WorldWideScience

Sample records for active galaxy unification

  1. Active galaxy unification in the era of X-ray polarimetry

    Dorodnitsyn, A

    2010-01-01

    Active Galactic Nuclei (AGN), Seyfert galaxies and quasars, are powered by luminous accretion and often accompanied by winds which are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes which are happening within the central parsec around the black hole (BH). One example of such a wind is the partially ionized gas responsible for X-ray and UV absorption ('warm absorbers'). Here we show that such gas will have a distinct signature when viewed in polarized X-rays. Observations of such polarization can test models for the geometry of the flow, and the gas responsible for launching and collimating it. We present calculations which show that the polarization depends on the hydrodynamics of the flow, the quantum mechanics of resonance line scattering and the transfer of polarized X-ray light in the highly ionized moving gas. The results emphasize the three dimensional nature of the wind for modeling spectra. We show that the polarization in the 0.1-10 keV...

  2. Probing AGN Unification with galaxy neighbours: pitfalls and prospects

    Villarroel, B.

    2015-09-01

    Statistical tests of AGN unification harbour many caveats. One way of constraining the validity of the AGN unification is through studies of close neighbours to Type-1 and Type-2 AGN. Examining thousands of AGN- galaxy pairs from the Sloan Digital Sky Survey Data Release 7 and the Galaxy Zoo project, we found that Type-2 AGN appear to reside in more star-forming environments than Type-1 AGN.

  3. Seyfert Galaxies: Radio Continuum Emission Properties and the Unification Scheme

    Veeresh Singh; Prajval Shastri; Ramana Athreya

    2011-12-01

    Seyfert galaxies are classified mainly into type 1 and type 2 depending on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Unification scheme hypothesizes that the observed similarities and differences between the two Seyfert subtypes can be understood as due to the differing orientations of anisotropically distributed obscuring material having a torus-like geometry around the AGN. We investigate the radio continuum emission properties of a sample of Seyfert galaxies in the framework of the unification scheme.

  4. Active Galaxies

    Kilerci Eser, Ece

    Galaxy formation and evolution is one of the main research themes of modern astronomy. Active galaxies such as Active Galactic Nuclei (AGN) and Ultraluminous Infrared Galaxies (ULIRGs) are important evolutionary stages of galaxies. The ULIRG stage is mostly associated with galaxy mergers and...... interactions. During the interactions of gas-rich galaxies, the gas inflows towards the centers of the galaxies and can trigger both star formation and AGN activity. The ULIRG stage includes rapid star formation activity and fast black hole growth that is enshrouded by dust. Once the AGN emission is...... one is related to the mass estimates of supermassive black holes (SMBHs). Mass estimates of SMBHs are important to understand the formation and evolution of SMBHs and their host galaxies. Black hole masses in Type 1 AGN are measured with the reverberation mapping (RM) technique. Reverberation mapping...

  5. Unification of Radio Galaxies and their Accretion Jet Properties

    Qingwen Wu; Ya-Di Xu; Xinwu Cao

    2011-03-01

    We investigate the relation between black hole mass, bh, and jet power, jet, for a sample of BL Lacs and radio quasars. We find that BL Lacs are separated from radio quasars by the FR I/II dividing line in bh-jet plane, which strongly supports the unification scheme of FR I/BL Lac and FR II/radio quasar. The Eddington ratio distribution of BL Lacs and radio quasars exhibits a bimodal nature with a rough division at bol/Edd ∼ 0.01, which imply that they may have different accretion modes. We calculate the jet power extracted from advection-dominated accretion flow (ADAF), and find that it requires dimensionless angular momentum of black hole ≃ 0.9 - 0.99 to reproduce the dividing line between FR I/II or BL Lac/radio quasar if dimensionless accretion rate $\\dot{m} = 0.01$ is adopted, which is required by the above bimodal distribution of Eddington ratios. Our results suggest that black holes in radio galaxies are rapidly spinning.

  6. On Asymmetries in Powerful Radio Sources and the Quasar/Galaxy Unification

    C. I. Onah; A. A. Ubachukwu; F. C. Odo

    2014-12-01

    We utilize the distributions of fractional separation difference () as asymmetry parameter, linear size () and core-to lobe luminosity ratio () as orientation indicators, to investigate a consequence of radio source orientation and relativistic beaming effects in a sample of powerful non-symmetric extragalactic radio sources. In this scenario, radio sources viewed at small orientation angles to the line-of-sight are expected to show a high degree of asymmetry in observed radio structures due to relativistic beaming, with foreshortened projected linear sizes. A simple consequence of this is the - anti-correlation. Results show a tight correlation ( > 0.8) between the total and core radio luminosities and a clear - anti-correlation ( ∼ -0.5). The observed - anti-correlation is consistent with average orientation angle ≈ 48° and a maximum Lorentz factor ∼ 2 for the sample, with minimum angular separation of 26° between radio galaxies and quasars. However, there is no clear - correlation. While the results are consistent with quasar/galaxy unification via orientation, intrinsic asymmetry also seems to play a major role.

  7. UNIFICATION SCHEME OF RADIO GALAXIES AND QUASARS FALSIFIED BY THEIR OBSERVED SIZE DISTRIBUTIONS

    In the currently popular orientation-based unified scheme, a radio galaxy appears as a quasar when its principal radio-axis happens to be oriented within a certain cone opening angle around the observer's line of sight. Due to geometrical projection, the observed sizes of quasars should therefore appear smaller than those of radio galaxies. We show that this simple, unambiguous prediction of the unified scheme is not borne out by the actually observed angular sizes of radio galaxies and quasars. Except in the original 3CR sample, based on which the unified scheme was proposed, in other much larger samples no statistically significant difference is apparent in the size distributions of radio galaxies and quasars. The population of low-excitation radio galaxies with apparently no hidden quasars inside, which might explain the observed excess number of radio galaxies at low redshifts, cannot account for the absence of any foreshortening of the sizes of quasars at large redshifts. On the other hand, from infrared and X-ray studies, there is evidence of a hidden quasar within a dusty torus in many radio galaxies, at z > 0.5. It is difficult to reconcile this with the absence of foreshortening of quasar sizes at even these redshifts, and perhaps one has to allow that the major radio axis may not have anything to do with the optical axis of the torus. Otherwise, to resolve the dichotomy of radio galaxies and quasars, a scheme quite different from the present might be required.

  8. Unification of Active Galactic Nuclei at X-rays and soft gamma-rays

    Through the work on X-ray and gamma-ray data of AGN I contributed significantly to the progress in the unification of AGN since I finished my PhD in 2000. The study of the evolutionary behaviour of X-ray selected N blazars (Beckmann and Wolter 2001; Beckmann et al. 2002, 2003b; Beckmann 2003) shows that their evolution is not as strongly negative as indicated by previous studies. The overall luminosity function is consistent with no evolution in the 0.1-2.4 keV band as seen by ROSAT/PSPC. There is still a difference compared to the luminosity function of FSRQ and LBL, which seem to show a positive evolution, indicating that they have been more luminous and/or numerous at cosmological distances. We indicated a scenario in order to explain this discrepancy, in which the high luminous FSRQ develop into the fainter LBL and finally into the BL Lac objects with high frequency peaks in their spectral energy distribution but overall low bolometric luminosity. Studying the variability pattern of hard X-ray selected Seyfert galaxies, we actually found differences between type 1 and type 2 objects, in the sense that type 2 seemed to be more variable (Beckmann et al. 2007a). This breaking of the unified model is caused by the different average luminosity of the absorbed and unabsorbed sources, as discussed in Sect. 4.7.3. This can be explained by a larger inner disk radius when the AGN core is most active (the so-called receding disc model). The work on the sample characteristics of hard X-ray detected AGN also led to the proof that the average intrinsic spectra of type 1 and type 2 objects are the same when reflection processes are taken into account (Beckmann et al. 2009d). This also explains why in the past Seyfert 2 objects were seen to have harder X-ray spectra than Seyfert 1, as the stronger reflection hump in the type 2 objects makes the spectra appear to be flatter, although the underlying continuum is the same. Further strong evidence for the unification scheme comes

  9. Infrared studies of active galaxies

    IRAS observations of extragalactic objects are analyzed, supplemented by optical spectroscopy and 10 μm photometry. The relationship between various forms of activity in the nuclei of spiral galaxies and their mid- to far-infrared spectral energy distributions is explored. It is shown that more than 70% of galaxies with F60/F25 ≤ 3 are Seyferts, while the remainder have bright optical emission lines in their nuclear spectra. It is argued that most Seyferts are powered by their active nuclei at 25 μm, while there is some indication that Seyferts with large F60/F25 flux ratios are undergoing starbursts in the vicinity of their nuclei. The properties of a sample of bright, extragalactic IRAS sources are studied. A catalog containing total infrared and blue fluxes, distance estimates, recession velocities, and morphological classifications for these objects is presented. The brightest sources at mid- to far-infrared wavelengths are nearby, normal spiral galaxies; galaxies with disturbed or irregular morphology (often known as interacting galaxies); type 2 Seyferts; and dust-embedded type 1 Seyferts. All of these sources are dominated by thermal emission from dust. The dust in the peculiar, irregular, and Seyfert galaxies is exposed to a higher mean intensity of radiation. Moreover, these IR-active galaxies tend to have strong, compact nuclear sources at 11 μm, whether or not they contain a known Seyfert nucleus. The distinctive spectral behavior of IR-luminous galaxies is shown to result from the presence of compact, dust-dominated IR nuclear sources, which are the predominant cause of IR luminosities above 1011 L of sun

  10. Nuclear Activity In Isolated Galaxies

    Hernandez-Ibarra, Francisco; Krongold, Yair; Del Olmo, Ascencion; Perea, Jaime; Gonzalez, Jesus

    2012-01-01

    We present a spectroscopic study of the incidence of AGN nuclear activity in two samples of isolated galaxies (Karachentseva, V.E. & Varela, J.). Our results show that the incidence of non-thermal nuclear activity is about 43% and 31% for galaxies with emission lines and for the total sample 40% and 27% respectively. For the first time we have a large number of bona-fide isolated galaxies (513 objects), with statistically significant number of all types. We find a clear relation between bulge mass and the incidence of nuclear activity in the sample with emission lines. This relation becomes flatter when we take into account the complete sample with no emission line galaxies. A large fration ($\\sim$70%) of elliptical galaxies or early type spirals have an active galactic nucleus and $\\sim$70% of them are LINERs. Only 3% of the AGN show the presence of broad lines (a not a single one can be classified as type 1 AGN). This is a remarkable result which is completely at odds with the unified model even if we c...

  11. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. II. AGN power indicators and unification

    It remains uncertain which continuum and emission line diagnostics best indicate the bolometric powers of active galactic nuclei (AGNs), especially given the attenuation caused by the circumnuclear material and the possible contamination by components related to star formation. Here we use mid-IR spectra along with multiwavelength data to investigate the merit of various diagnostics of AGN radiative power, including the mid-IR [Ne III] λ25.89 μm and [O IV] λ25.89 μm fine-structure lines, the optical [O III] λ5007 forbidden line, and mid-IR 24 μm, 5 GHz radio, and X-ray continuum emission, for complete samples of 46 2Jy radio galaxies (0.05 < z < 0.7) and 17 3CRR FRII radio galaxies (z < 0.1). We find that the mid-IR [O IV] line is the most reliable indicator of AGN power for powerful radio-loud AGNs. By assuming that the [O IV] is emitted isotropically, and comparing the [O III] and 24 μm luminosities of the broad- and narrow-line AGNs in our samples at fixed [O IV] luminosity, we show that the [O III] and 24 μm emission are both mildly attenuated in the narrow-line compared to the broad-line objects by a factor of ≈2. However, despite this attenuation, the [O III] and 24 μm luminosities are better AGN power indicators for our sample than either the 5 GHz radio or the X-ray continuum luminosities. We also detect the mid-IR 9.7 μm silicate feature in the spectra of many objects but not ubiquitously: at least 40% of the sample shows no clear evidence for these features. We conclude that, for the majority of powerful radio galaxies, the mid-IR lines are powered by AGN photoionization.

  12. Strong unification

    We investigate the possibility that unification occurs at strong coupling. We show that, despite the fact the couplings pass through a strong coupling regime, accurate predictions for their low energy values are possible because the couplings of the theory flow to infrared fixed points. We determine the low-energy QCD coupling in a favoured class of strong coupling models and find it is reduced from the weak coupling predictions, lying close to the experimentally measured values. We extend the analysis to the determination of quark and lepton masses and show that (even without Grand Unification) the infrared fixed point structure may lead to good predictions for the tope mass, the bottom to tau mass ratio and tan β. Finally we discuss the implications for the unification scale finding it to be increased from the MSSM value and closer to the heterotic string prediction. (author). 15 refs, 3 tabs

  13. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    a sufficiently high mechanical power (at least ˜0.5 per cent of the bolometric luminosity) to provide a significant contribution to active galactic nuclei (AGN) feedback and thus to the evolution of the host galaxy. In this regard, we find possible evidence for the interaction of the AGN wind with the surrounding environment on large scales.

  14. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    a sufficiently high mechanical power (at least approx 0.5 per cent of the bolometric luminosity) to provide a significant contribution to active galactic nuclei (AGN) feedback and thus to the evolution of the host galaxy. In this regard, we find possible evidence for the interaction of the AGN wind with the surrounding environment on large scales.

  15. Quasars and Active Galaxies: A Reading List.

    Fraknoi, Andrew

    1988-01-01

    Contains the annotated bibliographies of introductory books and sections of books, recent introductory articles, more advanced articles, and more advanced books dealing with quasars and active galaxies. (CW)

  16. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2012-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared th...

  17. Unification of Active Galactic Nuclei at X-rays and soft gamma-rays

    Beckmann, Volker

    2010-01-01

    Through the work on X-ray and gamma-ray data of AGN I contributed significantly to the progress in the unification of AGN since I finished my PhD in 2000. The study of the evolutionary behaviour of X-ray selected blazars (Beckmann & Wolter 2001; Beckmann et al. 2002, 2003b; Beckmann 2003) shows that their evolution is not as strongly negative as indicated by previous studies. The overall luminosity function is consistent with no evolution in the 0.1−2.4 keV band as seen by ROSAT/PSPC. There ...

  18. ISO Images of Starbursts and Active Galaxies

    Mirabel, I F

    1999-01-01

    We present some highlights from the mid-infrared (5-16 micron) images of mergers of massive galaxies obtained with the Infrared Space Observatory (ISO). We have observed: 1) ultraluminous infrared nuclei, 2) luminous dust-enshrouded extranuclear starbursts, and 3) active galaxy nuclei (AGNs). In this contribution we discuss the observations of Arp 299, a prototype for very luminous infrared galaxies, the Antennae which is a prototype of mergers, and Centaurus A which is the closest AGN to Earth. From these observations we conclude the following: 1) the most intense starbursts in colliding systems of galaxies and the most massive stars are dust-enshrouded in regions that appear inconspicuous at optical wavelengths, 2) the most intense nuclear infrared sources are a combination of AGN and starburst activity, 3) the hosts of radio loud AGNs that trigger giant double-lobe structures may be symbiotic galaxies composed of barred spirals inside ellipticals.

  19. Nuclear Activity in Circumnuclear Ring Galaxies

    Aguero, M P; Dottori, H

    2016-01-01

    We have analyzed the frequency and properties of the nuclear activity in a sample of galaxies with circumnuclear rings and spirals (CNRs). This sample was compared with a control sample of galaxies with very similar global properties but without circumnuclear rings. We discuss the relevance of the results in regard to the AGN feeding processes and present the following results: (i) bright companion galaxies seem not to be important for the appearance of CNRs, which appear to be more related to intrinsic properties of the host galaxies or to minor merger processes; (ii) the proportion of strong bars in galaxies with an AGN and a CNR is somewhat higher than the expected ratio of strongly barred AGN galaxies from the results of Ho and co-workers; (iii) the incidence of Seyfert activity coeval with CNRs is clearly larger than the rate expected from the morphological distribution of the host galaxies; (iv) the rate of Sy 2 to Sy 1 type galaxies with CNRs is about three times larger than the expected ratio for gala...

  20. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    Tombesi, F; Reeves, J N; Nemmen, R S; Braito, V; Gaspari, M; Reynolds, C S

    2012-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ioniza...

  1. AGN Zoo and Classifications of Active Galaxies

    Mickaelian, Areg M.

    2015-07-01

    We review the variety of Active Galactic Nuclei (AGN) classes (so-called "AGN zoo") and classification schemes of galaxies by activity types based on their optical emission-line spectrum, as well as other parameters and other than optical wavelength ranges. A historical overview of discoveries of various types of active galaxies is given, including Seyfert galaxies, radio galaxies, QSOs, BL Lacertae objects, Starbursts, LINERs, etc. Various kinds of AGN diagnostics are discussed. All known AGN types and subtypes are presented and described to have a homogeneous classification scheme based on the optical emission-line spectra and in many cases, also other parameters. Problems connected with accurate classifications and open questions related to AGN and their classes are discussed and summarized.

  2. Fugitive stars in active galaxies

    Zotos, Euaggelos E

    2016-01-01

    We investigate in detail the escape dynamics in an analytical gravitational model which describes the motion of stars in a quasar galaxy with a disk and a massive nucleus. We conduct a thorough numerical analysis distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. In order to distinguish safely and with certainty between ordered and chaotic motion we apply the Smaller ALingment Index (SALI) method. It is of particular interest to locate the escape basins through the openings around the collinear Lagrangian points $L_1$ and $L_2$ and relate them with the corresponding spatial distribution of the escape times of the orbits. Our exploration takes place both in the configuration $(x,y)$ and in the phase $(x,\\dot{x})$ space in order to elucidate the escape process as well as the overall orbital properties of the galactic system. Our numerical analysis reveals the strong dependence of the properties of the con...

  3. The Frequency of Active and Quiescent Galaxies with Companions

    Schmitt, H R

    2002-01-01

    We study the percentage of active, HII and quiescent galaxies with companions in the Palomar survey. We find that when we separate the galaxies by their morphological types (ellipticals or spirals), to avoid morphology-density effects, there is no difference in the percentage of galaxies with companions among the different activity types.

  4. Yet Another Efficient Unification Algorithm

    Suciu, Alin

    2006-01-01

    The unification algorithm is at the core of the logic programming paradigm, the first unification algorithm being developed by Robinson [5]. More efficient algorithms were developed later [3] and I introduce here yet another efficient unification algorithm centered on a specific data structure, called the Unification Table.

  5. Unification of Active Galactic Nuclei at X-rays and soft gamma-rays

    This HDR (accreditation to supervise research) report contains presentations of teaching activities in stellar astrophysics and extragalactic astronomy and cosmology, of student supervision activities in different academic places, and of various publications and participations to conferences and meetings. After a brief text highlighting the relevance and originality of his research works, the author proposes a large overview of his research works which dealt with different aspects of active galactic nuclei and related issues. Future projects are evoked. The report also contains numerous publications (press articles, conference proceedings, and so on)

  6. Aspects of string unification

    We consider the phenomenological implications of a class of compactified string theories which naturally reproduces the flavour multiplet structure of the standard model. The implications for gauge unification depends on which of three possibilities is realised for obtaining light Higgs multiplets. The more conventional one leads to predictions for the gauge couplings close to that of the MSSM but with an increased value of the unification scale. The other two cases offer a mechanism for bringing the prediction for the strong coupling into agreement with the measured value while still increasing the unification scale. The various possibilities lead to different expectations for the structure of the quark masses. (orig.)

  7. Emission Line Galaxies and Active Galactic Nuclei in WINGS clusters

    Marziani, P; Bettoni, D; Poggianti, B M; Moretti, A; Fasano, G; Fritz, J; Cava, A; Varela, J; Omizzolo, A

    2016-01-01

    We present the analysis of the emission line galaxies members of 46 low redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey, Fasano et al. 2006). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star forming galaxies and classified employing diagnostic diagrams. We have examined the emission line properties and frequencies of star forming galaxies, transition objects and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency with respect to control samples, and by a systematically lower Balmer emission line equivalent width and luminosity (up to one order of magnitude in equivalent width with respect to control samples for transition objects) that implies a lower amount of ionised gas per unit mass and a lower s...

  8. Analysis of nuclear activity of ten polar ring galaxies

    Freitas-Lemes, P; Dors, O L; Faúndez-Abans, M

    2013-01-01

    The accumulation of mass from the interaction process that forms the polar ring galaxies is a factor that favors the conditions necessary to trigger nonthermal nuclear activities.. This fact encouraged the chemical analysis of ten polar ring galaxies. In order to verify the presence of an active nucleus in these galaxias, we built diagnostic diagrams using lines H{\\beta}, [OIII], [HI], H{\\alpha}, [NII], and [SII] and classified the type of nuclear activity. For galaxies that do not show shock, the parameters N2 and O3N2 were also determined. From this sample, we identified seven galaxies with an active nucleus and three that behave as HII regions. One galaxy with an active nucleus was classified as Seyfert. Although our data do not provide a statistically significant sample, we can speculate that polar ring galaxies are a setting conducive to trigger non-thermal nuclear activities.

  9. Unification and supersymmetry

    A short review of the various attempts to unify all forces of Nature is presented. The concept of Grand Unification is introduced and its dynamical effects are analyzed. A particular emphasis is put on supersymmetry and its phenomenological consequences. (orig.)

  10. Towards Grand Unification

    Sidharth, Burra G

    2016-01-01

    Sidharth had shown that gravitation can be reconciled with electromagnetic and other forces if we start from a Landau-Ginzburg phase transition. This is further remarked upon and a unification of all forces of nature is proposed.

  11. Lectures on Unification

    Ananthanarayan, B.

    1997-01-01

    In these lectures we review the motivation, principles of and (circumstantial) evidence for the program of unification of the fundamental forces. In an appendix, we review the group theory pertinent to the program.

  12. Does Size Matter? The Underlying Intrinsic Size Distribution of Radio Sources and Implications for Unification by Orientation

    DiPompeo, Michael A; Myers, Adam D; Boroson, Todd A

    2013-01-01

    Unification by orientation is a ubiquitous concept in the study of active galactic nuclei. A gold standard of the orientation paradigm is the hypothesis that radio galaxies and radio-loud quasars are intrinsically the same, but are observed over different ranges of viewing angles. Historically, strong support for this model was provided by the projected sizes of radio structure in luminous radio galaxies, which were found to be significantly larger than those of quasars, as predicted due to simple geometric projection. Recently, this test of the simplest prediction of orientation-based models has been revisited with larger samples that cover wider ranges of fundamental properties---and no clear difference in projected sizes of radio structure is found. Cast solely in terms of viewing angle effects, these results provide convincing evidence that unification of these objects solely through orientation fails. However, it is possible that conflicting results regarding the role orientation plays in our view of rad...

  13. The role of active galactic nuclei in galaxy formation

    Thomas, P A

    2009-01-01

    We use Monte-Carlo Markov chain techniques to constrain acceptable parameter regions for the Munich L-Galaxies semi-analytic galaxy formation model. Feedback from active galactic nuclei (AGN) is required to limit star-formation in the most massive galaxies. However, we show that the introduction of tidal stripping of dwarf galaxies as they fall into and merge with their host systems can lead to a reduction in the required degree of AGN feedback. In addition, the new model correctly reproduces both the metallicity of large galaxies and the fraction of intracluster light.

  14. Unification and/or evolution?

    Netzer, H.

    2015-09-01

    Extending the unification scheme to high redshift may require a paradigm shift since conditions in the early universe are significantly different from those observed locally. In particular, the higher gas densities, and the different morphologies of the host galaxies, are likely to affect the geometry and dust content in the vicinity of the black hole. Major merger are likely to destroy the central torus-like structure on a short time scale and gas supply to the black hole, and star formation close to it, may take completely different forms. A new study of 100 extremely luminous type-I AGN sheds new light on the torus properties and star formation in the host galaxies of these objects. It shows that about 1/3 of the host show extremely high star formation rate, more that 1000 solar mass per year, while most others are below the main sequence of star forming galaxies. The torus SED is surprising similar to SEDs observed in sources that are 3-4 orders of magnitude less luminous, in the local universe. The torus covering factor is also very similar to the one measured in the local less luminous sources raising serious questions about the suggestion that the covering factor is a decreasing function of AGN luminosity.

  15. Active galaxies viewed from the infrared

    The ability of infrared photons to penetrate dense clouds of interstellar dust has led to the potential for greater understanding of active galaxies. Areas in which this tool (as well as the study of continuum processes) is applicable are discussed. Starburst models must be developed that account for realistic triggering mechanisms, accurate tracks of stellar evolution, and the interaction of supernova remnants with themselves and the interstellar medium. It is noted that in combination with other measurements, infrared observations of the nonthermal continua of violently variable objects can trace the development of their spectral components. Infrared astronomy is also instrumental in the identification and classification of counterparts to members of complete samples of radio sources. 91 references

  16. The Roadmap for Unification in Galaxy Group Selection. I. A Search for Extended X-ray Emission in the CNOC2 Survey

    Finoguenov, A.; Connelly, J. L.; Parker, L. C.; Wilman, D. J.; Mulchaey, J. S.; Saglia, R. P.; Balogh, M. L.; Bower, R. G.; McGee, S. L.

    2009-10-01

    X-ray properties of galaxy groups can unlock some of the most challenging research topics in modern extragalactic astronomy: the growth of structure and its influence on galaxy formation. Only with the advent of the Chandra and XMM-Newton facilities have X-ray observations reached the depths required to address these questions in a satisfactory manner. Here we present an X-ray imaging study of two patches from the CNOC2 spectroscopic galaxy survey using combined Chandra and XMM-Newton data. A state of the art extended source finding algorithm has been applied, and the resultant source catalog, including redshifts from a spectroscopic follow-up program, is presented. The total number of spectroscopically identified groups is 25 spanning a redshift range 0.04-0.79. Approximately 50% of CNOC2 spectroscopically selected groups in the deeper X-ray (RA14h) field are likely X-ray detections, compared to 20% in the shallower (RA21h) field. Statistical modeling shows that this is consistent with expectations, assuming an expected evolution of the LX -M relation. A significant detection of a stacked shear signal for both spectroscopic and X-ray groups indicates that both samples contain real groups of about the expected mass. We conclude that the current area and depth of X-ray and spectroscopic facilities provide a unique window of opportunity at z ~ 0.4 to test the X-ray appearance of galaxy groups selected in various ways. There is at present no evidence that the correlation between X-ray luminosity and velocity dispersion evolves significantly with redshift, which implies that catalogs based on either method can be fairly compared and modeled. Based on observations with the ESA/NASA XMM-Newton science mission; the European Southern Observatory, Chile; NASA/ESA Chandra X-ray Observatory.

  17. The roadmap for unification in galaxy group selection:. I. A search for extended X-ray emission in the CNOC2 survey

    Finoguenov, A; Parker, L C; Wilman, D J; Mulchaey, J S; Saglia, R P; Balogh, M L; Bower, R G; McGee, S L

    2009-01-01

    X-ray properties of galaxy groups can unlock some of the most challenging research topics in modern extragalactic astronomy: the growth of structure and its influence on galaxy formation. Only with the advent of the Chandra and XMM facilities have X-ray observations reached the depths required to address these questions in a satisfactory manner. Here we present an X-ray imaging study of two patches from the CNOC2 spectroscopic galaxy survey using combined Chandra and XMM data. A state of the art extended source finding algorithm has been applied, and the resultant source catalog, including redshifts from a spectroscopic follow-up program, is presented. The total number of spectroscopically identified groups is 25 spanning a redshift range 0.04-0.79. Approximately 50% of CNOC2 spectroscopically selected groups in the deeper X-ray (RA14h) field are likely X-ray detections, compared to 20% in the shallower (RA21h) field. Statistical modeling shows that this is consistent with expectations, assuming an expected e...

  18. Unification of Fundamental Forces

    Salam, Abdus; Taylor, Foreword by John C.

    2005-10-01

    Foreword John C. Taylor; 1. Unification of fundamental forces Abdus Salam; 2. History unfolding: an introduction to the two 1968 lectures by W. Heisenberg and P. A. M. Dirac Abdus Salam; 3. Theory, criticism, and a philosophy Werner Heisenberg; 4. Methods in theoretical physics Paul Adrian Maurice Dirac.

  19. Prospects for further unification

    We review the unification of weak and electromagnetic interactions (QAD), the prevalent color gauge theory of the strong interactions (QCD) and attempts to embed both these theories in a further Unified Gauge Theory. We discuss the related advances in cosmology and touch upon other approaches to the understanding of particles and fields. 44 references

  20. The Rise and Fall of Galaxy Activity in Dark Matter Haloes

    Pasquali, Anna; Bosch, Frank C. van den; Mo, H. J.; Yang, Xiaohu; Somerville, Rachel

    2008-01-01

    We use a SDSS galaxy group catalogue to study the dependence of galaxy activity on stellar mass, halo mass, and group hierarchy (centrals vs. satellites). We split our galaxy sample in star-forming galaxies, galaxies with optical AGN activity and radio sources. We find a smooth transition in halo mass as the activity of central galaxies changes from star formation to optical AGN activity to radio emission. Star-forming centrals preferentially reside in haloes with M

  1. Upholding the Unified Model for Active Galactic Nuclei: VLT/FORS2 Spectropolarimetry of Seyfert 2 galaxies

    Almeida, Cristina Ramos; Ramos, A Asensio; Acosta-Pulido, J A; Hönig, S F; Alonso-Herrero, A; Tadhunter, C N; González-Martín, O

    2016-01-01

    The origin of the unification model for Active Galactic Nuclei (AGN) was the detection of broad hydrogen recombination lines in the optical polarized spectrum of the Seyfert 2 galaxy (Sy2) NGC 1068. Since then, a search for the hidden broad-line region (HBLR) of nearby Sy2s started, but polarized broad lines have only been detected in 30-40% of the nearby Sy2s observed to date. Here we present new VLT/FORS2 optical spectropolarimetry of a sample of 15 Sy2s, including Compton-thin and Compton-thick sources. The sample includes six galaxies without previously published spectropolarimetry, some of them normally treated as non-hidden BLR (NHBLR) objects in the literature, four classified as NHBLR, and five as HBLR based on previous data. We report >=4{\\sigma} detections of a HBLR in 11 of these galaxies (73% of the sample) and a tentative detection in NGC 5793, which is Compton-thick according to the analysis of X-ray data performed here. Our results confirm that at least some NHBLRs are misclassified, bringing p...

  2. Line and continuum variability in active galaxies

    Rashed, Y. E.; Eckart, A.; Valencia-S., M.; García-Marín, M.; Busch, G.; Zuther, J.; Horrobin, M.; Zhou, H.

    2015-12-01

    We compared optical spectroscopic and photometric data for 18 active galactic nuclei (AGN) galaxies over two to three epochs, with time intervals of typically 5 to 10 yr. We used the multi-object double spectrograph (MODS) at the Large Binocular Telescope (LBT) and compared the spectra with data taken from the SDSS data base and the literature. We found variations in the forbidden oxygen lines as well as in the hydrogen recombination lines of these sources. For four of the sources we found that, within the calibration uncertainties, the variations in continuum and line spectra of the sources are very small. We argue that it is mainly the difference in black hole mass between the samples that is responsible for the different degree of continuum variability. In addition, we found that for an otherwise constant accretion rate the total line variability (dominated by the narrow line contributions) reverberates in a similar way to the continuum variability with a dependence ΔLline ∝ (ΔLcont)3/2. Because this dependence is predominantly expressed in the narrow line emission, the implication is that the part of the source that dominates the luminosity in the narrow line region must be very compact, with a diameter of the order of at least 10 light-years. A comparison with data from the literature shows that these findings describe the variability characteristics of a total of 61 broad and narrow line sources.

  3. The evolution of galaxy star formation activity in massive halos

    Popesso, P; Finoguenov,; Wilman, D; Salvato, M; Magnelli, B; Gruppioni, C; Pozzi, F; Rodighiero, G; Ziparo, F; Berta, S; Elbaz, D; Dickinson, M; Lutz, D; Altieri, B; Aussel, H; Cimatti, A; Fadda, D; Ilbert, O; Floch, E Le; Nordon, R; Poglitsch, A; Xu, C K

    2014-01-01

    There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a "halo downsizing" scenario and highlight the significant role of "environment" quenching in shaping the CSFH.

  4. Dark matter from unification

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  5. Unification By Induction

    Adewole, A. I. A.

    2001-01-01

    We show that the problem of unifying electromagnetism with gravity has an elegant solution in classical physics through the phenomenon of induction. By studying the way that induction leads to the formation of electromagnetic fields, we identify the classical field equations which the unified field must satisfy and a corresponding set of constitutive equations for the medium sustaining the field. The unification problem is then reduced to the problem of finding the exact form of these constit...

  6. AMIGA project: Active galaxies in a complete sample of isolated galaxies

    Sabater, J; Verdes-Montenegro, L; Lisenfeld, U; Sulentic, J; Verley, S

    2009-01-01

    The project AMIGA (Analysis of the interstellar Medium of Isolated GAlaxies) provides a statistically significant sample of the most isolated galaxies in the northern sky. Such a control sample is necessary to understand the role of the environment in evolution and galaxy properties like the interstellar medium (ISM), star formation and nuclear activity. The data is publicly released under a VO interface at http://amiga.iaa.es/. One of our main goals is the study of nuclear activity in non-interacting galaxies using different methods. We focus on the well known radiocontinuum-far infrared (FIR) correlation in order to findradio-excess galaxies which are candidates to host an active galactic nucleus (AGN) and FIR colours to find obscured AGN candidates. We looked for the existing information on nuclear activity in the V\\'eron-Cetty catalogue and in the NASA Extragalactic Database (NED). We also used the nuclear spectra from the Sloan Digital Sky Survey which allow us to determine the possible presence of an AG...

  7. Environmental effects in galaxies Molecular Gas, Star Formation, and Activity

    De Mello, D F; Maia, M A G; Mello, Duilia F. de; Wiklind, Tommy; Maia, Marcio A.G.

    2001-01-01

    In order to study whether there is any correlation between nuclear activities, gas content, and the environment where galaxies reside, we have obtained optical and millimetric spectra for a well-defined sample of intermediate Hubble type spirals in dense environments and in the field. We found that these spirals in dense environments have on average: less molecular gas per blue luminosity, higher atomic gas fraction, lower current star formation rate, and the same star formation efficiency as field galaxies. Although none of these results stand out as a single strong diagnostic, given their statistical significance, taken together they indicate a trend for diminished gas content and star formation activity in galaxies in high density environments. Our results suggest that galaxies in dense environments have either (i) consumed their molecular gas via star formation in the past or (ii) that dense environments leads to an inhibition of molecular gas from atomic phase. The similarities in star formation efficien...

  8. Star Formation in the Central Kiloparsec of Nearby Active Galaxies

    We investigate star formation (SF) activity in the central kpc of a sample of nearby Active Galactic Nuclei (AGNs). AGN activities are expected to either trigger SF via accreting ISM to the central regions of the host galaxies or quench the SF via the energy feedback of the AGNs. To study the AGN-SF relation we select 113 nearby galaxies that host 8 GHz central radio sources. We use 8 GHz radio emission to represent the AGN activity and 8 micron dust emission in the central kpc regions of these galaxies to estimate the SF rate (SFR). The SFR is found to be correlated with the stellar mass for stellar mass greater than 1010 solar mass and looks scattered for stellar mass less than 1010 solar mass. There is no correlation between the specific SFR (SSFR) and the AGN activity for all sources. However, if we exclude the sources with the central stellar mass greater than 1010 solar mass, we find that the 8 GHz radio emission is well correlated with the SSFR. These results suggest that the AGN activity is significant in triggering SF activity only for small galaxies. Besides, we also select about 20 nearby AGN galaxies to investigate the radial variation of their surface specific star formation rate.

  9. Active galaxies can make axionic dark energy

    Dimopoulos, Konstantinos; Cormack, Sam

    2016-01-01

    AGN jets carry helical magnetic fields, which can affect dark matter if the latter is axionic. This preliminary study shows that, in the presence of strong helical magnetic fields, the nature of the axionic condensate may change and become dark energy. Such dark energy may affect galaxy formation and galactic dynamics, so this possibility should not be ignored when considering axionic dark matter.

  10. Direct mediation, duality and unification

    It is well-known that in scenarios with direct gauge mediation of supersymmetry breaking the messenger fields significantly affect the running of Standard Model couplings and introduce Landau poles which are difficult to avoid. Among other things, this appears to remove any possibility of a meaningful unification prediction and is often viewed as a strong argument against direct mediation. We propose two ways that Seiberg duality can circumvent this problem. In the first, which we call 'deflected-unification', the SUSY-breaking hidden sector is a magnetic theory which undergoes a Seiberg duality to an electric phase. Importantly, the electric version has fewer fundamental degrees of freedom coupled to the MSSM compared to the magnetic formulation. This changes the β-functions of the MSSM gauge couplings so as to push their Landau poles above the unification scale. We show that this scenario is realised for recently suggested models of gauge mediation based on a metastable SCQD-type hidden sector directly coupled to MSSM. The second possibility for avoiding Landau poles, which we call 'dual-unification', begins with the observation that, if the mediating fields fall into complete SU(5) multiplets, then the MSSM+messengers exhibits a fake unification at unphysical values of the gauge couplings. We show that, in known examples of electric/magnetic duals, such a fake unification in the magnetic theory reflects a real unification in the electric theory. We therefore propose that the Standard Model could itself be a magnetic dual of some unknown electric theory in which the true unification takes place. This scenario maintains the unification prediction (and unification scale) even in the presence of Landau poles in the magnetic theory below the GUT scale. We further note that this dual realization of grand unification can explain why Nature appears to unify, but the proton does not decay.

  11. Chronos: A NIR spectroscopic galaxy survey. From the formation of galaxies to the peak of activity

    Ferreras, I; Dunlop, J S; Pasquali, A; La Barbera, F; Vazdekis, A; Khochfar, S; Cropper, M; Cimatti, A; Cirasuolo, M; Bower, R; Brinchmann, J; Burningham, B; Cappellari, M; Charlot, S; Conselice, C J; Daddi, E; Grebel, E K; Ivison, R; Jarvis, M J; Kawata, D; Kennicutt, R C; Kitching, T; Lahav, O; Maiolino, R; Page, M J; Peletier, R F; Pontzen, A; Silk, J; Springel, V; Sullivan, M; Trujillo, I; Wright, G

    2013-01-01

    Chronos is our response to ESA's call for white papers to define the science for the future L2, L3 missions. Chronos targets the formation and evolution of galaxies, by collecting the deepest NIR spectroscopic data, from the formation of the first galaxies at z~10 to the peak of formation activity at z~1-3. The strong emission from the atmospheric background makes this type of survey impossible from a ground-based observatory. The spectra of galaxies represent the equivalent of a DNA fingerprint, containing information about the past history of star formation and chemical enrichment. The proposed survey will allow us to dissect the formation process of galaxies including the timescales of quenching triggered by star formation or AGN activity, the effect of environment, the role of infall/outflow processes, or the connection between the galaxies and their underlying dark matter haloes. To provide these data, the mission requires a 2.5m space telescope optimised for a campaign of very deep NIR spectroscopy. A c...

  12. Nuclear Activity is more prevalent in Star-Forming Galaxies

    Rosario, D J; Lutz, D; Netzer, H; Bauer, F E; Berta, S; Magnelli, B; Popesso, P; Alexander, D; Brandt, W N; Genzel, R; Maiolino, R; Mullaney, J R; Nordon, R; Saintonge, A; Tacconi, L; Wuyts, S

    2013-01-01

    We explore the question of whether low and moderate luminosity Active Galactic Nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation to quiescence. This notion has been suggested by studies of the UV-to-optical colors of AGN hosts, which find them to be common among galaxies in the so-called "Green Valley", a region of galaxy color space believed to be composed mostly of galaxies undergoing star-formation quenching. Combining the deepest current X-ray and Herschel. PACS far-infrared (FIR) observations of the two Chandra Deep Fields (CDFs) with redshifts, stellar masses and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U-V color distributions and SFR distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z~2, but we show that such colors ar...

  13. Unification with mirror fermions

    Triantaphyllou George

    2014-04-01

    Full Text Available We present a new framework unifying interactions in nature by introducing mirror fermions, explaining the hierarchy between the weak scale and the coupling unification scale, which is found to lie close to Planck energies. A novel process leading to the emergence of symmetry is proposed, which not only reduces the arbitrariness of the scenario proposed but is also followed by significant cosmological implications. Phenomenology includes the probability of detection of mirror fermions via the corresponding composite bosonic states and the relevant quantum corrections at the LHC.

  14. Renormalizable SU(5) Unification

    Perez, Pavel Fileviez; Murgui, Clara

    2016-01-01

    We propose a simple renormalizable grand unified theory based on the SU(5) gauge symmetry where the neutrino masses are generated at the quantum level through the Zee mechanism. In this model the same Higgs needed to correct the mass relation between charged leptons and down-type quarks plays a crucial role to generate neutrino masses. We show that in this model one can satisfy the constrains coming from the unification of gauge couplings and the mechanism for neutrino masses is discussed in ...

  15. Optical nuclear activity in the radio galaxy 3C 465

    De Robertis, M.M.; Yee, H.K.C. (York Univ., North York (Canada) Toronto Univ. (Canada))

    1990-07-01

    The presently discussed discovery of weak, high-ionization emission lines in the nuclei of radio galaxies which had been classified as quiescent absorption-line systems demonstrates that AGN-like activity does occur in the central galaxies of rich clusters. 3C 465-like objects can be considered the extreme low-luminosity end of active nuclei in the centers of rich clusters; the estimated magnitude of 3C 465's nuclear component, at -15.7, is consistent with the precipitous drop of the luminosities of quasars in clusters. 3C 465 appears to represent a new class of optically active objects. 48 refs.

  16. Optical nuclear activity in the radio galaxy 3C 465

    The presently discussed discovery of weak, high-ionization emission lines in the nuclei of radio galaxies which had been classified as quiescent absorption-line systems demonstrates that AGN-like activity does occur in the central galaxies of rich clusters. 3C 465-like objects can be considered the extreme low-luminosity end of active nuclei in the centers of rich clusters; the estimated magnitude of 3C 465's nuclear component, at -15.7, is consistent with the precipitous drop of the luminosities of quasars in clusters. 3C 465 appears to represent a new class of optically active objects. 48 refs

  17. Warped Supersymmetric Grand Unification

    Goldberger, W D; Smith, D R; Goldberger, Walter D.; Nomura, Yasunori; Smith, David R.

    2003-01-01

    We construct a realistic model of grand unification in AdS_5 truncated by branes, in which the unified gauge symmetry is broken by boundary conditions and the electroweak scale is generated by the AdS warp factor. We show that the model preserves the successful gauge coupling unification of the 4D MSSM at leading-logarithmic level. Kaluza-Klein towers, including those of XY gauge and colored Higgs multiplets, appear at the TeV scale, while the extra dimension provides natural mechanisms for doublet-triplet splitting and proton decay suppression. In one possible scenario supersymmetry is strongly broken on the TeV brane, in which case the lightest SU(3)_C x SU(2)_L x U(1)_Y gauginos are Dirac fermions, with universal masses at the weak scale, and the mass of the lightest XY gaugino is pushed well below that of the lowest gauge boson KK mode, improving the prospects for its production at the LHC. The bulk Lagrangian possesses a symmetry that we call GUT parity. If GUT parity is exact, the lightest GUT particle,...

  18. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s–1) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  19. X-Ray bright active galactic nuclei in massive galaxy clusters - II. The fraction of galaxies hosting active nuclei

    Ehlert, S.; von der Linden, A.; Allen, S. W.;

    2013-01-01

    We present a measurement of the fraction of cluster galaxies hosting X-ray bright active galactic nuclei (AGN) as a function of clustercentric distance scaled in units of r500. Our analysis employs high-quality Chandra X-ray and Subaru optical imaging for 42 massive X-ray-selected galaxy cluster...... fields spanning the redshift range 0.2 z ..., both of which are also suppressed near cluster centres to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas. © 2013 The Authors. Published by Oxford University...

  20. Supersymmetry, supergravity, and unification

    Nath, Pran

    2016-01-01

    This unique book gives a modern account of particle physics and gravity based on supersymmetry and supergravity, two of the most significant developments in theoretical physics since general relativity. The book begins with a brief overview of the history of unification and then goes into a detailed exposition of both fundamental and phenomenological topics. The topics in fundamental physics include Einstein gravity, Yang-Mills theory, anomalies, the standard model, supersymmetry and supergravity, and the construction of supergravity couplings with matter and gauge fields, as well as computational techniques for SO(10) couplings. The topics of phenomenological interest include implications of supergravity models at colliders, CP violation, and proton stability, as well as topics in cosmology such as inflation, leptogenesis, baryogenesis, and dark matter. The book is intended for graduate students and researchers seeking to master the techniques for building grand unified models.

  1. Renormalizable SU(5) Unification

    Perez, Pavel Fileviez

    2016-01-01

    We propose a simple renormalizable grand unified theory based on the SU(5) gauge symmetry where the neutrino masses are generated at the quantum level through the Zee mechanism. In this model the same Higgs needed to correct the mass relation between charged leptons and down-type quarks plays a crucial role to generate neutrino masses. We show that in this model one can satisfy the constrains coming from the unification of gauge couplings and the mechanism for neutrino masses is discussed in detail. We find an interesting relation between the neutrino masses and the charged fermion masses. The predictions for proton decay are discussed in order to understand the testability at current and future experiments such as Hyper-Kamiokande. This simple theory predicts a light colored octet which could give rise to exotic signatures at the LHC.

  2. Unification of fundamental forces

    Abdus Salam, a Fellow of St. John's College, Cambridge, provides an accessible overview of modern particle physics and the quest for the unification of the fundamental forces, the electromagnetic, strong nuclear weak nuclear and gravitational. A major theme of the lecture is the way in which the theoretical physicists approach the task of imposing orders on a seemingly chaotic universe. A secondary theme is that the electroweak force is most likely to be the force of life. The theme of the philosophy behind the work of theorists is continued in two additional lectures by Werner Heisenberg and Paul Dirac which give fascinating insights into the modus operandi and work of two of the founders of quantum mechanics. (author)

  3. Active galactic nucleus feedback in clusters of galaxies.

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  4. Active galaxies may harbour wormholes if dark matter is axionic

    Dimopoulos, Konstantinos

    2016-01-01

    AGN jets carry helical magnetic fields, which can affect dark matter if the latter is axionic. This preliminary study shows that the nature of the axionic condensate may change and instead of dark matter may behave more like exotic matter, which violates the null energy condition. If the central supermassive black hole of an active galaxy is laced with exotic matter then it may become a wormhole. In general, the presence of exotic matter may affect galaxy formation and galactic dynamics, so this possibility should not be ignored when considering axionic dark matter.

