacement of tpz1+ with its cDNA partially rescued heterochromatin defects at telomeres in splicing mutants. Thus, proper splicing of RNAi and shelterin factors contributes to heterochromatin assembly at pericentric regions and telomeres.

  19. Fetal bovine serum and human constitutive androstane receptor: Evidence for activation of the SV23 splice variant by artemisinin, artemether, and arteether in a serum-free cell culture system

    Lau, Aik Jiang; Chang, Thomas K.H., E-mail: thomas.chang@ubc.ca

    2014-06-01

    The naturally occurring SV23 splice variant of human constitutive androstane receptor (hCAR-SV23) is activated by di-(2-ethylhexyl)phthalate (DEHP), which is detected as a contaminant in fetal bovine serum (FBS). In our initial experiment, we compared the effect of dialyzed FBS, charcoal-stripped, dextran-treated FBS (CS-FBS), and regular FBS on the basal activity and ligand-activation of hCAR-SV23 in a cell-based reporter gene assay. In transfected HepG2 cells cultured in medium supplemented with 10% FBS, basal hCAR-SV23 activity varied with the type of FBS (regular > dialyzed > CS). DEHP increased hCAR-SV23 activity when 10% CS-FBS, but not regular FBS or dialyzed FBS, was used. With increasing concentrations (1–10%) of regular FBS or CS-FBS, hCAR-SV23 basal activity increased, whereas in DEHP-treated cells, hCAR-SV23 activity remained similar (regular FBS) or slightly increased (CS-FBS). Subsequent experiments identified a serum-free culture condition to detect DEHP activation of hCAR-SV23. Under this condition, artemisinin, artemether, and arteether increased hCAR-SV23 activity, whereas they decreased it in cells cultured in medium supplemented with 10% regular FBS. By comparison, FBS increased the basal activity of the wild-type isoform of hCAR (hCAR-WT), whereas it did not affect the basal activity of the SV24 splice variant (hCAR-SV24) or ligand activation of hCAR-SV24 and hCAR-WT by 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). The use of serum-free culture condition was suitable for detecting CITCO activation of hCAR-WT and hCAR-SV24. In conclusion, FBS leads to erroneous classification of pharmacological ligands of hCAR-SV23 in cell-based assays, but investigations on functional ligands of hCAR isoforms can be conducted in serum-free culture condition. - Highlights: • FBS leads to erroneous pharmacological classification of hCAR-SV23 ligands. • Artemisinin, artemether, and arteether activate h

  20. Fetal bovine serum and human constitutive androstane receptor: Evidence for activation of the SV23 splice variant by artemisinin, artemether, and arteether in a serum-free cell culture system

    The naturally occurring SV23 splice variant of human constitutive androstane receptor (hCAR-SV23) is activated by di-(2-ethylhexyl)phthalate (DEHP), which is detected as a contaminant in fetal bovine serum (FBS). In our initial experiment, we compared the effect of dialyzed FBS, charcoal-stripped, dextran-treated FBS (CS-FBS), and regular FBS on the basal activity and ligand-activation of hCAR-SV23 in a cell-based reporter gene assay. In transfected HepG2 cells cultured in medium supplemented with 10% FBS, basal hCAR-SV23 activity varied with the type of FBS (regular > dialyzed > CS). DEHP increased hCAR-SV23 activity when 10% CS-FBS, but not regular FBS or dialyzed FBS, was used. With increasing concentrations (1–10%) of regular FBS or CS-FBS, hCAR-SV23 basal activity increased, whereas in DEHP-treated cells, hCAR-SV23 activity remained similar (regular FBS) or slightly increased (CS-FBS). Subsequent experiments identified a serum-free culture condition to detect DEHP activation of hCAR-SV23. Under this condition, artemisinin, artemether, and arteether increased hCAR-SV23 activity, whereas they decreased it in cells cultured in medium supplemented with 10% regular FBS. By comparison, FBS increased the basal activity of the wild-type isoform of hCAR (hCAR-WT), whereas it did not affect the basal activity of the SV24 splice variant (hCAR-SV24) or ligand activation of hCAR-SV24 and hCAR-WT by 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). The use of serum-free culture condition was suitable for detecting CITCO activation of hCAR-WT and hCAR-SV24. In conclusion, FBS leads to erroneous classification of pharmacological ligands of hCAR-SV23 in cell-based assays, but investigations on functional ligands of hCAR isoforms can be conducted in serum-free culture condition. - Highlights: • FBS leads to erroneous pharmacological classification of hCAR-SV23 ligands. • Artemisinin, artemether, and arteether activate h

  1. EASI—enrichment of alternatively spliced isoforms

    Julian P Venables; Burn, John

    2006-01-01

    Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This ...

  2. Mechano-Regulation of Alternative Splicing

    Liu, Huan; Tang, Liling

    2013-01-01

    Alternative splicing contributes to the complexity of proteome by producing multiple mRNAs from a single gene. Affymetrix exon arrays and experiments in vivo or in vitro demonstrated that alternative splicing was regulated by mechanical stress. Expression of mechano-growth factor (MGF) which is the splicing isoform of insulin-like growth factor 1(IGF-1) and vascular endothelial growth factor (VEGF) splicing variants such as VEGF121, VEGF165, VEGF206, VEGF189, VEGF165 and VEGF145 are regulated...

  3. ASD: a bioinformatics resource on alternative splicing

    Stamm, Stefan; Riethoven, Jean-Jack; Le Texier, Vincent; Gopalakrishnan, Chellappa; Kumanduri, Vasudev; Tang, Yesheng; Barbosa-Morais, Nuno L.; Thanaraj, Thangavel Alphonse

    2005-01-01

    Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. We present the continuation and upgrade of the ASD [T. A. Thanaraj, S. Stamm, F. Clark, J. J. Riethoven, V. Le Texier, J. Muilu (2004) Nucleic Acids Res. 32, D64–D69] that consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database...

  4. Targeting RNA Splicing for Disease Therapy

    Havens, Mallory A.; Duelli, Dominik M.; Hastings, Michelle L.

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicin...

  5. Evolution of alternative splicing after gene duplication

    Su, Zhixi; Wang, Jianmin; Yu, Jun; Huang, Xiaoqiu; Gu, Xun

    2006-01-01

    Alternative splicing and gene duplication are two major sources of proteomic function diversity. Here, we study the evolutionary trend of alternative splicing after gene duplication by analyzing the alternative splicing differences between duplicate genes. We observed that duplicate genes have fewer alternative splice (AS) forms than single-copy genes, and that a negative correlation exists between the mean number of AS forms and the gene family size. Interestingly, we found that the loss of ...

  6. SAW: A Method to Identify Splicing Events from RNA-Seq Data Based on Splicing Fingerprints

    Kang Ning; Damian Fermin

    2010-01-01

    Splicing event identification is one of the most important issues in the comprehensive analysis of transcription profile. Recent development of next-generation sequencing technology has generated an extensive profile of alternative splicing. However, while many of these splicing events are between exons that are relatively close on genome sequences, reads generated by RNA-Seq are not limited to alternative splicing between close exons but occur in virtually all splicing events. In this work, ...

  7. Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome

    Shao, Wei; Zhao, Qiong-Yi; Wang, Xiu-Ye; Xu, Xin-Yan; Tang, Qing; Li, Muwang; Li, Xuan; Xu, Yong-Zhen

    2012-01-01

    Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. The authors identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is ...

  8. Oncogenes and RNA splicing of human tumor viruses.

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  9. Two new splice variants in porcine PPARGC1A

    Peelman Luc J

    2008-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A is a coactivator with a vital and central role in fat and energy metabolism. It is considered to be a candidate gene for meat quality in pigs and is involved in the development of obesity and diabetes in humans. How its many functions are regulated, is however still largely unclear. Therefore a transcription profile of PPARGC1A in 32 tissues and 4 embryonic developmental stages in the pig was constructed by screening its cDNA for possible splice variants with exon-spanning primers. Findings This led to the discovery of 2 new splice variants in the pig, which were subsequently also detected in human tissues. In these variants, exon 8 was either completely or partly (the last 66 bp were conserved spliced out, potentially coding for a much shorter protein of respectively 337 and 359 amino acids (aa, of which the first 291 aa would be the same compared to the complete protein (796 aa. Conclusion Considering the functional domains of the PPARGC1A protein, it is very likely these splice variants considerably affect the function of the protein and alternative splicing could be one of the mechanisms by which the diverse functions of PPARGC1A are regulated.

  10. Alternative splice variants of the human PD-1 gene

    Nielsen, Christian; Ohm-Laursen, Line; Barington, Torben;

    2005-01-01

    PD-1 is an immunoregulatory receptor expressed on the surface of activated T cells, B cells, and monocytes. We describe four alternatively spliced PD-1 mRNA transcripts (PD-1Deltaex2, PD-1Deltaex3, PD-1Deltaex2,3, and PD-1Deltaex2,3,4) in addition to the full length isoform. PD-1Deltaex2 and PD-1......Deltaex3 are generated by alternative splicing where exon 2 (extracellular IgV-like domain) and exon 3 (transmembrane domain) respectively are spliced out. PD-1Deltaex3 is therefore likely to encode a soluble form of PD-1. PD-1Deltaex2,3 lacks exon 2 and 3. These three variants have unaffected open...

  11. COMMUNICATION: Alternative splicing and genomic stability

    Cahill, Kevin

    2004-06-01

    Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.

  12. GC content around splice sites affects splicing through pre-mRNA secondary structures

    Chen Liang

    2011-01-01

    Full Text Available Abstract Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens, mice (Mus musculus, fruit flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  13. Titin Diversity—Alternative Splicing Gone Wild

    Wei Guo

    2010-01-01

    Full Text Available Titin is an extremely large protein found in highest concentrations in heart and skeletal muscle. The single mammalian gene is expressed in multiple isoforms as a result of alternative splicing. Although titin isoform expression is controlled developmentally and in a tissue specific manner, the vast number of potential splicing pathways far exceeds those described in any other alternatively spliced gene. Over 1 million human splice pathways for a single individual can be potentially derived from the PEVK region alone. A new splicing pattern for the human cardiac N2BA isoform type has been found in which the PEVK region includes only the N2B type exons. The alterations in splicing and titin isoform expression in human heart disease provide impetus for future detailed study of the splicing mechanisms for this giant protein.

  14. Identification of a novel function of CX-4945 as a splicing regulator.

    Hyeongki Kim

    Full Text Available Alternative splicing is a nearly ubiquitous versatile process that controls gene expression and creates numerous protein isoforms with different functions from a single gene. The significance of alternative splicing has been confirmed by the increasing number of human diseases that are caused by misregulation of splicing events. Very few compounds, however, have been reported to act as inhibitors of alternative splicing, and their potential clinical use needs to be evaluated. Here, we report that CX-4945, a previously well-characterized inhibitor of casein kinase 2 (CK2 and a molecule currently in clinical trials (Phase II for cancer treatment, regulates splicing in mammalian cells in a CK2-independent manner. Transcriptome-wide analysis using exon array also showed a widespread alteration in alternative splicing of numerous genes. We found that CX-4945 potently inhibits the Cdc2-like kinases (Clks in vitro and in turn, leads to suppression of the phosphorylation of serine/arginine-rich (SR proteins in mammalian cells. Surprisingly, the overall efficacy of CX-4945 on Clks (IC50 = 3-90 nM was stronger than that of TG-003, the strongest inhibitor reported to date. Of the Clks, Clk2 was most strongly inhibited by CX-4945 in an ATP-competitive manner. Our research revealed an unexpected activity of the drug candidate CX-4945 as a potent splicing modulator and also suggested a potential application for therapy of diseases caused by abnormal splicing.

  15. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae.

    Sorenson, Matthew R; Jha, Deepak K; Ucles, Stefanie A; Flood, Danielle M; Strahl, Brian D; Stevens, Scott W; Kress, Tracy L

    2016-04-01

    Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) - a residue methylated by Set2 during transcription elongation - exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast. PMID:26821844

  16. Spliced leader RNA trans-splicing discovered in copepods

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-12-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3‧-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.

