WorldWideScience

Sample records for active galactic nucleus

  1. Active galactic nucleus feedback in clusters of galaxies.

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  2. Ultra Fast Outflows: Galaxy-Scale Active Galactic Nucleus Feedback

    Wagner, A. Y.; Umemura, M; Bicknell, G. V.

    2012-01-01

    We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense cl...

  3. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  4. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  5. Ultra Fast Outflows: Galaxy-Scale Active Galactic Nucleus Feedback

    Wagner, A Y; Bicknell, G V

    2012-01-01

    We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically, rather than in a disc. In the latter case the turbulent backflow...

  6. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  7. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  8. Constraints on active galactic nucleus accretion disc viscosity derived from continuum variability

    R.L.C. Starling; A. Siemiginowska; P. Uttley; R. Soria

    2004-01-01

    We estimate a value of the viscosity parameter in active galactic nucleus (AGN) accretion discs for the Palomar-Green quasar sample. We assume that optical variability on time-scales of months to years is caused by local instabilities in the inner accretion disc. Comparing the observed variability t

  9. Spitzer and JCMT Observations of the Active Galactic Nucleus in the Sombrero Galaxy (NGC 4594)

    Bendo, G J; Calzetti, D; Cannon, J M; Dale, D A; Draine, B T; Engelbracht, C W; Gordon, K D; Helou, G; Hollenbach, D; Joseph, R D; Kennicutt, R C; Murphy, E J; Roussel, H; Sheth, K; Smith, J D T; Walter, F

    2006-01-01

    We present Spitzer 3.6-160 micron images, Spitzer mid-infrared spectra, and JCMT SCUBA 850 micron images of the Sombrero Galaxy (NGC 4594), an Sa galaxy with a 10^9 M_solar low luminosity active galactic nucleus (AGN). The brightest infrared sources in the galaxy are the nucleus and the dust ring. The spectral energy distribution of the AGN demonstrates that, while the environment around the AGN is a prominent source of mid-infrared emission, it is a relatively weak source of far-infrared emission, as had been inferred for AGN in previous research. The weak nuclear 160 micron emission and the negligible polycyclic aromatic hydrocarbon emission from the nucleus also implies that the nucleus is a site of only weak star formation activity and the nucleus contains relatively little cool interstellar gas needed to fuel such activity. We propose that this galaxy may be representative of a subset of low ionization nuclear emission region galaxies that are in a quiescent AGN phase because of the lack of gas needed to...

  10. A Heuristic Model for the Active Galactic Nucleus Based on the Planck Vacuum Theory

    Daywitt W. C.

    2009-07-01

    Full Text Available The standard explanation for an active galactic nucleus (AGN is a "central engine" consisting of a hot accretion disk surrounding a supermassive black hole. Energy is generated by the gravitational infall of material which is heated to high temperatures in this dissipative accretion disk. What follows is an alternative model for the AGN based on the Planck vacuum (PV theory, where both the energy of the AGN and its variable luminosity are explained in terms of a variable photon flux emanating from the PV.

  11. A Heuristic Model for the Active Galactic Nucleus Based on the Planck Vacuum Theory

    Daywitt W. C.

    2009-07-01

    Full Text Available The standard explanation for an active galactic nucleus (AGN is a “central engine” consisting of a hot accretion disk surrounding a supermassive black hole [1, p. 32]. Energy is generated by the gravitational infall of material which is heated to high tem- peratures in this dissipative accretion disk. What follows is an alternative model for the AGN based on the Planck vacuum (PV theory [2, Appendix], where both the energy of the AGN and its variable luminosity are explained in terms of a variable photon flux emanating from the PV.

  12. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  13. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Mullaney, James R. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Alexander, David M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Goulding, Andy D., E-mail: ryan.c.hickox@dartmouth.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-02-10

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L {sub AGN} in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  14. Axisymmetric nonstationary model of the central engine in an active galactic nucleus. I. Black hole electrodynamics

    In a previous paper the authors analyzed an axisymmetric, nonstationary model of the central engine of an active galactic nucleus, consisting of a supermassive black hole surrounded by a magnetized accretion disk. The equations used were the equations of power output and angular momentum loss given by Macdonald and Thorne (1982), in which an axisymmetric, stationary model is described. In this paper, all the fundamental equations in a fully time-dependent manner and the electrodynamics of a black hole and its magnetosphere is investigated. Under the assumption that the mass accretion is confined to the equatorial plane of the black hole, the results suggest that, at the equatorial zone of the black hole, the angular velocity of the magnetic field lines anchored on the accreting matter must be close to that of the black hole. 21 references

  15. A deep Chandra observation of the active galactic nucleus outburst and merger in Hickson compact group 62

    D.A. Rafferty; L. Bîrzan; P.E.J. Nulsen; B.R. McNamara; W.N. Brandt; M.W. Wise; H.J.A. Röttgering

    2013-01-01

    We report on an analysis of new Chandra data of the galaxy group HCG 62, well known for possessing cavities in its intragroup medium (IGM) that were inflated by the radio lobes of its central active galactic nucleus (AGN). With the new data, a factor of 3 deeper than previous Chandra data, we re-exa

  16. Grain physics and infrared dust emission in active galactic nucleus environments

    We study the effects of a detailed dust treatment on the properties and evolution of early-type galaxies containing central black holes, as determined by active galactic nucleus (AGN) feedback. We find that during cooling flow episodes, radiation pressure on the dust in and interior to infalling shells of cold gas can greatly impact the amount of gas able to be accreted and therefore the frequency of AGN bursts. However, the overall hydrodynamic evolution of all models, including mass budget, is relatively robust to the assumptions on dust. We find that IR re-emission from hot dust can dominate the bolometric luminosity of the galaxy during the early stages of an AGN burst, reaching values in excess of 1046 erg s–1. The AGN-emitted UV is largely absorbed, but the optical depth in the IR does not exceed unity, so the radiation momentum input never exceeds L BH/c. We constrain the viability of our models by comparing the AGN duty cycle, broadband luminosities, dust mass, black hole mass, and other model predictions to current observations. These constraints force us towards models wherein the dust to metals ratios are ≅ 1% of the Galactic value, and only models with a dynamic dust to gas ratio are able to produce both quiescent galaxies consistent with observations and high obscured fractions during AGN 'on' phases. During AGN outbursts, we predict that a large fraction of the FIR luminosity can be attributed to warm dust emission (≅ 100 K) from dense dusty gas within ≤1 kpc reradiating the AGN UV emission.

  17. NUCLEAR RADIO JET FROM A LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS IN NGC 4258

    Doi, Akihiro [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Kohno, Kotaro [Institute of Astronomy, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Nakanishi, Kouichiro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kameno, Seiji [Department of Physics, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Inoue, Makoto [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hada, Kazuhiro [INAF, Istituto di Radioastronomia, via Gobetti 101, Bologna I-40129 (Italy); Sorai, Kazuo [Department of Physics, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Sapporo 060-0810 (Japan)

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz ({alpha} {approx} 0.3; F {sub {nu}}{proportional_to}{nu}{sup {alpha}}) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds ({Gamma} {approx}> 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  18. A CANDIDATE DUAL ACTIVE GALACTIC NUCLEUS AT z = 1.175

    Scott Barrows, R. [Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Stern, Daniel; Assef, Roberto J.; Cushing, Michael C. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Madsen, Kristin; Harrison, Fiona [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Comerford, Julia M. [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States); Fassnacht, Christopher D.; Lagattuta, David J. [Department of Physics, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Griffith, Roger; Davy Kirkpatrick, J. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Hickox, Ryan, E-mail: rbarrows@uark.edu [Department of Physics, Durham University, Durham DHI 3LE (United Kingdom)

    2012-01-01

    The X-ray source CXOXBJ142607.6+353351 (CXOJ1426+35), which was identified in a 172 ks Chandra image in the Booetes field, shows double-peaked rest-frame optical/UV emission lines, separated by 0.''69 (5.5 kpc) in the spatial dimension and by 690 km s{sup -1} in the velocity dimension. The high excitation lines and emission line ratios indicate both systems are ionized by an active galactic nucleus (AGN) continuum, and the double-peaked profile resembles that of candidate dual AGNs. At a redshift of z = 1.175, this source is the highest redshift candidate dual AGN yet identified. However, many sources have similar emission line profiles for which other interpretations are favored. We have analyzed the substantial archival data available in this field as well as acquired near-infrared (NIR) adaptive optics (AO) imaging and NIR slit spectroscopy. The X-ray spectrum is hard, implying a column density of several 10{sup 23} cm{sup -2}. Though heavily obscured, the source is also one of the brightest in the field, with an absorption-corrected 2-10 keV luminosity of {approx}10{sup 45} erg s{sup -1}. Outflows driven by an accretion disk may produce the double-peaked lines if the central engine accretes near the Eddington limit. However, we may be seeing the narrow line regions of two AGNs following a galactic merger. While the AO image reveals only a single source, a second AGN would easily be obscured by the significant extinction inferred from the X-ray data. Understanding the physical processes producing the complex emission line profiles seen in CXOJ1426+35 and related sources is important for interpreting the growing population of dual AGN candidates.

  19. A luminous hot accretion flow in the low-luminosity active galactic nucleus NGC 7213

    Xie, Fu-Guo; Ma, Renyi; Yang, Qi-Xiang

    2016-01-01

    The radio luminosity, $L_R$, of the low-luminosity active galactic nucleus (AGN) NGC~7213 weakly correlates with its 2--10 keV X-ray luminosity, $L_X$, when $L_X$ is low, and apparently strongly when $L_X$ is high. Such a hybrid correlation in an individual AGN is unexpected as it deviates from the fundamental plane of AGN activity. On the other hand, a similar correlation pattern is present in the black-hole X-ray binary H1743--322, where it has been modelled as due to switching between different modes of accretion. For NGC~7213, we propose that its $L_R$--$L_X$ correlation is due to the presence of a luminous hot accretion flow, which radiative efficiency is sensitive to the accretion rate. Given the low luminosity of the source, $L_X\\sim 10^{-4}$ of the Eddington luminosity, the viscosity parameter is determined to be small in NGC 7213, $\\alpha\\approx 0.01$. We also examine the broad-band spectrum from radio to X-rays, the time lag between the radio and X-ray light curves, and the implied size and the Lore...

  20. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z * >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] λ5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  1. 3C 273 with NuSTAR: Unveiling the Active Galactic Nucleus

    Madsen, Kristin K.; Fürst, Felix; Walton, Dominic J.;

    2015-01-01

    We present results from a 244 ks NuSTAR observation of 3C 273 obtained during a cross-calibration campaign with the Chandra, INTEGRAL, Suzaku, Swift, and XMM-Newton observatories. We show that the spectrum, when fit with a power-law model using data from all observatories except INTEGRAL over the 1......-78 keV band, leaves significant residuals in the NuSTAR data between 30 and 78 keV. The NuSTAR 3-78 keV spectrum is well. described by an exponentially cutoff power law (Γ = 1.646± 0.006, Ecutoff = 202-34 +51 keV) with a weak reflection component from cold, dense material. There is also evidence for a...... weak (EW = 23 ± 11 eV) neutral iron line. We interpret these features as arising from coronal emission plus reflection off an accretion disk or distant material. Beyond 80 keV INTEGRAL data show clear excess flux relative to an extrapolation of the active galactic nucleus model fit to NuSTAR. This high...

  2. Stellar disc-active galactic nucleus alignments in the SDSS-DR7

    Lagos, Claudia del P; Strauss, Michael A; Cora, Sofia A; Hao, Lei

    2010-01-01

    We determine the intrinsic shapes and orientations of 27,450 type I and II active galactic nucleus (AGN) galaxies in the spectroscopic sample of the Sloan Digital Sky Survey Data Release 7, by studying the distribution of projected axis ratios of AGN hosts. Our aim is to study possible alignments between the AGN and host galaxy systems (e.g. the accretion disc and the galaxy angular momentum) and the effect of dust obscuration geometry on the AGN type. We define control samples of non-AGN galaxies that mimic the morphology, colour, luminosity and concentration distributions of the AGN population, taking into account the effects of dust extinction and reddening. By assuming that AGN galaxies have the same underlying three-dimensional shape distribution as their corresponding control samples, we find that the spiral and elliptical type I AGN populations are strongly biased toward face-on galaxies, while ellipticals and spirals type II AGN are biased toward edge-on orientations. These findings rule out random or...

  3. Collimation and scattering of the active galactic nucleus emission in the Sombrero galaxy

    Menezes, R B; Ricci, T V; 10.1088/2041-8205/765/2/L40

    2013-01-01

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{\\alpha} emission line. The collimation and scattering of this broad H{\\alpha} component was also revealed by fitting the [NII] {\\lambda}{\\lambda}6548,6583 and H{\\alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18{\\de...

  4. Comparative Studies of Clustering Properties Between Active Galactic Nucleus (AGN) Host Galaxies and Star-Forming Ones

    Using the volume-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we have explored the difference of clustering properties between Active Galactic Nucleus (AGN) host galaxies and star-forming galaxies. Our results preferentially show that AGN host galaxies have a lower fraction in isolated, close double and multiple systems than star-forming galaxies. (authors)

  5. The formation of the brightest cluster galaxies in cosmological simulations: the case for active galactic nucleus feedback

    Martizzi, Davide; Teyssier, Romain; Moore, Ben

    2012-01-01

    We use 500 pc resolution cosmological simulations of a Virgo-like galaxy cluster to study the properties of the brightest cluster galaxy (BCG) that forms at the centre of the halo. We compared two simulations; one incorporating only supernova feedback and a second that also includes prescriptions for black hole growth and the resulting active galactic nucleus (AGN) feedback from gas accretion. As previous work has shown, with supernova feedback alone we are unable to reproduce any of the obse...

  6. REMOVING COOL CORES AND CENTRAL METALLICITY PEAKS IN GALAXY CLUSTERS WITH POWERFUL ACTIVE GALACTIC NUCLEUS OUTBURSTS

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ∼1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  7. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼1011 M ☉. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M ☉ yr–1, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  8. ISOTROPIC HEATING OF GALAXY CLUSTER CORES VIA RAPIDLY REORIENTING ACTIVE GALACTIC NUCLEUS JETS

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with Pjet = 1044–45 erg s–1, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  9. Variability-based active galactic nucleus selection using image subtraction in the SDSS and LSST era

    With upcoming all-sky surveys such as LSST poised to generate a deep digital movie of the optical sky, variability-based active galactic nucleus (AGN) selection will enable the construction of highly complete catalogs with minimum contamination. In this study, we generate g-band difference images and construct light curves (LCs) for QSO/AGN candidates listed in Sloan Digital Sky Survey Stripe 82 public catalogs compiled from different methods, including spectroscopy, optical colors, variability, and X-ray detection. Image differencing excels at identifying variable sources embedded in complex or blended emission regions such as Type II AGNs and other low-luminosity AGNs that may be omitted from traditional photometric or spectroscopic catalogs. To separate QSOs/AGNs from other sources using our difference image LCs, we explore several LC statistics and parameterize optical variability by the characteristic damping timescale (τ) and variability amplitude. By virtue of distinguishable variability parameters of AGNs, we are able to select them with high completeness of 93.4% and efficiency (i.e., purity) of 71.3%. Based on optical variability, we also select highly variable blazar candidates, whose infrared colors are consistent with known blazars. One-third of them are also radio detected. With the X-ray selected AGN candidates, we probe the optical variability of X-ray detected optically extended sources using their difference image LCs for the first time. A combination of optical variability and X-ray detection enables us to select various types of host-dominated AGNs. Contrary to the AGN unification model prediction, two Type II AGN candidates (out of six) show detectable variability on long-term timescales like typical Type I AGNs. This study will provide a baseline for future optical variability studies of extended sources.

  10. Q2122-444: A NAKED ACTIVE GALACTIC NUCLEUS FULLY DRESSED

    Based on previous spectral and temporal optical studies, Q2122-444 has been classified as a naked active galactic nucleus (AGN) or true type 2 AGN, that is, an AGN that genuinely lacks a broad-line region (BLR). Its optical spectrum seemed to possess only narrow forbidden emission lines that are typical of type 2 (obscured) AGNs, but the long-term optical light curve, obtained from a monitoring campaign over more than two decades, showed strong variability, apparently ruling out the presence of heavy obscuration. Here we present the results from a ∼40 ks XMM-Newton observation of Q2122-444 carried out to shed light on the energetics of this enigmatic AGN. The X-ray analysis was complemented with Australia Telescope Compact Array radio data to assess the possible presence of a jet, and with new NTT/EFOSC2 optical spectroscopic data to verify the actual absence of a BLR. The higher-quality optical data revealed the presence of strong and broad Balmer lines that are at odds with the previous spectral classification of this AGN. The lack of detection of radio emission rules out the presence of a jet. The X-ray data combined with simultaneous UV observations carried out by the Optical Monitor (OM) aboard XMM-Newton confirm that Q2122-444 is a typical type 1 AGN without any significant intrinsic absorption. New estimates of the black hole mass independently obtained from the broad Balmer lines and from a new scaling technique based on X-ray spectral data suggest that Q2122-444 is accreting at a relatively high rate in Eddington units.

  11. 3C 273 with NuSTAR: Unveiling the Active Galactic Nucleus

    Madsen, Kristin K.; Fürst, Felix; Walton, Dominic J.; Harrison, Fiona A.; Nalewajko, Krzysztof; Ballantyne, David R.; Boggs, Steve E.; Brenneman, Laura W.; Christensen, Finn E.; Craig, William W.; Fabian, Andrew C.; Forster, Karl; Grefenstette, Brian W.; Guainazzi, Matteo; Hailey, Charles J.; Madejski, Greg M.; Matt, Giorgio; Stern, Daniel; Walter, Roland; Zhang, William W.

    2015-10-01

    We present results from a 244 ks NuSTAR observation of 3C 273 obtained during a cross-calibration campaign with the Chandra, INTEGRAL, Suzaku, Swift, and XMM-Newton observatories. We show that the spectrum, when fit with a power-law model using data from all observatories except INTEGRAL over the 1-78 keV band, leaves significant residuals in the NuSTAR data between 30 and 78 keV. The NuSTAR 3-78 keV spectrum is well described by an exponentially cutoff power law ({{Γ }}=1.646+/- 0.006, {E}{cutoff}={202}-34+51 keV) with a weak reflection component from cold, dense material. There is also evidence for a weak ({EW}=23+/- 11 eV) neutral iron line. We interpret these features as arising from coronal emission plus reflection off an accretion disk or distant material. Beyond 80 keV INTEGRAL data show clear excess flux relative to an extrapolation of the active galactic nucleus model fit to NuSTAR. This high-energy power law is consistent with the presence of a beamed jet, which begins to dominate over emission from the inner accretion flow at 30-40 keV. Modeling the jet locally (in the NuSTAR + INTEGRAL band) as a power law, we find that the coronal component is fit by {{{Γ }}}{AGN}=1.638+/- 0.045, {E}{cutoff}=47+/- 15 {keV}, and jet photon index by {{{Γ }}}{jet}=1.05+/- 0.4. We also consider Fermi/LAT observations of 3C 273, and here the broadband spectrum of the jet can be described by a log-parabolic model, peaking at ˜2 MeV. Finally, we investigate the spectral variability in the NuSTAR band and find an inverse correlation between flux and Γ.

  12. Variability-based active galactic nucleus selection using image subtraction in the SDSS and LSST era

    Choi, Yumi; Gibson, Robert R.; Becker, Andrew C.; Ivezić, Željko; Connolly, Andrew J.; Ruan, John J.; Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); MacLeod, Chelsea L., E-mail: ymchoi@astro.washington.edu [Physics Department, U.S. Naval Academy, 572 Holloway Road, Annapolis, MD 21402 (United States)

    2014-02-10

    With upcoming all-sky surveys such as LSST poised to generate a deep digital movie of the optical sky, variability-based active galactic nucleus (AGN) selection will enable the construction of highly complete catalogs with minimum contamination. In this study, we generate g-band difference images and construct light curves (LCs) for QSO/AGN candidates listed in Sloan Digital Sky Survey Stripe 82 public catalogs compiled from different methods, including spectroscopy, optical colors, variability, and X-ray detection. Image differencing excels at identifying variable sources embedded in complex or blended emission regions such as Type II AGNs and other low-luminosity AGNs that may be omitted from traditional photometric or spectroscopic catalogs. To separate QSOs/AGNs from other sources using our difference image LCs, we explore several LC statistics and parameterize optical variability by the characteristic damping timescale (τ) and variability amplitude. By virtue of distinguishable variability parameters of AGNs, we are able to select them with high completeness of 93.4% and efficiency (i.e., purity) of 71.3%. Based on optical variability, we also select highly variable blazar candidates, whose infrared colors are consistent with known blazars. One-third of them are also radio detected. With the X-ray selected AGN candidates, we probe the optical variability of X-ray detected optically extended sources using their difference image LCs for the first time. A combination of optical variability and X-ray detection enables us to select various types of host-dominated AGNs. Contrary to the AGN unification model prediction, two Type II AGN candidates (out of six) show detectable variability on long-term timescales like typical Type I AGNs. This study will provide a baseline for future optical variability studies of extended sources.

  13. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σΔz/(1+zspec)∼0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (HAB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  14. Parsec-scale Faraday Rotation Measures from General Relativistic Magnetohydrodynamic Simulations of Active Galactic Nucleus Jets

    Broderick, Avery E.; McKinney, Jonathan C.

    2010-12-01

    It is now possible to compare global three-dimensional general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to multi-wavelength polarized VLBI observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the nonthermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a direct way to confront simulations with observations. We compute RM distributions of a three-dimensional global GRMHD jet formation simulation, extrapolated in a self-consistent manner to ~10 pc scales, and explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations, the RMs are generated in the circum-jet material, hydrodynamically a smooth extension of the jet itself, containing ordered toroidally dominated magnetic fields. This results in a particular bilateral morphology that is unlikely to arise due to Faraday rotation in distant foreground clouds. However, critical to efforts to probe the Faraday screen will be resolving the transverse jet structure. Therefore, the RMs of radio cores may not be reliable indicators of the properties of the rotating medium. Finally, we are able to constrain the particle content of the jet, finding that at pc scales AGN jets are electromagnetically dominated, with roughly 2% of the comoving energy in nonthermal leptons and much less in baryons.

  15. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br [Instituto de Astronomia Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP CEP 05508-090 (Brazil)

    2013-03-10

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  16. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the Hα emission line. The collimation and scattering of this broad Hα component was also revealed by fitting the [N II] λλ6548, 6583 and Hα emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = –18° ± 13° and P.A. = 162° ± 13°) along a direction perpendicular to the torus/disk (P.A. = 72° ± 14°) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the Hα emission line is visible and also why many previous studies detected no broad Hα. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  17. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wild, Vivienne [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during

  18. From Starburst to Quiescence: Testing Active Galactic Nucleus feedback in Rapidly Quenching Post-starburst Galaxies

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S.; Wild, Vivienne; Hayward, Christopher C.

    2014-09-01

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M ⊙) = 10.3-10.7, and identifies "transiting" post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ~0.3% of galaxies are starbursts, ~0.1% are QPSBs, and ~0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (gsim 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of >~ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as "dust-obscured galaxies" (DOGs), with a near-UV-to-mid-IR flux ratio of >~ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post-starburst phase.

  19. X-Ray Properties Expected from Active Galactic Nucleus Feedback in Elliptical Galaxies

    Pellegrini, Silvia; Ciotti, Luca; Ostriker, Jeremiah P.

    2012-01-01

    Detailed hydrodynamic simulations of active galactic nucleus feedback have been performed including the effects of radiative and mechanical momentum and energy input on the interstellar medium (ISM) of typical elliptical galaxies. We focus on the observational properties of the models in the soft and hard X-ray bands: nuclear X-ray luminosity; global X-ray luminosity and temperature of the hot ISM; and temperature and X-ray brightness profiles before, during, and after outbursts. After ~10 Gyr, the bolometric nuclear emission L BH is very sub-Eddington (l = L BH/L Edd ~ 10-4), and within the range observed, though larger than typical values. Outbursts last for ≈107 yr, and the duty cycle of nuclear activity is a few × (10-3 to 10-2), over the last 6 Gyr. The ISM thermal luminosity L X oscillates in phase with the nuclear luminosity, with broader peaks. This behavior helps statistically reproduce the observed large L X variation. The average gas temperature is within the observed range, in the upper half of those observed. In quiescence, the temperature profile has a negative gradient; thanks to past outbursts, the brightness profile lacks the steep shape of cooling flow models. After outbursts, disturbances are predicted in the temperature and brightness profiles (analyzed by unsharp masking). Most significantly, during major accretion episodes, a hot bubble of shocked gas is inflated at the galaxy center (within ≈100 pc) the bubble would be conical in shape in real galaxies and would be radio-loud. Its detection in X-rays is within current capabilities, though it would likely remain unresolved. The ISM resumes its smooth appearance on a timescale of ≈200 Myr the duty cycle of perturbations in the ISM is of the order of 5%-10%. While showing general agreement between the models and real galaxies, this analysis indicates that additional physical input may still be required including moving to two-dimensional or three-dimensional simulations, input of

  20. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z ∼ 2

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M * > 5 × 1010 M ☉) sample of 123 star-forming and quiescent galaxies at 1.5 ≤ z ≤ 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% ± 7% of the galaxies are detected directly in X-rays, 22% ± 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L 0.5-8keV > 3 × 1042 erg s–1). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z ∼ 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  1. The VSOP 5 GHz active galactic nucleus survey. V. Imaging results for the remaining 140 sources

    Dodson, R.; Fomalont, E. B.; Wiik, K.; Horiuchi, S.; Hirabayashi, H.; Edwards, P. G.; Murata, Y.; Asaki, Y.; Moellenbrock, G. A.; Scott, W. K.; Taylor, A. R.; Gurvits, L. I.; Paragi, Z.; Frey, S.; Shen, Z. Q.

    2008-01-01

    In 1997 February, the Japanese radio astronomy satellite HALCA was launched to provide the space-bourne element for the VLBI Space Observatory Program (VSOP) mission. Approximately 25% of the mission time was dedicated to the VSOP survey of bright compact active galactic nuclei (AGNs) at 5 GHz. This paper, the fifth in the series, presents images and models for the remaining 140 sources not included in the third p...

  2. THE FIRST HARD X-RAY POWER SPECTRAL DENSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEUS

    We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14-150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of ∼ – 1, consistent at low frequencies with previous studies in the 2-10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes.

  3. The VSOP 5 GHz Active Galactic Nucleus Survey: V. Imaging Results for the Remaining 140 sources

    Dodson, R; Wiik, K; Horiuchi, S; Hirabayashi, H; Edwards, P G; Murata, Y; Asaki, Y; Moellenbrock, G A; Scott, W K; Taylor, A R; Gurvits, L I; Paragi, Z; Frey, S; Shen, Z -Q; Lovell, J E J; Tingay, S J; Rioja, M J; Fodor, S; Lister, M L; Mosoni, L; Coldwell, G; Piner, B G; Yang, J

    2007-01-01

    In February 1997, the Japanese radio astronomy satellite HALCA was launched to provide the space-bourne element for the VLBI Space Observatory Programme (VSOP) mission. Approximately twenty-five percent of the mission time was dedicated to the VSOP Survey of bright compact Active Galactic Nuclei (AGN) at 5 GHz. This paper, the fifth in the series, presents images and models for the remaining 140 sources not included in Paper III, which contained 102 sources. For most sources, the plots of the uv-coverage, the visibility amplitude versus uv-distance, and the high resolution image are presented. Model fit parameters to the major radio components are determined, and the brightness temperature of the core component for each source is calculated. The brightness temperature distributions for all of the sources in the VSOP AGN survey are discussed.

  4. RADIO-LOUD ACTIVE GALACTIC NUCLEUS: IS THERE A LINK BETWEEN LUMINOSITY AND CLUSTER ENVIRONMENT?

    We present here the first results from the Chandra ERA (Environments of Radio-loud AGN) Large Project, characterizing the cluster environments of a sample of 26 radio-loud active galactic nuclei (AGNs) at z ∼ 0.5 that covers three decades of radio luminosity. This is the first systematic X-ray environmental study at a single epoch, and has allowed us to examine the relationship between radio luminosity and cluster environment without the problems of Malmquist bias. We have found a weak correlation between radio luminosity and host cluster X-ray luminosity, as well as tentative evidence that this correlation is driven by the subpopulation of low-excitation radio galaxies, with high-excitation radio galaxies showing no significant correlation. The considerable scatter in the environments may be indicative of complex relationships not currently included in feedback models.