  5. Galaxy mergers and active nuclei. I. The luminosity function

    Galaxy mergers may boost the tidal disruption rate of stars near a massive central black hole in the nucleus of a galaxy, producing active galactic nuclei (AGNs) with nonthermal luminosities up to 1047 ergs s-1. We derive a bolometric luminosity function for AGNs based on this process. Our main assumptions are: (1) galaxies contain massive central black holes, and (2) the density structure of galactic nuclei is similar to that of the Milky Way. The merging rate is estimated from the two-point correlation function of galaxies. Our bolometric luminosity function can be compared with observed radio, optical, and X-ray luminosity functions by assuming that the energy emitted at these wavebands is proportional to bolometric luminosity. This assumption is based on the similarity between observed luminosity functions at high luminosities. The observed and theoretical functions have the same characteristics: at high luminosities they behave as a power law with index of about -1.4. The function flattens below L/sup direct-product/roughly-equal1044 ergs s-1. As an example we show that the model is capable of reproducing in detail the observed (bivariate) radio luminosity function. The luminosity coordinate of the break in the (bivariate) radio luminosity function at L/sup direct-product/ yields an estimate of the central black-hole mass as a function of (stellar) galactic luminosity. The space-density coordinate of the break indicates that the mean mass ratio of the interacting galaxies is larger than 20

  6. Upholding the unified model for active galactic nuclei: VLT/FORS2 spectropolarimetry of Seyfert 2 galaxies

    Ramos Almeida, C.; Martínez González, M. J.; Asensio Ramos, A.; Acosta-Pulido, J. A.; Hönig, S. F.; Alonso-Herrero, A.; Tadhunter, C. N.; González-Martín, O.

    2016-09-01

    The origin of the unification model for active galactic nuclei (AGN) was the detection of broad hydrogen recombination lines in the optical polarized spectrum of the Seyfert 2 galaxy (Sy2) NGC 1068. Since then, a search for the hidden broad-line region (HBLR) of nearby Sy2s started, but polarized broad lines have only been detected in ˜30-40 per cent of the nearby Sy2s observed to date. Here we present new VLT/FORS2 optical spectropolarimetry of a sample of 15 Sy2s, including Compton-thin and Compton-thick sources. The sample includes six galaxies without previously published spectropolarimetry, some of them normally treated as non-hidden BLR (NHBLR) objects in the literature, four classified as NHBLR, and five as HBLR based on previous data. We report ≥4σ detections of a HBLR in 11 of these galaxies (73 per cent of the sample) and a tentative detection in NGC 5793, which is Compton-thick according to the analysis of X-ray data performed here. Our results confirm that at least some NHBLRs are misclassified, bringing previous publications reporting differences between HBLR and NHBLR objects into question. We detect broad Hα and Hβ components in polarized light for 10 targets, and just broad Hα for NGC 5793 and NGC 6300, with line widths ranging between 2100 and 9600 km s-1. High bolometric luminosities and low column densities are associated with higher polarization degrees, but not necessarily with the detection of the scattered broad components.

  7. Line and Continuum Variability in Active Galaxies

    Rashed, Y E; Valencia-S., M; García-Marín, M; Busch, G; Zuther, J; Horrobin, M; Zhou, H

    2015-01-01

    We compared optical spectroscopic and photometric data for 18 AGN galaxies over 2 to 3 epochs, with time intervals of typically 5 to 10 years. We used the Multi-Object Double Spectrograph (MODS) at the Large Binocular Telescope (LBT) and compared the spectra to data taken from the SDSS database and the literature. We find variations in the forbidden oxygen lines as well as in the hydrogen recombination lines of these sources. For 4 of the sources we find that, within the calibration uncertainties, the variations in continuum and line spectra of the sources are very small. We argue that it is mainly the difference in black hole mass between the samples that is responsible for the different degree of continuum variability. In addition we find that for an otherwise constant accretion rate the total line variability (dominated by the narrow line contributions) reverberates the continuum variability with a dependency $\\Delta L_{line} \\propto (\\Delta L_{cont.})^{\\frac{3}{2}}$. Since this dependency is prominently e...

  8. QSO Pairs across Active Galaxies: Evidence of Blueshifts?

    D. Basu

    2006-12-01

    Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs imply that both the objects are receding from the observer. However, ejection can occur towards and away from the observer with equal probability. We argue that for a system with two QSOs lying across the parent galaxy, ejection should have occurred in opposite directions, whereby one object will be approaching us and the other will be receding from us. The former would exhibit a blueshifted spectrum. We analyse here a sample of four such pairs and show that the observed spectrum of one QSO in each pair can be interpreted as blueshifted. The other exhibits the usual redshifted spectrum. A scenario based on the ‘sling-shot’ mechanism of ejection is presented to explain the occurrences of the pairs in opposite sides of the active galaxies moving in opposite directions.

  9. An atlas of Calcium triplet spectra of active galaxies

    Garcia-Rissmann, A; Asari, N V; Fernandes, R C; Schmitt, H; González-Delgado, R M; Storchi-Bergmann, T

    2005-01-01

    We present a spectroscopic atlas of active galactic nuclei covering the region around the 8498, 8542, 8662 Calcium triplet (CaT) lines. The sample comprises 78 objects, divided into 43 Seyfert 2s, 26 Seyfert 1s, 3 Starburst and 6 normal galaxies. The spectra pertain to the inner ~300 pc in radius, and thus sample the central kinematics and stellar populations of active galaxies. The data are used to measure stellar velocity dispersions (sigma_star) both with cross-correlation and direct fitting methods. These measurements are found to be in good agreement with each-other and with those in previous studies for objects in common. The CaT equivalent width is also measured. We find average values and sample dispersions of W_CaT of 4.6+/-2.0, 7.0 and 7.7+/-1.0 angstrons for Seyfert 1s, Seyfert 2s and normal galaxies, respectively. We further present an atlas of [SIII]\\lambda 9069 emission line profiles for a subset of 40 galaxies. These data are analyzed in a companion paper which addresses the connection between ...

  10. Supersymmetric exceptional gauge unification

    Baaklini, N.S.

    1980-12-15

    We discuss the accommodation of quark-lepton generations, classified by SU(5), in the adjoint representations of simple Lie groups. We find SO(11), E/sub 6/, E/sub 7/, and E/sub 8/ as the only possible embedding groups, with the respective contents of one, one, three, and five conventional generations, together with their (V+A) conjugates and other particles. SU(4) supersymmetric unification models based on these gauge groups and which unify, via one coupling constant, the interactions of one vector boson, four spin-1/2 fermion, and six Higgs scalar multiplets, all being in the adjoint representation, are considered. Attention is focused on E/sub 7/ and E/sub 8/. The latter algebras are represented in the familiar SU(8) and SU(9) basis. We discuss quark-lepton assignments and propose patterns of symmetry breaking which can be triggered by the adjoint Higgs scalars, and which are compatible with the observed values of the strong and the weak couplings, as well as the weak mixing angle. Remarks are given with regard to the breaking of supersymmetry and the possible role of radiative corrections and renormalization effects in generating the gauge hierarchy.

  11. The star formation rates of active galactic nuclei host galaxies

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  12. The star formation rates of active galactic nuclei host galaxies

    Ellison, Sara L; Rosario, David J; Mendel, J Trevor

    2016-01-01

    Using artificial neural network (ANN) predictions of total infra-red luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ~21,000 optically selected active galactic nuclei (AGN), 466 low excitation radio galaxies (LERGs) and 721 mid-IR selected AGN. SFR offsets (Delta SFR) relative to a sample of star-forming `main sequence' galaxies (matched in M*, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of Delta SFR, with a distribution skewed to low SFRs and a median Delta SFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median Delta SFR = -0.5 dex. In contrast, mid-IR selected AGN have, on average, SFRs enhanced by a factor ~1.5. We interpret the different distributions of Delta SFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied ...

  13. Paired galaxies with different activity levels and their supernovae

    Nazaryan, T A; Hakobyan, A A; Adibekyan, V Zh; Kunth, D; Mamon, G A; Turatto, M; Aramyan, L S

    2013-01-01

    We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The statistical study of SN hosts shows that there is no significant difference between morphologies of hosts in our sample and the larger general sample of SN hosts in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. The distributions and mean distances of SNe are consistent with previous results compiled with the larger sample. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies. SN types are not correlated with the luminosity ratio of ho...

  14. The evolution of star formation activity in galaxy groups

    Erfanianfar, G; Finoguenov, A; Wuyts, S; Wilman, D; Biviano, A; Ziparo, F; Salvato, M; Nandra, K; Lutz, D; Elbaz, D; Dickinson, M; Tanaka, M; Mirkazemi, M; Balogh, M L; Altieri, M B; Aussel, H; Bauer, F; Berta, S; Bielby, R M; Brandt, N; Cappelluti, N; Cimatti, A; Cooper, M; Fadda, D; Ilbert, O; Floch, E Le; Magnelli, B; Mulchaey, J S; Nordon, R; Newman, J A; Poglitsch, A; Pozzi, F

    2014-01-01

    We study the evolution of the total star formation (SF) activity, total stellar mass and halo occupation distribution in massive halos by using one of the largest X-ray selected sample of galaxy groups with secure spectroscopic identification in the major blank field surveys (ECDFS, CDFN, COSMOS, AEGIS). We provide an accurate measurement of SFR for the bulk of the star-forming galaxies using very deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations. For undetected IR sources, we provide a well-calibrated SFR from SED fitting. We observe a clear evolution in the level of SF activity in galaxy groups. The total SF activity in the high redshift groups (0.5activity is declining more rapidly in the more massive halos than in the more common lower mass ...

  15. Ultra Fast Outflows: Galaxy-Scale Active Galactic Nucleus Feedback

    Wagner, A. Y.; Umemura, M; Bicknell, G. V.

    2012-01-01

    We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense cl...

  16. Gauge coupling unification with extra Higgs doublets

    Harada, Junpei

    2016-01-01

    Gauge coupling unification is studied within the framework where there are extra Higgs doublets and $E_6$ exotic fields. Supersymmetric models and nonsupersymmetric models are investigated, and a catalog of models with gauge coupling unification is presented.

  17. GALAXY CLUSTERS AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI AT 1.3 < z < 3.2 AS SEEN BY SPITZER

    We report the first results from the Clusters Around Radio-Loud AGN program, a Cycle 7 and 8 Spitzer Space Telescope snapshot program to investigate the environments of a large sample of obscured and unobscured luminous radio-loud active galactic nuclei (AGNs) at 1.2 AB = 22.6 and [4.5]AB = 22.9 at the 95% completeness level, which is two to three times fainter than L* in this redshift range. By using the color cut [3.6] – [4.5] > –0.1 (AB), which efficiently selects high-redshift (z > 1.3) galaxies of all types, we identify galaxy cluster member candidates in the fields of the radio-loud AGN. The local density of these Infrared Array Camera (IRAC)-selected sources is compared to the density of similarly selected sources in blank fields. We find that 92% of the radio-loud AGN reside in environments richer than average. The majority (55%) of the radio-loud AGN fields are found to be overdense at a ≥2σ level; 10% are overdense at a ≥5σ level. A clear rise in surface density of IRAC-selected sources toward the position of the radio-loud AGN strongly supports an association of the majority of the IRAC-selected sources with the radio-loud AGN. Our results provide solid statistical evidence that radio-loud AGN are likely beacons for finding high-redshift galaxy (proto-)clusters. We investigate how environment depends on AGN type (unobscured radio-loud quasars versus obscured radio galaxies), radio luminosity and redshift, finding no correlation with either AGN type or radio luminosity. We find a decrease in density with redshift, consistent with galaxy evolution for this uniform, flux-limited survey. These results are consistent with expectations from the orientation-driven AGN unification model, at least for the high radio luminosity regimes considered in this sample.

  18. Low-luminosity Blazars in Wise: A Mid-infrared View of Unification

    Plotkin, Richard M.; Anderson, S. F.; Brandt, W. N.; Markoff, S.; Shemmer, O.; Wu, J.

    2012-01-01

    We use the preliminary data release from the Wide-Field Infrared Survey Explorer (WISE) to perform the first statistical study on the mid-infrared (IR) properties of a large number ( 102) of BL Lac objects -- low-luminosity Active Galactic Nuclei (AGN) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions (SEDs), and the shape of their SEDs in the IR correlates well with SED peak frequency. In other BL Lac objects, the jet is not strong enough to completely dilute the rest of the AGN, and we do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. While at odds with simple unification, the missing torus is consistent with recent suggestions that BL Lac objects are fed by radiatively inefficient accretion flows. We discuss implications on the ``nature vs. nurture" debate for FR I and FR II galaxies, and also on the standard orientation-based AGN unification model.

  19. The fraction of galaxies that contain active nuclei and their accretion rates

    Page, M. J.

    2001-12-01

    We investigate the relationship between the present-day optical luminosity function of galaxies and the X-ray luminosity function of Seyfert 1s to determine the fraction of galaxies that host Seyfert 1 nuclei and their Eddington ratios. The local type 1 active galactic nuclei (AGN) X-ray luminosity function is well reproduced if ~1 per cent of all galaxies are type 1 Seyferts which have Eddington ratios of ~10-3. However, in such a model the X-ray luminosity function is completely dominated by AGN in E and S0 galaxies, contrary to the observed mix of Seyfert host galaxies. To obtain a plausible mix of AGN host galaxy morphologies requires that the most massive black holes in E and S0 galaxies accrete with lower Eddington ratios, or have a lower incidence of Seyfert activity, than the central black holes of later-type galaxies.

  20. The quenching of the star formation activity in cluster galaxies

    Boselli, A; Fossati, M; Buat, V; Boissier, S; Boquien, M; Burgarella, D; Ciesla, L; Gavazzi, G; Serra, P

    2016-01-01

    We study the star formation quenching mechanism in cluster galaxies by fitting the SED of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SED are fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies is parametrised using a specific SFH with 2 free parameters, the quenching age QA and the quenching factor QF. These 2 parameters are crucial for the identification of the quenching mechanism which acts on long timescales if starvation while rapid and efficient if ram pressure. To be sensitive to an abrupt and recent variation of the star formation activity, we combine in a new way 20 UV to FIR photometric bands with 3 age-sensitive Balmer line absorption indices extracted from available medium-resolution integrated spectroscopy and with Halpha narrow band imaging data. The use of a truncated SFH significantly increases the...

  1. THE LACK OF TORUS EMISSION FROM BL LACERTAE OBJECTS: AN INFRARED VIEW OF UNIFICATION WITH WISE

    We use data from the Wide-Field Infrared Survey Explorer (WISE) to perform a statistical study on the mid-infrared (IR) properties of a large number (∼102) of BL Lac objects—low-luminosity active galactic nuclei (AGNs) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions. In other BL Lac objects, however, the jet is not strong enough to completely dilute the rest of the AGN emission. We do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. The lack of observable torus emission is consistent with suggestions that BL Lac objects are fed by radiatively inefficient accretion disks. Implications for the 'nature versus nurture' debate for FR I and FR II radio galaxies are briefly discussed. Our study supports the notion that, beyond orientation, accretion rate plays an important role in AGN unification.

  2. Gauge coupling unification in gauge-Higgs grand unification

    Yamatsu, Naoki

    2016-04-01

    We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.

  3. Gauge Coupling Unification in Gauge-Higgs Grand Unification

    Yamatsu, Naoki

    2015-01-01

    We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all the four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in $SO(11)$ gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.

  4. Misaligned Disks as Obscurers in Active Galaxies

    Lawrence, A.; Elvis, M.; /Edinburgh U., Inst. Astron. /Harvard-Smithsonian Ctr. Astrophys.

    2010-06-02

    We review critically the evidence concerning the fraction of Active Galactic Nuclei (AGN) which appear as Type 2 AGN, carefully distinguishing strict Type 2 AGN from both more lightly reddened Type 1 AGN, and from low excitation narrow line AGN, which may represent a different mode of activity. Low excitation AGN occur predominantly at low luminosities; after removing these, true Type 2 AGN represent 58{-+}5% of all AGN, and lightly reddened Type 1 AGN a further {approx}15%. Radio, IR, and volume-limited samples all agree in showing no change of Type 2 fraction with luminosity. X-ray samples do show a change with luminosity; we discuss possible reasons for this discrepancy. We test a very simple picture which produces this Type 2 fraction with minimal assumptions. In this picture, infall from large scales occurs in random directions, but must eventually align with the inner accretion flow, producing a severely warped disk on parsec scales. If the re-alignment is dominated by tilt, with minimal twist, a wide range of covering factors is predicted in individual objects, but with an expected mean fraction of Type 2 AGN of exactly 50%. This 'tilted disc' picture predicts reasonable alignment of observed nuclear structures on average, but with distinct misalignments in individual cases. Initial case studies of the few well resolved objects show that such misalignments are indeed present.

  5. Grand unification and before

    The standard SU(3)/sub c/ x SU(2)/sub L/ x U(1) model of strong and electroweak interactions contains the following parameters: (1) it has three indepenent couplings g3, g2 and g1. The QCD coupling g3 is often parameterized in terms of the mass scale Λ/sub MS/, while g2 and g1 are generally traded off for the electric charge e and the weak mixing angle theta/sub W/ via the relationships e2 = g22 sin2theta/sub W/ and tan2theta/sub W/ = 3g12/5g22; (2) there are two intermediate vector boson masses m/sub W/ and m/sub Z/ which are related by m/sub W/ = m/sub Z/cos theta/sub W/ and an arbitrary Higgs scalar mass m/sub phi/; (3) of its nine fermion masses m/sub e/, m/sub μ/, m/sub tau/, m/sub d/, m/sub s/, m/sub b/, m/sub u/, m/sub c/ and m/sub t/, all except, m/sub t/ have phenomenologically measured values. From e+e- annihilation PETRA data, one has the lower bound m/sub t/ greater than or equal to 18 GeV; (4) there are three quark mixing angles theta1, theta2, theta3 and a CP violating phase delta. In addition, there may be neutrino masses, lepton mixing angles, new generations of fermions, etc. As experimentalists measure these parameters with better precision, theorists seek natural relationships (such as m/sub W/ = m/sub Z/cos theta/sub W/) in an attempt to understand their origin. Such relationships are generally obtained by constraining the theory with additional symmetries. In that regard we now know how to correlate the three couplings g3, g2 and g1 through grand unification. Unfortunately, the origin of masses and their interrelationships are not as well understood. This problem of masses should be a signal that something fundamental is lacking in our present theories

  6. ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (Lint) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (Lint/LEdd > 10-2), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (Lint/LEdd -2) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives Lint/LEdd -2 narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than Lint/LEdd > 10-2 broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from Lint/LEdd -2 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical 'axis' of AGN unification, as described by a simple model.

  7. Feedback of Active Galactic Nuclei in Seyfert 2 Galaxies

    En-Peng Zhang; Wei-Hao Bian; Chen Hu; Wei-Ming Mao; ALi Luo; Yong-Heng Zhao

    2008-01-01

    It is well accepted that feedback from active galactic nuclei (AGNs) plays an important role in the coevolution of the supermassive black hole (SMBH) and its host galaxy,but the concrete mechanism of feedback remains unclear.A considerable body of evidence suggests that AGN feedback suppresses star formation in the host galaxy.We assemble a sample of Seyfert 2 galaxies with recent observational data of compact nuclear starbursts and estimate the gas surface density as a function of column density to illuminate the relation between feedback and AGN properties.Although there are some uncertainties,our data still imply the deviation from the star formation law (Kennicutt-Schmidt law).Further,they indicate that:(1) Feedback correlates with the Eddington ratio,rather than with the mass of SMBH,as a result of decreasing star formation efficiency.(2) The SMBH and the torus are probably undergoing coevolution.Conclusions presented here can be refined through future high resolution CO or HCN observations.

  8. Problems in unification and supergravity

    Farrar, G.; Henyey, F. (eds.)

    1984-01-01

    Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented. (WHK)

  9. Gauge unification of fundamental forces

    After having reviewed briefly the last twenty years' progress in the theory of unification, with the twin aspects of development of a gauge theory of basic interactions linked with internal symmetry and the spontaneous breaking of these symmetries, the Nobel prize winners have summarized the present situation and the immediate problems. At the end, an extrapolation of the future is also given

  10. Introduction to grand unification theories

    The Georgi-Glashow model is introduced based on the minimal gauge group SU(5) as a prototype grand unification theory of the electroweak and strong interactions. Simple estimation of sin2 theta/sub W/ in the symmetry limit and the renormalization corrections at the energy scale of M/sub W/ are given along with other successes of the SU(5) model

  11. Problems in unification and supergravity

    Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented

  12. Galaxy Zoo: the effect of bar-driven fueling on the presence of an active galactic nucleus in disc galaxies

    Galloway, Melanie A; Fortson, Lucy F; Cardamone, Carolin N; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J; Masters, Karen L; Melvin, Thomas; Simmons, Brooke D

    2015-01-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19,756 disc galaxies at $0.01galaxies have a higher overall percentage of bars (51.8%) than inactive galaxies exhibiting central star formation (37.1%). This difference is primarily due to known effects; that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16% of the average barred AGN fraction. Using the $L_{\\rm...

  13. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z ∼ 2

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M * > 5 × 1010 M ☉) sample of 123 star-forming and quiescent galaxies at 1.5 ≤ z ≤ 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% ± 7% of the galaxies are detected directly in X-rays, 22% ± 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L 0.5-8keV > 3 × 1042 erg s–1). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z ∼ 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  14. Radio Loud AGN Unification: Connecting Jets and Accretion

    Meyer Eileen T.

    2013-12-01

    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample

  15. TORUS2015: The AGN unification scheme after 30 years

    Gandhi, P.; Hoenig, S. F.

    2015-09-01

    The torus paradigm has proved to be remarkably successful at unifying the observed zoo of active galaxy (AGN) classes, despite having many manifest holes. The field is still data-driven with novel observational results at multiple wavelengths emerging rapidly. We are only now beginning to map out the structure of dusty gas feeding and obscuring AGN, and to model its evolution in galaxy growth. But these have also brought out several apparently contradictory results which must hold the key to future progress. As we celebrate 30 years of the paradigm, this is the perfect time to draw together our current knowledge and reassess the state of the field. This will be an international workshop at the University of Southampton, UK, with the objective of laying out the major challenges to the field and paving future research directions. Our hope is to facilitate plenty of informal discussions between multiwavelength observers and theorists, addressing some key issues: * What is the main driver in the unification scheme? What are the roles of orientation, mass accretion rate and feedback? * What is the nature and structure of gas and dust in the torus? Do we have a self-consistent picture across multiple wavelengths? * How critical is the role of the torus as an interface between small nuclear scales and large galactic scales? Does galaxy evolution necessarily require tori? * How close are we to self-consistently simulating nuclear activity including AGN feeding and nuclear star-formation? Workshop Rationale The three themes of accretion, orientation, and evolution will be covered through invited and solicited contributions. Different to other conferences, we are building each session around some key papers that have shaped the field or those with great future potential to do so. We specifically pit competing ideas against each other to help painting a realistic picture of the state-of-the-art. Each session will end with discussion rounds delving into important future

  16. Silicate emissions in active galaxies - From LINERs to QSOs

    Sturm, E.; Schweitzer, M.; Lutz, D.; Contursi, A.; Genzel, R.; Lehnert, M. D.; Tacconi, L.J.; Veilleux, S.; Rupke, D. S.; Kim, D. -C.; Sternberg, A; Maoz, D.; Lord, S.; Mazzarella, J.; Sanders, D. B.

    2005-01-01

    We report the first detection of ~10 and ~18 micron silicate dust emissions in a low-luminosity active galactic nucleus (AGN), obtained in Spitzer-IRS 7-37 micron spectroscopy of the Type 1 LINER galaxy NGC3998. Silicate emissions in AGN have only recently been detected in several quasars. Our detection counters suggestions that silicate emissions are present only in the most luminous AGN. The silicate features may be signatures of a dusty ``obscuring torus'' viewed face-on as postulated for ...

  17. Dusty origin of the Broad Line Region in active galaxies

    Czerny, Bozena; Kaluzny, Janusz; Maity, Ishita

    2012-01-01

    The most characteristic property of active galaxies, including quasars, are prominent broad emission lines. I will discuss an interesting possibility that dust is responsible for this phenomenon. The dust is known to be present in quasars in the form of a dusty/molecular torus which results in complexity of the appearance of active galaxies. However, this dust is located further from the black hole than the Broad Line Region. We propose that the dust is present also closer in and it is actually responsible for formation of the broad emission lines. The argument is based on determination of the temperature of the disk atmosphere underlying the Broad Line Region: it is close to 1000 K, independently from the black hole mass and accretion rate of the object. The mechanism is simple and universal but leads to a considerable complexity of the active nucleus surrounding. The understanding the formation of BLR opens a way to use it reliably - in combination with reverberation measurement of its size - as standard ca...

  18. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  19. Supersymmetric b-τ unification, gauge unification, and fixed points

    The equality assumption of the b and τ Yukawa couplings at the grand-unification scale can strongly constrain the allowed parameter space of supersymmetric models. We examine the constraints in the case that there is a discrepancy approx-gt 10% in the gauge coupling unification assumption (which necessarily implies large perturbations at the grand scale). The constraints are shown to diminish in that case [most significantly so if αs(MZ)≅0.11]. In particular, the requirement that the t Yukawa coupling ht is near its quasifixed point may not be necessary. We discuss the colored-triplet threshold as a simple example of a source for the discrepancies, and comment on its possible implications. In addition, we point out that supersymmetric (as well as unification-scale) threshold corrections to ht shift the fixed-point curve in the mt-tanβ plane. The implications for the prediction of the Higgs boson mass are briefly discussed. copyright 1996 The American Physical Society

  20. Properties of hot gas in halos of active galaxies and clusters of galaxies

    The importance of the inverse Compton effect in the X-ray emission of cluster galaxies is discussed; the X-ray origin problem from galaxy clusters (spectra and emission mechanisms) is studied. The insufficiency of the X-ray bremsstrahlung emission model in an isothermal gas is proved. The ionized halos in narrow-line galaxies (NLG) are studied; after some general points on NLG, one NLG is described and a brief view an emission mechanism models is given; a detailed study of the galaxy IC 5063 and its nebulosity is given: the ionized gas density is calculated together with the evaporation rate for such clouds

  1. Activity of aalactic nuclei and ring-like structures in normal galaxies

    Formation mekhanism of ring-like structures in normal galaxies is discussed. The above structures observed in normal galaxies are possibly formed by shock waves generated by recurrent activity of galactic nuclei. Specific features of ring-like structures are connected with parameters (ener--gy and period) characterizing the activity of nuclei, and with gas distribution type in central regions of galaxies as well

  2. Ultraviolet Diagnostics for the Emission Line Gas in Active Galaxies

    Allen, M G; Tsvetanov, Z I

    1998-01-01

    Optical diagnostic diagrams are frequently ambiguous as a test of the photoionization or fast shock models of the narrow line regions of active galaxies. Here, we present a set of UV line ratio diagrams which can discriminate between pure shock and photoionization modes of excitation, and to some extent, also discriminate shocks with ionized precursors from photoionization. These diagrams use relatively bright emission lines and reddening insensitive ratios and provide a practical observational test for separating the excitation mechanisms of the narrow line regions of active galaxies. The most useful diagrams are those involving the various ionization stages of Carbon, [OIII]5007/H-beta vs. CIV 1550/ HeII 1640 and the purely UV ratio pair CII] 2326 / CIII] 1909 vs. CIV 1550 / CIII]909. Temperature sensitive FUV lines CIII 977 and NIII 991 also provide good discriminants. The models are compared to observations of nearby AGN, and also to high redshift objects where the UV lines are shifted into the optical.

  3. Formation, Evolution, and Revolution of Galaxies by SKA: Activities of SKA-Japan Galaxy Evolution Sub-SWG

    Takeuchi, Tsutomu T; Iono, Daisuke; Hirashita, Hiroyuki; Tee, Wei Leong; Wang, Wei-Hao; Momose, Rieko

    2016-01-01

    Formation and evolution of galaxies have been a central driving force in the studies of galaxies and cosmology. Recent studies provided a global picture of cosmic star formation history. However, what drives the evolution of star formation activities in galaxies has long been a matter of debate. The key factor of the star formation is the transition of hydrogen from atomic to molecular state, since the star formation is associated with the molecular phase. This transition is also strongly coupled with chemical evolution, because dust grains, i.e., tiny solid particles of heavy elements, play a critical role in molecular formation. Therefore, a comprehensive understanding of neutral-molecular gas transition, star formation and chemical enrichment is necessary to clarify the galaxy formation and evolution. Here we present the activity of SKA-JP galaxy evolution sub-science working group (subSWG) Our activity is focused on three epochs: z \\sim 0, 1, and z > 3. At z \\sim 0, we try to construct a unified picture o...

  4. An Ordering Linear Unification Algorithm

    胡运发

    1989-01-01

    In this paper,we present an ordering linear unification algorithm(OLU).A new idea on substituteion of the binding terms is introduced to the algorithm,which is able to overcome some drawbacks of other algorithms,e.g.,MM algorithm[1],RG1 and RG2 algorithms[2],Particularly,if we use the directed eyclie graphs,the algoritm needs not check the binding order,then the OLU algorithm can also be aplied to the infinite tree data struceture,and a higher efficiency can be expected.The paper focuses upon the discussion of OLU algorithm and a partial order structure with respect to the unification algorithm.This algorithm has been implemented in the GKD-PROLOG/VAX 780 interpreting system.Experimental results have shown that the algorithm is very simple and efficient.

  5. Ether symmetry unification theory (ESU)

    The ether symmetry unification (ESU) theory postulates a mechanism that accounts for the formation of the universe as well as the formation of the original mass particles following the big bang. The essential role of the medium-vacuum of the theory of prerelativity is explained. The ultra-high energy particles described in the Ether Symmetry Unification Theory are compared with high energy magnetic monopoles described by Supersymmetry. Phase transitions of high energy events to low energy events and the associated media-vacua involved, postulated by the ESU, are then compared to the low energy events of the standard model within the critical phases of the first two seconds of quantum field theory's time line

  6. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    de Souza, R S; Krone-Martins, A; Cameron, E; Coelho, P; Hattab, M W; de Val-Borro, M; Hilbe, J M; Elliott, J; Hagen, A

    2016-01-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, $M_{200}$, and the normalized cluster centric distance, $r/r_{200}$. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control for the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within a HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g., whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a...

  7. German labour markets after unification

    Franz, Wolfgang

    1991-01-01

    This paper contains a description and analysis of the labour market in East Germany and an econometric evaluation of some effects of German unification on the West German labour market. At the outset, recent developments of employment and unemployment in East Germany are summarized together with an attempt at evaluation of the sources of joblessness. Moreover,'wage determination and wage dynamics are discussed at some length. It is investigated to what extent wage theories can contribute to a...

  8. Korean unification the way forward

    Forster, Brian A.

    2009-01-01

    This thesis will examine three potential scenarios for the unification of the Korean peninsula and discuss their pros and cons. 1. The collapse of the DPRK government followed by its absorption into the ROK's current governmental structure. 2. A possible Free Trade Area (FTA) encompassing the Korean peninsula with the potential to expand to neighboring nations. 3. The establishment of Special Economic Zones (SEZ) within the DPRK using business practices from both the ROK and the PRC mo...

  9. SAT Encoding of Unification in EL

    Baader, Franz; Morawska, Barbara

    Unification in Description Logics has been proposed as a novel inference service that can, for example, be used to detect redundancies in ontologies. In a recent paper, we have shown that unification in EL is NP-complete, and thus of a complexity that is considerably lower than in other Description Logics of comparably restricted expressive power. In this paper, we introduce a new NP-algorithm for solving unification problems in EL, which is based on a reduction to satisfiability in propositional logic (SAT). The advantage of this new algorithm is, on the one hand, that it allows us to employ highly optimized state-of-the-art SAT solvers when implementing an EL-unification algorithm. On the other hand, this reduction provides us with a proof of the fact that EL-unification is in NP that is much simpler than the one given in our previous paper on EL-unification.

  10. The environment of AGNs and the activity degree of their surrounding galaxies

    Kollatschny, W; Zetzl, M

    2012-01-01

    Aims. We present results of a comprehensive spectral study on the large-scale environment of AGNs based on Sloan Spectroscopic Survey data. Methods. We analyzed the spectra of galaxies in the environment of AGN and other activity classes up to distances of 1 Mpc. Results. The mean H{\\alpha} and [OIII] {\\lambda}5007 line luminosities in the environmental galaxies within a projected radius of 1 Mpc are highest around Seyfert 1 galaxies, with decreasing luminosities for Seyfert 2 and HII galaxies, and lowest for absorption line galaxies. Furthermore, there is a trend toward H{\\alpha} and [OIII] luminosities in the environmental galaxies increasing as a function of proximity to the central emission line galaxies. There is another clear trend toward a neighborhood effect within a radius of 1000 kpc for the AGN and non-AGN types: Seyfert galaxies tend to have the highest probability of having another Seyfert galaxy in the neighborhood. HII galaxies tend to have the highest probability of having another HII galaxy i...

  11. Galaxy Zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies

    Galloway, Melanie A.; Willett, Kyle W.; Fortson, Lucy F.; Cardamone, Carolin N.; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J.; Masters, Karen L.; Melvin, Thomas; Simmons, Brooke D.

    2015-04-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19 756 disc galaxies at 0.01 < z < 0.05 which have been visually examined for the presence of a bar. Within this sample, AGN host galaxies have a higher overall percentage of bars (51.8 per cent) than inactive galaxies exhibiting central star formation (37.1 per cent). This difference is primarily due to known effects: that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16 per cent of the average barred AGN fraction. Using the L_{[O III]}/MBH ratio as a measure of AGN strength, we show that barred AGNs do not exhibit stronger accretion than unbarred AGNs at a fixed mass and colour. The data are consistent with a model in which bar-driven fuelling does contribute to the probability of an actively growing black hole, but in which other dynamical mechanisms must contribute to the direct AGN fuelling via smaller, non-axisymmetric perturbations.

  12. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  13. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  14. Star Formation Activity in CLASH Brightest Cluster Galaxies

    Fogarty, Kevin; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-01-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains ten brightest cluster galaxies (BCGs) that exhibit significant ($>$5 $\\sigma$) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and H$\\alpha$+[NII] emission in knots and filaments detected in CLASH HST observations. These measurements are supplemented with [OII], [OIII], and H$\\beta$ fluxes measured from spectra obtained with the SOAR telescope. Reddening-corrected UV-derived SFRs in these BCGs are broadly consistent with H$\\alpha$-derived SFRs. Five BCGs exhibit SFRs $>$10 M$_{\\odot}$ yr$^{-1}$ and an additional two have a SFR $>$ 100 M$_{\\odot}$ yr$^{-1}$. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence for a LINER-like contribution. Using Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation ...

  15. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  16. The Nature of the Activity in Hickson Compact Groups of Galaxies

    Coziol, R; De Carvalho, R R; Capelato, H V; Coziol, Roger; Ribeiro, André L. B.; Carvalho, Reinaldo R. de; Capelato, Hugo V.

    1997-01-01

    We present the results of the spectral classification of the 82 brightest galaxies in a sample of 17 compact groups. We verify that the AGNs are preferentially located in the most early-type and luminous galaxies of the groups, as is usually observed in the field. But these AGNs also appear to be systematically concentrated towards the central parts of the groups. Our observations suggest a correlation between activity types, morphologies and densities of galaxies in the compact groups. This is consistent with a scenario in which galaxies of compact groups evolve by interacting with their environment and are currently in a quiet phase of their activity

  17. Precision gauge unification in the MSSM

    Raby, Stuart, E-mail: raby@pacific.mps.ohio-state.ed [Department of Physics, Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States); Ratz, Michael, E-mail: mratz@ph.tum.d [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Schmidt-Hoberg, Kai, E-mail: kai.schmidt-hoberg@ph.tum.d [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2010-04-19

    We discuss the issue of precision gauge unification in the MSSM. We find that a comparably light gluino, as it emerges in certain patterns of soft supersymmetry breaking, can be a key ingredient for ensuring precision gauge unification without relying on the presence of extra particles around the scale of grand unification. In particular, the so-called mirage pattern for gaugino masses can naturally lead to precision gauge unification. There is also an interesting correlation with reduced fine-tuning, due to rather light gluinos.

  18. Precision gauge unification in the MSSM

    Raby, Stuart; Schmidt-Hoberg, Kai

    2009-01-01

    We discuss the issue of precision gauge unification in the MSSM. We find that a comparably light gluino, as it emerges in certain patterns of soft supersymmetry breaking, can be a key ingredient for ensuring precision gauge unification without relying on the presence of extra particles around the scale of grand unification. In particular, the so-called mirage pattern for gaugino masses can naturally lead to precision gauge unification. There is also an interesting correlation with reduced fine-tuning, due to rather light gluinos.

  19. Gauge Coupling Unification in MSSM + 5 Flavors

    Jones, Jeff L

    2008-01-01

    We investigate gauge coupling unification at 2-loops for theories with 5 extra vectorlike SU(5) fundamentals added to the MSSM. This is a borderline case where unification is only predicted in certain regions of parameter space. We establish a lower bound on the scale for the masses of the extra flavors, as a function of the sparticle masses. Models far outside of the bound do not predict unification at all (but may be compatible with unification), and models outside but near the boundary cannot reliably claim to predict it with an accuracy comparable to the MSSM prediction. Models inside the boundary can work just as well as the MSSM.

  20. Star Formation Activity in CLASH Brightest Cluster Galaxies

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  1. The Rise and Fall of Galaxy Activity in Dark Matter Haloes

    Pasquali, Anna; Mo, H J; Yang, Xiaohu; Somerville, Rachel

    2008-01-01

    We use a SDSS galaxy group catalogue to study the dependence of galaxy activity on stellar mass, halo mass, and group hierarchy (centrals vs. satellites). We split our galaxy sample in star-forming galaxies, galaxies with optical AGN activity and radio sources. We find a smooth transition in halo mass as the activity of central galaxies changes from star formation to optical AGN activity to radio emission. Star-forming centrals preferentially reside in haloes with M<10^{12} Msun, central galaxies with optical-AGN activity typically inhabit haloes with M \\sim 10^{13} Msun, and centrals emitting in the radio mainly reside in haloes more massive than 10^{14} Msun. Although this seems to suggest that the environment (halo mass) determines the type of activity of its central galaxy, we find a similar trend with stellar mass: central star formers typically have stellar masses below 10^{10} Msun, while optical-AGN hosts and central radio sources have characteristic stellar masses of 10^{10.8} Msun and 10^{11.6} M...

  2. Class I methanol megamasers: a potential probe of starburst activity and feedback in active galaxies

    Chen, X.; Ellingsen, S. P.; Zhang, J.-S.; Wang, J.-Z.; Shen, Z.-Q.; Wu, Q.-W.; Wu, Z.-Z.

    2016-06-01

    Previous observations have shown that the distribution of 36.2-GHz class I methanol megamaser (MM) emission in Arp 220 is highly correlated with the diffuse X-rays. On this basis it was suggested that methanol MM may be produced either by the effects of galactic-outflow-driven shocks and/or cosmic rays. Here we report the results of a single-dish survey undertaken with the Greenbank Telescope (GBT) to improve our understanding of the pumping conditions of extragalactic class I methanol masers and their relationship to starburst and feedback processes within the host galaxies, towards a sample which includes 16 galaxies which show both extended soft X-ray emission, and either OH or H2O MM emission. Large baseline ripples in the GBT spectra limited our results to tentative detections towards 11 of the target galaxies. Analysis of these tentative detections shows that there are significant correlations between the methanol intensity and the host-galaxy infrared, radio and OH MM emission, but no correlation with the X-ray and H2O MM emission. Some sources show methanol emission significantly offset from the systemic velocity of the galaxy (by up to 1000 km s-1) and we propose that these are associated with galactic-scale outflows from active galactic nuclei (AGNs) feedback. The combined observational properties suggest that class I methanol MMs are related to significant starburst and molecular outflow activity and hence may provide a potential probe of AGN feedback and starburst processes in the host galaxies.

  3. A large difference in the progenitor masses of active and passive galaxies in the EAGLE simulation

    Clauwens, Bart; Schaye, Joop

    2016-01-01

    Cumulative number density matching of galaxies is a method to observationally connect descendent galaxies to their typical main progenitors at higher redshifts and thereby to assess the evolution of galaxy properties. The accuracy of this method is limited due to galaxy merging and scatter in the stellar mass growth history of individual galaxies. Behroozi et al. (2013) have introduced a refinement of the method, based on abundance matching of observed galaxies to the Bolshoi dark-matter-only simulation. The EAGLE cosmological hydro-simulation is well suited to test this method, because it reproduces the observed evolution of the galaxy stellar mass function and has a representative sample of passive/active galaxies. We find agreement with the Behroozi et al. (2013) method for the complete sample of main progenitors of z = 0 galaxies, but we also find a strong dependence on the current star formation rate. Passive galaxies with a stellar mass up to 10^10.75 Msun have a completely different median mass history...

  4. Comparative Studies of Clustering Properties Between Active Galactic Nucleus (AGN) Host Galaxies and Star-Forming Ones

    Using the volume-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we have explored the difference of clustering properties between Active Galactic Nucleus (AGN) host galaxies and star-forming galaxies. Our results preferentially show that AGN host galaxies have a lower fraction in isolated, close double and multiple systems than star-forming galaxies. (authors)

  5. Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds at z ˜ 0.5

    Wylezalek, Dominika; Zakamska, Nadia L.; Liu, Guilin; Obied, Georges

    2016-03-01

    Luminous type-2 quasars in which the glow from the central black hole is obscured by dust are ideal targets for studying their host galaxies and the quasars' effect on galaxy evolution. Such feedback appears ubiquitous in luminous obscured quasars where high-velocity-ionized nebulae have been found. We present rest-frame yellow-band (˜5000 Å) observations using the Hubble Space Telescope (HST) for a sample of 20 luminous quasar host galaxies at 0.2 selected from the Sloan Digital Sky Survey. For the first time, we combine host galaxy observations with geometric measurements of quasar illumination using blue-band HST observations and [O III] integral field unit observations probing the quasar winds. The HST images reveal bright merger signatures in about half the galaxies; a significantly higher fraction than in comparison inactive ellipticals. We show that the host galaxies are primarily bulge-dominated, with masses close to M*, but belong to host galaxies' high star formation rates and bright merger signatures, we suggest that this low-redshift outbreak of luminous quasar activity is triggered by recent minor mergers. Combining these novel observations, we present new quasar unification tests, which are in agreement with expectations of the orientation-based unification model for quasars.

  6. The Evolution of Galaxies (via SF activity and gas content) versus Environment

    Cybulski, Ryan; Yun, Min Su

    2016-01-01

    My dissertation work concerns the accurate mapping of the large-scale structure (LSS), traced by galaxies, and the assessment of the dependence of fundamental galaxy properties (e.g. star-formation activity, color, and gas content) on their environment. Mapping of the LSS is done with two complementary techniques, and together they provide both a local measure of the density field and a more global characterization of the environment of a galaxy, thereby allowing for a more complete measure of a galaxy's environment. I have applied this LSS mapping technique to the entire Sloan Digital Sky Survey (SDSS) spectroscopic galaxy sample at zdissertation, with the overall theme of how galaxies are affected by their environment.

  7. Family unification within SO(15)

    We present a model for the unification of fermion families based on the gauge symmetry SO(15). It is a minimal SO(n) model which can accommodate the known fermions within a single irreducible representation. The model predicts four ordinary fermion families and four families of mirror fermions. The latter have V + A weak interactions, and their mass scale is predicted to be 102 GeV/c2. We argue that radiative corrections to the fermion masses can cause non-negligible mixing between ordinary and mirror fermions. The implications of these mixings for the weak interaction phenomenology and solar neutrinos are discussed. (orig.)

  8. The youngest and most active radio galaxies in the local universe: AT20G sources in the 6dF Galaxy Survey

    Sadler, Elaine M; Mahony, Elizabeth; Mauch, Tom; Murphy, Tara

    2013-01-01

    We study a sample of 202 radio sources from the Australia Telescope 20 GHz (AT20G) survey which are identified with nearby galaxies from the 6dF Galaxy Survey (6dFGS). Our sample includes many of the youngest and most active radio galaxies in the local universe, and around 65% of the sample are candidate Compact Steep-Spectrum (CSS) and Gigahertz-Peaked Spectrum (GPS) radio sources. The AT20G-6dFGS galaxies have a median redshift of z=0.058 and span a wide range in radio luminosity. The local radio luminosity function (RLF) of galaxies at 20 GHz roughly matches the local 1.4 GHz RLF for radio-loud active galaxies if we make a simple shift in radio spectral index. While most of the AT20G-6dFGS galaxies are massive ellipticals, at least 30% of the radio sources in our sample are hosted by galaxies with WISE infrared colours characteristic of spiral galaxies with ongoing star formation. We see a strong dichotomy in the WISE colours of the host galaxies of FR-1 and FR-2 radio sources in our sample, with the FR-1 ...

  9. Towards unification of GUT families

    Kim, Jihn E

    2015-01-01

    I discuss the mere 5 % of atoms in the cosmic energy pie. It is basically the chiral matter problem. Then, I review the chiral matter problem from a grand unification (GUT) point of view, and point out that anti-SU(N), easily implementable in string compactification, is a possibility. Here `anti-' means that the GUT group breaking is through the anti-symmetric tensor field(s), e.g. = . We argued for an anti-SU(7) [= SU(7) x U(1)] families-unification model from a Z(12-I) orbifold compactification. The Z(12-I) orbifold is briefly discussed and the multiplicity 2 in the T3 twisted sector is the key obtaining three chiral families. Yukawa coupling structure is shown to be promising. A numerical study shows that the anti-SU(7) model satisfies the CKM fit. It is shown that the doublet-triplet splitting is obtained naturally, where the dominant process for proton decay is by the exchange of GUT scale gauge bosons such that proton to pi-zero plus positron is the dominant channel.

  10. Stellar and Dust Properties of Local Elliptical Galaxies: Clues to the Onset of Nuclear Activity

    Zhang, Yu; Ho, Luis C

    2008-01-01

    We study the stellar and dust properties of a well-defined sample of local elliptical galaxies to investigate the relationship between host galaxy properties and nuclear activity. We select a complete sample of 45 ellipticals from the Palomar spectroscopic survey of nearby galaxies, which includes 20 low-luminosity active galactic nuclei classified as LINERs and 25 inactive galaxies. Using a stellar population synthesis method, we compare the derived stellar population properties of the LINER versus the inactive subsamples. We also study the dust and stellar surface brightness distributions of the central regions of these galaxies using high-resolution images obtained with the {\\it Hubble Space Telescope}. Relative to the inactive subsample, ellipticals hosting LINERs share similar total optical and near-infrared luminosity, central stellar velocity dispersions, and nuclear stellar populations as judged from their luminosity-weighted ages and metallicities. LINERs, on the other hand, have a larger fraction of...