  17. SpliceProt: a protein sequence repository of predicted human splice variants.

    Tavares, Raphael; de Miranda Scherer, Nicole; Pauletti, Bianca Alves; Araújo, Elói; Folador, Edson Luiz; Espindola, Gabriel; Ferreira, Carlos Gil; Paes Leme, Adriana Franco; de Oliveira, Paulo Sergio Lopes; Passetti, Fabio

    2014-02-01

    The mechanism of alternative splicing in the transcriptome may increase the proteome diversity in eukaryotes. In proteomics, several studies aim to use protein sequence repositories to annotate MS experiments or to detect differentially expressed proteins. However, the available protein sequence repositories are not designed to fully detect protein isoforms derived from mRNA splice variants. To foster knowledge for the field, here we introduce SpliceProt, a new protein sequence repository of transcriptome experimental data used to investigate for putative splice variants in human proteomes. Current version of SpliceProt contains 159 719 non-redundant putative polypeptide sequences. The assessment of the potential of SpliceProt in detecting new protein isoforms resulting from alternative splicing was performed by using publicly available proteomics data. We detected 173 peptides hypothetically derived from splice variants, which 54 of them are not present in UniprotKB/TrEMBL sequence repository. In comparison to other protein sequence repositories, SpliceProt contains a greater number of unique peptides and is able to detect more splice variants. Therefore, SpliceProt provides a solution for the annotation of proteomics experiments regarding splice isofoms. The repository files containing the translated sequences of the predicted splice variants and a visualization tool are freely available at http://lbbc.inca.gov.br/spliceprot. PMID:24273012

  18. cis-Acting and trans-acting modulation of equine infectious anemia virus alternative RNA splicing

    Equine infectious anemia virus (EIAV), a lentivirus distantly related to HIV-1, encodes regulatory proteins, EIAV Tat (ETat) and Rev (ERev), from a four-exon mRNA. Exon 3 of the tat/rev mRNA contains a 30-nucleotide purine-rich element (PRE) which binds both ERev and SF2/ASF, a member of the SR family of RNA splicing factors. To better understand the role of this element in the regulation of EIAV pre-mRNA splicing, we quantified the effects of mutation or deletion of the PRE on exon 3 splicing in vitro and on alternative splicing in vivo. We also determined the branch point elements upstream of exons 3 and 4. In vitro splicing of exon 3 to exon 4 was not affected by mutation of the PRE, and addition of purified SR proteins enhanced splicing independently of the PRE. In vitro splicing of exon 2 to exon 3 was dependent on the PRE; under conditions of excess SR proteins, either the PRE or the 5' splice site of exon 3 was sufficient to activate splicing. We applied isoform-specific primers in real-time RT-PCR reactions to quantitatively analyze alternative splicing in cells transfected with rev-minus EIAV provirus constructs. In the context of provirus with wild-type exon 3, greater than 80% of the viral mRNAs were multiply spliced, and of these, less than 1% excluded exon 3. Deletion of the PRE resulted in a decrease in the relative amount of multiply spliced mRNA to about 40% of the total and approximately 39% of the viral mRNA excluded exon 3. Ectopic expression of ERev caused a decrease in the relative amount of multiply spliced mRNA to approximately 50% of the total and increased mRNAs that excluded exon 3 to about 4%. Over-expression of SF2/ASF in cells transfected with wild-type provirus constructs inhibited splicing but did not significantly alter exon 3 skipping

  19. Functional correction by antisense therapy of a splicing mutation in the GALT gene.

    Coelho, Ana I; Lourenço, Sílvia; Trabuco, Matilde; Silva, Maria João; Oliveira, Anabela; Gaspar, Ana; Diogo, Luísa; Tavares de Almeida, Isabel; Vicente, João B; Rivera, Isabel

    2015-04-01

    In recent years, antisense therapy has emerged as an increasingly important therapeutic approach to tackle several genetic disorders, including inborn errors of metabolism. Intronic mutations activating cryptic splice sites are particularly amenable to antisense therapy, as the canonical splice sites remain intact, thus retaining the potential for restoring constitutive splicing. Mutational analysis of Portuguese galactosemic patients revealed the intronic variation c.820+13A>G as the second most prevalent mutation, strongly suggesting its pathogenicity. The aim of this study was to functionally characterize this intronic variation, to elucidate its pathogenic molecular mechanism(s) and, ultimately, to correct it by antisense therapy. Minigene splicing assays in two distinct cell lines and patients' transcript analyses showed that the mutation activates a cryptic donor splice site, inducing an aberrant splicing of the GALT pre-mRNA, which in turn leads to a frameshift with inclusion of a premature stop codon (p.D274Gfs*17). Functional-structural studies of the recombinant wild-type and truncated GALT showed that the latter is devoid of enzymatic activity and prone to aggregation. Finally, two locked nucleic acid oligonucleotides, designed to specifically recognize the mutation, successfully restored the constitutive splicing, thus establishing a proof of concept for the application of antisense therapy as an alternative strategy for the clearly insufficient dietary treatment in classic galactosemia. PMID:25052314

  20. BAP1 missense mutation c.2054 A>T (p.E685V completely disrupts normal splicing through creation of a novel 5' splice site in a human mesothelioma cell line.

    Arianne Morrison

    Full Text Available BAP1 is a tumor suppressor gene that is lost or deleted in diverse cancers, including uveal mela¬noma, malignant pleural mesothelioma (MPM, clear cell renal carcinoma, and cholangiocarcinoma. Recently, BAP1 germline mutations have been reported in families with combinations of these same cancers. A particular challenge for mutation screening is the classification of non-truncating BAP1 sequence variants because it is not known whether these subtle changes can affect the protein function sufficiently to predispose to cancer development. Here we report mRNA splicing analysis on a homozygous substitution mutation, BAP1 c. 2054 A&T (p.Glu685Val, identified in an MPM cell line derived from a mesothelioma patient. The mutation occurred at the 3rd nucleotide from the 3' end of exon 16. RT-PCR, cloning and subsequent sequencing revealed several aberrant splicing products not observed in the controls: 1 a 4 bp deletion at the end of exon 16 in all clones derived from the major splicing product. The BAP1 c. 2054 A&T mutation introduced a new 5' splice site (GU, which resulted in the deletion of 4 base pairs and presumably protein truncation; 2 a variety of alternative splicing products that led to retention of different introns: introns 14-16; introns 15-16; intron 14 and intron 16; 3 partial intron 14 and 15 retentions caused by activation of alternative 3' splice acceptor sites (AG in the introns. Taken together, we were unable to detect any correctly spliced mRNA transcripts in this cell line. These results suggest that aberrant splicing caused by this mutation is quite efficient as it completely abolishes normal splicing through creation of a novel 5' splice site and activation of cryptic splice sites. These data support the conclusion that BAP1 c.2054 A&T (p.E685V variant is a pathogenic mutation and contributes to MPM through disruption of normal splicing.

  1. Identification and characterization of naturally occurring splice variants of SAMHD1

    Welbourn Sarah

    2012-10-01

    Full Text Available Abstract Background Sterile Alpha Motif and HD domain-containing protein 1 (SAMHD1 is a recently identified host factor that restricts HIV-1 replication in dendritic and myeloid cells. SAMHD1 is a dNTPase that presumably reduces the cellular dNTP levels to levels too low for retroviral reverse transcription to occur. However, HIV-2 and SIV encoded Vpx counteracts the antiviral effects of SAMHD1 by targeting the protein for proteasomal degradation. SAMHD1 is encoded by a multiply spliced mRNA and consists of 16 coding exons. Results Here, we identified two naturally occurring splice variants lacking exons 8–9 and 14, respectively. Like wildtype SAMHD1, both splice variants localize primarily to the nucleus, interact with Vpx, and retain some sensitivity to Vpx-dependent degradation. However, the splice variants differ from full-length SAMHD1 in their metabolic stability and catalytic activity. While full-length SAMHD1 is metabolically stable in uninfected cells, both splice variants were inherently metabolically unstable and were rapidly degraded even in the absence of Vpx. Vpx strongly increased the rate of degradation of full-length SAMHD1 and further accelerated the degradation of the splice variants. However, the effect of Vpx on the splice variants was more modest due to the inherent instability of these proteins. Analysis of dNTPase activity indicates that neither splice variant is catalytically active. Conclusions The identification of SAMHD1 splice variants exposes a potential regulatory mechanism that could enable the cell to control its dNTPase activity on a post-transcriptional level.

  2. The RNA splicing factor ASF/SF2 inhibits human topoisomerase I mediated DNA relaxation

    Andersen, Félicie Faucon; Tange, Thomas Ø.; Sinnathamby, Thayaline;

    2002-01-01

    Human topoisomerase I interacts with and phosphorylates the SR-family of RNA splicing factors, including ASF/SF2, and has been suggested to play an important role in the regulation of RNA splicing. Here we present evidence to support the theory that the regulation can go the other way around with...... the SR-proteins controlling topoisomerase I DNA activity. We demonstrate that the splicing factor ASF/SF2 inhibits relaxation by interfering with the DNA cleavage and/or DNA binding steps of human topoisomerase I catalysis. The inhibition of relaxation correlated with the ability of various deletion...... extract reduced the inhibition of relaxation activity. Taken together with the previously published studies of the topoisomerase I kinase activity, these observations suggest that topoisomerase I activity is shifted from relaxation to kinasing by specific interaction with SR-splicing factors....

  3. Demonstration of a dynamic, transcription-dependent organization of pre- mRNA splicing factors in polytene nuclei

    1996-01-01

    We describe the dynamic organization of pre-mRNA splicing factors in the intact polytene nuclei of the dipteran Chironomus tentans. The snRNPs and an SR non-snRNP splicing factor are present in excess, mainly distributed throughout the interchromatin. Approximately 10% of the U2 snRNP and an SR non-snRNP splicing factor are associated with the chromosomes, highly enriched in active gene loci where they are bound to RNA. We demonstrate that the splicing factors are specifically recruited to a ...

  4. Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns.

    Hicks, Martin J; Chin-Rang Yang; Matthew V Kotlajich; Hertel, Klemens J.

    2006-01-01

    RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II ( Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the sp...

  5. Competition between Pre-mRNAs for the splicing machinery drives global regulation of splicing

    Munding, EM; Shiue, L; Katzman, S.; Donohue, J; Ares, M

    2013-01-01

    During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells, RPG repression by rapamycin treatment also increases splicing efficiency. Downregulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two ...

  6. Regulation of Splicing Factors by Alternative Splicing and NMD Is Conserved between Kingdoms Yet Evolutionarily Flexible

    Liana F Lareau; Brenner, Steven E.

    2015-01-01

    Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and N...

  7. Evolutionary conservation of alternative splicing in chicken

    Katyal, S.; Gao, Z.; Liu, R.-Z.; R Godbout

    2007-01-01

    Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternati...

  8. SPA: a probabilistic algorithm for spliced alignment.

    Erik van Nimwegen; Nicodeme Paul; Robert Sheridan; Mihaela Zavolan

    2006-01-01

    Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because the...

  9. Recursive splicing in long vertebrate genes.

    Sibley, Christopher R; Emmett, Warren; Blazquez, Lorea; Faro, Ana; Haberman, Nejc; Briese, Michael; Trabzuni, Daniah; Ryten, Mina; Weale, Michael E; Hardy, John; Modic, Miha; Curk, Tomaž; Wilson, Stephen W; Plagnol, Vincent; Ule, Jernej

    2015-05-21

    It is generally believed that splicing removes introns as single units from precursor messenger RNA transcripts. However, some long Drosophila melanogaster introns contain a cryptic site, known as a recursive splice site (RS-site), that enables a multi-step process of intron removal termed recursive splicing. The extent to which recursive splicing occurs in other species and its mechanistic basis have not been examined. Here we identify highly conserved RS-sites in genes expressed in the mammalian brain that encode proteins functioning in neuronal development. Moreover, the RS-sites are found in some of the longest introns across vertebrates. We find that vertebrate recursive splicing requires initial definition of an 'RS-exon' that follows the RS-site. The RS-exon is then excluded from the dominant mRNA isoform owing to competition with a reconstituted 5' splice site formed at the RS-site after the first splicing step. Conversely, the RS-exon is included when preceded by cryptic promoters or exons that fail to reconstitute an efficient 5' splice site. Most RS-exons contain a premature stop codon such that their inclusion can decrease mRNA stability. Thus, by establishing a binary splicing switch, RS-sites demarcate different mRNA isoforms emerging from long genes by coupling cryptic elements with inclusion of RS-exons. PMID:25970246

  10. The reciprocal regulation between splicing and 3'-end processing.

    Kaida, Daisuke

    2016-07-01

    Most eukaryotic precursor mRNAs are subjected to RNA processing events, including 5'-end capping, splicing and 3'-end processing. These processing events were historically studied independently; however, since the early 1990s tremendous efforts by many research groups have revealed that these processing factors interact with each other to control each other's functions. U1 snRNP and its components negatively regulate polyadenylation of precursor mRNAs. Importantly, this function is necessary for protecting the integrity of the transcriptome and for regulating gene length and the direction of transcription. In addition, physical and functional interactions occur between splicing factors and 3'-end processing factors across the last exon. These interactions activate or inhibit splicing and 3'-end processing depending on the context. Therefore, splicing and 3'-end processing are reciprocally regulated in many ways through the complex protein-protein interaction network. Although interesting questions remain, future studies will illuminate the molecular mechanisms underlying the reciprocal regulation. WIREs RNA 2016, 7:499-511. doi: 10.1002/wrna.1348 For further resources related to this article, please visit the WIREs website. PMID:27019070

  11. Sequence requirements for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA.

    Price, J V; Kieft, G L; Kent, J R; Sievers, E L; Cech, T R

    1985-01-01

    The sequence requirements for splicing of the Tetrahymena pre-rRNA have been examined by altering the rRNA gene to produce versions that contain insertions and deletions within the intervening sequence (IVS). The altered genes were transcribed and the RNA tested for self-splicing in vitro. A number of insertions (8-54 nucleotides) at three locations had no effect on self-splicing activity. Two of these insertions, located at a site 5 nucleotides preceding the 3'-end of the IVS, did not alter ...