  5. THE YOUNG, THE OLD, AND THE DUSTY: STELLAR POPULATIONS OF ACTIVE GALACTIC NUCLEUS HOSTS

    Studying the average properties of active galactic nuclei (AGNs) host stellar populations is an important step in understanding the role of AGNs in galaxy evolution and the processes that trigger and fuel AGN activity. Here we calculate model spectral energy distributions that include emission from the AGN, the host galaxy stellar population, and dust enshrouded star formation. Using the framework of cosmic X-ray background population synthesis modeling, the model AGN hosts are constrained using optical (B band) and near-infrared (J band, 3.6 μm, 5.7 μm, 8.0 μm, and 24 μm) luminosity functions and number counts. It is found that at z 1, type 2 AGN hosts are intrinsically different from type 1 AGN hosts, suggesting that the simple orientation-based unified model does not hold at z > 1. Also, it is found that if Compton thick (CT) AGNs evolve like less obscured type 2 AGNs, then, on average, CT AGN hosts are similar to type 2 AGN hosts; however, if CT obscuration is connected to an evolutionary stage of black hole growth, then CT AGN hosts will also be in specific evolutionary stages. Multi-wavelength selection criteria of CT AGNs are discussed.

  6. COLA. III. RADIO DETECTION OF ACTIVE GALACTIC NUCLEUS IN COMPACT MODERATE LUMINOSITY INFRARED GALAXIES

    We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median LIR = 1011.01 Lsun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (∼1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.

  7. On the Host Galaxy of GRB 150101B and the Associated Active Galactic Nucleus

    Xie, Chen; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-01-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors a low-luminosity active galactic nuclei (AGN). Our modeling of the spectral energy distribution (SED) has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of $\\sim 5.7\\ Gyr$, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy (XBONG), and the central AGN is likely dominated by a radiatively inefficient accretion flow (RIAF). Our work explores interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help understand the host environment of the GRB events and the roles of AGN feedback.

  8. Active galactic nucleus black hole mass estimates in the era of time domain astronomy

    Kelly, Brandon C.; Treu, Tommaso; Pancoast, Anna [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Malkan, Matthew [Department of Astronomy, 430 Portola Plaza, Box 951547, University of California, Los Angeles, CA 90095-1547 (United States); Woo, Jong-Hak [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2013-12-20

    We investigate the dependence of the normalization of the high-frequency part of the X-ray and optical power spectral densities (PSDs) on black hole mass for a sample of 39 active galactic nuclei (AGNs) with black hole masses estimated from reverberation mapping or dynamical modeling. We obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass of the AGNs in our sample. We develop a novel statistical method to estimate the PSD from a light curve of photon counts with arbitrary sampling, eliminating the need to bin a light curve to achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters for the faint AGNs in our sample. We find that the normalization of the high-frequency X-ray PSD is inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain black hole mass estimates from the short timescale X-ray variability amplitude with precision ∼0.38 dex. The amplitude of optical variability on timescales of days is also anticorrelated with black hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest anticorrelation with luminosity. We conclude with a discussion of the implications of our results for estimating black hole mass from the amplitude of AGN variability.

  9. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY

    We report the discovery of a luminosity distance estimator using active galactic nuclei (AGNs). We combine the correlation between the X-ray variability amplitude and the black hole (BH) mass with the single-epoch spectra BH mass estimates which depend on the AGN luminosity and the line width emitted by the broad-line region. We demonstrate that significant correlations do exist that allow one to predict the AGN (optical or X-ray) luminosity as a function of the AGN X-ray variability and either the Hβ or the Paβ line widths. In the best case, when the Paβ is used, the relationship has an intrinsic dispersion of ∼0.6 dex. Although intrinsically more disperse than supernovae Ia, this relation constitutes an alternative distance indicator potentially able to probe, in an independent way, the expansion history of the universe. With respect to this, we show that the new mission concept Athena should be able to measure the X-ray variability of hundreds of AGNs and then constrain the distance modulus with uncertainties of 0.1 mag up to z ∼ 0.6. We also discuss how our estimator has the prospect of becoming a cosmological probe even more sensitive than the current supernovae Ia samples by using a new dedicated wide-field X-ray telescope able to measure the variability of thousands of AGNs

  10. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY

    Franca, Fabio La; Bianchi, Stefano; Branchini, Enzo; Matt, Giorgio [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146, Roma (Italy); Ponti, Gabriele, E-mail: lafranca@fis.uniroma3.it [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany)

    2014-05-20

    We report the discovery of a luminosity distance estimator using active galactic nuclei (AGNs). We combine the correlation between the X-ray variability amplitude and the black hole (BH) mass with the single-epoch spectra BH mass estimates which depend on the AGN luminosity and the line width emitted by the broad-line region. We demonstrate that significant correlations do exist that allow one to predict the AGN (optical or X-ray) luminosity as a function of the AGN X-ray variability and either the Hβ or the Paβ line widths. In the best case, when the Paβ is used, the relationship has an intrinsic dispersion of ∼0.6 dex. Although intrinsically more disperse than supernovae Ia, this relation constitutes an alternative distance indicator potentially able to probe, in an independent way, the expansion history of the universe. With respect to this, we show that the new mission concept Athena should be able to measure the X-ray variability of hundreds of AGNs and then constrain the distance modulus with uncertainties of 0.1 mag up to z ∼ 0.6. We also discuss how our estimator has the prospect of becoming a cosmological probe even more sensitive than the current supernovae Ia samples by using a new dedicated wide-field X-ray telescope able to measure the variability of thousands of AGNs.

  11. Gamma-Ray Active Galactic Nucleus Type through Machine-Learning Algorithms

    Hassan, T; Contreras, J L; Oya, I

    2012-01-01

    The Fermi Gamma-ray Space Telescope is producing the most detailed inventory of the gamma-ray sky to date. Despite tremendous achievements approximately 25% of all Fermi extragalactic sources in the Second Fermi LAT Catalogue (2FGL) are listed as active galactic nuclei (AGN) of uncertain type. Typically, these are suspected blazar candidates without a conclusive optical spectrum or lacking spectroscopic observations. Here, we explore the use of machine-learning algorithms - Random Forests and Support Vector Machines - to predict specific AGN subclass based on observed gamma-ray spectral properties. After training and testing on identified/associated AGN from the 2FGL we find that 235 out of 269 AGN of uncertain type have properties compatible with gamma-ray BL Lacs and flat-spectrum radio quasars with accuracy rates of 85%. Additionally, direct comparison of our results with class predictions made following the infrared colour-colour space of Massaro et al. (2012) show that the agreement rate is over four-fif...

  12. Active galactic nucleus black hole mass estimates in the era of time domain astronomy

    We investigate the dependence of the normalization of the high-frequency part of the X-ray and optical power spectral densities (PSDs) on black hole mass for a sample of 39 active galactic nuclei (AGNs) with black hole masses estimated from reverberation mapping or dynamical modeling. We obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass of the AGNs in our sample. We develop a novel statistical method to estimate the PSD from a light curve of photon counts with arbitrary sampling, eliminating the need to bin a light curve to achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters for the faint AGNs in our sample. We find that the normalization of the high-frequency X-ray PSD is inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain black hole mass estimates from the short timescale X-ray variability amplitude with precision ∼0.38 dex. The amplitude of optical variability on timescales of days is also anticorrelated with black hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest anticorrelation with luminosity. We conclude with a discussion of the implications of our results for estimating black hole mass from the amplitude of AGN variability.

  13. Type 1 Active Galactic Nucleus Fraction in SDSS/FIRST Survey

    Lu, Yu; Dong, Xiao-Bo; Zhou, Hong-Yan

    2010-01-01

    In the unification scheme, narrow-lined (type 2) active galactic nuclei (AGN) are intrinsically similar to broad-lined (type 1) AGN with the exception that the line of sight to the broad emission line region and accretion disk is blocked by a dusty torus. The fraction of type 1 AGN measures the average covering factor of the torus. In this paper, we explore the dependence of this fraction on nuclear properties for a sample of low redshift (z 10^{23}W/Hz) AGN selected by matching the spectroscopic catalog of Sloan Digital Sky Survey and the radio source catalog of Faint Image of Radio Sky at Twenty cm. After correcting for several selection effects, we find that : (1) type 1 fraction $f_1$ keeps at a constant of ~20 per cent in the [O III] 5007 luminosity range of 40.7< log(L_{[O III]}/ erg/s) <43.5 . This result is significantly different from previous studies, and the difference can be explained by extinction correction and different treatment of selection effects. (2) $f_1$ rises with black hole mass ...

  14. Galaxy Zoo: the effect of bar-driven fueling on the presence of an active galactic nucleus in disc galaxies

    Galloway, Melanie A; Fortson, Lucy F; Cardamone, Carolin N; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J; Masters, Karen L; Melvin, Thomas; Simmons, Brooke D

    2015-01-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19,756 disc galaxies at $0.01galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16% of the average barred AGN fraction. Using the $L_{\\rm...

  15. Anti-hierarchical evolution of the active galactic nucleus space density in a hierarchical universe

    Enoki, Motohiro [Faculty of Business Administration, Tokyo Keizai University, Kokubunji, Tokyo 185-8502 (Japan); Ishiyama, Tomoaki [Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Kobayashi, Masakazu A. R. [Research Center for Space and Cosmic Evolution, Ehime University, Matsuyama, Ehime 790-8577 (Japan); Nagashima, Masahiro, E-mail: enokimt@tku.ac.jp [Faculty of Education, Nagasaki University, Nagasaki, Nagasaki 852-8521 (Japan)

    2014-10-10

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  16. Anti-hierarchical evolution of the active galactic nucleus space density in a hierarchical universe

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  17. Black Hole Lightning from the Peculiar Gamma-Ray Loud Active Galactic Nucleus IC 310

    Glawion, Dorit Eisenacher; Mannheim, Karl; Colin, Pierre; Kadler, Matthias; Schulz, Robert; Ros, Eduardo; Bach, Uwe; Krauß, Felicia; Wilms, Jörn

    2015-01-01

    The nearby active galaxy IC 310, located in the outskirts of the Perseus cluster of galaxies is a bright and variable multi-wavelength emitter from the radio regime up to very high gamma-ray energies above 100 GeV. Originally, the nucleus of IC 310 has been classified as a radio galaxy. However, studies of the multi-wavelength emission showed several properties similarly to those found from blazars as well as radio galaxies. In late 2012, we have organized the first contemporaneous multi-wavelength campaign including radio, optical, X-ray and gamma-ray instruments. During this campaign an exceptionally bright flare of IC 310 was detected with the MAGIC telescopes in November 2012 reaching an averaged flux level in the night of up to one Crab above 1 TeV with a hard spectrum over two decades in energy. The intra-night light curve showed a series of strong outbursts with flux-doubling time scales as fast as a few minutes. The fast variability constrains the size of the gamma-ray emission regime to be smaller th...

  18. Active galactic nucleus X-ray variability in the XMM-COSMOS survey

    We used the observations carried out by XMM in the COSMOS field over 3.5 yr to study the long term variability of a large sample of active galactic nuclei (AGNs) (638 sources) in a wide range of redshifts (0.1 < z < 3.5) and X-ray luminosities (1041 < L 0.5-10 <1045.5). Both a simple statistical method to assess the significance of variability and the Normalized Excess Variance (σrms2) parameter were used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGNs, whenever we have good statistics to measure it, and no significant differences between type 1 and type 2 AGNs were found. A flat (slope –0.23 ± 0.03) anti-correlation between σrms2 and X-ray luminosity is found when all significantly variable sources are considered together. When divided into three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGNs being more variable. We prove, however, that this effect is due to the pre-selection of variable sources: when considering all of the sources with an available σrms2 measurement, the evolution in redshift disappears. For the first time, we were also able to study long term X-ray variability as a function of M BH and Eddington ratio for a large sample of AGNs spanning a wide range of redshifts. An anti-correlation between σrms2 and M BH is found, with the same slope of anti-correlation between σrms2 and X-ray luminosity, suggesting that the latter may be a by-product of the former. No clear correlation is found between σrms2 and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray σrms2 and optical variability.

  19. Active galactic nucleus and quasar science with aperture masking interferometry on the James Webb Space Telescope

    Due to feedback from accretion onto supermassive black holes (SMBHs), active galactic nuclei (AGNs) are believed to play a key role in ΛCDM cosmology and galaxy formation. However, AGNs extreme luminosities and the small angular size of their accretion flows create a challenging imaging problem. We show that the James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) Aperture Masking Interferometry (AMI) mode will enable true imaging (i.e., without any requirement of prior assumptions on source geometry) at ∼65 mas angular resolution at the centers of AGNs. This is advantageous for studying complex extended accretion flows around SMBHs and in other areas of angular-resolution-limited astrophysics. By simulating data sequences incorporating expected sources of noise, we demonstrate that JWST-NIRISS AMI mode can map extended structure at a pixel-to-pixel contrast of ∼10–2 around an L = 7.5 point source, using short exposure times (minutes). Such images will test models of AGN feedback, fueling, and structure (complementary with ALMA observations), and are not currently supported by any ground-based IR interferometer or telescope. Binary point source contrast with NIRISS is ∼10–4 (for observing binary nuclei in merging galaxies), significantly better than current ground-based optical or IR interferometry. JWST-NIRISS's seven-hole non-redundant mask has a throughput of 15%, and utilizes NIRISS's F277W (2.77 μm), F380M (3.8 μm), F430M (4.3 μm), and F480M (4.8 μm) filters. NIRISS's square pixels are 65 mas per side, with a field of view ∼2' × 2'. We also extrapolate our results to AGN science enabled by non-redundant masking on future 2.4 m and 16 m space telescopes working at long-UV to near-IR wavelengths.

  20. Galaxy Zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies

    Galloway, Melanie A.; Willett, Kyle W.; Fortson, Lucy F.; Cardamone, Carolin N.; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J.; Masters, Karen L.; Melvin, Thomas; Simmons, Brooke D.

    2015-04-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19 756 disc galaxies at 0.01 < z < 0.05 which have been visually examined for the presence of a bar. Within this sample, AGN host galaxies have a higher overall percentage of bars (51.8 per cent) than inactive galaxies exhibiting central star formation (37.1 per cent). This difference is primarily due to known effects: that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16 per cent of the average barred AGN fraction. Using the L_{[O III]}/MBH ratio as a measure of AGN strength, we show that barred AGNs do not exhibit stronger accretion than unbarred AGNs at a fixed mass and colour. The data are consistent with a model in which bar-driven fuelling does contribute to the probability of an actively growing black hole, but in which other dynamical mechanisms must contribute to the direct AGN fuelling via smaller, non-axisymmetric perturbations.

  1. The INTEGRAL View of the Galactic Nucleus

    Goldwurm, A; Goldoni, P; Paul, J; Terrier, R; Falanga, M; Ubertini, P; Bazzano, A; Santo, M D; Winkler, C; Parmar, A N; Kuulkers, E; Ebisawa, K; Roques, J P; Skinner, G K; Lund, N; Melia, F; Yusef-Zadeh, F

    2004-01-01

    We present the preliminary results of the observational campaign performed in 2003 to study the Galactic Nucleus with INTEGRAL. The mosaicked images obtained with the IBIS/ISGRI coded aperture instrument in the energy range above 20 keV, give a yet unseen view of the high-energy sources of this region in hard X and gamma-rays, with an angular resolution of 12'. We report on the discovery of a source, IGR J17456-2901, compatible with the instrument's point spread function and coincident with the Galactic Nucleus Sgr A* to within 0.9'. The source is visible up to 60-80 keV with a 20-100 keV luminosity at 8 kpc of 3 x 10E35 erg/s. Although we cannot unequivocally associate the new INTEGRAL source to the Galactic Nucleus, this is the first report of significant hard X-ray emission from within the inner 10' of the Galaxy and a contribution from the galactic center supermassive black hole itself cannot be excluded. Here we discuss the results obtained and the perspectives for future observations of the Galactic Nuc...

  2. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  3. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place South SE, Suite 600, Atlanta, GA 30303 (United States); Kraemer, S. B. [Department of Physics, Catholic University of America, 620 Michigan Avenue, N.E., Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Keel, W. C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Rafter, S. [Physics Department, Technion, Haifa 32000 (Israel); Bennert, V. N. [Physics Department, California Polytechnic State University San Luis Obispo, CA 93407 (United States); Schawinski, K., E-mail: gagne@chara.gsu.edu [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  4. A MINOR MERGER CAUGHT IN THE ACT OF FUELING THE ACTIVE GALACTIC NUCLEUS IN Mrk 509

    Fischer, T. C.; Crenshaw, D. M. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 600, Atlanta, GA 30303 (United States); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Storchi-Bergmann, T. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil); Riffel, R. A., E-mail: fischer@astro.gsu.edu [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)

    2015-02-01

    In recent observations by the Hubble Space Telescope (HST) as part of a campaign to discover locations and kinematics of AGN outflows, we found that Mrk 509 contains a 3'' (∼2100 pc) linear filament in its central region. Visible in both optical continuum and [O III] imaging, this feature resembles a ''check mark'' of several knots of emission that travel northwest to southeast before jutting toward the nucleus from the southwest. Space Telescope Imaging Spectrograph (STIS/HST) observations along the inner portion of the filament reveal redshifted velocities, indicating that the filament is inflowing. We present further observations of the nucleus in Mrk 509 using the Gemini Near-Infrared Integral Field Spectrograph, from which we conclude that this structure cannot be related to previously studied, typical narrow line region outflows and instead embodies the remains of an ongoing minor merger with a gas-rich dwarf galaxy, therefore providing a great opportunity to study the fueling of an AGN by a minor merger in progress.

  5. NuSTAR unveils a heavily obscured low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    Ricci, C; Treister, E; Romero-Canizales, C; Arevalo, P; Iwasawa, K; Privon, G C; Sanders, D B; Schawinski, K; Stern, D; Imanishi, M

    2016-01-01

    We report the detection of a heavily obscured Active Galactic Nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286, identified in a 17.5 ks NuSTAR observation. The source is in an early merging stage, and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and, by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured [$N_{\\rm\\,H}\\simeq (0.95-1.32)\\times 10^{24}\\rm\\,cm^{-2}$], with a column density consistent with being Compton-thick [CT, $\\log (N_{\\rm\\,H}/\\rm cm^{-2})\\geq 24$]. The AGN in NGC 6286 has a low absorption-corrected luminosity ($L_{2-10\\rm\\,keV}\\sim 3-20\\times 10^{41}\\rm\\,erg\\,s^{-1}$) and contributes $\\lesssim$1\\% to the energetics of the system. Because of its low-luminosity, previous observations carried out in the soft X-ray band ($<10$ keV) and in the infrared did not notice th...

  6. Outflowing Diffuse Gas in the Active Galactic Nucleus of NGC 1068

    Geballe, T R; Oka, T

    2015-01-01

    Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 microns have revealed a weak absorption feature due to two lines of the molecular ion H3+. The observed wavelength of the feature corresponds to velocity of -70 km/s relative to the systemic velocity of the galaxy, implying an outward flow from the nucleus along the line of sight. The absorption by H3+ along with the previously known broad hydrocarbon absorption at 3.4~microns probably are formed in diffuse gas that is in close proximity to the continuum source, i.e. within a few tens of parsecs of the central engine. Based on that conclusion and the measured H3+ absorption velocity and with the assumption of a spherically symmetric wind we estimate a rate of mass outflow from the AGN of ~1 Msun/yr.

  7. INSIGHT INTO ACTIVE GALACTIC NUCLEUS AND HOST GALAXY CO-EVOLUTION FROM HARD X-RAY EMISSION

    We study the issue of active galactic nucleus (AGN) and host co-evolution by focusing on the correlation between the hard X-ray emission from central AGNs and the stellar populations of the host galaxies. Focusing on galaxies with strong Hα line emission (EW(Hα) > 5 Å), both X-ray and optical spectral analyses are performed on 67 (partially) obscured AGNs that are selected from the XMM-Newton 2XMMi/SDSS-DR7 catalog originally cross-matched by Pineau et al. The sample allows us to study central AGN activity and host galaxy activity directly and simultaneously in individual objects. Combining the spectral analysis in both bands reveals that the older the stellar population of the host galaxy, the harder the X-ray emission will be, which was missed in our previous study where ROSAT hardness ratios were used. By excluding the contamination from host galaxies and from jet beaming emission, the correlation indicates that Compton cooling in the accretion disk corona decreases with the mean age of the stellar population. We argue that this correlation is related to the correlation of L/LEdd with the host stellar population. In addition, the [O I]/Hα and [S II]/Hα narrow-line ratios are identified to correlate with the spectral slope in hard X-rays, which can be inferred from the currently proposed evolution of the X-ray emission because of the confirmed tight correlations between the two line ratios and stellar population age.

  8. Active galactic nucleus feedback in an isolated elliptical galaxy: The effect of strong radiative feedback in the kinetic mode

    Based on two-dimensional high-resolution hydrodynamic numerical simulation, we study the mechanical and radiative feedback effects from the central active galactic nucleus (AGN) on the cosmological evolution of an isolated elliptical galaxy. The inner boundary of the simulation domain is carefully chosen so that the fiducial Bondi radius is resolved and the accretion rate of the black hole is determined self-consistently. It is well known that when the accretion rates are high and low, the central AGNs will be in cold and hot accretion modes, which correspond to the radiative and kinetic feedback modes, respectively. The emitted spectrum from the hot accretion flows is harder than that from the cold accretion flows, which could result in a higher Compton temperature accompanied by a more efficient radiative heating, according to previous theoretical works. Such a difference of the Compton temperature between the two feedback modes, the focus of this study, has been neglected in previous works. Significant differences in the kinetic feedback mode are found as a result of the stronger Compton heating. More importantly, if we constrain models to correctly predict black hole growth and AGN duty cycle after cosmological evolution, we find that the favored model parameters are constrained: mechanical feedback efficiency diminishes with decreasing luminosity (the maximum efficiency being ≅ 10–3.5), and X-ray Compton temperature increases with decreasing luminosity, although models with fixed mechanical efficiency and Compton temperature can be found that are satisfactory as well. We conclude that radiative feedback in the kinetic mode is much more important than previously thought.

  9. DECOMPOSING STAR FORMATION AND ACTIVE GALACTIC NUCLEUS WITH SPITZER MID-INFRARED SPECTRA: LUMINOSITY FUNCTIONS AND CO-EVOLUTION

    We present Spitzer 7-38 μm spectra for a 24 μm flux-limited sample of galaxies at z ∼ 0.7 in the COSMOS field. The detailed high-quality spectra allow us to cleanly separate star formation (SF) and active galactic nucleus (AGN) in individual galaxies. We first decompose mid-infrared luminosity functions (LFs). We find that the SF 8 μm and 15 μm LFs are well described by Schechter functions. AGNs dominate the space density at high luminosities, which leads to the shallow bright-end slope of the overall mid-infrared LFs. The total infrared (8-1000 μm) LF from 70 μm selected galaxies shows a shallower bright-end slope than the bolometrically corrected SF 15 μm LF, owing to the intrinsic dispersion in the mid-to-far-infrared spectral energy distributions. We then study the contemporary growth of galaxies and their supermassive black holes (BHs). Seven of the thirty-one luminous infrared galaxies with Spitzer spectra host luminous AGNs, implying an AGN duty cycle of 23% ± 9%. The time-averaged ratio of BH accretion rate and SF rate matches the local MBH - Mbulge relation and the MBH - Mhost relation at z ∼ 1. These results favor co-evolution scenarios in which BH growth and intense SF happen in the same event but the former spans a shorter lifetime than the latter. Finally, we compare our mid-infrared spectroscopic selection with other AGN identification methods and discuss candidate Compton-thick AGNs in the sample. While only half of the mid-infrared spectroscopically selected AGNs are detected in X-ray, ∼90% of them can be identified with their near-infrared spectral indices.

  10. Detection of a high brightness temperature radio core in the active-galactic-nucleus-driven molecular outflow candidate NGC 1266

    Nyland, Kristina; Young, Lisa M. [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States); Alatalo, Katherine [Department of Astronomy, Hearst Field Annex, University of California-Berkeley, CA 94720 (United States); Wrobel, J. M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Morganti, Raffaella [Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Davis, Timothy A.; De Zeeuw, P. T. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bureau, Martin, E-mail: knyland@nmt.edu [Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-12-20

    We present new high spatial resolution Karl G. Jansky Very Large Array (VLA) H I absorption and Very Long Baseline Array (VLBA) continuum observations of the active-galactic-nucleus-(AGN-)driven molecular outflow candidate NGC 1266. Although other well-known systems with molecular outflows may be driven by star formation (SF) in a central molecular disk, the molecular mass outflow rate of 13 M {sub ☉} yr{sup –1} in NGC 1266 reported by Alatalo et al. exceeds SF rate estimates from a variety of tracers. This suggests that an additional energy source, such as an AGN, may play a significant role in powering the outflow. Our high spatial resolution H I absorption data reveal compact absorption against the radio continuum core co-located with the putative AGN, and the presence of a blueshifted spectral component re-affirms that gas is indeed flowing out of the system. Our VLBA observations at 1.65 GHz reveal one continuum source within the densest portion of the molecular gas, with a diameter d < 8 mas (1.2 pc), a radio power P {sub rad} = 1.48 × 10{sup 20} W Hz{sup –1}, and a brightness temperature T {sub b} > 1.5 × 10{sup 7} K that is most consistent with an AGN origin. The radio continuum energetics implied by the compact VLBA source, as well as archival VLA continuum observations at lower spatial resolution, further support the possibility that the AGN in NGC 1266 could be driving the molecular outflow. These findings suggest that even low-level AGNs may be able to launch massive outflows in their host galaxies.

  11. DRIVING OUTFLOWS WITH RELATIVISTIC JETS AND THE DEPENDENCE OF ACTIVE GALACTIC NUCLEUS FEEDBACK EFFICIENCY ON INTERSTELLAR MEDIUM INHOMOGENEITY

    We examine the detailed physics of the feedback mechanism by relativistic active galactic nucleus (AGN) jets interacting with a two-phase fractal interstellar medium (ISM) in the kpc-scale core of galaxies using 29 three-dimensional grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios Pjet/Ledd ∼–4, although systems with large cloud complexes ∼> 50 pc require jets of Eddington ratio in excess of 10–2 to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations, we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm-phase material is less than 0.1 and the cloud complexes are smaller than ∼25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high-velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within a few 10 to 100 Myr to velocities that match those observed in a range of high- and low-redshift radio galaxies hosting powerful radio jets.

  12. PROBING THE EXTREME REALM OF ACTIVE GALACTIC NUCLEUS FEEDBACK IN THE MASSIVE GALAXY CLUSTER, RX J1532.9+3021

    We present a detailed Chandra, XMM-Newton, Very Large Array (VLA) and Hubble Space Telescope analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z = 0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these active galactic nucleus (AGN) driven outflows is (22 ± 9) × 1044 erg s–1, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbors older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r ≈ 65 kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing-induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >1010 M☉ or a rapidly spinning black hole is favored to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities

  13. PROBING THE EXTREME REALM OF ACTIVE GALACTIC NUCLEUS FEEDBACK IN THE MASSIVE GALAXY CLUSTER, RX J1532.9+3021

    Hlavacek-Larrondo, J.; Allen, S. W.; Canning, R. E. A.; Werner, N.; Ehlert, S.; Von der Linden, A. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Taylor, G. B.; Grimes, C. K. [Department of Physics and Astronomy, University of New-Mexico, Albuquerque, NM 87131 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Sanders, J. S., E-mail: juliehl@stanford.edu [Max-Planck-Institut fur extraterrestrische Physik (MPE), Giessenbachstrasse, D-85748 Garching (Germany)

    2013-11-10

    We present a detailed Chandra, XMM-Newton, Very Large Array (VLA) and Hubble Space Telescope analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z = 0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these active galactic nucleus (AGN) driven outflows is (22 ± 9) × 10{sup 44} erg s{sup –1}, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbors older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r ≈ 65 kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing-induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >10{sup 10} M{sub ☉} or a rapidly spinning black hole is favored to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities.