  11. Ultra Fast Outflows: Galaxy-Scale Active Galactic Nucleus Feedback

    Wagner, A Y; Bicknell, G V

    2012-01-01

    We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically, rather than in a disc. In the latter case the turbulent backflow...

  12. MAXI and GLAST Studies of Jets in Active Galaxies

    Madejski, Greg; Kataoka, Jun; Sikora, Marek

    2008-10-13

    The recent launch of GLAST--coinciding with the MAXI workshop--opens a new era for studies of jet-dominated active galaxies, known as blazars. While the emission processes operating in various spectral bands in blazars are reasonably well understood, the knowledge of the details of the structure of the jet, location of the dissipation region with respect to the accreting black hole, and coupling of the jet to the accretion process are known only at a rudimentary level. Blazars are variable, and this provides an opportunity to use the variability in various bands--and in particular, the relationship of respective time series to each other--to explore the relative location of regions responsible for emission in the respective bands. Observationally, this requires well-sampled time series in as many spectral bands as possible. To this end, with its all-sky, sensitive monitoring capability, the recently launched GLAST, and MAXI, to be deployed in 2009, are the most promising instruments bound to provide good sampling in respectively the energetic gamma-ray, and the soft X-ray band. This paper highlights the inferences regarding blazar jets that can be gleaned from such joint observations.

  13. The Search for signals of technological activities in the galaxy

    Lemarchand, Guillermo A

    2010-01-01

    In this article an analysis of the fundamentals used to search for extraterrestrial artificial signals in the galaxy, which have been developing for more than five decades, is presented. It is shown that the key factor for the success of these research projects is given by the technological civilizations lifetimes. Assuming the Principle of Mediocrity, estimations are made to determine the minimum number of civilizations that may co-exist in the galaxy and the probability of detecting a signal from them.

  14. Low-scale Gaugino Mass Unification

    Endo, Motoi

    2008-01-01

    We present a new class of scenarios with the gaugino mass unification at the weak scale. The unification conditions are generally classified and then, the mirage gauge mediation is explored where gaugino masses are naturally unified and scalar partners of quarks and leptons have no mass hierarchy. The low-energy mass spectrum is governed by the mirage of unified gauge coupling which is seen by low-energy observers. We also study several explicit models for dynamically realizing the TeV-scale unification.

  15. Low-scale Gaugino Mass Unification

    Endo, Motoi; Yoshioka, Koichi

    2008-01-01

    We study a new class of scenarios with the gaugino mass unification at the weak scale. The general condition is first derived for the unification to occur. Among the general cases, a particular attention is drawn to the mirage gauge mediation where the low-energy mass spectrum is governed by the mirage of unified gauge coupling which is seen by low-energy observers. The gaugino masses have natural and stable low-scale unification. The mass parameters of scalar quarks and leptons are given by ...

  16. Low-scale gaugino mass unification

    We present a new class of scenarios with the gaugino mass unification at the weak scale. The unification conditions are generally classified and then, the mirage gauge mediation is explored where gaugino masses are naturally unified and scalar partners of quarks and leptons have no mass hierarchy. The low-energy mass spectrum is governed by the mirage of unified gauge coupling which is seen by low-energy observers. We also study several explicit models for dynamically realizing the TeV-scale unification. (orig.)

  17. Low-scale gaugino mass unification

    Endo, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yoshioka, K. [Kyoto Univ. (Japan). Dept. of Physics

    2008-04-15

    We present a new class of scenarios with the gaugino mass unification at the weak scale. The unification conditions are generally classified and then, the mirage gauge mediation is explored where gaugino masses are naturally unified and scalar partners of quarks and leptons have no mass hierarchy. The low-energy mass spectrum is governed by the mirage of unified gauge coupling which is seen by low-energy observers. We also study several explicit models for dynamically realizing the TeV-scale unification. (orig.)

  18. On the behaviour of the IR Ca II triplet in normal and active galaxies

    Ca II triplet in absorption at λλ8498,8542,8662 A is the strongest feature in the infrared spectrum of late-type stars and normal galaxies. Its strength has been found to be a good luminosity indicator for metal-rich stellar populations. We present high signal-to-noise near-IR spectroscopic data for the nuclear region of 42 normal and active galaxies. We have explored the behaviour of the Ca II triplet strength and found that it shows a small spread around a mean value of 7 A for our sample of normal galaxies. We also found that, in all the Seyfert type 2 galaxies measured and even in some Seyfert type 1, while the optical stellar features show substantial dilution, the strength of the IR Ca II triplet is equal to and in some cases larger than that in normal elliptical galaxies. (author)

  19. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids. PMID:21217688

  20. Unification of force and substance.

    Wilczek, Frank

    2016-08-28

    Maxwell's mature presentation of his equations emphasized the unity of electromagnetism and mechanics, subsuming both as 'dynamical systems'. That intuition of unity has proved both fruitful, as a source of pregnant concepts, and broadly inspiring. A deep aspect of Maxwell's work is its use of redundant potentials, and the associated requirement of gauge symmetry. Those concepts have become central to our present understanding of fundamental physics, but they can appear to be rather formal and esoteric. Here I discuss two things: the physical significance of gauge invariance, in broad terms; and some tantalizing prospects for further unification, building on that concept, that are visible on the horizon today. If those prospects are realized, Maxwell's vision of the unity of field and substance will be brought to a new level.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. PMID:27458259

  1. Unification of Force and Substance

    Wilczek, Frank

    2015-01-01

    Maxwell's mature presentation of his equations emphasized the unity of electromagnetism and mechanics, subsuming both as "dynamical systems". That intuition of unity has proved both fruitful, as a source of pregnant concepts, and broadly inspiring. A deep aspect of Maxwell's work is its use of redundant potentials, and the associated requirement of gauge symmetry. Those concepts have become central to our present understanding of fundamental physics, but they can appear to be rather formal and esoteric. Here I discuss two things: The physical significance of gauge invariance, in broad terms; and some tantalizing prospects for further unification, building on that concept, that are visible on the horizon today. If those prospects are realized, Maxwell's vision of the unity of field and substance will be brought to a new level.

  2. PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < z < 1

    Diaz Tello, J.; Donzelli, C. [IATE, Observatorio Astronomico de Cordoba, Universidad Nacional de Cordoba (Argentina); Padilla, N. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile (Chile); Fujishiro, N.; Yoshikawa, T. [Koyama Astronomical Observatory, Kyoto Sangyo University (Japan); Hanami, H. [Physics Section, Iwate University (Japan); Hatsukade, B., E-mail: jdiazt@oac.uncor.edu [Department of Astronomy, Kyoto University (Japan)

    2013-07-01

    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density ({Sigma}{sub SFR}) and stellar mass surface density per time unit ({Sigma}{sub M{sub */{tau}}}) as a function of redshift was investigated using the [O II] {lambda}3727, 3729, H{alpha} {lambda}6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder

  3. VizieR Online Data Catalog: Star formation in active and normal galaxies (Tsai+, 2015)

    Tsai, M.; Hwang, C.-Y.

    2015-11-01

    We selected 104 active galaxies from the lists of Melendez et al. (2010MNRAS.406..493M), Condon et al. 1991 (cat. J/ApJ/378/65), and Ho & Ulvestad 2001 (cat. J/ApJS/133/77). Most of the sources are identified as Active Galactic Nuclei (AGNs), and a few of them are classified as Luminous InfraRed Galaxies (LIRGs). We obtained 3.6 and 8μm infrared images of these galaxies from the Spitzer Archive (http://sha.ipac.caltech.edu/applications/Spitzer/SHA/) and 8GHz images from the VLA archive (http://archive.nrao.edu/archive/archiveimage.html). We also selected a nearby AGN sub-sample containing 21 radio-selected AGNs for further spatial analysis. We selected 25 nearby AGNs exhibiting no detected radio emission in order to compare with the results of the radio-selected sources. For comparison, we also selected normal galaxies with distances less than 15Mpc from the catalog of Tully 1994 (see cat. VII/145). We only selected the galaxies that have Spitzer archive data and are not identified as AGNs in either the Veron-Cetty & Veron 2006 (see cat. VII/258) AGN catalog or in the NED database (http://ned.ipac.caltech.edu/). Our results for the radio-selected and the non-radio-selected active galaxies are listed in Table1, and those for the normal galaxies are listed in Table2. (2 data files).

  4. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z * >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] λ5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  5. On the Host Galaxy of GRB 150101B and the Associated Active Galactic Nucleus

    Xie, Chen; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-01-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors a low-luminosity active galactic nuclei (AGN). Our modeling of the spectral energy distribution (SED) has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of $\\sim 5.7\\ Gyr$, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy (XBONG), and the central AGN is likely dominated by a radiatively inefficient accretion flow (RIAF). Our work explores interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help understand the host environment of the GRB events and the roles of AGN feedback.

  6. The nature and origin of Narrow Line AGN activity in a sample of isolated SDSS galaxies

    Coziol, R; Plauchu-Frayn, I; Islas-Islas, J M; Ortega-Minakata, R A; Larios, D M Neri; Andernach, H

    2011-01-01

    We discuss the nature and origin of the nuclear activity observed in a sample of 292 SDSS narrow-emission-line galaxies, considered to have formed and evolved in isolation. All these galaxies are spiral like and show some kind of nuclear activity. The fraction of Narrow Line AGNs (NLAGNs) and Transition type Objects (TOs; a NLAGN with circumnuclear star formation) is relatively high, amounting to 64% of the galaxies. There is a definite trend for the NLAGNs to appear in early-type spirals, while the star forming galaxies and TOs are found in later-type spirals. We verify that the probability for a galaxy to show an AGN characteristic increases with the bulge mass of the galaxy (Torre-Papaqui et al. 2011), and find evidence that this trend is really a by-product of the morphology, suggesting that the AGN phenomenon is intimately connected with the formation process of the galaxies. Consistent with this interpretation, we establish a strong connection between the astration rate--the efficiency with which the ga...

  7. Accretion/Jet Activity and Narrow [O III] Kinematics in Young Radio Galaxies

    Wu, Qingwen; Humphrey, Andrew

    2009-01-01

    We estimate black hole masses and Eddington ratios for a sample of 81 young radio galaxies (42 CSS +39 GPS). We find that the average black hole (BH) mass of these young radio galaxies is ~8.3, which is less than that of radio loud QSOs and low redshift radio galaxies. The CSS/GPS sources have relatively high Eddington ratios, with an average value of =-0.75, which are similar to those of narrow line Seyfert 1 galaxies (NLS1s). This suggests that young radio galaxies may not only be in the early stages of their radio activity, but also in the early stage of their accretion activity. We find that the young radio galaxies as a class deviate systematically from M_bh-\\sigma relation defined by nearby inactive galaxies, when using [O III] as a surrogate for stellar velocity dispersion, \\sigma_* . We also find that the deviation of the [O III] line width is correlated with the Eddington ratio and sources with Lbol/LEdd~1 have the largest deviations, which are similar to those of radio quiet QSOs/NLS1s (radio jets i...

  8. Hidden SUSY from precision gauge unification

    Krippendorf, Sven; Ratz, Michael; Winkler, Martin Wolfgang

    2013-01-01

    We revisit the implications of naturalness and gauge unification in the MSSM. We find that precision unification of the couplings in connection with a small mu parameter requires a highly compressed gaugino pattern as it is realized in mirage mediation. Due to the small mass difference between gluino and LSP, collider limits on the gluino mass are drastically relaxed. Without further assumptions, the relic density of the LSP is very close to the observed dark matter density due to coannihilation effects.

  9. Crosschecks for unification at the LHC

    Loewen, Valeri, E-mail: loewen@th.physik.uni-bonn.d [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Nilles, Hans Peter, E-mail: nilles@th.physik.uni-bonn.d [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany)

    2010-03-01

    Experiments at the Large Hadron Collider (LHC) might test the picture of supersymmetric Grand Unification in particle physics. We argue that the identification of gaugino masses is the most promising step in this direction. Mass predictions for gauginos are pretty robust and often related to the values of the gauge couplings constants. They might allow a meaningful crosscheck for grand unification, at least in simple schemes like gravity, anomaly or mirage mediation.

  10. Crosschecks for Unification at the LHC

    Löwen, Valéri

    2009-01-01

    Experiments at the Large Hadron Collider (LHC) might test the picture of supersymmetric Grand Unification in particle physics. We argue that the identification of gaugino masses is the most promising step in this direction. Mass predictions for gauginos are pretty robust and often related to the values of the gauge couplings constants. They might allow a meaningful crosscheck for grand unification, at least in simple schemes like gravity, anomaly or mirage mediation.

  11. Hidden SUSY from precision gauge unification

    We revisit the implications of naturalness and gauge unification in the MSSM. We find that precision unification of the couplings in connection with a small μ parameter requires a highly compressed gaugino pattern as it is realized in mirage mediation. Due to the small mass difference between gluino and LSP, collider limits on the gluino mass are drastically relaxed. Without further assumptions, the relic density of the LSP is very close to the observed dark matter density due to coannihilation effects.

  12. Hidden SUSY from precision gauge unification

    Krippendorf, Sven; Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Winkler, Martin Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-06-15

    We revisit the implications of naturalness and gauge unification in the MSSM. We find that precision unification of the couplings in connection with a small {mu} parameter requires a highly compressed gaugino pattern as it is realized in mirage mediation. Due to the small mass difference between gluino and LSP, collider limits on the gluino mass are drastically relaxed. Without further assumptions, the relic density of the LSP is very close to the observed dark matter density due to coannihilation effects.

  13. The economic implications of Korean unification

    Schmitz, Jonathan L.

    2002-01-01

    A major area of concern for Korean unification is the immense cost it will impose on South Korea. To lessen this burden, South Korea will need to initiate policy reforms that can ease the financial stress and repercussions of unification and create an integrated economic community with North Korea. At the same time, North Korea will need to create an environment that is conducive to economic integration by accepting and adopting reform measures that can build the foundation for a market econo...

  14. The radio halo and active galaxies in the Coma cluster

    The Cambridge Low-Frequency Synthesis Telescope has been used to map the Coma cluster at 151 MHz. Two new extended sources are found, associated with the cluster galaxies NGC4839 and NGC4849. The central halo radio source is shown not to have a simple symmetrical structure but to be distorted, with separate centres of brightening near the radio galaxies NGC4874 and IC4040. The structure cannot be accounted for by cluster-wide acceleration processes but implies a close connection with current radio galaxies and, in particular, models requiring diffusion of electrons out of radio sources seem to be favoured. The other large source, near Coma A, is detected and higher resolution data at 1407 MHz are used to clarify its structure. (author)

  15. Grand Unification of AGN and the Accretion and Spin Paradigms

    Meier, D L

    1999-01-01

    While attempts to unify certain classes of AGN using orientation and environmental effects have been successful, it is widely recognized that intrinsic properties of the accreting black hole system also must play a role in determining the appearance of such an object. In addition to mass and accretion rate, the angular momentum (or spin) of the black hole can play a crucial role in determining the power of a relativistic jet that is generated by magnetohydrodynamic acceleration near the hole. In this paper a scenario is presented, based on accretion theory and recent models of MHD jet production, in which the primary (although not only) parameter differentiating between radio loud and quiet objects is the black hole spin, and that determining quasar vs. radio galaxy is the accretion rate. A surprising number of desirable features result from these simple concepts and the accompanying equations. In addition, there are several testable predictions that can determine whether this grand unification scheme has fur...

  16. Herschel Observed Stripe 82 Quasars and Their Host Galaxies: Connections between AGN Activity and host Galaxy Star Formation

    Dong, X. Y.; Wu, Xue-Bing

    2016-06-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s‑1. The redshift range of this sample is within z selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M ⊙ yr‑1 and the mean gas mass is ∼1011.3 M ⊙. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where {L}{{FIR}}\\propto {L}{{Bol}}0.46+/- 0.03. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between L FIR and L Bol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The M BH/M * ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the M BH–M * scaling relation.

  17. A hybrid model for the evolution of galaxies and Active Galactic Nuclei in the infrared

    Cai, Zhen-Yi; Xia, Jun-Qing; De Zotti, Gianfranco; Negrello, Mattia; Gruppioni, Carlotta; Rigby, Emma; Castex, Guillaume; Delabrouille, Jacques; Danese, Luigi

    2013-01-01

    [Abridged] We present a comprehensive investigation of the cosmological evolution of the luminosity function (LF) of galaxies and active galactic nuclei (AGN) in the infrared (IR). Based on the observed dichotomy in the ages of stellar populations of early-type galaxies on one side and late-type galaxies on the other, the model interprets the epoch-dependent LFs at z \\geq 1.5 using a physical model for the evolution of proto-spheroidal galaxies and of the associated AGNs, while IR galaxies at z<1.5 are interpreted as being mostly late-type 'cold' (normal) and 'warm' (starburst) galaxies. As for proto-spheroids, in addition to the epoch-dependent LFs of stellar and AGN components separately, we have worked out the evolving LFs of these objects as a whole (stellar plus AGN component). The model provides a physical explanation for the observed positive evolution of both galaxies and AGNs up to z \\simeq 2.5 and for the negative evolution at higher redshifts, for the sharp transition from Euclidean to extremely...

  18. On the early chiral unification

    A unified model of electromagnetic, strong and weak interactions based on the semisimple gauge group G=SU(8)sub(L)xSU(8)sub(R) is presented. Leptons and fractionally charged quarks are asigned to fundamental representations Fsub(L)=(usub(i)dsub(i)νsub(e)e)sub(L), Fsub(R)(usub(i)dsub(i)νsub(e)e)sub(R) and similarly for the other families. The model leads to low unification mass M=106-108 GeV and admissible value for the Weinberg parameter sin2THETAsub(W)=1/3. The model contains chiral colour group SU(3)sub(L)xSU(3)sub(R) and permits the existence of light axial gluons (msub(A) approximately 1 GeV) alongside with the massless vector gluons. The barion number is conserved in the model. Triangular anomalies are absent when mirror fermions of opposite chirality are added. The model admits the hierarchy of symmetry breaking and presence of intermediate scales Msub(n) so that Msub(W)<< Msub(n)<< M. In the low energy region the results of Salam-Weinberg model are reproduced

  19. Flavor Symmetry and Grand Unification

    Stech, Berthold

    2010-01-01

    The combination of flavor symmetries with grand unification is considered: GUT $ \\times$ flavor . To accommodate three generations the flavor group SO(3) is used. All fermions transform as 3-vectors under this group. The Yukawa couplings are obtained from vacuum expectation values of flavon fields. For the flavon fields (singlets with respect to the GUT group) and the Higgs fields (singlets with respect to the generation group) a simple form for the effective potentials is postulated. It automatically leads to spontaneous symmetry breaking for these scalar fields. Discrete S4 transformations relate the different locations of the minima of the potentials.These potentials can be used to describe the hierarchy of the well known up quark mass spectrum. Also the huge hierarchy of the masses of the Higgs fields in grand unified models can be parametrized in this way. It leads to a prediction of the mass of the lightest Higgs boson in terms of its vacuum expectation value $v_0$: $ m_{Higgs} = \\frac{v_0}{\\sqrt{2}} = ...

  20. Yukawa Unification on the Edge

    Poh, Zijie

    2015-01-01

    In this paper we analyze Yukawa unification in a three family SO(10) SUSY GUT. We perform a global $\\chi^2$ analysis and show that SUSY effects do not decouple even though the universal scalar mass parameter at the GUT scale, $m_{16}$, is found to lie between 15 and 30 TeV with the best fit given for $m_{16} \\approx 25$ TeV. Note, SUSY effects don't decouple since stops and bottoms have mass of order 5 TeV, due to RG running from $M_{GUT}$. The model has many testable predictions. Gauginos are the lightest sparticles and the light Higgs boson is very much Standard Model-like. The model is consistent with flavor and CP observables with the $BR(\\mu \\to e\\gamma)$ close to the experimental upper bound. With such a large value of $m_{16}$ we clearly cannot be considered "natural" SUSY nor are we "Split" SUSY. We are thus in the region in between or "SUSY on the Edge."

  1. Minimal SUSY SO(10) and Yukawa unification

    The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {10⊕126-bar} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y126) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of β(1014GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - τ Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - τ Yukawa coupling unification is very accurate, the largest element in Y126 can become β(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - τ Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.

  2. Galaxy Formation

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function of...

  3. A consequence of the asymmetry of jets in quasars and active nuclei of galaxies

    Shklovsky, I. S.

    The possibility that radio emission of quasars and radio galaxies is a result of ejections of plasmoids issuing from the supercritical accretion on massive black holes at the center of galaxies is discussed. Evidence from observations of Cygnus A, Centaurus A, and Fornax A are cited to suggest that one-sided and two-sided jets occur near the center of galaxies. The ejection of a jet is shown to be a nonsymetrical event, thus allowing the possibility that all jets are one-sided, with two-sided jets actually being evidence for one remnant jet in the company of another remnant or an active event. The recoil velocity acquired by a black hole because of the ejection of plasmoids is modeled numerically. The black hole is determined to necessarily escape from the parent galaxy, which then ceases being a compact source. Short-lived quasars are therefore extinguished when super-critically accreting regimes end.

  4. The Far-Infrared Energy Distributions of Seyfert and Starburst Galaxies in the Local Universe: Infrared Space Observatory Photometry of the 12 Micron Active Galaxy Sample

    Spinoglio, Luigi; Andreani, Paola; Malkan, Matthew A.

    2002-06-01

    New far-infrared photometry with ISOPHOT aboard the Infrared Space Observatory (ISO) is presented for 58 galaxies with homogeneous published data for another 32 galaxies, all belonging to the 12 μm galaxy sample-in total, 29 Seyfert 1 galaxies, 35 Seyfert 2 galaxies, and 12 starburst galaxies, or about half of the 12 μm active galaxy sample, plus 14 normal galaxies for comparison. ISO and Infrared Astronomical Satellite (IRAS) data are used to define color-color diagrams and spectral energy distributions (SEDs). Thermal dust emission at two temperatures (one cold at 15-30 K and one warm at 50-70 K) can fit the 60-200 μm SED, with a dust emissivity law proportional to the inverse square of the wavelength. Seyfert 1 galaxies and Seyfert 2 galaxies are indistinguishable longward of 100 μm, while, as already seen by IRAS, the former have flatter SEDs shortward of 60 μm. A mild anticorrelation is found between the [200-100] color and the ``60 μm excess.'' We infer that this is due to the fact that galaxies with a strong starburst component and thus a strong 60 μm flux have a steeper far-infrared turnover. In non-Seyfert galaxies, increasing the luminosity corresponds to increasing the star formation rate, which enhances the 25 and 60 μm emission. This shifts the peak emission from around 150 μm in the most quiescent spirals to shorter than 60 μm in the strongest starburst galaxies. To quantify these trends further, we identified with the IRAS colors three idealized infrared SEDs: pure quiescent disk emission, pure starburst emission, and pure Seyfert nucleus emission. Even between 100 and 200 μm, the quiescent disk emission remains much cooler than the starburst component. Seyfert galaxies have 100-200 μm SEDs ranging from pure disks to pure starbursts, with no apparent contribution from their active nuclei at those wavelengths. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France

  5. Bulges and disks in the local Universe. Linking the galaxy structure to star formation activity

    Morselli, L; Erfanianfar, G; Concas, A

    2016-01-01

    Galaxy morphology and star formation activity are strictly linked, in the way that bulge-dominated galaxies are in general quiescent, while disk dominated galaxies are actively star-forming. In this paper, we study the properties of bulges and disks as a function of the position of galaxies in the star formation rate (SFR) - stellar mass ($M_{\\star}$) plane. Our sample is built on the SDSS DR7 catalogue, and the bulge-disk decomposition is the one of Simard et al. (2011). We find that at a given stellar mass the Main Sequence (MS) is populated by galaxies with the lowest B/T ratios. The B/T on the MS increases with increasing stellar mass, thus confirming previous results in literature. In the upper envelop of the MS, the average B/T is higher than that of MS counterparts at fixed stellar mass. This indicates that starburst galaxies have a significant bulge component. In addition, bulges above the MS are characterised by blue colours, whereas, if on the MS or below it, they are mostly red and dead. The disks ...

  6. Effect of bars in AGN host galaxies and black hole activity

    Alonso, Sol; Lambas, Diego Garcia

    2012-01-01

    With the aim of assessing the effects of bars on active galactic nuclei (AGN), we present an analysis of host characteristics and nuclear activity of AGN galaxies with and without bars selected from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). By visual inspection of SDSS images we classified the hosts of face-on AGN spiral galaxies brighter than g < 16.5 into barred or unbarred. With the purpose of providing an appropriate quantification of the effects of bars, we also constructed a suitable control sample of unbarred AGN galaxies with similar redshift, magnitude, morphology, bulge sizes and local environment distributions. We find that the bar fraction, with respect to the full sample of spiral face-on AGN host galaxies, is 28.5%, in good agreement with previous works. Barred AGN host galaxies show an excess of young stellar populations dominated by red u-r and g-r colors, with respect to the control sample, suggesting that bars produce an important effect on galaxy properties of AGN hosts. Re...

  7. FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L1.4GHz > 1023 W Hz–1) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.

  8. AGN Absorption Linked to Host Galaxies

    Juneau, Stéphanie

    2013-01-01

    Multiwavelength identification of AGN is crucial not only to obtain a more complete census, but also to learn about the physical state of the nuclear activity (obscuration, efficiency, etc.). A panchromatic strategy plays an especially important role when the host galaxies are star-forming. Selecting far-Infrared galaxies at 0.3galaxies, indicating a physical link between X-ray absorption and either the gas fraction or the gas geometry in the hosts. These findings have implications for our current understanding of both the AGN unification model and the nature of the black hole-galaxy connection. These proceedi...

  9. Star formation and black hole accretion activity in rich local clusters of galaxies

    Bianconi, Matteo; Marleau, Francine R.; Fadda, Dario

    2016-04-01

    Context. We present a study of star formation and central black hole accretion activity of galaxies that are hosted in the two nearby (z ~ 0.2) rich galaxy clusters Abell 983 and 1731. Aims: We aim to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy at 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations (~3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star-forming members of the two clusters present star formation rates that are comparable with those measured in coeval field galaxies. Analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with respect to the more uniform distribution of A983. The emerging picture is compatible with A983 being a fully evolved cluster, in contrast with the still actively accreting A1731. Conclusions: Analysis of the specific star formation rate reveals evidence of ongoing galaxy pre-processing along A1731's filament-like structure. Furthermore, the decrease in the number of star-forming galaxies and AGN towards the cluster cores suggests that the cluster environment is accelerating the ageing process of the galaxies and blocking further accretion of the cold gas that fuels both star formation and black hole accretion activity. The catalogue and the reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A105

  10. Unification: Not Just a Thing of Beauty

    Ioannis Votsis

    2015-03-01

    Full Text Available We often hear that simplicity, explanatory power and unification, though aesthetically pleasing or beautiful qualities, are at best pragmatic considerations in matters of choosing between rival hypotheses. This paper aims to offer a novel conception and an associated measure of unification, both of which are demonstrably more than just pragmatic considerations. The discussion departs from a brief survey of some failed attempts to carve out adequate conceptions of unification. It then proceeds to an analysis of the notions of confirmational connectedness and disconnectedness. Roughly speaking, these notions attempt to capture the way support propagates or fails to propagate between the content parts of a hypothesis or, equivalently, between the contents of two or more hypotheses. The two notions are instrumental in helping to tackle the problem of ad hoc, and in particular monstrous, hypotheses. More importantly for the purposes of this paper, they are essential ingredients in the proposed conception of unification and its associated measure. In simple terms, the more the content of a hypothesis (or, equivalently, the content of a set of hypotheses is confirmationally connected the more that content is unified. Since the confirmational connectedness of two content parts is determined by purely objective matters of fact, the proposed notion and measure of unification are themselves strictly objective, i.e. not merely pragmatic considerations in matters of hypothesis choice. The paper concludes with a discussion of how the proposed measure handles real and hypothetical examples but also how it stands up to various objections.

  11. The Lack of Torus Emission from BL Lacertae Objects: An Infrared View of Unification with WISE

    Plotkin, Richard M; Brandt, W N; Markoff, Sera; Shemmer, Ohad; Wu, Jianfeng

    2011-01-01

    We use data from the Wide-Field Infrared Survey Explorer (WISE) to perform a statistical study on the mid-infrared (IR) properties of a large number ($\\sim10^2$) of BL Lac objects --- low-luminosity Active Galactic Nuclei (AGN) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions. In other BL Lac objects, however, the jet is not strong enough to completely dilute the rest of the AGN emission. We do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. The lack of observable torus emission is consistent with suggestions that BL Lac objects are fed by radiatively inefficient accretion disks. Implications for the "nature vs. nurture" debate for FR I and FR II radio galaxies are briefly discussed. Our study supports the notion that, beyond orientation, accretion rate plays an important role in AGN unification.

  12. Cosmic web and star formation activity in galaxies at z ∼ 1

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  13. The impact of galaxy interactions on AGN activity in zCOSMOS

    Silverman, J D; Jahnke, K; Andrae, R; Lilly, S; Elvis, M; Civano, F; Mainieri, V; Vignali, C; Zamorani, G; Nair, P; Fevre, O Le; de Ravel, L; Bardelli, S; Bongiorno, A; Bolzonella, M; Brusa, M; Cappelluti, N; Cappi, A; Caputi, K; Carollo, C M; Contini, T; Coppa, G; Cucciati, O; de la Torre, S; Franzetti, P; Garilli, B; Halliday, C; Hasinger, G; Iovino, A; Knobel, C; koekemoer, A; Kovac, K; Lamareille, F; Borgne, J -F Le; Brun, V Le; Maier, C; Mignoli, M; Pello, R; Montero, E Perez; Ricciardelli, E; Peng, Y; Scodeggio, M; Tanaka, M; Tasca, L; Tresse, L; Vergani, D; Zucca, E; Comastri, A; Finoguenov, A; Fu, H; Gilli, R; Hao, H; Ho, L; Salvato, M

    2011-01-01

    Close encounters between galaxies are expected to be a viable mechanism, as predicted by numerical simulations, by which accretion onto supermassive black holes can be initiated. To test this scenario, we construct a sample of 562 galaxies (M*>2.5x10^10 M_sun) in kinematic pairs over the redshift range 0.25 2x10^42 erg s^-1) detected by Chandra. We find a higher fraction of AGN in galaxies in pairs relative to isolated galaxies of similar stellar mass. Our result is primarily due to an enhancement of AGN activity, by a factor of 1.9 (observed) and 2.6 (intrinsic), for galaxies in pairs of projected separation less than 75 kpc and line-of-sight velocity offset less than 500 km s^-1. This study demonstrates that close kinematic pairs are conducive environments for black hole growth either indicating a causal physical connection or an inherent relation, such as, to enhanced star formation. In the Appendix, we describe a method to estimate the intrinsic fractions of galaxies (either in pairs or the field) hosting...

  14. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years

  15. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    Worpel, Hauke [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia); Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E. [Monash Centre for Astrophysics, School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Beutler, Florian [ICRAR, University of Western Australia, 35 Stirling Highway, Perth, WA 6009 (Australia)

    2013-07-20

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.

  16. Star Formation and AGN Activity in Luminous and Ultraluminous Infrared Galaxies

    Kartaltepe, Jeyhan

    2015-08-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR > 10^12 L⊙) are all interacting and merging systems. We explore the evolution of the morphological and nuclear properties of (U)LIRGs over cosmic time using a large sample of galaxies from Her- schel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z ˜ 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We also use rest-frame optical emission line diagnostics, X-ray luminosity, and MIR colors to separate AGN from star-formation dominated galaxies. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy’s position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers? We investigate how AGN identified with different methods correspond to different morphologies and merger stages as well as position on the star formation rate - stellar mass plane.

  17. Unification and explanation in early Kaluza-Klein theories

    Muntean, Ioan Lucian

    2009-01-01

    Unifying distinct domains of phenomena is one of the most important non-empirical virtues of scientific theories. However, what counts as unification and what makes it important are philosophically controversial. I canvass two positions toward unification (the enthusiasts and the dissenters) as well as two methods to approach unification : the general approach and the specific approach based on case studies. Some philosophers take unification to be truth conducive (Friedman), others to be cen...

  18. Asymmetric Unification and the Combination Problem in Disjoint Theories

    Erbatur, Serdar; Kapur, Deepak; Marshall, Andrew; Meadows, Catherine; Narendran, Paliath; Ringeissen, Christophe

    2014-01-01

    Asymmetric unification is a new paradigm for unification modulo theories that introduces irreducibility constraints on one side of a unification problem. It has important applications in symbolic cryptographic protocol analysis, for which it is often necessary to put irreducibility constraints on portions of a state. However many facets of asymmetric unification that are of particular interest, including its behavior under combinations of disjoint theories, remain poorly understood. In this p...

  19. Low energy implications of minimal superstring unification

    We study the phenomenological implications of effective supergravities based on string vacua with spontaneously broken N =1 supersymmetry by dilation and moduli F-terms. We further require Minimal String Unification, namely that large string threshold corrections ensure the correct unification of the gauge couplings at the grand unification scale. The whole supersymmetric mass spectrum turns out to be determined in terms of only two independent parameters, the dilaton-moduli mixing angle and the gravitino mass. In particular we discuss the region of the parameter space where at least one superpartner is ''visible'' at LEPII. We find that the most likely candidates are the scalar partner of the right-handed electron and the lightest chargino, with interesting correlations between their masses and with the mass of the lightest higgs. We show how discovering SUSY particles at LEPII might rather sharply discriminate between scenarios with pure dilaton SUSY breaking and mixed dilaton-moduli breaking. (author). 10 refs, 7 figs

  20. Gauge-Higgs EW and grand unification

    Hosotani, Yutaka

    2016-07-01

    Four-dimensional Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. SO(5) × U(1) gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase 𝜃H in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for 𝜃H bosons around 6-10 TeV with very broad widths. The scenario is generalized to SO(11) gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of SO(11). Proton decay is naturally forbidden.

  1. Yukawa unification in heterotic string theory

    Buchbinder, Evgeny I.; Constantin, Andrei; Gray, James; Lukas, Andre

    2016-08-01

    We analyze Yukawa unification in the context of E8×E8 heterotic Calabi-Yau models which rely on breaking to a grand unified theory (GUT) via a nonflat gauge bundle and subsequent Wilson line breaking to the standard model. Our focus is on underlying GUT theories with gauge group S U (5 ) or S O (10 ). We provide a detailed analysis of the fact that, in contrast to traditional field theory GUTs, the underlying GUT symmetry of these models does not enforce Yukawa unification. Using this formalism, we present various scenarios where Yukawa unification can occur as a consequence of additional symmetries. These additional symmetries arise naturally in some heterotic constructions, and we present an explicit heterotic line bundle model which realizes one of these scenarios.

  2. Yukawa Unification in Heterotic String Theory

    Buchbinder, Evgeny I; Gray, James; Lukas, Andre

    2016-01-01

    We analyze Yukawa unification in the the context of $E_8\\times E_8$ heterotic Calabi-Yau models which rely on breaking to a GUT theory via a non-flat gauge bundle and subsequent Wilson line breaking to the standard model. Our focus is on underlying GUT theories with gauge group $SU(5)$ or $SO(10)$. We provide a detailed analysis of the fact that, in contrast to traditional field theory GUTs, the underlying GUT symmetry of these models does not enforce Yukawa unification. Using this formalism, we present various scenarios where Yukawa unification can occur as a consequence of additional symmetries. These additional symmetries arise naturally in some heterotic constructions and we present an explicit heterotic line bundle model which realizes one of these scenarios.

  3. Unification without doublet-triplet splitting

    Matter-Higgs unification in string-inspired supersymmetric Grand Unified Theories predicts the existence of colored states in the Higgs multiplets and calls for two extra generations of Higgs-like fields ('unhiggses'). If these states are present near the TeV scale, gauge-coupling unification points to the existence of two distinct scales, 1015 GeV where right-handed neutrinos and a Pati-Salam symmetry appear, and 1018 GeV where complete unification is achieved. Baryon-number conservation, while not guaranteed, can naturally emerge from an underlying flavor symmetry. Collider signatures and dark-matter physics may be drastically different from the conventional MSSM. (orig.)

  4. Gauge-Higgs EW and Grand Unification

    Hosotani, Yutaka

    2016-01-01

    4D Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. $SO(5) \\times U(1)$ gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase $\\theta_H$ in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for $\\theta_H < 0.1$, and predicts $Z'$ bosons around 6 - 10 TeV with very broad widths. The scenario is genelarized to $SO(11)$ gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of $SO(11)$. Proton decay is naturally forbidden.

  5. Spitzer and JCMT Observations of the Active Galactic Nucleus in the Sombrero Galaxy (NGC 4594)

    Bendo, G J; Calzetti, D; Cannon, J M; Dale, D A; Draine, B T; Engelbracht, C W; Gordon, K D; Helou, G; Hollenbach, D; Joseph, R D; Kennicutt, R C; Murphy, E J; Roussel, H; Sheth, K; Smith, J D T; Walter, F

    2006-01-01

    We present Spitzer 3.6-160 micron images, Spitzer mid-infrared spectra, and JCMT SCUBA 850 micron images of the Sombrero Galaxy (NGC 4594), an Sa galaxy with a 10^9 M_solar low luminosity active galactic nucleus (AGN). The brightest infrared sources in the galaxy are the nucleus and the dust ring. The spectral energy distribution of the AGN demonstrates that, while the environment around the AGN is a prominent source of mid-infrared emission, it is a relatively weak source of far-infrared emission, as had been inferred for AGN in previous research. The weak nuclear 160 micron emission and the negligible polycyclic aromatic hydrocarbon emission from the nucleus also implies that the nucleus is a site of only weak star formation activity and the nucleus contains relatively little cool interstellar gas needed to fuel such activity. We propose that this galaxy may be representative of a subset of low ionization nuclear emission region galaxies that are in a quiescent AGN phase because of the lack of gas needed to...

  6. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  7. Galactic mergers, starburst galaxies, quasar activity and massive binary black holes

    Many quasar-like objects show evidence for massive binary black holes. The recent discovery of a massive (5 X 106 Msolar mass) object in the centre of the local group dwarf elliptical M 32 greatly raises the probability of forming such binaries through galactic mergers. The author argues that the enhancement of all kinds of activity (quasar-like activity and star formation) in galaxies with companions is not so much a consequence of tidal interaction between the massive galaxies as the result of collisions with their dwarf satellites. (author)

  8. Effect of bars in AGN host galaxies and black hole activity

    Alonso, Sol; Coldwell, Georgina; Lambas, Diego Garcia

    2012-01-01

    With the aim of assessing the effects of bars on active galactic nuclei (AGN), we present an analysis of host characteristics and nuclear activity of AGN galaxies with and without bars selected from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). By visual inspection of SDSS images we classified the hosts of face-on AGN spiral galaxies brighter than g < 16.5 into barred or unbarred. With the purpose of providing an appropriate quantification of the effects of bars, we also constructed...

  9. Elementary particles and physics interaction unification

    Quantum theory and relativity theory are fundamental of relativistic quantum mechanics, quantum field theory, which is the base of elementary particle physics, gauge field theory and basic force unification models. After a short introduction of relativistic equations of the main fields, the free scalar field, the free vector field, the free electromagnetic field and the free spinor field, and of elementary particles and basic interactions, gauge invariance and electromagnetic gauge field are detailed. Then the presentation of internal degrees of freedom, especially isospin, introduces gauge field theory of Yang-Mills. At last weak interactions and strong interactions are presented and lead to grand unification theory in conclusion

  10. Unification of Patrimonial Laws Governing International Trade

    Lando, Ole

    2016-01-01

    Should the laws of the world dealing with cross-border transactions be unified? Such unification presupposes an agreement on what we understand by ‘law’ and what its sources are. The drafters of uniform laws and lawyers who are preoccupied with comparative law often ask themselves: Is there, amon...... the nations, a common core of legal values? If there is, this will facilitate legal unification. It will also make the international law-making easier if, in exceptional cases, a court is permitted to disregard a legal rule....

  11. Dirac gauginos, gauge mediation and unification

    We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)

  12. Peaceful unification by antinuclear and antiwar movement

    This book consists of three parts. The first part is to make a new recognition of unification. It deals with articles, which are situation of the Korean peninsula by Lee, Jung Sick, nuclear strategy of and peace of the Korean peninsula by Glen page. The making peace, which includes three principles for national unification by student association of Seoul University, Changing international circumstances and the Korean peninsula by Hong, hyeongi. The third part is for major unified plan in 1980's. The includes many articles, which are 7.4 North and South joint statement and 7.7 presidential special declaration and so on.

  13. China’s unification: Myth or reality?

    Estrada Mario Arturo Ruiz

    2014-01-01

    Full Text Available This paper evaluates the prospect of a possible unification between People’s Republic of China (Mainland China and Republic of China (Taiwan from a multi-dimensional perspective which encompasses the political, social, economic, and technological dimensions. The underlying idea is to evaluate the possibility of a partial or total reunification between the two countries in a more comprehensive way than just assessing the economic costs and benefits. Our evaluation is based on the application of the GDRI-Model, which looks at unification and regional integration simultaneously from the political, economic, social and technological perspectives.

  14. COSMIC EVOLUTION OF BLACK HOLES AND SPHEROIDS. V. THE RELATION BETWEEN BLACK HOLE MASS AND HOST GALAXY LUMINOSITY FOR A SAMPLE OF 79 ACTIVE GALAXIES

    We investigate the cosmic evolution of the black hole (BH) mass-bulge luminosity relation using a sample of 52 active galaxies at z ∼ 0.36 and z ∼ 0.57 in the BH mass range of 107.4-109.1 M ☉. By consistently applying multicomponent spectral and structural decomposition to high-quality Keck spectra and high-resolution Hubble Space Telescope images, BH masses (M BH) are estimated using the Hβ broad emission line combined with the 5100 Å nuclear luminosity, and bulge luminosities (L bul) are derived from surface photometry. Comparing the resulting M BH – L bul relation to local active galaxies and taking into account selection effects, we find evolution of the form M BH/L bul∝(1 + z)γ with γ = 1.8 ± 0.7, consistent with BH growth preceding that of the host galaxies. Including an additional sample of 27 active galaxies with 0.5 < z < 1.9 taken from the literature and measured in a consistent way, we obtain γ = 0.9 ± 0.7 for the M BH – L bul relation and γ = 0.4 ± 0.5 for the M BH-total host galaxy luminosity (L host) relation. The results strengthen the findings from our previous studies and provide additional evidence for host galaxy bulge growth being dominated by disk-to-bulge transformation via minor mergers and/or disk instabilities

  15. The Unification Space implemented as a localist neural net: Predictions and error-tolerance in a constraint-based parser

    Vosse, T.; Kempen, G.

    2009-01-01

    We introduce a novel computer implementation of the Unification-Space parser (Vosse and Kempen in Cognition 75:105–143, 2000) in the form of a localist neural network whose dynamics is based on interactive activation and inhibition. The wiring of the network is determined by Performance Grammar (Kempen and Harbusch in Verb constructions in German and Dutch. Benjamins, Amsterdam, 2003), a lexicalist formalism with feature unification as binding operation. While the network is processing input ...

  16. The Relationship of Active Galactic Nuclei & Quasars With Their Local Galaxy Environment

    Strand, Natalie Erin

    2009-01-01

    We explore how the local environment is related to properties of active galactic nuclei (AGNs) of various luminosities. Recent simulations and observations are converging on the view that the extreme luminosity of quasars, the brightest of AGNs, is fueled in major mergers of gas-rich galaxies. In such a picture, quasars, the highest luminosity AGNs, are expected to be located in regions with a higher density of galaxies on small scales where mergers are more likely to take place. However, in this picture, the activity observed in low-luminosity AGNs is due to secular processes that are less dependent on the local galaxy density. To test this hypothesis, we compare the local photometric galaxy density on kiloparsec scales around spectroscopic type I and type II quasars to the local density around lower-luminosity spectroscopic type I and type II AGNs. To minimize projection effects and evolution in the photometric galaxy sample we use to characterize AGN environments, we place our random control sample at the ...

  17. The Evolution of Active Galactic Nuclei in Clusters of Galaxies from the Dark Energy Survey

    Bufanda, E; Jeltema, T E; Rykoff, E S; Rozo, E; Martini, P; Abbott, T M C; Abdalla, F B; Allam, S; Banerji, M; Benoit-Levy, A; Bertin, E; Brooks, D; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Cunha, C E; da Costa, L N; Desai, S; Diehl, H T; Dietrich, J P; Evrard, A E; Neto, A Fausti; Flaugher, B; Frieman, J; Gerdes, D W; Goldstein, D A; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Kuehn, K; Kuropatkin, N; Lima, M; Maia, M A G; Marshall, J L; Melchior, P; Miquel, R; Mohr, J J; Ogando, R; Plazas, A A; Romer, A K; Rooney, P; Sanchez, E; Santiago, B; Scarpine, V; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Tarle, G; Thomas, D; Tucker, D L; Walker, A R

    2016-01-01

    The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. In this paper, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10^43 ergs s^-1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 and 2 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship betwe...

  18. Star formation activities in early-type brightest cluster galaxies

    Liu, F S; Meng, X M

    2012-01-01

    We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous c...

  19. Low-luminosity Active Galaxies and their Central Black Holes

    Dong, X; Dong, Xiaoyi; Robertis, Michael M. De

    2005-01-01

    Central black hole masses for 118 spiral galaxies representing morphological stages S0/a through Sc and taken from the large spectroscopic survey of Ho, Filippenko & Sargent (1997) are derived using 2MASS Ks data. Black hole (BH) masses are found using a calibrated black-hole - Ks bulge luminosity relation, while bulge luminosities are measured using GALFIT, a two-dimensional bulge/disk decomposition routine. The BH masses are correlated against a variety of nuclear and host-galaxy properties. Nuclear properties such as line width and line ratios show a very high degree of correlation with BH mass. The excellent correlation with line-width supports the view that the emission-line gas is in virial equilibrium with either the BH or bulge potential. The very good emission-line ratio correlations may indicate a change in ionizing continuum shape with BH mass in the sense that more massive BHs generate harder spectra. Apart from the inclination-corrected rotational velocity, no excellent correlations are found...