  12. Alternative mRNA Splicing: Control by Combination

    Mabon, Stephen A; Tom Misteli

    2005-01-01

    Alternative splicing in mammalian cells has been suggested to be largely controlled by combinatorial binding of basal splicing factors to pre-mRNA templates. This model predicts that distinct sets of pre-mRNA splicing factors are associated with alternatively spliced transcripts. However, no experimental evidence for differential recruitment of splicing factors to transcripts with distinct splicing fates is available. Here we have used quantitative single-cell imaging to test this key predict...

  13. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. PMID:25720307

  14. Arc fusion splicing of photonic crystal fibers to standard single mode fibers

    Borzycki, Krzysztof; Kobelke, Jens; Schuster, Kay; Wójcik, Jan

    2010-04-01

    Coupling a photonic crystal fiber (PCF) to measuring instruments or optical subsystems is often done by splicing it to short lengths of single mode fiber (SMF) used for interconnections, as SMF is standardized, widely available and compatible with most fiber optic components and measuring instruments. This paper presents procedures and results of loss measurements during fusion splicing of five PCFs tested at NIT laboratory within activities of COST Action 299 "FIDES". Investigated silica-based fibers had 80-200 μm cladding diameter and were designed as single mode. A standard splicing machine designed for telecom fibers was used, but splicing procedure and arc power were tailored to each PCF. Splice loss varied between 0.7 and 2.8 dB at 1550 nm. Splices protected with heat-shrinkable sleeves served well for gripping fibers during mechanical tests and survived temperature cycling from -30°C to +70°C with stable loss. Collapse of holes in the PCF was limited by reducing fusion time to 0.2-0.5 s; additional measures included reduction of discharge power and shifting SMF-PCF contact point away from the axis of electrodes. Unfortunately, short fusion time sometimes precluded proper smoothing of glass surface, leading to a trade-off between splice loss and strength.

  15. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.).

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef; Hehl, Reinhard

    2010-09-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT-PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain. PMID:20512402

  16. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes

    Schwartz, Schraga; Silva, João(CFTP, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049, Lisboa, Portugal); Burstein, David; Pupko, Tal; Eyras, Eduardo; Ast, Gil

    2008-01-01

    Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5′ splice site (5′ss), the branch site (BS), and the polypyrimdine tract/3′splice site (PPT-3′ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analyses suggest that all these signals have dramatically evolved: The PPT is weak among most fungi, inter...

  17. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor

    PAP-1 is an in vitro phosphorylation target of the Pim-1 oncogene. Although PAP-1 binds to Pim-1, it is not a substrate for phosphorylation by Pim-1 in vivo. PAP-1 has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). However, RP9 is a rare disease and only two missense mutations have been described, so the report of a link between PAP-1 and RP9 was tentative. The precise cellular role of PAP-1 was also unknown at that time. We now report that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35. Furthermore, we used in vitro and in vivo splicing assays to show that PAP-1 has an activity, which alters the pattern of pre-mRNA splicing and that this activity is dependent on the phosphorylation state of PAP-1. We used the same splicing assay to examine the activities of two mutant forms of PAP-1 found in RP9 patients. The results showed that while one of the mutations, H137L, had no effect on splicing activity compared with that of wild-type PAP-1, the other, D170G, resulted in both a defect in splicing activity and a decreased proportion of phosphorylated PAP-1. The D170G mutation may therefore cause RP by altering splicing of retinal genes through a decrease in PAP-1 phosphorylation. These results demonstrate that PAP-1 has a role in pre-mRNA splicing and, given that three other splicing factors have been implicated in adRP, this finding provides compelling further evidence that PAP-1 is indeed the RP9 gene

  18. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  19. Spliced

    Addison, Courtney Page

    2016-01-01

    Human gene therapy (HGT) aims to cure disease by inserting or editing the DNA of patients with genetic conditions. Since foundational genetic techniques came into use in the 1970s, the field has developed to the point that now three therapies have market approval, and over 1800 clinical trials have......-work stretches out from science to enlist diverse publics, social formations and the natural world in the pursuit of legitimacy....

  20. Alternative splicing regulation during C. elegans development: splicing factors as regulated targets.

    Sergio Barberan-Soler

    2008-02-01

    Full Text Available Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18% of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors

  1. Position dependence of the rous sarcoma virus negative regulator of splicing element reflects proximity to a 5' splice site

    Rous sarcoma virus (RSV) requires incomplete splicing of its viral transcripts to maintain efficient replication. A splicing inhibitor element, the negative regulator of splicing (NRS), is located near the 5' end of the RNA but the significance of this positioning is not known. In a heterologous intron the NRS functions optimally when positioned close to the authentic 5' splice site. This observation led us to investigate the basis of the position dependence. Four explanations were put forth and stressed the role of three major elements involved in splicing, the 3' splice site, the 5' splice site, and the 5' end cap structure. NRS function was unrelated to its position relative to the 3' splice site or the cap structure and appeared to depend on its position relative to the authentic 5' splice site. We conclude that position dependence may reflect distance constraints necessary for competition of the NRS with the authentic 5' splice site for pairing with the 3' splice sites

  2. Oncogenes and RNA splicing of human tumor viruses

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-01-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that a...

  3. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2.

    Buettner, R; Kannan, P; Imhof, A.; Bauer, R.; Yim, S O; Glockshuber, R; Van Dyke, M W; Tainsky, M A

    1993-01-01

    AP-2 is a retinoic acid-inducible and developmentally regulated activator of transcription. We have cloned an alternative AP-2 transcript (AP-2B) from the human teratocarcinoma cell line PA-1, which encodes a protein differing in the C terminus from the previously isolated AP-2 protein (AP-2A). This protein contains the activation domain of AP-2 and part of the DNA binding domain but lacks the dimerization domain which is necessary for DNA binding. Analysis of overlapping genomic clones spann...

  4. Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons

    Zhenxun Wang; Deblina Chatterjee; Hyun Yong Jeon; Martin Akerman; Matthew G. Vander Heiden; Lewis C. Cantley; Adrian R. Krainer

    2012-01-01

    Alternative splicing of the pyruvate kinase M gene (PK-M) can generate the M2 isoform and promote aerobic glycolysis and tumor growth.However,the cancer-specific alternative splicing regulation of PK-M is not completely understood.Here,we demonstrate that PK-M is regulated by reciprocal affects on the mutually exclusive exons 9 and 10,such that exon 9 is repressed and exon 10 is activated in cancer cells.Strikingly,exonic,rather than intronic,cis-elements are key determinants ef PK-M splicing isoform ratios.Using a systematic sub-exonic duplication approach,we identify a potent exonlc splicing enhancer in exon 10,which differs from its homologous counterpart in exon 9 by only two nucleotides.We identify SRSF3 as one of the cognate factors,and show that this serine/arginine-rich protein activates exon 10 and mediates changes in glucose metabolism.These findings provide mechanistic insights into the complex regulation of alternative splicing of a key regulator of the Warburg effect,and also have implications for other genes with a similar pattern of alternative splicing.

  5. Aberrant splicing and drug resistance in AML.

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  6. ASDB: database of alternatively spliced genes

    Dralyuk, I; Brudno, M.; Gelfand, M S; Zorn, M.; Dubchak, I.

    2000-01-01

    Version 2.1 of ASDB (Alternative Splicing Data Base) contains 1922 protein and 2486 DNA sequences. The protein entries from SWISS-PROT are joined into clusters corresponding to alternatively spliced variants of one gene. The DNA division consists of complete genes with alternative splicing mentioned or annotated in GenBank. The search engine allows one to search over SWISS-PROT and GenBank fields and then follow the links to all variants. The database can be assessed at the URL http://cbcg.ne...

  7. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both Cα and Cβ are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism

  8. Analysis of differential splicing suggests different modes of short-term splicing regulation

    Topa, Hande; Honkela, Antti

    2016-01-01

    Motivation: Alternative splicing is an important mechanism in which the regions of pre-mRNAs are differentially joined in order to form different transcript isoforms. Alternative splicing is involved in the regulation of normal physiological functions but also linked to the development of diseases such as cancer. We analyse differential expression and splicing using RNA-sequencing time series in three different settings: overall gene expression levels, absolute transcript expression levels an...

  9. Involvement of Alternative Splicing in Barley Seed Germination.

    Qisen Zhang

    Full Text Available Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling. Alternative 3' splicing (34%-45%, intron retention (32%-34% and alternative 5' splicing (16%-21% were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination.

  10. IL-7 splicing variant IL-7{delta}5 induces human breast cancer cell proliferation via activation of PI3K/Akt pathway

    Pan, Deshun [Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006 (China); Department of Pharmaceutical science, Guangdong Pharmaceutical University, Guangzhou, Guangdong (China); Liu, Bing [Department of Pharmaceutical science, Guangdong Pharmaceutical University, Guangzhou, Guangdong (China); Jin, Xiaobao [Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006 (China); Zhu, Jiayong, E-mail: zhujiayong888@163.com [Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer This study confirms the role of IL-7{delta}5 in breast cancer cell proliferation. Black-Right-Pointing-Pointer IL-7{delta}5 promotes breast cancer cell proliferation and cell cycle progression. Black-Right-Pointing-Pointer IL-7{delta}5 promotes cell proliferation via activation of PI3K/Akt pathway. -- Abstract: Various tumor cells express interleukin 7 (IL-7) and IL-7 variants. IL-7 has been confirmed to stimulate solid tumor cell proliferation. However, the effect of IL-7 variants on tumor cell proliferation remains unclear. In this study, we evaluated the role of IL-7{delta}5 (an IL-7 variant lacking exon 5) on proliferation and cell cycle progression of human MDA-MB-231 and MCF-7 breast cancer cells. The results showed that IL-7{delta}5 promoted cell proliferation and cell cycle progression from G1 phase to G2/M phase, associated with upregulation of cyclin D1 expression and the downregulation of p27{sup kip1} expression. Mechanistically, we found that IL-7{delta}5 induced the activation of Akt. Inhibition of PI3K/Akt pathway by LY294002 reversed the proliferation and cell cycle progression of MDA-MB-231 and MCF-7 cells induced by IL-7{delta}5. In conclusion, our findings demonstrate that IL-7{delta}5 variant induces human breast cancer cell proliferation and cell cycle progression via activation of PI3K/Akt pathway. Thus, IL-7{delta}5 may be a potential target for human breast cancer therapeutics intervention.

  11. Hollywood: a comparative relational database of alternative splicing

    Holste, Dirk; Huo, George; Tung, Vivian; Burge, Christopher B.

    2005-01-01

    RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information ...

  12. HIV-1 Vpr: A Novel Role in Regulating RNA Splicing

    Zhang, Xianfeng; Aida, Yoko

    2009-01-01

    Pre-mRNA splicing is a critical step in gene expression for metazoans. Several viral proteins regulate the splicing of pre-mRNAs through complex interactions between the virus and the host cell RNA splicing machinery. Here, we focus on a novel function of HIV-1 Vpr, that selectively inhibit cellular and viral pre-mRNA splicing, via interactions with components of functional spliceosomal complexes. This review discusses our current knowledge of how RNA splicing regulation is accomplished by Vp...

  13. Alternative splicing of Caspase 9 is modulated by the PI3K/Akt pathway via phosphorylation of SRp30a

    Shultz, Jacqueline C.; Rachel W Goehe; Wijesinghe, D. Shanaka; Murudkar, Charuta; Hawkins, Amy J.; Shay, Jerry W.; Minna, John D.; Chalfant, Charles E.

    2010-01-01

    Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology. Two splice variants are derived from the CASP9 gene via the inclusion (Casp9a) or exclusion (Casp9b) of a four exon cassette. Here we show that alternative splicing of Casp9 is dysregulated in non-small cell lung cancers (NSCLC) regardless of their pathological classification. Based on these findings we hypothesized that survival pathways activated by oncogenic mutation regulate...

  14. Control of Pre-mRNA Splicing by the General Splicing Factors PUF60 and U2AF65

    Hastings, Michelle L.; Eric Allemand; Duelli, Dominik M.; Michael P Myers; Krainer, Adrian R.

    2007-01-01

    Pre-mRNA splicing is a crucial step in gene expression, and accurate recognition of splice sites is an essential part of this process. Splice sites with weak matches to the consensus sequences are common, though it is not clear how such sites are efficiently utilized. Using an in vitro splicing-complementation approach, we identified PUF60 as a factor that promotes splicing of an intron with a weak 3' splice-site. PUF60 has homology to U2AF(65), a general splicing factor that facilitates 3' s...