  14. THE MASSIVE-BLACK-HOLE-VELOCITY-DISPERSION RELATION AND THE HALO BARYON FRACTION: A CASE FOR POSITIVE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Force balance considerations put a limit on the rate of active galactic nucleus radiation momentum output, L/c, capable of driving galactic superwinds and reproducing the observed MBH-σ relation between black hole mass and spheroid velocity dispersion. We show that black holes cannot supply enough momentum in radiation to drive the gas out by pressure alone. Energy-driven winds give a MBH-σ scaling favored by a recent analysis but also fall short energetically once cooling is incorporated. We propose that outflow triggering of star formation by enhancing the intercloud medium turbulent pressure and squeezing clouds can supply the necessary boost and suggest possible tests of this hypothesis. Our hypothesis simultaneously can account for the observed halo baryon fraction.

  15. PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < z < 1

    Diaz Tello, J.; Donzelli, C. [IATE, Observatorio Astronomico de Cordoba, Universidad Nacional de Cordoba (Argentina); Padilla, N. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile (Chile); Fujishiro, N.; Yoshikawa, T. [Koyama Astronomical Observatory, Kyoto Sangyo University (Japan); Hanami, H. [Physics Section, Iwate University (Japan); Hatsukade, B., E-mail: jdiazt@oac.uncor.edu [Department of Astronomy, Kyoto University (Japan)

    2013-07-01

    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density ({Sigma}{sub SFR}) and stellar mass surface density per time unit ({Sigma}{sub M{sub */{tau}}}) as a function of redshift was investigated using the [O II] {lambda}3727, 3729, H{alpha} {lambda}6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder

  16. KILOPARSEC-SCALE SPATIAL OFFSETS IN DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. I. MARKERS FOR SELECTION OF COMPELLING DUAL ACTIVE GALACTIC NUCLEUS CANDIDATES

    Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 ≤ z ≤ 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with ∼kpc projected spatial separations on the sky (0.2 h–170 kpc –170 kpc; median Δx = 1.1 h–170 kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58+5–6%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42+6–5%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32+8–6% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational criteria for selecting the most promising dual AGN candidates from the full sample of double

  17. NuSTAR Observations of the Compton-Thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    Annuar, A.; Gandhi, P.; Alexander, D. M.;

    2015-01-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband...... column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH greater than or similar to 5 x 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the bestfitting models is L2-10,int = (0.8-1.7) x 1042 erg s-1, consistent with that...... predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E∼10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X...

  18. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-ray Source Candidate in NGC 5643

    Annuar, A; Alexander, D M; Lansbury, G B; Arévalo, P; Ballantyne, D R; Baloković, M; Bauer, F E; Boggs, S E; Brandt, W N; Brightman, M; Christensen, F E; Craig, W W; Del Moro, A; Hailey, C J; Harrison, F A; Hickox, R C; Matt, G; Puccetti, S; Ricci, C; Rigby, J R; Stern, D; Walton, D J; Zappacosta, L; Zhang, W

    2015-01-01

    We present two NuSTAR observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy ($\\sim$0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line-of-sight. However, the lack of high-quality $\\gtrsim$ 10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, had left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of $N_{\\rm{H}}$ $\\gtrsim$ 5 $\\times$ 10$^{24}$ cm$^{-2}$. The range of 2-10 ...

  19. The inner jet of an active galactic nucleus as revealed by a radio-to-gamma-ray outburst.

    Marscher, Alan P; Jorstad, Svetlana G; D'Arcangelo, Francesca D; Smith, Paul S; Williams, G Grant; Larionov, Valeri M; Oh, Haruki; Olmstead, Alice R; Aller, Margo F; Aller, Hugh D; McHardy, Ian M; Lähteenmäki, Anne; Tornikoski, Merja; Valtaoja, Esko; Hagen-Thorn, Vladimir A; Kopatskaya, Eugenia N; Gear, Walter K; Tosti, Gino; Kurtanidze, Omar; Nikolashvili, Maria; Sigua, Lorand; Miller, H Richard; Ryle, Wesley T

    2008-04-24

    Blazars are the most extreme active galactic nuclei. They possess oppositely directed plasma jets emanating at near light speeds from accreting supermassive black holes. According to theoretical models, such jets are propelled by magnetic fields twisted by differential rotation of the black hole's accretion disk or inertial-frame-dragging ergosphere. The flow velocity increases outward along the jet in an acceleration and collimation zone containing a coiled magnetic field. Detailed observations of outbursts of electromagnetic radiation, for which blazars are famous, can potentially probe the zone. It has hitherto not been possible to either specify the location of the outbursts or verify the general picture of jet formation. Here we report sequences of high-resolution radio images and optical polarization measurements of the blazar BL Lacertae. The data reveal a bright feature in the jet that causes a double flare of radiation from optical frequencies to TeV gamma-ray energies, as well as a delayed outburst at radio wavelengths. We conclude that the event starts in a region with a helical magnetic field that we identify with the acceleration and collimation zone predicted by the theories. The feature brightens again when it crosses a standing shock wave corresponding to the bright 'core' seen on the images. PMID:18432239

  20. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L bol = 1046.5 erg s–1). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 102 – 3 cm–3) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm–3)—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for

  1. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M., E-mail: orianne.roos@cea.fr [CEA-Saclay, F-91190 Gif-sur-Yvette (France)

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  2. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  3. WISE J233237.05–505643.5: A double-peaked, broad-lined active galactic nucleus with a spiral-shaped radio morphology

    We present radio continuum mapping, optical imaging, and spectroscopy of the newly discovered double-peaked, broad-lined active galactic nucleus (AGN) WISE J233237.05–505643.5 at redshift z = 0.3447. This source exhibits an FR-I and FR-II hybrid morphology, characterized by a bright core, jet, and Doppler-boosted lobe structures in Australian Telescope Compact Array continuum maps at 1.5, 5.6, and 9 GHz. Unlike most FR-II objects, W2332–5056 is hosted by a disk-like galaxy. The core has a projected 5'' linear radio feature that is perpendicular to the curved primary jet, hinting at unusual and complex activity within the inner 25 kpc. The multi-epoch, optical-near-IR photometric measurements indicate significant variability over a 3-20 yr baseline from the AGN component. Gemini South optical data show unusual double-peaked emission-line features: the centroids of the broad-lined components of Hα and Hβ are blueshifted with respect to the narrow lines and host galaxy by ∼3800 km s–1. We examine possible cases that involve single or double supermassive black holes in the system and discuss the required future investigations to disentangle the mysterious nature of this system.

  4. PRIMUS: AN OBSERVATIONALLY MOTIVATED MODEL TO CONNECT THE EVOLUTION OF THE ACTIVE GALACTIC NUCLEUS AND GALAXY POPULATIONS OUT TO z ∼ 1

    We present an observationally motivated model to connect the active galactic nucleus (AGN) and galaxy populations at 0.2 1 ≈ –0.65 and an overall normalization that evolves with redshift. We test several simple assumptions to extend this model to high specific accretion rates (beyond the measurements) and compare the predictions for the XLF with the observed data. We find good agreement with a model that allows for a break in the specific accretion rate distribution at a point corresponding to the Eddington limit, a steep power-law tail to super-Eddington ratios with slope γ2=-2.1+0.3-0.5, and a scatter of 0.38 dex in the scaling between black hole and host stellar mass. Our results show that samples of low luminosity AGNs are dominated by moderately massive galaxies (M* ∼ 1010-1011 M☉) growing with a wide range of accretion rates due to the shape of the galaxy stellar mass function rather than a preference for AGN activity at a particular stellar mass. Luminous AGNs may be a severely skewed population with elevated black hole masses relative to their host galaxies and in rare phases of rapid accretion

  5. WISE J233237.05–505643.5: A double-peaked, broad-lined active galactic nucleus with a spiral-shaped radio morphology

    Tsai, Chao-Wei [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Jarrett, T. H. [Astronomy Department, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Stern, Daniel; Assef, Roberto J.; Eisenhardt, Peter R. M.; Wu, Jingwen [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Emonts, Bjorn [Centro de Astrobiología (INTA-CSIC), Ctra de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Barrows, R. Scott [Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Norris, Ray P. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Lonsdale, Carol [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Blain, Andrew W. [Department of Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Benford, Dominic J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stalder, Brian; Stubbs, Christopher W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); High, F. William [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Li, K. L.; Kong, Albert K. H., E-mail: Chao-Wei.Tsai@jpl.nasa.gov [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2013-12-10

    We present radio continuum mapping, optical imaging, and spectroscopy of the newly discovered double-peaked, broad-lined active galactic nucleus (AGN) WISE J233237.05–505643.5 at redshift z = 0.3447. This source exhibits an FR-I and FR-II hybrid morphology, characterized by a bright core, jet, and Doppler-boosted lobe structures in Australian Telescope Compact Array continuum maps at 1.5, 5.6, and 9 GHz. Unlike most FR-II objects, W2332–5056 is hosted by a disk-like galaxy. The core has a projected 5'' linear radio feature that is perpendicular to the curved primary jet, hinting at unusual and complex activity within the inner 25 kpc. The multi-epoch, optical-near-IR photometric measurements indicate significant variability over a 3-20 yr baseline from the AGN component. Gemini South optical data show unusual double-peaked emission-line features: the centroids of the broad-lined components of Hα and Hβ are blueshifted with respect to the narrow lines and host galaxy by ∼3800 km s{sup –1}. We examine possible cases that involve single or double supermassive black holes in the system and discuss the required future investigations to disentangle the mysterious nature of this system.

  6. X-ray spectral analysis of the low-luminosity active galactic nucleus NGC 7213 using long XMM-Newton observations

    Emmanoulopoulos, D; Nicastro, F; McHardy, I M

    2012-01-01

    We present the X-ray spectral results from the longest X-ray multi-mirror mission-Newton observation, 133 ks, of the low luminosity active galactic nucleus NGC 7213. The hardness ratio analysis of the X-ray light curves discloses a rather constant X-ray spectral shape, at least for the observed exposure time, enabling us to perform X-ray spectral studies using the total observed spectrum. Apart from a neutral Fe K\\alpha emission line, we also detect narrow emission lines from the ionised iron species, Fe xxv and Fe xxvi. Our analysis suggests that the neutral Fe K\\alpha originates from a Compton-thin reflector, while the gas responsible for the high ionisation lines is collisionally excited. The overall spectrum, in the 0.3-10 keV energy band, registered by the European Photon Imaging Camera, can be modelled by a power-law component (with a slope of \\Gamma\\simeq1.9) plus two thermal components at 0.36 and 8.84 keV. The low-energy thermal component is entirely consistent with the X-ray spectral data obtained b...

  7. To test dual supermassive black hole model for broad line active galactic nucleus with double-peaked narrow [O III] lines

    Zhang, Xue-Guang; Feng, Long-Long

    2016-04-01

    In this paper, we proposed an interesting method to test the dual supermassive black hole model for active galactic nucleus (AGN) with double-peaked narrow [O III] lines (double-peaked narrow emitters) through their broad optical Balmer line properties. Under the dual supermassive black hole model for double-peaked narrow emitters, we could expect statistically smaller virial black hole masses estimated by observed broad Balmer line properties than true black hole masses (total masses of central two black holes). Then, we compare the virial black hole masses between a sample of 37 double-peaked narrow emitters with broad Balmer lines and samples of Sloan Digital Sky Survey selected normal broad line AGN with single-peaked [O III] lines. However, we can find clearly statistically larger calculated virial black hole masses for the 37 broad line AGN with double-peaked [O III] lines than for samples of normal broad line AGN. Therefore, we give our conclusion that the dual supermassive black hole model is probably not statistically preferred to the double-peaked narrow emitters, and more efforts should be necessary to carefully find candidates for dual supermassive black holes by observed double-peaked narrow emission lines.

  8. Multi-phase Nature of a Radiation-Driven Fountain with Nuclear Starburst in a Low-mass Active Galactic Nucleus

    Wada, Keiichi; Meijerink, Rowin

    2016-01-01

    The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small ($2\\times 10^6 M_\\odot$) black hole using 3D radiation hydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-ray dominated region in the "radiation-driven fountain" (Wada 2012) with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick "torus" around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick ($h/r \\gtrsim 1$) atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase ( > 1000 K) as well as in a cold ( $10^3$ cm$^{-3}$) phase. The velocity dispersion of H$_2$ in the vertical direction is comparable to the rotational velocity, which is consistent with near infrared observations o...

  9. A MULTI-WAVELENGTH APPROACH TO THE PROPERTIES OF EXTREMELY RED GALAXY POPULATIONS. I. CONTRIBUTION TO THE STAR FORMATION RATE DENSITY AND ACTIVE GALACTIC NUCLEUS CONTENT

    We present a multi-wavelength analysis of the properties of extremely red galaxy (ERG) populations, selected in the GOODS-South/Chandra Deep Field South field. By using all the photometric and spectroscopic information available on large deep samples of extremely red objects (EROs; 645 sources), IRAC EROs (IEROs; 294 sources), and distant red galaxies (DRGs; 350 sources), we derive redshift distributions, identify active galactic nucleus (AGN)-powered and star formation (SF)-powered galaxies, and, using the radio observations of this field, estimate robust (AGN- and dust-unbiased) SF rate densities (ρ-dot*) for these populations. We also investigate the properties of 'pure' (galaxies that conform to only one of the three ERG criteria considered) and 'combined' (galaxies that verify all three criteria) sub-populations. Overall, a large number of AGNs are identified (up to ∼30%, based on X-rays and mid-infrared criteria), the majority of which are type-2 (obscured) objects. Among ERGs with no evidence for AGN activity, we identify sub-populations covering a wide range of average SF rates, from below 10 M sun yr-1 to as high as 200 M sun yr-1. Applying a redshift separation (1 ≤ z * for EROs and DRGs, while none is observed for IEROs. The former populations can contribute more than 20% to the global ρ-dot*at 2 ≤ z ≤ 3. The emission from AGN activity is typically not strong in the ERG population, with AGNs increasing the average radio luminosity of ERG sub-populations by, nominally, less than 20%. AGNs are common, however, and, if no discrimination is attempted, this could significantly increase the ρ-dot* estimate (by over 100% in some cases). Thus, and while the contribution of star-forming processes to the radio luminosity in galaxies with AGN remains uncertain, a comprehensive identification of AGNs in these populations is necessary to obtain meaningful results.

  10. The New Numerical Galaxy Catalog (ν2GC): An updated semi-analytic model of galaxy and active galactic nucleus formation with large cosmological N-body simulations

    Makiya, Ryu; Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro; Okamoto, Takashi; Okoshi, Katsuya; Oogi, Taira; Shirakata, Hikari

    2016-04-01

    We present a new cosmological galaxy formation model, ν2GC, as an updated version of our previous model νGC. We adopt the so-called "semi-analytic" approach, in which the formation history of dark matter halos is computed by N-body simulations, while the baryon physics such as gas cooling, star formation, and supernova feedback are simply modeled by phenomenological equations. Major updates of the model are as follows: (1) the merger trees of dark matter halos are constructed in state-of-the-art N-body simulations, (2) we introduce the formation and evolution process of supermassive black holes and the suppression of gas cooling due to active galactic nucleus (AGN) activity, (3) we include heating of the intergalactic gas by the cosmic UV background, and (4) we tune some free parameters related to the astrophysical processes using a Markov chain Monte Carlo method. Our N-body simulations of dark matter halos have unprecedented box size and mass resolution (the largest simulation contains 550 billion particles in a 1.12 Gpc h-1 box), enabling the study of much smaller and rarer objects. The model was tuned to fit the luminosity functions of local galaxies and mass function of neutral hydrogen. Local observations, such as the Tully-Fisher relation, the size-magnitude relation of spiral galaxies, and the scaling relation between the bulge mass and black hole mass were well reproduced by the model. Moreover, the model also reproduced well the cosmic star formation history and redshift evolution of rest-frame K-band luminosity functions. The numerical catalog of the simulated galaxies and AGNs is publicly available on the web.

  11. Spectral energy distributions of QSOs at z > 5: Common active galactic nucleus-heated dust and occasionally strong star-formation

    We present spectral energy distributions (SEDs) of 69 QSOs at z > 5, covering a rest frame wavelength range of 0.1 μm to ∼80 μm, and centered on new Spitzer and Herschel observations. The detection rate of the QSOs with Spitzer is very high (97% at λrest ≲ 4 μm), but drops toward the Herschel bands with 30% detected in PACS (rest frame mid-infrared) and 15% additionally in the SPIRE (rest frame far-infrared; FIR). We perform multi-component SED fits for Herschel-detected objects and confirm that to match the observed SEDs, a clumpy torus model needs to be complemented by a hot (∼1300 K) component and, in cases with prominent FIR emission, also by a cold (∼50 K) component. In the FIR-detected cases the luminosity of the cold component is of the order of 1013 L ☉ which is likely heated by star formation. From the SED fits we also determine that the active galactic nucleus (AGN) dust-to-accretion disk luminosity ratio declines with UV/optical luminosity. Emission from hot (∼1300 K) dust is common in our sample, showing that nuclear dust is ubiquitous in luminous QSOs out to redshift 6. However, about 15% of the objects appear under-luminous in the near infrared compared to their optical emission and seem to be deficient in (but not devoid of) hot dust. Within our full sample, the QSOs detected with Herschel are found at the high luminosity end in L UV/opt and L NIR and show low equivalent widths (EWs) in Hα and in Lyα. In the distribution of Hα EWs, as determined from the Spitzer photometry, the high-redshift QSOs show little difference to low-redshift AGN.

  12. MUSE three-dimensional spectroscopy and kinematics of the gigahertz peaked spectrum radio galaxy PKS 1934-63: interaction, recently triggered active galactic nucleus and star formation

    Roche, Nathan; Humphrey, Andrew; Lagos, Patricio; Papaderos, Polychronis; Silva, Marckelson; Cardoso, Leandro S. M.; Gomes, Jean Michel

    2016-07-01

    We observe the radio galaxy PKS 1934-63 (at z = 0.1825) using the Multi-Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The radio source is a gigahertz peaked spectrum source and is compact (0.13 kpc), implying an early stage of evolution (≤104 yr). Our data show an interacting pair of galaxies, with projected separation 9.1 kpc and velocity difference Δ(v) = 216 km s-1. The larger galaxy is a M* ≃ 1011 M⊙ spheroidal with the emission-line spectrum of a high-excitation young radio active galactic nucleus (AGN; e.g. strong [O I]6300 and [O III]5007). Emission-line ratios indicate a large contribution to the line luminosity from high-velocity shocks (≃ 550 km s-1). The companion is a non-AGN disc galaxy, with extended Hα emission from which its star formation rate is estimated as 0.61 M⊙ yr-1. Both galaxies show rotational velocity gradients in Hα and other lines, with the interaction being prograde-prograde. The SE-NW velocity gradient of the AGN host is misaligned from the E-W radio axis, but aligned with a previously discovered central ultraviolet source, and a factor of 2 greater in amplitude in Hα than in other (forbidden) lines (e.g. [O III]5007). This could be produced by a fast rotating (100-150 km s-1) disc with circumnuclear star formation. We also identify a broad component of [O III]5007 emission, blueshifted with a velocity gradient aligned with the radio jets, and associated with outflow. However, the broad component of [O I]6300 is redshifted. In spectral fits, both galaxies have old stellar populations plus ˜0.1 per cent of very young stars, consistent with the galaxies undergoing first perigalacticon, triggering infall and star formation from ˜40 Myr ago followed by the radio outburst.

  13. Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    Albert, J; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; De Cea del Pozo, E; Delgado Mendez, C; de los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; García-López, R J; Garczarczyk, M; Gaug, M; Göbel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R; Pérez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Puchades, N; Raymers, A; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saitô, T; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, M; Zandanel, F; Zanin, R; Ellis, Jonathan Richard; Mavromatos, N E; Nanopoulos, D V; Sakharov, Alexander S; Sarkisyan-Grinbaum, E

    2008-01-01

    We use the timing of photons observed by the MAGIC gamma-ray telescope during a flare of the active galaxy Markarian 501 to probe a vacuum refractive index ~ 1-(E/M_QGn)^n, n = 1,2, that might be induced by quantum gravity. The peaking of the flare is found to maximize for quantum-gravity mass scales M_QG1 ~ 0.4x10^18 GeV or M_QG2 ~ 0.6x10^11 GeV, and we establish lower limits M_QG1 > 0.26x10^18 GeV or M_QG2 > 0.39x10^11 GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.

  14. A PANCHROMATIC STUDY OF BLAST COUNTERPARTS: TOTAL STAR FORMATION RATE, MORPHOLOGY, ACTIVE GALACTIC NUCLEUS FRACTION, AND STELLAR MASS

    We carry out a multi-wavelength study of individual galaxies detected by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and identified at other wavelengths, using data spanning the radio to the ultraviolet (UV). We develop a Monte Carlo method to account for flux boosting, source blending, and correlations among bands, which we use to derive deboosted far-infrared (FIR) luminosities for our sample. We estimate total star-formation rates (SFRs) for BLAST counterparts with z ≤ 0.9 by combining their FIR and UV luminosities. Star formation is heavily obscured at LFIR ∼> 1011 Lsun, z ∼> 0.5, but the contribution from unobscured starlight cannot be neglected at LFIR ∼11 Lsun, z ∼11 Msun, which seem to link the 24 μm and Submillimetre Common-User Bolometer Array (SCUBA) populations, in terms of both stellar mass and star formation activity. The bulk of the BLAST counterparts at z ∼< 1 appears to be run-of-the-mill star-forming galaxies, typically spiral in shape, with intermediate stellar masses and practically constant specific SFRs. On the other hand, the high-z tail of the BLAST counterparts significantly overlaps with the SCUBA population, in terms of both SFRs and stellar masses, with observed trends of specific SFR that support strong evolution and downsizing.

  15. SHORT-TERM VARIABILITY AND POWER SPECTRAL DENSITY ANALYSIS OF THE RADIO-LOUD ACTIVE GALACTIC NUCLEUS 3C 390.3

    We investigate the short-term variability properties and the power spectral density (PSD) of the broad-line radio galaxy (BLRG) 3C 390.3 using observations made by XMM-Newton, RXTE, and Suzaku on several occasions between 2004 October and 2006 December. The main aim of this work is to derive model-independent constraints on the origin of the X-ray emission and on the nature of the central engine in 3C 390.3. On timescales of the order of few hours, probed by uninterrupted XMM-Newton light curves, the flux of 3C 390.3 is consistent with being constant in all energy bands. On longer timescales, probed by the 2-day RXTE and Suzaku observations, the flux variability becomes significant. The latter observation confirms that the spectral variability behavior of 3C 390.3 is consistent with the spectral evolution observed in (radio-quiet) Seyfert galaxies: the spectrum softens as the source brightens. The correlated variability between soft and hard X-rays, observed during the Suzaku exposure and between the two XMM-Newton pointings, taken 1 week apart, argues against scenarios characterized by the presence of two distinct variable components in the 0.5-10 keV X-ray band. A detailed PSD analysis carried out over five decades in frequency suggests the presence of a break at Tbr = 43+34-25 days at a 92% confidence level. This is the second tentative detection of a PSD break in a radio-loud, non-jet dominated active galactic nucleus (AGN), after the BLRG 3C 120, and appears to be in general agreement with the relation between Tbr, MBH, and Lbol, followed by Seyfert galaxies. Our results indicate that the X-ray variability properties of 3C 390.3 are broadly consistent with those of radio-quiet AGN, suggesting that the X-ray emission mechanism in 3C 390.3 is similar to that of nearby Seyfert galaxies without any significant contribution from a jet component.

  16. A CHANDRA OBSERVATION OF THE ULTRALUMINOUS INFRARED GALAXY IRAS 19254–7245 (THE SUPERANTENNAE): X-RAY EMISSION FROM THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND THE DIFFUSE STARBURST

    We present a Chandra observation of IRAS 19254–7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (Γ = 1.3) and an He-like Fe Kα line with equivalent width ∼1.5 keV, consistent with previous observations. The Fe Kα line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of ∼0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8'' south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is ∼6 × 1040 erg s–1 if the emission is isotropic and the source is associated with the Superantennae.

  17. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  18. Active galactic nuclei

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  19. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ridgway, S. E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Gates, E. L. [UCO/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Nielsen, D. M. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Petric, A. O. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Sajina, A. [Department of Physics and Astronomy, Tuffs University, 212 College Avenue, Medford, MA 02155 (United States); Urrutia, T. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Cox Drews, S. [946 Mangrove Avenue 102, Sunnyvale, CA 94086 (United States); Harrison, C. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Seymour, N. [CSIRO, P.O. Box 76, Epping, NSW 1710 (Australia); Storrie-Lombardi, L. J. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  20. Detection of a possible X-ray Quasi-periodic Oscillation in the Active Galactic Nucleus 1H~0707-495

    Pan, Hai-Wu; Yao, Su; Zhou, Xin-Lin; Liu, Bifang; Zhou, Hongyan; Zhang, Shuang-Nan

    2016-01-01

    Quasi-periodic oscillation (QPO) detected in the X-ray radiation of black hole X-ray binaries (BHXBs) is thought to originate from dynamical processes in the close vicinity of the black holes (BHs), and thus carries important physical information therein. Such a feature is extremely rare in active galactic nuclei (AGNs) with supermassive BHs. Here we report on the detection of a possible X-ray QPO signal with a period of 3800\\,s at a confidence level $>99.99\\%$ in the narrow-line Seyfert 1 galaxy (NLS1) 1H~0707-495 in one data set in 0.2-10\\,keV taken with {\\it XMM-Newton}. The statistical significance is higher than that of most previously reported QPOs in AGNs. The QPO is highly coherent (quality factor $Q=\

  1. STRUCTURE AND MORPHOLOGY OF X-RAY-SELECTED ACTIVE GALACTIC NUCLEUS HOSTS AT 1 < z < 3 IN THE CANDELS-COSMOS FIELD

    We analyze morphologies of the host galaxies of 35 X-ray-selected active galactic nuclei (AGNs) at z ∼ 2 in the Cosmic Evolution Survey field using Hubble Space Telescope/WFC3 imaging taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We build a control sample of 350 galaxies in total by selecting 10 non-active galaxies drawn from the same field with a similar stellar mass and redshift for each AGN host. By performing two-dimensional fitting with GALFIT on the surface brightness profile, we find that the distribution of the Sérsic index (n) of AGN hosts does not show a statistical difference from that of the control sample. We measure the nonparametric morphological parameters (the asymmetry index A, the Gini coefficient G, the concentration index C, and the M 20 index) based on point-source-subtracted images. All the distributions of these morphological parameters of AGN hosts are consistent with those of the control sample. We finally investigate the fraction of distorted morphologies in both samples by visual classification. Only ∼15% of the AGN hosts have highly distorted morphologies, possibly due to a major merger or interaction. We find there is no significant difference in the distortion fractions between the AGN host sample and control sample. We conclude that the morphologies of X-ray-selected AGN hosts are similar to those of non-active galaxies and most AGN activity is not triggered by a major merger

  2. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ☉. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.

  3. A CONNECTION BETWEEN APPARENT VLBA JET SPEEDS AND INITIAL ACTIVE GALACTIC NUCLEUS DETECTIONS MADE BY THE FERMI GAMMA-RAY OBSERVATORY

    In its first three months of operations, the Fermi Gamma-Ray Observatory has detected approximately one quarter of the radio-flux-limited MOJAVE sample of bright flat-spectrum active galactic nuclei (AGNs) at energies above 100 MeV. We have investigated the apparent parsec-scale jet speeds of 26 MOJAVE AGNs measured by the Very Long Baseline Array (VLBA) that are in the LAT bright AGN sample (LBAS). We find that the γ-ray bright quasars have faster jets on average than the non-LBAS quasars, with a median of 15c, and values ranging up to 34c. The LBAS AGNs in which the LAT has detected significant γ-ray flux variability generally have faster jets than the nonvariable ones. These findings are in overall agreement with earlier results based on nonuniform EGRET data which suggested that γ-ray bright AGNs have preferentially higher Doppler boosting factors than other blazar jets. However, the relatively low LAT detection rates for the full MOJAVE sample (24%) and previously known MOJAVE EGRET-detected blazars (43%) imply that Doppler boosting is not the sole factor that determines whether a particular AGN is bright at γ-ray energies. The slower apparent jet speeds of LBAS BL Lac objects and their higher overall LAT detection rate as compared to quasars suggest that the former are being detected by Fermi because of their higher intrinsic (unbeamed) γ-ray to radio luminosity ratios.