  20. Multiple tidal disruption flares in the active galaxy IC 3599

    Campana, S; Colpi, M; Lodato, G; D'Avanzo, P; Evans, P A; Moretti, A

    2015-01-01

    Tidal disruption events occur when a star passes too close to a massive black hole and it is totally ripped apart by tidal forces. Alternatively, if the star does not get close enough to the black hole to be totally disrupted, a less dramatic event might happen with the star surviving the encounter and loosing only a small fraction of its mass. In this situation if the stellar orbit is bound and highly eccentric, just like some stars in the centre of our own Galaxy, repeated flares should occur. When the star approaches the black hole tidal radius at periastron, matter might be stripped resulting in lower intensity outbursts recurring once every orbital period. We report on Swift observations of a recent bright flare from the galaxy IC 3599 hosting a middle-weight black hole, where a possible tidal disruption event was observed in the early 1990s. By light curve modelling and spectral fitting we can consistently account for the events as the non-disruptive tidal stripping of a star into a highly eccentric orb...

  1. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows). PMID:25810204

  2. The structure of host galaxies of radio-loud quasars and possible triggering mechanisms for quasar activity

    Romanishin, W.; Hintzen, P. (Arizona State Univ., Tempe (USA); NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1989-06-01

    An image modeling program is used to analyze optical imaging data for a sample of radio-loud quasars with redshifts between 0.2 and 0.7. It is found that the host galaxies of these quasars tend to be more compact than normal ellipticals. The cooling flow cluster elliptical galaxies near these host galaxies are studied. It is suggested that these cooling flow galaxies are also compact due to star formation in their central regions. Two populations of quasars are identified. One, in which activity is triggered by galaxy mergers of interactions has predominately spiral galaxies and are radio quiet. The other, in which activity is triggered by star formation bursts induced by cooling flows, has predominately elliptical hosts and may be radio loud. 28 refs.

  3. The structure of host galaxies of radio-loud quasars and possible triggering mechanisms for quasar activity

    An image modeling program is used to analyze optical imaging data for a sample of radio-loud quasars with redshifts between 0.2 and 0.7. It is found that the host galaxies of these quasars tend to be more compact than normal ellipticals. The cooling flow cluster elliptical galaxies near these host galaxies are studied. It is suggested that these cooling flow galaxies are also compact due to star formation in their central regions. Two populations of quasars are identified. One, in which activity is triggered by galaxy mergers of interactions has predominately spiral galaxies and are radio quiet. The other, in which activity is triggered by star formation bursts induced by cooling flows, has predominately elliptical hosts and may be radio loud. 28 refs

  4. The structure of host galaxies of radio-loud quasars and possible triggering mechanisms for quasar activity

    Romanishin, W.; Hintzen, Paul

    1989-01-01

    An image modeling program is used to analyze optical imaging data for a sample of radio-loud quasars with redshifts between 0.2 and 0.7. It is found that the host galaxies of these quasars tend to be more compact than normal ellipticals. The cooling flow cluster elliptical galaxies near these host galaxies are studied. It is suggested that these cooling flow galaxies are also compact due to star formation in their central regions. Two populations of quasars are identified. One, in which activity is triggered by galaxy mergers of interactions has predominately spiral galaxies and are radio quiet. The other, in which activity is triggered by star formation bursts induced by cooling flows, has predominately elliptical hosts and may be radio loud.

  5. Where the active galaxies live: a panchromatic view of radio-AGN in the AKARI-NEP field

    Karouzos, Marios; Trichas, Markos

    2013-01-01

    We study the host galaxy properties of radio sources in the AKARI-North Ecliptic Pole (NEP) field, using an ensemble of multi-wavelength datasets. We identify both radio-loud and radio-quiet AGN and study their host galaxy properties by means of SED fitting. We investigate the relative importance of nuclear and star-formation activity in radio-AGN and assess the role of radio-AGN as efficient quenchers of star-formation in their host galaxies.

  6. J1216+0709: A Radio Galaxy with Three Episodes of AGN Jet Activity

    Singh, Veeresh; Ishwara-Chandra, C. H.; Kharb, Preeti; Srivastava, Shweta; Janardhan, P.

    2016-08-01

    We report the discovery of a “triple-double radio galaxy,” J1216+0709, detected in deep low-frequency Giant Metrewave Radio Telescope (GMRT) observations. J1216+0709 is only the third radio galaxy, after B0925+420 and Speca, with three pairs of lobes resulting from three different episodes of active galactic nucleus (AGN) jet activity. The 610 MHz GMRT image clearly displays an inner pair of lobes, a nearly coaxial middle pair of lobes, and a pair of outer lobes that is bent with respect to the axis of the inner pair of lobes. The total end-to-end projected sizes of the inner, middle, and outer lobes are 40″ (∼95 kpc), 1.‧65 (∼235 kpc), and 5.‧7 (∼814 kpc), respectively. Unlike the outer pair of lobes, both the inner and middle pairs of lobes exhibit asymmetries in arm lengths and flux densities, but in the opposite sense, i.e., the eastern sides are farther and also brighter than the western sides, thus, suggesting the possibility of the jet being intrinsically asymmetric rather than due to a relativistic beaming effect. The host galaxy is a bright elliptical (m r ∼ 16.56) with M SMBH ∼ 3.9 × 109 M ⊙ and a star formation rate of ∼{4.66}-1.61{{+4.65}} M ⊙ yr‑1. The host galaxy resides in a small group of three galaxies (m r ≤ 17.77) and is possibly going through an interaction with faint dwarf galaxies in the neighborhood, which may have triggered the recent episodes of AGN activity.

  7. Unification types of housing during Sochi Olympics

    Aleksandr A. Babaev

    2011-05-01

    Full Text Available In the article the statement of the unification problem of housing accommodation of participants, spectators, staff, committee during the Winter Olympics in Sochi. We give a mathematical formalization of the problem, where the unknown variables are theelements of the combination of types of accommodation sorted by the level of comfortand representation.

  8. Families in the nonperturbative unification scheme

    Within the nonperturbative unification framework of Maiani, Parisi and Petronzio, we examine the influence of the number of fermion and Higgs families, when they are grouped in representations of horizontal family groups, on the low energy couplings of the standard model. In this way we find a number of new phenomenologically acceptable solutions for the standard model's low energy couplings. (orig.)

  9. On the behaviour of the IR Ca II triplet in normal and active galaxies

    Terlevich, Elena; Angeles I. Díaz; Terlevich, Roberto

    1990-01-01

    This is an electronic version of an article published in Monthly Notices of the Royal Astronomical Society. Terlevich, E., Díaz, A.I., Terlevich, R. On the behaviour of the IR Ca II triplet in normal and active galaxies. Monthly Notices of the Royal Astronomical Society 242 (1990): 271-284

  10. The SAMI Galaxy Survey: Unveiling the nature of kinematically offset active galactic nuclei

    Allen, J T; Scott, N; Fogarty, L M R; Ho, I -T; Medling, A M; Leslie, S K; Bland-Hawthorn, J; Bryant, J J; Croom, S M; Goodwin, M; Green, A W; Konstantopoulos, I S; Lawrence, J S; Owers, M S; Richards, S N; Sharp, R

    2015-01-01

    We have observed two kinematically offset active galactic nuclei (AGN), whose ionised gas is at a different line-of-sight velocity to their host galaxies, with the SAMI integral field spectrograph (IFS). One of the galaxies shows gas kinematics very different to the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionised gas kinematics at the galaxy's centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, bu...

  11. Mid- to far infrared properties of star-forming galaxies and active galactic nuclei

    Magdis, G E; Helou, G; Farrah, D; Hurley, P; Alonso-Herrero, A; Bock, J; Burgarella, D; Chapman, S; Charmandaris, V; Cooray, A; Dai, Y S; Dale, D; Elbaz, D; Feltre, A; Hatziminaoglou, E; Huang, J-S; Morrison, G; Oliver, S; Page, M; Scott, D; Shi, Y

    2013-01-01

    We study the mid- to far-IR properties of a 24um-selected flux-limited sample (S24 > 5mJy) of 154 intermediate redshift (~0.15), infrared luminous galaxies, drawn from the 5MUSES survey. By combining existing mid-IR spectroscopy and new Herschel SPIRE submm photometry from the HerMES program, we derived robust total infrared luminosity (LIR) and dust mass (Md) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total infrared emission of galaxies with weak 6.2um PAH emission (EW0.2um more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500um Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8um luminosity ratio, IR8 = LIR\\L8, and the strength of PAH features. ...

  12. The host galaxies of active galactic nuclei with powerful relativistic jets

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  13. Tracing the evolution of active galactic nuclei host galaxies over the last 9 Gyr of cosmic time

    We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.

  14. Tracing the evolution of active galactic nuclei host galaxies over the last 9 Gyr of cosmic time

    Goulding, A. D.; Forman, W. R.; Jones, C.; Murray, S. S.; Paggi, A.; Ashby, M. L. N.; Huang, J.-S.; Kraft, R.; Willner, S. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Coil, A. L. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093 (United States); Cooper, M. C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Newman, J. A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Weiner, B. J., E-mail: agoulding@cfa.harvard.edu [Steward Observatory, 933 North Cherry Street, University of Arizona, Tucson, AZ 85721 (United States)

    2014-03-01

    We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.

  15. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wild, Vivienne [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during

  16. From Starburst to Quiescence: Testing Active Galactic Nucleus feedback in Rapidly Quenching Post-starburst Galaxies

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S.; Wild, Vivienne; Hayward, Christopher C.

    2014-09-01

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M ⊙) = 10.3-10.7, and identifies "transiting" post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ~0.3% of galaxies are starbursts, ~0.1% are QPSBs, and ~0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (gsim 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of >~ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as "dust-obscured galaxies" (DOGs), with a near-UV-to-mid-IR flux ratio of >~ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post-starburst phase.

  17. Galaxy Zoo: The properties of merging galaxies in the nearby Universe - local environments, colours, masses, star-formation rates and AGN activity

    Darg, D W; Lintott, C J; Schawinski, K; Sarzi, M; Bamford, S; Silk, J; Andreescu, D; Murray, P; Nichol, R C; Raddick, M J; Slosar, A; Szalay, A S; Thomas, D; Vandenberg, J

    2009-01-01

    Following the study of Darg et al. (2009; hereafter D09a) we explore the environments, optical colours, stellar masses, star-formation and AGN activity in a sample of 3003 merging galaxies drawn from the SDSS using the Galaxy Zoo project. While D09a found that the spiral-to-elliptical ratio in (major) mergers appeared higher than that of the global galaxy population, no significant differences are found between the environmental distributions of mergers and a randomly selected control sample. This makes the high occurrence of spirals in mergers unlikely to be an environmental effect and must, therefore, arise from differing time-scales of detectability for spirals and ellipticals. We find that merging galaxies have a wider spread in colour than the global galaxy population, with a significant blue tail resulting from intense star-formation in spiral mergers. Galaxies classed as star-forming using their emission-line properties have average star-formation rates approximately doubled by the merger process thoug...

  18. A GMRT Study of Seyfert Galaxies NGC4235 & NGC4594: Evidence of Episodic Activity ?

    Kharb, P; Singh, V; Gallimore, J F; Ishwara-Chandra, C H; Hota, Ananda

    2016-01-01

    Low frequency observations at 325 and 610 MHz have been carried out for two "radio-loud" Seyfert galaxies, NGC4235 and NGC4594 (Sombrero galaxy), using the Giant Meterwave Radio Telescope (GMRT). The 610 MHz total intensity and 325-610 MHz spectral index images of NGC4235 tentatively suggest the presence of a "relic" radio lobe, most likely from a previous episode of AGN activity. This makes NGC4235 only the second known Seyfert galaxy after Mrk6 to show signatures of episodic activity. Spitzer and Herschel infrared spectral energy distribution (SED) modelling using the clumpyDREAM code predicts star formation rates (SFR) that are an order of magnitude lower than those required to power the radio lobes in these Seyferts (~0.13-0.23 M_sun/yr compared to the required SFR of ~2.0-2.7 M_sun/yr in NGC4594 and NGC4235, respectively). This finding along with the detection of parsec and sub-kpc radio jets in both Seyfert galaxies, that are roughly along the same position angles as the radio lobes, strongly support th...

  19. Star formation and black hole accretion activity in rich local clusters of galaxies

    Bianconi, Matteo; Fadda, Dario

    2016-01-01

    We present a study of the star formation and central black hole accretion activity of the galaxies hosted in the two nearby (z$\\sim$0.2) rich galaxy clusters Abell 983 and 1731. Aims: We are able to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy @ 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations ($\\sim$ 3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star forming members of the two clusters present star formation rates comparable with those measured in coeval field galaxies. The analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with re...

  20. A Census of Broad-Line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    Trump, Jonathan R; Fang, Jerome J; Faber, S M; Koo, David C; Kocevski, Dale D

    2012-01-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey (SDSS) are used to dis- entangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid superm...

  1. Constraints on Feedback in the local Universe: The relation between star formation and AGN activity in early type galaxies

    Vaddi, Sravani; Baum, Stefi A; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2016-01-01

    We address the relation between star formation and AGN activity in a sample of 231 nearby ($0.0002galaxies by carrying out a multi-wavelength study using archival observations in the UV, IR and radio. Our results indicate that early type galaxies in the current epoch are rarely powerful AGNs, with $P<10^{22}\\,WHz^{-1}$ for a majority of the galaxies. Only massive galaxies are capable of hosting powerful radio sources while less massive galaxies are hosts to lower radio power sources. Evidence of ongoing star formation is seen in approximately 7% of the sample. The SFR of these galaxies is less than 0.1 $M_{\\odot}yr^{-1}$. They also tend to be radio faint ($P<10^{22}\\,WHz^{-1}$). There is a nearly equal fraction of star forming galaxies in radio faint ($P<10^{22}\\,WHz^{-1}$) and radio bright galaxies ($P\\geq10^{22}\\,WHz^{-1}$) suggesting that both star formation and radio mode feedback are constrained to be very low in our sample. We notice that our galaxy sample and the B...

  2. The Hidden Lives of Galaxies: An Information & Activity Booklet, Grades 9-12, 2000-2001. Imagine the Universe! Probing the Structure & Evolution of the Cosmos.

    Lochner, James C.; Williamson, Lisa; Fitzhugh, Ethel

    This National Aeronautics and Space Administration (NASA) document presents activities on the properties of galaxies for additional curriculum support. The activities presented in this document include: (1) "How Big Is the Universe"; (2) "Identifying Galaxies"; (3) "Classifying Galaxies Using Hubble's Fork Diagram"; (4) "Identifying Unusual…

  3. AGN III - primordial activity in nuclei of late-type galaxies with pseudobulges

    Komberg, B V

    2013-01-01

    1. Based on observational data on evolution of quasars and galaxies of different types along with the results of numerical simulations we make a conclusion that on low redshifts ($z<0.5$) QSOI/II objects in massive elliptical and spiral galaxies with classical bulges cannot be in late single activity event (be "primordial"). Instead of it they have had events of activity earlier in their evolution. It means that their presence on low redshifts is connected with the recurrence phenomenon, sequential wet minor mergings, because timescale of the activity does not exceed several units of $10^7$ years. 2. We define a new class - "AGN III" as active galactic nuclei in isolated late-type spirals with low-mass rapidly rotating pseudobulges. We also state that only such objects can be in the primordial phase of activity at low redshifts. Black holes in such galaxies have masses $M_{BH}<10^7M_\\odot$ and also, probably very high spin. Such properties can explain their peculiar emission spectra. A good representati...

  4. Yukawa Unification Predictions with Effective ``Mirage'' Mediation

    Anandakrishnan, Archana; Raby, Stuart

    2013-11-01

    In this Letter we analyze the consequences, for the LHC, of gauge and third family Yukawa coupling unification with a particular set of boundary conditions defined at the grand unified theory (GUT) scale, which we characterize as effective “mirage” mediation. We perform a global χ2 analysis including the observables MW, MZ, GF, αem-1, αs(MZ), Mt, mb(mb), Mτ, BR(B→Xsγ), BR(Bs→μ+μ-), and Mh. The fit is performed in the minimal supersymmetric standard model in terms of 10 GUT scale parameters, while tan⁡β and μ are fixed at the weak scale. We find good fits to the low energy data and a supersymmetry spectrum which is dramatically different than previously studied in the context of Yukawa unification.

  5. Yukawa Unification Predictions with effective "Mirage" Mediation

    Anandakrishnan, Archana

    2013-01-01

    In this letter we analyze the consequences, for the LHC, of gauge and third family Yukawa coupling unification with a particular set of boundary conditions defined at the GUT scale, which we characterize as effective "mirage" mediation. We perform a global chi-squared analysis including the observables M_W, M_Z, G_F, alpha_em, alpha_s(M_Z), M_top, m_b(m_b), M_tau, BR(B -> X_s gamma), BR(B_s -> mu^+ mu^-) and M_{h}. The fit is performed in the MSSM in terms of 10 GUT scale parameters, while tanb and mu are fixed at the weak scale. We find good fits to the low energy data and a SUSY spectrum which is dramatically different than previously studied in the context of Yukawa unification.

  6. Yukawa unification predictions with effective "mirage" mediation.

    Anandakrishnan, Archana; Raby, Stuart

    2013-11-22

    In this Letter we analyze the consequences, for the LHC, of gauge and third family Yukawa coupling unification with a particular set of boundary conditions defined at the grand unified theory (GUT) scale, which we characterize as effective "mirage" mediation. We perform a global χ2 analysis including the observables M(W), M(Z), G(F), α(em)(-1), α(s)(M(Z)), M(t), m(b)(m(b)), M(τ), BR(B→X(s)γ), BR(B(s)→μ(+)μ(-)), and M(h). The fit is performed in the minimal supersymmetric standard model in terms of 10 GUT scale parameters, while tanβ and μ are fixed at the weak scale. We find good fits to the low energy data and a supersymmetry spectrum which is dramatically different than previously studied in the context of Yukawa unification. PMID:24313477

  7. Gauge coupling unification in six dimensions

    We compute the one-loop gauge couplings in six-dimensional non-Abelian gauge theories on the T2/Z2 orbifold with general GUT breaking boundary conditions. For concreteness, we apply the obtained general formulae to the gauge coupling running in a 6D SO(10) orbifold GUT where the GUT group is broken down to the standard model gauge group up to an extra U(1). We find that the one-loop corrections depend on the parity matrices encoding the orbifold boundary conditions as well as the volume and shape moduli of extra dimensions. When the U(1) is broken by the VEV of bulk singlets, the accompanying extra color triplets also affect the unification of the gauge couplings. In this case, the B-L breaking scale is closely linked to the compactification scales for maintaining a success of the gauge coupling unification. (orig.)

  8. Unification and New Particles at the LHC

    Arkani-Hamed, Nima; Low, Matthew; Pinner, David

    2016-01-01

    Precision gauge coupling unification is one of the primary quantitative successes of low energy or split supersymmetry. Preserving this success puts severe restrictions on possible matter and gauge sectors that might appear at collider-accessible energies. In this work we enumerate new gauge sectors which are compatible with unification, consisting of horizontal gauge groups acting on vector-like matter charged under the Standard Model. Interestingly, almost all of these theories are in the supersymmetric conformal window at high energies and confine quickly after the superpartners are decoupled. For a range of scalar masses compatible with both moderately tuned and minimally split supersymmetry, the confining dynamics happen at the multi-TeV scale, leading to a spectrum of multiple spin-0 and spin-1 resonances accessible to the LHC, with unusual quantum numbers and striking decay patterns.

  9. Unification modulo a partial theory of exponentiation

    Kapur, Deepak; Narendran, Paliath; 10.4204/EPTCS.42.2

    2010-01-01

    Modular exponentiation is a common mathematical operation in modern cryptography. This, along with modular multiplication at the base and exponent levels (to different moduli) plays an important role in a large number of key agreement protocols. In our earlier work, we gave many decidability as well as undecidability results for multiple equational theories, involving various properties of modular exponentiation. Here, we consider a partial subtheory focussing only on exponentiation and multiplication operators. Two main results are proved. The first result is positive, namely, that the unification problem for the above theory (in which no additional property is assumed of the multiplication operators) is decidable. The second result is negative: if we assume that the two multiplication operators belong to two different abelian groups, then the unification problem becomes undecidable.

  10. Unification modulo a partial theory of exponentiation

    Paliath Narendran

    2010-12-01

    Full Text Available Modular exponentiation is a common mathematical operation in modern cryptography. This, along with modular multiplication at the base and exponent levels (to different moduli plays an important role in a large number of key agreement protocols. In our earlier work, we gave many decidability as well as undecidability results for multiple equational theories, involving various properties of modular exponentiation. Here, we consider a partial subtheory focussing only on exponentiation and multiplication operators. Two main results are proved. The first result is positive, namely, that the unification problem for the above theory (in which no additional property is assumed of the multiplication operators is decidable. The second result is negative: if we assume that the two multiplication operators belong to two different abelian groups, then the unification problem becomes undecidable.

  11. The Unification of Private International Law

    Emira Kazazi

    2015-07-01

    Full Text Available Civil and the common law approaching Europe is no longer a “future project”, but more and more rather a present attempt (Kötz, 2003 – 2004. In this prism, concentrating on the European International Private Law within the space of mixed jurisdictions, it may seem surprising in light of the attempts to create a new European ius commune. But is it possible that a unification of the material law may sign the start of the end of the European conflicts of laws? Last but not the least private international law is not just a choice of law. The unification of the private law, in its definition as a concept, does not influence two of the three pillars of the private international law: respectively, that of the jurisdiction and recognition as well as implementation of foreign decisions.

  12. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  13. Supersymmetry and Supergravity: Phenomenology and Grand Unification

    Arnowitt, R.; Nath, Pran

    1993-01-01

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of $SU(2) \\times U(1)$, proton decay, cosmological constraints, and predictions of supergravity grand unified models. Wh...

  14. High Scale Mixing Unification for Dirac Neutrinos

    Abbas, Gauhar; Gupta, Saurabh; Rajasekaran, G.; Srivastava, Rahul(The Institute of Mathematical Sciences, Chennai, 600 113, India)

    2013-01-01

    Starting with high scale mixing unification hypothesis, we investigate the renormalization group evolution of mixing parameters and masses for Dirac type neutrinos. Following this hypothesis, the PMNS mixing angles and phase are taken to be identical to the CKM ones at a unifying high scale. Then, they are evolved to a low scale using renormalization-group equations. The notable feature of this hypothesis is that renormalization group evolution with quasi-degenerate mass pattern can explain l...

  15. Abdus Salam and the electroweak unification

    The article begins with a biography of Pakistani physicist Abdus Salam who received the Nobel prize of physics in 1979 for his work concerning the unification between electromagnetic and weak nuclear interactions. Abdus Salam dedicated his whole career to the study of symmetry and invariance principles, he defined the basis of the supersymmetry concept. The second part of the article deals in a very pedagogical manner with symmetry breaking and renormalisation within the electroweak theory. (A.C.)

  16. Astrophysical Probes of Varying Constants and Unification

    Martins, C. J. A. P.

    2016-01-01

    The observational evidence for the acceleration of the universe demonstrates that canonical theories of gravitation and particle physics are incomplete, if not incorrect. A new generation of astronomical facilities will soon carry out precision consistency tests of the standard cosmological model and search for evidence of new physics beyond it. I describe recent work of CAUP's Dark Side team on some of these tests, focusing on the stability of nature's fundamental couplings and tests of unification scenarios.

  17. Quirks in supersymmetry with gauge coupling unification

    Martin, Stephen P.

    2010-01-01

    I investigate the phenomenology of supersymmetric models with extra vector-like supermultiplets that couple to the Standard Model gauge fields and transform as the fundamental representation of a new confining non-Abelian gauge interaction. If perturbative gauge coupling unification is to be maintained, the new group can be SU(2), SU(3), or SO(3). The impact on the sparticle mass spectrum is explored, with particular attention to the gaugino mass dominated limit in which the supersymmetric fl...

  18. Quark mass renormalization and family unification

    We have explored the possibility that the observed fermion mass ratios arise purely because of renormalization effects, andthat in the extended GUTs which unify the families non-trivially, these ratios evolve differently and in the correct direction. The analysis indicates that it is sometimes premature to try to rule out some GUTs which do not contain family unification, because of their wrong predictions for some mass ratios. (orig.)

  19. COSMIC EVOLUTION OF BLACK HOLES AND SPHEROIDS. V. THE RELATION BETWEEN BLACK HOLE MASS AND HOST GALAXY LUMINOSITY FOR A SAMPLE OF 79 ACTIVE GALAXIES

    Park, Daeseong; Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Treu, Tommaso [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Malkan, Matthew A., E-mail: pds2001@astro.snu.ac.kr, E-mail: woo@astro.snu.ac.kr, E-mail: daeseong.park@uci.edu, E-mail: vbennert@calpoly.edu, E-mail: tt@physics.ucsb.edu, E-mail: malkan@astro.ucla.edu, E-mail: mauger@ast.cam.ac.uk [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2015-02-01

    We investigate the cosmic evolution of the black hole (BH) mass-bulge luminosity relation using a sample of 52 active galaxies at z ∼ 0.36 and z ∼ 0.57 in the BH mass range of 10{sup 7.4}-10{sup 9.1} M {sub ☉}. By consistently applying multicomponent spectral and structural decomposition to high-quality Keck spectra and high-resolution Hubble Space Telescope images, BH masses (M {sub BH}) are estimated using the Hβ broad emission line combined with the 5100 Å nuclear luminosity, and bulge luminosities (L {sub bul}) are derived from surface photometry. Comparing the resulting M {sub BH} – L {sub bul} relation to local active galaxies and taking into account selection effects, we find evolution of the form M {sub BH}/L {sub bul}∝(1 + z){sup γ} with γ = 1.8 ± 0.7, consistent with BH growth preceding that of the host galaxies. Including an additional sample of 27 active galaxies with 0.5 < z < 1.9 taken from the literature and measured in a consistent way, we obtain γ = 0.9 ± 0.7 for the M {sub BH} – L {sub bul} relation and γ = 0.4 ± 0.5 for the M {sub BH}-total host galaxy luminosity (L {sub host}) relation. The results strengthen the findings from our previous studies and provide additional evidence for host galaxy bulge growth being dominated by disk-to-bulge transformation via minor mergers and/or disk instabilities.

  20. Simulating the formation of disk galaxies: The impact of Jets from Active Galactic Nuclei

    Okamoto, Takashi; Bower, Richard G

    2007-01-01

    Recent semi-analytic models have highlighted the role of AGN jets in regulating the formation of galaxies. In this paper, we present a new implementation of feedback due to active galactic nuclei (AGN) in cosmological hydrodynamic simulations of galaxy formation in which AGN feedback is assumed to heat the halo gas through the production of jets. Combining a theoretical model of mass accretion onto black holes with a multiphase description of star-forming gas, we self-consistently follow evolution of both galaxies and their central black holes. The novelty in our model is that we consider the two distinct accretion modes: standard radiatively efficient thin accretion disks and radiatively inefficient accretion flows which we will generically refer to as RIAFs; motivated by the theoretical modelsfor jet production in accretion disks, we assume that only the RIAF is responsible for the production of powerful jets. The focus of this paper is to investigate the interplay between galaxies and their central black h...

  1. On the central abundances of Active Galactic Nuclei and Star-forming Galaxies

    Dors, O L; Hagele, G F; Rodrigues, I; Grebel, E K; Pilyugin, L S; Freitas-Lemes, P; Krabbe, A C

    2015-01-01

    We examine the relation between oxygen abundances in the narrow-line regions (NLRs) of active galactic nuclei (AGNs) estimated from the optical emission lines through the strong-line method (the theoretical calibration of Storchi-Bergmann et al.(1998)), via the direct Te-method, and the central intersect abundances in the host galaxies determined from the radial abundance gradients. We found that the Te-method underestimates the oxygen abundances by up to ~2 dex (with average value of ~0.8 dex) compared to the abundances derived through the strong-line method. This confirms the existence of the so-called "temperature problem" in AGNs. We also found that the abundances in the centres of galaxies obtained from their spectra trough the strong-line method are close to or slightly lower than the central intersect abundances estimated from the radial abundance gradient both in AGNs and Star-forming galaxies. The oxygen abundance of the NLR is usually lower than the maximum attainable abundance in galaxies (~2 times...

  2. Broad Hβ Emission-line Variability in a Sample of 102 Local Active Galaxies

    Runco, Jordan N.; Cosens, Maren; Bennert, Vardha N.; Scott, Bryan; Komossa, S.; Malkan, Matthew A.; Lazarova, Mariana S.; Auger, Matthew W.; Treu, Tommaso; Park, Daeseong

    2016-04-01

    A sample of 102 local (0.02 ≤ z ≤ 0.1) Seyfert galaxies with black hole masses MBH > 107M⊙ was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10 m telescope to study the scaling relations between MBH and host galaxy properties. We study profile changes of the broad Hβ emission line within the three to nine year time frame between the two sets of spectra. The variability of the broad Hβ emission line is of particular interest, not only because it is used to estimate MBH, but also because its strength and width are used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (∼66%) of the objects, resulting in a Seyfert-type change for ∼38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hβ line virtually disappears in 3/102 (∼3%) extreme cases. We discuss potential causes for these changing look active galactic nuclei. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case basis or in larger samples focusing on quasars at higher redshifts, our study provides statistical information on the frequency of Hβ line variability in a sample of low-redshift Seyfert galaxies.

  3. The discovery of five new H2O megamasers in active galaxies

    Braatz, J. A.; Wilson, A. S.; Henkel, C.

    1994-01-01

    H2O megamasers with (isotropic) luminosities between 60 and 200 solar luminosity (H(sub 0) = 75 km/s/Mpc) have been detected in the Seyfert 2 galaxies Mrk 1, Mrk 1210, and NGC 5506 and in the LINERs NGC 1052 and NGC 2639. No megamasers have been found in Seyfert 1's. The galaxies have redshifts between 1500 and 4800 km/s and are the most distant H2O sources reported to date. NGC 1052 is also the first elliptical galaxy known to contain an H2O maser. The intensity distribution of an H2O five-point map obtained toward NGC 5506 shows that the H2O emission is pointlike compared to the 40 sec telescope beam. The lack of CO emission in NGC 1052 implies a conservative lower limit to the H2O brightness temperature of 1000 K, thus ruling out a thermal origin for the H2O emission. The success of this survey relative to other recent searches makes it evident that H2O megamasers are preferentially found in galaxies with active nuclei.

  4. Disentangling star formation and AGN activity in powerful infrared luminous radio galaxies at 1

    Drouart, Guillaume; De Breuck, Carlos; Fioc, Michel; Lehnert, Matthew; Seymour, Nick; Stern, Dan; Vernet, Joel

    2016-01-01

    High-redshift radio galaxies present signs of both star formation and AGN activity, making them ideal candidates to investigate the connection and coevolution of AGN and star formation in the progenitors of present-day massive galaxies. We make use of a sample of 11 powerful radio galaxies spanning 1galaxies form at very high-redshift, but experience episodic and important growth at 1

  5. Heating of dust in the broad-line regions of active galaxies and quasars

    In this paper we discuss the relevant energy sources which heat (and, in many cases, destroy) the dust grains in the emission-line clouds (ELCs) which give rise to the broad-line emission seen in active extragalactic objects. We compare the heating rates from the external radiation field, trapped line radiation, and the diffuse bound-free continua. We find that in hot clouds (T/sub e/ = 1.5 x 104 K) Lyα dominates the dust heating rate, while in cooler clouds (T/sub e/ = 1.0 x 104 K) the external radiation field dominates. In all cases, the dust residing in the broad-line clouds is quite hot (T>500 K). These results are discussed in light of the observed infrared properties of active galaxies and quasars, and the following conclusions are reached: (1) If the infrared emission of Seyfert 1 galaxies is primarily thermal in origin, then the redder near-IR colors distinguishing the Seyfert 1 galaxies from the Seyfert 2 galaxies may be understood in terms of the broad-line regions (BLR) concentrating hot dust within the inner parsec of the of the nucleus. (2) Substantial near-infrared dust emission may originate in the neutral regions of the ELCs with only minor accompanying reddening of the hydrogen Balmer lines, since dust confined to the neutral zone reddens only lines emitted from the back side of the cloud. (3) If the broad-line regions of the quasars are characterized by hotter temperatures than Seyfert 1 galaxies, dust may not be able to exist in this region, thereby explaining the apparent lack of thermal dust emission in quasars. (4) Because of the cooling times of the ELCs, near-IR variability due to changes in the dust temperature is dominated by light travel considerations. (5) The present calculations suggest that the dust-to-gas mass ratio in the BLRs of Seyfert 1 galaxies is substantially smaller than the value of 0.01 typically found in our Galaxy

  6. Detailed Analysis of Starburst and AGN Activity in Blue E/S0 Galaxies in RESOLVE

    Bittner, Ashley; Snyder, Elaine M.; Kannappan, Sheila; Norman, Dara J.; Norris, Mark A.; Moffett, Amanda J.; Hoversten, Erik A.; Stark, David; RESOLVE Team

    2016-01-01

    We identify a population of ~120 blue E/S0 galaxies among the ~1350 galaxies that are targeted for spectroscopy and have measured morphologies in the highly complete REsolved Spectroscopy Of a Local Volume (RESOLVE) survey. Blue E/S0s are identified as being early type objects morphologically classified between E and S0/a that fall on the blue sequence. Most (~85%) of our blue E/S0s have stellar masses sample. Using three variations of the M_BH -- sigma relation, this kinematic subsample is estimated to typically host central black holes within the range log M_BH = 4-6 M_sun. Following up on previous suggestions of nuclear activity in the blue E/S0 population, we investigate nuclear starburst and/or AGN activity occurring within the full sample. Preliminary results from cross-checking known AGN catalogs with the blue E/S0 sample have revealed nuclear activity in ~20 of these galaxies based on heterogeneous criteria (BPT line ratio analysis, spectral line broadening, etc.), some of which may not entirely distinguish starburst from AGN activity. In an attempt to break the degeneracy between AGN and starburst activity, we perform detailed spectral analysis for a few of the galaxies with kinematic data. We also consider the viability of alternate AGN detection methods based on L_Edd estimates calculated from the M_BH estimates. This research has been supported by the National Science Foundation through the CAP REU Program (ACI-1156614) and the RESOLVE Survey (AST-0955368) as well as the National Space Grant College and Fellowship Program and the NC Space Grant Consortium.

  7. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M☉ that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (NH ∼22 cm–2) X-ray nuclei are relatively common (8/12), but the detections are too faint (2-10keV ∼–13 erg s–1 cm–2) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  8. Dissecting Galaxies: Spatial and Spectral Separation of Emission Excited by Star Formation and AGN Activity

    Davies, Rebecca L; Kewley, Lisa J; Dopita, Michael A; Hampton, Elise J; Shastri, Prajval; Scharwachter, Julia; Sutherland, Ralph; Kharb, Preeti; Bhatt, Harish; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stephanie; Srivastava, Shweta

    2016-01-01

    The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and AGN activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion onto an active galactic nucleus (AGN). We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (> 85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated...

  9. RADIO ACTIVE GALAXY NUCLEI IN GALAXY CLUSTERS: HEATING HOT ATMOSPHERES AND DRIVING SUPERMASSIVE BLACK HOLE GROWTH OVER COSMIC TIME

    We estimate the average radio active galactic nucleus (AGN, mechanical) power deposited into the hot atmospheres of galaxy clusters over more than three quarters of the age of the Universe. Our sample was drawn from eight major X-ray cluster surveys and includes 685 clusters in the redshift range 0.1 44 erg s–1 exceeds the X-ray luminosity of 44% of the clusters, indicating that the accumulation of radio-AGN energy is significant in these clusters. Integrating the AGN mechanical power to redshift z = 2.0, using simple models for its evolution and disregarding the hierarchical growth of clusters, we find that the AGN energy accumulated per particle in low luminosity X-ray clusters exceeds 1 keV per particle. This result represents a conservative lower limit to the accumulated thermal energy. The estimate is comparable to the level of energy needed to 'preheat' clusters, indicating that continual outbursts from radio-AGN are a significant source of gas energy in hot atmospheres. Assuming an average mass conversion efficiency of η = 0.1, our result implies that the supermassive black holes that released this energy did so by accreting an average of ∼109 M ☉ over time, which is comparable to the level of growth expected during the quasar era.

  10. Herschel observed Stripe 82 quasars and their host galaxies: connections between the AGN activity and the host galaxy star formation

    Dong, Xiaoyi

    2016-01-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high luminosity quasars with a mean bolometric luminosity of $10^{46.4}$ erg s$^{-1}$. The redshift range of this sample is within $z<4$, with a mean value of $1.5\\pm0.78$. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, FIR luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 $M_{\\odot}$ yr$^{-1}$ and the mean gas mass is $\\sim 10^{11.3}$ $M_{\\odot}$. All these results point to an IR luminous quasar system. Comparing with star format...

  11. Mergers and binary systems of SMBH in the contexts of nuclear activity and galaxy evolution

    Lobanov, A. P.

    2004-01-01

    The dynamic evolution of binary systems of supermassive black holes (SMBH) may be a key factor affecting a large fraction of the observed properties of active galactic nuclei (AGN) and galaxy evolution. Different classes of AGN can be related in general to four evolutionary stages in a binary SMBH: 1) early merger stage; 2) wide pair stage; 3) close pair stage; and 4) pre-coalescence stage. This scheme can explain a variety of properties of AGN: radio and optical luminosity differences betwee...

  12. Local luminous infrared galaxies. III. Co-evolution of black hole growth and star formation activity?

    Alonso-Herrero, A.; Pereira-Santaella, M.; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-01-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of

  13. Starburst or Seyfert? Adding a radio and far-infrared perspective to the investigation of activity in composite galaxies

    Hill, T L; Norris, R P; Reynolds, J E; Hunstead, R W; Hill, Tanya L.; Heisler, Charlene A.; Norris, Ray P.; Reynolds, John E.; Hunstead, Richard W.

    2001-01-01

    It was once common to regard Seyfert and starburst galaxies as completely different types of object, but there is growing recognition that these classifications refer to the extremes of a continuous spectrum of galaxy types. In a previous study we investigated a sample of galaxies with ambiguous optical emission-line ratios and concluded from near-infrared spectroscopic observations that the sample consisted of composite galaxies, containing both a starburst and an active galactic nucleus (AGN). We now extend our study using radio synthesis and long-baseline interferometer observations made with the Australia Telescope, together with far-infrared IRAS observations, to discuss the relative contribution of starburst and AGN components to the overall luminosity of the composite galaxies. We find that only a small fraction of the radio emission (90%) is probably due to the starburst component. We also show that an AGN contribution to the optical emission of as little as 10% is sufficient to account for the ambigu...

  14. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  15. Cosmic Evolution of Black Holes and Spheroids. V. The Relation Between Black Hole Mass and Host Galaxy Luminosity for a Sample of 79 Active Galaxies

    Park, Daeseong; Bennert, Vardha N; Treu, Tommaso; Auger, Matthew W; Malkan, Matthew A

    2014-01-01

    We investigate the cosmic evolution of the black hole (BH) mass -- bulge luminosity relation using a sample of 52 active galaxies at $z \\sim 0.36$ and $z \\sim 0.57$ in the BH mass range of $10^{7.4-9.1} M_{\\odot}$. By consistently applying multi-component spectral and structural decomposition to high-quality Keck spectra and high-resolution HST images, BH masses ($M_{\\rm BH}$) are estimated using the H$\\beta$ broad emission line combined with the 5100 \\AA\\ nuclear luminosity, and bulge luminosities ($L_{\\rm bul}$) are derived from surface photometry. Comparing the resulting $M_{\\rm BH}-L_{\\rm bul}$ relation to local active galaxies and taking into account selection effects, we find evolution of the form $M_{\\rm BH} / L_{\\rm bul} \\propto (1+z)^{\\gamma}$ with $\\gamma=1.8\\pm0.7$, consistent with BH growth preceding that of the host galaxies. Including an additional sample of 27 active galaxies with $0.5

  16. The Fermi Bubbles. I. Possible Evidence for Recent AGN Jet Activity in the Galaxy

    Guo, Fulai; Mathews, William G.

    2011-01-01

    The Fermi Gamma-ray Space Telescope reveals two large gamma-ray bubbles in the Galaxy, which extend about 50 degrees (~ 10 kpc) above and below the Galactic center (GC) and are symmetric about the Galactic plane. Using axisymmetric hydrodynamic simulations with a self-consistent treatment of the dynamical cosmic ray (CR) - gas interaction, we show that the bubbles can be created with a recent active galactic nucleus (AGN) jet activity about 1 - 3 Myr ago, which was active for a duration of ~ ...

  17. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of 7 M☉ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ∼1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  18. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  19. Relativistic jet production and propagation in active galaxies

    Recent studies of the phenomena of active galactic nuclei are beginning to identify the most likely physical processes involved in the galactic nuclei cores which give rise to a fast moving plasma that emerges in directed beams and energizes radio sources. In particular, the formation of the beams appears to be a generic property of the flow pattern around collapsed objects, where there is a relativistically deep potential well. These beams are relevant to extended radio sources, superluminal variations in compact sources, and the injection of high-energy plasma into the intergalactic medium. There is a physical similarity, and not merely a superficial analogy, between the physical mechanisms of such objects as SS 433 and Sco X-1 and the processes in active galactic nuclei. The exploration of fluid dynamic and electrodynamic effects around black holes is envisaged as a fruitful line of inquiry in the present field of study

  20. A Search for "Dwarf" Seyfert Nuclei; 5, Demographics of Nuclear Activity in Nearby Galaxies

    Ho, L C; Sargent, W L W; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L. W.

    1997-01-01

    We use the sample of emission-line nuclei derived from a recently completed optical spectroscopic survey of nearby galaxies to quantify the incidence of local (z = 0) nuclear activity. Consistent with previous studies, we find detectable amounts of ionized gas in the central few hundred parsecs of most (86%) galaxies. Half of the objects can be classified as H II or star-forming nuclei and the other half as some form of AGN, of which we distinguish three classes --- Seyfert nuclei, LINERs, and transition objects. The population of AGNs consequently is very large; approximately 43% of the galaxies in our survey can be regarded as "active." Most of the objects have much lower luminosities than AGNs commonly studied; the median luminosity of the narrow H-alpha line, after correcting for extinction, is only 2 x 10^39 erg/s. Our sample therefore occupies the extreme faint end of the AGN luminosity function. We detect signatures of a broad-line region, as revealed by visible broad H-alpha emission, in $\\sim$ 20% of...

  1. COLA. III. RADIO DETECTION OF ACTIVE GALACTIC NUCLEUS IN COMPACT MODERATE LUMINOSITY INFRARED GALAXIES

    We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median LIR = 1011.01 Lsun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (∼1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.

  2. The AMIGA sample of isolated galaxies. XI. Optical characterisation of nuclear activity

    Sabater, J; Leon, S; Best, P; Sulentic, J

    2012-01-01

    Context.- This paper is part of a series involving the AMIGA project (Analysis of the Interstellar Medium of Isolated GAlaxies) which identifies and studies a statistically-significant sample of the most isolated galaxies in the northern sky. Aims.- We present a catalogue of nuclear activity, traced by optical emission lines, in a well-defined sample of the most isolated galaxies in the local Universe, that will be used as a baseline for the study of the effect of the environment on nuclear activity. Methods.- We obtained spectral data from the 6th Data Release of the Sloan Digital Sky Survey, and these were inspected in a semi-automatic way. We subtracted the underlying stellar populations from the spectra (using the software Starlight) and modelled the nuclear emission features. Standard emission-line diagnostics diagrams were applied, using a new classification scheme that takes into account censored data, to classify the type of nuclear emission. Results.- We provide a final catalogue of spectroscopic dat...

  3. Identifying clustering at high redshift through actively star-forming galaxies

    Davies, L J M; Stanway, E R; Husband, K; Lehnert, M D; Mannering, E J A

    2013-01-01

    Identifying galaxy clustering at high redshift (i.e. z > 1) is essential to our understanding of the current cosmological model. However, at increasing redshift, clusters evolve considerably in star-formation activity and so are less likely to be identified using the widely-used red sequence method. Here we assess the viability of instead identifying high redshift clustering using actively star-forming galaxies (SMGs associated with over-densities of BzKs/LBGs). We perform both a 2- and 3-D clustering analysis to determine whether or not true (3D) clustering can be identified where only 2D data are available. As expected, we find that 2D clustering signals are weak at best and inferred results are method dependant. In our 3D analysis, we identify 12 SMGs associated with an over-density of galaxies coincident both spatially and in redshift - just 8% of SMGs with known redshifts in our sample. Where an SMG in our target fields lacks a known redshift, their sightline is no more likely to display clustering than ...

  4. An infrared jet in Centaurus A - A link to the extranuclear activity in distant radio galaxies?

    High-resolution NIR images of the visually obscured central region of Centaurus A (NGC 5128) were obtained with the University of Texas array camera on the AAT in June 1988, in order to investigate the effect of the active nucleus on the surrounding galaxy. The J (1.25 micron), H (1.65 micron), and K (2.2 micron) images of the central 40 arcsec of the galaxy revealed an emission feature extending about 10 arcsec northeast of the nucleus at the same position angle as the X-ray and radio jets. This jet is most prominent at the 1.25 micron wavelength, where its brightness was comparable to that of the nucleus. The observed properties of the infrared jet were found to be similar to those seen in distant radio sources. 31 refs

  5. Determining Central Black Hole Masses in Distant Active Galaxies

    Vestergaard, Marianne

    2002-01-01

    An empirical relationship, of particular interest for studies of high redshift active galactic nuclei (AGNs) and quasars, between the masses of their central black-holes and rest-frame ultraviolet (UV) parameters measured in single-epoch AGN spectra is presented. This relationship is calibrated...... black-hole demographics at high redshift as well as to statistically study the fundamental properties of AGNs. The broad line region size - luminosity relationship is key to the calibrations presented here. The fact that its intrinsic scatter is also the main source of uncertainty in the calibrations...

  6. Radio AGN in the local universe: unification, triggering and evolution

    Tadhunter, Clive

    2016-06-01

    Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_{1.4 GHz} > 10^{24} W Hz^{-1}) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff-Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.

  7. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot BH) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M ☉ yr–1 kpc–2) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot BH and showed that numerical simulations reproduce our observed relation fairly well.

  8. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR(8-1000 μm) ∼> 1011 L sun), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR>1012 L sun), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C+ line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  9. Higher-Order Coloured Unification and Natural Language Semantics

    Gardent, C; Gardent, Claire; Kohlhase, Michael

    1996-01-01

    In this paper, we show that Higher-Order Coloured Unification - a form of unification developed for automated theorem proving - provides a general theory for modeling the interface between the interpretation process and other sources of linguistic, non semantic information. In particular, it provides the general theory for the Primary Occurrence Restriction which (Dalrymple, Shieber and Pereira, 1991)'s analysis called for.