  15. Control of HIV-1 env RNA splicing and transport: investigating the role of hnRNP A1 in exon splicing silencer (ESS3a) function

    The control of HIV-1 viral RNA splicing and transport plays an important role in the successful replication of the virus. Previous studies have identified both an exon splicing enhancer (ESE) and a bipartite exon splicing silencer (ESS3a and ESS3b) within the terminal exon of HIV-1 that are involved in modulating both splicing and Rev-mediated export of viral RNA. To define the mechanism of ESS3a function, experiments were carried out to better define the cis and trans components required for ESS3a activity. Mutations throughout the 30-nt element resulted in partial loss of ESS function. Combining mutations was found to have an additive effect, suggesting the presence of multiple binding sites. Analysis of interacting factors identified hnRNP A1 as one component of the complex that modulates ESS3a activity. However, subsequent binding analyses determined that hnRNP A1 interacts with only one portion of ESS3a, suggesting the involvement of another host factor. Parallel analysis of the effect of the mutations on Rev-mediated export determined that there is not a direct correlation between the effect of the mutations on splicing and RNA transport. Consistent with this hypothesis, replacement of ESS3a with consensus hnRNP A1 binding sites was found to be insufficient to block Rev-mediated RNA export

  16. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing.

    Munding, Elizabeth M; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel

    2013-08-01

    During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells, RPG repression by rapamycin treatment also increases splicing efficiency. Downregulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations, prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and that pre-messenger RNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s), but also on those of competing pre-mRNAs. Competition between RNAs for limiting processing factors appears to be a general condition in eukaryotes for a variety of posttranscriptional control mechanisms including microRNA (miRNA) repression, polyadenylation, and splicing. PMID:23891561

  17. Protein splicing and its evolution in eukaryotes

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  18. Faster exon assembly by sparse spliced alignment

    Tiskin, Alexander

    2007-01-01

    Assembling a gene from candidate exons is an important problem in computational biology. Among the most successful approaches to this problem is \\emph{spliced alignment}, proposed by Gelfand et al., which scores different candidate exon chains within a DNA sequence of length $m$ by comparing them to a known related gene sequence of length n, $m = \\Theta(n)$. Gelfand et al.\\ gave an algorithm for spliced alignment running in time O(n^3). Kent et al.\\ considered sparse spliced alignment, where the number of candidate exons is O(n), and proposed an algorithm for this problem running in time O(n^{2.5}). We improve on this result, by proposing an algorithm for sparse spliced alignment running in time O(n^{2.25}). Our approach is based on a new framework of \\emph{quasi-local string comparison}.

  19. Tau exon 10 alternative splicing and tauopathies

    Liu Fei; Gong Cheng-Xin

    2008-01-01

    Abstract Abnormalities of microtubule-associated protein tau play a central role in neurofibrillary degeneration in several neurodegenerative disorders that collectively called tauopathies. Six isoforms of tau are expressed in adult human brain, which result from alternative splicing of pre-mRNA generated from a single tau gene. Alternative splicing of tau exon 10 results in tau isoforms containing either three or four microtubule-binding repeats (3R-tau and 4R-tau, respectively). Approximate...

  20. Splice Junction Map of Simian Parvovirus Transcripts

    Vashisht, Kapil; Faaberg, Kay S.; Aber, Amanda L.; Brown, Kevin E.; O’Sullivan, M. Gerard

    2004-01-01

    The transcription map of simian parvovirus (SPV), an Erythrovirus similar to Parvovirus B19, was investigated. RNA was extracted from tissues of experimentally infected cynomolgus macaques and subjected to reverse transcription-PCR with SPV-specific primers. The PCR products were cloned and sequenced to identify splice junctions. A total of 14 distinct sequences were identified as putative partial transcripts. Of these, 13 were spliced; a single unspliced transcript putatively encoded NS1. Se...

  1. Alcoholism and Alternative Splicing of Candidate Genes

    Toshikazu Sasabe; Shoichi Ishiura

    2010-01-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports sugg...

  2. Alternative Splicing of G9a Regulates Neuronal Differentiation.

    Fiszbein, Ana; Giono, Luciana E; Quaglino, Ana; Berardino, Bruno G; Sigaut, Lorena; von Bilderling, Catalina; Schor, Ignacio E; Steinberg, Juliana H Enriqué; Rossi, Mario; Pietrasanta, Lía I; Caramelo, Julio J; Srebrow, Anabella; Kornblihtt, Alberto R

    2016-03-29

    Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation. PMID:26997278

  3. Alternative Splicing of G9a Regulates Neuronal Differentiation

    Ana Fiszbein

    2016-03-01

    Full Text Available Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10 through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10+ isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  4. Diverse splicing patterns of exonized Alu elements in human tissues.

    Lan Lin

    Full Text Available Exonization of Alu elements is a major mechanism for birth of new exons in primate genomes. Prior analyses of expressed sequence tags show that almost all Alu-derived exons are alternatively spliced, and the vast majority of these exons have low transcript inclusion levels. In this work, we provide genomic and experimental evidence for diverse splicing patterns of exonized Alu elements in human tissues. Using Exon array data of 330 Alu-derived exons in 11 human tissues and detailed RT-PCR analyses of 38 exons, we show that some Alu-derived exons are constitutively spliced in a broad range of human tissues, and some display strong tissue-specific switch in their transcript inclusion levels. Most of such exons are derived from ancient Alu elements in the genome. In SEPN1, mutations of which are linked to a form of congenital muscular dystrophy, the muscle-specific inclusion of an Alu-derived exon may be important for regulating SEPN1 activity in muscle. Realtime qPCR analysis of this SEPN1 exon in macaque and chimpanzee tissues indicates human-specific increase in its transcript inclusion level and muscle specificity after the divergence of humans and chimpanzees. Our results imply that some Alu exonization events may have acquired adaptive benefits during the evolution of primate transcriptomes.

  5. Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes

    Théry, Jean Christophe; Krieger, Sophie; Gaildrat, Pascaline; Révillion, Françoise; Buisine, Marie-Pierre; Killian, Audrey; Duponchel, Christiane; Rousselin, Antoine; Vaur, Dominique; Peyrat, Jean-Philippe; Berthet, Pascaline; Frébourg, Thierry; Martins, Alexandra; Hardouin, Agnès; Tosi, Mario

    2011-01-01

    A large fraction of sequence variants of unknown significance (VUS) of the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 may induce splicing defects. We analyzed 53 VUSs of BRCA1 or BRCA2, detected in consecutive molecular screenings, by using five splicing prediction programs, and we classified them into two groups according to the strength of the predictions. In parallel, we tested them by using functional splicing assays. A total of 10 VUSs were predicted by two or more programs to induce a significant reduction of splice site strength or activation of cryptic splice sites or generation of new splice sites. Minigene-based splicing assays confirmed four of these predictions. Five additional VUSs, all at internal exon positions, were not predicted to induce alterations of splice sites, but revealed variable levels of exon skipping, most likely induced by the modification of exonic splicing regulatory elements. We provide new data in favor of the pathogenic nature of the variants BRCA1 c.212+3A>G and BRCA1 c.5194−12G>A, which induced aberrant out-of-frame mRNA forms. Moreover, the novel variant BRCA2 c.7977−7C>G induced in frame inclusion of 6 nt from the 3′ end of intron 17. The novel variants BRCA2 c.520C>T and BRCA2 c.7992T>A induced incomplete skipping of exons 7 and 18, respectively. This work highlights the contribution of splicing minigene assays to the assessment of pathogenicity, not only when patient RNA is not available, but also as a tool to improve the accuracy of bioinformatics predictions. PMID:21673748

  6. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates

    Manuel Irimia; Jakob Lewin Rukov; Scott William Roy

    2009-01-01

    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identifie...

  7. Alternative Splice in Alternative Lice.

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  8. Splicing therapy for neuromuscular disease.

    Douglas, Andrew G L; Wood, Matthew J A

    2013-09-01

    Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two of the most common inherited neuromuscular diseases in humans. Both conditions are fatal and no clinically available treatments are able to significantly alter disease course in either case. However, by manipulation of pre-mRNA splicing using antisense oligonucleotides, defective transcripts from the DMD gene and from the SMN2 gene in SMA can be modified to once again produce protein and restore function. A large number of in vitro and in vivo studies have validated the applicability of this approach and an increasing number of preliminary clinical trials have either been completed or are under way. Several different oligonucleotide chemistries can be used for this purpose and various strategies are being developed to facilitate increased delivery efficiency and prolonged therapeutic effect. As these novel therapeutic compounds start to enter the clinical arena, attention must also be drawn to the question of how best to facilitate the clinical development of such personalised genetic therapies and how best to implement their provision. PMID:23631896

  9. Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei.

    Daniel Nilsson

    Full Text Available Trans-splicing of leader sequences onto the 5'ends of mRNAs is a widespread phenomenon in protozoa, nematodes and some chordates. Using parallel sequencing we have developed a method to simultaneously map 5'splice sites and analyze the corresponding gene expression profile, that we term spliced leader trapping (SLT. The method can be applied to any organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 5' splice sites of 85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be accessed online at TriTrypDB or through: http://splicer.unibe.ch/.

  10. A global analysis of C. elegans trans-splicing

    Allen, Mary Ann; Hillier, LaDeana W.; Waterston, Robert H.; Blumenthal, Thomas

    2011-01-01

    Trans-splicing of one of two short leader RNAs, SL1 or SL2, occurs at the 5′ ends of pre-mRNAs of many C. elegans genes. We have exploited RNA-sequencing data from the modENCODE project to analyze the transcriptome of C. elegans for patterns of trans-splicing. Transcripts of ∼70% of genes are trans-spliced, similar to earlier estimates based on analysis of far fewer genes. The mRNAs of most trans-spliced genes are spliced to either SL1 or SL2, but most genes are not trans-spliced to both, ind...

  11. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo.

    Li, Junling; Chen, Zhiliang; Gao, Lian-Yong; Colorni, Angelo; Ucko, Michal; Fang, Shengyun; Du, Shao Jun

    2015-08-01

    Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions. PMID:25892297

  12. Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome

    Krejsgaard, T; Gjerdrum, L M; Ralfkiaer, E;

    2008-01-01

    growth of non-malignant T cells. The Treg phenotype and the production of suppressive cytokines are driven by aberrant activation of Jak3 independent of the FOXP3 splice forms. In contrast to wt FOXP3, the low molecular splice forms of FOXP3 have no inhibitory effect on nuclear factor-kappaB (NF...... SS. We demonstrate that malignant T cells in 8 of 15 patients stain positive with an anti-FOXP3 antibody. Western blotting analysis shows expression of two low molecular splice forms of FOXP3, but not of wild-type (wt) FOXP3. The malignant T cells produce interleukin-10 and TGF-beta and suppress the......-kappaB) activity in reporter assays which is in keeping with a constitutive NF-kappaB activity in the malignant T cells. In conclusion, we show that the malignant T cells express low molecular splice forms of FOXP3 and function as Tregs. Furthermore, we provide evidence that FOXP3 splice forms are functionally...

  13. Novel splicing variant of the human orphan nuclear receptor Nurr1 gene

    徐评议; 乐卫东

    2004-01-01

    Background Nurr1 is a member of the nuclear receptor superfamily of transcription factors. The objective of the present study was to identify novel splicing variants of the gene in neuronal and non-neuronal tissues and determine their functions. Methods Reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to screen for Nurr1 splice variants in the adult human central nervous system (CNS) and in other tissues such as lymphocytes, and liver, muscle, and kidney cells. Functional assays of the variants were performed by measuring Nurr1 response element (NuRE) transcriptional activity in vitro. Results In this study, the authors identified a novel splicing variant of Nurr1 within exon 5, found in multiple adult human tissues, including lymphocytes, and liver, muscle, and kidney cells, but not in the brain or spinal cord. Sequencing analysis showed the variant has a 75 bp deletion between nucleotides 1402 and 1476. A functional assay of the Nurr1-c splicing variant, performed by measuring NuRE transcriptional activity in vitro, detected a 39% lower level of luciferase (LUC) activity (P<0.05).Conclusion A novel splicing variant of Nurr1 exists in human non-neuronal tissues and functional assays suggest that the variant may act as an alternate transcription regulator.

  14. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer.