  4. HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE DOUBLE-PEAKED EMISSION LINES IN THE SEYFERT GALAXY MARKARIAN 78: MASS OUTFLOWS FROM A SINGLE ACTIVE GALACTIC NUCLEUS

    Previous ground-based observations of the Seyfert 2 galaxy Mrk 78 revealed a double set of emission lines, similar to those seen in several active galactic nuclei (AGNs) from recent surveys. Are the double lines due to two AGNs with different radial velocities in the same galaxy, or are they due to mass outflows from a single AGN? We present a study of the outflowing ionized gas in the resolved narrow-line region (NLR) of Mrk 78 using observations from the Space Telescope Imaging Spectrograph (STIS) and Faint Object Camera aboard the Hubble Space Telescope as part of an ongoing project to determine the kinematics and geometries of AGN outflows. From the spectroscopic information, we determined the fundamental geometry of the outflow via our kinematics modeling program by recreating radial velocities to fit those seen in four different STIS slit positions. We determined that the double emission lines seen in ground-based spectra are due to an asymmetric distribution of outflowing gas in the NLR. By successfully fitting a model for a single AGN to Mrk 78, we show that it is possible to explain double emission lines with radial velocity offsets seen in AGN similar to Mrk 78 without requiring dual supermassive black holes.

  5. ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION

    Active galactic nuclei (AGNs) are occasionally seen in pairs, suggesting that tidal encounters are responsible for the accretion of material by both central supermassive black holes (BHs). In Paper I of this series, we selected a sample of AGN pairs with projected separations rp –170 kpc and velocity offsets –1 from the Seventh Data Release of the Sloan Digital Sky Survey and quantified their frequency. In this paper, we address the BH accretion and recent star formation properties in their host galaxies. AGN pairs experience stronger BH accretion, as measured by their [O III] λ5007 luminosities (corrected for contribution from star formation) and Eddington ratios, than do control samples of single AGNs matched in redshift and host-galaxy stellar mass. Their host galaxies have stronger post-starburst activity and younger mean stellar ages, as indicated by stronger Hδ absorption and smaller 4000 Å break in their spectra. The BH accretion and recent star formation in the host galaxies both increase with decreasing projected separation in AGN pairs, for rp ∼–170 kpc. The intensity of BH accretion, the post-starburst strength, and the mean stellar ages are correlated between the two AGNs in a pair. The luminosities and Eddington ratios of AGN pairs are correlated with recent star formation in their host galaxies, with a scaling relation consistent with that observed in single AGNs. Our results suggest that galaxy tidal interactions enhance both BH accretion and host-galaxy star formation in close AGN pairs, even though the majority of low-redshift AGNs are not coincident with on-going interactions.

  6. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617

    Shappee, B. J.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Jencson, J.; Holoien, T.W-S.; Basu, U.; Beacom, J. F.; Adams, S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Prieto, J. L. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Grupe, D. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Komossa, S. [Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Im, M. [CEOU/Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Szczygieł, D. M. [Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Brimacombe, J. [Coral Towers Observatory, Cairns, Queensland A-4870 (Australia); Campillay, A., E-mail: shappee@astronomy.ohio-state.edu [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); and others

    2014-06-10

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.

  7. INFRARED AND HARD X-RAY DIAGNOSTICS OF ACTIVE GALACTIC NUCLEUS IDENTIFICATION FROM THE SWIFT/BAT AND AKARI ALL-SKY SURVEYS

    We combine data from two all-sky surveys in order to study the connection between the infrared and hard X-ray (>10 keV) properties for local active galactic nuclei (AGNs). The Swift Burst Alert Telescope all-sky survey provides an unbiased, flux-limited selection of hard X-ray-detected AGNs. Cross-correlating the 22 month hard X-ray survey with the AKARI all-sky survey, we studied 158 AGNs detected by the AKARI instruments. We find a strong correlation for most AGNs between the infrared (9, 18, and 90 μm) and hard X-ray (14-195 keV) luminosities, and quantify the correlation for various subsamples of AGNs. Partial correlation analysis confirms the intrinsic correlation after removing the redshift contribution. The correlation for radio galaxies has a slope and normalization identical to that for Seyfert 1 galaxies, implying similar hard X-ray/infrared emission processes in both. In contrast, Compton-thick (CT) sources show a large deficit in the hard X-ray band, because high gas column densities diminish even their hard X-ray luminosities. We propose two photometric diagnostics for source classification: one is an X-ray luminosity versus infrared color diagram, in which type 1 radio-loud AGNs are well isolated from the others in the sample. The other uses the X-ray versus infrared color as a useful redshift-independent indicator for identifying CT AGNs. Importantly, CT AGNs and starburst galaxies in composite systems can also be differentiated in this plane based upon their hard X-ray fluxes and dust temperatures. This diagram may be useful as a new indicator to classify objects in new and upcoming surveys such as WISE and NuSTAR.

  8. THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1-1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION

    The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M ≥ 1014 M☉) at 1 A = 3.0+2.4-1.4% for AGNs with a rest-frame, hard X-ray luminosity greater than LX,H ≥ 1044 erg s–1. This fraction is measured relative to all cluster galaxies more luminous than M*3.6(z) + 1, where M*3.6(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 μm bandpass. The cluster AGN fraction is 30 times greater than the 3σ upper limit on the value for AGNs of similar luminosity at z ∼ 0.25, as well as more than an order of magnitude greater than the AGN fraction at z ∼ 0.75. AGNs with LX,H ≥ 1043 erg s–1 exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z ∼ 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.

  9. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ∼ 1-2 star-forming galaxies

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M */M ☉) ≥ 10.9) z ∼ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M */M ☉) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS3Dspectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ∼450-5300 km s–1), with large [N II]/Hα ratios, above log(M */M ☉) ∼ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ∼ 1 and ∼2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

  10. Detection of a Possible X-Ray Quasi-periodic Oscillation in the Active Galactic Nucleus 1H 0707-495

    Pan, Hai-Wu; Yuan, Weimin; Yao, Su; Zhou, Xin-Lin; Liu, Bifang; Zhou, Hongyan; Zhang, Shuang-Nan

    2016-03-01

    The quasi-periodic oscillation (QPO) detected in the X-ray radiation of black hole X-ray binaries (BHXBs) is thought to originate from dynamical processes in close vicinity of black holes (BHs), and thus carries important physical information therein. Such a feature is extremely rare in active galactic nuclei (AGNs) with supermassive BHs. Here we report on the detection of a possible X-ray QPO signal with a period of 3800 s at a confidence level >99.99% in the narrow-line Seyfert 1 galaxy (NLS1) 1H 0707-495 in one data set in 0.2-10 keV taken with XMM-Newton. The statistical significance is higher than that of most previously reported QPOs in AGNs. The QPO is highly coherent (quality factor Q=ν /{{Δ }}ν ≥slant 15) with a high rms fractional variability (˜15%). A comprehensive analysis of the optical spectra of this AGN is also performed, yielding a central BH mass of 5.2 × 106 M⊙ from the broad emission lines based on the scaling relation. The QPO follows the known frequency-BH mass relation closely, which spans from stellar-mass to supermassive BHs. The absence of QPOs in other observations of the object suggests that it is a transient phenomenon. We suggest that the (high-frequency) QPOs tend to occur in highly accreting BH systems, from BHXBs to supermassive BHs. Future precise estimation of the BH mass may be used to infer the BH spin from the QPO frequency.

  11. Einstein Observatory results on active galactic nuclei

    Mushotzky, R. F.; Holt, S. S.

    1982-01-01

    The results of Einstein Observatory surveys of active galactic nuclei (AGN) are reviewed. The ubiquity of X-ray emission from AGNs was confirmed. The relations between X-ray and optical luminosities, between X-ray and radio properties, and between X-ray and optical-UV line emission found by the surveys are summarized and briefly discussed. The possible causes of observed X-ray emission from jets in Cen-A, 3C273, and M87 are considered. The active nucleus discovered in the optically 'dull' galaxy NGC 4156 is covered, and a model for NGC 4151 based on detailed spectral studies is briefly discussed. This model establishes the global symmetry of the AGN clouds, their approximate sizes, and their ionization state. Difficulties encountered in attempting to explain the cosmic X-ray background in terms of AGN contributions are addressed.

  12. Variability of Active Galactic Nuclei

    Peterson, Bradley M.

    2001-01-01

    Continuum and emission-line variability of active galactic nuclei provides a powerful probe of microarcsecond scale structures in the central regions of these sources. In this contribution, we review basic concepts and methodologies used in analyzing AGN variability. We develop from first principles the basics of reverberation mapping, and pay special attention to emission-line transfer functions. We discuss application of cross-correlation analysis to AGN light curves. Finally, we provide a ...

  13. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥1011 M ☉) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s–1, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M ☉ yr–1 and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s–1 and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  14. Active galactic nuclei

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  15. Evolution of active galactic nuclei

    Merloni, Andrea

    2012-01-01

    [Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of ...

  16. Energy Radiation of the Active Galactic Nuclei

    TANG Zhi-Ming; WANG Yong-Jiu

    2004-01-01

    In the Hellings-Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.

  17. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    Arévalo, P.; Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Puccetti, S. [ASDC-ASI, Via del Politecnico, I-00133 Roma (Italy); Walton, D. J.; Fuerst, F.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Koss, M. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Brightman, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching bei München (Germany); Christensen, F. E. [Danish Technical University, Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Gandhi, P. [Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory and Department of Physics, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Madejski, G. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Marinucci, A. [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); and others

    2014-08-20

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N {sub H} = (6-10) × 10{sup 24} cm{sup –2}, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10{sup 42} erg s{sup –1}. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L{sub X} versus L {sub IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  18. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 1024 cm–2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 1042 erg s–1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and LX versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  19. Control of nucleus accumbens activity with neurofeedback

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be pres...

  20. Power spectra of active galactic nuclei

    2009-01-01

    The power spectral densities(PSDs)for a sample of active galactic nuclei(AGNs)are analyzed in both the frequency domain and the time domain.We find for each object that for broadband noise a character timescale-bifurcation timescale of Fourier and time-domain PSD exists in the 10 3 -10 6 s range, below which the time-domain power spectrum is systematically higher than the corresponding Fourier spectrum.The relationship between bifurcation timescale,AGN mass and luminosity is studied.Compared with the fact that similar phenomena have been found for Galactic black hole candidates(GBHs) with bifurcation timescale~0.1 s but not for accreting neutron stars,our finding indicates that AGNs and GBHs have common intrinsic nature in rapid X-ray variability with a character time parameter scaled with their masses.

  1. Power spectra of active galactic nuclei

    WANG TaiShan; WU YuXiang; LIU Yuan

    2009-01-01

    The power spectral densities (PSDs) for a sample of active galactic nuclei (AGNs) are analyzed in both the frequency domain and the time domain. We find for each object that for broadband noise a character timescale-bifurcation timescale of Fourier and time-domain PSD exists in the 103-106 s range,below which the time-domain power spectrum is systematically higher than the corresponding Fourier spectrum. The relationship between bifurcation timescale, AGN mass and luminosity is studied. Compared with the fact that similar phenomena have been found for Galactic black hole candidates (GBHs)with bifurcation timescale ~0.1 s but not for accreting neutron stars, our finding indicates that AGNs and GBHs have common intrinsic nature in rapid X-ray variability with a character time parameter scaled with their masses.

  2. The 2-79 keV X-ray spectrum of the circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully compton-thick active galactic nucleus

    Arévalo, P.; Bauer, F. E.; Puccetti, S.;

    2014-01-01

    parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear...... emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an...

  3. Stellar transits in active galactic nuclei

    Béky, Bence

    2012-01-01

    Supermassive black holes (SMBH) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGN) produce a characteristic transit lightcurve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit lightcurves using the Novikov--Thorne thin accretion disk model, including general relatistic effects. Based on the expected properties of stellar cusps, we find that around 10^6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low mass AGNs to 1% photometric accuracy in optical, or ~ 10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Su...

  4. Stellar Transits in Active Galactic Nuclei

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  5. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai; Pogge, Richard W.; Vestergaard, Marianne

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to...

  6. Active Galactic Nuclei Feedback and Clusters

    Biman B. Nath

    2011-12-01

    The Intracluster Medium (ICM) is believed to have been affected by feedback from Active Galactic Nuclei (AGN) and/or supernovae-driven winds. These sources are supposed to have injected entropy into the ICM gas. The recently determined universal pressure profile of the ICM gas has been used and after comparing with the entropy profile of the gas from gravitational effects of the dark matter halo, the additional entropy injected by non-gravitational sources, as a function of the total cluster mass is determined. The current observational data of red-shift evolution of cluster scaling relation is shown that allow models in which the entropy injection decreases at high red-shift.

  7. Broad iron lines in Active Galactic Nuclei

    Fabian, A C; Reynolds, C S; Young, A J

    2000-01-01

    An intrinsically narrow line emitted by an accretion disk around a black hole appears broadened and skewed as a result of the Doppler effect and gravitational redshift. The fluorescent iron line in the X-ray band at 6.4-6.9keV is the strongest such line and is seen in the X-ray spectrum of many active galactic nuclei and, in particular, Seyfert galaxies. It is an important diagnostic with which to study the geometry and other properties of the accretion flow very close to the central black hole. The broad iron line indicates the presence of a standard thin accretion disk in those objects, often seen at low inclination. The broad iron line has opened up strong gravitational effects around black holes to observational study with wide-reaching consequences for both astrophysics and physics.

  8. Cluster magnetic fields from active galactic nuclei

    Sutter, P M; Yang, H -Y

    2009-01-01

    Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.

  9. Suzaku observations of 'bare' active galactic nuclei

    Walton, D J; Fabian, A C; Gallo, L C; Reis, R C

    2012-01-01

    We present a X-ray spectral analysis of a large sample of 25 'bare' active galactic nuclei, sources with little or no complicating intrinsic absorption, observed with Suzaku. Our work focuses on studying the potential contribution from relativistic disc reflection, and examining the implications of this interpretation for the intrinsic spectral complexities frequently displayed by AGN in the X-ray bandpass. During the analysis, we take the unique approach of attempting to simultaneously undertake a systematic analysis of the whole sample, as well as a detailed treatment of each individual source, and find that disc reflection has the required flexibility to successfully reproduce the broadband spectrum observed for all of the sources considered. Where possible, we use the reflected emission to place constraints on the black hole spin for this sample of sources. Our analysis suggests a general preference for rapidly rotating black holes, which if taken at face value is most consistent with the scenario in whic...

  10. Recurrent Activity in Active Galactic Nuclei

    Saikia, D J

    2010-01-01

    There has been a growing body of evidence to suggest that AGN activity, which is powered by mass accretion on to a supermasive black hole, could be episodic, although the range of time scales involved needs to be explored further. The structure and spectra of radio emission from radio galaxies, whose sizes range up to $\\sim$5 Mpc, contain information on the history of AGN activity in the source. They thus provide a unique opportunity to study the time scales of recurrent AGN activity. The most striking examples of recurrent activity in radio galaxies and quasars are the double-double or triple-double radio sources which contain two or three pairs of distinct lobes on opposite sides of the parent optical object. Spectral and dynamical ages of these lobes could be used to constrain time scales of episodic activity. Inverse-Compton scattered cosmic microwave background radiation could in principle probe lower Lorentz-factor particles than radio observations of synchrotron emission, and thereby reveal an older po...

  11. Hypoxia activates nucleus tractus solitarii neurons projecting to the paraventricular nucleus of the hypothalamus

    King, T. Luise; Heesch, Cheryl M.; Clark, Catharine G.; Kline, David D.; Hasser, Eileen M.

    2012-01-01

    Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular para...

  12. Launching of Active Galactic Nuclei Jets

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  13. Quasi periodic oscillations in active galactic nuclei

    Alston, W.; Fabian, A.; Markevičiutė, J.; Parker, M.; Middleton, M.; Kara, E.

    2016-05-01

    Quasi-periodic oscillations (QPOs) are coherent peaks of variability power observed in the X-ray power spectra (PSDs) of stellar mass X-ray binaries (XRBs). A scale invariance of the accretion process implies they should be present in the active galactic nuclei. The first robust detection was a ∼ 1 h periodicity in the Seyfert galaxy RE J1034+396 from a ∼ 90 ks XMM-Newton observation; however, subsequent observations failed to detect the QPO in the 0.3-10.0 keV band. In this talk we present the recent detection of the ∼ 1 h periodicity in the 1.0-4.0 keV band of 4 further low-flux/spectrally-harder observations of RE J1034+396 (see Alston et al. 2014). We also present recent work on the discovery of a QPO in the Seyfert galaxy, MS 2254.9-3712, which again is only detected in energy bands associated with the primary power-law continuum emission (Alston et al. 2015). We conclude these features are most likely analogous to the high-frequency QPOs observed in XRBs. In both sources, we also see evidence for X-ray reverberation at the QPO frequency, where soft X-ray bands and Iron Kα emission lag the primary X-ray continuum. These time delays may provide another diagnostic for understanding the underlying QPO mechanism observed in accreting black holes.

  14. Warped circumbinary disks in active galactic nuclei

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10–2 pc to 10–4 pc for 107 M☉ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  15. On the Evolution of High-Redshift Active Galactic Nuclei

    Mao, Jirong

    2016-01-01

    We build a simple physical model to study the high-redshift active galactic Nucleus (AGN) evolution within the co-evolution framework of central black holes (BHs) and their host galaxies. The correlation between the circular velocity of a dark halo $V_c$ and the velocity dispersion of a galaxy $\\sigma$ is used to link the dark matter halo mass and BH mass. The dark matter halo mass function is converted to the BH mass function for any given redshift. The high-redshift optical AGN luminosity functions (LFs) are constructed. At $z\\sim 4$, the flattening feature is not shown at the faint end of the optical AGN LF. This is consistent with observational results. If the optical AGN LF at $z\\sim 6$ can be reproduced in the case in which central BHs have the Eddington-limited accretion, it is possible for the AGN lifetime to have a small value of $2\\times 10^5$ yrs. The X-ray AGN LFs and X-ray AGN number counts are also calculated at $2.03$, respectively, using the same parameters adopted in the calculation for the o...

  16. The Architecture of the Active Galactic Nucleus of NGC 1068

    May, D.; Steiner, J.; Menezes, R. B.; Ricci, T. V.

    2014-10-01

    NGC 1068 is the brightest and most studied AGN in the sky. Its study motivated the development of the Unified Model for AGN as the prototype of an obscured Seyfert 1 galaxy. The opportunity of studying such object, with IFU spectrographs in the near infrared, allow us to understand the details of how gas is being fed to the central black hole and how the gas is being ionized and ejected from the center. We re-analyzed data taken from the SINFONI (VLT) and NIFS (GEMINI North) public archives, in the HK bands with spatial resolution of 0,1 arcsec (1,7 pc/spaxel). We concentrated our analysis on the molecular H2 lines, the low ionization line [Fe II] and the high ionization line [Si VI]. The analysis shows very distinct behavior for the different lines. In particular we found a clear structure resembling a ``glowing-hourglass'' shape for the low velocity [Fe II] emission, while the high velocity emission fills the ``hourglass''. The shape of this image suggests that the dusty torus and the ionization axis, possibly associated to the central accretion disk, are not co-planar. The primary wind is probably originated from this asymmetry while the secondary wind is likely to be originated from an H2 emitting cloud, about 1'' to the north of the AGN, impacted by the primary wind and ionized by the central source.

  17. TANAMI - Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry

    Mueller, Cornelia; Kadler, Matthias; Ojha, Roopesh; De Boeck, M.; Booth, R.; Dutka, M. S.; Edwardsk, P.; Fey, A. L.; Fuhrmann, L.; Hase, H.; Horiuchi, S.; Jauncey, D. L.; Johnston, K.J.; Katz, U.; Lister, M.

    2009-01-01

    We present a summary of the observation strategy of TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry), a monitoring program to study the parsec-scale structure and dynamics of relativistic jets in active galactic nuclei (AGN) of the Southern Hemisphere with the Australian Long Baseline Array (LBA) and the trans-oceanic antennas Hartebeesthoek, TIGO, and O'Higgins. TANAMI is focusing on extragalactic sources south of -30 degrees declination with observations a...

  18. Nonthermal Fluctuations and Mechanics of the Active Cell Nucleus

    Smith, K; Byrd, H; MacKintosh, F C; Kilfoil, M L

    2013-01-01

    We present direct measurements of fluctuations in the nucleus of yeast cells. While prior work has shown these fluctuations to be active and non-thermal in character, their origin and time dependence are not understood. We show that nuclear fluctuations can be quantitatively understood by uncorrelated, active force fluctuations driving a nuclear medium that is dominated by an uncondensed DNA solution, for which we perform rheological measurements on an in vitro model system under similar conditions to what is expected in the nucleus. We conclude that the eukaryotic nucleus of living cells is a nonequilibrium soft material whose fluctuations are actively driven, and are far from thermal in their time dependence.

  19. An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.

  20. Age determination of the nuclear stellar population of Active Galactic Nuclei using Locally Weighted Regression

    Estrada-Piedra, T; Terlevich, R J; Fuentes, O; Terlevich, E; Estrada-Piedra, Trilce; Torres-Papaqui, Juan Pablo; Terlevich, Roberto; Fuentes, Olac; Terlevich, Elena

    2003-01-01

    We present a new technique to segregate old and young stellar populations in galactic spectra using machine learning methods. We used an ensemble of classifiers, each classifier in the ensemble specializes in young or old populations and was trained with locally weighted regression and tested using ten-fold cross-validation. Since the relevant information concentrates in certain regions of the spectra we used the method of sequential floating backward selection offline for feature selection. The application to Seyfert galaxies proved that this technique is very insensitive to the dilution by the Active Galactic Nucleus (AGN) continuum. Comparing with exhaustive search we concluded that both methods are similar in terms of accuracy but the machine learning method is faster by about two orders of magnitude.

  1. STEPS TOWARD UNVEILING THE TRUE POPULATION OF ACTIVE GALACTIC NUCLEI: PHOTOMETRIC CHARACTERIZATION OF ACTIVE GALACTIC NUCLEI IN COSMOS

    Using a physically motivated, model-based active galactic nucleus (AGN) characterization technique, we fit a large sample of X-ray-selected AGNs with known spectroscopic redshifts from the Cosmic Evolution Survey field. We identify accretion disks in the spectral energy distributions of broad- and narrow-line AGNs, and infer the presence or absence of host galaxy light in the SEDs. Based on infrared and UV excess AGN selection techniques, our method involves fitting a given SED with a model consisting of three components: infrared power-law emission, optical-UV accretion disk emission, and host galaxy emission. Each component can be varied in relative contribution, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this technique, both broad- and narrow-line AGNs fall within well-defined and plausible bounds on the physical parameters of the model, allowing trends with luminosity and redshift to be determined. In particular, based on our sample of spectroscopically confirmed AGNs, we find that approximately 95% of the broad-line AGNs and 50% of the narrow-line AGNs in our sample show evidence of an accretion disk, with maximum disk temperatures ranging from 1 to 10 eV. Because this fitting technique relies only on photometry, we hope to apply it in future work to the characterization and eventually the selection of fainter AGNs than are accessible in wide-field spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects without prior redshift or X-ray data. With the abundant availability of photometric data from large surveys, the ultimate goal is to use this technique to create large samples that will complement and complete AGN catalogs selected by X-ray emission alone.

  2. LINERs as Low-Luminosity Active Galactic Nuclei

    Ho, L C

    1998-01-01

    Many nearby galaxies contain optical signatures of nuclear activity in the form of LINER nuclei. LINERs may be the weakest and most common manifestation of the quasar phenomenon. The physical origin of this class of objects, however, has been ambiguous. I draw upon a number of recent observations to argue that a significant fraction of LINERs are low-luminosity active galactic nuclei.

  3. ACTIVE GALACTIC NUCLEI WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI?

    Double-peaked [O III] profiles in active galactic nuclei (AGNs) may provide evidence for the existence of dual AGNs, but a good diagnostic for selecting them is currently lacking. Starting from ∼7000 active galaxies in Sloan Digital Sky Survey DR7, we assemble a sample of 87 type 2 AGNs with double-peaked [O III] profiles. The nuclear obscuration in the type 2 AGNs allows us to determine redshifts of host galaxies through stellar absorption lines. We typically find that one peak is redshifted and another is blueshifted relative to the host galaxy. We find a strong correlation between the ratios of the shifts and the double peak fluxes. The correlation can be naturally explained by the Keplerian relation predicted by models of co-rotating dual AGNs. The current sample statistically favors that most of the [O III] double-peaked sources are dual AGNs and disfavors other explanations, such as rotating disk and outflows. These dual AGNs have a separation distance at ∼1 kpc scale, showing an intermediate phase of merging systems. The appearance of dual AGNs is about ∼10-2, impacting on the current observational deficit of binary supermassive black holes with a probability of ∼10-4 (Boroson and Lauer).

  4. Black Hole Demography from Nearby Active Galactic Nuclei

    Ho, Luis C.

    2004-01-01

    A significant fraction of local galaxies show evidence of nuclear activity. I argue that the bulk of this activity, while energetically not remarkable, derives from accretion onto a central massive black hole. The statistics of nearby active galactic nuclei thus provide an effective probe of black hole demography. Consistent with the picture emerging from direct dynamical studies, the local census of nuclear activity strongly suggests that most, perhaps all, galaxies with a significant bulge ...

  5. Active Galactic Nuclei Discovered in the Kepler Mission

    Shaya, Edward J.; Olling, Robert; Mushotzky, Richard

    2015-12-01

    We report on candidate active galactic nuclei (AGNs) discovered during the monitoring of ∼500 bright (r variability over three month periods, as seen in the SFs and power spectral densities (PSDs), can dramatically change for many of these AGN candidates. Four of the candidates have features in their SFs that may indicate quasi-periodic behavior, although other possibilities are discussed.

  6. Environment and properties of obscured and unobscured active galactic nuclei

    Taormina, M.; Bornancini, C.

    We analyze the properties of obscured and unobscured active galactic nuclei selected using mid-infrared colors in the redshift range 1 < z < 3. We find that obscured objects are located in a denser local galaxy environment compared to the unobscured sample.

  7. Active galactic nuclei shed light on axion-like-particles

    Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Shaw, Douglas J. [London Univ. (United Kingdom). Astronomy Unit, School of Mathematical Sciences

    2009-02-15

    We demonstrate that the scatter in the luminosity relations of astrophysical objects can be used to search for axion-like-particles (ALPs). This analysis is applied to observations of active galactic nuclei, where we find evidence highly suggestive of the existence of a very light ALP. (orig.)

  8. Active Galactic Nuclei as High-Energy Neutrino Sources

    Murase, Kohta

    2015-01-01

    Active galactic nuclei (AGN) are believed to be promising candidates of extragalactic cosmic-ray accelerators and sources, and associated high-energy neutrino and hadronic gamma-ray emission has been studied for many years. We review models of high-energy neutrino production in AGN, and discuss their implications for the latest IceCube observation of the diffuse neutrino intensity.

  9. Conference Summary: The Central Engine of Active Galactic Nuclei

    Netzer, Hagai; Shields, Joseph C.

    2007-01-01

    The 2006 meeting in Xi'an on the Central Engine of Active Galactic Nuclei covered the enormous and continuously expanding area of AGN research, from theory to the most sophisticated observations and from gamma-ray energies to long radio wavelengths. This short summary gives some, but definitely not all, highlights and new results presented by the participants.