  10. Dynamical Delays Between Starburst and AGN Activity in Galaxy Nuclei

    Hopkins, Philip F

    2011-01-01

    Observations of AGN have suggested a possible delay between the peak of star formation (on some scale) and AGN activity. Feedback from fast stellar winds has been invoked to explain this, but this is not likely to be viable in bright systems accreting primarily cold dense gas. We show that such a delay can arise even in bright quasars for purely dynamical reasons. If some large-scale process produces rapid inflow, smaller scales will quickly become gas-dominated. As the gas density peaks, so does the SFR. However, gravitational torques which govern further inflow are relatively inefficient in gas-dominated systems; as more gas is turned into stars, the stars provide an efficient angular momentum sink allowing more rapid inflow. Moreover, the gas provided to the central regions in mergers or strong disk instabilities will typically be ~100 times larger than that needed to fuel the BH; the system is effectively in the 'infinite gas supply' limit. BH growth can therefore continue for some time while the gas supp...

  11. Supersymmetry and supergravity: Phenomenology and grand unification

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field

  12. MUC (Memory, Unification, Control and beyond

    Peter eHagoort

    2013-07-01

    Full Text Available A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension of the model beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. It is shown that this requires the dynamic interaction between multiple brain regions.

  13. Unification as a Measure of Natural Classification

    Victor Gijsbers

    2014-02-01

    Full Text Available Recent interest in the idea that there can be scientific understanding without explanation lends new relevance to Duhem's notion of natural classification. According to Duhem, a classification that is natural teaches us something about nature without being explanatory. However, Duhem's conception of naturalness leaves much to be desired. In this paper, I argue that we can measure the naturalness of classification by using an amended version of the notion of unification as defined by Schurz and Lambert. If this thesis is correct, it both leads to a better conceptual understanding of scientific understanding, and also gives the nascent literature on this topic some much-needed precision.

  14. Symmetry-cum-Unification in physical theories

    A new kind of duality in physical sciences–involving Symmetry (S )on the one hand and Unification(U) on the other– is proposed, wherein the two partners obey, not the traditional feature of mutual incompatibility of two canonically conjugate variables, but rather are bound by a cause-effect type of relationship, albeit at a probabilistic level. While a precise mathematical formulation of such relationship is still a distant goal, the possible impact of this new kind of duality on the growth of physical theories vis-a-vis experiment is envisaged

  15. Gauge-Higgs Unification on the Lattice

    Irges, Nikos; Yoneyama, Kyoko

    2012-01-01

    The simplest Gauge-Higgs Unification model is a five-dimensional SU(2) gauge theory compactified on the S^1/Z_2 orbifold, such that on the four-dimensional boundaries of space-time there is an unbroken U(1) symmetry and a complex scalar, the latter identified with the Higgs boson. Perturbatively the U(1) remains spontaneously unbroken. Earlier lattice Monte Carlo simulations revealed however that the spontaneous breaking of the U(1) does occur at the non-perturbative level. Here, we verify the Monte Carlo result via an analytical lattice Mean-Field expansion.

  16. Technicolor and Beyond: Unification in Theory Space

    Sannino, Francesco

    2010-01-01

    The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount at the...... supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle...

  17. Investigating the nuclear activity of barred spiral galaxies: the case of NGC 1672

    Jenkins, L P; Colbert, E J M; Koribalski, B; Kuntz, K D; Levan, A J; Ojha, R; Roberts, T P; Ward, M J; Zezas, A

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and ATCA ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy, many of which correlate spatially with star-formation in the bar and spiral arms, while two are identified as background galaxies in the HST images. Nine of the X-ray sources are ULXs, with the three brightest (LX > 5E39 erg/s) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC1672 possesses a hard (Gamma~1.5) nuclear X-ray source with a 2-10 keV luminosity of 4E38 erg/s. This is surrounded by an X-ray bright circumnuclear star-forming ring, comprised of point sources an...

  18. Constraining the Contribution of Galaxies and Active Galactic Nuclei to Cosmic Reionization

    Yoshiura, Shintaro; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Shimabukuro, Hayato; Takahashi, Keitaro

    2016-01-01

    We constrain the contribution of high-$z$ galaxies and active galactic nuclei (AGNs) to reionization, by comparing numerically computed H/He reionization with the observed HI/HeII fractions at various redshifts and optical depth to Thomson scattering. In the model, the contribution of galaxies is controlled by a parameter $f_{\\rm esc}$ which indicates the escape fraction of ionizing photons from the galaxies, adopting an observed cosmic star formation history. On the other hand, in order to take ionizing photons from ANGs into account, observed X-ray luminosity functions and a composite spectral energy density with the energies in the range of $13.6\\rm eV$ to $100\\rm keV$ are assumed at $z\\leq3$, while the redshift evolution of AGN abundance at $z>3$ is assumed to be proportional to $(1+z)^\\beta$, where $\\beta$ is a parameter in the model. We find that there are observationally allowed sets of the parameters $f_{\\rm esc}$ and $\\beta$. According to the comparisons, $\\beta$ should satisfy $-4.20.18$ are also un...

  19. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    Esquej, P; González-Martín, O; Hönig, S F; Caballero, A Hernán; Roche, P F; Almeida, C Ramos; Mason, R E; Díaz-Santos, T; Levenson, N A; Aretxaga, I; Espinosa, J M Rodríguez; Packham, C

    2013-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star formation rate (SFR) and the active galactic nuclei (AGN) luminosity (and, therefore, the black hole accretion rate) of Seyfert galaxies. This suggests a physical connection between the gas forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (0.4-0.8 arcsec) mid-infrared (8-13 micron) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalogue. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of 65 pc (median value). We found no general evidence of suppression of the 11.3 micron polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and used this feature as a proxy for the SFR. We detected the 11.3 micron PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are...

  20. High resolution ALMA observations of dense molecular medium in the central regions of active galaxies

    Kohno, Kotaro; Taniguchi, Akio; Izumi, Takuma; Tosaki, Tomoka

    2016-01-01

    In the central regions of active galaxies, dense molecular medium are exposed to various types of radiation and energy injections, such as UV, X-ray, cosmic ray, and shock dissipation. With the rapid progress of chemical models and implementation of new-generation mm/submm interferometry, we are now able to use molecules as powerful diagnostics of the physical and chemical processes in galaxies. Here we give a brief overview on the recent ALMA results to demonstrate how molecules can reveal underlying physical and chemical processes in galaxies. First, new detections of Galactic molecular absorption systems with elevated HCO/H$^{13}$CO$^+$ column density ratios are reported, indicating that these molecular media are irradiated by intense UV fields. Second, we discuss the spatial distributions of various types of shock tracers including HNCO, CH$_3$OH and SiO in NGC 253 and NGC 1068. Lastly, we provide an overview of proposed diagnostic methods of nuclear energy sources using ALMA, with an emphasis on the syne...

  1. Submillimetre observations of galaxy clusters with BLAST: the star-formation activity in Abell 3112

    Braglia, Filiberto G; Bock, James J; Chapin, Edward L; Devlin, Mark J; Edge, Alastair; Griffin, Matthew; Gundersen, Joshua O; Halpern, Mark; Hargrave, Peter C; Hughes, David H; Klein, Jeff; Marsden, Gaelen; Mauskopf, Philip; Moncelsi, Lorenzo; Netterfield, Calvin B; Ngo, Henry; Olmi, Luca; Pascale, Enzo; Patanchon, Guillaume; Pimbblet, Kevin A; Rex, Marie; Scott, Douglas; Semisch, Christopher; Thomas, Nicholas; Truch, Matthew D P; Tucker, Carole; Tucker, Gregory S; Valiante, Elisabetta; Viero, Marco P; Wiebe, Donald V

    2010-01-01

    We present observations at 250, 350, and 500 um of the nearby galaxy cluster Abell 3112 (z=0.075) carried out with BLAST, the Balloon-borne Large Aperture Submillimeter Telescope. Five cluster members are individually detected as bright submillimetre sources. Their far-infrared SEDs and optical colours identify them as normal star-forming galaxies of high mass, with globally evolved stellar populations. They all have B-R colours of 1.38+/-0.08, transitional between the blue, active population and the red, evolved galaxies that dominate the cluster core. We stack to determine the mean submillimetre emission from all cluster members, which is determined to be 16.6+/-2.5, 6.1+/-1.9, and 1.5+/-1.3 mJy at 250, 350, and 500 um, respectively. Stacking analyses of the submillimetre emission of cluster members reveal trends in the mean far-infrared luminosity with respect to cluster-centric radius and Ks-band magnitude. We find that a large fraction of submillimetre emission comes from the boundary of the inner, viria...

  2. A connection between star formation activity and cosmic rays in the starburst galaxy M 82

    Acciari, V A; Arlen, T; Aune, T; Bautista, M; Beilicke, M; Benbow, W; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Colin, P; Cui, W; Dickherber, R; Duke, C; Fegan, S J; Finley, J P; Finnegan, G; Fortin, P; Fortson, L; Furniss, A; Galante, N; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, Philip; Karlsson, N; Kertzman, M; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Maier, G; McArthur, S; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Mukherjee, R; Nagai, T; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Theiling, M; Thibadeau, S; Varlotta, A; Vasilev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B; 10.1038/nature08557

    2009-01-01

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be dominantly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery [1]. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size, more than 50 times the diameter of similar Galactic regions, uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density [2]. The cosmic rays produced in the formation, life, and death of their massive stars are expected to eventually produce diffuse gamma-ray emission via their interactions with interstellar gas and radiation. M 82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in gamma rays [3, 4]. Here we report the detection of >700 GeV gamma rays from M 82. From these data we determine a cosmic-ray density of 250 eV cm-3 in the starburst core of M 82, or about 500 times the averag...

  3. Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    Cheung, Edmond; Athanassoula, E; Bamford, Steven P; Bell, Eric F; Bosma, A; Cardamone, Carolin N; Casteels, Kevin R V; Faber, S M; Fang, Jerome J; Fortson, Lucy F; Kocevski, Dale D; Koo, David C; Laine, Seppo; Lintott, Chris; Masters, Karen L; Melvin, Thomas; Nichol, Robert C; Schawinski, Kevin; Simmons, Brooke; Smethurst, Rebecca; Willett, Kyle W

    2014-01-01

    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.

  4. The formation of the brightest cluster galaxies in cosmological simulations: the case for active galactic nucleus feedback

    Martizzi, Davide; Teyssier, Romain; Moore, Ben

    2012-01-01

    We use 500 pc resolution cosmological simulations of a Virgo-like galaxy cluster to study the properties of the brightest cluster galaxy (BCG) that forms at the centre of the halo. We compared two simulations; one incorporating only supernova feedback and a second that also includes prescriptions for black hole growth and the resulting active galactic nucleus (AGN) feedback from gas accretion. As previous work has shown, with supernova feedback alone we are unable to reproduce any of the obse...

  5. A New Radio Loudness Diagnostic for Active Galaxies: A Radio-to-Mid-Infrared Parameter

    Melendez, Marcio B.; Kraemer, S. B.; Schmitt, H. R.

    2010-01-01

    We have studied the relationship between the nuclear (high-resolution) radio emission, at 8.4GHz (3.6cm) and 1.4GHz (20cm), the [O IV) (gamma)25.89 micron, [Ne III] (gamma)l5.56 micron and [Ne II] (gamma)l2.81 micron emission lines and the black hole mass accretion rate for a sample of Seyfert galaxies. In order to characterize the radio contribution for the Seyfert nuclei we used the 8.4 GHz/[O IV] ratio, assuming that [0 IV] scales with the luminosity of the active galactic nuclei (AGN). From this we find that Seyfert 1 s (i.e. Seyfert 1.0s, 1.2s and 1.5s) and Seyfert 2s (i.e. Seyfert 1.8s, 1.9s and 2.0s) have similar radio contributions, relative to the AGN. On the other hand, sources in which the [Ne u] emission is dominated either by the AGN or star formation have statistically different radio contributions, with star formation dominated sources more 'radio loud', by a factor of approx.2.8 on average, than AGN dominated sources. We show that star formation dominated sources with relatively larger radio contribution have smaller mass accretion rates. Overall, we suggest that 8.4 GHz/[O IV], or alternatively, 1.4 GHz/[O IV] ratios, can be used to characterize the radio contribution, relative to the AGN, without the limitation of previous methods that rely on optical observables. Key words: Galaxy: stellar content - galaxies: Seyfert - infrared: galaxies

  6. Evidence for widespread active galactic nucleus activity among massive quiescent galaxies at z ~ 2

    Olsen, K.P.; Rasmussen, J.; Toft, S.;

    2013-01-01

    . We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to...

  7. Les galaxies

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  8. Radio AGN in the local universe: unification, triggering and evolution

    Tadhunter, Clive

    2016-01-01

    Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_1.4GHz > 10^24 W Hz^-1) are a key sub-class of the overall AGN population. Here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest ...

  9. SUGRA Grand Unification, LHC and Dark Matter

    Nath, Pran

    2012-01-01

    A brief review is given of recent developments related to the Higgs signal and its implications for supersymmetry in the supergravity grand unification framework. The Higgs data indicates that the allowed parameter space largely lies on focal curves and focal surfaces of the Hyperbolic Branch of radiative breaking of the electroweak symmetry where TeV size scalars naturally arise. The high mass of the Higgs leads to a more precise prediction for the allowed range of the spin independent neutralino -proton cross section which is encouraging for the detection of dark matter in future experiments with greater sensitivity. Also discussed is the status of grand unification and a natural solution to breaking the GUT group at one scale and resolving the doublet-triplet problem. It is shown that the cosmic coincidence can be compatible within a supersymmetric framework in a muticomponent dark matter picture with one component charged under $B-L$ while the other component is the conventional supersymmetric dark matter...

  10. X-ray Detected Active Galactic Nuclei in Dwarf Galaxies at $0

    Pardo, Kristina; Greene, Jenny E; Somerville, Rachel S; Gallo, Elena; Hickox, Ryan C; Miller, Brendan P; Reines, Amy E; Silverman, John D

    2016-01-01

    We present a sample of accreting supermassive black holes (SMBHs) in low-mass galaxies at $z200$ ks) archival \\textit{Chandra} X-ray data. From our sample of $\\sim 600$ low-mass galaxies, $10$ exhibit X-ray emission consistent with that arising from AGN activity. If black hole mass scales roughly with stellar mass, then we expect that these AGN are powered by SMBHs with masses of $\\sim 10^5-10^6 \\ M_{\\odot}$ and typical Eddington ratios $\\sim 5\\%$. Furthermore, we find an active fraction consistent with extrapolations of other searches of $\\sim 0.006-3\\%$ for $10^9 \\ M_{\\odot} \\leq M_{\\star} \\leq 3\\times 10^{9} \\ M_{\\odot}$ and $0.1active fraction has been directly measured outside of the local universe for these SMBH mass ranges. We find good agreement with semi-analytic models, suggesting that as we search larger volumes we may use comparisons between observed active fractions and models to understand seeding mechanisms in the early universe.

  11. The influence of radio-galaxy activity on X-ray absorption lines from the intracluster medium

    Koeckert, F; Koeckert, Franziska; Reynolds, Christopher S.

    2006-01-01

    We present an investigation of the X-ray absorption features predicted by hydrodynamic simulations of radio galaxies interacting with the intracluster medium (ICM) of their host galaxy clusters. We show how these absorption lines can be used as a new diagnostic for the radio-galaxy/ICM interactions. Such interactions have been observed in numerous systems by ROSAT, CHANDRA and XMM-NEWTON, and understanding them has implications for AGN feedback and galaxy formation. Starting from the hydrodynamic simulations of Reynolds, Heinz & Begelman (2002), we calculate the properties of the highly ionized iron and oxygen lines (seen in absorption against the central active galactic nucleus; AGN), predicting line shapes, equivalent widths, column densities and velocity shifts. The main effect of the jet on the absorption lines is a reduction of the line strength from that of the quiescent ICM and the introduction of some velocity structure in the line profile. We investigate whether these features are detectable with...

  12. Limits to Quantum Gravity Effects from Observations of TeV Flares in Active Galaxies

    Biller, S. D.; Breslin, A. C.; Buckley, J.; Catanese, M.; Carson, M.; Carter-Lewis, D. A.; Cawley, M. F.; Fegan, D. J.; Finley, J.; Gaidos, J. A.; Hillas, A.M.; Krennrich, F.; Lamb, R. C.; Lessard, R.; Masterson, C.

    1998-01-01

    We have used data from the TeV gamma-ray flare associated with the active galaxy Markarian 421 observed on 15 May 1996 to place bounds on the possible energy-dependence of the speed of light in the context of an effective quantum gravitational energy scale. The possibility of an observable time dispersion in high energy radiation has recently received attention in the literature, with some suggestions that the relevant energy scale could be less than the Planck mass and perhaps as low as 10^1...

  13. Combined X-Ray and mm-Wave Observations of Radio Quiet Active Galaxies

    Behar, E.

    2016-06-01

    A connection between the X-ray and radio sources in radio quiet active galaxies (AGNs) will be demonstrated. High radio frequency, i.e., mm-wave observations are promising probes of the X-ray emitting inner regions of the accretion disks in radio quiet AGNs. An argument for simultaneous observations in X-rays and in mm waves will be made, in order to promote these as one of the future science goals of X-ray and AGN astronomy in the next decade. Preliminary results from an exploratory campaign with several space and ground based telescopes will be presented.

  14. Bursty stellar populations and obscured active galactic nuclei in galaxy bulges

    Wild, Vivienne; Kauffmann, Guinevere; Heckman, Tim; Charlot, Stéphane; Lemson, Gerard; Brinchmann, Jarle; Reichard, Tim; Pasquali, Anna

    2007-10-01

    We investigate trends between the recent star formation history and black hole growth in galaxy bulges in the Sloan Digital Sky Survey. The galaxies lie at 0.01 4.0 kpc diameter of the galaxy. We find strong trends between black hole growth, as measured by dust-attenuation-corrected [O III] luminosity, and the recent star formation history of the bulges. 56 per cent of the bulges are quiescent with no signs of recent or ongoing star formation and, while almost half of all active galactic nuclei (AGN) lie within these bulges, they contribute only ~10 per cent to the total black hole growth in the local Universe. At the other extreme, the AGN contained within the ~4 per cent of galaxy bulges that are undergoing or have recently undergone the strongest starbursts, contribute at least 10-20 per cent of the total black hole growth. Much of this growth occurs in AGN with high amounts of dust extinction and thus the precise numbers remain uncertain. The remainder of the black hole growth (>60 per cent) is contributed by bulges with more moderate recent or ongoing star formation. The strongest accreting black holes reside in bulges with a wide range in recent star formation history. We conclude that our results support the popular hypothesis for black hole growth occurring through gas inflow into the central regions of galaxies, followed by a starburst and triggering of the AGN. However, while this is a significant pathway for the growth of black holes, it is not the dominant one in the present-day Universe. More unspectacular processes are apparently responsible for the majority of this growth. In order to arrive at these conclusions we have developed a set of new high signal-to-noise ratio (S/N) optical spectral indicators, designed to allow a detailed study of stellar populations which have undergone recent enhanced star formation. Working in the rest-frame wavelength range 3750-4150 Å, ideally suited to many recent and ongoing spectroscopic surveys at low and high

  15. High-resolution X-ray spectroscopy of four active galaxies - Probing the intercloud medium

    Lum, Kenneth S. K.; Canizares, Claude R.; Markert, Thomas H.; Arnaud, Keith A.

    1990-01-01

    The focal plane crystal spectrometer (FPCS) on the Einstein Observatory has been used to perform a high-resolution spectroscopic search for oxygen X-ray line emission from four active galaxies: Fairall 9, Mrk 421, Mrk 501, and PKS 0548 - 322. Specifically, O VIII Ly-alpha and Ly-beta, whose unredshifted energies are 653 and 775 eV, respectively, were sought. No narrow-line emission was detected within the energy bands searched. Upper limits are calculated on the line flux from these sources of 30 eV equivalent width and use a photoionization model to place corresponding upper limits on the densities of diffuse gas surrounding the active nuclei. The upper limits on gas density range from about 0.02-50/cu cm and probe various radial distances from the central source. This is the first time high-resolution X-ray spectroscopy has been used to place constraints on the intercloud medium in active galaxies.

  16. The New Numerical Galaxy Catalog (ν2GC): An updated semi-analytic model of galaxy and active galactic nucleus formation with large cosmological N-body simulations

    Makiya, Ryu; Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro; Okamoto, Takashi; Okoshi, Katsuya; Oogi, Taira; Shirakata, Hikari

    2016-04-01

    We present a new cosmological galaxy formation model, ν2GC, as an updated version of our previous model νGC. We adopt the so-called "semi-analytic" approach, in which the formation history of dark matter halos is computed by N-body simulations, while the baryon physics such as gas cooling, star formation, and supernova feedback are simply modeled by phenomenological equations. Major updates of the model are as follows: (1) the merger trees of dark matter halos are constructed in state-of-the-art N-body simulations, (2) we introduce the formation and evolution process of supermassive black holes and the suppression of gas cooling due to active galactic nucleus (AGN) activity, (3) we include heating of the intergalactic gas by the cosmic UV background, and (4) we tune some free parameters related to the astrophysical processes using a Markov chain Monte Carlo method. Our N-body simulations of dark matter halos have unprecedented box size and mass resolution (the largest simulation contains 550 billion particles in a 1.12 Gpc h-1 box), enabling the study of much smaller and rarer objects. The model was tuned to fit the luminosity functions of local galaxies and mass function of neutral hydrogen. Local observations, such as the Tully-Fisher relation, the size-magnitude relation of spiral galaxies, and the scaling relation between the bulge mass and black hole mass were well reproduced by the model. Moreover, the model also reproduced well the cosmic star formation history and redshift evolution of rest-frame K-band luminosity functions. The numerical catalog of the simulated galaxies and AGNs is publicly available on the web.

  17. Unification of speaker and meaning in language comprehension: an fMRI study

    Tesink, C.M.J.Y.; Petersson, K.M.; van Berkum, J.J.A.; Brink, D. van den; Buitelaar, J. K.; Hagoort, P.

    2009-01-01

    When interpreting a message, a listener takes into account several sources of linguistic and extralinguistic information. Here we focused on one particular form of extralinguistic information, certain speaker characteristics as conveyed by the voice. Using functional magnetic resonance imaging, we examined the neural structures involved in the unification of sentence meaning and voice-based inferences about the speaker's age, sex, or social background. We found enhanced activation in the infe...

  18. Common Origin of $3.55$ keV X-ray line and Gauge Coupling Unification with Left-Right Dark Matter

    Borah, Debasish; Dasgupta, Arnab; Patra, Sudhanwa

    2016-01-01

    We present a minimal left-right dark matter framework that can simultaneously explain the recently observed 3.55 keV X-ray line from several galaxy clusters and gauge coupling unification at high energy scale. Adopting a minimal dark matter strategy, we consider both left and right handed triplet fermionic dark matter candidates which are accidentally stable due to their high $SU(2)$ dimension forbidding their decay into standard model particles. A scalar bitriplet field is incorporated whose...

  19. Quark-lepton mass unification at TeV scales

    Adibzadeh, Mehrdad; Hung, P. Q.

    2007-01-01

    A scenario combining a model of early (TeV) unification of quarks and leptons with the physics of large extra dimensions provides a natural mechanism linking quark and lepton masses at TeV scale. This has been dubbed as early quark-lepton mass unification by one of us (PQH) in one of the two models of early quark-lepton unification, which are consistent with data, namely SU(4)_PS \\otimes SU(2)_L \\otimes SU(2)_R \\otimes SU(2)_H. In particular, it focused on the issue of naturally light Dirac n...

  20. Planck-Scale Unification and Dynamical Symmetry Breaking

    Lykken, Joseph D.; Willenbrock, Scott

    1993-01-01

    We explore the possibility of unification of gauge couplings near the Planck scale in models of extended technicolor. We observe that models of the form G X SU(3)_c X SU(2)_L X U(1)_Y cannot be realized, due to the presence of massless neutral Goldstone bosons (axions) and light charged pseudo-Goldstone bosons; thus, unification of the known forces near the Planck scale cannot be achieved. The next simplest possibility, G X SU(4)_{PS} X SU(2)_L X U(1)_{T_{3R}}, cannot lead to unification of t...

  1. Gauge and Yukawa Unification with Broken R-Parity

    Díaz, M A; Romão, J C; Valle, José W F; Diaz, Marco A.; Romao, Jorge C.; Valle, Jose W.F.

    1999-01-01

    We study gauge and Yukawa coupling unification in the simplest extension of the Minimal Supersymmetric Standard Model (MSSM) which incorporates R-Parity violation through a bilinear superpotential term. Contrary to what happens in the MSSM, we show that bottom-tau unification at the scale M_GUT where the gauge couplings unify can be achieved for any value of tan(beta) by choosing appropriately the sneutrino vacuum expectation value. In addition, we show that bottom-tau-top unification occurs in a slightly wider tan(beta) range than in the MSSM.

  2. Multiple Scales in Pati-Salam Unification Models

    Florian Hartmann; Wolfgang Kilian; Karsten Schnitter

    2014-01-01

    We investigate models where gauge unification (GUT) proceeds in steps that include Pati-Salam symmetry. Beyond the Standard Model, we allow for a well-defined set of small representations of the GUT gauge group. We show that all possible chains of Pati-Salam symmetry breaking can be realized in accordance with gauge-coupling unification. We identify, in particular, models with unification near the Planck scale, with intermediate left-right or SU(4) quark-lepton symmetries that are relevant fo...

  3. Multiple scales in Pati-Salam unification models

    Hartmann, Florian; Kilian, Wolfgang; Schnitter, Karsten

    2014-05-01

    We investigate models where gauge unification (GUT) proceeds in steps that include Pati-Salam symmetry. Beyond the Standard Model, we allow for a well-defined set of small representations of the GUT gauge group. We show that all possible chains of PatiSalam symmetry breaking can be realized in accordance with gauge-coupling unification. We identify, in particular, models with unification near the Planck scale, with intermediate left-right or SU(4) quark-lepton symmetries that are relevant for flavor physics, with new colored particles at accessible energies, and with an enlarged electroweak Higgs sector. We look both at supersymmetric and non-supersymmetric scenarios.

  4. Gauge Coupling Constant Unification With Planck Scale Values Of Moduli

    Bailin, D.; A. Love; Sabra, W. A.; Thomas, S.(Rutgers, The State University of New Jersey, Piscataway, USA)

    1996-01-01

    Convergence of the standard model gauge coupling constants to a common value at around $2\\times 10^{16}$ GeV is studied in the context of orbifold theories where the modular symmetry groups for $T$ and $U$ moduli are broken to subgroups of $PSL(2, Z)$. The values of the moduli required for this unification of coupling constants are studied for this case and also for the case where string unification is accompanied by unification to a gauge group larger then $SU(3)\\times SU(2)\\times U(1).$

  5. Gauge coupling constant unification with Planck scale values of moduli

    Bailin, David; Sabra, W A; Thomas, S

    1996-01-01

    Convergence of the standard model gauge coupling constants to a common value at around 2\\times 10^{16} GeV is studied in the context of orbifold theories where the modular symmetry groups for T and U moduli are broken to subgroups of PSL(2, Z). The values of the moduli required for this unification of coupling constants are studied for this case and also for the case where string unification is accompanied by unification to a gauge group larger then SU(3)\\times SU(2)\\times U(1).

  6. Korean unification and United States security alternatives in Northeast Asia

    Hasell, Edward L.

    1993-01-01

    The end of the Cold War has removed the external restraints placed on the Republic of Korea and the Democratic People's Republic of Korea that in the past have proved to be a barrier to unification of the two states on the Korean peninsula. An inter-Korea Cold War lingers on, frustrating both governments plans for unification of the peninsula. North and South Korea have made unification a major goal of their governments, and they will eventually succeed in unifying the Korean peninsula. Unifi...

  7. The gas metallicity gradient and the star formation activity of disc galaxies

    Tissera, Patricia B; Sillero, Emanuel; Vilchez, Jose M

    2015-01-01

    We study oxygen abundance profiles of the gaseous disc components in simulated galaxies in a hierarchical universe. We analyse the disc metallicity gradients in relation to the stellar masses and star formation rates of the simulated galaxies. We find a trend for galaxies with low stellar masses to have steeper metallicity gradients than galaxies with high stellar masses at z ~0. We also detect that the gas-phase metallicity slopes and the specific star formation rate (sSFR) of our simulated disc galaxies are consistent with recently reported observations at z ~0. Simulated galaxies with high stellar masses reproduce the observed relationship at all analysed redshifts and have an increasing contribution of discs with positive metallicity slopes with increasing redshift. Simulated galaxies with low stellar masses a have larger fraction of negative metallicity gradients with increasing redshift. Simulated galaxies with positive or very negative metallicity slopes exhibit disturbed morphologies and/or have a clo...

  8. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    Alonso-Herrero, Almudena; Rieke, George H; Diamond-Stanic, Aleksandar M; Wang, Yiping; Hernan-Caballero, Antonio; Rigopoulou, Dimitra

    2013-01-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78Mpc). We estimate typical BH masses of 3x10^7 M_sun using [NeIII]15.56micron and optical [OIII]5007A gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs the current SFR is taking place not only in the inner nuclear ~1.5kpc region, as estimated from the nuclear 11.3micron PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios highe...

  9. X-Ray Properties Expected from Active Galactic Nucleus Feedback in Elliptical Galaxies

    Pellegrini, Silvia; Ciotti, Luca; Ostriker, Jeremiah P.

    2012-01-01

    Detailed hydrodynamic simulations of active galactic nucleus feedback have been performed including the effects of radiative and mechanical momentum and energy input on the interstellar medium (ISM) of typical elliptical galaxies. We focus on the observational properties of the models in the soft and hard X-ray bands: nuclear X-ray luminosity; global X-ray luminosity and temperature of the hot ISM; and temperature and X-ray brightness profiles before, during, and after outbursts. After ~10 Gyr, the bolometric nuclear emission L BH is very sub-Eddington (l = L BH/L Edd ~ 10-4), and within the range observed, though larger than typical values. Outbursts last for ≈107 yr, and the duty cycle of nuclear activity is a few × (10-3 to 10-2), over the last 6 Gyr. The ISM thermal luminosity L X oscillates in phase with the nuclear luminosity, with broader peaks. This behavior helps statistically reproduce the observed large L X variation. The average gas temperature is within the observed range, in the upper half of those observed. In quiescence, the temperature profile has a negative gradient; thanks to past outbursts, the brightness profile lacks the steep shape of cooling flow models. After outbursts, disturbances are predicted in the temperature and brightness profiles (analyzed by unsharp masking). Most significantly, during major accretion episodes, a hot bubble of shocked gas is inflated at the galaxy center (within ≈100 pc) the bubble would be conical in shape in real galaxies and would be radio-loud. Its detection in X-rays is within current capabilities, though it would likely remain unresolved. The ISM resumes its smooth appearance on a timescale of ≈200 Myr the duty cycle of perturbations in the ISM is of the order of 5%-10%. While showing general agreement between the models and real galaxies, this analysis indicates that additional physical input may still be required including moving to two-dimensional or three-dimensional simulations, input of

  10. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Star-forming Galaxies from the Sloan Digital Sky Survey

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine S.; Hainline, Kevin N.; DiPompeo, Michael A.; Goulding, Andy D.

    2016-07-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGNs). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test whether or not an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work suggesting that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGNs using a broad, instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observed galaxies via their positions on an emission line excitation diagram and Eddington ratio distributions. We present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that for optically selected AGNs in young galaxies, the intrinsic Eddington ratio distribution is consistent with a possibly universal, broad power law with an exponential cutoff, as this distribution is observed in old, optically selected galaxies and X-rays.

  11. Gauge and space-time symmetry unification

    Besprosvany, J

    2000-01-01

    Unification ideas suggest an integral treatment of fermion and boson spin and gauge-group degrees of freedom. Hence, a generalized quantum field equation, based on Dirac's, is proposed and investigated which contains gauge and flavor symmetries, determines vector gauge field and fermion solution representations, and fixes their mode of interaction. The simplest extension of the theory with a 6-dimensional Clifford algebra predicts an SU(2)_L X U(1) symmetry, which is associated with the isospin and the hypercharge, their vector carriers, two-flavor charged and chargeless leptons, and scalar particles. A mass term produces breaking of the symmetry to an electromagnetic U(1), and a Weinberg's angle theta_W with sin^2(theta_W)=.25 . A more realistic 8-d extension gives coupling constants of the respective groups g=1/sqrt 2~.707 and g'=1/sqrt 6~.408, with the same theta_W.

  12. Minimal flavour violation and SU(5)-unification

    Barbieri, Riccardo; Senia, Fabrizio [Scuola Normale Superiore, Pisa (Italy); INFN, Pisa (Italy)

    2015-12-15

    Minimal flavour violation in its strong or weak versions, based on U(3){sup 3} and U(2){sup 3}, respectively, allows suitable extensions of the standard model at the TeV scale to comply with current flavour constraints in the quark sector. Here we discuss considerations analogous to minimal flavour violation (MFV) in the context of SU(5)-unification, showing the new effects/constraints that arise both in the quark and in the lepton sector, where quantitative statements can be made controlled by the CKM matrix elements. The case of supersymmetry is examined in detail as a particularly motivated example. Third generation sleptons and neutralinos in the few hundred GeV range are shown to be compatible with current constraints. (orig.)

  13. Monopoles and family-replicated unification

    The paper is based on the assumption that at very small (Planck scale) distances out space-time is discrete, and this discreteness influences the Planck-scale physics. It is investigated a role of lattice artifact monopoles, which is essential near the Planck scale if the family-replicated gauge group model (FRGGM) is an extension of the Standard Model (SM) at high energies. It is shown that monopoles have N times smaller magnetic charge in FRGGM than in SM (N is the number of families in FRGGM). It is used the Dirac relation for renormalized electric and magnetic charges. It is estimated the enhancement of a number of fermions in FRGGM. Different role of monopoles in the vicinity pf the Planck scale gives rise to the new possibility of unification of gauge interactions (including gravity)

  14. Minimal flavour violation and SU(5)-unification

    Minimal flavour violation in its strong or weak versions, based on U(3)3 and U(2)3, respectively, allows suitable extensions of the standard model at the TeV scale to comply with current flavour constraints in the quark sector. Here we discuss considerations analogous to minimal flavour violation (MFV) in the context of SU(5)-unification, showing the new effects/constraints that arise both in the quark and in the lepton sector, where quantitative statements can be made controlled by the CKM matrix elements. The case of supersymmetry is examined in detail as a particularly motivated example. Third generation sleptons and neutralinos in the few hundred GeV range are shown to be compatible with current constraints. (orig.)

  15. Seminatural Gauge Mediation from Product Group Unification

    Fukuda, Hajime; Yanagida, Tsutomu T; Yokozaki, Norimi

    2015-01-01

    We propose a focus point gauge mediation model based on the product group unification (PGU), which solves the double-triplet splitting problem of the Higgs multiplets. In the focus point gauge mediation, the electroweak symmetry breaking scale can be naturally explained even for multi-TeV stops. It is known that the focus point behavior appears if a ratio of the number of SU(2) doublet messengers to that of SU(3) triplet messengers is close to 2.5. Importantly, this ratio (effectively) appears in our scenario based on the PGU, if the messenger field is an adjoint representation of SU(5) gauge group. Therefore, our focus point scenario is very predictive. It is also pointed out the gravitino can be dark matter without spoiling the success of the thermal leptogenesis.

  16. Local grand unification and string theory

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.; Ramos-Sanchez, Saul [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vaudrevange, Patrick K.S. [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics

    2009-09-15

    The low energy effective action of string theory depends strongly on the process of compactification and the localization of fields in extra dimensions. Explicit string constructions towards the minimal supersymmetric standard model (MSSM) reveal interesting results leading to the concept of local grand unification. Properties of the MSSM indicate that we might live at a special location close to an orbifold fixed point rather than a generic point in Calabi-Yau moduli space. We observe an enhancement of (discrete) symmetries that have various implications for the properties of the MSSM such as proton stability as well as solutions to the flavor problem, the m-problem and the strong CP-problem. (orig.)

  17. Minimal flavour violation and SU(5)-unification

    Barbieri, Riccardo, E-mail: barbieri@sns.it; Senia, Fabrizio, E-mail: fabrizio.senia@sns.it [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126, Pisa (Italy)

    2015-12-17

    Minimal flavour violation in its strong or weak versions, based on U(3){sup 3} and U(2){sup 3}, respectively, allows suitable extensions of the standard model at the TeV scale to comply with current flavour constraints in the quark sector. Here we discuss considerations analogous to minimal flavour violation (MFV) in the context of SU(5)-unification, showing the new effects/constraints that arise both in the quark and in the lepton sector, where quantitative statements can be made controlled by the CKM matrix elements. The case of supersymmetry is examined in detail as a particularly motivated example. Third generation sleptons and neutralinos in the few hundred GeV range are shown to be compatible with current constraints.

  18. Role of active galactic nuclei in the luminous infrared galaxy phase at z ≤ 3

    Lin, Ming-Yi; Hashimoto, Yasuhiro; Foucaud, Sébastien

    2016-03-01

    To understand the interactions between active galactic nuclei (AGNs) and star formation during the evolution of galaxies, we investigate 142 galaxies detected in both X-ray and 70 μm observations in the COSMOS (Cosmic Evolution Survey) field. All of our data are obtained from the archive X-ray point-source catalogues from Chandra and XMM-Newton observations, and the far-infrared 70 μm point-source catalogue from Spitzer-MIPS observations. Although the IRAC [3.6 μm]-[4.5 μm] versus [5.8 μm]-[8.0 μm] colours of our sample indicate that only ˜63 per cent of our sources would be classified as AGNs, the ratio of the rest-frame 2-10 keV luminosity to the total infrared luminosity (8-1000 μm) shows that the entire sample has comparatively higher X-ray luminosity than that expected from pure star-forming galaxies, suggesting the presence of an AGN in all of our sources. From an analysis of the X-ray hardness ratio, we find that sources with both 70 μm and X-ray detection tend to have a higher hardness ratio relative to the whole X-ray-selected source population, suggesting the presence of more X-ray absorption in the 70 μm detected sources. In addition, we find that the observed far-infrared colours of 70 μm detected sources with and without X-ray emission are similar, suggesting the far-infrared emission could be mainly powered by star formation.

  19. Uncovering the Spectral Energy Distribution in Active Galaxies Using High Ionization Mid-Infrared Emission Lines

    Melendez, M.; Kraemer, S. B.; Weaver, K. A.; Mushotzky, R. F.

    2011-01-01

    The shape of the spectral energy distribution of active galaxies in the EUV soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 microns/[Ne III], [Ne V]24.32 microns/[O IV]25.89 micron and [O IV] 25.89 microns/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV-soft X-ray slope, alpha(sub i), to be between 1.5 - 2.0 and derive a best fit of alpha(sub i) approx. 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T(sub BB) = 10(exp 5.18) K to 10(exp 5.7) K, suggesting that the peak of this component spans a large range of energies extending from approx. (Lambda)600 A to > (Lambda)1900 A. In this case, the best fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between approx. (Lambda)700-(Lambda)1000 A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies > 4 Ry to generate the observed amount of mid-infrared emission in our sample of BAT AGN.

  20. DISCOVERY OF AN ACTIVE SUPERMASSIVE BLACK HOLE IN THE BULGELESS GALAXY NGC 4561

    Salvo, C. Araya; Mathur, S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghosh, H. [CNRS/CEA-Saclay, F-91911 Gif-sur-Yvette (France); Fiore, F. [Osservatorio Astronomico di Roma, Via Frascati 33, I-100040 Monteporzio Catone (Italy); Ferrarese, L., E-mail: araya@astronomy.ohio-state.edu [Hertzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2012-10-01

    We present XMM-Newton observations of the Chandra-detected nuclear X-ray source in NGC 4561. The hard X-ray spectrum can be described by a model composed of an absorbed power law with {Gamma} = 2.5{sup +0.4}{sub -0.3} and column density N{sub H} = 1.9{sup +0.1}{sub -0.2} Multiplication-Sign 10{sup 22} atoms cm{sup -2}. The absorption-corrected luminosity of the source is L(0.2-10.0 keV) =2.5 Multiplication-Sign 10{sup 41} erg s{sup -1}, with bolometric luminosity over 3 Multiplication-Sign 10{sup 42} erg s{sup -1}. Based on the spectrum and the luminosity, we identify the nuclear X-ray source in NGC 4561 to be an active galactic nucleus (AGN), with a black hole (BH) of mass M{sub BH} >2 Multiplication-Sign 10{sup 4} M{sub Sun }. The presence of a supermassive black hole at the center of this bulgeless galaxy shows that BH masses are not necessarily related to bulge properties, contrary to general belief. Observations such as these call into question several theoretical models of BH-galaxy coevolution that are based on merger-driven BH growth; secular processes clearly play an important role. Several emission lines are detected in the soft X-ray spectrum of the source which can be well parameterized by an absorbed diffuse thermal plasma with non-solar abundances of some heavy elements. Similar soft X-ray emission is observed in spectra of Seyfert 2 galaxies and low-luminosity AGNs, suggesting an origin in the circumnuclear plasma.

  1. Discovery of ultra-steep spectrum giant radio galaxy with recurrent radio jet activity in Abell 449

    Hunik, D

    2016-01-01

    We report a discovery of a 1.3 Mpc diffuse radio source with extremely steep spectrum fading radio structures in the vicinity of the Abell 449 cluster of galaxies. Its extended diffuse lobes are bright only at low radio frequencies and their synchrotron age is about 160 Myr. The parent galaxy of the extended relic structure, which is the dominant galaxy within the cluster, is starting a new jet activity. There are three weak X-rays sources in the vicinity of the cluster as found in the ROSAT survey, however it is not known if they are connected with this cluster of galaxies. Just a few radio galaxy relics are currently known in the literature, as finding them requires sensitive and high angular resolution low-frequency radio observations. Objects of this kind, which also are starting a new jet activity, are important for understanding the life cycle and evolution of active galactic nuclei. A new 613 MHz map as well as the archival radio data pertaining to this object are presented and analyzed.

  2. No more active galactic nuclei in clumpy disks than in smooth galaxies at z ∼ 2 in CANDELS/3D-HST

    Trump, Jonathan R.; Luo, Bin; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Barro, Guillermo; Guo, Yicheng; Koo, David C.; Faber, S. M. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Juneau, Stéphanie [Irfu/Service d' Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Weiner, Benjamin J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Brammer, Gabriel B.; Ferguson, Henry C.; Grogin, Norman A.; Kartaltepe, Jeyhan; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Hopkins, Philip F. [California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Kocevski, Dale D. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); McIntosh, Daniel H. [Department of Physics and Astronomy, University of Missouri-Kansas City, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Momcheva, Ivelina [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2014-10-01

    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3 < z < 2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that despite being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z ∼ 2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z ∼ 2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile, the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z ∼ 1.85—whether violent disk instabilities or secular processes—are as efficient in smooth galaxies as they are in clumpy galaxies.

  3. No more active galactic nuclei in clumpy disks than in smooth galaxies at z ∼ 2 in CANDELS/3D-HST

    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3 < z < 2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that despite being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z ∼ 2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z ∼ 2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile, the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z ∼ 1.85—whether violent disk instabilities or secular processes—are as efficient in smooth galaxies as they are in clumpy galaxies.

  4. The Best Possible Unification for any Collection of Physical Theories

    Herrmann, R A

    2003-01-01

    It is shown that the set of all finitary consequence operators defined on any nonempty language is a join-complete lattice. This result is applied to various collections of physical theories to obtain an unrestricted supremum unification.

  5. LUMINOUS X-RAY ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES

    We present a study of X-ray active galactic nucleus (AGN) overdensities in 16 Abell clusters, within the redshift range 0.073 x ≥ 1042 erg s-1 (at the redshift of the clusters) and within an area of 1 h -172 Mpc radius (excluding the core). To investigate the presence or absence of a true enhancement of luminous X-ray AGNs in the cluster area, we also derived the corresponding optical galaxy overdensities, using a suitable range of r-band magnitudes. We always find the latter to be significantly higher (and only in two cases roughly equal) with respect to the corresponding X-ray overdensities. Over the whole cluster sample, the mean X-ray point-source overdensity is a factor of ∼4 less than that corresponding to bright optical galaxies, a difference which is significant at a >0.995 level, as indicated by an appropriate student's t-test. We conclude that the triggering of luminous X-ray AGNs in rich clusters is strongly suppressed. Furthermore, searching for optical Sloan Digital Sky Survey counterparts of all the X-ray sources, associated with our clusters, we found that about half appear to be background QSOs, while others are background and foreground AGNs or stars. The true overdensity of X-ray point sources, associated with the clusters, is therefore even smaller than what our statistical approach revealed.

  6. The peculiar radio galaxy 4C 35.06: a case for recurrent AGN activity?

    Shulevski, A; Barthel, P D; Murgia, M; van Weeren, R J; White, G J; Brüggen, M; Kunert-Bajraszewska, M; Jamrozy, M; Best, P N; Röttgering, H J A; Chyzy, K T; de Gasperin, F; Bîrzan, L; Brunetti, G; Brienza, M; Rafferty, D A; Anderson, J; Beck, R; Deller, A; Zarka, P; Schwarz, D; Mahony, E; Orrú, E; Bell, M E; Bentum, M J; Bernardi, G; Bonafede, A; Breitling, F; Broderick, J W; Butcher, H R; Carbone, D; Ciardi, B; de Geus, E; Duscha, S; Eislöffel, J; Engels, D; Falcke, H; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hoeft, M; Hörandel, J; Horneffer, A; van der Horst, A J; Intema, H; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; Maat, P; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Meulman, H; Mulcahy, D D; Munk, H; Norden, M J; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Rowlinson, A; Scaife, A M M; Serylak, M; Sluman, J; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Thoudam, S; Toribio, M C; Vermeulen, R; Vocks, C; Wijers, R A M J; Wise, M W; Wucknitz, O

    2015-01-01

    Using observations obtained with the LOw Fequency ARray (LOFAR), the Westerbork Synthesis Radio Telescope (WSRT) and archival Very Large Array (VLA) data, we have traced the radio emission to large scales in the complex source 4C 35.06 located in the core of the galaxy cluster Abell 407. At higher spatial resolution (~4"), the source was known to have two inner radio lobes spanning 31 kpc and a diffuse, low-brightness extension running parallel to them, offset by about 11 kpc (in projection). At 62 MHz, we detect the radio emission of this structure extending out to 210 kpc. At 1.4 GHz and intermediate spatial resolution (~30"), the structure appears to have a helical morphology. We have derived the characteristics of the radio spectral index across the source. We show that the source morphology is most likely the result of at least two episodes of AGN activity separated by a dormant period of around 35 Myr. The AGN is hosted by one of the galaxies located in the cluster core of Abell 407. We propose that it ...