    Inoue, Kazushi; Fry, Elizabeth A

    2016-07-01

    Alternative splicing (AS) of mRNA precursors is a ubiquitous mechanism for generating numerous transcripts with different activities from one genomic locus in mammalian cells. The gene products from a single locus can thus have similar, dominant-negative or even opposing functions. Aberrant AS has been found in cancer to express proteins that promote cell growth, local invasion and metastasis. This review will focus on the aberrant splicing of tumor suppressor/oncogenes that belong to the DMP1-ARF-MDM2-p53 pathway. Our recent study shows that the DMP1 locus generates both tumor-suppressive DMP1α (p53-dependent) and oncogenic DMP1β (p53-independent) splice variants, and the DMP1β/α ratio increases with neoplastic transformation of breast epithelial cells. This process is associated with high DMP1β protein expression and shorter survival of breast cancer (BC) patients. Accumulating pieces of evidence show that ARF is frequently inactivated by aberrant splicing in human cancers, demonstrating its involvement in human malignancies. Splice variants from the MDM2 locus promote cell growth in culture and accelerate tumorigenesis in vivo. Human cancers expressing these splice variants are associated with advanced stage/metastasis, and thus have negative clinical impacts. Although they lack most of the p53-binding domain, their activities are mostly dependent on p53 since they bind to wild-type MDM2. The p53 locus produces splice isoforms that have either favorable (β/γ at the C-terminus) or negative impact (Δ40, Δ133 at the N-terminus) on patients' survival. As the oncogenic AS products from these loci are expressed only in cancer cells, they may eventually become targets for molecular therapies. PMID:26802432

  15. Special characteristics of the transcription and splicing machinery in photoreceptor cells of the mammalian retina.

    Derlig, Kristin; Giessl, Andreas; Brandstätter, Johann Helmut; Enz, Ralf; Dahlhaus, Regina

    2015-11-01

    Chromatin organization and the management of transcription and splicing are fundamental to the correct functioning of every cell but, in particular, for highly active cells such as photoreceptors, the sensory neurons of the retina. Rod photoreceptor cells of nocturnal animals have recently been shown to have an inverted chromatin architecture compared with rod photoreceptor cells of diurnal animals. The heterochromatin is concentrated in the center of the nucleus, whereas the genetically active euchromatin is positioned close to the nuclear membrane. This unique chromatin architecture suggests that the transcription and splicing machinery is also subject to specific adaptations in these cells. Recently, we described the protein Simiate, which is enriched in nuclear speckles and seems to be involved in transcription and splicing processes. Here, we examine the distribution of Simiate and nuclear speckles in neurons of mouse retinae. In retinal neurons of the inner nuclear and ganglion cell layer, Simiate is concentrated in a clustered pattern in the nuclear interior, whereas in rod and cone photoreceptor cells, Simiate is present at the nuclear periphery. Further staining with markers for the transcription and splicing machinery has confirmed the localization of nuclear speckle components at the periphery. Comparing the distribution of nuclear speckles in retinae of the nocturnal mouse with the diurnal degu, we found no differences in the arrangement of the transcription and splicing machinery in their photoreceptor cells, thus suggesting that the organization of these machineries is not related to the animal's lifestyle but rather represents a general characteristic of photoreceptor organization and function. PMID:26013685

  16. Dysregulation of splicing proteins in head and neck squamous cell carcinoma.

    Radhakrishnan, Aneesha; Nanjappa, Vishalakshi; Raja, Remya; Sathe, Gajanan; Chavan, Sandip; Nirujogi, Raja Sekhar; Patil, Arun H; Solanki, Hitendra; Renuse, Santosh; Sahasrabuddhe, Nandini A; Mathur, Premendu P; Prasad, T S Keshava; Kumar, Prashant; Califano, Joseph A; Sidransky, David; Pandey, Akhilesh; Gowda, Harsha; Chatterjee, Aditi

    2016-02-01

    ABSRTRACT Signaling plays an important role in regulating all cellular pathways. Altered signaling is one of the hallmarks of cancers. Phosphoproteomics enables interrogation of kinase mediated signaling pathways in biological systems. In cancers, this approach can be utilized to identify aberrantly activated pathways that potentially drive proliferation and tumorigenesis. To identify signaling alterations in head and neck squamous cell carcinoma (HNSCC), we carried out proteomic and phosphoproteomic analysis of HNSCC cell lines using a combination of tandem mass tag (TMT) labeling approach and titanium dioxide-based enrichment. We identified 4,920 phosphosites corresponding to 2,212 proteins in six HNSCC cell lines compared to a normal oral cell line. Our data indicated significant enrichment of proteins associated with splicing. We observed hyperphosphorylation of SRSF protein kinase 2 (SRPK2) and its downstream substrates in HNSCC cell lines. SRPK2 is a splicing kinase, known to phosphorylate serine/arginine (SR) rich domain proteins and regulate splicing process in eukaryotes. Although genome-wide studies have reported the contribution of alternative splicing events of several genes in the progression of cancer, the involvement of splicing kinases in HNSCC is not known. In this study, we studied the role of SRPK2 in HNSCC. Inhibition of SRPK2 resulted in significant decrease in colony forming and invasive ability in a panel of HNSCC cell lines. Our results indicate that phosphorylation of SRPK2 plays a crucial role in the regulation of splicing process in HNSCC and that splicing kinases can be developed as a new class of therapeutic target in HNSCC. PMID:26853621

  17. Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors.

    Ye, Zhenqing; Chen, Zhong; Lan, Xun; Hara, Stephen; Sunkel, Benjamin; Huang, Tim H-M; Elnitski, Laura; Wang, Qianben; Jin, Victor X

    2014-03-01

    Alternative splicing (AS), in higher eukaryotes, is one of the mechanisms of post-transcriptional regulation that generate multiple transcripts from the same gene. One particular mode of AS is the skipping event where an exon may be alternatively excluded or constitutively included in the resulting mature mRNA. Both transcript isoforms from this skipping event site, i.e. in which the exon is either included (inclusion isoform) or excluded (skipping isoform), are typically present in one cell, and maintain a subtle balance that is vital to cellular function and dynamics. However, how the prevailing conditions dictate which isoform is expressed and what biological factors might influence the regulation of this process remain areas requiring further exploration. In this study, we have developed a novel computational method, graph-based exon-skipping scanner (GESS), for de novo detection of skipping event sites from raw RNA-seq reads without prior knowledge of gene annotations, as well as for determining the dominant isoform generated from such sites. We have applied our method to publicly available RNA-seq data in GM12878 and K562 cells from the ENCODE consortium and experimentally validated several skipping site predictions by RT-PCR. Furthermore, we integrated other sequencing-based genomic data to investigate the impact of splicing activities, transcription factors (TFs) and epigenetic histone modifications on splicing outcomes. Our computational analysis found that splice sites within the skipping-isoform-dominated group (SIDG) tended to exhibit weaker MaxEntScan-calculated splice site strength around middle, 'skipping', exons compared to those in the inclusion-isoform-dominated group (IIDG). We further showed the positional preference pattern of splicing factors, characterized by enrichment in the intronic splice sites immediately bordering middle exons. Finally, our analysis suggested that different epigenetic factors may introduce a variable obstacle in the

  18. ZmbZIP60 mRNA is spliced in maize in response to ER stress

    Li Yanjie

    2012-03-01

    Full Text Available Abstract Background Adverse environmental conditions produce ER stress and elicit the unfolded protein response (UPR in plants. Plants are reported to have two "arms" of the ER stress signaling pathway-one arm involving membrane-bound transcription factors and the other involving a membrane-associated RNA splicing factor, IRE1. IRE1 in yeast to mammals recognizes a conserved twin loop structure in the target RNA. Results A segment of the mRNA encoding ZmbZIP60 in maize can be folded into a twin loop structure, and in response to ER stress this mRNA is spliced, excising a 20b intron. Splicing converts the predicted protein from a membrane-associated transcription factor to one that is targeted to the nucleus. Splicing of ZmbZIP60 can be elicited in maize seedlings by ER stress agents such as dithiothreitol (DTT or tunicamycin (TM or by heat treatment. Younger, rather than older seedlings display a more robust splicing response as do younger parts of leaf, along a developmental gradient in a leaf. The molecular signature of an ER stress response in plants includes the upregulation of Binding Protein (BIP genes. Maize has numerous BIP-like genes, and ER stress was found to upregulate one of these, ZmBIPb. Conclusions The splicing of ZmbZIP60 mRNA is an indicator of ER stress in maize seedlings resulting from adverse environmental conditions such as heat stress. ZmbZIP60 mRNA splicing in maize leads predictively to the formation of active bZIP transcription factor targeted to the nucleus to upregulate stress response genes. Among the genes upregulated by ER stress in maize is one of 22 BIP-like genes, ZmBIPb.

  19. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    Penny David

    2007-10-01

    Full Text Available Abstract Background Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins. Results For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants show high levels of alternative splicing. Genes with products expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. Conclusion Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process.

  20. Regulation of mammalian pre-mRNA splicing

    HUI JingYi

    2009-01-01

    In eukaryotes, most protein-coding genes contain introns which are removed by precursor messenger RNA (pre-mRNA) splicing. Alternative splicing is a process by which multiple messenger RNAs (mRNAs) are generated from a single pre-mRNA, resulting in functionally distinct proteins. Recent genome-wide analyses of alternative splicing indicated that in higher eukaryotes alternative splicing is an important mechanism that generates proteomic complexity and regulates gene expression. Mis-regulation of splicing causes a wide range of human diseases. This review describes the current understanding of pre-mRNA splicing and the mechanisms that regulate mammalian pre-mRNA splicing. It also discusses emerging directions in the field of alternative splicing.

  1. Altered PLP1 splicing causes hypomyelination of early myelinating structures

    Kevelam, Sietske H; Taube, Jennifer R; van Spaendonk, Rosalina M L;

    2015-01-01

    causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients' fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. RESULTS......: All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20...... alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved in...

  2. Regulation of mammalian pre-mRNA splicing

    2009-01-01

    In eukaryotes,most protein-coding genes contain introns which are removed by precursor messenger RNA(pre-mRNA) splicing.Alternative splicing is a process by which multiple messenger RNAs(mRNAs) are generated from a single pre-mRNA,resulting in functionally distinct proteins.Recent genome-wide analyses of alternative splicing indicated that in higher eukaryotes alternative splicing is an important mechanism that generates proteomic complexity and regulates gene expression.Mis-regulation of splicing causes a wide range of human diseases.This review describes the current understanding of pre-mRNA splicing and the mechanisms that regulate mammalian pre-mRNA splicing.It also discusses emerging directions in the field of alternative splicing.

  3. Quality control of cadweld (mechanical) splices

    Test data for cadweld splicing of reinforcing steel collected during a study of quality assurance practices on nine nuclear power plant construction projects are presented and evaluated. These data lead to an important hypothesis that the visual inspection identifies procedural deficiencies, and the tensile test identifies material defects. It is also suggested that a material testing program and the visual inspection will detect essentially all substandard cadwell splices. This would permit the deletion of the expensive tensile testing program. Accordingly, most quality control programs require overtesting and overdocumentation of cadweld splices; and furthermore, these programs fail to recognize material defects. The project specifications and quality control requirements for the nine projects are compared. Where possible, these are evaluated against the industry standards and Federal regulations. It is shown that there are a number of deficiencies in these standards, and that in most cases, the testing requirements are not commensurate with the quality that is being achieved in the field

  4. Splicing variants of porcine synphilin-1

    Larsen, Knud Erik; Madsen, Lone Bruhn; Farajzadeh, Leila;

    2015-01-01

    (90%) and to mouse (84%) synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing......RNA was investigated by RNAseq. The presented work reports the molecular cloning and characterization of the porcine (Sus scrofa) synphilin-1 cDNA (SNCAIP) and three splice variants hereof. The porcine SNCAIP cDNA codes for a protein (synphilin-1) of 919 amino acids which shows a high similarity to human...... variants and a novel splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation....

  5. Regulation of alternative splice site selection by reversible protein phosphorylation

    Novoyatleva, Tatyana

    2007-01-01

    Splicing is the process that removes introns and joins exons from pre-mesenger RNA (pre-mRNA). It is an essential step in pre-mRNA processing that form the mature RNA. Microarray data indicates that approximately 75% of human genes produce transcripts that are alternatively spliced. Alternative splicing is one of the major mechanisms that ultimately generate high number of protein isoforms from a limited number of genes. The proper catalysis and regulation of alternative splice site selection...

  6. Progress toward therapy with antisense-mediated splicing modulation

    Du, Liutao; Gatti, Richard A.

    2009-01-01

    Antisense oligonucleotides (AO) or antisense RNA can complementarily bind to a target site in pre-mRNA and regulate gene splicing, either to restore gene function by reprogramming gene splicing or to inhibit gene expression by disrupting splicing. These two applications represent novel therapeutic strategies for several types of diseases such as genetic disorders, cancers and infectious diseases. In this review, the recent developments and applications of antisense-mediated splicing modulatio...

  7. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse

    Khodor, Yevgenia L.; Menet, Jerome S; Tolan, Michael; Rosbash, Michael

    2012-01-01

    Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. It has been shown that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, the authors analyzed a recently generated, high-throughput sequencing data set of mouse liver nascent RNA. Cotranscriptional splicing is approximately twofold l...

  8. Alternative splicing of DNA damage response genes and gastrointestinal cancers

    Rahmutulla, Bahityar; Matsushita, Kazuyuki; Nomura, Fumio

    2014-01-01

    Alternative splicing, which is a common phenomenon in mammalian genomes, is a fundamental process of gene regulation and contributes to great protein diversity. Alternative splicing events not only occur in the normal gene regulation process but are also closely related to certain diseases including cancer. In this review, we briefly demonstrate the concept of alternative splicing and DNA damage and describe the association of alternative splicing and cancer pathogenesis, focusing on the pote...

  9. RNA structure and the mechanisms of alternative splicing

    McManus, C. Joel; Graveley, Brenton R.