  10. The Radius-Luminosity Relationship for Active Galactic Nuclei

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Vestergaard, Marianne; Onken, Christopher A.

    2006-01-01

    We have obtained high resolution images of the central regions of 14 reverberation-mapped active galactic nuclei (AGN) using the Hubble Space Telescope Advanced Camera for Surveys High Resolution Camera to account for host-galaxy starlight contamination of measured AGN luminosities. We measure the...

  11. A statistical method to search for recoiling supermassive black holes in active galactic nuclei

    Raffai, P.; Haiman, Z.; Frei, Z.

    2016-01-01

    We propose an observational test for gravitationally recoiling supermassive black holes (BHs) in active galactic nuclei, based on a correlation between the velocities of BHs relative to their host galaxies, |Δv|, and their obscuring dust column densities, Σdust (both measured along the line of sight). We use toy models for the distribution of recoil velocities, BH trajectories, and the geometry of obscuring dust tori in galactic centres, to simulate 2.5 × 105 random observations of recoiling quasars. BHs with recoil velocities comparable to the escape velocity from the galactic centre remain bound to the nucleus, and do not fully settle back to the centre of the torus due to dynamical friction in a typical quasar lifetime. We find that |Δv| and Σdust for these BHs are positively correlated. For obscured (Σdust > 0) and for partially obscured (0 103 km s-1) ≲ 0.4. This predicted trend can be compared to the observed fraction of type II quasars, and can further test combinations of recoil, trajectory, and dust torus models.

  12. A Statistical Method to Search for Recoiling Supermassive Black Holes in Active Galactic Nuclei

    Raffai, Peter; Frei, Zsolt

    2015-01-01

    We propose an observational test for gravitationally recoiling supermassive black holes (BHs) in active galactic nuclei, based on a correlation between the velocities of BHs relative to their host galaxies, |\\Delta v|, and their obscuring dust column densities, \\Sigma_{dust} (both measured along the line of sight). Proxies for both quantities can be derived from spectral features of individual quasars. We use toy models for the distribution of recoil velocities, BH trajectories, and the geometry of obscuring dust tori in galactic centres, to simulate 2.5x10^5 random observations of recoiling quasars. BHs with recoil velocities comparable to the escape velocity from the galactic centre remain bound to the nucleus, and do not fully settle back to the centre of the torus due to dynamical friction in a typical quasar lifetime. We find that |\\Delta v| and \\Sigma_ {dust} for these BHs are positively correlated. For obscured (\\Sigma_{dust}>0) and for partially obscured (0=45 km/s, the sample correlation coefficient ...

  13. The X-ray spectroscopy of active galactic nuclei

    Mushotzky, R.

    1985-01-01

    The scientific goals of X-ray spectroscopy of active galactic nuclei are discussed. The underlying energy source, the regions responsible for the optical emission lines, the different types of active galaxies, and cosmology are considered. The requirements for an X-ray mission of broad band width, large collecting area, modest spatial resolution and good spectral resolution are outlined. It is concluded that the ESA XMM mission meets these requirements.

  14. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  15. NGC5252: a pair of radio-emitting active galactic nuclei?

    Yang, Xiaolong; Paragi, Zsolt; Liu, Xiang; An, Tao; Bianchi, Stefano; Ho, Luis C; Cui, Lang; Zhao, Wei; Wu, Xiaocong

    2016-01-01

    The X-ray source CXO J133815.6+043255 has counterparts in the UV, optical, and radio bands. Based on the multi-band investigations, it has been recently proposed by Kim et al. (2015) as a rarely-seen off-nucleus ultraluminous X-ray (ULX) source with a black hole mass of >= 10^4 solar mass in the nearby Seyfert galaxy NGC 5252. To explore its radio properties at very high angular resolution, we performed very long-baseline interferometry (VLBI) observations with the European VLBI Network (EVN) at 1.7 GHz. We find that the radio counterpart is remarkably compact among the known ULXs. It does not show a resolved structure with a resolution of a few milliarcsecond (mas), and the total recovered flux density is comparable to that measured in earlier sub-arcsecond-resolution images. The compact radio structure, the relatively flat spectrum, and the high radio luminosity are consistent with a weakly accreting supermassive black hole in a low-luminosity active galactic nucleus. The nucleus of NGC 5252 itself has simi...

  16. Gravitational Wave Recoil Oscillations of Black Holes: Implications for Unified Models of Active Galactic Nuclei

    Komossa, S

    2008-01-01

    We consider the consequences of gravitational wave recoil for unified models of active galactic nuclei (AGNs). Spatial oscillations of supermassive black holes (SMBHs) around the cores of galaxies following gravitational wave (GW) recoil imply that the SMBHs spend a significant fraction of time off-nucleus, at scales beyond that of the molecular obscuring torus. Assuming reasonable distributions of recoil velocities, we compute the off-core timescale of (intrinsically type-2) quasars. We find that roughly one-half of major mergers result in a SMBH being displaced beyond the torus for a time of 30 Myr or more, comparable to quasar activity timescales. Since major mergers are most strongly affected by GW recoil, our results imply a deficiency of type 2 quasars in comparison to Seyfert 2 galaxies. Other consequences of the recoil oscillations for the observable properties of AGNs are also discussed.

  17. Galactic Center gamma-ray "excess" from an active past of the Galactic Centre?

    Petrovic, Jovana; Zaharijas, Gabrijela

    2014-01-01

    Several groups have recently claimed evidence for unaccounted gamma-ray excesses over diffuse backgrounds at few GeV in Fermi-LAT data in a region around the Galactic Center, consistent with a dark matter annihilation origin. We demonstrate that the main spectral and angular features of this "excess" can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ~ 10^{52}-10^{53} erg roughly O(10^6) years ago. We consider this example as a proof of principle that time-dependent phenomena need to be understood and accounted for---together with detailed diffuse foregrounds and unaccounted "steady state" astrophysical sources---before any robust inference can be made about dark matter signals at the Galactic Center. In addition, we point out that the timescale suggested by our study, which controls both the energy cutoff and the angular extension of the signal, intriguingly matches what is inferred by other forensic evidences suggesting a very active ...

  18. AEGIS: DEMOGRAPHICS OF X-RAY AND OPTICALLY SELECTED ACTIVE GALACTIC NUCLEI

    We develop a new diagnostic method to classify galaxies into active galactic nucleus (AGN) hosts, star-forming galaxies, and absorption-dominated galaxies by combining the [O III]/Hβ ratio with rest-frame U - B color. This can be used to robustly select AGNs in galaxy samples at intermediate redshifts (z AB bol > 1044 erg s-1 in our sample are not detected in our 200 ks Chandra images, most likely due to moderate or heavy absorption by gas near the AGN. The 2-7 keV detection rate of Seyfert 2s at z ∼ 0.6 suggests that their column density distribution and Compton-thick fraction are similar to that of local Seyferts. Multiple sample selection techniques are needed to obtain as complete a sample as possible.

  19. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    Isobe, Naoki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-01-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths, with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. Among the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog, 100 ones are currently identified as a non-blazar-type active galactic nucleus. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 $\\mu$m. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2 ones) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, $\\Gamma = 1.9$, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 ...

  20. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    Wardle, Mark [Astronomy, Astrophysics and Astrophotonics Research Centre and Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Yusef-Zadeh, Farhad, E-mail: mark.wardle@mq.edu.au, E-mail: zadeh@northwestern.edu [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States)

    2012-05-10

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H{sub 2}O masers. For initial cloud column densities {approx}< 10{sup 23.5} cm{sup -2} the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  1. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H2O masers. For initial cloud column densities ∼23.5 cm–2 the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  2. Thermal-nonthermal relationships in active galactic nuclei

    This dissertation reports on optical and radio observations of active galactic nuclei, selected on the basis of the presence of dominant narrow (narrow line radio galaxies, Seyfert II galaxies, QSOs) and/or broad (broad line radio galaxies, Seyfert I galaxies, QSOs) optical emission lines in their spectra. Special attention is drawn to possible relationships and physical links between the two regimes responsible for the optical (thermal) and radio (non-thermal) emission. Several projects, each studying such relationships on different angular (and thus linear) scales and at different observational frequencies were conceived with a variety of detection devices. (Auth.)

  3. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  4. The role of active galactic nuclei in galaxy formation

    Thomas, P A

    2009-01-01

    We use Monte-Carlo Markov chain techniques to constrain acceptable parameter regions for the Munich L-Galaxies semi-analytic galaxy formation model. Feedback from active galactic nuclei (AGN) is required to limit star-formation in the most massive galaxies. However, we show that the introduction of tidal stripping of dwarf galaxies as they fall into and merge with their host systems can lead to a reduction in the required degree of AGN feedback. In addition, the new model correctly reproduces both the metallicity of large galaxies and the fraction of intracluster light.

  5. The interaction between feedback from active galactic nuclei and supernovae

    Booth, C. M.; Joop Schaye

    2012-01-01

    Energetic feedback from supernovae (SNe) and from active galactic nuclei (AGN) are both important processes that are thought to control how much gas is able to condense into galaxies and form stars. We show that although both AGN and SNe suppress star formation, they mutually weaken one another's effect by up to an order of magnitude in haloes in the mass range for which both feedback processes are efficient (10^11.25 M_sun < m_200 < 10^12.5 M_sun). These results demonstrate the importance of...

  6. Emission line regions of active galactic nuclei and quasars

    The observational constraints on the conditions in the gas which give rise to the emission lines seen in the spectra of quasars and active galactic nuclei are summarized, with particular attention being paid to the region responsible for the broad lines. Some general requirements on the physical conditions and geometry are described, and the emission line region of the quasar 3C273 is used to illustrate the successes, and shortcomings, of photoionization models. Comparisons of the emission line profiles of different ions show that there must be some radial flow, and obscuration, in the region of the emission line material

  7. Statistics of Superluminal Motion in Active Galactic Nuclei

    Yong-Wei Zhang; Jun-Hui Fan

    2008-01-01

    We have collected an up-to-date sample of 123 superluminal sources (84 quasars, 27 BL Lac objects and 12 galaxies) and calculated the apparent velocities (βapp) for 224 components in the sources with the A-CDM model. We checked the relationships between their proper motions, redshifts,βapp and 5 GHz flux densities. Our analysis shows that the radio emission is strongly boosted by the Doppler effect. The superluminal motion and the relativistic beaming boosting effect are, to some extent, the same in active galactic nuclei.

  8. Photon-axion conversion in Active Galactic Nuclei?

    Bassan, Nicola

    2009-01-01

    Axion-Like Particles (ALPs) are the focus of intense current research. We analyze photon-ALP conversion in the context of relativistic jet models of Active Galactic Nuclei (AGN) for more than 100 sources. Contrary to previous claims, we find that this process cannot occur above 100 GeV regardless of the actual AGN model and the values of ALP parameters. This result rules out a proposed strategy to bypass the cosmic opacity above 100 GeV, as apparently required by observations. We also show that for some AGN an observable effect can show up in the X and soft gamma-ray bands.

  9. Magnetic flare model of quasars and active galactic nuclei

    As a model of quasars and active galactic nuclei, we present the magnetic flare model which clarifies the connection between the primary energy source and the non-thermal phenomena. The behavior of the magnetic field generated in the accretion disk around a massive black hole is investigated in terms of the αω-dynamo and the magnetic buoyancy. The magnetic field is responsible not only for the angular momentum transfer but also for the vertical energy transfer owing to the magnetic buoyancy. Magnetic energy thus transferred should be released in the coronal region above the disk surface through its flare-like reconnection as in the solar flare. We expect that it will produce a variety of non-thermal activities characteristic to quasars and active galactic nuclei. We argue that the following scenario is compatible with various observations: A flare generates the relativistic shock behind which electrons are heated up to the relativistic energy. Subsequently, they produce X and γ rays by the inverse Compton scattering of low energy photons as well as emit from radio up to soft X photons by the synchrotron radiation. (author)

  10. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    Urbano, Francisco J.; Stasia M D'Onofrio; Brennon R Luster; Paige B Beck; James Robert Hyde; Veronica eBisagno; Edgar eGarcia-Rill

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band ...

  11. The typecasting of active galactic nuclei: Mrk 590 no longer fits the role

    Denney, K. D.; De Rosa, G.; Croxall, K.; Gupta, A.; Fausnaugh, M. M.; Grier, C. J.; Martini, P.; Mathur, S.; Peterson, B. M.; Pogge, R. W.; Shappee, B. J. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, M. C., E-mail: denney@astronomy.ohio-state.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2014-12-01

    We present multiwavelength observations that trace more than 40 yr in the life of the active galactic nucleus (AGN) in Mrk 590, traditionally known as a classic Seyfert 1 galaxy. From spectra recently obtained from Hubble Space Telescope, Chandra, and the Large Binocular Telescope, we find that the activity in the nucleus of Mrk 590 has diminished so significantly that the continuum luminosity is a factor of 100 lower than the peak luminosity probed by our long-baseline observations. Furthermore, the broad emission lines, once prominent in the UV/optical spectrum, have all but disappeared. Since AGN type is defined by the presence of broad emission lines in the optical spectrum, our observations demonstrate that Mrk 590 has now become a 'changing-look' AGN. If classified by recent optical spectra, Mrk 590 would be a Seyfert ∼1.9–2, where the only broad emission line still visible in the optical spectrum is a weak component of Hα. As an additional consequence of this change, we have definitively detected UV narrow-line components in a Type 1 AGN, allowing an analysis of these emission-line components with high-resolution COS spectra. These observations challenge the historical paradigm that AGN type is only a consequence of the line-of-sight viewing angle toward the nucleus in the presence of a geometrically flattened, obscuring medium (i.e., the torus). Our data instead suggest that the current state of Mrk 590 is a consequence of the change in luminosity, which implies the black hole accretion rate has significantly decreased.

  12. The Angular Clustering of WISE-selected Active Galactic Nuclei: Different Halos for Obscured and Unobscured Active Galactic Nuclei

    Donoso, E.; Yan, Lin; Stern, D; Assef, R. J.

    2014-01-01

    We calculate the angular correlation function for a sample of ~170,000 active galactic nuclei (AGNs) extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 − W2 > 0.8) and 4.6 μm flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGNs and to have a mean redshift of 〈z〉 = 1.1. In total, the angular clustering of WISE AGNs is roughly similar to that of optical AGNs. We cross-match these objects...

  13. TANAMI - Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry

    Mueller, Cornelia; Ojha, Roopesh; Boeck, M; Booth, R; Dutka, M S; Edwardsk, P; Fey, A L; Fuhrmann, L; Hase, H; Horiuchi, S; Jauncey, D L; Johnston, K J; Katz, U; Lister, M; Lovell, J E J; Ploetz, C; Quick, J F H; Ros, E; Taylor, G B; Thompson, D J; Tingay, S J; Tosti, G; Tzioumisk, A K; Wilms, J; Zensus, J A

    2009-01-01

    We present a summary of the observation strategy of TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry), a monitoring program to study the parsec-scale structure and dynamics of relativistic jets in active galactic nuclei (AGN) of the Southern Hemisphere with the Australian Long Baseline Array (LBA) and the trans-oceanic antennas Hartebeesthoek, TIGO, and O'Higgins. TANAMI is focusing on extragalactic sources south of -30 degrees declination with observations at 8.4 GHz and 22 GHz every ~2 months at milliarcsecond resolution. The initial TANAMI sample of 43 sources has been defined before the launch of the Fermi Gamma Ray Space Telescope to include the most promising candidates for bright gamma-ray emission to be detected with its Large Area Telescope (LAT). Since November 2008, we have been adding new sources to the sample, which now includes all known radio- and gamma-ray bright AGN of the Southern Hemisphere. The combination of VLBI and gamma-ray observations is crucial to u...

  14. Active galactic nuclei at gamma-ray energies

    Dermer, Charles Dennison

    2016-01-01

    Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV gamma rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of gamma-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called "blazars". The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with gamma-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling t...

  15. THE SUZAKU VIEW OF THE SWIFT/BAT ACTIVE GALACTIC NUCLEI. II. TIME VARIABILITY AND SPECTRA OF FIVE 'HIDDEN' ACTIVE GALACTIC NUCLEI

    The fraction of Compton-thick sources is one of the main uncertainties left in understanding the active galactic nucleus (AGN) population. The Swift Burst Alert Telescope (BAT) all-sky survey for the first time gives us an unbiased sample of AGNs for all but the most heavily absorbed sources N H > 1025 cm-2). Still, the BAT spectra (14-195 keV) are time averaged over months of observations and therefore hard to compare with softer spectra from the Swift XRT or other missions. This makes it difficult to distinguish between Compton-thin and Compton-thick models. With Suzaku, we have obtained simultaneous hard (>15 keV) and soft (0.3-10 keV) X-ray spectra for five Compton-thick candidate sources. We report on the spectra and a comparison with the BAT and earlier XMM observations. Based on both flux variability and spectral shape, we conclude that these hidden sources are not Compton thick. We also report on a possible correlation between excess variance and Swift BAT luminosity from the 16 day binned light curves, which holds true for a sample of both absorbed (four sources), unabsorbed (eight sources), and Compton-thick (Circinus) AGNs, but is weak in the 64 day binned BAT light curves.

  16. MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS

    The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 – W2 ≥ 0.8 (i.e., [3.4]–[4.6] ≥0.8, Vega), which identifies 61.9 ± 5.4 active galactic nucleus (AGN) candidates per deg2 to a depth of W2 ∼ 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 μJy at 4.6 μm, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field.

  17. Spatially Offset Active Galactic Nuclei I: Selection and Spectroscopic Properties

    Barrows, R Scott; Greene, Jenny E; Pooley, David

    2016-01-01

    We present a sample of 18 optically-selected and X-ray detected spatially offset active galactic nuclei (AGN) from the Sloan Digital Sky Survey (SDSS). In 9 systems, the X-ray AGN is spatially offset from the galactic stellar core that is located within the 3'' diameter SDSS spectroscopic fiber. In 11 systems, the X-ray AGN is spatially offset from a stellar core that is located outside the fiber, with an overlap of 2. To build the sample, we cross-matched Type II AGN selected from the SDSS galaxy catalogue with archival Chandra imaging and employed our custom astrometric and registration procedure. The projected angular (physical) offsets span a range of 0."6 (0.8 kpc) to 17."4 (19.4 kpc), with a median value of 2."7 (4.6 kpc). The offset nature of an AGN is an unambiguous signature of a galaxy merger, and these systems can be used to study the properties of AGN in galaxy mergers without the biases introduced by morphological merger selection techniques. In this paper (Paper I), we use our sample to assess t...

  18. Accretion and jet power in active galactic nuclei

    Luigi Foschini

    2011-01-01

    The classical diagrams of radio loudness and jet power as a function of mass and accretion rate of the central spacetime singularity in active galactic nuclei are reanalyzed by including the data of the recently discovered powerful relativistic jets in Narrow-Line Seyfert 1 Galaxies.The results are studied in the light of the known theories of relativistic jets,indicating that,although the Blandford-Znajek mechanism is sufficient to explain the power radiated by BL Lac Objects,it fails to completely account for the power from quasars and Narrow-Line Seyfert 1 Galaxies.This favors the scenario outlined by Cavaliere & D' Elia of a composite jet,with a magnetospheric core plus a hydromagnetic component emerging when the accretion power increases and the disk becomes radiation-pressure dominated.A comparison with Galactic compact objects is also made,finding some striking similarities,indicating that since neutron stars are low-mass jet systems analogous to black holes,Narrow-Line Seyfert 1 Galaxies are low-mass counterparts of blazars.

  19. The effects of the local environment on active galactic nuclei

    Manzer, L. H.; De Robertis, M. M., E-mail: liannemanzer@gmail.com, E-mail: mmdr@yorku.ca [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada)

    2014-06-20

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems

  20. The effects of the local environment on active galactic nuclei

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems

  1. Implications of gamma band activity in the pedunculopontine nucleus.

    Garcia-Rill, E; Luster, B; D'Onofrio, S; Mahaffey, S; Bisagno, V; Urbano, F J

    2016-07-01

    The fact that the pedunculopontine nucleus (PPN) is part of the reticular activating system places it in a unique position to modulate sensory input and fight-or-flight responses. Arousing stimuli simultaneously activate ascending projections of the PPN to the intralaminar thalamus to trigger cortical high-frequency activity and arousal, as well as descending projections to reticulospinal systems to alter posture and locomotion. As such, the PPN has become a target for deep brain stimulation for the treatment of Parkinson's disease, modulating gait, posture, and higher functions. This article describes the latest discoveries on PPN physiology and the role of the PPN in a number of disorders. It has now been determined that high-frequency activity during waking and REM sleep is controlled by two different intracellular pathways and two calcium channels in PPN cells. Moreover, there are three different PPN cell types that have one or both calcium channels and may be active during waking only, REM sleep only, or both. Based on the new discoveries, novel mechanisms are proposed for insomnia as a waking disorder. In addition, neuronal calcium sensor protein-1 (NCS-1), which is over expressed in schizophrenia and bipolar disorder, may be responsible for the dysregulation in gamma band activity in at least some patients with these diseases. Recent results suggest that NCS-1 modulates PPN gamma band activity and that lithium acts to reduce the effects of over expressed NCS-1, accounting for its effectiveness in bipolar disorder. PMID:26597124

  2. AN EMBEDDED ACTIVE NUCLEUS IN THE OH MEGAMASER GALAXY IRAS16399–0937

    Sales, Dinalva A. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul. 9500 Bento Gonçalves, Porto Alegre, 91501-970 (Brazil); Robinson, A.; Axon, D. J.; Curran, R. L.; O' Dea, C.; Mittal, R. [School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Gallimore, J. [Department of Physics, Bucknell University, Lewisburg, PA 17837 (United States); Kharb, P. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Baum, S. [Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Elitzur, M. [Physics and Astronomy Department, University of Kentucky, Lexington, KY 40506-0055 (United States)

    2015-01-20

    We present a multiwavelength study of the OH megamaser galaxy IRAS16399–0937, based on new Hubble Space Telescope (HST)/Advanced Camera for Surveys F814W and Hα+[N II] images and archive data from HST, Two Micron All Sky Survey, Spitzer, Herschel and the Very Large Array. This system has a double nucleus, whose northern (IRAS16399N) and southern (IRAS16399S) components have a projected separation of ∼6'' (3.4 kpc) and have previously been identified based on optical spectra as a low ionization nuclear emission line region (LINER) and starburst nucleus, respectively. The nuclei are embedded in a tidally distorted common envelope, in which star formation is mostly heavily obscured. The infrared spectrum is dominated by strong polycyclic aromatic hydrocarbon, but deep silicate and molecular absorption features are also present, and are strongest in the IRAS16399N nucleus. The 0.435-500 μm spectral energy distribution was fitted with a model including stellar, interstellar medium and active galactic nucleus (AGN) torus components using our new Markov Chain Monte Carlo code, CLUMPYDREAM. The results indicate that the IRAS16399N contains an AGN (L {sub bol} ∼ 10{sup 44} erg s{sup –1}) deeply embedded in a quasi-spherical distribution of optically thick clumps with a covering fraction ≈1. We suggest that these clumps are the source of the OHM emission in IRAS16399–0937. The high torus covering fraction precludes AGN photoionization as the origin of the LINER spectrum, however, the spectrum is consistent with shocks (v ∼ 100-200 km s{sup –1}). We infer that the ∼10{sup 8} M {sub ☉} black hole in IRAS16399N is accreting at a small fraction (∼1%) of its Eddington rate. The low accretion rate and modest nuclear star formation rates suggest that while the gas-rich major merger forming the IRAS16399–0937 system has triggered widespread star formation, the massive gas inflows expected from merger simulations have not yet fully developed.

  3. AN EMBEDDED ACTIVE NUCLEUS IN THE OH MEGAMASER GALAXY IRAS16399–0937

    We present a multiwavelength study of the OH megamaser galaxy IRAS16399–0937, based on new Hubble Space Telescope (HST)/Advanced Camera for Surveys F814W and Hα+[N II] images and archive data from HST, Two Micron All Sky Survey, Spitzer, Herschel and the Very Large Array. This system has a double nucleus, whose northern (IRAS16399N) and southern (IRAS16399S) components have a projected separation of ∼6'' (3.4 kpc) and have previously been identified based on optical spectra as a low ionization nuclear emission line region (LINER) and starburst nucleus, respectively. The nuclei are embedded in a tidally distorted common envelope, in which star formation is mostly heavily obscured. The infrared spectrum is dominated by strong polycyclic aromatic hydrocarbon, but deep silicate and molecular absorption features are also present, and are strongest in the IRAS16399N nucleus. The 0.435-500 μm spectral energy distribution was fitted with a model including stellar, interstellar medium and active galactic nucleus (AGN) torus components using our new Markov Chain Monte Carlo code, CLUMPYDREAM. The results indicate that the IRAS16399N contains an AGN (L bol ∼ 1044 erg s–1) deeply embedded in a quasi-spherical distribution of optically thick clumps with a covering fraction ≈1. We suggest that these clumps are the source of the OHM emission in IRAS16399–0937. The high torus covering fraction precludes AGN photoionization as the origin of the LINER spectrum, however, the spectrum is consistent with shocks (v ∼ 100-200 km s–1). We infer that the ∼108 M ☉ black hole in IRAS16399N is accreting at a small fraction (∼1%) of its Eddington rate. The low accretion rate and modest nuclear star formation rates suggest that while the gas-rich major merger forming the IRAS16399–0937 system has triggered widespread star formation, the massive gas inflows expected from merger simulations have not yet fully developed

  4. Powerful Outflows and Feedback from Active Galactic Nuclei

    King, Andrew

    2015-01-01

    Active Galactic Nuclei (AGN) represent the growth phases of the supermassive black holes in the center of almost every galaxy. Powerful, highly ionized winds, with velocities $\\sim 0.1- 0.2c$ are a common feature in X--ray spectra of luminous AGN, offering a plausible physical origin for the well known connections between the hole and properties of its host. Observability constraints suggest that the winds must be episodic, and detectable only for a few percent of their lifetimes. The most powerful wind feedback, establishing the $M -\\sigma$ relation, is probably not directly observable at all. The $M - \\sigma$ relation signals a global change in the nature of AGN feedback. At black hole masses below $M-\\sigma$ feedback is confined to the immediate vicinity of the hole. At the $M-\\sigma$ mass it becomes much more energetic and widespread, and can drive away much of the bulge gas as a fast molecular outflow.

  5. KEPLER OBSERVATIONS OF RAPID OPTICAL VARIABILITY IN ACTIVE GALACTIC NUCLEI

    Over three quarters in 2010-2011, Kepler monitored optical emission from four active galactic nuclei (AGNs) with ∼30 minute sampling, >90% duty cycle, and ∼<0.1% repeatability. These data determined the AGN optical fluctuation power spectral density (PSD) functions over a wide range in temporal frequency. Fits to these PSDs yielded power-law slopes of –2.6 to –3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGNs exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first-order magnetorotational instability theoretical calculations of accretion disk fluctuations.

  6. Variability in the continuum of active galactic nuclei

    Variability in the continuum of Active Galactic Nuclei (AGN) is briefly reviewed. Emphasis is put on the importance of systematic, broad band, coordinated monitoring observations to the investigation of the basic structural properties and radiation mechanisms of the continuum source as well as the origins of the observed variations. Two particular problems are discussed in some detail. The first concerns the case for relativistic beaming in BL Lac type objects and the critical observations in the radio and X-ray bands needed to establish the case are pointed out. The second concerns the constraints which follow from variability studies on non-thermal models of the optical-ultraviolet and of the X-ray emission in Seyfert galaxies. (Auth.)

  7. Active Galactic Nuclei: The TeV Challenge

    Blandford, R; Nalewajko, K; Yuan, Y; Zrake, J

    2015-01-01

    Jets associated with Active Galactic Nuclei (AGN) have been observed for almost a century, initially at optical and radio wavelengths. They are now widely accepted as "exhausts" produced electromagnetically by the central, spinning, massive black hole and its orbiting, accreting gas. Observations at X-ray and, especially, gamma-ray energies have transformed our understanding of how these jets evolve dynamically, accelerate electrons (and positrons) and radiate throughout the entire electromagnetic spectrum. Some new approaches to modeling the powerful and rapidly variable TeV emission observed from many blazars are sketched. Observations at the highest TeV energies, to which the High Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) will contribute, promise crucial discrimination between rival models of AGN jets.