  7. A complete census of silicate features in the mid-infrared spectra of active galaxies

    Hatziminaoglou, Evanthia; Feltre, Anna; Piñol-Ferrer, Nuria

    2015-01-01

    We present a comprehensive study of the silicate features at 9.7 and 18 micron of a sample of almost 800 active galactic nuclei (AGN) with available spectra from the Spitzer InfraRed Spectrograph (IRS). We measure the strength of the silicate feature at 9.7 micron, S9.7, before and after subtracting the host galaxy emission from the IRS spectra. The numbers of type 1 and 2 AGN with the feature in emission increase by 20 and 50%, respectively, once the host galaxy is removed, while 35% of objects with the feature originally in absorption exhibit it in even deeper absorption. The peak of S9.7, lambda_peak, has a bimodal distribution when the feature is in emission, with about 65% of the cases showing lambda_peak > 10.2 micron. Silicates can appear in emission in objects with mid-infrared (MIR) luminosity spanning over six orders of magnitude. The derived distributions of the strength of the silicate features at 9.7 and 18 micron provide a solid test bed for modeling the dust distribution in AGN. Clumpiness is n...

  8. The MORGANA model for the rise of galaxies and active nuclei

    Monaco, P; Taffoni, G; Monaco, Pierluigi; Fontanot, Fabio; Taffoni, Giuliano

    2006-01-01

    We present the MOdel for the Rise of GAlaxies aNd Active nuclei (MORGANA). Starting from the merger trees of dark matter halos and a model for the evolution of substructure within the halos, the complex physics of baryons is modeled with a set of state-of-the-art models that describe the mass, metal and energy flows between the various components and phases of a galaxy. The processes of shock-heating and cooling, star formation, feedback, galactic winds and super-winds, accretion onto BHs and AGN feedback are described by new models. In particular, the evolution of the halo gas explicitly follows the thermal and kinetic energies of the hot and cold phases, while star formation and feedback follow the results of the multi-phase model by Monaco (2004a). The increased level of sophistication allows to move from a phenomenological description of gas physics, based on simple scalings with the depth of the DM halo potential, toward a fully physically motivated one. The comparison of the predictions of MORGANA with ...

  9. Uncovering the Spectral Energy Distribution in Active Galaxies Using High Ionization Mid-infrared Emission Lines

    Meléndez, M; Weaver, K A; Mushotzky, R F

    2011-01-01

    The shape of the spectral energy distribution of active galaxies in the EUV--soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 mm/[NeIII], [Ne V]24.32mm/[O IV]25.89mm and [O IV] 25.89mm/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV--soft X-ray slope, alpha_i, to be between 1.5 -- 2.0 and derive a best fit of alpha_i ~ 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures b...

  10. Offset Active Galactic Nuclei as Tracers of Galaxy Mergers and Supermassive Black Hole Growth

    Comerford, Julia M

    2014-01-01

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey, by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18314 Type 2 AGNs at z<0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km/s < |v| < 410 km/s. When we account for projection effects in the observed velocities, we estimate that 4% - 8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric l...

  11. J1216+0709 : A radio galaxy with three episodes of AGN jet activity

    Singh, Veeresh; Kharb, Preeti; Srivastava, Shweta; Janardhan, P

    2016-01-01

    We report the discovery of a `Triple-Double Radio Galaxy (TDRG)' J1216+0709 detected in deep low-frequency Giant Metrewave Radio Telescope (GMRT) observations. J1216+0709 is only the third radio galaxy, after B0925+420 and Speca, with three pairs of lobes resulting from three different episodes of AGN jet activity. The 610 MHz GMRT image clearly displays an inner pair of lobes, a nearly co-axial middle pair of lobes and a pair of outer lobes that is bent w.r.t. the axis of inner pair of lobes. The total end-to-end projected sizes of the inner, middle, and outer lobes are 40$^{{\\prime}{\\prime}}$ ($\\sim$ 95 kpc), 1$^{\\prime}$.65 ($\\sim$ 235 kpc) and 5$^{\\prime}$.7 ($\\sim$ 814 kpc), respectively. Unlike the outer pair of lobes both the inner and middle pairs of lobes exhibit asymmetries in arm-lengths and flux densities, but in opposite sense, i.e., the eastern sides are farther and also brighter that the western sides, thus suggesting the possibility of jet being intrinsically asymmetric rather than due to rela...

  12. Collimation and scattering of the active galactic nucleus emission in the Sombrero galaxy

    Menezes, R B; Ricci, T V; 10.1088/2041-8205/765/2/L40

    2013-01-01

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{\\alpha} emission line. The collimation and scattering of this broad H{\\alpha} component was also revealed by fitting the [NII] {\\lambda}{\\lambda}6548,6583 and H{\\alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18{\\de...

  13. A Distant Echo of Milky Way Central Activity closes the Galaxy's Baryon Census

    Nicastro, F; Krongold, Y; Mathur, S; Elvis, M

    2016-01-01

    We report on the presence of large amounts of million-degree gas in the Milky Way's interstellar and circum-galactic medium. This gas (1) permeates both the Galactic plane and the halo, (2) extends to distances larger than 60-200 kpc from the center, and (3) its mass is sufficient to close the Galaxy's baryon census. Moreover, we show that a vast, $\\sim 6$ kpc radius, spherically-symmetric central region of the Milky Way above and below the 0.16 kpc thick plane, has either been emptied of hot gas or the density of this gas within the cavity has a peculiar profile, increasing from the center up to a radius of $\\sim 6$ kpc, and then decreasing with a typical halo density profile. This, and several other converging pieces of evidence, suggest that the current surface of the cavity, at 6 kpc from the Galaxy's center, traces the distant echo of a period of strong nuclear activity of our super-massive black-hole, occurred about 6 Myrs ago.

  14. Environmental dependence of AGN activity. I.: the effects of host galaxy

    Choi, Yun-Young; Park, Changbum

    2009-01-01

    Using a large sample of local galaxies (144,940) with -17.5 6. We find that the fraction of galaxies hosting an AGN (f_AGN) depends strongly on morphology together with color, and very weakly on luminosity or velocity dispersion of host galaxies. In particular, f_AGN of early-type galaxies is almost independent of luminosity nor velocity dispersion when color is fixed. The host galaxy color preferred by AGNs is u-r ~2.0 for early-type hosts and u-r=2.0-2.4 for late-type hosts. This trend suggests that AGNs are dominantly hosted by intermediate-mass late-type galaxies. We also investigate how the accretion power varies with galaxy properties. While the Eddington ratio ([OIII] line luminosity normalized by black hole mass) ranges over three orders of magnitude for both morphological types, late-type galaxies are the dominant hosts over all AGN power. Among late-type galaxies, bluer color galaxies host higher power AGNs. These results are consistent with a scenario that more massive and redder galaxies are harde...

  15. Unification as a method to increase NPP component quality

    The experience of unifjcation of standard sizes of applied materials (rolled stock, tubes) of structural elements (threads, radii, grooves), detail and equipment units in the course of reactors development is investigated. Examples of unification of the WWER-1000 reactor pipe connections, equipment units, NPP equipment unification level with WWER-440 and WWER-1000 reactors are indicated. Coefficients of equipment applicability which in author's opinion must be 30-70% are given

  16. Deviation of Yukawa Coupling in Gauge-Higgs Unification

    Adachi, Yuki; Maru, Nobuhito

    2015-01-01

    We study the deviation of yukawa coupling in the gauge-Higgs unification scenario from the Standard Model one. Taking into account the brane mass terms necessary for generating the flavor mixing and removing the exotic massless fermions, we derive an analytic formula determining the KK mass spectrum and yukawa coupling. Applying the obtained results to the tau and bottom yukawa couplings, we numerically calculate the ratio of the yukawa couplings in the gauge-Higgs unification and in the Stan...

  17. The proactive grand strategy for consensual and peaceful Korean unification

    Kim, Jungsoo

    2007-01-01

    This thesis assesses the reasons for the continuous division of the two Koreas and proposes necessary policies for Korean unification. In modern times, Koreans have been unable to determine their own destiny. Many examples show that Koreaαs circumstances have been influenced by other countries. Koreaαs division and the North Korean nuclear standoff are not only Korean problems but also international issues. In these contexts, Korean unification requires not only domestic efforts but also in...

  18. Experiences with Monetary Integration and Lessons for Korean Unification

    Goohoon Kwon

    1997-01-01

    This paper discusses the timing of monetary integration and supporting economic policies during a rapid and largely uncontrolled process of Korean unification. The paper concludes that the transitory use of a separate currency in each region and supporting economic policies would help limit the initial costs of unification although the extent of the eventual cost reduction would depend critically on the success of ensuing economic reforms in the North during the transition. Maintaining the co...

  19. Studying the evolution of galaxies in compact groups over the past 3 Gyr. I. The nuclear activity

    Bitsakis, T; Ciesla, L; Krongold, Y; Charmandaris, V; Zezas, A

    2015-01-01

    We present the first -- of a series -- study of the evolution of galaxies in compact groups over the past 3 Gyr. This paper focuses on the evolution of the nuclear activity and how it has been affected by the dense environment of the groups. Our analysis is based on the largest multiwavelength compact group sample to-date, containing complete ultraviolet-to-infrared (UV-to-IR) photometry for 1,770 isolated groups (7,417 galaxies). We classified the nuclear activity of the galaxies based on optical emission line and mid-infrared diagnostic methods, as well as using spectral energy distribution fitting. We observe a 15% increase on the number of the AGN-hosting late-type galaxies found in dynamically old groups, over the past 3 Gyr, accompanied by the corresponding decrease of their circumnuclear star formation. Comparing our compact group results with those of local isolated field and interacting pair galaxies, we find no differences in the AGN at the same redshift range. Based on both optical and mid-IR colou...

  20. The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks

    Kuo, C Y; Condon, J J; Impellizzeri, C M V; Lo, K Y; Zaw, I; Schenker, M; Henkel, C; Reid, M J; Greene, J E

    2010-01-01

    Observations of H$_2$O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry (VLBI) images and kinematics of water maser emission in six active galaxies: NGC~1194, NGC~2273, NGC~2960 (Mrk~1419), NGC~4388, NGC~6264 and NGC~6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central $\\sim0.3$ pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 and 60 $\\times 10^{10} M_{\\odot}$~pc$^{-3}$. For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominant...

  1. COLOR-MAGNITUDE RELATIONS OF ACTIVE AND NON-ACTIVE GALAXIES IN THE CHANDRA DEEP FIELDS: HIGH-REDSHIFT CONSTRAINTS AND STELLAR-MASS SELECTION EFFECTS

    We extend color-magnitude relations for moderate-luminosity X-ray active galactic nucleus (AGN) hosts and non-AGN galaxies through the galaxy formation epoch (z ∼ 1-4) in the Chandra Deep Field-North and Chandra Deep Field-South (CDF-N and CDF-S, respectively; jointly CDFs) surveys. This study was enabled by the deepest available X-ray data from the 2 Ms CDF surveys as well as complementary ultradeep multiwavelength data in these regions. We utilized analyses of color-magnitude diagrams (CMDs) to assess the role of moderate-luminosity AGNs in galaxy evolution. First, we confirm some previous results and extend them to higher redshifts, finding, for example, that (1) there is no apparent color bimodality (i.e., the lack of an obvious red sequence and blue cloud) for AGN hosts from z ∼ 0to2, but non-AGN galaxy color bimodality exists up to z ∼ 3 and the relative fraction of red-sequence galaxies generally increases as the redshift decreases (consistent with a blue-to-red migration of galaxies), (2) most AGNs reside in massive hosts and the AGN fraction rises strongly toward higher stellar mass, up to z ∼ 2-3, and (3) the colors of both AGN hosts and non-AGN galaxies become redder as the stellar mass increases, up to z ∼ 2-3. Second, we point out that, in order to obtain a complete and reliable picture, it is critical to use mass-matched samples to examine color-magnitude relations of AGN hosts and non-AGN galaxies. We show that for mass-matched samples up to z ∼ 2-3, AGN hosts lie in the same region of the CMD as non-AGN galaxies; i.e., there is no specific clustering of AGN hosts in the CMD around the red sequence, the top of the blue cloud, or the green valley in between. The AGN fraction (∼ 10%) is mostly independent of host-galaxy color, providing an indication of the duty cycle of supermassive black hole growth in typical massive galaxies. These results are in contrast to those obtained with non-mass-matched samples where there is apparent AGN

  2. On the Possibility of Optical Unification in Heterotic Strings

    Cleaver, G; Hanson, H; Perkins, J; Robbins, D; Shields, S; Cleaver, Gerald; Desai, Virendra; Hanson, Heather; Perkins, John; Robbins, David; Shields, Scot

    2003-01-01

    Recently J. Giedt discussed a mechanism, entitled optical unification, whereby string scale unification is facilitated via exotic matter with intermediate scale mass. This mechanism guarantees that a virtual MSSM unification below the string scale is extrapolated from the running of gauge couplings upward from M_Z^o when an intermediate scale desert is assumed. In this letter we explore the possibility of optical unification within the context of weakly coupled heterotic strings. In particular, we investigate this for models of free fermionic construction containing the NAHE set of basis vectors. This class is of particular interest for optical unification, because it provides a standard hypercharge embedding within SO(10), giving the standard k_Y = 5/3 hypercharge level, which was shown necessary for optical unification. We present a NAHE model for which the set of exotic SU(3)_C triplet/anti-triplet pairs, SU(2)_L doublets, and non-Abelian singlets with hypercharge offers the possibility of optical unificat...

  3. Height System Unification in North America

    Sideris, Michael; Amjadiparvar, Babak

    2015-04-01

    GOCE has contributed important gravity information towards the definition and realization of the new North American height reference system. In addition to the new gravimetric geoid models based on GOCE, offsets of the classical levelling-based vertical datums in North America, namely CGVD28 in Canada and NAVD88 in the USA and Mexico, can be computed with respect to a global equipotential surface defined by means of a GOCE-based geoid. Although the two datums will eventually be replaced by a common and continent-wide vertical datum (and in fact the new Canadian height datum established in 2013 is already geoid based), their connection and unification is of great interest to the scientific and user communities. This study investigates the practical implementation of the geodetic boundary value problem (GBVP) approach as a rigorous method for unifying classical levelling-based vertical datums. The so-called indirect bias term, the effect of the GOCE geoid omission error, the effect of the systematic levelling datum errors and distortions, and the effect of the data errors on the datum unification are of great importance for the practical implementation of this approach. These factors are investigated numerically using the GNSS-levelling and tide gauge (TG) stations in Canada, the USA, Alaska, and Mexico. The results show that the indirect bias term can be omitted if a GOCE-based global geopotential model is used in geoid computation. This is significant because the omission of the indirect bias term simplifies the geoid computations as well as the linear system of equations for the estimation of datum offsets. Because of the existing systematic levelling errors and distortions in the Canadian and US levelling networks, the datum offsets are investigated in eight smaller regions along Canadian and US coastal areas instead of over the whole North American land mass. The effect of the omission error on the datum offsets decreases significantly in areas with good

  4. The EVN view of the highly variable TeV active galaxy IC 310

    Schulz, R; Ros, E; Glawion, D Eisenacher; Bach, U; Elsässer, D; Grossberger, C; Kreykenbohm, I; Mannheim, K; Müller, C; Trüstedt, J; Wilms, J

    2015-01-01

    Very-high-energy $\\gamma$-ray observations of the active galaxy IC 310 with the MAGIC telescopes have revealed fast variability with doubling time scales of less than 4.8min. This implies that the emission region in IC 310 is smaller than 20% of the gravitational radius of the central supermassive black hole with a mass of $3\\times 10^8 M_\\odot$, which poses serious questions on the emission mechanism and classification of this enigmatic object. We report on the first quasi-simultaneous multi-frequency VLBI observations of IC 310 conducted with the EVN. We find a blazar-like one-sided core-jet structure on parsec scales, constraining the inclination angle to be less than $\\sim 20^\\circ$ but very small angles are excluded to limit the de-projected length of the large-scale radio jet.

  5. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  6. The Need for Plasma Astrophysics in Understanding Life Cycles of Active Galaxies

    Li, H; Bellan, P; Colgate, S; Forest, C; Fowler, K; Goodman, J; Intrator, T; Kronberg, P; Lyutikov, M; Zweibel, E

    2009-01-01

    In this White Paper, we emphasize the need for and the important role of plasma astrophysics in the studies of formation, evolution of, and feedback by Active Galaxies. We make three specific recommendations: 1) We need to significantly increase the resolution of VLA, perhaps by building an EVLA-II at a modest cost. This will provide the angular resolution to study jets at kpc scales, where, for example, detailed Faraday rotation diagnosis can be done at 1GHz transverse to jets; 2) We need to build coordinated programs among NSF, NASA, and DOE to support laboratory plasma experiments (including liquid metal) that are designed to study key astrophysical processes, such as magneto-rotational instability (origin of angular momentum transport), dynamo (origin of magnetic fields), jet launching and stability. Experiments allowing access to relativistic plasma regime (perhaps by intense lasers and magnetic fields) will be very helpful for understanding the stability and dissipation physics of jets from Supermassive...

  7. Host galaxies and environment of active galactic nuclei : a study of the XMM large scale structure survey

    Tasse, Cyril

    2008-01-01

    Active galactic nuclei (AGN) result from the infall of matter onto the super-massive black holes that are situated at the centres of galaxies. This process releases an enormous amount of energy into the inter-stellar and inter-galactic medium. Hence, the study of AGN becomes essential in the context

  8. Galaxy Zoo: Are bars responsible for the feeding of active galactic nuclei at 0.2 < z < 1.0?

    Cheung, Edmond; Trump, Jonathan R.; Athanassoula, E.; Bamford, Steven P.; Bell, Eric F.; Bosma, A.; Cardamone, Carolin N.; Casteels, Kevin R. V.; Faber, S. M.; Fang, Jerome J.; Fortson, Lucy F.; Kocevski, Dale D.; Koo, David C.; Laine, Seppo; Lintott, Chris; Masters, Karen L.; Melvin, Thomas; Nichol, Robert C.; Schawinski, Kevin; Simmons, Brooke; Smethurst, Rebecca; Willett, Kyle W.

    2015-02-01

    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS (All-wavelength Extended Groth strip International Survey), COSMOS (Cosmological Evolution Survey), and (Great Observatories Origins Deep Survey-South) GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 1, our findings suggest that large-scale bars have likely never directly been a dominant fuelling mechanism for supermassive black hole growth.

  9. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crighton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P.; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D.; Schmitt, Benjamin; Sehgal, Neelima; Sievers, Johnathan; Staggs, Suzanne; Swetz, Daniel; Thornton, Robert; Wollack, Edward

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 -1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, A(sub 148-218), of 3.7 (+0.62 or -0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  10. The Black Hole-Bulge Relationship in Luminous Broad-Line Active Galactic Nuclei and Host Galaxies

    Shen, J; Schneider, D P; Hall, P B

    2007-01-01

    We have measured the stellar velocity dispersions (\\sigma_*) and estimated the central black hole (BH) masses for over 900 broad-line active galactic nuclei (AGNs) observed with the Sloan Digital Sky Survey. The sample includes objects which have redshifts up to z=0.452, high quality spectra, and host galaxy spectra dominated by an early-type (bulge) component. The AGN and host galaxy spectral components were decomposed using an eigenspectrum technique. The BH masses (M_BH) were estimated from the AGN broad-line widths, and the velocity dispersions were measured from the stellar absorption spectra of the host galaxies. The range of black hole masses covered by the sample is approximately 10^6 < M_BH < 10^9 M_Sun. The host galaxy luminosity-velocity dispersion relationship follows the well-known Faber-Jackson relation for early-type galaxies, with a power-law slope 4.33+-0.21. The estimated BH masses are correlated with both the host luminosities (L_{H}) and the stellar velocity dispersions (\\sigma_*), s...

  11. A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. I. Methodology and Results of Pilot Study

    Bennert, Vardha Nicola; Treu, Tommaso; Woo, Jong-Hak; Malkan, Matthew A

    2010-01-01

    We present high-quality Keck/LRIS longslit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.0210^7 M_sun) to study the relations between black hole mass (MBH) and host-galaxy properties. We determine stellar kinematics of the host galaxy with an unprecedented level of spatial resolution, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH&K, MgIb triplet, and CaII triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the Hbeta emission line and the host-galaxy free 5100A AGN luminosity. Combining results from spectroscopy and imaging allows us to study four MBH scaling relations: MBH-sigma, MBH-L(sph), MBH-M(sph,*), MBH-M(sph,dyn). We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g. SDSS fiber spectra or unresolved data from distant galaxies) can...

  12. Far-infrared line spectra of active galaxies from the Herschel/PACS Spectrometer: the complete database

    Fernández-Ontiveros, J A; Pereira-Santaella, M; Malkan, M A; Andreani, P; Dasyra, K M

    2016-01-01

    We present a coherent database of spectroscopic observations of far-IR fine-structure lines from the Herschel/PACS archive for a sample of 170 local AGN, plus a comparison sample of 20 starburst galaxies and 43 dwarf galaxies. Published Spitzer/IRS and Herschel/SPIRE line fluxes are included to extend our database to the full 10-600 $\\mu m$ spectral range. The observations are compared to a set of CLOUDY photoionisation models to estimate the above physical quantities through different diagnostic diagrams. We confirm the presence of a stratification of gas density in the emission regions of the galaxies, which increases with the ionisation potential of the emission lines. The new [OIV]25.9$\\mu m$/[OIII]88$\\mu m$ vs [NeIII]15.6$\\mu m$/[NeII]12.8$\\mu m$ diagram is proposed as the best diagnostic to separate: $i)$ AGN activity from any kind of star formation; and $ii)$ low-metallicity dwarf galaxies from starburst galaxies. Current stellar atmosphere models fail to reproduce the observed [OIV]25.9$\\mu m$/[OIII]8...

  13. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Star-forming Galaxies from the Sloan Digital Sky Survey

    Jones, M L; Black, C S; Hainline, K N; DiPompeo, M A; Goulding, A D

    2016-01-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGN). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test if an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work that suggests that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGN using a broad instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observe...

  14. Star Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared OR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  15. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  16. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z equals 5.3

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  17. Shaping galaxy evolution with galaxy structure

    Cheung, Edmond

    A fundamental pursuit of astronomy is to understand galaxy evolution. The enormous scales and complex physics involved in this endeavor guarantees a never-ending journey that has enamored both astronomers and laymen alike. But despite the difficulty of this task, astronomers have still attempted to further this goal. Among of these astronomers is Edwin Hubble. His work, which includes the famous Hubble sequence, has immeasurably influenced our understanding of galaxy evolution. In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5Hubble at 0.2active galaxies to a matched sample of inactive, control galaxies shows that there is no statistically significant excess of bars in active hosts. Our result shows that bars are not the primary fueling mechanism of supermassive black hole growth.

  18. Studying Gaugino Mass Unification at the LHC

    Altunkaynak, Baris; Holmes, Michael; Kane, Gordon; Nelson, Brent D

    2009-01-01

    We begin a systematic study of how gaugino mass unification can be probed at the CERN Large Hadron Collider (LHC) in a quasi-model independent manner. As a first step in that direction we focus our attention on the theoretically well-motivated mirage pattern of gaugino masses, a one-parameter family of models of which universal (high scale) gaugino masses are a limiting case. We improve on previous methods to define an analytic expression for the metric on signature space and use it to study one-parameter deviations from universality in the gaugino sector, randomizing over other soft supersymmetry-breaking parameters. We put forward three ensembles of observables targeted at the physics of the gaugino sector, allowing for a determination of this non-universality parameter without reconstructing individual mass eigenvalues or the soft supersymmetry-breaking gaugino masses themselves. In this controlled environment we find that approximately 80% of the supersymmetric parameter space would give rise to a model f...

  19. Predictions from high scale mixing unification hypothesis

    Rahul Srivastava

    2016-02-01

    Starting with ‘high scale mixing unification’ hypothesis, we investigate the renormalization group evolution of mixing parameters and masses for both Dirac and Majorana-type neutrinos. Following this hypothesis, the PMNS mixing parameters are taken to be identical to the CKM ones at a unifying high scale. Then, they are evolved to a low scale using MSSM renormalization group equations. For both types of neutrinos, the renormalization group evolution naturally results in a non-zero and small value of leptonic mixing angle 13. One of the important predictions of this analysis is that, in both cases, the mixing angle 23 turns out to be non-maximal for most of the parameter range. We also elaborate on the important differences between Dirac and Majorana neutrinos within our framework and how to experimentally distinguish between the two scenarios. Furthermore, for both cases, we also derive constraints on the allowed parameter range for the SUSY breaking and unification scales, for which this hypothesis works. The results can be tested by the present and future experiments.

  20. NMSGUT-III: Grand Unification upended

    Aulakh, Charanjit S

    2011-01-01

    We show that matter yukawa couplings of the New Minimal Supersymmetric (SO(10)) GUT(NMSGUT) are subject to very significant GUT scale threshold corrections. Including these threshold effects relaxes the constraint $ y_b-y_\\tau\\simeq y_s-y_\\mu$ operative in $\\textbf{10} -\\textbf{120} $plet generated tree level MSSM matter fermion yukawas $y_f$. We find accurate fits of the MSSM fermion mass-mixing data in terms of NMSGUT superpotential couplings and 5 independent soft Susy breaking parameters $M_0, M_{1/2}, A_0, M^2_{H,\\bar{H}}$ at $M_X$. The fits generally have elevated unification scale $M_X$ near $M_{Planck}$, viable values of $\\alpha_3(M_Z)$, and are consistent with current limits on B violation, $b\\rightarrow s\\gamma$, muon magnetic moment anomaly and Standard Model $\\rho$ parameter. The associated novel and distinctive soft Susy spectra have light gauginos, a \\emph{normal} s-hierarchy and Bino LSP. The Bino LSP is accompanied by second and first generation right chiral sfermions light enough to mediate a...

  1. Neutrino mass and grand unification of flavor

    Mohapatra, Rabindra N

    2010-01-01

    The problem of understanding quark mass and mixing hierarchies has been an outstanding problem of particle physics for a long time. The discovery of neutrino masses in the past decade, exhibiting mixing and mass patterns so very different from the quark sector has added an extra dimension to this puzzle. This is specially difficult to understand within the framework of conventional grand unified theories which are supposed to unify the quarks and leptons at short distance scales. In the paper, I discuss a recent proposal by Dutta, Mimura and this author that appears to provide a promising way to resolve this puzzle. After stating the ansatz, we show how it can be realized within a SO(10) grand unification framework. Just as Gell-Mann's suggestion of SU(3) symmetry as a way to understand the hadronic flavor puzzle of the sixties led to the foundation of modern particle physics, one could hope that a satisfactory resolution of the current quark-lepton flavor problem would provide fundamental insight into the na...

  2. Local grand unification in the heterotic landscape

    Schmidt, Jonas

    2009-07-15

    We consider the possibility that the unification of the electroweak interactions and the strong force arises from string theory, at energies significantly lower than the string scale. As a tool, an effective grand unified field theory in six dimensions is derived from an anisotropic orbifold compactification of the heterotic string. It is explicitly shown that all anomalies cancel in the model, though anomalous Abelian gauge symmetries are present locally at the boundary singularities. In the supersymmetric vacuum additional interactions arise from higher-dimensional operators. We develop methods that relate the couplings of the effective theory to the location of the vacuum, and find that unbroken discrete symmetries play an important role for the phenomenology of orbifold models. An efficient algorithm for the calculation of the superpotential to arbitrary order is developed, based on symmetry arguments. We furthermore present a correspondence between bulk fields of the orbifold model in six dimensions, and the moduli fields that arise from compactifying four internal dimensions on a manifold with non-trivial gauge background. (orig.)

  3. Yukawa Unification Predictions for the LHC

    Anandakrishnan, Archana; Wingerter, Akin

    2012-01-01

    This paper is divided into two parts. In the first part we analyze the consequences, for the LHC, of gauge and third family Yukawa coupling unification with a particular set of boundary conditions defined at the GUT scale. We perform a global chi^2 analysis including the observables M_W, M_Z, G_F, 1/alpha_em, alpha_s(M_Z), M_t,m_b(m_b), M_tau, BR(B -> X_s gamma), BR(B_s -> mu^+ mu^-) and M_h. The fit is performed in the MSSM in terms of 9 GUT scale parameters, while tan beta and mu are fixed at the weak scale. Good fits suggest an upper bound on the gluino mass, M_gluino \\lesssim 2 TeV. This constraint comes predominantly from fitting the bottom quark and Higgs masses (assuming a 125 GeV Higgs). Gluinos should be visible at the LHC in the 14 TeV run but they cannot be described by the typical simplified models. This is because the branching ratios for gluino -> t tbar neutralino, b bbar neutralino, t bbar chargino^-, b tbar chargino^+, g neutralino are comparable. Stops and sbottoms may also be visible. Charg...

  4. Quirks in supersymmetry with gauge coupling unification

    Martin, Stephen P

    2010-01-01

    I investigate the phenomenology of supersymmetric models with extra vector-like supermultiplets that couple to the Standard Model gauge fields and transform as the fundamental representation of a new confining non-Abelian gauge interaction. If perturbative gauge coupling unification is to be maintained, the new group can be SU(2), SU(3), or SO(3). The impact on the sparticle mass spectrum is explored, with particular attention to the gaugino mass dominated limit in which the supersymmetric flavor problem is naturally solved. The new confinement length scale is astronomical for SO(3), so the new particles are essentially free. For the SU(2) and SU(3) cases, the new vector-like fermions are quirks; pair production at colliders yields quirk-antiquirk states bound by stable flux tubes that are microscopic but long compared to the new confinement scale. I study the reach of the Tevatron and LHC for the optimistic case that in a significant fraction of events the quirk-antiquirk bound state will lose most of its en...

  5. Quirks in supersymmetry with gauge coupling unification

    Martin, Stephen P.

    2011-02-01

    I investigate the phenomenology of supersymmetric models with extra vectorlike supermultiplets that couple to the standard model gauge fields and transform as the fundamental representation of a new confining non-Abelian gauge interaction. If perturbative gauge coupling unification is to be maintained, the new group can be SU(2), SU(3), or SO(3). The impact on the sparticle mass spectrum is explored, with particular attention to the gaugino mass dominated limit in which the supersymmetric flavor problem is naturally solved. The new confinement length scale is astronomical for SO(3), so the new particles are essentially free. For the SU(2) and SU(3) cases, the new vectorlike fermions are quirks; pair production at colliders yields quirk-antiquirk states bound by stable flux tubes that are microscopic but long compared to the new confinement scale. I study the reach of the Tevatron and LHC for the optimistic case that in a significant fraction of events the quirk-antiquirk bound state will lose most of its energy before annihilating as quirkonium.

  6. Quarks in supersymmetry with gauge coupling unification

    I investigate the phenomenology of supersymmetric models with extra vectorlike supermultiplets that couple to the standard model gauge fields and transform as the fundamental representation of a new confining non-Abelian gauge interaction. If perturbative gauge coupling unification is to be maintained, the new group can be SU(2), SU(3), or SO(3). The impact on the sparticle mass spectrum is explored, with particular attention to the gaugino mass dominated limit in which the supersymmetric flavor problem is naturally solved. The new confinement length scale is astronomical for SO(3), so the new particles are essentially free. For the SU(2) and SU(3) cases, the new vectorlike fermions are quirks; pair production at colliders yields quirk-antiquirk states bound by stable flux tubes that are microscopic but long compared to the new confinement scale. I study the reach of the Tevatron and LHC for the optimistic case that in a significant fraction of events the quirk-antiquirk bound state will lose most of its energy before annihilating as quirkonium.

  7. Toward Realistic Gauge-Higgs Grand Unification

    Furui, Atsushi; Yamatsu, Naoki

    2016-01-01

    The $SO(11)$ gauge-Higgs grand unification in the Randall-Sundrum warped space is presented. The 4D Higgs field is identified as the zero mode of the fifth dimensional component of the gauge potentials, or as the fluctuation mode of the Aharonov-Bohm phase $\\theta_H$ along the fifth dimension. Fermions are introduced in the bulk in the spinor and vector representations of $SO(11)$. $SO(11)$ is broken to $SO(4) \\times SO(6)$ by the orbifold boundary conditions, which is broken to $SU(2)_L \\times U(1)_Y \\times SU(3)_C$ by a brane scalar. Evaluating the effective potential $V_{\\rm eff} (\\theta_H)$, we show that the electroweak symmetry is dynamically broken to $U(1)_{\\rm EM}$. The quark-lepton masses are generated by the Hosotani mechanism and brane interactions, with which the observed mass spectrum is reproduced. The proton decay is forbidden thanks to the new fermion number conservation. It is pointed out that there appear light exotic fermions. The Higgs boson mass is determined with the quark-lepton masses ...

  8. Induced nuclear activity in galaxy pairs with different morphologies (E+E), (E+S) and (S+S)

    Hernández-Ibarra, Francisco J; Dultzin, Deborah; del Olmo, Ascensión; Perea, Jaime; González, Jesús; Mendoza-Castrejón, Sandro; Bitsakis, Theodoros

    2015-01-01

    We analysed 385 galactic spectra from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) that belong to the catalog of isolated pairs of galaxies by Karachentsev. The spectra corresponds to physical pairs of galaxies as defined by V $\\leq$ 1200 Km/s and a pair separation $\\leq$ 100 kpc. We search for the incidence of nuclear activity, both thermal (star-forming) and non-thermal -Active Galactic Nuclei (AGN). After a careful extraction of the nuclear spectra, we use diagnostic diagrams and find that the incidence of AGN activity is 48 \\% in the paired galaxies with emission lines and 40\\% for the total sample (as compared to $\\sim$ 43 \\% and 41\\% respectively in a sample of isolated galaxies). These results remain after dissecting the effects of morphological type and galactic stellar mass (with only a small, non significant, enhancement of the AGN fraction in pairs of objects). These results suggest that weak interactions are not necessary or sufficient to trigger low-luminosity AGN. Since the fraction of...

  9. The peculiar radio galaxy 4C 35.06: a case for recurrent AGN activity?

    Shulevski, A.; Morganti, R.; Barthel, P. D.; Murgia, M.; van Weeren, R. J.; White, G. J.; Brüggen, M.; Kunert-Bajraszewska, M.; Jamrozy, M.; Best, P. N.; Röttgering, H. J. A.; Chyzy, K. T.; de Gasperin, F.; Bîrzan, L.; Brunetti, G.; Brienza, M.; Rafferty, D. A.; Anderson, J.; Beck, R.; Deller, A.; Zarka, P.; Schwarz, D.; Mahony, E.; Orrú, E.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Butcher, H. R.; Carbone, D.; Ciardi, B.; de Geus, E.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Heald, G.; Hoeft, M.; Hörandel, J.; Horneffer, A.; van der Horst, A. J.; Intema, H.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Meulman, H.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Rowlinson, A.; Scaife, A. M. M.; Serylak, M.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.

    2015-07-01

    Using observations obtained with the LOw Fequency ARray (LOFAR), the Westerbork Synthesis Radio Telescope (WSRT) and archival Very Large Array (VLA) data, we have traced the radio emission to large scales in the complex source 4C 35.06 located in the core of the galaxy cluster Abell 407. At higher spatial resolution (~ 4″), the source was known to have two inner radio lobes spanning 31 kpc and a diffuse, low-brightness extension running parallel to them, offset by about 11 kpc (in projection). At 62 MHz, we detect the radio emission of this structure extending out to 210 kpc. At 1.4 GHz and intermediate spatial resolution (~ 30″), the structure appears to have a helical morphology. We have derived the characteristics of the radio spectral index across the source. We show that the source morphology is most likely the result of at least two episodes of AGN activity separated by a dormant period of around 35 Myr. The outermost regions of radio emission have a steep spectral index (α< - 1), indicative of old plasma. We connect the spectral index properties of the resolved source structure with the integrated fluxdensity spectral index of 4C 35.06 and suggest an explanation for its unusual integrated flux density spectral shape (a moderately steep power law with no discernible spectral break), possibly providing a proxy for future studies of more distant radio sources through inferring their detailed spectral index properties and activity history from their integrated spectral indices. The AGN is hosted by one of the galaxies located in the cluster core of Abell 407. We propose that it is intermittently active as it moves in the dense environment in the cluster core. In this scenario, the AGN turned on sometime in the past, and has produced the helical pattern of emission, possibly a sign of jet precession/merger during that episode of activity. Using LOFAR, we can trace the relic plasma from that episode of activity out to greater distances from the core than ever

  10. A Panchromatic View of Relativistic Jets in Narrow-Line Seyfert 1 Galaxies

    D'Ammando, F; Finke, J; Larsson, J; Giroletti, M; Raiteri, C M

    2016-01-01

    The discovery by the Large Area Telescope on board Fermi of variable gamma-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1) galaxies revealed the presence of a possible third class of Active Galactic Nuclei (AGN) with relativistic jets in addition to blazars and radio galaxies. Considering that NLSy1 are usually hosted in spiral galaxies, this finding poses intriguing questions about the nature of these objects and the formation of relativistic jets. We report on a systematic investigation of the gamma-ray properties of a sample of radio-loud NLSy1, including the detection of new objects, using 7 years of Fermi-LAT data with the new Pass 8 event-level analysis. In addition we discuss the radio-to-very-high-energy properties of the gamma-ray emitting NLSy1, their host galaxy, and black hole mass in the context of the blazar scenario and the unification of relativistic jets at different scales.

  11. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br [Instituto de Astronomia Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP CEP 05508-090 (Brazil)

    2013-03-10

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  12. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the Hα emission line. The collimation and scattering of this broad Hα component was also revealed by fitting the [N II] λλ6548, 6583 and Hα emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = –18° ± 13° and P.A. = 162° ± 13°) along a direction perpendicular to the torus/disk (P.A. = 72° ± 14°) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the Hα emission line is visible and also why many previous studies detected no broad Hα. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  13. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai; Pogge, Richard W.; Vestergaard, Marianne

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to...

  14. Testing Quasar Unification: Radiative Transfer in Clumpy Winds

    Matthews, James H; Long, Knox S; Sim, Stuart A; Higginbottom, Nick; Mangham, Sam W

    2016-01-01

    Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to $10^{43}$ erg s$^{-1}$. Here, we introduce a simple treatment of clumping, and find that a filling factor of $\\sim0.01$ moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Ly \\alpha\\ and CIV 1550\\AA\\ at low inclinations. At high ...

  15. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion. PMID:15703739

  16. The Dust Content and Opacity of Actively Star-Forming Galaxies

    Calzetti, D.; Armus, L.; Bohlin, R. C.; Kinney, A. L.; Koornneef, J.; Storchi-Bergmann, T.

    1999-01-01

    Submitted to: Astrophys. J. Abstract: (Abridged) We present far-infrared (FIR) photometry at 150 micron and 205 micron of eight low-redshift starburst galaxies obtained with the ISO Photometer. Five of the eight galaxies are detected in both wavebands and these data are used, in conjunction with IRA

  17. Unification of Gauge Couplings in Radiative Neutrino Mass Models

    Hagedorn, Claudia; Riad, Stella; Schmidt, Michael A

    2016-01-01

    We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively. We study three different classes of neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 $\\Delta L=2$ operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino masses at one-loop level and (III) models with particles in the adjoint representation of $\\mathrm{SU}(3)$. In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admit gauge coupling unification. In class (III), none of the models leads to gauge coupling unification. Regarding the scale of unification, we find values between $10...

  18. INSIGHT INTO ACTIVE GALACTIC NUCLEUS AND HOST GALAXY CO-EVOLUTION FROM HARD X-RAY EMISSION

    We study the issue of active galactic nucleus (AGN) and host co-evolution by focusing on the correlation between the hard X-ray emission from central AGNs and the stellar populations of the host galaxies. Focusing on galaxies with strong Hα line emission (EW(Hα) > 5 Å), both X-ray and optical spectral analyses are performed on 67 (partially) obscured AGNs that are selected from the XMM-Newton 2XMMi/SDSS-DR7 catalog originally cross-matched by Pineau et al. The sample allows us to study central AGN activity and host galaxy activity directly and simultaneously in individual objects. Combining the spectral analysis in both bands reveals that the older the stellar population of the host galaxy, the harder the X-ray emission will be, which was missed in our previous study where ROSAT hardness ratios were used. By excluding the contamination from host galaxies and from jet beaming emission, the correlation indicates that Compton cooling in the accretion disk corona decreases with the mean age of the stellar population. We argue that this correlation is related to the correlation of L/LEdd with the host stellar population. In addition, the [O I]/Hα and [S II]/Hα narrow-line ratios are identified to correlate with the spectral slope in hard X-rays, which can be inferred from the currently proposed evolution of the X-ray emission because of the confirmed tight correlations between the two line ratios and stellar population age.

  19. The X-Ray Zurich Environmental Study (X-ZENS). I. Chandra and XMM-Newton Observations of Active Galactic Nuclei in Galaxies in nearby Groups

    Silverman, J. D.; Miniati, F.; Finoguenov, A.; Carollo, C. M.; Cibinel, A.; Lilly, S. J.; Schawinski, K.

    2014-01-01

    We describe X-ray observations with Chandra and XMM-Newton of 18 M group ~ 1-6 × 1013 M ⊙, z ~ 0.05 galaxy groups from the Zurich ENvironmental Study. The X-ray data aim at establishing the frequency and properties, unaffected by host galaxy dilution and obscuration, of active galactic nuclei (AGNs) in central and satellite galaxies, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of the 177 galaxies, down to a sensitivity level of f 0.5 - 8 keV ~ 5 × 10-15 erg cm-2 s-1, corresponding to a limiting luminosity of L 0.5 - 8 keV ~ 3 × 1040 erg s-1. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L Edd >~ 10-4), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift and compare the structural and morphological properties between AGN-active and non-active galaxies. At galaxy mass scales <1011 M ⊙, central galaxies appear to be a factor of ~4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to be hosted by massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner parts of group halos, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data indicate that the rate of decline with redshift of AGN activity in galaxy groups matches that of the global AGN population, indicating that either AGN activity occurs preferentially in group halos or that the evolution rate is independent of halo mass.

  20. The X-ray Zurich environmental study (X-zens). I. Chandra and XMM-Newton observations of active galactic nuclei in galaxies in nearby groups

    We describe X-ray observations with Chandra and XMM-Newton of 18 M group ∼ 1-6 × 1013 M ☉, z ∼ 0.05 galaxy groups from the Zurich ENvironmental Study. The X-ray data aim at establishing the frequency and properties, unaffected by host galaxy dilution and obscuration, of active galactic nuclei (AGNs) in central and satellite galaxies, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of the 177 galaxies, down to a sensitivity level of f 0.5 – 8 keV ∼ 5 × 10–15 erg cm–2 s–1, corresponding to a limiting luminosity of L 0.5 – 8 keV ∼ 3 × 1040 erg s–1. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L Edd ≳ 10–4), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift and compare the structural and morphological properties between AGN-active and non-active galaxies. At galaxy mass scales <1011 M ☉, central galaxies appear to be a factor of ∼4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to be hosted by massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner parts of group halos, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data indicate that the rate of decline with redshift of AGN activity in galaxy groups matches that of the global AGN population, indicating that either AGN activity occurs preferentially in group halos or that the evolution rate is independent of halo mass.

  1. The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS.

    Kauffmann, Guinevere; Heckman, Timothy M

    2005-03-15

    We examine the relationship between galaxies, supermassive black holes and AGN using a sample of 23,000 narrow-emission-line ('type 2') active galactic nuclei (AGN) drawn from a sample of 123,000 galaxies from the Sloan Digital Sky Survey. We have studied how AGN host properties compare with those of normal galaxies and how they depend on the luminosity of the active nucleus. We find that AGN reside in massive galaxies and have distributions of sizes and concentrations that are similar to those of the early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high- luminosity AGN have much younger mean stellar ages, and a significant fraction have experienced recent starbursts. High-luminosity AGN are also found in lower-density environments. We then use the stellar velocity dispersions of the AGN hosts to estimate black hole masses and their [OIII]lambda5007 emission-line luminosities to estimate black hole accretion rates. We find that the volume averaged ratio of star formation to black hole accretion is approximately 1000 for the bulge-dominated galaxies in our sample. This is remarkably similar to the observed ratio of stellar mass to black hole mass in nearby bulges. Most of the present-day black hole growth is occurring in black holes with masses less than 3 x 10(7)M(3). Our estimated accretion rates imply that low-mass black holes are growing on a time-scale that is comparable with the age of the Universe. Around 50% this growth takes place in AGN that are radiating within a factor of five of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The remaining growth occurs in lower luminosity AGN. The growth time-scale increases by more than an order of magnitude for the most massive black holes in our sample. We conclude that the evolution of the AGN luminosity function documented in recent optical

  2. Unification of binary star ephemeris solutions

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  3. A NEW APPROACH TO CONSTRAIN BLACK HOLE SPINS IN ACTIVE GALAXIES USING OPTICAL REVERBERATION MAPPING

    A tight relation between the size of the broad-line region (BLR) and optical luminosity has been established in about 50 active galactic nuclei studied through reverberation mapping of the broad Hβ emission line. The R BLR-L relation arises from simple photoionization considerations. Using a general relativistic model of an optically thick, geometrically thin accretion disk, we show that the ionizing luminosity jointly depends on black hole mass, accretion rate, and spin. The non-monotonic relation between the ionizing and optical luminosity gives rise to a complicated relation between the BLR size and the optical luminosity. We show that the reverberation lag of Hβ to the varying continuum depends very sensitively on black hole spin. For retrograde spins, the disk is so cold that there is a deficit of ionizing photons in the BLR, resulting in shrinkage of the hydrogen ionization front with increasing optical luminosity, and hence shortened Hβ lags. This effect is specially striking for luminous quasars undergoing retrograde accretion, manifesting in strong deviations from the canonical R BLR-L relation. This could lead to a method to estimate black hole spins of quasars and to study their cosmic evolution. At the same time, the small scatter of the observed R BLR-L relation for the current sample of reverberation-mapped active galaxies implies that the majority of these sources have rapidly spinning black holes

  4. Quark-lepton mass unification at TeV scales

    A scenario combining a model of early (TeV) unification of quarks and leptons with the physics of large extra dimensions provides a natural mechanism linking quark and lepton masses at TeV scale. This has been dubbed as early quark-lepton mass unification by one of us (P. Q. H.) in one of the two models of early quark-lepton unification, which are consistent with data, namely SU(4)PS x SU(2)L x SU(2)R x SU(2)H. In particular, it focused on the issue of naturally light Dirac neutrino. The present paper will focus on similar issues in the other model, namely SU(4)PS x SU(3)L x SU(3)H

  5. Are luminous radio-loud active galactic nuclei triggered by galaxy interactions?

    Almeida, C Ramos; Tadhunter, C; Pérez-González, P G; Barro, G; Inskip, K J; Morganti, R; Holt, J; Dicken, D

    2011-01-01

    We present the results of a comparison between the optical morphologies of a complete sample of 46 southern 2Jy radio galaxies at intermediate redshifts (0.05galaxies: 55 ellipticals at redshifts z<0.01 from the Observations of Bright Ellipticals at Yale (OBEY) survey, and 107 early-type galaxies at redshifts 0.2galaxy interactions in the triggering of powerful radio galaxies (PRGs). We find that a significant fraction of quiescent ellipticals at low and intermediate redshifts show evidence for disturbed morphologies at relatively high surface brightness levels, which are likely the result of past or on-going galaxy interactions. However, the morphological features detected in the galaxy hosts of the PRGs (e.g. tidal tails, shells, bridges, etc.) are up to 2 magnitudes brighter than those present in their quiescent counterparts. Indeed, if...