    2011-01-01

    Alternative splicing is a widespread means of increasing protein diversity and regulating gene expression in eukaryotes. Much progress has been made in understanding the proteins involved in regulating alternative splicing, the sequences they bind to, and how these interactions lead to changes in splicing patterns. However, several recent studies have identified other players involved in regulating alternative splicing. A major theme emerging from these studies is that RNA secondary structure...

  10. Evolution of alternative splicing in primate brain transcriptomes

    Lin, Lan; Shen, Shihao; Jiang, Peng; Sato, Seiko; Davidson, Beverly L.; Xing, Yi

    2010-01-01

    Alternative splicing is a predominant form of gene regulation in higher eukaryotes. The evolution of alternative splicing provides an important mechanism for the acquisition of novel gene functions. In this work, we carried out a genome-wide phylogenetic survey of lineage-specific splicing patterns in the primate brain, via high-density exon junction array profiling of brain transcriptomes of humans, chimpanzees and rhesus macaques. We identified 509 genes showing splicing differences among t...

  11. SPA: a probabilistic algorithm for spliced alignment.

    Erik van Nimwegen

    2006-04-01

    Full Text Available Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In particular, the quality of the SPA alignments near splice boundaries and SPA's mapping of the 5' and 3' ends of the cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the existence of a novel non

  12. SPA: A Probabilistic Algorithm for Spliced Alignment

    van Nimwegen, Erik; Paul, Nicodeme; Sheridan, Robert; Zavolan, Mihaela

    2006-01-01

    Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In particular, the quality of the SPA alignments near splice boundaries and SPA's mapping of the 5′ and 3′ ends of the cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the existence of a novel non-canonical splice

  13. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David;

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional...... classes, cellular locations, intron/exon structures and evolutionary origins. RESULTS: For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products...... expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general...

  14. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment.

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia; Martínez-Contreras, Rebeca D

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics. PMID:27610372

  15. The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing.

    De Maio, Federico A; Risso, Guillermo; Iglesias, Nestor G; Shah, Priya; Pozzi, Berta; Gebhard, Leopoldo G; Mammi, Pablo; Mancini, Estefania; Yanovsky, Marcelo J; Andino, Raul; Krogan, Nevan; Srebrow, Anabella; Gamarnik, Andrea V

    2016-08-01

    Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication. PMID:27575636

  16. Global impact of RNA splicing on transcriptome remodeling in the heart

    Chen GAO; Yibin WANG

    2012-01-01

    In the eukaryotic transcriptome,both the numbers of genes and different RNA species produced by each gene contribute to the overall complexity.These RNA species are generated by the utilization of different transcriptional initiation or termination sites,or more commonly,from different messenger RNA (mRNA) splicing events.Among the 30 000+ genes in human genome,it is estimated that more than 95% of them can generate more than one gene product via alternative RNA splicing.The protein products generated from different RNA splicing variants can have different intracellular localization,activity,or tissue-distribution.Therefore,alternative RNA splicing is an important molecular process that contributes to the overall complexity of the genome and the functional specificity and diversity among different cell types.In this review,we will discuss current efforts to unravel the full complexity of the cardiac transcriptome using a deep-sequencing approach,and highlight the potential of this technology to uncover the global impact of RNA splicing on the transcriptome during development and diseases of the heart.

  17. SpliceMiner: a high-throughput database implementation of the NCBI Evidence Viewer for microarray splice variant analysis

    Liu Hongfang; Ryan Michael C; Kahn Ari B; Zeeberg Barry R; Jamison D Curtis; Weinstein John N

    2007-01-01

    Abstract Background There are many fewer genes in the human genome than there are expressed transcripts. Alternative splicing is the reason. Alternatively spliced transcripts are often specific to tissue type, developmental stage, environmental condition, or disease state. Accurate analysis of microarray expression data and design of new arrays for alternative splicing require assessment of probes at the sequence and exon levels. Description SpliceMiner is a web interface for querying Evidenc...

  18. The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events

    Warzecha, Claude C.; Shen, Shihao; Xing, Yi; Carstens, Russ P.

    2009-01-01

    Cell-type and tissue-specific alternative splicing events are regulated by combinatorial control involving both abundant RNA binding proteins as well as those with more discrete expression and specialized functions. Epithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) are recently discovered epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the FGFR2, ENAH, CD44 and CTNND1 transcripts. To catalogue a larger set of splicing events under th...

  19. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing.

    Heyd, F.; Dam, G.B. ten; Moroy, T.

    2006-01-01

    By alternative splicing, different isoforms of the transmembrane tyrosine phosphatase CD45 are generated that either enhance or limit T cell receptor signaling. We report here that CD45 alternative splicing is regulated by cooperative action of the splice factor U2AF26 and the transcription factor G

  20. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida;

    2014-01-01

    Rare sequence variants in "high-risk" disease genes, often referred as unclassified variants (UVs), pose a serious challenge to genetic testing. However, UVs resulting in splicing alterations can be readily assessed by in vitro assays. Unfortunately, analytical and clinical interpretation of thes...

  1. Alternative-splicing-mediated gene expression

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  2. Expression of Human CAR Splicing Variants in BAC-Transgenic Mice

    Zhang, Yu-Kun Jennifer; LU, Hong; Klaassen, Curtis D.

    2012-01-01

    The nuclear receptor constitutive androstane receptor (CAR) is a key regulator for drug metabolism in liver. Human CAR (hCAR) transcripts are subjected to alternative splicing. Some hCAR splicing variants (SVs) have been shown to encode functional proteins by reporter assays. However, in vivo research on the activity of these hCAR SVs has been impeded by the absence of a valid model. This study engineered an hCAR-BAC-transgenic (hCAR-TG) mouse model by integrating the 8.5-kbp hCAR gene as wel...

  3. Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.

    Matos, Liliana; Gonçalves, Vânia; Pinto, Eugénia; Laranjeira, Francisco; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Alves, Sandra

    2015-12-01

    Mucopolysaccharidosis II is a lysosomal storage disorder caused by mutations in the IDS gene, including exonic alterations associated with aberrant splicing. In the present work, cell-based splicing assays were performed to study the effects of two splicing mutations in exon 3 of IDS, i.e., c.241C>T and c.257C>T, whose presence activates a cryptic splice site in exon 3 and one in exon 8, i.e., c.1122C>T that despite being a synonymous mutation is responsible for the creation of a new splice site in exon 8 leading to a transcript shorter than usual. Mutant minigene analysis and overexpression assays revealed that SRSF2 and hnRNP E1 might be involved in the use and repression of the constitutive 3' splice site of exon 3 respectively. For the c.1122C>T the use of antisense therapy to correct the splicing defect was explored, but transfection of patient fibroblasts with antisense morpholino oligonucleotides (n=3) and a locked nucleic acid failed to abolish the abnormal transcript; indeed, it resulted in the appearance of yet another aberrant splicing product. Interestingly, the oligonucleotides transfection in control fibroblasts led to the appearance of the aberrant transcript observed in patients' cells after treatment, which shows that the oligonucleotides are masking an important cis-acting element for 5' splice site regulation of exon 8. These results highlight the importance of functional studies for understanding the pathogenic consequences of mis-splicing and highlight the difficulty in developing antisense therapies involving gene regions under complex splicing regulation. PMID:26407519

  4. The Cancer Exome Generated by Alternative mRNA Splicing Dilutes Predicted HLA Class I Epitope Density

    Stranzl, Thomas; Larsen, Mette Voldby; Lund, Ole;

    2012-01-01

    is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based...... on a publicly available database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of the three most common HLA class I......Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes...

  5. Approaches to link RNA secondary structures with splicing regulation

    Plass, Mireya; Eyras, Eduardo

    2014-01-01

    facilitating or hindering the interaction with factors and small nuclear ribonucleoproteins (snRNPs) that regulate splicing. Moreover, the secondary structure could play a fundamental role in the splicing of yeast species, which lack many of the regulatory splicing factors present in metazoans. This chapter......In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by...

  6. Single Mode Fiber Optic Connectors And Splices

    Woods, John G.

    1984-08-01

    There is a trend toward increasing use of single mode transmission, particularly in telecommunications where high data bit rates are transmitted for long distances. Inter-connections of multimode fibers can be made in a number of ways, using ferrules, v-grooves, elastomeric splices, etc. However, the connection of single mode fibers, which have core diameters of 4 to 13 μm, requires more precise alignment than do the multimode fibers having core diameters of 50 μm or more. At TRW, we have adapted the four rod alignment guide concept for single mode fiber inter-connections. The principle of this OPTAGUIDE* alignment guide is presented. The single mode connectors and splices use the four rod scheme with an index matching material to eliminate or reduce the losses incurred through fiber end roughness or angularity. We are able to produce demountable connectors for 80/4.4 pm fibers having typical insertion losses of 1.0dB. The main factors in obtaining this result are the naturally precise fiber alignment provided by the alignment guide, and the ability of several manufacturers to maintain tight diametral and core offset tolerances. The single mode OPTALIGN* SM Connectors have been subjected to performance and environmental tests including repeated matings, temperature cycle and vibration. The results of these tests are described in this paper. A feature of the OPTALIGN* SM Connectors is the relative ease and speed of attachment to fiber optic cable in the field, without the use of epoxy or polishing procedures. The alignment guide concept has also been applied to permanent single mode splices. The splicing procedure is simple to perform in the field without expensive or delicate equipment. Construction and assembly procedures of the demountable connectors and permanent splices will be described with the aid of diagrams and photographs.

  7. Aging and Loss of Circulating 17β-Estradiol Alters the Alternative Splicing of ERβ in the Female Rat Brain.

    Shults, Cody L; Pinceti, Elena; Rao, Yathindar S; Pak, Toni R

    2015-11-01

    Loss of circulating 17β-estradiol (E2) that occurs during menopause can have detrimental effects on cognitive function. The efficacy of hormone replacement therapy declines as women become farther removed from the menopausal transition, yet the molecular mechanisms underlying this age-related switch in E2 efficacy are unknown. We hypothesized that aging and varying lengths of E2 deprivation alters the ratio of alternatively spliced estrogen receptor (ER)β isoforms in the brain of female rats. Further, we tested whether changes in global transcriptional activity and splicing kinetics regulate the alternative splicing of ERβ. Our results revealed brain region-specific changes in ERβ alternative splicing in both aging and E2-deprivation paradigms and showed that ERβ could mediate E2-induced alternative splicing. Global transcriptional activity, as measured by phosphorylated RNA polymerase II, was also regulated by age and E2 in specific brain regions. Finally, we show that inhibition of topoisomerase I resulted in increased ERβ2 splice variant expression. PMID:26295370

  8. Coding potential of the products of alternative splicing in human.

    Leoni, Guido

    2011-01-20

    BACKGROUND: Analysis of the human genome has revealed that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized genes. A number of these transcripts are alternatively spliced forms of known protein coding genes; however, it is becoming clear that many of them do not necessarily correspond to a functional protein. RESULTS: In this study we analyze alternative splicing isoforms of human gene products that are unambiguously identified by mass spectrometry and compare their properties with those of isoforms of the same genes for which no peptide was found in publicly available mass spectrometry datasets. We analyze them in detail for the presence of uninterrupted functional domains, active sites as well as the plausibility of their predicted structure. We report how well each of these strategies and their combination can correctly identify translated isoforms and derive a lower limit for their specificity, that is, their ability to correctly identify non-translated products. CONCLUSIONS: The most effective strategy for correctly identifying translated products relies on the conservation of active sites, but it can only be applied to a small fraction of isoforms, while a reasonably high coverage, sensitivity and specificity can be achieved by analyzing the presence of non-truncated functional domains. Combining the latter with an assessment of the plausibility of the modeled structure of the isoform increases both coverage and specificity with a moderate cost in terms of sensitivity.

  9. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  10. SpliceMiner: a high-throughput database implementation of the NCBI Evidence Viewer for microarray splice variant analysis

    Liu Hongfang

    2007-03-01

    Full Text Available Abstract Background There are many fewer genes in the human genome than there are expressed transcripts. Alternative splicing is the reason. Alternatively spliced transcripts are often specific to tissue type, developmental stage, environmental condition, or disease state. Accurate analysis of microarray expression data and design of new arrays for alternative splicing require assessment of probes at the sequence and exon levels. Description SpliceMiner is a web interface for querying Evidence Viewer Database (EVDB. EVDB is a comprehensive, non-redundant compendium of splice variant data for human genes. We constructed EVDB as a queryable implementation of the NCBI Evidence Viewer (EV. EVDB is based on data obtained from NCBI Entrez Gene and EV. The automated EVDB build process uses only complete coding sequences, which may or may not include partial or complete 5' and 3' UTRs, and filters redundant splice variants. Unlike EV, which supports only one-at-a-time queries, SpliceMiner supports high-throughput batch queries and provides results in an easily parsable format. SpliceMiner maps probes to splice variants, effectively delineating the variants identified by a probe. Conclusion EVDB can be queried by gene symbol, genomic coordinates, or probe sequence via a user-friendly web-based tool we call SpliceMiner (http://discover.nci.nih.gov/spliceminer. The EVDB/SpliceMiner combination provides an interface with human splice variant information and, going beyond the very valuable NCBI Evidence Viewer, supports fluent, high-throughput analysis. Integration of EVDB information into microarray analysis and design pipelines has the potential to improve the analysis and bioinformatic interpretation of gene expression data, for both batch and interactive processing. For example, whenever a gene expression value is recognized as important or appears anomalous in a microarray experiment, the interactive mode of SpliceMiner can be used quickly and easily to

  11. LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding

    Ji Won Um

    2016-02-01

    Full Text Available The four members of the LRRTM family (LRRTM1-4 are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.