  8. The interaction between feedback from active galactic nuclei and supernovae

    Booth, C M

    2012-01-01

    Energetic feedback from supernovae (SNe) and from active galactic nuclei (AGN) are both important processes that are thought to control how much gas is able to condense into galaxies and form stars. We show that although both AGN and SNe suppress star formation, they mutually weaken one another's effect by up to an order of magnitude in haloes in the mass range for which both feedback processes are efficient (10^11.25 M_sun < m_200 < 10^12.5 M_sun). These results demonstrate the importance of the simultaneous, non-independent inclusion of these two processes in models of galaxy formation to estimate the total feedback strength. These results are of particular relevance to semi-analytic models, which implicitly assume the effects of the two feedback processes to be independent, and also to hydrodynamical simulations that model only one of the feedback processes.

  9. Time Delay Evolution of Five Active Galactic Nuclei

    A. Kovačević; L. Č. Popović; A. I. Shapovalova; D. Ilić; A. N. Burenkov; V. H. Chavushyan

    2015-12-01

    Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays. Using both modeled and observed AGN light curves, we apply Gaussian kernel-based estimator to capture variation of local patterns of their time evolving delays. The largest variations of time delays of all objects occur in the period when continuum or emission lines luminosity is the highest. However, Gaussian kernel-based method shows instability in the case of NGC 5548, 3C 390.3, E1821+643 and NGC 4051 possibly due to numerical discrepancies between damped random walk (DRW) time scale of light curves and sliding time windows of the method. The temporal variations of time lags of Arp 102B can correspond to the real nature of the time lag evolution.

  10. Emission Line Galaxies and Active Galactic Nuclei in WINGS clusters

    Marziani, P; Bettoni, D; Poggianti, B M; Moretti, A; Fasano, G; Fritz, J; Cava, A; Varela, J; Omizzolo, A

    2016-01-01

    We present the analysis of the emission line galaxies members of 46 low redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey, Fasano et al. 2006). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star forming galaxies and classified employing diagnostic diagrams. We have examined the emission line properties and frequencies of star forming galaxies, transition objects and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency with respect to control samples, and by a systematically lower Balmer emission line equivalent width and luminosity (up to one order of magnitude in equivalent width with respect to control samples for transition objects) that implies a lower amount of ionised gas per unit mass and a lower s...

  11. Photon losses in cosmic ray acceleration in active galactic nuclei

    Colgate, S.A.

    1984-01-01

    The usual assumption of the acceleration of ultrahigh energy cosmic rays, greater than or equal to 10/sup 18/ eV in quasars, Seyfert galaxies, and other active galactic nuclei is challenged on the basis of the photon interactions with the accelerated nucleons. This is similar to the effect of the black body radiation on particles > 10/sup 20/ eV for times of the age of the universe except that the photon spectrum is harder and the energy density greater by approx. = 10/sup 13/. Hence, a single traversal, radial or circumferential, of radiation whose energy density is no greater than the emitted flux will damp an ultrahigh energy cosmic ray 10/sup 20/ eV by greater than 10/sup 4/ times its energy. Hence, it is unlikely that any reasonable configuration of acceleration can avoid disastrous photon energy loss. A different site for ultrahigh energy cosmic ray acceleration must be found.

  12. Neutrinos in IceCube from active galactic nuclei

    Kalashev, O., E-mail: kalashev@inr.ac.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Semikoz, D. [Laboratory of AstroParticle and Cosmology (APC) (France); Tkachev, I. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2015-03-15

    Recently, the IceCube collaboration reported first evidence for the astrophysical neutrinos. Observation corresponds to the total astrophysical neutrino flux of the order of 3 × 10{sup −8} GeV cm{sup −2} s{sup −1} sr{sup −1} in a PeV energy range [1]. Active galactic nuclei (AGN) are natural candidate sources for such neutrinos. To model the neutrino creation in AGNs, we study photopion production processes on the radiation field of the Shakura-Sunyaev accretion discs in the black hole vicinity. We show that this model can explain the detected neutrino flux and at the same time avoids the existing constraints from the gamma-ray and cosmic-ray observations.

  13. DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Boeotes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of ∼5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.

  14. Studies of Relativistic Jets in Active Galactic Nuclei with SKA

    Agudo, Ivan; Falcke, Heino; Georganopoulos, Markos; Ghisellini, Gabriele; Giovannini, Gabriele; Giroletti, Marcello; Gomez, Jose L; Gurvits, Leonid; Laing, Robert; Lister, Matthew; Marti, Jose-Maria; Meyer, Eileen T; Mizuno, Yosuke; O'Sullivan, Shane; Padovani, Paolo; Paragi, Zsolt; Perucho, Manel; Schleicher, Dominik; Stawarz, Lukasz; Vlahakis, Nektarios; Wardle, John

    2015-01-01

    Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli & Rawlings 2004). Most of the fundamental questions about the physics of relativistic jets still remain unanswered, and await high-sensitivity radio instruments such as SKA to solve them. These questions will be addressed specially through analysis of the massive data sets arising from the deep, all-sky surveys (both total and polarimetric flux) from SKA1. Wide-field very-long-baseline-interferometric survey observations involving SKA1 will serve as a unique tool for distinguishing between extragalactic relativistic jets and star forming galaxies via brightness temperature measurements. Subsequent SKA1 studies of relativistic jets at different resolutions will allow for unprecedented cosmological studies of AGN jets up...

  15. Variability Analysis and the Structure of Active Galactic Nuclei

    Krolik, Julian H.

    1998-01-01

    This five-year Long-Term Space Astrophysics grant provided the support for several major steps in advancing our knowledge of the internal structure of active galactic nuclei. The single largest portion of this program had to do with the development and application of techniques for 'reverberation mapping, the use of spectral monitoring of several different bands related by radiation reprocessing to infer the internal geometry of sources. Major steps were taken in d-ds regard, particularly in establishing the distribution in radius of emission line material, and in relating the apparent reprocessing of continuum bands to the underlying structure of the accretion disk. Another major effort built directly upon these results. Once the case for continuum reprocessing was made by the monitoring, it next behooved us to understand the spectral output of AGN as a result of this reprocessing. As a result, our view of continuum production in AGN is now much better focussed on the key problems. A third focus of effort had to do with the nature of X-ray variability in AGN, and what it can tell us about the dynamics of extremely hot material in the immediate outskirts of the supermassive black holes that form the central engines of active galactic nuclei. In addition to these primary efforts, this grant also supported many other, smaller projects. Several of these were demonstrations of how the material spewed out of AGN in relativistic jets generate the radiation by which we observe them. Finally, the portion of this study that had to do with continuum production by accretion disks in AGN led naturally to several papers in which new developments were presented having to do with 'advection-dominated accretion disks', those disks in which accretion appears to proceed at a substantial rate, but in which radiation processes are weak.

  16. Unwrapping the X-ray spectra of active galactic nuclei

    Reynolds, C. S.

    2016-05-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v˜ (0.1-0.3)c, highly-ionized (mainly visible in Fe XXV and Fe XXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.

  17. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    Urbano, Francisco J.; D’Onofrio, Stasia M.; Brennon R Luster; Paige B Beck; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sens...

  18. VARIABILITY AND MULTIWAVELENGTH-DETECTED ACTIVE GALACTIC NUCLEI IN THE GOODS FIELDS

    We identify 85 variable galaxies in the GOODS North and South fields using five epochs of Hubble Space Telescope Advance Camera for Survey V-band (F606W) images spanning 6 months. The variables are identified through significant flux changes in the galaxy's nucleus and represent ∼2% of the survey galaxies. With the aim of studying the active galaxy population in the GOODS fields, we compare the variability-selected sample with X-ray and mid-IR active galactic nucleus (AGN) candidates. Forty-nine percent of the variables are associated with X-ray sources identified in the 2Ms Chandra surveys. Twenty-four percent of X-ray sources likely to be AGNs are optical variables and this percentage increases with decreasing hardness ratio of the X-ray emission. Stacking of the non-X-ray-detected variables reveals marginally significant soft X-ray emission. Forty-eight percent of mid-IR power-law sources are optical variables, all but one of which is also X-ray detected. Thus, about half of the optical variables are associated with either X-ray or mid-IR power-law emission. The slope of the power-law fit through the Spitzer IRAC bands indicates that two-thirds of the variables have BLAGN-like spectral energy distributions. Among those galaxies spectroscopically identified as AGNs, we observe variability in 74% of broad-line AGNs and 15% of NLAGNs. The variables are found in galaxies extending to z∼ 3.6. We compare the variable galaxy colors and magnitudes to the X-ray and mid-IR sample and find that the non-X-ray-detected variable hosts extend to bluer colors and fainter intrinsic magnitudes. The variable AGN candidates have Eddington ratios similar to those of X-ray-selected AGNs.

  19. Atmospheric Aerosols: Cloud Condensation Nucleus Activity of Selected Organic Molecules

    Rosenorn, T.; Henning, S.; Hartz, K. H.; Kiss, G.; Pandis, S.; Bilde, M.

    2005-12-01

    Gas/particle partitioning of vapors in the atmosphere plays a major role in both climate through micro meteorology and in the physical and chemical processes of a single particle. This work has focused on the cloud droplet activation of a number of pure and mixed compounds. The means used to investigate these processes have been the University of Copenhagen cloud condensation nucleus counter setup and the Carnegie Mellon University CCNC setup. The importance of correct water activity modeling has been addressed and it has been pointed out that the molecular mass is an important parameter to consider when choosing model compounds for cloud activation models. It was shown that both traditional Kohler theory and Kohler theory modified to account for limited solubility reproduce measurements of soluble compounds well. For less soluble compounds it is necessary to use Kohler theory modified to account for limited solubility. It was also shown that this works for mixtures of compounds containing both inorganic salts and dicarboxylic acids. It has also been shown that particle phase and humidity history is important for activation behavior of particles consisting of two slightly soluble organic substances (succinic and adipic acid) and a soluble salt (NaCl). Model parameters for terpene oxidation product cloud activation have been derived. These are based on two sets of average parameters covering monoterpene oxidation products and sesquiterpene oxidation products. All parameters except the solubility were estimated and an effective solubility was calculated as the fitting parameter. The average solubility of the model compound found for mono terpene oxidation products is similar to those of sodium chloride and ammonium sulfate; however the higher molecular weight leads to a slightly higher activation diameter at fixed supersaturation. On a molar basis the monoterpene oxidation products show a 1.5 times higher effective solubility than the sesquiterpene oxidation products.

  20. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M ☉ yr–1 using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M ☉ yr–1 kpc–2) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M ☉ yr–1 kpc–2)

  1. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  2. Unwrapping the X-ray Spectra of Active Galactic Nuclei

    Reynolds, Christopher S

    2015-01-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observat...

  3. Metabolic correlates of subthalamic nucleus activity in Parkinson's disease.

    Lin, Tanya P; Carbon, Maren; Tang, Chengke; Mogilner, Alon Y; Sterio, Djordje; Beric, Aleksandar; Dhawan, Vijay; Eidelberg, David

    2008-05-01

    Overactivity of subthalamic nucleus (STN) neurons is a consistent feature of Parkinson's disease (PD) and is a target of therapy for this disorder. However, the relationship of STN firing rate to regional brain function is not known. We scanned 17 PD patients with (18)F-fluorodeoxyglucose (FDG) PET to measure resting glucose metabolism before the implantation of STN deep brain stimulation electrodes. Spontaneous STN firing rates were recorded during surgery and correlated with preoperative regional glucose metabolism on a voxel-by-voxel basis. We also examined the relationship between firing rate and the activity of metabolic brain networks associated with the motor and cognitive manifestations of the disease. Mean firing rates were 47.2 +/- 6.1 and 48.7 +/- 8.5 Hz for the left and right hemispheres, respectively. These measures correlated (P < 0.007) with glucose metabolism in the putamen and globus pallidus, which receive projections from this structure. Significant correlations (P < 0.0005) were also evident in the primary motor (BA4) and dorsolateral prefrontal (BA46/10) cortical areas. The activity of both the motor (P < 0.0001) and the cognitive (P < 0.006) PD-related metabolic networks was elevated in these patients. STN firing rates correlated with the activity of the former (P < 0.007) but not the latter network (P = 0.39). The findings suggest that the functional pathways associated with motor disability in PD are linked to the STN firing rate. These pathways are likely to mediate the clinical benefit that is seen following targeted STN interventions for this disease. PMID:18400841

  4. The suppression of star formation by powerful active galactic nuclei.

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-10

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. PMID:22575961

  5. Optical spectral properties of active galactic nuclei and quasars

    Four separate investigations dealing with the properties of optical continuum and emission-lines of active galactic nuclei (AGN) and quasars are presented. Multichannel scans of 3CR radio galaxies are decomposed by using a two-component model-an elliptical galaxy and a power-law nonthermal component. It is found that there is a strong correlation between the luminosity of the power-law component and the strength of the Balmer emission-lines. In most cases, by extrapolating to the Lyman continuum, the power-law models derived provide enough ionizing radiation to account for the Balmer line strengths. Extending the study of radio galaxies to include Seyfert galaxies and quasars, it is found that there is a strong continuity between broad-line AGN's and quasars in terms of similarities in the correlations between line luminosities and nonthermal continuum luminosity. Next, a study of the variability of absolute optical energy distribution and emission-lines of the N-galaxies 3C382 and 3C390.3 is made. Lastly, a preliminary study of surface photometry of Markarian Seyfert galaxies are presented. It is found that the properties of the underlying galaxies such as scale-length and surface brightness of the disk, color, and total brightness, do not depart systematically from those of luminous normal spiral galaxies

  6. The suppression of star formation by powerful active galactic nuclei

    Page, M J; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodr'iguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Perez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Portal, M Sanchez; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2013-01-01

    The old, red stars which constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly from accretion onto black holes. It is widely suspected, but unproven, that the tight correlation in mass of the black hole and stellar components results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, while powerful star-forming galaxies are usually dust-obscured and are brightest at infrared to submillimetre wavelengths. Here we report observations in the submillimetre and X-ray which show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 Gyrs old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10^44 erg/s. This suppression of star formation in the host galaxies of powerful AGN ...

  7. Active Galactic Nuclei under the scrutiny of CTA

    Sol, H; Boisson, C; de Almeida, U Barres; Biteau, J; Contreras, J -L; Giebels, B; Hassan, T; Inoue, Y; Katarzynski, K; Krawczynski, H; Mirabal, N; Poutanen, J; Rieger, F; Totani, T; Benbow, W; Cerruti, M; Errando, M; Fallon, L; Pino, E de Gouveia Dal; Hinton, J -A; Inoue, S; Lenain, J -P; Neronov, A; Takahashi, K; Takami, H; White, R

    2013-01-01

    Active Galactic Nuclei (hereafter AGN) produce powerful outflows which offer excellent conditions for efficient particle acceleration in internal and external shocks, turbulence, and magnetic reconnection events. The jets as well as particle accelerating regions close to the supermassive black holes (hereafter SMBH) at the intersection of plasma inflows and outflows, can produce readily detectable very high energy gamma-ray emission. As of now, more than 45 AGN including 41 blazars and 4 radiogalaxies have been detected by the present ground-based gamma-ray telescopes, which represents more than one third of the cosmic sources detected so far in the VHE gamma-ray regime. The future Cherenkov Telescope Array (CTA) should boost the sample of AGN detected in the VHE range by about one order of magnitude, shedding new light on AGN population studies, and AGN classification and unification schemes. CTA will be a unique tool to scrutinize the extreme high-energy tail of accelerated particles in SMBH environments, t...

  8. The star formation rates of active galactic nuclei host galaxies

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  9. The star formation rates of active galactic nuclei host galaxies

    Ellison, Sara L; Rosario, David J; Mendel, J Trevor

    2016-01-01

    Using artificial neural network (ANN) predictions of total infra-red luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ~21,000 optically selected active galactic nuclei (AGN), 466 low excitation radio galaxies (LERGs) and 721 mid-IR selected AGN. SFR offsets (Delta SFR) relative to a sample of star-forming `main sequence' galaxies (matched in M*, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of Delta SFR, with a distribution skewed to low SFRs and a median Delta SFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median Delta SFR = -0.5 dex. In contrast, mid-IR selected AGN have, on average, SFRs enhanced by a factor ~1.5. We interpret the different distributions of Delta SFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied ...

  10. Penetrating the Deep Cover of Compton Thick Active Galactic Nuclei

    Levenson, N A; Krolik, J H; Weaver, K A; Zycki, P T

    2006-01-01

    We analyze observations obtained with the Chandra X-ray Observatory of bright Compton thick active galactic nuclei (AGNs), those with column densities in excess of 1.5 x 10^{24} cm^{-2} along the lines of sight. We therefore view the powerful central engines only indirectly, even at X-ray energies. Using high spatial resolution and considering only galaxies that do not contain circumnuclear starbursts, we reveal the variety of emission AGNs alone may produce. Approximately 1% of the continuum's intrinsic flux is detected in reflection in each case. The only hard X-ray feature is the prominent Fe K alpha fluorescence line, with equivalent width greater than 1 keV in all sources. The Fe line luminosity provides the best X-ray indicator of the unseen intrinsic AGN luminosity. In detail, the morphologies of the extended soft X-ray emission and optical line emission are similar, and line emission dominates the soft X-ray spectra. Thus, we attribute the soft X-ray emission to material that the central engines photo...

  11. Feedback of Active Galactic Nuclei in Seyfert 2 Galaxies

    En-Peng Zhang; Wei-Hao Bian; Chen Hu; Wei-Ming Mao; ALi Luo; Yong-Heng Zhao

    2008-01-01

    It is well accepted that feedback from active galactic nuclei (AGNs) plays an important role in the coevolution of the supermassive black hole (SMBH) and its host galaxy,but the concrete mechanism of feedback remains unclear.A considerable body of evidence suggests that AGN feedback suppresses star formation in the host galaxy.We assemble a sample of Seyfert 2 galaxies with recent observational data of compact nuclear starbursts and estimate the gas surface density as a function of column density to illuminate the relation between feedback and AGN properties.Although there are some uncertainties,our data still imply the deviation from the star formation law (Kennicutt-Schmidt law).Further,they indicate that:(1) Feedback correlates with the Eddington ratio,rather than with the mass of SMBH,as a result of decreasing star formation efficiency.(2) The SMBH and the torus are probably undergoing coevolution.Conclusions presented here can be refined through future high resolution CO or HCN observations.

  12. Broad-line Balmer Decrements in Blue Active Galactic Nuclei

    Dong, Xiaobo; Wang, Jianguo; Yuan, Weimin; Zhou, Hongyan; Dai, Haifeng; Zhang, Kai

    2007-01-01

    We have investigated the broad-line Balmer decrements (Halpha/Hbeta) for a large, homogeneous sample of Seyfert 1 galaxies and QSOs using spectroscopic data obtained in the Sloan Digital Sky Survey. The sample, drawn from the Fourth Data Release, comprises 446 low redshift (z < 0.35) active galactic nuclei (AGN) that have blue optical continua as indicated by the spectral slopes in order to minimize the effect of dust extinction. We find that (i) the distribution of the intrinsic broad-line Halpha/Hbeta ratio can be well described by log-Gaussian, with a peak at Halpha/Hbeta=3.06 and a standard deviation of about 0.03 dex only; (ii) the Balmer decrement does not correlate with AGN properties such as luminosity, accretion rate, and continuum slope, etc.; (iii) on average, the Balmer decrements are found to be only slightly larger in radio-loud sources (3.37) and sources having double-peaked emission-line profiles (3.27) compared to the rest of the sample. We therefore suggest that the broad-line Halpha/Hbet...

  13. On the efficient acceleration of clouds in active galactic nuclei

    Waters, Tim; Proga, Daniel

    2016-07-01

    In the broad line region of active galactic nuclei (AGN), acceleration occurs naturally when a cloud condenses out of the hot confining medium due to the increase in line opacity as the cloud cools. However, acceleration by radiation pressure is not very efficient when the flux is time-independent, unless the flow is 1D. Here, we explore how acceleration is affected by a time-varying flux, as AGN are known to be highly variable. If the period of flux oscillations is longer than the thermal time-scale, we expect the gas to cool during the low flux state, and therefore line opacity should quickly increase. The cloud will receive a small kick due to the increased radiation force. We perform hydrodynamical simulations using ATHENA to confirm this effect and quantify its importance. We find that despite the flow becoming turbulent in 2D due to hydrodynamic instabilities, a 20 per cent modulation of the flux leads to a net increase in acceleration - by more than a factor of 2 - in both 1D and 2D. We show that this acceleration is sufficient to produce the observed line widths, although we only consider optically thin clouds. We discuss the implications of our results for photoionization modelling and reverberation mapping.

  14. Variability in Active Galactic Nuclei from Propagating Turbulent Relativistic Jets

    Pollack, Maxwell; Wiita, Paul J

    2016-01-01

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of time scales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for va...

  15. The dust covering factor in active galactic nuclei

    Stalevski, Marko; Ueda, Yoshihiro; Lira, Paulina; Fritz, Jacopo; Baes, Maarten

    2016-01-01

    The primary source of emission of active galactic nuclei (AGN), the accretion disk, is surrounded by an optically and geometrically thick dusty structure ("the so-called dusty torus"). The infrared radiation emitted by the dust is nothing but a reprocessed fraction of the accretion disk emission, so the ratio of the torus to the AGN luminosity ($L_{\\text{torus}}/L_{\\text{AGN}}$) should correspond to the fraction of the sky obscured by dust, i.e. the covering factor. We undertook a critical investigation of the $L_{\\text{torus}}/L_{\\text{AGN}}$ as the dust covering factor proxy. Using state-of-the-art 3D Monte Carlo radiative transfer code, we calculated a grid of SEDs emitted by the clumpy two-phase dusty structure. With this grid of SEDs, we studied the relation between $L_{\\text{torus}}/L_{\\text{AGN}}$ and the dust covering factor for different parameters of the torus. We found that in case of type 1 AGNs the torus anisotropy makes $L_{\\text{torus}}/L_{\\text{AGN}}$ underestimate low covering factors and ove...

  16. FERMI OBSERVATIONS OF TeV-SELECTED ACTIVE GALACTIC NUCLEI

    We report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.

  17. LUMINOUS X-RAY ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES

    We present a study of X-ray active galactic nucleus (AGN) overdensities in 16 Abell clusters, within the redshift range 0.073 x ≥ 1042 erg s-1 (at the redshift of the clusters) and within an area of 1 h -172 Mpc radius (excluding the core). To investigate the presence or absence of a true enhancement of luminous X-ray AGNs in the cluster area, we also derived the corresponding optical galaxy overdensities, using a suitable range of r-band magnitudes. We always find the latter to be significantly higher (and only in two cases roughly equal) with respect to the corresponding X-ray overdensities. Over the whole cluster sample, the mean X-ray point-source overdensity is a factor of ∼4 less than that corresponding to bright optical galaxies, a difference which is significant at a >0.995 level, as indicated by an appropriate student's t-test. We conclude that the triggering of luminous X-ray AGNs in rich clusters is strongly suppressed. Furthermore, searching for optical Sloan Digital Sky Survey counterparts of all the X-ray sources, associated with our clusters, we found that about half appear to be background QSOs, while others are background and foreground AGNs or stars. The true overdensity of X-ray point sources, associated with the clusters, is therefore even smaller than what our statistical approach revealed.

  18. A Scaling Relation Between Megamaser Disk Radius and Black Hole Mass in Active Galactic Nuclei

    Wardle, Mark

    2011-01-01

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditi...

  19. On the Scatter in the Radius - Luminosity Relationship for Active Galactic Nuclei

    Eser, E Kilerci; Peterson, B M; Denney, K D; Bentz, M C

    2014-01-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus (AGN), in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped AGN for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ~40 AGN. We find the scatter in this relationship has a correctable dependence on color. For individual AGN, the size of the Hbeta emitting region has a steeper dependence on the nuclear optical lumino...

  20. Clumpy tori around type II active galactic nuclei as revealed by X-ray fluorescent lines

    Liu, Jiren; Liu, Yuan; Li, Xiaobo; Xu, Weiwei; Gou, Lijun; Cheng, Cheng

    2016-06-01

    The reflection spectrum of a torus around an active galactic nucleus (AGN) is characterized by X-ray fluorescent lines, which are most prominent for type II AGNs. A clumpy torus allows photons reflected from the back-side of the torus to leak through the front regions that are free of obscuration. The observed X-ray fluorescent lines are therefore sensitive to the clumpiness of the torus. We analysed a sample of type II AGNs observed with the Chandra High Energy Transmission Grating Spectrometer (HETGS), and measured the fluxes for the Si Kα and Fe Kα lines. The measured Fe Kα/Si Kα ratios, spanning a range between 5 and 60, are far smaller than the ratios predicted from simulations of smooth tori, indicating that the tori of the studied sources have clumpy distributions rather than smooth ones. We compared the measured Fe Kα/Si Kα ratios with simulation results of clumpy tori. The Circinus galaxy has a Fe Kα/Si Kα ratio of ˜60, which is close to the simulation results for N = 5, where N is the average number of clumps along the line of sight. The Fe Kα/Si Kα ratios of the other sources are all below the simulation results for N = 2. Overall, this shows that the non-Fe fluorescent lines in the soft X-ray band are a potentially powerful probe of the clumpiness of tori around AGNs.

  1. The Low-Luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei

    Bentz, Misty C; Grier, Catherine J; Barth, Aaron J; Peterson, Bradley M; Vestergaard, Marianne; Bennert, Vardha N; Canalizo, Gabriela; De Rosa, Gisella; Filippenko, Alexei V; Gates, Elinor L; Greene, Jenny E; Li, Weidong; Malkan, Matthew A; Pogge, Richard W; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-01-01

    We present an updated and revised analysis of the relationship between the Hbeta broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of 9 new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create "AGN-free" images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hbeta time lag, which is assumed to yield the average Hbeta BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of alpha = 0.533 (+0.035/-0.033), consistent ...

  2. An X-ray spectral model for clumpy tori in active galactic nuclei

    Liu, Yuan

    2014-01-01

    We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, $\\gamma$ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below $10$ keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe K$\\alpha$. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of c...

  3. Activation of the retrotrapezoid nucleus by posterior hypothalamic stimulation

    Fortuna, Michal G; Stornetta, Ruth L; West, Gavin H; Guyenet, Patrice G

    2009-01-01

    The retrotrapezoid nucleus (RTN) contains chemically defined neurons (ccRTN neurons) that provide a pH-regulated excitatory drive to the central respiratory pattern generator. Here we test whether ccRTN neurons respond to stimulation of the perifornical hypothalamus (PeF), a region that regulates breathing during sleep, stress and exercise. PeF stimulation with gabazine increased blood pressure, phrenic nerve discharge (PND) and the firing rate of ccRTN neurons in isoflurane-anaesthetized rats. Gabazine produced an approximately parallel upward shift of the steady-state relationship between ccRTN neuron firing rate and end-tidal CO2, and a similar shift of the relationship between PND and end-tidal CO2. The central respiratory modulation of ccRTN neurons persisted after gabazine without a change in pattern. Morphine administration typically abolished PND and reduced the discharge rate of most ccRTN neurons (by 25% on average). After morphine administration, PeF stimulation activated the ccRTN neurons normally but PND activation and the central respiratory modulation of the ccRTN neurons were severely attenuated. In the same rat preparation, most (58%) ccRTN neurons expressed c-Fos after exposure to hypercapnic hyperoxia (6–7% end-tidal CO2; 3.5 h; no hypothalamic stimulation) and 62% expressed c-Fos under hypocapnia (∼3% end-tidal CO2) after PeF stimulation. Under baseline conditions (∼3% end-tidal CO2, hyperoxia, no PeF stimulation) few (11%) ccRTN neurons expressed c-Fos. In summary, most ccRTN neurons are excited by posterior hypothalamic stimulation while retaining their normal response to CNS acidification. ccRTN neurons probably contribute both to the chemical drive of breathing and to the feed-forward control of breathing associated with emotions and or locomotion. PMID:19752119

  4. Evidence for widespread active galactic nucleus activity among massive quiescent galaxies at z ~ 2

    Olsen, K.P.; Rasmussen, J.; Toft, S.;

    2013-01-01

    . We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to...