  6. The complex radio and X-ray structure in the nuclear regions of the active galaxy NGC1365

    Stevens, I R; Norris, R P; Stevens, Ian R.; Forbes, Duncan A.; Norris, Ray P.

    1999-01-01

    We present a multiwavelength analysis of the prominent active galaxy NGC1365, in particular looking at the radio and X-ray properties of the central regions of the galaxy. We analyse ROSAT observations of NGC1365, and discuss recent ASCA results. In addition to a number of point sources in the vicinity of NGC1365, we find a region of X-ray emission extending along the central bar of the galaxy, combined with an emission peak near the centre of the galaxy. This X-ray emission is centred on the optical/radio nucleus, but is spatially extended. The X-ray spectrum can be well fitted by a thermal plasma model, with kT=0.6-0.8keV and a low local absorbing column. The thermal spectrum is suggestive of starburst emission rather than emission from a central black-hole. The ATCA radio observations show a number of hotspots, located in a ring around a weak radio nucleus. Synchrotron emission from electrons accelerated by supernovae and supernova remnants (SNRs) is the likely origin of these hotspots. The radio nucleus h...

  7. A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. III. The BH mass - $\\sigma$ relation

    Bennert, Vardha N; Auger, Matthew W; Rosen, Rebecca; Harris, Chelsea E; Malkan, Matthew A; Woo, Jong-Hak

    2014-01-01

    We create a baseline of the black hole (BH) mass ($M_{\\rm BH}$) - stellar-velocity dispersion ($\\sigma$) relation for active galaxies, using a homogeneous sample of 66 Seyfert-1 galaxies in the local Universe (0.02 $< z <$ 0.09) selected from the Sloan Digital Sky Survey (SDSS). A multi-filter analysis of SDSS images yields AGN luminosities free of host-galaxy contamination. High signal-to-noise ratio Keck spectra provide the width of the broad H$\\beta$ emission line free of FeII emission and stellar absorption. $M_{\\rm BH}$ is estimated following the virial method. The Keck long-slit spectra provide spatially-resolved kinematics that is used to determine the rotation-free stellar-velocity dispersion within the spheroid effective radius ($\\sigma_{\\rm reff}$). To probe the effect of the kinematically-cold but rotationally-supported disk component, present in the majority of host galaxies, on aperture sigma measurements, we determine the stellar-velocity dispersion within an aperture of the size of the SD...

  8. Quark-lepton Yukawa-unification at lower mass scales

    In the nonsupersymmetric two-Higgs-doublet-standard model, we find t-b-τ Yukawa unification consistent with the CERN-LEP data, experimental values of mb, mτ, and mt = 160 GeV-190 GeV at lower mass scales: Mc ≅ 3 x 108 GeV-3 x 109 GeV. We also show how such quark-lepton unification scales can be reconciled with SU(2)L x SU(2)R x SU(4)C-intermediate breaking in SO(10) including threshold and gravitational corrections. (author). 16 refs, 4 figs, 1 tab

  9. Proton Decay in the Semi-Simple Unification

    Fujii, Masaaki; Watari, T.(Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwano-ha 5-1-5, 277-8583, Tokyo, Japan)

    2001-01-01

    Semi-simple unification is one of a model which naturally solves two difficulties in the supersymmetric grand unification theory: doublet-triplet splitting problem and suppression of dimension 5 proton decay. We analyzed the dimension 6 proton decay of this model using perturbative analysis at the next-to-leading order. The life time of proton is 3 \\times 10^{34} - 10^{35} years for wide range of SUSY breaking parameters, and there is an intriguing possibility of observing proton decay signal...

  10. Leptonic SU(3), grand unification, and higher-dimensionality gravidynamics

    Baaklini, N.S. (International Centre for Theoretical Physics, Trieste (Italy) Dahr el Chir Science Centre, Dhour el Choueir (Lebanon))

    1990-06-01

    Two considerations pertaining to the electroweak symmetry of leptons, and to higher-dimensionality gravidynamic spacetime-internal unification, lead us to suggest the gauging of SU(15), for each generation of leptons and quarks. On one hand, the electroweak leptonic sector is governed by SU(3), while the quark sector is standard. On the other hand, the Lorentz symmetry of Weyl fermions is generalized to spin-containing SU(2{ital n},C). Sketching the basic elements of the corresponding higher-dimensionality gravidynamics, we point out an associated quark-lepton unification scheme which does not require {ital V}+{ital A} generations.

  11. Super-gravity unification with bilinear R-parity violation

    Valle, José W F

    1998-01-01

    Bilinear R-parity violation (BRpV) provides the simplest and most meaningful way to include such effects into the Minimal Supersymmetrical Standard Model (MSSM). It is defined by a quadratic superpotential term $\\epsilon L H$ which mixes lepton and Higgs superfields and mimics the effects of models with spontaneous breaking. I review some of its main features and show how large fine-tuning. I discuss the effect of BRpV on gauge and Yukawa unification, showing how bottom--tau unification can be achieved at any value of solution is ruled out.

  12. WMAP Dark Matter Constraints on Yukawa Unification with Massive Neutrinos

    Gómez, M E; Naranjo, P; Rodríguez-Quintero, J

    2009-01-01

    We revisit the WMAP dark matter constraints on Yukawa Unification in the presence of massive neutrinos. The large lepton mixing indicated by the data may modify the predictions for the bottom quark mass, enabling Yukawa unification also for large $\\tan\\beta$, and for positive $\\mu$ that was previously disfavoured. As a result, the allowed parameter space for neutralino dark matter increases for positive $\\mu$, particularly for areas with resonant enhancement of the neutralino relic density. On the contrary, a negative $\\mu$ is not easily compatible with large lepton mixing and Dirac neutrino Yukawa couplings, and the WMAP allowed parameter space is in this case strongly constrained.

  13. Supernovae in paired galaxies

    Nazaryan, T A; Hakobyan, A A; Adibekyan, V Zh; Kunth, D; Mamon, G A; Turatto, M; Aramyan, L S

    2013-01-01

    We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies. SN types are not correlated with the luminosity ratio of host and neighbor galaxies in pairs. The orientation of SNe with respect to the preferred direction toward neighbor galaxy is found to be isotropic and independent of kinematical properties of the galaxy pair.

  14. Strings: A possible alternative explanation for the Unification of Gravitation Field and Electromagnetic Field

    Rivera, Susana

    Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters

  15. The incidence of nuclear activity in galaxy pairs with different morphologies (E+E), (E+S) and (S+S)

    Hernández-Ibarra, Francisco J.; Krongold, Yair; Dultzin, Deborah; del Olmo, Ascensión; Perea, Jaime; González, Jesús; Mendoza-Castrejón, Sandro; Bitsakis, Theodoros

    2016-06-01

    We analysed 385 Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) galactic spectra that belong to the catalogue of isolated pairs of galaxies by Karachentsev. The spectra correspond to physical pairs of galaxies defined by a difference in velocity ≤1200 km s-1 and a pair separation ≤100 kpc. We study the incidence of nuclear activity, both star formation and non-thermal - active galactic nuclei (AGNs). After a careful extraction of the nuclear spectra, we use diagnostic diagrams and find that the incidence of AGNs is 48 per cent in emission line paired galaxies and 40 per cent for the total sample (as compared to ˜43 per cent and 41 per cent, respectively, in a sample of isolated galaxies). These results remain after dissecting the effects of morphological type and galactic stellar mass (with only a small, non significant, enhancement of the AGN fraction in galaxy pairs). These results suggest that weak interactions are not necessary and/or sufficient to trigger low-luminosity AGN. Since the fraction of AGN is predominant in early-type spiral galaxies, we conclude that the role of a bulge, and a large gas reservoir are both essential for the triggering of nuclear activity. The most striking result is that Type 1 nuclei are absent from the AGN sample. This result is in conflict with the Unified Model, and suggests that high accretion rates are essential to form the broad line region in active galaxies.

  16. X-ray Detections of Sub-millimetre Galaxies: Active Galactic Nuclei Versus Starburst Contribution

    Johnson, Seth P; Wang, Danial Q; Williams, Christina C; Scott, Kim S; Yun, Min S; Pope, Alexandra; Lowenthal, James; Aretxaga, Itziar; Hughes, David; Kim, M J; Kim, Sungeun; Tamura, Yoichi; Kohno, Kotaro; Ezawa, Hajime; Kawabe, Ryohei; Oshima, Tai; 10.1093/mnras/stt197

    2013-01-01

    We present a large-scale study of the X-ray properties and near-IR-to-radio SEDs of submillimetre galaxies (SMGs) detected at 1.1mm with the AzTEC instrument across a ~1.2 square degree area of the sky. Combining deep 2-4 Ms Chandra data with Spitzer IRAC/MIPS and VLA data within the GOODS-N/S and COSMOS fields, we find evidence for AGN activity in ~14 percent of 271 AzTEC SMGs, ~28 percent considering only the two GOODS fields. Through X-ray spectral modeling and SED fitting using Monte Carlo Markov Chain techniques to Siebenmorgen et al. (2004) (AGN) and Efstathiou et al. (2000) (starburst) templates, we find that while star formation dominates the IR emission, with SFRs ~100-1000 M_sun/yr, the X-ray emission for most sources is almost exclusively from obscured AGNs, with column densities in excess of 10^23 cm^-2. Only for ~6 percent of our sources do we find an X-ray-derived SFR consistent with NIR-to-radio SED derived SFRs. Inclusion of the X-ray luminosities as a prior to the NIR-to-radio SED effectively...

  17. Physical conditions in nearby active galaxies correlated with ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

    Gureev, Sergey; Troitsky, Sergey

    2008-01-01

    We analyze the active-galaxy correlation reported in 2007 by the Pierre Auger Collaboration. The signal diminishes if the correlation-function approach (counting all "source-event" pairs and not only "nearest neighbours") is used, suggesting that the correlation may reveal individual sources and not their population. We analyze available data on physical conditions in these individual correlated sources and conclude that acceleration of protons to the observed energies is hardly possible in a...

  18. Investigating the relationship between AGN activity and stellar mass in zCOSMOS galaxies at 0

    Vitale, M; Cimatti, A; Lilly, S J; Carollo, C M; Contini, T; Kneib, J -P; Fevre, O Le; Mainieri, V; Renzini, A; Scodeggio, M; Zamorani, G; Bardelli, S; Barnes, L; Bolzonella, M; Bongiorno, A; Bordoloi, R; Bschorr, T J; Cappi, A; Caputi, K; Coppa, G; Cucciati, O; de la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Iovino, A; Kampczyk, P; Knobel, C; Koekemoer, A M; Kovac, K; Lamareille, F; Borgne, J -F Le; Brun, V Le; Lopez-Sanjuan, C; Maier, C; McCracken, H J; Moresco, M; Nair, P; Oesch, P A; Pello, R; Peng, Y; Montero, E Perez; Pozzetti, L; Presotto, V; Silverman, J; Tanaka, M; Tasca, L; Tresse, L; Vergani, D; Welikala, N; Zucca, E

    2013-01-01

    We investigate the link between AGN activity, star-formation and stellar mass of the host galaxy at 010.2 threshold. Moreover, the stellar populations of AGN hosts are found to be older with respect to star-forming and composites galaxies. This could be due to the the tendency of AGN to reside in massive hosts. The dependence of the AGN classification on the stellar mass is in agreement with what has been already found in previous studies. It is consistent with, together with the evidence of older stellar populations inhabiting the AGN-like galaxies, the downsizing scenario. In particular, our evidence points to an evolutionary scenario where the AGN-feedback is capable of quenching the star formation in the most massive galaxies. Therefore, the AGN-feedback is the best candidate for initiating the passive evolutionary phase of galaxies.

  19. ASSOCIATIONS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS WITH ACTIVE, LOW-REDSHIFT SPIRAL GALAXIES

    Following the discovery in the 1960s of radio and optical QSOs it was found that some of them lie very close to low-redshift (z ≤ 0.01) spiral galaxies with separations of ∼<2 arcmin. These were discovered both serendipitously by many observers, and systematically by Arp. They are some of the brightest QSOs in radio and optical wavelengths and are very rare. We have carried out a new statistical analysis of most of those galaxy-QSO pairs and find that the configurations have high statistical significance. We show that gravitational microlensing due to stars or other dark objects in the halos of the galaxies apparently cannot account for the excess. Sampling or identification bias likewise seems unable to explain it. Following this up we selected all ∼4000 QSOs with g ≤ 18 from a catalog of confirmed QSOs in the Sloan Digital Sky Survey, and compared them with various subsets of galaxies from the RC 3 galaxy catalog. In contrast to the earlier results, no significant excess of such QSOs was found around these galaxies. Possible reasons for the discrepancy are discussed.

  20. The merger fraction of active and inactive galaxies in the local Universe through an improved non-parametric classification

    Cotini, Stefano; Caccianiga, Alessandro; Colpi, Monica; Della Ceca, Roberto; Mapelli, Michela; Severgnini, Paola; Segreto, Alberto; 10.1093/mnras/stt358

    2013-01-01

    We investigate the possible link between mergers and the enhanced activity of supermassive black holes (SMBHs) at the centre of galaxies, by comparing the merger fraction of a local sample (0.003 =< z < 0.03) of active galaxies - 59 active galactic nuclei (AGN) host galaxies selected from the all-sky Swift BAT (Burst Alert Telescope) survey - with an appropriate control sample (247 sources extracted from the Hyperleda catalogue) that has the same redshift distribution as the BAT sample. We detect the interacting systems in the two samples on the basis of non-parametric structural indexes of concentration (C), asymmetry (A), clumpiness (S), Gini coefficient (G) and second order momentum of light (M20). In particular, we propose a new morphological criterion, based on a combination of all these indexes, that improves the identification of interacting systems. We also present a new software - PyCASSo (Python CAS Software) - for the automatic computation of the structural indexes. After correcting for the c...

  1. High-Resolution Imaging of Water Maser Emission in the active galaxies NGC 6240 and M51

    Hagiwara, Yoshiaki

    2016-01-01

    We present the results of observations of 22GHz H2O maser emission in NGC 6240 and M51 made with the Karl G. Jansky Very Large Array. Two major H2O maser features and several minor features are detected toward the southern nucleus of NGC 6240. These features are redshifted by about 300 km/s from the galaxy's systemic velocity and remain unresolved at the synthesized beam size. A combination of our two-epoch observations and published data reveals an apparent correlation between the strength of the maser and the 22GHz radio continuum emission, implying that the maser excitation relates to the activity of an active galactic nucleus in the southern nucleus rather than star-forming activity. The star-forming galaxy M51 hosts H2O maser emission in the center of the galaxy; however, the origin of the maser has been an open question. We report the first detection of 22GHz nuclear radio continuum emission in M51. The continuum emission is co-located with the maser position, which indicates that the maser arises from ...

  2. Narrow-line Seyfert 1 galaxies - rebels of the AGN family

    Järvelä, Emilia

    2016-01-01

    Narrow-line Seyfert 1 galaxies, with their extreme properties, defy our current knowledge of active galactic nuclei and relativistic jet systems. They excite, and might help us answer, many questions concerning the evolution and unification of AGN, but still remain a poorly studied class of AGN as such. We did an extensive study of a large sample of NLS1s using various statistical methods, for example, multiwavelength correlations and principal component analysis. We wanted to examine how and where in NLS1s different kinds of radiation are produced, and how the emission properties are connected to other intrinsic AGN properties. In addition we present the early results of our ongoing research about the large-scale environments of NLS1s. We also introduce the Mets\\"ahovi Radio Observatory NLS1 survey and its first results, and show some early results for individual sources.

  3. The Dust Content and Opacity of Actively Star-Forming Galaxies

    Calzetti, Daniela; Armus, Lee; Bohlin, Ralph C.; Kinney, Anne L.; Koornneef, Jan; Storchi-Bergmann, Thaisa

    2000-01-01

    We present far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT. Five of the eight galaxies are detected in both wave bands, and these data are used, in conjunction with IRAS archival photometry, to model the dust emission at lambda approximately greater than 40 microns. The FIR spectral energy distributions (SEDs) are best fitted by a combination of two modified Planck functions, with T approx. 40 - 55 K (warm dust) and T approx. 20-23 K (cool dust) and with a dust emissivity index epsilon = 2. The cool dust can be a major contributor to the FIR emission of starburst galaxies, representing up to 60% of the total flux. This component is heated not only by the general interstellar radiation field, but also by the starburst itself. The cool dust mass is up to approx. 150 times larger than the warm dust mass, bringing the gas-to-dust ratios of the starbursts in our sample close to Milky Way values, once resealed for the appropriate metallicity. The ratio between the total dust FIR emission in the range 1-1000 microns and the IRAS FIR emission in the range 40 - 120 microns is approx. 1.75, with small variations from galaxy to galaxy. This ratio is about 40% larger than previously inferred from data at millimeter wavelengths. Although the galaxies in our sample are generally classified as "UV bright," for four of them the UV energy emerging shortward of 0.2 microns is less than 15% of the FIR energy. On average, about 30% of the bolometric flux is coming out in the UV-to-near-IR wavelength range; the rest is emitted in the FIR. Energy balance calculations show that the FIR emission predicted by the dust reddening of the UV-to-near-IR stellar emission is within a factor of approx. 2 of the observed value in individual galaxies and within 20% when averaged over a large sample. If our sample of local starbursts is representative of high-redshift (z approx. greater than 1

  4. REMOVING COOL CORES AND CENTRAL METALLICITY PEAKS IN GALAXY CLUSTERS WITH POWERFUL ACTIVE GALACTIC NUCLEUS OUTBURSTS

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ∼1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  5. The Neural Basis of Semantic Unification%语言理解中语义整合的神经机制

    朱祖德; 王穗苹; 冯刚毅; 李国超

    2011-01-01

    Semantic unification is one of the core components of language production and comprehension. In this paper, the most relevant models about semantic unification were described, including multiple phases model (Friederici, 2002), Bilateral Activation, Integration and Selection model (BIAS) (Jing - Beenan, 2005 ), Menory, Unification and Control model .(MUC) (Hagoort, 2005), N400 model (Lau, Phillips, & Poeppel, 2008). The issues at core of debate include the definition of semantic unification and the corresponding locus, as well as whether there is a linguistic specific unification locus. Following the BIAS model and the N400 model, semantic unification is apart from semantic selection and controlled processing. According to MUC model, semantic unification refers to the process by which we construct eomplex meaning based on elmaentary semantic blocks (e. g. words). It relies on selection and inhibition owing to the inherent ambiguity nature of language comprehension. However, selection is not always a prerequisite for semantic unification. Unification constructs semantic representation that is not already available in long- term memory. In addition, some information which should be unified is unique and does not engage selection. For instance, Tesink et al. (Tesink, et al., 2009) found left inferior frontal gyrus activation when content violated character's gender information as indicated by the acoustics of the voice (for example, a men said he was pregnant), a situation which unlikely relies on selection. In the future, it would be helpful to further investigate whether the activation in the left inferior frontal gyrus during semantic unification is linguistic-specified or domain general. Since it was found that activation between semantic unification and general cognitive control such as flanker task induced control processing was overlapping (Ye & Zhou, 2009). Moreover, cumulative evidence suggested that functional

  6. Unification models with reheating via primordial black holes

    Hidalgo, J. C.; Urena-Lopez, L. Arturo; Liddle, Andrew R.

    2011-01-01

    We study the possibility of reheating the universe through the evaporation of primordial black holes created at the end of inflation. This is shown to allow for the unification of inflation and dark matter under the dynamics of a single scalar field. We determine the necessary conditions to recover the standard Big Bang by the time of nucleosynthesis after reheating through black holes.

  7. Similarity-Based Unification: A Multi-Adjoint Approach

    Medina, J.; Ojeda-Aciego, M.; Vojtáš, Peter

    2004-01-01

    Roč. 146, č. 1 (2004), s. 43-62. ISSN 0165-0114 Source of funding: V - iné verejné zdroje Keywords : similarity * fuzzy unification Subject RIV: BA - General Mathematics Impact factor: 0.734, year: 2004

  8. Educational Systems and Rising Inequality: Eastern Germany after Unification

    von Below, Susanne; Powell, Justin J. W.; Roberts, Lance W.

    2013-01-01

    Educational systems considerably influence educational opportunities and the resulting social inequalities. Contrasting institutional regulations of both structures and contents, the authors present a typology of educational system types in Germany to analyze their effects on social inequality in eastern Germany after unification. After 1990, the…

  9. Supergravity and the unification of the laws of physics

    Beginning with a brief history of the development of elementary particle theory the theory of supergravity is described and its implications discussed. The promise of this theory for the unification of physical forces is emphasized, and the various supersymmetry theories are considered separately

  10. Pre-metric electromagnetism as a path to unification

    Delphenich, David

    2015-01-01

    It is shown that the pre-metric approach to Maxwell's equations provides an alternative to the traditional Einstein-Maxwell unification program, namely, that electromagnetism and gravitation are unified in a different way that makes the gravitational field a consequence of the electromagnetic constitute properties of spacetime, by way of the dispersion law for the propagation of electromagnetic waves.

  11. Law Behind Second Law of Thermodynamics --Unification with Cosmology--

    Nielsen, Holger B.; Ninomiya, Masao

    2006-01-01

    In an abstract setting of a general classical mechanical system as a model for the universe we set up a general formalism for a law behind the second law of thermodynamics, i.e. really for "initial conditions". We propose a unification with the other laws by requiring similar symmetry and locality properties.

  12. Testing quasar unification: radiative transfer in clumpy winds

    Matthews, J. H.; Knigge, C.; Long, K. S.; Sim, S. A.; Higginbottom, N.; Mangham, S. W.

    2016-05-01

    Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

  13. Star formation activity in a young galaxy cluster at z=0.866

    Laganá, T F; Martins, L P; da Cunha, E

    2016-01-01

    The galaxy cluster RXJ1257$+$4738 at $z=0.866$ is one of the highest redshift clusters with a richness of multi-wavelength data, and thus a good target to study the star formation-density relation at early epochs. Using a sample of spectroscopically-confirmed cluster members, we derive the star formation rates of our galaxies using two methods, (I) the relation between SFR and total infrared luminosity extrapolated from the observed \\textit{Spitzer} MIPS 24$\\mu$m imaging data, and (II) spectral energy distribution (SED) fitting using the MAGPHYS code, including eight different bands. We show that, for this cluster, the SFR-density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming less stars per unit of mass, and thus suggesting that the increase in star-forming members is driv...

  14. Nebular excitation in z ∼ 2 star-forming galaxies from the SINS and LUCI surveys: The influence of shocks and active galactic nuclei

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Buschkamp, Peter; Förster Schreiber, Natascha M.; Kurk, Jaron; Rosario, David; Davies, Ric; Eisenhauer, Frank; Lutz, Dieter [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Sternberg, Amiel [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Gnat, Orly [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Lilly, Simon J.; Carollo, C. Marcella [Institute of Astronomy, Department of Physics, Eidgenössische Technische Hochschule, ETH, CH-8093 Zürich (Switzerland); Burkert, Andreas [Universitäts-Sternwarte Ludwig-Maximilians-Universität (USM), Scheinerstr. 1, D-81679 München (Germany); Cresci, Giovanni [Istituto Nazionale di Astrofisica Osservatorio di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shapiro Griffin, Kristen [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Hicks, Erin K. S., E-mail: sfnewman@berkeley.edu [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); and others

    2014-01-20

    Based on high-resolution, spatially resolved data of 10 z ∼ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the 'composite' region of the z ∼ 0 [N II]/Hα versus [O III]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H II regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O III]/Hβ versus stellar mass plane, does not properly separate z ∼ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ∼ 2 mass-metallicity relation (i.e., to the mass they would have at z ∼ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N II]/Hα are more biased by shocks and AGNs at high-z than the [O III]/Hβ/[N II]/Hα calibration.

  15. AN Hα NUCLEAR SPIRAL STRUCTURE IN THE E0 ACTIVE GALAXY Arp 102B

    We report the discovery of a two-armed mini-spiral structure within the inner kiloparsec of the E0 LINER/Seyfert 1 galaxy Arp 102B. The arms are observed in Hα emission and located east and west of the nucleus, extending up to ∼1 kpc from it. We use narrow-band imaging from the Hubble Space Telescope Advanced Camera for Surveys, in combination with archival Very Large Array radio images at 3.6 and 6 cm to investigate the origin of the nuclear spiral. From the Hα luminosity of the spiral, we obtain an ionized gas mass of the order of 106 solar masses. One possibility is that the nuclear spiral represents a gas inflow triggered by a recent accretion event which has replenished the accretion disk, giving rise to the double-peaked emission-line profiles characteristic of Arp 102B. However, the radio images show a one-sided curved jet which correlates with the eastern spiral arm observed in the Hα image. A published milliarcsecond radio image also shows a one-sided structure at position angle ∼400, approximately aligned with the inner part of the eastern spiral arm. The absence of a radio counterpart to the western spiral arm is tentatively interpreted as indicating that the jet is relativistic, with an estimated speed of 0.45c. Estimates of the jet kinetic energy and the ionizing luminosity of the active nucleus indicate that both are capable of ionizing the gas along the spiral arms. We conclude that, although the gas in the nuclear region may have originated in an accretion event, the mini spiral is most likely the result of a jet-cloud interaction rather than an inflowing stream.

  16. BALANCING THE ENERGY BUDGET BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT INFRARED LUMINOUS GALAXIES

    We present deep Spitzer mid-infrared spectroscopy, along with 16, 24, 70, and 850 μm photometry, for 22 galaxies located in the Great Observatories Origins Deep Survey-North (GOODS-N) field. The sample spans a redshift range of 0.6 ∼AB > 25 mag) sources. We find that infrared (IR; 8-1000 μm) luminosities derived by fitting local spectral energy distributions (SEDs) with 24 μm photometry alone are well matched to those when additional mid-infrared spectroscopic and longer wavelength photometric data are used for galaxies having z ∼12 L sun. However, for galaxies in the redshift range between 1.4 ∼3 x 1012 L sun, IR luminosities are overestimated by an average factor of ∼5 when SED fitting with 24 μm photometry alone. This result arises partly due to the fact that high-redshift galaxies exhibit aromatic feature equivalent widths that are large compared to local galaxies of similar luminosities. Using improved estimates for the IR luminosities of these sources, we investigate whether their infrared emission is found to be in excess relative to that expected based on extinction-corrected UV star formation rates (SFRs), possibly suggesting the presence of an obscured AGN. Through a spectral decomposition of mid-infrared spectroscopic data, we are able to isolate the fraction of IR luminosity arising from an AGN as opposed to star formation activity. This fraction is only able to account for ∼30% of the total IR luminosity among the entire sample and ∼35% of the 'excess' IR emission among these sources, on average, suggesting that AGNs are not the dominant cause of the inferred 'mid-infrared excesses' in these systems. Of the sources identified as having mid-infrared excesses, half are accounted for by using proper bolometric corrections while half show the presence of obscured AGNs. This implies sky and space densities for Compton-thick AGNs of ∼1600 deg.-2 and ∼1.3 x 10-4 Mpc-3, respectively. We also note that IR luminosities derived from SED

  17. Star formation in 3CR radio galaxies and quasars at $z < 1$

    Westhues, Christian; Barthel, Peter; Wilkes, Belinda J; Willner, S P; Kuraszkiewicz, Joanna; Podigachoski, Pece; Leipski, Christian; Meisenheimer, Klaus; Siebenmorgen, Ralf; Chini, Rolf

    2016-01-01

    Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift $z < 1$. The far-infrared (FIR, 70-500~$\\mu m$) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared Survey Explorer (WISE) and catalogued data to analyse the complete spectral energy distributions (SEDs) of each object from optical to radio wavelength. To disentangle the contributions of different components, the SEDs are fitted with a set of templates to derive the luminosities of host galaxy starlight, dust torus emission powered by active galactic nuclei (AGN) and cool dust heated by stars. The level of emission from relativistic jets is also estimated, in order to isolate the thermal host galaxy contribution. The new data are in line with the orientation-based unification of high-excitation radio-loud AGN, in that the dust torus becomes optically thin longwards of $30~\\mu m$. The low excitation radio galaxies and the MIR weak sources represent MIR- and ...

  18. Galaxy formation and evolution

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  19. MAGIC observation of an exceptional TeV gamma-ray flare in the active galaxy IC 310

    Glawion, Dorit; Mannheim, Karl; Elsaesser, Dominik; Kadler, Matthias; Schulz, Robert [ITPA Wuerzburg (Germany); Sitarek, Julian [IFAE Barcelona (Spain); Ros, Eduardo; Bach, Uwe [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Krauss, Felicia; Wilms, Joern [ECAP Erlangen, Dr. Karl Remeis-Sternwarte, Bamberg (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The AGN IC 310 has been identified as a gamma-ray emitter based on observations at very high energies (VHE,E>100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle>10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of strong outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over two orders of magnitude. Such fast variability constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. In fact, the measurement challenges the shock acceleration models, commonly used in explanation of gamma-ray radiation from active galaxies. We show that this emission can be associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the jet.

  20. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Marsden, Danica; Marriage, Tobias A; Switzer, Eric R; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D; Schmitt, Benjamin; Sehgal, Neelima; Sievers, Jonathan; Staggs, Suzanne; Swetz, Daniel; Thornton, Robert; Wollack, Edward

    2013-01-01

    We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218 GHz in the 2008 Southern survey. Flux densities span 14-1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index of 3.7+0.62-0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty ...

  1. The host of GRB/XRF 030528 - an actively star forming galaxy at z=0.782

    Rau, A

    2005-01-01

    An important parameter for the distinction of X-ray flashes, X-ray rich bursts and Gamma-ray bursts in the rest frame is the distance to the explosion site. Here we report on the spectroscopic redshift determination of the host galaxy of XRF/GRB 030528 using the ESO VLT FORS2 instrument. From the strong oxygen and hydrogen emission lines the redshift was measured to be z=0.782+-0.001. Obtaining the line luminosities and ratios we find that the host is consistent with being an actively star forming galaxy with sub-solar metallicity. With a stellar mass of ~10E10 Msun the host is placed among the most massive GRB host galaxies at a similar redshift. Estimating the redshifted properties of the prompt emission, we find that XRF/GRB 030528 would be classified as an X-ray rich bursts in the rest frame rather than an X-ray flash in the typically used observer frame.

  2. Grand unification and parity restoration at low energies. II. Unification constraints

    In this second paper in the series, we show how the embedding of SU(2)/sub L/ x SU(2)/sub R/ x U(1)/sub B/-L in SO(10) grand unified theory suggests the possibility of parity being restored at low energies, thus providing an alternative to conventional theories with a desert above M/sub W/. Some important predictions of the model are stressed: appreciable Majorana neutrino masses, lepton-number violation in neutrinoless double-β decay with etaapprox. =10-4--10-5, and the absence of observable proton decay (tau/sub p/approx. =1038--1046 years). From the phenomenological analysis in our earlier work and the unification constraints presented here we find that, if the above picture is correct, 150< or =M/sub W/R< or =240 GeV. We argue that both the charged and neutral gauge bosons of the second generation should be produced at ISABELLE energies with significant rates

  3. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L bol = 1046.5 erg s–1). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 102 – 3 cm–3) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm–3)—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for

  4. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M., E-mail: orianne.roos@cea.fr [CEA-Saclay, F-91190 Gif-sur-Yvette (France)

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  5. Star Formation and AGN Activity in Galaxy Clusters from $z=1-2$: a Multi-wavelength Analysis Featuring $Herschel$/PACS

    Alberts, Stacey; Brodwin, Mark; Chung, Sun Mi; Cybulski, Ryan; Dey, Arjun; Eisenhardt, Peter; Galametz, Audrey; Gonzalez, Anthony; Jannuzi, Buell; Stanford, S Adam; Snyder, Gregory; Stern, Daniel; Zeimann, Gregory

    2016-01-01

    We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive ($\\gtrsim10^{14}\\,\\rm{M_{\\odot}}$) galaxy clusters at $1galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGN through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs), and specific-SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at $z\\gtrsim1.4$ is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores ($r<0.5\\,$Mpc). This is followed by a ...

  6. The host galaxies of active galactic nuclei with powerful relativistic jets

    Olguín-Iglesias, A; Kotilainen, J K; Chavushyan, V; Tornikoski, M; Valtaoja, E; Añorve, C; Valdes, J; Carrasco, L

    2016-01-01

    We present deep Near-infrared (NIR) images of a sample of 19 intermediate-redshift ($0.310^{27}$ WHz$^{-1}$), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities $L_{1.4GHz} \\sim 10^{23.7} - 10^{28.3}$~WHz$^{-1}$, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the $\\mu_{e}$-$R_{eff}$ relation for ellipticals and bulges. The two populations of blazars show different behaviours in the \\mnuc - \\mbulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, that could be interpre...

  7. Star formation activity in Balmer break galaxies at $z$ < 1.5

    Tello, J Díaz; Padilla, N; Akiyama, M; Fujishiro, N; Yoshikawa, T; Hanami, H

    2016-01-01

    Aims. We present a spectroscopic study of the properties of 64 Balmer break galaxies that show signs of star formation. The studied sample of star-forming galaxies spans a redshift range from 0.094 to 1.475 with stellar masses in the range 10$^{8}-$10$^{12}$ $M_{\\odot}$. The sample also includes eight broad emission line galaxies with redshifts between 1.5 $galaxies with lower SFR values (i.e., decreasing star formation). We also note an anticorrelation for the SSFR with the stellar mass. Again in this case, our data is also consis...

  8. The Evolution of Active Galactic Nuclei in Clusters of Galaxies to Redshift 1.3

    Martini, Paul; Mulchaey, John S

    2009-01-01

    We have measured the luminous AGN population in a large sample of clusters of galaxies and find evidence for a substantial increase in the cluster AGN population from z~0.05 to z~1.3. The present sample now includes 32 clusters of galaxies, including 15 clusters above z=0.4, which corresponds to a three-fold increase compared to our previous work at high redshift. At z= 10^43 \\ergs. The AGN fraction increases from f_A = 0.134^{+0.18}_{-0.087} percent at a median z=0.19 to f_A = 1.00^{+0.29}_{-0.23} percent at a median z=0.72. Our best estimate of the evolution is a factor of eight increase to z=1 and the statistical significance of the increase is 3.8sigma. This dramatic evolution is qualitatively similar to the evolution of the star-forming galaxy population in clusters known as the Butcher-Oemler effect. We discuss the implications of this result for the coevolution of black holes and galaxies in clusters, the evolution of AGN feedback, searches for c lusters with the Sunyaev-Zel'dovich effect, and the poss...

  9. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥1011 M ☉) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s–1, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M ☉ yr–1 and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s–1 and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  10. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  11. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Mullaney, James R. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Alexander, David M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Goulding, Andy D., E-mail: ryan.c.hickox@dartmouth.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-02-10

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L {sub AGN} in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  12. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L. [School of Physics, Astronomy, and Computational Sciences, George Mason University, MS 3F3, 4400 University Drive, Fairfax, VA 22030 (United States); Ellison, S. L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Fischer, J., E-mail: satyapal@physics.gmu.edu [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2014-04-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  13. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  14. Rotation Curves of Spiral Galaxies

    Sofue, Y; SOFUE, Yoshiaki; RUBIN, Vera

    2000-01-01

    Rotation curves of spiral galaxies are the major tool for determining the distribution of mass in spiral galaxies. They provide fundamental information for understanding the dynamics, evolution and formation of spiral galaxies. We describe various methods to derive rotation curves, and review the results obtained. We discuss the basic characteristics of observed rotation curves in relation to various galaxy properties, such as Hubble type, structure, activity, and environment.

  15. Quantum gravity unification via transfinite arithmetic and geometrical averaging

    In E-Infinity theory, we have not only infinitely many dimensions but also infinitely many fundamental forces. However, due to the hierarchical structure of ε(∞) spacetime we have a finite expectation number for its dimensionality and likewise a finite expectation number for the corresponding interactions. Starting from the preceding fundamental principles and using the experimental findings as well as the theoretical value of the coupling constants of the electroweak and the strong forces we present an extremely simple averaging procedure for determining the quantum gravity unification coupling constant with and without super symmetry. The work draws heavily on previous results, in particular a paper, by the Slovian Prof. Marek-Crnjac [Marek-Crnjac L. On the unification of all fundamental forces in a fundamentally fuzzy Cantorian ε(∞) manifold and high energy physics. Chaos, Solitons and Fractals 2004;4:657-68

  16. Isotopic Grand Unification with the inclusion of gravity

    Santilli, R M

    1997-01-01

    We introduce a dual lifting of unified gauge theories, the first characterized by the {\\it isotopies}, which are axiom- preserving maps into broader structure with positive-definite generalized units used for the representation of matter under the isotopies of the Poincare' symmetry, and the second characterized by the {\\it isodualities}, which are anti-isomorphic maps with negative-definite generalized units used for the representation of antimatter under the isodualities of the Poimcare' symmetry. We then submit, apparently for the first time, a novel grand unification with the inclusion of gravity for matter embedded in the generalized positive-definite units of unified gauge theories while gravity for antimatter is embedded in the isodual isounit. We then show that the proposed grand unification provides realistic possibilities for a resolution of the axiomatuic incompatibilities between graviitation and electroweak interactions due to curvature, antimatter and the fundamental space-time symmetries.

  17. Perturbative unification of gauge couplings in supersymmetric E6 models

    Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho

    2016-07-01

    We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.

  18. Anomaly of discrete family symmetries and gauge coupling unification

    Anomaly of a discrete symmetry is defined as the Jacobian of the path-integral measure. Assuming that anomaly at low energy is cancelled by the Green–Schwarz (GS) mechanism at a fundamental scale, we investigate possible Kac–Moody levels for anomalous discrete family symmetries. As the first example we consider discrete abelian Baryon number and Lepton number symmetries in the minimal supersymmetric standard model with see-saw mechanism, and find that the ordinary unification of gauge couplings is not consistent with the GS conditions, indicating a possible existence of further Higgs doublets. Next we consider the recently proposed supersymmetric model with Q6 family symmetry. In this model, the GS conditions are such that the gauge coupling unification appears close to the Planck scale. (author)

  19. AN EMBEDDED ACTIVE NUCLEUS IN THE OH MEGAMASER GALAXY IRAS16399–0937

    Sales, Dinalva A. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul. 9500 Bento Gonçalves, Porto Alegre, 91501-970 (Brazil); Robinson, A.; Axon, D. J.; Curran, R. L.; O' Dea, C.; Mittal, R. [School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Gallimore, J. [Department of Physics, Bucknell University, Lewisburg, PA 17837 (United States); Kharb, P. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Baum, S. [Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Elitzur, M. [Physics and Astronomy Department, University of Kentucky, Lexington, KY 40506-0055 (United States)

    2015-01-20

    We present a multiwavelength study of the OH megamaser galaxy IRAS16399–0937, based on new Hubble Space Telescope (HST)/Advanced Camera for Surveys F814W and Hα+[N II] images and archive data from HST, Two Micron All Sky Survey, Spitzer, Herschel and the Very Large Array. This system has a double nucleus, whose northern (IRAS16399N) and southern (IRAS16399S) components have a projected separation of ∼6'' (3.4 kpc) and have previously been identified based on optical spectra as a low ionization nuclear emission line region (LINER) and starburst nucleus, respectively. The nuclei are embedded in a tidally distorted common envelope, in which star formation is mostly heavily obscured. The infrared spectrum is dominated by strong polycyclic aromatic hydrocarbon, but deep silicate and molecular absorption features are also present, and are strongest in the IRAS16399N nucleus. The 0.435-500 μm spectral energy distribution was fitted with a model including stellar, interstellar medium and active galactic nucleus (AGN) torus components using our new Markov Chain Monte Carlo code, CLUMPYDREAM. The results indicate that the IRAS16399N contains an AGN (L {sub bol} ∼ 10{sup 44} erg s{sup –1}) deeply embedded in a quasi-spherical distribution of optically thick clumps with a covering fraction ≈1. We suggest that these clumps are the source of the OHM emission in IRAS16399–0937. The high torus covering fraction precludes AGN photoionization as the origin of the LINER spectrum, however, the spectrum is consistent with shocks (v ∼ 100-200 km s{sup –1}). We infer that the ∼10{sup 8} M {sub ☉} black hole in IRAS16399N is accreting at a small fraction (∼1%) of its Eddington rate. The low accretion rate and modest nuclear star formation rates suggest that while the gas-rich major merger forming the IRAS16399–0937 system has triggered widespread star formation, the massive gas inflows expected from merger simulations have not yet fully developed.

  20. AN EMBEDDED ACTIVE NUCLEUS IN THE OH MEGAMASER GALAXY IRAS16399–0937

    We present a multiwavelength study of the OH megamaser galaxy IRAS16399–0937, based on new Hubble Space Telescope (HST)/Advanced Camera for Surveys F814W and Hα+[N II] images and archive data from HST, Two Micron All Sky Survey, Spitzer, Herschel and the Very Large Array. This system has a double nucleus, whose northern (IRAS16399N) and southern (IRAS16399S) components have a projected separation of ∼6'' (3.4 kpc) and have previously been identified based on optical spectra as a low ionization nuclear emission line region (LINER) and starburst nucleus, respectively. The nuclei are embedded in a tidally distorted common envelope, in which star formation is mostly heavily obscured. The infrared spectrum is dominated by strong polycyclic aromatic hydrocarbon, but deep silicate and molecular absorption features are also present, and are strongest in the IRAS16399N nucleus. The 0.435-500 μm spectral energy distribution was fitted with a model including stellar, interstellar medium and active galactic nucleus (AGN) torus components using our new Markov Chain Monte Carlo code, CLUMPYDREAM. The results indicate that the IRAS16399N contains an AGN (L bol ∼ 1044 erg s–1) deeply embedded in a quasi-spherical distribution of optically thick clumps with a covering fraction ≈1. We suggest that these clumps are the source of the OHM emission in IRAS16399–0937. The high torus covering fraction precludes AGN photoionization as the origin of the LINER spectrum, however, the spectrum is consistent with shocks (v ∼ 100-200 km s–1). We infer that the ∼108 M ☉ black hole in IRAS16399N is accreting at a small fraction (∼1%) of its Eddington rate. The low accretion rate and modest nuclear star formation rates suggest that while the gas-rich major merger forming the IRAS16399–0937 system has triggered widespread star formation, the massive gas inflows expected from merger simulations have not yet fully developed

  1. Spectral Characteristics of Radiation from the Nucleus of the Seyfert Galaxy NGC 1275 After an Epoch of its Maximum Activity

    Bikmaev, I. F.; Sharipova, L. M.; Galeev, A. I.; Akhmetkhanova, A. É.

    2016-03-01

    The spectral characteristics of radiation from the nucleus of the Seyfert galaxy NGC 1275 are studied on a long time scale. Changes in the profiles of some emission lines and changes in the relative intensities of hydrogen and forbidden lines and their equivalent widths (EWλ ) are demonstrated on a time scale of decades. These studies employed spectral data obtained with the 1.5-m Russian-Turkish telescope (RTT-150) during January 2012 and drew on spectral data published earlier in the literature. These results made it possible to trace the state of the nucleus of NGC 1275 after an activity maximum that occurred during the 1960's.

  2. Blending margins: The modal logic K has nullary unification type

    Jeřábek, Emil

    2015-01-01

    Roč. 25, č. 5 (2015), s. 1231-1240. ISSN 0955-792X R&D Projects: GA AV ČR IAA100190902; GA MŠk(CZ) 1M0545 Institutional support: RVO:67985840 Keywords : modal logic * unification type * rule of margins Subject RIV: BA - General Mathematics Impact factor: 0.512, year: 2014 http://logcom.oxfordjournals.org/content/25/5/1231

  3. China’s Unification: Myth or Reality?

    Mario Arturo Ruiz Estrada; Donghyun Park

    2014-01-01

    This paper evaluates the prospect of a possible unification between People’s Republic of China (Mainland China) and Republic of China (Taiwan) from a multi-dimensional perspective which encompasses the political, social, economic, and technological dimensions. The underlying idea is to evaluate the possibility of a partial or total reunification between the two countries in a more comprehensive way than just assessing the economic costs and benefits. Our evaluation is based on the applicati...

  4. Unification costs for Korea and the Korean peninsula

    Lee, Donggun

    2015-01-01

    Approved for public release; distribution is unlimited This research begins with two questions: Can the government of South Korea (SK) overcome the economic burden of Korean unification, and what will the effects of reunification be on theUnited States and China? This thesis focuses on manufacturing, the food industry, and infrastructure, since these three sectors will be the most important expenditures of a unified Korean government. To develop North Korea’s (NK’s) economy, the developmen...

  5. Unification of Gauge Couplings in Radiative Neutrino Mass Models

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella; Schmidt, Michael A.

    2016-01-01

    We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively. We study three different classes of neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 $\\Delta L=2$ operators which generate neutrino masses at one- and/or two-loop level w...

  6. The Correlation Between Gravitation and Electromagnetism, Inertia and Unification

    D'Aquino, F

    1999-01-01

    We show that gravitational mass and inertial mass are correlated by an adimentional factor, which in specific electromagnetic conditions, can be reduced, nullified, negated, and increased. Some theoretical consequences of the mentioned correlation are: the generalization of Newton=92s second law for the motion (New law for Inertia); the deduction of the differential equation for entropy (second law of Thermodynamics); unification of gravitational and electromagnetic interactions .

  7. Participation Behaviour of East German Women After German Unification

    Bonin, Holger; Euwals, Rob

    2002-01-01

    The Paper studies the determinants of labour force participation by East German women after unification. To isolate the role of preferences on labour force participation from individual characteristics, we develop a panel data model that simultaneously explains participation, employment and wages. The model, estimated for East and West Germany on the basis of the German Socio-Economic Panel, indicates that distinct preferences could explain the regional difference in participation rates at un...