  12. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates.

    Manuel Irimia

    Full Text Available Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans factors that bind to different sequence (cis elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex 'splicing code'. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5' splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease.

  13. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates.

    Irimia, Manuel; Rukov, Jakob Lewin; Roy, Scott William

    2009-01-01

    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex 'splicing code'. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5' splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease. PMID:19495418

  14. Splicing therapy for neuromuscular disease ☆

    Andrew G. L. Douglas; Wood, Matthew J. A.

    2013-01-01

    Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two of the most common inherited neuromuscular diseases in humans. Both conditions are fatal and no clinically available treatments are able to significantly alter disease course in either case. However, by manipulation of pre-mRNA splicing using antisense oligonucleotides, defective transcripts from the DMD gene and from the SMN2 gene in SMA can be modified to once again produce protein and restore function. A large numb...

  15. Resolving deconvolution ambiguity in gene alternative splicing

    Hubbell Earl

    2009-08-01

    Full Text Available Abstract Background For many gene structures it is impossible to resolve intensity data uniquely to establish abundances of splice variants. This was empirically noted by Wang et al. in which it was called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional information is needed in order to obtain an unique answer in splice variant deconvolution. Results In this paper, we analyze the situations under which the problem occurs and perform a rigorous mathematical study which gives necessary and sufficient conditions on how many and what type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix models of splice variants. We explore the proposal that probe sequence information may provide sufficient additional constraints to resolve real-world instances. However, probe behavior cannot be predicted with sufficient accuracy by any existing probe sequence model, and so we present a Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty from the micro-model of probe responsiveness into the macro-model of probe intensities. Conclusion The matrix analysis of constraints provides a tool for detecting real-world instances in which additional constraints may be necessary to resolve splice variants. While purely mathematical constraints can be stated without error, real-world constraints may themselves be poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely estimating transcript abundances given additional constraints that themselves may be uncertain, such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive simulations as well as various biological data.

  16. Alternative Splicing Programs in Prostate Cancer

    Claudio Sette

    2013-01-01

    Prostate cancer (PCa) remains one of the most frequent causes of death for cancer in the male population. Although the initial antiandrogenic therapies are efficacious, PCa often evolves into a hormone-resistant, incurable disease. The genetic and phenotypic heterogeneity of this type of cancer renders its diagnosis and cure particularly challenging. Mounting evidence indicates that alternative splicing, the process that allows production of multiple mRNA variants from each gene, contributes ...

  17. Splicing variants of porcine synphilin-1

    Knud Larsen

    2015-09-01

    Full Text Available Parkinson's disease (PD, idiopathic and familial, is characterized by degradation of dopaminergic neurons and the presence of Lewy bodies (LB in the substantia nigra. LBs contain aggregated proteins of which α-synuclein is the major component. The protein synphilin-1 interacts and colocalizes with α-synuclein in LBs. The aim of this study was to isolate and characterize porcine synphilin-1 and isoforms hereof with the future perspective to use the pig as a model for Parkinson's disease. The porcine SNCAIP cDNA was cloned by reverse transcriptase PCR. The spatial expression of SNCAIP mRNA was investigated by RNAseq. The presented work reports the molecular cloning and characterization of the porcine (Sus scrofa synphilin-1 cDNA (SNCAIP and three splice variants hereof. The porcine SNCAIP cDNA codes for a protein (synphilin-1 of 919 amino acids which shows a high similarity to human (90% and to mouse (84% synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing variants and a novel splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation.

  18. Splice variant-specific stabilization of JNKs by IB1/JIP1.

    Yang, Jiang-Yan; Moulin, Nathalie; van Bemmelen, Miguel X; Dubuis, Gilles; Tawadros, Thomas; Haefliger, Jacques-Antoine; Waeber, Gérard; Widmann, Christian

    2007-10-01

    Islet-Brain 1 (IB1) (also called JNK-interacting protein 1; JIP1) is a scaffold protein that tethers components of the JNK mitogen-activated protein kinase pathway inducing a modulation of the activity and the target specificity of the JNK kinases. Dysfunctions in IB1 have been associated with diseases such as early type II diabetes. To gain more insight in the functions of IB1, its ability to modulate the expression levels of the various JNK proteins was assessed. Each of the three JNK genes gives rise to several splice variants encoding short or long proteins. The expression levels of the short JNK proteins, but not of the long variants, were systematically higher in rat tissues and in transformed cell lines expressing high IB1 levels compared to tissues and cells with no or low IB1 expression. HEK293 cells bearing a tetracycline-inducible IB1 construct showed a specific increase of the short JNK endogenous splice variants in the presence of tetracycline. The augmented expression level of the short JNK splice variants induced by IB1 resulted from an increased stability towards degradation. Modulation of the stability of specific JNK splice variants represents therefore a newly identified mechanism used by IB1 to regulate the JNK MAPK pathway. PMID:17669625

  19. A new method for splice site prediction based on the sequence patterns of splicing signals and regulatory elements

    SUN ZongXiao; SANG LingJie; JU LiNing; ZHU HuaiQiu

    2008-01-01

    It is of significance for splice site prediction to develop novel algorithms that combine the sequence patterns of regulatory elements such as enhancers and silencers with the patterns of splicing signals. In this paper, a statistical model of splicing signals was built based on the entropy density profile (EDP) method, weight array method (WAM) and κ test; moreover, the model of splicing regulatory elements was developed by an unsupervised self-learning method to detect motifs associated with regulatory elements. With two models incorporated, a multi-level support vector machine (SVM) system was de-vised to perform ab initio prediction for splice sites originating from DNA sequence in eukaryotic ge-home. Results of large scale tests on human genomic splice sites show that the new method achieves a comparative high performance in splice site prediction. The method is demonstrated to be with at least the same level of performance and usually better performance than the existing SpliceScan method based on modeling regulatory elements, and shown to have higher accuracies than the traditional methods with modeling splicing signals such as the GeneSplicer. In particular, the method has evident advantage over splice site prediction for the genes with lower GC content.

  20. A study of alternative splicing in the pig

    Jørgensen Claus B

    2010-05-01

    Full Text Available Abstract Background Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs provide evidence of a great number of possible alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence. Results The pig EST data generated by the Sino-Danish Pig Genome project has been assembled with publicly available ESTs and made available in the PigEST database. Using the Distiller package 2,515 EST clusters with candidate alternative isoforms were identified in the EST data with high confidence. In agreement with general observations in human and mouse, we find putative splice variants in about 30% of the contigs with more than 50 ESTs. Based on the criteria that a minimum of two EST sequences confirmed each splice event, a list of 100 genes with the most distinct tissue-specific alternative splice events was generated from the list of candidates. To confirm the tissue specificity of the splice events, 10 genes with functional annotation were randomly selected from which 16 individual splice events were chosen for experimental verification by quantitative PCR (qPCR. Six genes were shown to have tissue specific alternatively spliced transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific. Conclusions In accordance with human and rodent studies we estimate that approximately 30% of the porcine genes undergo alternative splicing. We found a good correlation between EST predicted tissue

  1. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  2. Accumulation of GC donor splice signals in mammals

    Koonin Eugene V

    2008-07-01

    Full Text Available Abstract The GT dinucleotide in the first two intron positions is the most conserved element of the U2 donor splice signals. However, in a small fraction of donor sites, GT is replaced by GC. A substantial enrichment of GC in donor sites of alternatively spliced genes has been observed previously in human, nematode and Arabidopsis, suggesting that GC signals are important for regulation of alternative splicing. We used parsimony analysis to reconstruct evolution of donor splice sites and inferred 298 GT > GC conversion events compared to 40 GC > GT conversion events in primate and rodent genomes. Thus, there was substantive accumulation of GC donor splice sites during the evolution of mammals. Accumulation of GC sites might have been driven by selection for alternative splicing. Reviewers This article was reviewed by Jerzy Jurka and Anton Nekrutenko. For the full reviews, please go to the Reviewers' Reports section.

  3. Splicing modulation therapy in the treatment of genetic diseases

    Arechavala-Gomeza V

    2014-12-01

    Full Text Available Virginia Arechavala-Gomeza,1 Bernard Khoo,2 Annemieke Aartsma-Rus3 1Neuromuscular Disorders Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain; 2Endocrinology, Division of Medicine, University College London, London, UK; 3Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands All authors contributed equally to this manuscript Abstract: Antisense-mediated splicing modulation is a tool that can be exploited in several ways to provide a potential therapy for rare genetic diseases. This approach is currently being tested in clinical trials for Duchenne muscular dystrophy and spinal muscular atrophy. The present review outlines the versatility of the approach to correct cryptic splicing, modulate alternative splicing, restore the open reading frame, and induce protein knockdown, providing examples of each. Finally, we outline a possible path forward toward the clinical application of this approach for a wide variety of inherited rare diseases. Keywords: splicing, therapy, antisense oligonucleotides, cryptic splicing, alternative splicing

  4. The implications of alternative splicing in the ENCODE protein complement

    Tress, Michael L.; Martelli, Pier Luigi; Frankish, Adam;

    2007-01-01

    Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been...... suggested as one explanation for the discrepancy between the number of human genes and functional complexity. Here, we carry out a detailed study of the alternatively spliced gene products annotated in the ENCODE pilot project. We find that alternative splicing in human genes is more frequent than has...... commonly been suggested, and we demonstrate that many of the potential alternative gene products will have markedly different structure and function from their constitutively spliced counterparts. For the vast majority of these alternative isoforms, little evidence exists to suggest they have a role as...

  5. Alternative Splicing and Its Impact as a Cancer Diagnostic Marker

    Kim, Yun-Ji; Kim, Heui-Soo

    2012-01-01

    Most genes are processed by alternative splicing for gene expression, resulting in the complexity of the transcriptome in eukaryotes. It allows a limited number of genes to encode various proteins with intricate functions. Alternative splicing is regulated by genetic mutations in cis-regulatory factors and epigenetic events. Furthermore, splicing events occur differently according to cell type, developmental stage, and various diseases, including cancer. Genome instability and flexible proteo...

  6. Pre-mRNA splicing in disease and therapeutics

    Singh, Ravi K.; Cooper, Thomas A.

    2012-01-01

    In metazoans, alternative splicing of genes is essential for regulating gene expression and contributing to functional complexity. Computational predictions, comparative genomics, and transcriptome profiling of normal and diseased tissues indicate an unexpectedly high fraction of diseases are caused by mutations that alter splicing. Mutations in cis elements cause mis-splicing of genes that alter gene function and contribute to disease pathology. Mutations of core spliceosomal factors are ass...

  7. Phosphorylation-Mediated Regulation of Alternative Splicing in Cancer

    Chiara Naro; Claudio Sette

    2013-01-01

    Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large...

  8. Embracing the complexity of pre-mRNA splicing

    Peter J Shepard; Klemens J Hertel

    2010-01-01

    @@ Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome, which catalyzes the removal of non-coding intronic sequences to assemble exons into mature mRNAs prior to export and translation.Defects in splicing lead to many human genetic diseases [1], and splicing mutations in a number of genes involved in growth control have been implicated in multiple types of cancer.

  9. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii

    Thomas Julie

    2010-02-01

    Full Text Available Abstract Background Genome-wide computational analysis of alternative splicing (AS in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. Results Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. Conclusions The extent of AS in Chlamydomonas that we observed is much

  10. DNA splice site sequences clustering method for conservativeness analysis

    Quanwei Zhang; Qinke Peng; Tao Xu

    2009-01-01

    DNA sequences that are near to splice sites have remarkable conservativeness,and many researchers have contributed to the prediction of splice site.In order to mine the underlying biological knowledge,we analyze the conservativeness of DNA splice site adjacent sequences by clustering.Firstly,we propose a kind of DNA splice site sequences clustering method which is based on DBSCAN,and use four kinds of dissimilarity calculating methods.Then,we analyze the conservative feature of the clustering results and the experimental data set.