  5. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    Sikora, Marek [Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw (Poland); Begelman, Mitchell C., E-mail: sikora@camk.edu.pl, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States)

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  6. Ultrafast outflows in radio-loud active galactic nuclei

    Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.

    2014-09-01

    Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.

  7. Spectropolarimetry, variability, and the taxonomy of active galactic nuclei

    Two subclasses of active galactic nuclei (AGN) are studied using spectropolarimetry, with the intent of defining the relationships of the subclasses to other classes of AGNs, and to study the physics of the objects themselves. In the Seyfert 1.8/1.9 class there is good evidence for dust just outside of the broad-line regions in two objects, IRAS 1958-183 and NGC 2622. Spectropolarimetry of the latter object reveals the presence of dust moving at ∼ -800 s-1 along the our line-of-sight, and causing much of the polarization in the object. In addition, three of these objects have undergone extreme variability. Combining IDS data from Osterbrock and collaborators with the more recent CCD data it is shown that in all three cases the changes in both broad emission line fluxes and featureless continuum are consistent with changes in the line-of-sight reddening to the broad-line region. Together with the polarimetric evidence for dust and IRAS photometry this strongly suggests that the Seyfert 1.8/1.9 character is caused by dust and the consequent reddening and extinction. Variability occurs when dust clouds evaporate or move out of line-of-sight, and the extinction then changes. In the so-called narrow line Seyfert 1s spectropolarimetry reveals seven highly-polarized objects. In Mrk 1239 there is evidence for at least two components of polarization, one probably due to dust reflection. In two other objects, Mrk 766 and IRAS 1509-211, the polarization also appears to indicate dust reflection as the polarigenic mechanism. There is a weak circumstantial evidence for an association of the low-density region and the polarizing source, provided by comparison of the radio axes and polarization position angles in Mrk 766 and Mrk 1126

  8. The dust covering factor in active galactic nuclei

    Stalevski, Marko; Ricci, Claudio; Ueda, Yoshihiro; Lira, Paulina; Fritz, Jacopo; Baes, Maarten

    2016-05-01

    The primary source of emission of active galactic nuclei (AGNs), the accretion disc, is surrounded by an optically and geometrically thick dusty structure (`the so-called dusty torus'). The infrared radiation emitted by the dust is nothing but a reprocessed fraction of the accretion disc emission, so the ratio of the torus to the AGN luminosity (Ltorus/LAGN) should corresponds to the fraction of the sky obscured by dust, i.e. the covering factor. We undertook a critical investigation of the Ltorus/LAGN as the dust covering factor proxy. Using state-of-the-art 3D Monte Carlo radiative transfer code, we calculated a grid of spectral energy distributions (SEDs) emitted by the clumpy two-phase dusty structure. With this grid of SEDs, we studied the relation between Ltorus/LAGN and the dust covering factor for different parameters of the torus. We found that in the case of type 1 AGNs the torus anisotropy makes Ltorus/LAGN underestimate low covering factors and overestimate high covering factors. In type 2 AGNs Ltorus/LAGN always underestimates covering factors. Our results provide a novel easy-to-use method to account for anisotropy and obtain correct covering factors. Using two samples from the literature, we demonstrated the importance of our result for inferring the obscured AGN fraction. We found that after the anisotropy is properly accounted for, the dust covering factors show very weak dependence on LAGN, with values in the range of ≈0.6-0.7. Our results also suggest a higher fraction of obscured AGNs at high luminosities than those found by X-ray surveys, in part owing to the presence of a Compton-thick AGN population predicted by population synthesis models.

  9. Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of ~1e5 years

    Schawinski, Kevin; Berney, Simon; Sartori, Lia

    2015-01-01

    We present an observational constraint for the typical active galactic nucleus (AGN) phase lifetime. The argument is based on the time lag between an AGN central engine switching on and becoming visible in X-rays, and the time the AGN then requires to photoionize a large fraction of the host galaxy. Based on the typical light travel time across massive galaxies, and the observed fraction of X-ray selected AGN without AGN-photoionized narrow lines, we estimate that the AGN phase typically lasts $\\sim10^{5}$ years. This lifetime is short compared to the total growth time of $10^{7}-10^{9}$ years estimated from e.g. the Soltan argument and implies that black holes grow via many such short bursts and that AGN therefore "flicker" on and off. We discuss some consequences of this flickering behavior for AGN feedback and the analogy of X-ray binaries and AGN lifecycles.

  10. Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of ˜105 yr

    Schawinski, Kevin; Koss, Michael; Berney, Simon; Sartori, Lia F.

    2015-08-01

    We present an observational constraint for the typical active galactic nucleus (AGN) phase lifetime. The argument is based on the time lag between an AGN central engine switching on and becoming visible in X-rays, and the time the AGN then requires to photoionize a large fraction of the host galaxy. Based on the typical light travel time across massive galaxies, and the observed fraction of X-ray-selected AGN without AGN-photoionized narrow lines, we estimate that the AGN phase typically lasts ˜105 yr. This lifetime is short compared to the total growth time of 107-109 yr estimated from e.g. the Soltan argument and implies that black holes grow via many such short bursts and that AGN therefore `flicker' on and off. We discuss some consequences of this flickering behaviour for AGN feedback and the analogy of X-ray binaries and AGN lifecycles.

  11. Deep Chandra observations of HCG 16. I. Active nuclei, star formation, and galactic winds

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  12. Deep Chandra observations of HCG 16. I. Active nuclei, star formation, and galactic winds

    O' Sullivan, E.; Zezas, A.; Vrtilek, J. M.; David, L. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Trevisan, M. [Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, 12227-010, São José dos Campos (Brazil); Ponman, T. J.; Raychaudhury, S. [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Mamon, G. A., E-mail: eosullivan@cfa.harvard.edu [Institut d' Astrophysique de Paris (UMR 7095 CNRS and UMPC), 98 bis Bd Arago, F-75014 Paris (France)

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  13. Study and modeling of the most energetic Active Galactic Nuclei with the Fermi satellite

    The Fermi satellite was launched in June 2008. The onboard LAT detector is dedicated to the study of galactic and extra-galactic gamma sources with an energy comprised between 200 MeV and 300 GeV. 1451 sources have been detected in less than 11 months. This document is divided into 6 chapters: 1) gamma astronomy, 2) the Fermi satellite, 3) the active galactic nuclei (NAG), 4) the observation of several blazars (PKS-2155-304 and PG-1553+113) and its simulation, 5) the observation of PKS-2155-304 with both RXTE and Fermi, and 6) conclusion

  14. The angular clustering of WISE-selected active galactic nuclei: Different halos for obscured and unobscured active galactic nuclei

    Donoso, E. [Instituto de Ciencias Astronómicas, de la Tierra, y del Espacio (ICATE), 5400 San Juan (Argentina); Yan, Lin [Infrared Processing and Analysis Center, Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Assef, R. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-07-01

    We calculate the angular correlation function for a sample of ∼170,000 active galactic nuclei (AGNs) extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 – W2 > 0.8) and 4.6 μm flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGNs and to have a mean redshift of (z) = 1.1. In total, the angular clustering of WISE AGNs is roughly similar to that of optical AGNs. We cross-match these objects with the photometric Sloan Digital Sky Survey catalog and distinguish obscured sources with r – W2 > 6 from bluer, unobscured AGNs. Obscured sources present a higher clustering signal than unobscured sources. Since the host galaxy morphologies of obscured AGNs are not typical red sequence elliptical galaxies and show disks in many cases, it is unlikely that the increased clustering strength of the obscured population is driven by a host galaxy segregation bias. By using relatively complete redshift distributions from the COSMOS survey, we find that obscured sources at (z) ∼ 0.9 have a bias of b = 2.9 ± 0.6 and are hosted in dark matter halos with a typical mass of log (M/M {sub ☉} h {sup –1}) ∼ 13.5. In contrast, unobscured AGNs at (z) ∼ 1.1 have a bias of b = 1.6 ± 0.6 and inhabit halos of log (M/M {sub ☉} h {sup –1}) ∼ 12.4. These findings suggest that obscured AGNs inhabit denser environments than unobscured AGNs, and they are difficult to reconcile with the simplest AGN unification models, where obscuration is driven solely by orientation.

  15. Nucleus accumbens core lesions enhance two-way active avoidance

    Lichtenberg, Nina T.; Kashtelyan, Vadim; Burton, Amanda C.; Bissonette, Gregory B.; Roesch, Matthew R.

    2013-01-01

    The majority of work examining nucleus accumbens core (NAc) has focused on functions pertaining to behaviors guided by appetitive outcomes. These studies have pointed to NAc as being critical for motivating behavior toward desirable outcomes. For example, we have recently shown that lesions of NAc impaired performance on a reward-guided decision-making task that required rats to choose between differently valued rewards. Unfortunately, much less is known about the role that NAc plays in motiv...

  16. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the RBLR-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of α= 0.533+0.035-0.033, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the RBLR-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  17. ON THE DIVERSITY AND COMPLEXITY OF ABSORPTION LINE PROFILES PRODUCED BY OUTFLOWS IN ACTIVE GALACTIC NUCLEI

    Understanding the origin of active galactic nucleus (AGN) absorption line profiles and their diversity could help to explain the physical structure of the accretion flow, and also to assess the impact of accretion on the evolution of the AGN host galaxies. Here, we present our first attempt to systematically address the issue of the origin of the complexities observed in absorption profiles. Using a simple method, we compute absorption line profiles against a continuum point source for several simulations of accretion disk winds. We investigate the geometrical, ionization, and dynamical effects on the absorption line shapes. We find that significant complexity and diversity of the absorption line profile shapes can be produced by the non-monotonic distribution of the wind velocity, density, and ionization state. Non-monotonic distributions of such quantities are present even in steady-state, smooth disk winds, and naturally lead to the formation of multiple and detached absorption troughs. These results demonstrate that the part of a wind where an absorption line is formed is not representative of the entire wind. Thus, the information contained in the absorption line is incomplete if not even insufficient to well estimate gross properties of the wind such as the total mass and energy fluxes. In addition, the highly dynamical nature of certain portions of disk winds can have important effects on the estimates of the wind properties. For example, the mass outflow rates can be off by up to two orders of magnitude with respect to estimates based on a spherically symmetric, homogeneous, constant velocity wind.

  18. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    Fukumura, Keigo; Hendry, Douglas; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-08-01

    We propose a novel theoretical model to describe the physical identity of the soft X-ray excess that is ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic accretion, which implied that the accreting plasma can develop into a standing shock under suitable physical conditions, causing the downstream flow to be sufficiently hot due to shock compression. We perform numerical calculations to examine, for sets of fiducial plasma parameters, the physical nature of fast magnetohydrodynamic shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-parameter Comptonization model of inclination angle θ obs, disk photon temperature kT in, and downstream electron energy kT e to calculate the predicted spectra in comparison with a 60 ks XMM-Newton/EPIC-pn spectrum of a typical radio-quiet Seyfert 1 active galactic nucleus, Ark 120. Our χ 2-analyses demonstrate that the model is plausible for successfully describing data for both non-spinning and spinning BHs with derived ranges of 61.3 keV ≲ kT e ≲ 144.3 keV, 21.6 eV ≲ kT in ≲ 34.0 eV, and 17.°5 ≲ θ obs ≲ 42.°6, indicating a compact Comptonizing region of three to four gravitational radii that resembles the putative X-ray coronae.

  19. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Denney, Kelly D.; Vestergaard, Marianne [Dark Cosmology Center, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Filippenko, Alexei V.; Li Weidong [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Gates, Elinor L. [University of California Observatories/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Peyton Hall - Ivy Lane, Princeton, NJ 08544 (United States); Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Treu, Tommaso [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Woo, Jong-Hak, E-mail: bentz@chara.gsu.edu [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  20. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  1. An X-ray spectral model for clumpy tori in active galactic nuclei

    Liu, Yuan; Li, Xiaobo, E-mail: liuyuan@ihep.ac.cn, E-mail: lixb@ihep.ac.cn [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918-3, Beijing 100049 (China)

    2014-05-20

    We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N {sub H} = 10{sup 23} cm{sup –2}), whereas it is much more evident in the high column density case (N {sub H} = 10{sup 25} cm{sup –2}). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.

  2. LEPTIN SIGNALING IN THE NUCLEUS TRACTUS SOLITARII INCREASES SYMPATHETIC NERVE ACTIVITY TO THE KIDNEY

    Mark, Allyn L.; Agassandian, Khristofor; Morgan, Donald A.; Liu, Xuebo; Cassell, Martin D.; Rahmouni, Kamal

    2008-01-01

    The hypothalamic arcuate nucleus was initially regarded as the principal site of leptin action, but there is increasing evidence for functional leptin receptors (Ob-Rb) in extra-hypothalamic sites, including the nucleus tractus solitarii (NTS). We previously demonstrated that arcuate injection of leptin increases sympathetic nerve activity (SNA) to brown adipose tissue (BAT) and kidney. In this study, we tested the hypothesis that leptin signaling in the NTS affects sympathetic neural outflow...

  3. The fast UV variability of the active galactic nucleus in Fairall 9

    Lohfink, Anne; Vasudevan, Ranjan; Mushotzky, Richard; Miller, Neal

    2014-01-01

    We present results from a new optical/UV/X-ray monitoring campaign of the luminous Seyfert galaxy Fairall 9 using the Swift satellite. Using the UV-Optical Telescope (UVOT) on Swift, we find correlated optical/UV variability on all time scales ranging from the sampling time (4-days) to the length of the campaign (2.5 months). In one noteworthy event, the UW2-band flux dips by 20% in 4-days, and then recovers equally quickly; this event is not seen in either the optical or the X-ray bands. We argue that this event provides further evidence that a significant fraction of the UV-emission must be driven by irradiation/reprocessing of emission from the central disk. We also use an archival XMM-Newton observation to examine shorter time scale UV/X-ray variability. We find very rapid ( $8\\times10^4$ K) region. The possible association with X-ray microflares suggests that we may be seeing the UV signatures of direct X-ray flare heating of the innermost disk.

  4. Effects of various frequency electrical stimulation of the dorsal raphe nucleus on spontaneous firing activities in the rat subthalamic nucleus

    Hongmei Ran; Dongming Gao

    2008-01-01

    BACKGROUND: Some investigations have demonstrated that exogenous 5-hydroxytryptamine increases the spontaneous firing rate of subthalamic nucleus (STN) neurons in the rat brain.OBJECTIVE: To validate the effect of electrical stimulation to the dorsal raphe nucleus (DRN) on the neu-ronal activities of the STN in rats, as well as analyze the differences in the effects of electrical stimulation at various frequencies.DESIGN, TIME AND SETTING: Experiments were performed from March 2007 to June 2007 in the Electrophysiology Laboratory of Liaoning Medical University with a randomized controlled animal study design.MATERIALS: Twenty-four healthy male Sprague-Dawley (SD) rats, weighing 250-350 g, were selected for this study. An A320R constant electrical stimulator was purchased from World Precision Instruments Com-pany (USA); a Spike 2 biological signal acquisition system was purchased from British CED Company. METHODS: Twenty-four SD rats were randomly assigned into a model group and a normal group, with 12 rats in each group. To mimic Parkinson's disease, rats in the model group were injected with 4 μL of 6-hydroxydopamine into the right striatum, then received deep brain stimulation. Rats in the normal group re-ceived deep brain stimulation in same brain region without modeling. Electrical stimulation (width, 0.06 ms; intensity, 0.2-0.6 mA; frequency, 20-130 Hz; train duration, 5 seconds) was delivered to the DRN. MAIN OUTCOME MEASURES: The firing rates of STN neurons were observed by extracellular record-ing using a biological signal acquisition system. RESULTS: DRN-high-frequency stimulation (DRN-HFS) induced excitation in 59% of the STN neurons in the normal group and 50% of the STN neurons in the model group; mean firing rates increased significantly from (7.14± 0.75) and (7.94 ± 0.61) Hz to (11.17 ± 1.49) and (12.11 ± 1.05) Hz, respectively (P < 0.01). Spontaneous firing rate increased significantly in 53% of neurons in normal rats in a frequency

  5. Submillimeter ALMA Observations of the Dense Gas in the Type-1 Active Nucleus of NGC 1097 and NGC 7469 for a Robust Energy Diagnostic

    Izumi, T.

    2015-12-01

    We present the 100 pc scale views of the dense molecular gas in the central kpc regions of nearby galaxies hosting a type-1 active galactic nucleus (AGN), NGC 1097 and NGC 7469, traced by HCN(4-3), HCO+(4-3), CS(7-6), and CO(3-2) lines, based on our ALMA cycle 0 and 1 observations. We supplemented our observations with data from literature and found enhanced ratios of HCN(4-3)/HCO+(4-3) and HCN(4-3)/CS(7-6) in AGNs, compared to starburst galaxies, which can be used as a new diagnostic method of galactic energy sources. Although several mechanisms can lead to different line ratios, our non-LTE analysis using multi-J interferometric data of NGC 1097 revealed a high [HCN]/[HCO+] abundance ratio in the nucleus. Interestingly, the HCN(4-3)/HCO+(4-3) line ratio in NGC 7469 is just as half as that in NGC 1097, although AGN luminosity of NGC 7469 is ˜ 1000 times higher than that of NGC 1097. We interpret these results qualitatively in the framework of high temperature chemistry and a receding XDR model.

  6. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope

    Ackermann, Markus; Ajello, M.; Blandford, R. D.; Nuss, E.; Ohno, M.; Ohsugi, T.; Ojha, R.; Omodei, N.; Orienti, M.; Orlando, E.; Paggi, A.; Paneque, D.; Perkins, J. S.; Bloom, E. D.; Pesce-Rollins, M.

    2015-01-01

    The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected between 100 MeV and 300 GeV with a Test Statistic (TS) greater than 25, between 2008 August 4 and 2012 July 31. The 3LAC includes 1591 AGNs located at high Galactic latitudes (|b|>10{\\\\deg}), a 71% increase over the second catalog based on 2 years of data. There are 28 duplicate associations, thus 1563 of the 2192 high-latitude...

  7. Warped accretion disks and the unification of Active Galactic Nuclei

    Nayakshin, S

    2004-01-01

    Orientation of parsec-scale accretion disks in AGN is likely to be nearly random for different black hole feeding episodes. Since AGN accretion disks are unstable to self-gravity on parsec scales, star formation in these disks will create young stellar disks, similar to those recently discovered in our Galactic Center. The disks blend into the quasi-spherical star cluster enveloping the AGN on time scales much longer than a likely AGN lifetime. Therefore, the gravitational potential within the radius of the black hole influence is at best axi-symmetric rather than spherically symmetric. Here we show that as a result, a newly formed accretion disk will be warped. For the simplest case of a potential resulting from a thin stellar ring, we calculate the disk precession rates, and the time dependent shape. We find that, for a realistic parameter range, the disk becomes strongly warped in few hundred orbital times. We suggest that this, and possibly other mechanisms of accretion disk warping, have a direct relevan...

  8. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  9. Present and future of high resolution radio observations of active galactic nuclei

    Using Cygnus A and 3C273 as examples, an introduction to radio interferometric observations of active galactic nuclei is made. Some aspects of present day research in extended and compact radio sources are presented. New instruments which are being presently built or planned and their possible scientific impact are discussed

  10. Hypocretinergic facilitation of synaptic activity of neurons in the nucleus pontis oralis of the cat.

    Xi, Ming Chu; Fung, Simon J; Yamuy, Jack; Morales, Francisco R; Chase, Michael H

    2003-06-27

    The present study was undertaken to explore the neuronal mechanisms of hypocretin actions on neurons in the nucleus pontis oralis (NPO), a nucleus which plays a key role in the generation of active (REM) sleep. Specifically, we sought to determine whether excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the laterodorsal tegmental nucleus (LDT) and spontaneous EPSPs in NPO neurons are modulated by hypocretin. Accordingly, recordings were obtained from NPO neurons in the cat in conjunction with the juxtacellular microinjection of hypocretin-1 onto intracellularly recorded cells. The application of hypocretin-1 significantly increased the mean amplitude of LDT-evoked EPSPs of NPO neurons. In addition, the frequency and the amplitude of spontaneous EPSPs in NPO neurons increased following hypocretin-1 administration. These data suggest that hypocretinergic processes in the NPO are capable of modulating the activity of NPO neurons that receive excitatory cholinergic inputs from neurons in the LDT. PMID:12763260

  11. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  12. A Census of Broad-Line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    Trump, Jonathan R; Fang, Jerome J; Faber, S M; Koo, David C; Kocevski, Dale D

    2012-01-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey (SDSS) are used to dis- entangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid superm...

  13. Activation of the dentate nucleus in a verb generation task: A 7T MRI study.

    Thürling, M; Küper, M; Stefanescu, R; Maderwald, S; Gizewski, E R; Ladd, M E; Timmann, D

    2011-08-01

    There is increasing evidence of a topographic organization within the human cerebellar cortex for motor and non-motor functions. Likewise, a subdivision of the dentate nucleus in a more dorsal and rostral motor domain and a more ventral and caudal non-motor domain has been proposed by Dum and Strick (2003) based on anatomical studies in monkey. In humans, however, very little is known about topographic organization within the dentate nucleus. Activation of the dentate nucleus in a verb generation task was examined in young and healthy subjects using ultra-highfield 7T functional magnetic resonance imaging (fMRI) with its increase in signal-to-noise ratio. Data of 17 subjects were included in statistical analysis. Subjects were asked to (i) read words (nouns) aloud presented on a screen, (ii) silently read the same nouns, (iii) silently generate the appropriate verbs to the same nouns and (iv) to silently repeat the names of the months. A block design was used. For image processing, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied. Activation related to motor speech (contrast aloud reading minus silent reading) was strongest in the rostral parts of the dentate nucleus. Dorsorostral activations were present bilaterally. Activation related to verb generation (contrast verb generation minus silent reading) was found in the ventrocaudal parts of the dentate nucleus on the right. The present findings are in good accordance with the anatomical data in monkeys and suggest that the human dentate nucleus can be subdivided into a rostral and more dorsal motor domain and a ventrocaudal non-motor domain. PMID:21640191

  14. Delayed triggering of radio Active Galactic Nuclei in gas-rich minor mergers in the local Universe

    Shabala, Stanislav; Kaviraj, Sugata; Middelberg, Enno; Turner, Ross; Ting, Yuan-Sen; Allison, James; Davis, Tim

    2016-01-01

    We examine the processes triggering star formation and Active Galactic Nucleus (AGN) activity in a sample of 25 low redshift ($z10^7$ K) brightness temperature required for an mJIVE-20 detection allows us to unambiguously identify the radio AGN in our sample. We find three such objects. Our VLBI AGN identifications are classified as Seyferts or LINERs in narrow line optical diagnostic plots; mid-infrared colours of our targets and the comparison of H$\\alpha$ star formation rates with integrated radio luminosity are also consistent with the VLBI identifications. We reconstruct star formation histories in our galaxies using optical and UV photometry, and find that these radio AGN are not triggered promptly in the merger process, consistent with previous findings for non-VLBI samples of radio AGN. This delay can significantly limit the efficiency of feedback by radio AGN triggered in galaxy mergers. We find that radio AGN hosts have lower star formation rates than non-AGN radio-selected galaxies at the same star...

  15. Host galaxies and environment of active galactic nuclei : a study of the XMM large scale structure survey

    Tasse, Cyril

    2008-01-01

    Active galactic nuclei (AGN) result from the infall of matter onto the super-massive black holes that are situated at the centres of galaxies. This process releases an enormous amount of energy into the inter-stellar and inter-galactic medium. Hence, the study of AGN becomes essential in the context

  16. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei

    Onken, Christopher A.; Ferrarese, Laura; Merritt, David;

    2004-01-01

    We calibrate reverberation-based black hole masses in active galactic nuclei (AGNs) by using the correlation between black hole mass, M, and bulge/spheroid stellar velocity dispersion, sigma. We use new measurements of sigma for 6 AGNs and published velocity dispersions for 10 others......, in conjunction with improved reverberation mapping results, to determine the scaling factor required to bring reverberation-based black hole masses into agreement with the quiescent galaxy M-sigma relationship. The scatter in the AGN black hole masses is found to be less than a factor of 3. The current...

  17. Activation of the hypothalamic paraventricular nucleus by forebrain hypertonicity selectively increases tonic vasomotor sympathetic nerve activity.

    Holbein, Walter W; Toney, Glenn M

    2015-03-01

    We recently reported that mean arterial pressure (MAP) is maintained in water-deprived rats by an irregular tonic component of vasomotor sympathetic nerve activity (SNA) that is driven by neuronal activity in the hypothalamic paraventricular nucleus (PVN). To establish whether generation of tonic SNA requires time-dependent (i.e., hours or days of dehydration) neuroadaptive responses or can be abruptly generated by even acute circuit activation, forebrain sympathoexcitatory osmosensory inputs to PVN were stimulated by infusion (0.1 ml/min, 10 min) of hypertonic saline (HTS; 1.5 M NaCl) through an internal carotid artery (ICA). Whereas isotonic saline (ITS; 0.15 M NaCl) had no effect (n = 5), HTS increased (P phosphonovaleric acid (AP5; n = 6) had similar effects. Analysis of respiratory rhythmic bursting of sSNA revealed that ICA HTS increased mean voltage (P < 0.001) without affecting the amplitude of inspiratory or expiratory bursts. Analysis of cardiac rhythmic sSNA likewise revealed that ICA HTS increased mean voltage. Cardiac rhythmic sSNA oscillation amplitude was also increased, which is consistent with activation of arterial baroreceptor during the accompanying pressor response. Increased mean sSNA voltage by HTS was blocked by prior PVN inhibition (muscimol) and blockade of PVN NMDA receptors (AP5). We conclude that even acute glutamatergic activation of PVN (i.e., by hypertonicity) is sufficient to selectively increase a tonic component of vasomotor SNA. PMID:25519737

  18. ALMA observations of the submillimetre hydrogen recombination line from the type 2 active nucleus of NGC 1068

    Izumi, Takuma; Nakanishi, Kouichiro; Imanishi, Masatoshi; Kohno, Kotaro

    2016-07-01

    Hydrogen recombination lines at the submillimetre band (submm-RLs) can serve as probes of ionized gas without dust extinction. One therefore expects to probe the broad-line region (BLR) of an obscured (type 2) active galactic nucleus (AGN) with those lines. However, admitting the large uncertainty in the continuum level, here we report on the non-detection of both broad and narrow H26 α emission line (rest frequency = 353.62 GHz) towards the prototypical type 2 AGN of NGC 1068 with the Atacama Large Millimeter/submillimeter Array (ALMA). We also investigate the nature of BLR clouds that can potentially emit submm-RLs with model calculations. As a result, we suggest that clouds with an electron density (Ne) of ˜109 cm-3 can mainly contribute to broad submm-RLs in terms of the line flux. On the other hand, line flux from other density clouds would be insignificant considering their too large or too small line optical depths. However, even for the case of Ne ˜ 109 cm-3 clouds, we also suggest that the expected line flux is extremely low, which is impractical to detect even with ALMA.

  19. ALMA observations of the submillimetre hydrogen recombination line from the type 2 active nucleus of NGC 1068

    Izumi, Takuma; Imanishi, Masatoshi; Kohno, Kotaro

    2016-01-01

    Hydrogen recombination lines at the submillimetre band (submm-RLs) can serve as probes of ionized gas without dust extinction. One therefore expects to probe the broad line region (BLR) of an obscured (type 2) active galactic nucleus (AGN) with those lines. However, admitting the large uncertainty in the continuum level, here we report on the non-detection of both broad and narrow H26$\\alpha$ emission line (rest frequency = 353.62 GHz) towards the prototypical type 2 AGN of NGC 1068 with the Atacama Large Millimeter/submillimeter Array (ALMA). We also investigate the nature of BLR clouds that can emit submm-RLs with model calculations. As a result, we suggest that clouds with an electron density ($N_e$) of $\\sim$ 10$^9$ cm$^{-3}$ can mainly contribute to broad submm-RLs in terms of the line flux. On the other hand, line flux from other density clouds would be insignificant considering their too large or too small line optical depths. Since $N_e$ $\\sim$ 10$^9$ cm$^{-3}$ is typical in BLRs, insufficient sensiti...