  8. Toward unification of the multiscale modeling of the atmosphere

    A. Arakawa

    2011-01-01

    Full Text Available This paper suggests two possible routes to achieve the unification of model physics in coarse- and fine-resolution atmospheric models. As far as representation of deep moist convection is concerned, only two kinds of model physics are used at present: highly parameterized as in the conventional general circulation models (GCMs and explicitly simulated as in the cloud-resolving models (CRMs. Ideally, these two kinds of model physics should be unified so that a continuous transition of model physics from one kind to the other takes place as the resolution changes. With such unification, the GCM can converge to a global CRM (GCRM as the grid size is refined. ROUTE I for unification continues to follow the parameterization approach, but uses a unified parameterization that is applicable to any horizontal resolutions between those typically used by GCMs and CRMs. It is shown that a key to construct such a unified parameterization is to eliminate the assumption of small fractional area covered by convective clouds, which is commonly used in the conventional cumulus parameterizations either explicitly or implicitly. A preliminary design of the unified parameterization is presented, which demonstrates that such an assumption can be eliminated through a relatively minor modification of the existing mass-flux based parameterizations. Partial evaluations of the unified parameterization are also presented. ROUTE II for unification follows the "multi-scale modeling framework (MMF" approach, which takes advantage of explicit representation of deep moist convection and associated cloud-scale processes by CRMs. The Quasi-3-D (Q3-D MMF is an attempt to broaden the applicability of MMF without necessarily using a fully three-dimensional CRM. This is accomplished using a network of cloud-resolving grids with gaps. An outline of the Q3-D algorithm and highlights of preliminary results are reviewed.

  9. Arithmetic for the unification of quantum mechanics and general relativity

    In the paper we bring attention to description of complex systems in terms of self-organization processes of prime integer relations. Revealed through the unity of two equivalent forms, arithmetical and geometrical, the description may have the potential for the unification of quantum mechanics and general relativity. Remarkably, based on integers and controlled by arithmetic only such processes can define nonlocal correlations between parts of a complex system and the geometry of their spacetimes.

  10. Unification of Gravity and Electro-Magnetism in Six Dimensions

    Gogberashvili, Merab

    2002-01-01

    Recently by us was proposed the model where Einstein's equation on the brane was connected with Maxwell's multi-dimensional equations in pseudo-Euclidean space. Based on this idea unification of 4-dimensional gravity and electromagnetism in (2+4)-space is found. In this picture photon is massless in four dimensions and obtains large mass in extra (1+1)-space normal to the brane.

  11. Purchasing policy model based on components/parts unification

    SunXiaolin; ZhongDeqiang; ManDaqing; BinSheng

    2003-01-01

    This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different prices and quality characteristics. Because of the buyer's quality preference and suppliers' discount rates for bulky purchases, the model assists the procurement manager to determine how best to purchase the components/parts to meet its demand while minimizing the total acquisition costs.

  12. Focus point gauge mediation in product group unification

    In certain models of gauge-mediated supersymmetry breaking with messenger fields in incomplete GUT multiplets, the radiative corrections to the Higgs potential cancel out during renormalization group running. This allows for relatively heavy superpartners and for a 125 GeV Higgs while the fine-tuning remains modest. In this Letter, we show that such gauge mediation models with “focus point” behaviour can be naturally embedded into a model of SU(5)×U(3) product group unification

  13. Dark Matter and Yukawa Unification with Massive Neutrinos

    Gómez, M E; Naranjo, P; Rodríguez-Quintero, J

    2009-01-01

    We revisit the WMAP dark matter constraints on Yukawa Unification in the presence of massive neutrinos. The large neutrino mixing indicated by the data modifies the predictions for the bottom quark mass, and enables Yukawa also for large $\\tan\\beta$, and for positive $\\mu$ that were previously disfavoured. As a result, the allowed parameter space for neutralino dark matter also increases, particularly for areas with resonant enhancement of the neutralino relic density.

  14. Focus point gauge mediation in product group unification

    In certain models of gauge-mediated supersymmetry breaking with messenger fields in incomplete GUT multiplets, the radiative corrections to the Higgs potential cancel out during renormalization group running. This allows for relatively heavy superpartners and for a 125 GeV Higgs while the ne-tuning remains modest. In this paper, we show that such gauge mediation models with ''focus point'' behaviour can be naturally embedded into a model of SU(5) x U(3) product group unification.

  15. Employment and Fertility in East Germany after Unification

    James C. Witte; Wagner, Gert G.

    1995-01-01

    Vital statistics clearly indicate that the fertility rate in East Germany dropped sharply after German unification; moreover, it has not yet rebounded but remains stable at a low level. This paper uses data from the German Socio-Economic Panel (GSOEP) to examine births in the former German Democratic Republic in 1992 and 1993. The primary explantory variables include women's employment status in 1991 and 1992, expectations about future unemployment, and the employment status of cohabiting or ...

  16. Dark Energy - Dark Matter Unification: Generalized Chaplygin Gas Model

    Bertolami, Orfeu

    2005-01-01

    We review the main features of the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and discuss how it admits an unique decomposition into dark energy and dark matter components once phantom-like dark energy is excluded. In the context of this approach we consider structure formation and show that unphysical oscillations or blow-up in the matter power spectrum are not present. Moreover, we demonstrate that the dominance of dark energy occurs about the ti...

  17. How environment drives galaxy evolution: lessons learnt from satellite galaxies

    Pasquali, A

    2015-01-01

    It is by now well established that galaxy evolution is driven by intrinsic and environmental processes, both contributing to shape the observed properties of galaxies. A number of early studies, both observational and theoretical, have shown that the star formation activity of galaxies depends on their environmental local density and also on galaxy hierarchy, i.e. centrals vs. satellites. In fact, contrary to their central (most massive) galaxy of a group/cluster, satellite galaxies are stripped of their gas and stars, and have their star formation quenched by their environment. Large galaxy surveys like SDSS now permit us to investigate in detail environment-driven transformation processes by comparing centrals and satellites. In this paper I summarize what we have so far learnt about environmental effects by analysing the observed properties of local central and satellite galaxies in SDSS, as a function of their stellar mass and the dark matter mass of their host group/cluster.

  18. The X-ray Zurich environmental study (X-zens). I. Chandra and XMM-Newton observations of active galactic nuclei in galaxies in nearby groups

    Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo (Kavli IPMU, WPI), Kashiwa 277-8583 (Japan); Miniati, F.; Carollo, C. M.; Cibinel, A.; Lilly, S. J.; Schawinski, K. [Institute for Astronomy, ETH Zürich, CH-8093, Zürich (Switzerland); Finoguenov, A., E-mail: john.silverman@ipmu.jp [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland)

    2014-01-01

    We describe X-ray observations with Chandra and XMM-Newton of 18 M {sub group} ∼ 1-6 × 10{sup 13} M {sub ☉}, z ∼ 0.05 galaxy groups from the Zurich ENvironmental Study. The X-ray data aim at establishing the frequency and properties, unaffected by host galaxy dilution and obscuration, of active galactic nuclei (AGNs) in central and satellite galaxies, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of the 177 galaxies, down to a sensitivity level of f {sub 0.5} {sub –} {sub 8} {sub keV} ∼ 5 × 10{sup –15} erg cm{sup –2} s{sup –1}, corresponding to a limiting luminosity of L {sub 0.5} {sub –} {sub 8} {sub keV} ∼ 3 × 10{sup 40} erg s{sup –1}. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L {sub Edd} ≳ 10{sup –4}), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift and compare the structural and morphological properties between AGN-active and non-active galaxies. At galaxy mass scales <10{sup 11} M {sub ☉}, central galaxies appear to be a factor of ∼4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to be hosted by massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner parts of group halos, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data indicate that the rate of decline with redshift of AGN activity in galaxy groups matches that of the global AGN population, indicating that either AGN activity occurs preferentially in group halos or that the evolution rate is independent of halo mass.

  19. Towards a unification of unified theories of biodiversity.

    McGill, Brian J

    2010-05-01

    A unified theory in science is a theory that shows a common underlying set of rules that regulate processes previously thought to be distinct. Unified theories have been important in physics including the unification of electricity and magnetism and the unification of the electromagnetic with the weak nuclear force. Surprisingly, ecology, specifically the subfields of biodiversity and macroecology, also possess not one but at least six unified theories. This is problematic as only one unified theory is desirable. Superficially, the six unified theories seem very different. However, I show that all six theories use the same three rules or assertions to describe a stochastic geometry of biodiversity. The three rules are: (1) intraspecifically individuals are clumped together; (2) interspecifically global or regional abundance varies according to a hollow curve distribution; and (3) interspecifically individuals are placed without regard to individuals of other species. These three rules appear sufficient to explain local species abundance distributions, species-area relationships, decay of similarity of distance and possibly other patterns of biodiversity. This provides a unification of the unified theories. I explore implications of this unified theory for future research. PMID:20337695

  20. Probes of Yukawa unification in supersymmetric SO(10) models

    Westhoff, Susanne

    2009-10-23

    This work is composed as follows: In Chapter 1, the disposed reader is made familiar with the foundations of flavourphysics and Grand Unification, including group-theoretical aspects of SO(10). In Chapter 2, we introduce a specific supersymmetric GUT model based on SO(10) and designed to probe down-quark-lepton Yukawa unification. Within this framework we explore the effects of large atmospheric neutrino mixing in bottom-strange transitions on the mass difference and CP phase in B{sub s}- anti B{sub s} meson mixing. Chapter 3 is devoted to corrections to Yukawa unification. We derive constraints on Yukawa corrections for light fermions from K- anti K and B{sub d}- anti B {sub d} mixing. As an application we study implications of neutrino mixing effects in CP-violating K and B{sub d} observables on the unitrity triangle. Finally, in Chapter 4, we discuss effects of large tan {beta} in B{yields}(D){tau}{nu} decays with respect to their potential to discover charged Higgs bosons and to discriminate between different GUT models of flavour.

  1. M theory: a possible unification of physics laws

    Full text: Physics has two pillars which are mutually incompatible: quantum field theory and general relativity theory. Throughout its history, various unifications have been made, and in attempts to have a better understanding of the birth and formation of the Universe is also necessary to unify these pillars. This unification may require 11 dimensions, and 6 of them are compressed so that it cannot be seen with existing instruments. These dimensions are the spaces in which the strings vibrate, and each mode of vibration corresponds to a particle. The last dimension shows that the universe is a brane, it is in full motion in the multiverse and the collision of two branes can answer the biggest problem of cosmology: what was the Big Bang? Black holes can be explained using a theory that contains gravity and quantum mechanics. The theory is still being developed, some problems are being solved and the main one is the experimental problem, because it requires energy levels that are not yet achieved by current particle accelerators. This work presents M theory as a possibility of unification between the micro and macro, which maybe leading us to the theory of everything. (author)

  2. Physics Through Extra Dimensions: On Dualities, Unification, And Pair Production

    Friedmann, T

    2003-01-01

    This thesis has two parts. In the first part we study M- theory compactifications on singular manifolds of G2 holonomy which are asymptotic to quotients of cones over S3 x S3. We investigate the moduli space of M-theory compactifications on these manifolds, and we discover smooth interpolations leading to a new kind of duality among four dimensional supersymmetric gauge theories with different gauge groups, with a fixed number of abelian factors. The quotients are such that the internal space has a finite, non-trivial fundamental group, and we construct a grand unified model in which the breaking of the gauge symmetry by Wilson lines to the standard model arises naturally. This model provides the basis for the study of unification from M-theory. Contrary to long-standing perception, we show that a grand unification scale exists even in the presence of threshold corrections. We obtain a precise relation between the unification scale and the mass of heavy gauge bosons in terms of topological invariants. This r...

  3. INTERACTIONS OF GALAXIES IN THE GALAXY CLUSTER ENVIRONMENT

    We study the dependence of galaxy properties on the clustercentric radius and the environment attributed to the nearest neighbor galaxy using the Sloan Digital Sky Survey galaxies associated with the Abell galaxy clusters. We find that there exists a characteristic scale where the properties of galaxies suddenly start to depend on the clustercentric radius at fixed neighbor environment. The characteristic scale is 1-3 times the cluster virial radius depending on galaxy luminosity. Existence of the characteristic scale means that the local galaxy number density is not directly responsible for the morphology-density relation in clusters because the local density varies smoothly with the clustercentric radius and has no discontinuity in general. What is really working in clusters is the morphology-clustercentric radius-neighbor environment relation, where the neighbor environment means both neighbor morphology and the local mass density attributed to the neighbor. The morphology-density relation appears working only because of the statistical correlation between the nearest neighbor distance and the local galaxy number density. We find strong evidence that the hydrodynamic interactions with nearby early-type galaxies is the main drive to quenching star formation activity of late-type galaxies in clusters. The hot cluster gas seems to play at most a minor role down to one tenth of the cluster virial radius. We also find that the viable mechanisms which can account for the clustercentric radius dependence of the structural and internal kinematics parameters are harassment and interaction of galaxies with the cluster potential. The morphology transformation of the late-type galaxies in clusters seems to have taken place through both galaxy-galaxy hydrodynamic interactions and galaxy-cluster/galaxy-galaxy gravitational interactions.

  4. Life satisfaction and economic conditions in East and West Germany pre- and post-unification

    Easterlin, R. A.; Plagnol, A.

    2008-01-01

    Economic disruption in East Germany at the time of unification resulted in a noticeable drop in life satisfaction. By the late 1990s East Germany's life satisfaction had recovered to about its 1990 level, and its shortfall relative to West Germany was slightly less than that before unification. In West Germany life satisfaction was fairly constant before unification, but subsequently trended moderately downward, with Turkish life satisfaction declining noticeably relative to Germans. Changes ...

  5. PROBING SPECTROSCOPIC VARIABILITY OF GALAXIES AND NARROW-LINE ACTIVE GALACTIC NUCLEI IN THE SLOAN DIGITAL SKY SURVEY

    Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGNs to be composed mainly of stellar light and nonvariable on the timescales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multiepoch data in the Sloan Digital Sky Survey Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of ∼700 days) covering a wavelength range of 3900-8900 A. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of 2. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average-the spectroscopic variability of the continuum is 0.07 ± 0.26 mag in the g band and, for the emission-line ratios log10([N II]/Hα) and log10([O III]/Hβ), the variability is 0.02 ± 0.03 dex and 0.06 ± 0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of the varying spectral component, presumably related to AGN activities, and that of the host galaxy to be ∼30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars, and quasars.

  6. Triggering Active Galactic Nuclei in Hierarchical Galaxy Formation: Disk instability vs. Interactions

    Menci, N; Fiore, F; Lamastra, A

    2014-01-01

    Using a semi analytic model for galaxy formation we investigate the effects of Black Hole accretion triggered by disk instabilities (DI) in isolated galaxies on the evolution of AGN. Specifically, we took on, developed and expanded the Hopkins & Quataert (2011) model for the mass inflow following disk perturbations, and compare the corresponding evolution of the AGN population with that arising in a scenario where galaxy interactions trigger AGN (IT mode). We extended and developed the DI model by including different disk surface density profiles, to study the maximal contribution of DI to the evolution of the AGN population. We obtained the following results: i) for luminosities corresponding to $M_{1450}\\gtrsim -26$ the DI mode can provide the BH accretion needed to match the observed AGN luminosity functions up to $z \\approx 4.5$; in such a luminosity range and redshift, it can compete with the IT scenario as the main driver of cosmological evolution of AGN; ii) The DI scenario cannot provide the obser...

  7. Chandra X-ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-Scale Binary Active Galactic Nuclei II: Host Galaxy Morphology and AGN Activity

    Shangguan, Jinyi; Ho, Luis C; Shen, Yue; Peng, Chien Y; Greene, Jenny E; Strauss, Michael A

    2016-01-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kpc-scale binary AGNs with redshifts between 0.1~0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow up observations. We find that kpc-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from ...

  8. The Center of Our Galaxy Activity and High-Energy Emission of the Closest Massive Black Hole

    Goldwurm, A

    2001-01-01

    The Center of our Galaxy is a peculiar region where a number of crucial astrophysical phenomena take place, from star formation to SN explosions and accretion onto a massive black hole. The quest for a massive black hole in the Galactic Nucleus is of course of particular relevance because, it would be the closest of such extreme objects, which are now believed to reside in most of the galactic nuclei of the universe. I will review here the main observational characteristics of the Galactic Center with particular attention to the the problem of existence, physical condition and activity of the 3 10E6 Mo black hole coincident with the compact radio source Sgr A*. I will report historical and recent results of high energy observations of the central degree of our Galaxy, along with the specific accretion models proposed to account for the apparent lack of high energy activity from Sgr A*. The scientific perspectives of the next X and gamma-ray missions in the domain of the Galactic Center physics are also mentio...

  9. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    We report on Chandra X-ray observations of four candidate low-mass black hole (M bh ≲ 106 M ☉) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10–2) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼103 s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 1041 erg s–1 or even lower, on the order of 1040 erg s–1 for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 1039 erg s–1 in 2-10 keV.

  10. X-ray Groups of Galaxies at 0.5Activities in High Redshift Groups

    Tanaka, M; Lilly, S J; Bolzonella, M; Carollo, C M; Contini, T; Iovino, A; Kneib, J -P; Lamareille, F; Fevre, O Le; Mainieri, V; Presotto, V; Renzini, A; Scodeggio, M; Silverman, J D; Zamorani, G; Bardelli, S; Bongiorno, A; Caputi, K; Cucciati, O; de la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Kampczyk, P; Knobel, C; Kovac, K; Borgne, J -F Le; Brun, V Le; Lopez-Sanjuan, C; Maier, C; Mignoli, M; Pello, R; Peng, Y; Montero, E Perez; Tasca, L; Tresse, L; Vergani, D; Zucca, E; Barnes, L; Bordoloi, R; Cappi, A; Cimatti, A; Coppa, G; Koekemoer, A M; McCracken, H J; Moresco, M; Nair, P; Oesch, P; Pozzetti, L; Welikala, N

    2011-01-01

    We present a photometric and spectroscopic study of galaxies at 0.5galaxy properties depend on mass of groups and clusters, in the sense that quiescent galaxies prefer more massive systems. We base our analysis on a mass-selected environment using X-ray groups of galaxies and define the group membership using a large number of spectroscopic redshifts from zCOSMOS. We show that the fraction of red galaxies is higher in groups than in the field at all redshifts probed in our study. Interestingly, the fraction of [OII] emitters on the red sequence increases at higher redshifts in groups, while the fraction does not strongly evolve in the field. This is due to increased dusty star formation activities and/or increased activities of active galactic nuclei (AGNs) in high redshift groups. We study these possibilities using the 30-band photometry and X-ray data. We find that the stellar population of...

  11. NuSTAR unveils a heavily obscured low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    Ricci, C; Treister, E; Romero-Canizales, C; Arevalo, P; Iwasawa, K; Privon, G C; Sanders, D B; Schawinski, K; Stern, D; Imanishi, M

    2016-01-01

    We report the detection of a heavily obscured Active Galactic Nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286, identified in a 17.5 ks NuSTAR observation. The source is in an early merging stage, and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and, by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured [$N_{\\rm\\,H}\\simeq (0.95-1.32)\\times 10^{24}\\rm\\,cm^{-2}$], with a column density consistent with being Compton-thick [CT, $\\log (N_{\\rm\\,H}/\\rm cm^{-2})\\geq 24$]. The AGN in NGC 6286 has a low absorption-corrected luminosity ($L_{2-10\\rm\\,keV}\\sim 3-20\\times 10^{41}\\rm\\,erg\\,s^{-1}$) and contributes $\\lesssim$1\\% to the energetics of the system. Because of its low-luminosity, previous observations carried out in the soft X-ray band ($<10$ keV) and in the infrared did not notice th...

  12. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    Danielson, A L R; Alexander, D M; Brandt, W N; Luo, B; Miller, N; Xue, Y Q; Stott, J P

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z~0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the ~4 Ms CDF-S and ~2 Ms CDF-N and z = 0.1-0.6 in the ~250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keV to B-band luminosity ratio (L_X/L_B proportional to [1 + z]^1.2) since z~1.2, implying that some heating mechanism preve...

  13. Cosmological simulations of galaxy clusters with feedback from active galactic nuclei: profiles and scaling relations

    Pike, Simon R; Newton, Richard D A; Thomas, Peter A; Jenkins, Adrian

    2014-01-01

    We present results from a new set of 30 cosmological simulations of galaxy clusters, including the effects of radiative cooling, star formation, supernova feedback, black hole growth and AGN feedback. We first demonstrate that our AGN model is capable of reproducing the observed cluster pressure profile at redshift, z~0, once the AGN heating temperature of the targeted particles is made to scale with the final virial temperature of the halo. This allows the ejected gas to reach larger radii in higher-mass clusters than would be possible had a fixed heating temperature been used. Such a model also successfully reduces the star formation rate in brightest cluster galaxies and broadly reproduces a number of other observational properties at low redshift, including baryon, gas and star fractions; entropy profiles outside the core; and the X-ray luminosity-mass relation. Our results are consistent with the notion that the excess entropy is generated via selective removal of the densest material through radiative c...

  14. Shocks and sonic booms in the intracluster medium X-ray shells and radio galaxy activity

    Reynolds, C S; Begelman, M C

    2001-01-01

    Motivated by hydrodynamic simulations, we discuss the X-ray appearance of radio galaxies embedded in the intracluster medium (ICM) of a galaxy cluster. We distinguish three regimes. In the early life of a powerful source, the entire radio cocoon is expanding supersonically and hence drives a strong shock into the ICM. Eventually, the sides of the cocoon become subsonic and the ICM is disturbed by the sonic booms of the jet's working surface. In both of these regimes, X-ray observations would find an X-ray shell. In the strong shock regime, this shell will be hot and relatively thin. However, in the weak shock (sonic-boom) regime, the shell will be approximately the same temperature as the undisturbed ICM. If a cooling flow is present, the observed shell may even be cooler than the undisturbed ICM due to the lifting of cooler material into the shell from the inner (cooler) regions of the cluster. In the third and final regime, the cocoon has collapsed and no well-defined X-ray shell will be seen. We discuss wa...

  15. Spitzer observations of MAMBO galaxies: weeding out active nuclei in starbursting proto-ellipticals

    Ivison, R J; Serjeant, S; Bertoldi, F; Egami, E; Mortier, A M J; Alonso-Herrero, A; Barmby, P; Bei, L; Dole, H; Engelbracht, C W; Fazio, G G; Frayer, D T; Gordon, K D; Hines, D C; Huang, J S; Le Floc'h, E; Misselt, K A; Miyazaki, S; Morrison, J E; Papovich, C; Pérez-González, P G; Rieke, M J; Rieke, G H; Rigby, J; Rigopoulou, D; Smail, I; Wilson, G; Willner, S P

    2004-01-01

    We present Spitzer observations in five wavebands between 3.6 and 24um of an unbiased sample of 9 luminous, dusty galaxies selected at 1200um by the MAMBO camera on the IRAM 30-m telescope, a population akin to the well-known submm or `SCUBA' galaxies (hereafter SMGs). Owing to the coarse resolution of submm/mm instrumentation, SMGs have traditionally been difficult to identify at other wavelengths. We compare our multi-wavelength catalogs to show that the overlap between 24 and 1200um must be close to complete at these flux levels. We find that all (4/4) of the most secure >=4sigma SMGs have robust >=4sigma counterparts at 1.4GHz, while the fraction drops to 7/9 using all >=3sigma SMGs. We show that combining mid-IR and marginal (>=3sigma) radio detections provides plausible identifications in the remaining cases, enabling us to identify the complete sample. Accretion onto an obscured central engine is betrayed by the shape of the mid-IR continuum emission for several sources, confirming Spitzer's potential ...

  16. Broad Hbeta Emission-Line Variability in a Sample of 102 Local Active Galaxies

    Runco, Jordan N; Bennert, Vardha N; Scott, Bryan; Komossa, S; Malkan, Matthew A; Lazarova, Mariana S; Auger, Matthew W; Treu, Tommaso; Park, Daeseong

    2016-01-01

    A sample of 102 local (0.02 10^7 M_sun was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10-m telescope to study the scaling relations between MBH and host galaxy properties. We study profile changes of the broad Hbeta emission line within the ~3-9 year time-frame between the two sets of spectra. The variability of the broad Hbeta emission line is of particular interest, not only since it is used to estimate MBH, but also since its strength and width is used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (~66%) of the objects, resulting in a Seyfert-type change for ~38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hbeta line virtually disappears in 3/102 (~3%) extreme cases. We discuss potential causes for these changing-look AGNs. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case ...

  17. Feeding and Feedback in the Inner Kiloparsec of the Active Galaxy NGC2110

    Schnorr-Müller, Allan; Nagar, Neil M; Robinson, Andrew; Lena, Davide; Riffel, Rogemar A; Couto, Guilherme S

    2013-01-01

    We present two-dimensional gaseous kinematics of the inner 1.1 x 1.6kpc^2 of the Seyfert 2 galaxy NGC2110, from optical spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of 100pc. Gas emission is observed over the whole field-of-view, with complex - and frequently double - emission-line profiles. We have identified four components in the emitting gas, according to their velocity dispersion (sigma), which we refer to as: (1) warm gas disk (sigma = 100-220km/s); (2) cold gas disk (sigma = 60-90km/s); (3) nuclear component (sigma = 220-600km/s); and (4) northern cloud (sigma = 60-80km/s). Both the cold and warm disk components are dominated by rotation and have similar gas densities, but the cold gas disk has lower velocity dispersions and reaches higher rotation velocities. We attribute the warm gas disk to a thick gas layer which encompasses the cold disk as observed in some edge-on spiral galaxies. After subtraction of a rotation model from the co...

  18. Gas inflows towards the nucleus of the active galaxy NGC7213

    Schnorr-Müller, Allan; Nagar, Neil M; Ferrari, Fabricio

    2014-01-01

    We present two-dimensional stellar and gaseous kinematics of the inner 0.8x1.1kpc^2 of the LINER/Seyfert 1 galaxy NGC7213, from optical spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of 60pc. The stellar kinematics shows an average velocity dispersion of 177km/s, circular rotation with a projected velocity amplitude of 50km/s and a kinematic major axis at a position angle of -4degrees (west of north). From the average velocity dispersion we estimate a black hole mass of M_BH=8_{-6}^{+16}x10^7 M_sun. The gas kinematics is dominated by non-circular motions, mainly along two spiral arms extending from the nucleus out to 4arcsec (280pc) to the NW and SE, that are cospatial with a nuclear dusty spiral seen in a structure map of the nuclear region of the galaxy. The projected gas velocities along the spiral arms show blueshifts in the far side and redshifts in the near side, with values of up to 200km/s. This kinematics can be interpreted as gas infl...

  19. SPITZER SPECTROSCOPY OF INFRARED-LUMINOUS GALAXIES: DIAGNOSTICS OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION AND CONTRIBUTION TO TOTAL INFRARED LUMINOSITY

    We use mid-infrared (MIR) spectroscopy from the Spitzer Infrared Spectrograph to study the nature of star-formation and supermassive black hole accretion for a sample of 65 IR-luminous galaxies at 0.02 1.2 mJy. The MIR spectra cover wavelengths 5-38 μm, spanning the polycyclic aromatic hydrocarbon (PAH) features and important atomic diagnostic lines. Our sample of galaxies corresponds to a range of total IR luminosity, LIR = L(8-1000 μm) = 1010-1012 L☉ (median LIR of 3.0 × 1011 L☉). We divide our sample into a subsample of galaxies with Spitzer Infrared Array Camera 3.6-8.0 μm colors indicative of warm dust heated by an active galactic nucleus (AGN; IRAGN) and those galaxies whose colors indicate star-formation processes (non-IRAGN). Compared to the non-IRAGN, the IRAGN show smaller PAH emission equivalent widths, which we attribute to an increase in mid-IR continuum from the AGN. We find that in both the IRAGN and star-forming samples, the luminosity in the PAH features correlates strongly with [Ne II] λ12.8 μm emission line, from which we conclude that the PAH luminosity directly traces the instantaneous star-formation rate (SFR) in both the IRAGN and star-forming galaxies. We compare the ratio of PAH luminosity to the total IR luminosity, and we show that for most IRAGN star-formation accounts for 10%-50% of the total IR luminosity. We also find no measurable difference between the PAH luminosity ratios of L11.3/L7.7 and L6.2/L7.7 for the IRAGN and non-IRAGN, suggesting that AGN do not significantly excite or destroy PAH molecules on galaxy-wide scales. Interestingly, a small subset of galaxies (8 of 65 galaxies) show a strong excess of [O IV] λ25.9 μm emission compared to their PAH emission, which indicates the presence of heavily-obscured AGN, including 3 galaxies that are not otherwise selected as IRAGN. The low PAH emission and low [Ne II] emission of the IRAGN and [O IV]-excess objects imply the IR luminosity of these objects is dominated by

  20. Relating Complexity to Practical Performance in Parsing with Wide-Coverage Unification Grammars

    Carroll, J

    1994-01-01

    The paper demonstrates that exponential complexities with respect to grammar size and input length have little impact on the performance of three unification-based parsing algorithms, using a wide-coverage grammar. The results imply that the study and optimisation of unification-based parsing must rely on empirical data until complexity theory can more accurately predict the practical behaviour of such parsers.

  1. Should $E_8$ SUSY Yang-Mills be Reconsidered as a Family Unification Model?

    Adler, Stephen L.

    2002-01-01

    We review earlier proposals for $E_8$ family unification, and discuss why recent work of Kovner and Shifman on condensates in supersymmetric Yang-Mills theories suggests the reconsideration of $E_8$ supersymmetric Yang-Mills as a family unification theory.

  2. Bimetallists and Monometallists on European Monetary Unification (1865-1892). A comment on Claire Silvant

    Morys, Matthias

    2015-01-01

    In the previous issue of this journal Claire Silvant argued that late 19th century bimetallists identified themselves more closely with the endeavour of European monetary unification than their gold monometallic counterparts. I will argue that, if anything, the reverse was true. French gold monometallists were more supportive of European monetary unification.

  3. Radius-dependent gauge unification in AdS5

    Choi, Kiwoon; Kim, Hyung Do; Kim, Ian-Woo

    2002-01-01

    We examine the relation of the 4-dimensional low energy coupling of bulk gauge boson in a slice of AdS5 to the 5-dimensional fundamental couplings as a function of the orbifold radius R. This allows us to address the gauge coupling unification in AdS5 by means of the radius running as well as the conventional momentum running. We then compute the radius dependence of 1-loop low energy couplings in generic AdS5 theory with 4-dimensional supersymmetry, and discuss the low energy predictions whe...

  4. An alternative NMSSM phenomenology with manifest perturbative unification

    Hall, Lawrence; Barbieri, Riccardo; Pappadopulo, Duccio; Rychkov, Vyacheslav S.; Hall, Lawrence J.; Papaioannou, Anastasios Y.

    2007-12-18

    Can supersymmetric models with a moderate stop mass be made consistent with the negative Higgs boson searches at LEP, while keeping perturbative unification manifest? The NMSSM achieves this rather easily, but only if extra matter multiplets filling complete SU(5) representations are present at intermediate energies. As a concrete example which makes use of this feature, we give an analytic description of the phenomenology of a constrained NMSSM close to a Peccei-Quinn symmetry point. The related pseudo-Goldstone boson appears in decays of the Higgs bosons and possibly of the lightest neutralino, and itself decays into (b anti-b) and (tau anti-tau).

  5. Trilinear gauge boson couplings in the gauge—Higgs unification

    Adachi, Yuki; Maru, Nobuhito

    2016-07-01

    We examine trilinear gauge boson couplings (TGCs) in the context of the SU(3)_W⊗ U(1)' gauge-Higgs unification scenario. The TGCs play important roles in probes of the physics beyond the standard model, since they are highly restricted by the experiments. We discuss the mass spectrum of the neutral gauge boson with brane-localized mass terms carefully and find that the TGCs and ρ parameter may deviate from standard model predictions. Finally, we put a constraint on these observables and discuss the possible parameter space.

  6. Yukawa Unification and Sparticle Spectroscopy in Gauge Mediation Models

    Gogoladze, Ilia; Mustafayev, Azar; Shafi, Qaisar; Un, Cem Salih

    2016-01-01

    We explore the implications of t-b-tau (and b-tau) Yukawa coupling unification condition on the fundamental parameter space and sparticle spectroscopy in the minimal gauge mediated supersymmetry breaking (mGMSB) model. We find that this scenario prefers values of the CP-odd Higgs mass m_A > 1 TeV, with all colored sparticle masses above 3 TeV. These predictions will be hard to test at LHC13 but they may be testable at HE-LHC 33 TeV or a 100 TeV collider. Both t-b-tau and b-tau Yukawa coupling...

  7. Grand unification in the spectral Pati-Salam model

    Chamseddine, Ali H.; Connes, Alain; van Suijlekom, Walter D.

    2015-11-01

    We analyze the running at one-loop of the gauge couplings in the spectral Pati-Salam model that was derived in the framework of noncommutative geometry. There are a few different scenarios for the scalar particle content which are determined by the precise form of the Dirac operator for the finite noncommutative space. We consider these different scenarios and establish for all of them unification of the Pati-Salam gauge couplings. The boundary conditions are set by the usual RG flow for the Standard Model couplings at an intermediate mass scale at which the Pati-Salam symmetry is broken.

  8. Grand Unification in the Spectral Pati-Salam Model

    Chamseddine, Ali H; van Suijlekom, Walter D

    2015-01-01

    We analyze the running at one-loop of the gauge couplings in the spectral Pati-Salam model that was derived in the framework of noncommutative geometry. There are a few different scenario's for the scalar particle content which are determined by the precise form of the Dirac operator for the finite noncommutative space. We consider these different scenarios and establish for all of them unification of the Pati-Salam gauge couplings. The boundary conditions are set by the usual RG flow for the Standard Model couplings at an intermediate mass scale at which the Pati-Salam symmetry is broken.

  9. Grand Unification in the Spectral Pati-Salam Model

    Chamseddine, Ali; Connes, Alain; van Suijlekom, Walter

    2015-01-01

    We analyze the running at one-loop of the gauge couplings in the spectral Pati-Salam model that was derived in the framework of noncommutative geometry. There are a few different scenario's for the scalar particle content which are determined by the precise form of the Dirac operator for the finite noncommutative space. We consider these different scenarios and establish for all of them unification of the Pati-Salam gauge couplings. The boundary conditions are set by the usual RG flow for the...

  10. Trilinear gauge boson couplings in the gauge-Higgs unification

    Adachi, Yuki

    2016-01-01

    We examine trilinear gauge boson couplings (TGCs) in the context of the $SU(3)_W\\otimes U(1)'$ gauge-Higgs unification scenario. The TGCs play important roles in the probes of the physics beyond the standard model, since they are highly restricted by the experiments. We discuss mass spectrum of the neutral gauge boson with brane-localized mass terms carefully and find that the TGCs and $\\rho$ parameter may deviate from standard model predictions. Finally we put a constraint from these observables and discuss the possible parameter space.

  11. Unification of Matter and Dark Matter with Radiative Neutrino Mass

    Neutrino mass may be linked to dark matter through a well-studied radiative (scotogenic) mechanism. The new particles required are just right for the extension of the well-known SU(5) unification of quarks and leptons to include dark matter. Two examples are discussed: SU(6) which incorporates a discrete Z2 symmetry for dark matter, and SU(7) which allows for a gauge U(1)D symmetry. In either case, just as the proton is not absolutely stable within the context of SU(5), dark matter is also not absolutely stable within SU(6) or SU(7)

  12. THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1-1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION

    The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M ≥ 1014 M☉) at 1 A = 3.0+2.4-1.4% for AGNs with a rest-frame, hard X-ray luminosity greater than LX,H ≥ 1044 erg s–1. This fraction is measured relative to all cluster galaxies more luminous than M*3.6(z) + 1, where M*3.6(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 μm bandpass. The cluster AGN fraction is 30 times greater than the 3σ upper limit on the value for AGNs of similar luminosity at z ∼ 0.25, as well as more than an order of magnitude greater than the AGN fraction at z ∼ 0.75. AGNs with LX,H ≥ 1043 erg s–1 exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z ∼ 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.

  13. ZFOURGE catalogue of AGN candidates: an enhancement of 160-μm-derived star formation rates in active galaxies to z = 3.2

    Cowley, Michael J.; Spitler, Lee R.; Tran, Kim-Vy H.; Rees, Glen A.; Labbé, Ivo; Allen, Rebecca J.; Brammer, Gabriel B.; Glazebrook, Karl; Hopkins, Andrew M.; Juneau, Stéphanie; Kacprzak, Glenn G.; Mullaney, James R.; Nanayakkara, Themiya; Papovich, Casey; Quadri, Ryan F.; Straatman, Caroline M. S.; Tomczak, Adam R.; van Dokkum, Pieter G.

    2016-03-01

    We investigate active galactic nuclei (AGN) candidates within the FourStar Galaxy Evolution Survey (ZFOURGE) to determine the impact they have on star formation in their host galaxies. We first identify a population of radio, X-ray, and infrared-selected AGN by cross-matching the deep Ks-band imaging of ZFOURGE with overlapping multiwavelength data. From this, we construct a mass-complete (log(M_{{*}}/M_{{⊙}}) ≥9.75), AGN luminosity limited sample of 235 AGN hosts over z = 0.2-3.2. We compare the rest-frame U - V versus V - J (UVJ) colours and specific star formation rates (sSFRs) of the AGN hosts to a mass-matched control sample of inactive (non-AGN) galaxies. UVJ diagnostics reveal AGN tend to be hosted in a lower fraction of quiescent galaxies and a higher fraction of dusty galaxies than the control sample. Using 160 μm Herschel PACS data, we find the mean specific star formation rate of AGN hosts to be elevated by 0.34 ± 0.07 dex with respect to the control sample across all redshifts. This offset is primarily driven by infrared-selected AGN, where the mean sSFR is found to be elevated by as much as a factor of ˜5. The remaining population, comprised predominantly of X-ray AGN hosts, is found mostly consistent with inactive galaxies, exhibiting only a marginal elevation. We discuss scenarios that may explain these findings and postulate that AGN are less likely to be a dominant mechanism for moderating galaxy growth via quenching than has previously been suggested.

  14. MUSE three-dimensional spectroscopy and kinematics of the gigahertz peaked spectrum radio galaxy PKS 1934-63: interaction, recently triggered active galactic nucleus and star formation

    Roche, Nathan; Humphrey, Andrew; Lagos, Patricio; Papaderos, Polychronis; Silva, Marckelson; Cardoso, Leandro S. M.; Gomes, Jean Michel

    2016-07-01

    We observe the radio galaxy PKS 1934-63 (at z = 0.1825) using the Multi-Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The radio source is a gigahertz peaked spectrum source and is compact (0.13 kpc), implying an early stage of evolution (≤104 yr). Our data show an interacting pair of galaxies, with projected separation 9.1 kpc and velocity difference Δ(v) = 216 km s-1. The larger galaxy is a M* ≃ 1011 M⊙ spheroidal with the emission-line spectrum of a high-excitation young radio active galactic nucleus (AGN; e.g. strong [O I]6300 and [O III]5007). Emission-line ratios indicate a large contribution to the line luminosity from high-velocity shocks (≃ 550 km s-1). The companion is a non-AGN disc galaxy, with extended Hα emission from which its star formation rate is estimated as 0.61 M⊙ yr-1. Both galaxies show rotational velocity gradients in Hα and other lines, with the interaction being prograde-prograde. The SE-NW velocity gradient of the AGN host is misaligned from the E-W radio axis, but aligned with a previously discovered central ultraviolet source, and a factor of 2 greater in amplitude in Hα than in other (forbidden) lines (e.g. [O III]5007). This could be produced by a fast rotating (100-150 km s-1) disc with circumnuclear star formation. We also identify a broad component of [O III]5007 emission, blueshifted with a velocity gradient aligned with the radio jets, and associated with outflow. However, the broad component of [O I]6300 is redshifted. In spectral fits, both galaxies have old stellar populations plus ˜0.1 per cent of very young stars, consistent with the galaxies undergoing first perigalacticon, triggering infall and star formation from ˜40 Myr ago followed by the radio outburst.

  15. A MULTI-WAVELENGTH APPROACH TO THE PROPERTIES OF EXTREMELY RED GALAXY POPULATIONS. I. CONTRIBUTION TO THE STAR FORMATION RATE DENSITY AND ACTIVE GALACTIC NUCLEUS CONTENT

    We present a multi-wavelength analysis of the properties of extremely red galaxy (ERG) populations, selected in the GOODS-South/Chandra Deep Field South field. By using all the photometric and spectroscopic information available on large deep samples of extremely red objects (EROs; 645 sources), IRAC EROs (IEROs; 294 sources), and distant red galaxies (DRGs; 350 sources), we derive redshift distributions, identify active galactic nucleus (AGN)-powered and star formation (SF)-powered galaxies, and, using the radio observations of this field, estimate robust (AGN- and dust-unbiased) SF rate densities (ρ-dot*) for these populations. We also investigate the properties of 'pure' (galaxies that conform to only one of the three ERG criteria considered) and 'combined' (galaxies that verify all three criteria) sub-populations. Overall, a large number of AGNs are identified (up to ∼30%, based on X-rays and mid-infrared criteria), the majority of which are type-2 (obscured) objects. Among ERGs with no evidence for AGN activity, we identify sub-populations covering a wide range of average SF rates, from below 10 M sun yr-1 to as high as 200 M sun yr-1. Applying a redshift separation (1 ≤ z * for EROs and DRGs, while none is observed for IEROs. The former populations can contribute more than 20% to the global ρ-dot*at 2 ≤ z ≤ 3. The emission from AGN activity is typically not strong in the ERG population, with AGNs increasing the average radio luminosity of ERG sub-populations by, nominally, less than 20%. AGNs are common, however, and, if no discrimination is attempted, this could significantly increase the ρ-dot* estimate (by over 100% in some cases). Thus, and while the contribution of star-forming processes to the radio luminosity in galaxies with AGN remains uncertain, a comprehensive identification of AGNs in these populations is necessary to obtain meaningful results.

  16. Optical Continuum Variability of the Active Galaxy Mrk 279 - Implications for Different Accretion Regimes

    Bachev, R; Bachev, Rumen; Strigachev, Anton

    2003-01-01

    We present results from a recent broad-band monitoring in optics of the Seyfert 1 type galaxy Mrk 279. We build and analyse the BVRI light curve covering a period of seven years (1995 - 2002). We also show some evidence for the existence of two different states in brightness and suggest, based on a modelling of the optical continuum, that these states may result from transition between a thin disk and an ADAF accretion modes. We assume that the short-term variability is due to a reprocessing of a variable X-ray emission from an inner ADAF part of the flow, while the long-term one may be a result from a change of the transition radius. Our tests show a good match with the observations for a reasonable set of accretion parameters, rather close to the ones, expected for Mrk 279.

  17. The Marseille Schmidt survey for active star-forming galaxies; 1, Data on 92 emission line objects in two fields

    Surace, C

    1998-01-01

    We present data from a moderately deep spectroscopic Schmidt survey (Blim=17.5) of ``active galaxies'' selected by the presence of emission lines in their spectra and/or their UV excess. The redshift, magnitudes, color and diameter reduction methods have been discussed in a previous paper. Here we explain the emission line equivalent width determination method. 92 emission line objects have been found in two adjacent fields (approximately 50deg^2) in the direction of the south extension of the Virgo cluster. We give a catalog containing positions, photographic R and B magnitudes, U-R colors, effective diameters, redshifts, equivalent widths and intensity ratios of the [OIII]4959,5007, Hbeta and [OII] 3727 emission lines. On these fields, we evaluate the completeness limit of the survey at a pseudo B magnitude value of 15.7.

  18. Discovery of a Population of Bulgeless Galaxies with Extremely Red Mid-IR Colors: Obscured AGN Activity in the Low Mass Regime?

    Satyapal, Shobita; McAlpine, William; Ellison, Sara L; Fischer, Jacqueline; Rosenberg, Jessica L

    2014-01-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low mass, or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-Field Infrared Survey Explorer (WISE) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z<0.3) bulgeless disk galaxies with extremely red mid-infrared colors highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 to over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing...

  19. ZFOURGE catalogue of AGN candidates: an enhancement of 160{\\mu}m-derived star-formation rates in active galaxies to $z$ = 3.2

    Cowley, Michael J; Tran, Kim-Vy H; Rees, Glen A; Labbé, Ivo; Allen, Rebecca J; Brammer, Gabriel B; Glazebrook, Karl; Hopkins, Andrew M; Juneau, Stéphanie; Kacprzak, Glenn G; Mullaney, James R; Nanayakkara, Themiya; Papovich, Casey; Quadri, Ryan F; Straatman, Caroline M S; Tomczak, Adam R; van Dokkum, Pieter G

    2016-01-01

    We investigate active galactic nuclei (AGN) candidates within the FourStar Galaxy Evolution Survey (ZFOURGE) to determine the impact they have on star-formation in their host galaxies. We first identify a population of radio, X-ray, and infrared-selected AGN by cross-matching the deep $K_{s}$-band imaging of ZFOURGE with overlapping multi-wavelength data. From this, we construct a mass-complete (log(M$_{*}$/M$_{\\odot}$) $\\ge$ 9.75), AGN luminosity limited sample of 235 AGN hosts over z = 0.2 - 3.2. We compare the rest-frame U - V versus V - J (UVJ) colours and specific star-formation rates (sSFRs) of the AGN hosts to a mass-matched control sample of inactive (non-AGN) galaxies. UVJ diagnostics reveal AGN tend to be hosted in a lower fraction of quiescent galaxies and a higher fraction of dusty galaxies than the control sample. Using 160{\\mu}m Herschel PACS data, we find the mean specific star-formation rate of AGN hosts to be elevated by 0.34$\\pm$0.07 dex with respect to the control sample across all redshift...

  20. Warped accretion disks and the unification of Active Galactic Nuclei

    Nayakshin, S

    2004-01-01

    Orientation of parsec-scale accretion disks in AGN is likely to be nearly random for different black hole feeding episodes. Since AGN accretion disks are unstable to self-gravity on parsec scales, star formation in these disks will create young stellar disks, similar to those recently discovered in our Galactic Center. The disks blend into the quasi-spherical star cluster enveloping the AGN on time scales much longer than a likely AGN lifetime. Therefore, the gravitational potential within the radius of the black hole influence is at best axi-symmetric rather than spherically symmetric. Here we show that as a result, a newly formed accretion disk will be warped. For the simplest case of a potential resulting from a thin stellar ring, we calculate the disk precession rates, and the time dependent shape. We find that, for a realistic parameter range, the disk becomes strongly warped in few hundred orbital times. We suggest that this, and possibly other mechanisms of accretion disk warping, have a direct relevan...