  11. Adenosine to Inosine editing frequency controlled by splicing efficiency.

    Licht, Konstantin; Kapoor, Utkarsh; Mayrhofer, Elisa; Jantsch, Michael F

    2016-07-27

    Alternative splicing and adenosine to inosine (A to I) RNA-editing are major factors leading to co- and post-transcriptional modification of genetic information. Both, A to I editing and splicing occur in the nucleus. As editing sites are frequently defined by exon-intron basepairing, mRNA splicing efficiency should affect editing levels. Moreover, splicing rates affect nuclear retention and will therefore also influence the exposure of pre-mRNAs to the editing-competent nuclear environment. Here, we systematically test the influence of splice rates on RNA-editing using reporter genes but also endogenous substrates. We demonstrate for the first time that the extent of editing is controlled by splicing kinetics when editing is guided by intronic elements. In contrast, editing sites that are exclusively defined by exonic structures are almost unaffected by the splicing efficiency of nearby introns. In addition, we show that editing levels in pre- and mature mRNAs do not match. This phenomenon can in part be explained by the editing state of an RNA influencing its splicing rate but also by the binding of the editing enzyme ADAR that interferes with splicing. PMID:27112566

  12. Functional roles of alternative splicing factors in human disease.

    Cieply, Benjamin; Carstens, Russ P

    2015-01-01

    Alternative splicing (AS) is an important mechanism used to generate greater transcriptomic and proteomic diversity from a finite genome. Nearly all human gene transcripts are alternatively spliced and can produce protein isoforms with divergent and even antagonistic properties that impact cell functions. Many AS events are tightly regulated in a cell-type or tissue-specific manner, and at different developmental stages. AS is regulated by RNA-binding proteins, including cell- or tissue-specific splicing factors. In the past few years, technological advances have defined genome-wide programs of AS regulated by increasing numbers of splicing factors. These splicing regulatory networks (SRNs) consist of transcripts that encode proteins that function in coordinated and related processes that impact the development and phenotypes of different cell types. As such, it is increasingly recognized that disruption of normal programs of splicing regulated by different splicing factors can lead to human diseases. We will summarize examples of diseases in which altered expression or function of splicing regulatory proteins has been implicated in human disease pathophysiology. As the role of AS continues to be unveiled in human disease and disease risk, it is hoped that further investigations into the functions of numerous splicing factors and their regulated targets will enable the development of novel therapies that are directed at specific AS events as well as the biological pathways they impact. PMID:25630614

  13. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.

    Zhang, Xiao-Ning; Mount, Stephen M

    2009-07-01

    The serine-arginine-rich (SR) proteins constitute a conserved family of pre-mRNA splicing factors. In Arabidopsis (Arabidopsis thaliana), they are encoded by 19 genes, most of which are themselves alternatively spliced. In the case of SR45, the use of alternative 3' splice sites 21 nucleotides apart generates two alternatively spliced isoforms. Isoform 1 (SR45.1) has an insertion relative to isoform 2 (SR45.2) that replaces a single arginine with eight amino acids (TSPQRKTG). The biological implications of SR45 alternative splicing have been unclear. A previously described loss-of-function mutant affecting both isoforms, sr45-1, shows several developmental defects, including defects in petal development and root growth. We found that the SR45 promoter is highly active in regions with actively growing and dividing cells. We also tested the ability of each SR45 isoform to complement the sr45-1 mutant by overexpression of isoform-specific green fluorescent protein (GFP) fusion proteins. As expected, transgenic plants overexpressing either isoform displayed both nuclear speckles and GFP fluorescence throughout the nucleoplasm. We found that SR45.1-GFP complements the flower petal phenotype, but not the root growth phenotype. Conversely, SR45.2-GFP complements root growth but not floral morphology. Mutation of a predicted phosphorylation site within the alternatively spliced segment, SR45.1-S219A-GFP, does not affect complementation. However, a double mutation affecting both serine-219 and the adjacent threonine-218 (SR45.1-T218A + S219A-GFP) behaves like isoform 2, complementing the root but not the floral phenotype. In conclusion, our study provides evidence that the two alternatively spliced isoforms of SR45 have distinct biological functions. PMID:19403727

  14. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay

    Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E; Ares, Manuel

    2007-01-01

    Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additi...

  15. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  16. Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure.

    Sophie A O Armitage

    Full Text Available The hypervariable Dscam1 (Down syndrome cell adhesion molecule 1 gene can produce thousands of different ectodomain isoforms via mutually exclusive alternative splicing. Dscam1 appears to be involved in the immune response of some insects and crustaceans. It has been proposed that the diverse isoforms may be involved in the recognition of, or the defence against, diverse parasite epitopes, although evidence to support this is sparse. A prediction that can be generated from this hypothesis is that the gene expression of specific exons and/or isoforms is influenced by exposure to an immune elicitor. To test this hypothesis, we for the first time, use a long read RNA sequencing method to directly investigate the Dscam1 splicing pattern after exposing adult Drosophila melanogaster and a S2 cell line to live Escherichia coli. After bacterial exposure both models showed increased expression of immune-related genes, indicating that the immune system had been activated. However there were no changes in total Dscam1 mRNA expression. RNA sequencing further showed that there were no significant changes in individual exon expression and no changes in isoform splicing patterns in response to bacterial exposure. Therefore our studies do not support a change of D. melanogaster Dscam1 isoform diversity in response to live E. coli. Nevertheless, in future this approach could be used to identify potentially immune-related Dscam1 splicing regulation in other host species or in response to other pathogens.

  17. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues.

    Suzuki, Takashi; Swift, Larry L

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5'-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  18. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states. PMID:24299736

  19. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8+ T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation

  20. Protein trans-splicing based dual-vector delivery of the coagulation factor Ⅷ gene

    2010-01-01

    A dual-vector system was explored for the delivery of the coagulation factor VIII gene,using intein-mediated protein trans-splicing as a means to produce intact functional factor VIII post-translationally.A pair of eukaryotic expression vectors,expressing Ssp DnaB intein-fused heavy and light chain genes of B-domain deleted factor VIII (BDD-FVIII),was constructed.With transient co-transfection of the two vectors into 293 and COS-7 cells,the culture supernatants contained (137±23) and (109±22) ng mL–1 spliced BDD-FVIII antigen with an activity of (1.05±0.16) and (0.79±0.23) IU mL–1 for 293 and COS-7 cells,respectively.The spliced BDD-FVIII was also detected in supernatants from a mixture of cells transfected with inteinfused heavy and light chain genes.The spliced BDD-FVIII protein bands from cell lysates were visualized by Western blotting.The data demonstrated that intein could be used to transfer the split factor VIII gene and provided valuable information on factor VIII gene delivery by dual-adeno-associated virus in hemophilia A gene therapy.

  1. Single-molecule RNA observation in vivo reveals dynamics of co-transcriptional splicing

    Ferguson, M. L.; Coulon, A.; de Turris, V.; Palangat, M.; Chow, C. C.; Singer, R. H.; Larson, D. R.

    2013-03-01

    The synthesis of pre-mRNA and the splicing of that pre-mRNA to form completed transcripts requires coordination between two large multi-subunit complexes (the transcription elongation complex and the spliceosome). How this coordination occurs in vivo is unknown. Here we report the first experimental observation of transcription and splicing occurring at the same gene in living cells. By utilizing the PP7/MS2 fluorescent RNA reporter system, we can directly observe two distinct regions of the nascent RNA, allowing us to measure the rise and fall time of the intron and exon of a reporter gene stably integrated into a human cell line. The reporter gene consists of a beta globin gene where we have inserted a 24 RNA hairpin cassette into the intron/exon. Upon synthesis, the RNA hairpins are tightly bound by fluorescently-labeled PP7/MS2 bacteriophage coat proteins. After gene induction, a single locus of active transcription in the nucleus shows fluorescence intensity changes characteristic of the synthesis and excision of the intron/exon. Using fluctuation analysis, we determine the elongation rate to be 1.5 kb/min. From the temporal cross correlation function, we determine that splicing of this gene must be co-transcriptional with a splicing time of ~100 seconds before termination and a ~200 second pause at termination. We propose that dual-color RNA imaging may be extended to investigate other mechanisms of transcription, gene regulation, and RNA processing.

  2. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    Katja Meyer

    2015-07-01

    Full Text Available Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  3. Genetic Variation of Pre-mRNA Alternative Splicing in Human Populations

    Lu, Zhi-xiang; Jiang, Peng; Xing, Yi

    2011-01-01

    The precise splicing outcome of a transcribed gene is controlled by complex interactions between cis regulatory splicing signals and trans-acting regulators. In higher eukaryotes, alternative splicing is a prevalent mechanism for generating transcriptome and proteome diversity. Alternative splicing can modulate gene function, affect organismal phenotype and cause disease. Common genetic variation that affects splicing regulation can lead to differences in alternative splicing between human in...

  4. The Caenorhabditis elegans Gene mfap-1 Encodes a Nuclear Protein That Affects Alternative Splicing

    Long Ma; Xiaoyang Gao; Jintao Luo; Liange Huang; Yanling Teng; H Robert Horvitz

    2012-01-01

    RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre-mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicin...

  5. m(6)A: Signaling for mRNA splicing.

    Adhikari, Samir; Xiao, Wen; Zhao, Yong-Liang; Yang, Yun-Gui

    2016-09-01

    Among myriads of distinct chemical modifications in RNAs, dynamic N6-methyladenosine (m(6)A) is one of the most prevalent modifications in eukaryotic mRNAs and non-coding RNAs. Similar to the critical role of chemical modifications in regulation of DNA and protein activities, RNA m(6)A modification is also observed to be involved in the regulation of diverse functions of RNAs including meiosis, fertility, development, cell reprogramming and circadian period. The RNA m(6)A modification is recognized by YTH domain containing family proteins comprising of YTHDC1-2 and YTHDF1-3. Here we focus on the nuclear m(6)A reader YTHDC1 and its regulatory role in alternative splicing and other RNA metabolic processes. PMID:27351695

  6. Altered PLP1 splicing causes hypomyelination of early myelinating structures

    Kevelam, Sietske H; Taube, Jennifer R; van Spaendonk, Rosalina M L; Bertini, Enrico; Sperle, Karen; Tarnopolsky, Mark; Tonduti, Davide; Valente, Enza Maria; Travaglini, Lorena; Sistermans, Erik A; Bernard, Geneviève; Catsman-Berrevoets, Coriene E; van Karnebeek, Clara D M; Østergaard, John R; Friederich, Richard L; Fawzi Elsaid, Mahmoud; Schieving, Jolanda H; Tarailo-Graovac, Maja; Orcesi, Simona; Steenweg, Marjan E; van Berkel, Carola G M; Waisfisz, Quinten; Abbink, Truus E M; van der Knaap, Marjo S; Hobson, Grace M; Wolf, Nicole I

    2015-01-01

    Objective The objective of this study was to investigate the genetic etiology of the X-linked disorder “Hypomyelination of Early Myelinating Structures” (HEMS). Methods We included 16 patients from 10 families diagnosed with HEMS by brain MRI criteria. Exome sequencing was used to search for causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients’ fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. Results All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20 alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved in regulating PLP1/DM20 alternative splicing. Splicing studies in fibroblasts and transfected cells confirmed a decreased PLP1/DM20 ratio. Interpretation Brain structures that normally myelinate early are poorly myelinated in HEMS, while they are the best myelinated structures in Pelizaeus–Merzbacher disease, also caused by PLP1 alterations. Our data extend the phenotypic spectrum of PLP1-related disorders indicating that normal PLP1/DM20 alternative splicing is essential for early myelination and support the need to include intron 3 in diagnostic sequencing. PMID:26125040

  7. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis.

    Sugliani, M.; Brambilla, V.; Clerkx, E.J.M.; Koornneef, M.; Soppe, W.J.J.

    2010-01-01

    ABSCISIC ACID INSENSITIVE3 (ABI3) is a major regulator of seed maturation in Arabidopsis thaliana. We detected two ABI3 transcripts, ABI3- and ABI3-ß, which encode full-length and truncated proteins, respectively. Alternative splicing of ABI3 is developmentally regulated, and the ABI3-ß transcript a

  8. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-11-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  9. Splice connector with internal heat transfer jacket

    Silva, Frank A.; Mayer, Robert W.

    1977-01-01

    A heat transfer jacket is placed over the terminal portions of the conductors of a pair of high voltage cables which are connected in a splice connection wherein a housing surrounds the connected conductor portions, the heat transfer jacket extending longitudinally between the confronting ends of a pair of adaptor sleeves placed upon the insulation of the cables to engage and locate the adaptor sleeves relative to one another, and laterally between the conductors and the housing to provide a path of relatively high thermal conductivity between the connected conductor portions and the housing.

  10. Exon Expression and Alternatively Spliced Genes in Tourette Syndrome

    Tian, Yingfang; Liao, Isaac H.; Zhan, Xinhua; Gunther, Joan R.; Ander, Bradley P.; Liu, Dazhi; Lit, Lisa; Jickling, Glen C.; Corbett, Blythe A.; Bos-Veneman, Netty G. P.; Hoekstra, Pieter J.; Sharp, Frank R.

    2011-01-01

    Tourette Syndrome (TS) is diagnosed based upon clinical criteria including motor and vocal tics. We hypothesized that differences in exon expression and splicing might be useful for pathophysiology and diagnosis. To demonstrate exon expression and alternatively spliced gene differences in blood of i