  20. Modeling the Polarization of Dusty Scattering Cones in Active Galactic Nuclei

    Goosmann, René; Gaskell, C. M.; Shoji, M.

    San Francisco : Astronomical Society of the Pacific, 2007 - (Ho, L.; Wang, J.), s. 485-486 ISBN 978-1-58381-307-2. - (ASP Conference Series. 373). [The Central Engine of Active Galactic Nuclei. Xi'an (CN), 16.10.2006-21.10.2006] R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxies: active * polarization * dust Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  1. Origin and properties of dual and offset active galactic nuclei in a cosmological simulation at z=2

    Steinborn, Lisa K.; Dolag, Klaus; Comerford, Julia M.; Hirschmann, Michaela; Remus, Rhea-Silvia; Teklu, Adelheid F.

    2016-05-01

    In the last few years, it became possible to observationally resolve galaxies with two distinct nuclei in their centre. For separations smaller than 10 kpc, dual and offset active galactic nuclei (AGN) are distinguished: in dual AGN, both nuclei are active, whereas in offset AGN only one nucleus is active. To study the origin of such AGN pairs, we employ a cosmological, hydrodynamic simulation with a large volume of (182 Mpc)3 from the set of Magneticum Pathfinder Simulations. The simulation self-consistently produces 35 resolved black hole (BH) pairs at redshift z = 2, with a comoving distance smaller than 10 kpc. 14 of them are offset AGN and nine are dual AGN, resulting in a fraction of (1.2 ± 0.3) per cent AGN pairs with respect to the total number of AGN. In this paper, we discuss fundamental differences between the BH and galaxy properties of dual AGN, offset AGN and inactive BH pairs and investigate their different triggering mechanisms. We find that in dual AGN the BHs have similar masses and the corresponding BH from the less massive progenitor galaxy always accretes with a higher Eddington ratio. In contrast, in offset AGN the active BH is typically more massive than its non-active counterpart. Furthermore, dual AGN in general accrete more gas from the intergalactic medium than offset AGN and non-active BH pairs. This highlights that merger events, particularly minor mergers, do not necessarily lead to strong gas inflows and thus, do not always drive strong nuclear activity.

  2. The hadronic origin of multi-TeV gamma rays from low-luminosity active galactic nuclei: implications of past activities of the Galactic center

    Fujita, Yutaka; Murase, Kohta

    2015-01-01

    Radiatively inefficient accretion flows (RIAFs) in low-luminosity active galactic nuclei (LLAGNs) have been suggested as cosmic-ray and neutrino sources, which may largely contribute to the observed diffuse neutrino intensity. We show that this scenario naturally predicts hadronic multi-TeV gamma-ray excesses around galactic centers. The protons accelerated in the RIAF in Sagittarius A* (Sgr A*) escape and interact with dense molecular gas surrounding Sgr A*, which is known as the Central Molecular Zone (CMZ), and produce gamma rays as well as neutrinos. Based on a theoretical model that is compatible with the IceCube data, we calculate gamma-ray spectra of the CMZ and find that the gamma rays with $\\gtrsim 1$~TeV may have already been detected with the High Energy Stereoscopic System (HESS), if Sgr A* was more active in the past than it is today as indicated by various observations. Our model predicts that neutrinos should come from the CMZ with a spectrum similar to the gamma-ray spectrum. We also show that...

  3. Immune Challenge Activates Neural Inputs to the Ventrolateral Bed Nucleus of the Stria Terminalis

    Bienkowski, Michael S.; Rinaman, Linda

    2011-01-01

    Hypothalamo-pituitary-adrenal (HPA) axis activation in response to infection is an important mechanism by which the nervous system can suppress inflammation. HPA output is controlled by the hypothalamic paraventricular nucleus (PVN). Previously, we determined that noradrenergic inputs to the PVN contribute to, but do not entirely account for, the ability of bacterial endotoxin (i.e., lipopolysacharide, LPS) to activate the HPA axis. The present study investigated LPS-induced recruitment of ne...

  4. The Nature of the Stable Soft X-ray Emissions in Several Types of Active Galactic Nuclei Observed by Suzaku

    Noda, Hirofumi; Nakazawa, Kazuhiro; Uchiyama, Hideki; Yamada, Shin'ya; Sakurai, Soki

    2012-01-01

    To constrain the origin of the soft X-ray excess phenomenon seen in many active galactic nuclei, the intensity-correlated spectral analysis, developed by Noda et al. (2011b) for Markarian 509, was applied to wide-band (0.5-45 keV) Suzaku data of five representative objects with relatively weak reflection signature. They are the typical bare-nucleus type 1 Seyfert Fairall 9, the bright and typical type 1.5 Seyfert MCG-2-58-22, 3C382 which is one of the X-ray brightest broad line radio galaxies, the typical Seyfert-like radio loud quasar 4C+74.26, and the X-ray brightest radio quiet quasar MR2251-178. In all of them, soft X-ray intensities in energies below 3 keV were tightly correlated with that in 3-10 keV, but with significant positive offsets. These offsets, when calculated in finer energy bands, define a stable soft component in 0.5-3 keV. In each object, this component successfully explained the soft excess above a power-law fit. These components were interpreted in several alternative ways, including a t...

  5. Constraints on Two Active Galactic Nuclei in the Merger Remnant COSMOS J100043.15+020637.2

    Wrobel, J M; Middelberg, E

    2014-01-01

    COSMOS J100043.15+020637.2 is a merger remnant at z = 0.36 with two optical nuclei, NW and SE, offset by 500 mas (2.5 kpc). Prior studies suggest two competing scenarios for these nuclei: (1) SE is an active galactic nucleus (AGN) lost from NW due to a gravitational-wave recoil. (2) NW and SE each contain an AGN, signaling a gravitational-slingshot recoil or inspiralling AGNs. We present new images from the Very Large Array (VLA) at a frequency nu = 9.0 GHz and a FWHM resolution theta = 320 mas (1.6 kpc), and the Very Long Baseline Array (VLBA) at nu = 1.52 GHz and theta = 15 mas (75 pc). The VLA imaging is sensitive to emission driven by AGNs and/or star formation, while the VLBA imaging is sensitive only to AGN-driven emission. No radio emission is detected at these frequencies. Folding in prior results, we find: (a) The properties of SE and its adjacent X-ray feature resemble those of the unobscured AGN in NGC 4151, albeit with a much higher narrow emission-line luminosity. (b) The properties of NW are con...

  6. Interferometric Monitoring of Gamma-ray Bright Active Galactic Nuclei II: Frequency Phase Transfer

    Algaba, Juan-Carlos; Lee, Sang-Sung; Byun, Do-Young; Kang, Sin-Cheol; Kim, Dae-Won; Kim, Jae-Young; Kim, Jeong-Sook; Kim, Soon-Wook; Kino, Motoki; Miyazaki, Atsushi; Park, Jong-Ho; Trippe, Sascha; Wajima, Kiyoaki

    2015-01-01

    The Interferometric Monitoring of Gamma-ray Bright Active galactic nuclei (iMOGABA) program provides not only simultaneous multifrequency observations of bright gamma-ray detected active galactic nuclei (AGN), but also covers the highest Very Large Baseline Interferometry (VLBI) frequencies ever being systematically monitored, up to 129 GHz. However, observation and imaging of weak sources at the highest observed frequencies is very challenging. In the second paper in this series, we evaluate the viability of the frequency phase transfer technique to iMOGABA in order to obtain larger coherence time at the higher frequencies of this program (86 and 129 GHz) and image additional sources that were not detected using standard techniques. We find that this method is applicable to the iMOGABA program even under non-optimal weather conditions.

  7. Variability-selected active galactic nuclei from supernova search in the Chandra deep field south

    Trevese, D.; Boutsia, K.; Vagnetti, F.; Cappellaro, E.; Puccetti, S.

    2008-01-01

    Variability is a property shared by virtually all active galactic nuclei (AGNs), and was adopted as a criterion for their selection using data from multi epoch surveys. Low Luminosity AGNs (LLAGNs) are contaminated by the light of their host galaxies, and cannot therefore be detected by the usual colour techniques. For this reason, their evolution in cosmic time is poorly known. Consistency with the evolution derived from X-ray detected samples has not been clearly established so far, also be...

  8. Modeling the X-ray fractional variability spectrum of Active Galactic Nuclei using multiple flares

    Goosmann, R. W.; Dovciak, M.; Karas, V.; Czerny, B.; Mouchet, M.; Ponti, G.

    2007-01-01

    Using Monte-Carlo simulations of X-ray flare distributions across the accretion disk of active galactic nuclei (AGN), we obtain modeling results for the energy-dependent fractional variability amplitude. Referring to previous results of this model, we illustrate the relation between the shape of the point-to-point fractional variability spectrum, F_pp, and the time-integrated spectral energy distribution, F_E. The results confirm that the spectral shape and variability of the iron Kalpha line...

  9. Modeling the X-ray Fractional Variability Spectrum of Active Galactic Nuclei Using Multiple Flares

    Goosmann, René; Dovčiak, Michal; Karas, Vladimír; Czerny, B.; Mouchet, M.; Ponti, G.

    San Francisco : Astronomical Society of the Pacific, 2007 - (Ho, L.; Wang, J.), s. 167-168 ISBN 978-1-58381-307-2. - (ASP Conference Series. 373). [The Central Engine of Active Galactic Nuclei. Xi'an (CN), 16.10.2006-21.10.2006] R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-rays: galaxies * variability * flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  10. On the deceleration of relativistic jets in active galactic nuclei I: Radiation drag

    Beskin, V S

    2016-01-01

    Deceleration of relativistic jets from active galactic nuclei (AGNs) detected recently by MOJAVE team is discussed in connection with the interaction of the jet material with the external photon field. Appropriate energy density of the isotropic photon field which is necessary to decelerate jets is determined. It is shown that the disturbances of the electric potential and magnetic surfaces play important role in general dynamics of particle deceleration.

  11. Monitoring of bright, nearby Active Galactic Nuclei with the MAGIC telescopes

    R. Wagner; Backes, M.; Satalecka, K.; Bonnoli, G.; M. Doert(); B. Steinke(Max-Planck-Institut für Physik, D-80805 München, Germany); Strah, N.; Terzic, T.; Tescaro, D.; Uellenbeck, M.; The MAGIC Collaboration

    2011-01-01

    Observations and detections of Active Galactic Nuclei (AGN) by Cherenkov telescopes are often triggered by information about high flux states in other wavelength bands. To overcome this bias, the VHE gamma-ray telescope MAGIC has conducted dedicated monitoring observations of nearby AGN since 2006. Three well established, TeV-bright blazars were selected to be observed regularly: Mrk 421, Mrk 501, and 1ES1959+650. The goals of these observations are to obtain an unbiased distribution of flux ...

  12. Active Galactic Nuclei and Quasars: Why Still a Puzzle after 50 years?

    Antonucci, Robert

    2015-01-01

    The first part of this article is a historical and physical introduction to quasars and their close cousins, called Active Galactic Nuclei (AGN). In the second part, I argue that our progress in understanding them has been unsatisfactory and in fact somewhat illusory since their discovery fifty years ago, and that much of the reason is a pervasive lack of critical thinking in the research community. It would be very surprising if other fields do not suffer similar failings.

  13. Activity in the nucleus accumbens and amygdala underlies individual differences in prosocial and individualistic economic choices.

    Haruno, Masahiko; Kimura, Minoru; Frith, Christopher D

    2014-08-01

    Much decision-making requires balancing benefits to the self with benefits to the group. There are marked individual differences in this balance such that individualists tend to favor themselves whereas prosocials tend to favor the group. Understanding the mechanisms underlying this difference has important implications for society and its institutions. Using behavioral and fMRI data collected during the performance of the ultimatum game, we show that individual differences in social preferences for resource allocation, so-called "social value orientation," is linked with activity in the nucleus accumbens and amygdala elicited by inequity, rather than activity in insula, ACC, and dorsolateral pFC. Importantly, the presence of cognitive load made prosocials behave more prosocially and individualists more individualistically, suggesting that social value orientation is driven more by intuition than reflection. In parallel, activity in the nucleus accumbens and amygdala, in response to inequity, tracked this behavioral pattern of prosocials and individualists. In addition, we conducted an impunity game experiment with different participants where they could not punish unfair behavior and found that the inequity-correlated activity seen in prosocials during the ultimatum game disappeared. This result suggests that the accumbens and amygdala activity of prosocials encodes "outcome-oriented emotion" designed to change situations (i.e., achieve equity or punish). Together, our results suggest a pivotal contribution of the nucleus accumbens and amygdala to individual differences in sociality. PMID:24564471

  14. Noradrenalin enhances the activity of cochlear nucleus neurons in the rat.

    Ebert, U

    1996-06-01

    The cochlear nucleus of rats is heavily innervated by noradrenergic fibres from the locus coeruleus. The physiological meaning of this innervation is poorly understood. Therefore, iontophoretically applied noradrenalin was tested on single neurons of the cochlear nucleus in urethane-anaesthetized rats. Iontophoresis of noradrenalin had a dual effect. During application noradrenalin led to moderate inhibition of tone-evoked activity in 37% of the tested neurons. In contrast, approximately 20-30 s after the onset of iontophoresis a long-lasting increase in discharge activity was found in most neurons. Data from iontophoresis of the alpha1-receptor agonist phenylephrine and the alpha2-receptor agonist clonidine suggest that the fast moderate inhibition is mediated by alpha2-receptors while the pronounced long-lasting elevated neuronal firing is mediated by alpha1-receptors. However, these data do not exclude the possibility that part of the response to noradrenalin is also mediated by beta-receptors. Electrical stimulation of the locus coeruleus resulted in an increase in discharge activity comparable with iontophoresis of noradrenalin or phenylephrine. Thus, activation of the locus coeruleus predominantly increases spontaneous and tone-evoked neuronal firing in the cochlear nucleus of the rat. This alpha-receptor-mediated enhanced discharge activity may serve to increase the sensitivity of acoustic processing mechanisms or to lower the threshold for short-latency acoustic reflexes. PMID:8752601

  15. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    Francisco J Urbano

    2014-10-01

    Full Text Available The pedunculopontine nucleus (PPN is a major component of the reticular activating system (RAS that regulates waking and REM sleep, states of high frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine pedunculopontine nucleus (PPN, intralaminar parafascicular nucleus (Pf, and pontine Subcoeruleus nucleus dorsalis (SubCD. Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that, 1 the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, 2 neuronal calcium sensor (NCS-1 protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, 3 leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and 4 following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high frequency activity related to waking and REM sleep by elements of the RAS.

  16. On the metal abundance of low-activity galactic nuclei

    The characteristics of the nuclear spectrum of six Seyfert 2 and LINER nuclei with low activity and strong lines of ionized nitrogen are investigated. From the equivalent widths of the absorption lines, the age and metallicity of the stellar population are derived. A comparison of the observed emission-line intensities with photoionization and shock model calculations leads to the conclusion that these nuclei are photoionized by a power-law continuum, and that the only way to reproduce the large forbidden line N II/H-alpha ratio for at least four of them is with an overabundance of nitrogen relative to the other heavy elements. 30 refs

  17. Accessing the innermost regions of Active Galactic Nuclei

    Ros, E

    2006-01-01

    Very-long-baseline interferometry can image the parsec-scale structure of radio jets, but the accretion disk close to the black hole remains invisible. One way to probe this accretion flow is provided by X-ray flux density monitoring and spectroscopy. Here we report on preliminary results of a multi-band campaign on NGC1052 with the goal of combining both approaches to access to the innermost regions of this active galaxy and to establish a connection between the relativistic jets and the accretion region.

  18. Unification of Active Galactic Nuclei at X-rays and soft gamma-rays

    This HDR (accreditation to supervise research) report contains presentations of teaching activities in stellar astrophysics and extragalactic astronomy and cosmology, of student supervision activities in different academic places, and of various publications and participations to conferences and meetings. After a brief text highlighting the relevance and originality of his research works, the author proposes a large overview of his research works which dealt with different aspects of active galactic nuclei and related issues. Future projects are evoked. The report also contains numerous publications (press articles, conference proceedings, and so on)

  19. Active star formation at intermediate Galactic latitude: the case of IRAS 06345-3023

    Yun, J L

    2015-01-01

    We report the discovery of a small aggregate of young stars seen in high-resolution, deep near-infrared ($JHK_S$) images towards IRAS 06345-3023 in the outer Galaxy and well below the mid-plane of the Galactic disc. The group of young stars is likely to be composed of low-mass stars, mostly Class I young stellar objects. The stars are seen towards a molecular cloud whose CO map peaks at the location of the IRAS source. The near-infrared images reveal, additionally, the presence of nebular emission with rich morphological features, including arcs in the vicinity of embedded stars, wisps and bright rims of a butterfly-shaped dark cloud. The location of this molecular cloud as a new star formation site well below the Galactic plane in the outer Galaxy indicates that active star formation is taking place at vertical distances larger than those typical of the (thin) disc.

  20. GABAergic mechanisms in the pedunculopontine tegmental nucleus of the cat promote active (REM) sleep.

    Torterolo, Pablo; Morales, Francisco R; Chase, Michael H

    2002-07-19

    The pedunculopontine tegmental nucleus (PPT) has been implicated in the generation and/or maintenance of both active sleep (AS) and wakefulness (W). GABAergic neurons are present within this nucleus and recent studies have shown that these neurons are active during AS. In order to examine the role of mesopontine GABAergic processes in the generation of AS, the GABA(A) agonist muscimol and the GABA(A) antagonist bicuculline were microinjected into the PPT of chronic cats that were prepared for recording the states of sleep and wakefulness. Muscimol increased the time spent in AS by increasing the frequency and duration of AS episodes; this increase in AS was at the expense of the time spent in wakefulness. A decrease in PGO density during AS was also observed following the microinjection of muscimol. On the other hand, bicuculline decreased both AS and quiet sleep and increased the time spent in wakefulness. These data suggest that GABA acts on GABA(A) receptors within the PPT to facilitate the generation of AS by suppressing the activity of waking-related processes within this nucleus. PMID:12106660

  1. Observations of active galactic nuclei from radio to gamma-rays

    In this work, Active Galactic Nuclei (AGN) - the brightest persistent objects in the universe - are discussed. According to current knowledge they consist out of several components. The central object of such systems is a supermassive black hole located in the center of a galaxy. Estimated masses of such black holes range from millions to billions of solar masses. The enormous gravitational field of the black hole affects material in its surrounding. Matter, such as gas, dust particles or stellar wind virtually provides the fuel for the AGN. The accretion process is highly efficient and partly explains the extreme luminosities of Active Galactic Nuclei. The thermal emission of the accretion disk is, however, insufficient for explaining the total emission of AGN. Observations show that some of these objects are visible throughout the complete electromagnetic spectrum. The emission in the radio regime as well as, most likely, high-energy emission seem to originate from jets. Unlike material accreted by the black hole, jets are collimated outflows with velocities near the speed of light. AGN are not completely understood. There are numerous open questions remaining, such as the exact accretion geometry, the formation and composition of the relativistic jets, the interaction between different components of these systems, as well as the place of origin and the underlying physical processes of the emission in different energy ranges. In order to address these questions a multiwavelength analysis of AGN has been performed in this work. The different energy regimes and observational techniques allow for insights into different processes and properties of such objects. A study of the connection between the accretion disk and properties of the jet has been done based on the object NGC 1052 using radio and X-ray observations. This object is a galaxy with an active nucleus. In the radio regime a double-sided jet with a projected length of several kpc is visible. In addition

  2. X-ray Spectral Model of Reprocessing by Smooth and Clumpy Molecular Tori in Active Galactic Nuclei with the MONACO framework

    Furui, Shun'ya; Odaka, Hirokazu; Kawaguchi, Toshihiro; Ohno, Masanori; Hayashi, Kazuma

    2016-01-01

    We construct an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with a Monte Carlo simulation framework MONACO. Two torus geometries of smooth and clumpy cases are considered and compared. In order to reproduce a Compton shoulder accurately, MONACO includes not only free electron scattering but also bound electron scattering. Raman and Reyleigh scattering are also treated, and scattering cross sections dependent on chemical states of hydrogen and helium are included. Doppler broadening by turbulence velocity can be implemented. Our model gives consistent results with other available models, such as MYTorus, except for differences due to different physical parameters and assumptions. We studied the dependence on torus parameters for Compton shoulder, and found that a intensity ratio of Compton shoulder to line core mainly depends on the column density, inclination angle, and metal abundance. For instance, an increase of metal abundance makes the Compton shoulder relatively w...

  3. ADAPTIVE OPTICS IMAGING OF QUASI-STELLAR OBJECTS WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI?

    Active galaxies hosting two accreting and merging supermassive black holes (SMBHs)-dual active galactic nuclei (AGNs)-are predicted by many current and popular models of black-hole-galaxy co-evolution. We present here the results of a program that has identified a set of probable dual AGN candidates based on near-infrared laser guide star adaptive optics imaging with the Keck II telescope. These candidates are selected from a complete sample of radio-quiet quasi-stellar objects (QSOs) drawn from the Sloan Digital Sky Survey (SDSS), which show double-peaked narrow AGN emission lines. Of the 12 AGNs imaged, we find 6 with double galaxy structure, of which four are in galaxy mergers. We measure the ionization of the two velocity components in the narrow AGN lines to test the hypothesis that both velocity components come from an active nucleus. The combination of a well-defined parent sample and high-quality imaging allows us to place constraints on the fraction of SDSS QSOs that host dual accreting black holes separated on kiloparsec scales: ∼0.3%-0.65%. We derive from this fraction the time spent in a QSO phase during a typical merger and find a value that is much lower than estimates that arise from QSO space densities and galaxy merger statistics. We discuss possible reasons for this difference. Finally, we compare the SMBH mass distributions of single and dual AGNs and find little difference between the two within the limited statistics of our program, hinting that most SMBH growth happens in the later stages of a merger process.

  4. Structural details of the Sagittarius A complex - evidence for a large-scale poloidal magnetic field in the Galactic center region

    Yusef-Zadeh, F.; Morris, M.

    1987-09-01

    Detailed radio observations of the Sagittarius A complex are presented and discussed. The evidence is consistent with a large-scale poloidal magnetic field lying at the Galactic center. Arguments are made in favor of the suggestion that ionized gas is flowing out isotropically from the nucleus, and that Sgr A East is located behind Sgr A West. The question whether Sgr East is a supernova remnant or the result of energetic activity related to the Galactic nucleus is addressed. 126 references.

  5. Structural details of the Sagittarius A complex - evidence for a large-scale poloidal magnetic field in the Galactic center region

    Detailed radio observations of the Sagittarius A complex are presented and discussed. The evidence is consistent with a large-scale poloidal magnetic field lying at the Galactic center. Arguments are made in favor of the suggestion that ionized gas is flowing out isotropically from the nucleus, and that Sgr A East is located behind Sgr A West. The question whether Sgr East is a supernova remnant or the result of energetic activity related to the Galactic nucleus is addressed. 126 references

  6. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    Lyu, Yang

    2016-01-01

    One percent of redshift z~0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km/s in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]5007 emission-line luminosity L_[O III]. We combine the sample of Liu et al. (2010) at z~0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z~0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (~4.2\\sigma) ...

  7. Galactic mergers, starburst galaxies, quasar activity and massive binary black holes

    Many quasar-like objects show evidence for massive binary black holes. The recent discovery of a massive (5 X 106 Msolar mass) object in the centre of the local group dwarf elliptical M 32 greatly raises the probability of forming such binaries through galactic mergers. The author argues that the enhancement of all kinds of activity (quasar-like activity and star formation) in galaxies with companions is not so much a consequence of tidal interaction between the massive galaxies as the result of collisions with their dwarf satellites. (author)

  8. Star formation rates from [C II] 158 μm and mid-infrared emission lines for starbursts and active galactic nuclei

    Sargsyan, L.; Lebouteiller, V.; Weedman, D.; Barry, D.; Spoon, H. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Samsonyan, A. [Byurakan Astrophysical Observatory, Byurakan 0213 (Armenia); Bernard-Salas, J. [Department of Physical Sciences, Open University, Milton Keynes MK7 6AA (United Kingdom); Houck, J., E-mail: sargsyan@isc.astro.cornell.edu, E-mail: dweedman@isc.astro.cornell.edu [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States)

    2014-07-20

    A summary is presented for 130 galaxies observed with the Herschel Photodetector Array Camera and Spectrometer instrument to measure fluxes for the [C II] 158 μm emission line. Sources cover a wide range of active galactic nucleus to starburst classifications, as derived from polycyclic aromatic hydrocarbon strength measured with the Spitzer Infrared Spectrograph. Redshifts from [C II] and line to continuum strengths (equivalent width (EW) of [C II]) are given for the full sample, which includes 18 new [C II] flux measures. Calibration of L([C II)]) as a star formation rate (SFR) indicator is determined by comparing [C II] luminosities with mid-infrared [Ne II] and [Ne III] emission line luminosities; this gives the same result as determining SFR using bolometric luminosities of reradiating dust from starbursts: log SFR = log L([C II)]) – 7.0, for SFR in M{sub ☉} yr{sup –1} and L([C II]) in L{sub ☉}. We conclude that L([C II]) can be used to measure SFR in any source to a precision of ∼50%, even if total source luminosities are dominated by an active galactic nucleus (AGN) component. The line to continuum ratio at 158 μm, EW([C II]), is not significantly greater for starbursts (median EW([C II]) = 1.0 μm) compared to composites and AGNs (median EW([C II]) = 0.7 μm), showing that the far-infrared continuum at 158 μm scales with [C II] regardless of classification. This indicates that the continuum at 158 μm also arises primarily from the starburst component within any source, giving log SFR = log νL{sub ν}(158 μm) – 42.8 for SFR in M{sub ☉} yr{sup –1} and νL{sub ν}(158 μm) in erg s{sup –1}.

  9. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    Lyu, Yang; Liu, Xin

    2016-08-01

    One percent of redshift z ˜ 0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km s-1 in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]λ5007 emission-line luminosity L[O III]. We combine the sample of Liu et al. (2010a) at z ˜ 0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z ˜ 0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (˜4.2σ) correlation between L[O III] and the fraction of objects that exhibit double-peaked narrow emission lines among all Type 2 AGNs, corrected for selection bias and incompleteness due to [O III] line width, equivalent width, splitting velocity, and/or equivalent width ratio between the two velocity components. Our result suggests that galactic-scale outflows and/or merging pairs of SMBHs are more prevalent in more powerful AGNs, although spatially resolved follow up observations are needed to resolve the origin(s) for the narrow-line velocity splitting for individual AGNs.

  10. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep.

    Urbano, Francisco J; D'Onofrio, Stasia M; Luster, Brennon R; Beck, Paige B; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS. PMID:25368599

  11. Discovery of Millimeter-Wave Excess Emission in Radio-Quiet Active Galactic Nuclei

    Behar, Ehud; Baldi, Ranieri D.; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-01-01

    The physical origin of radio emission in Radio Quiet Active Galactic Nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of Radio Loud (RL) AGN, or whether it originates from the accretion disk. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows $L_R = 10^{-5}L_X$ observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disk corona. Observing RQ AGN at higher (mm-wav...

  12. The Size of the Radio-Emitting Region in Low-luminosity Active Galactic Nuclei

    Anderson, James M.; Ulvestad, James S.

    2005-01-01

    We have used the VLA to study radio variability among a sample of 18 low luminosity active galactic nuclei (LLAGNs), on time scales of a few hours to 10 days. The goal was to measure or limit the sizes of the LLAGN radio-emitting regions, in order to use the size measurements as input to models of the radio emission mechanisms in LLAGNs. We detect variability on typical time scales of a few days, at a confidence level of 99%, in half of the target galaxies. Either variability that is intrinsi...

  13. Hard X-ray photon index as an indicator of bolometric correction in active galactic nuclei

    Zhou, Xin-Lin; Zhao, Yong-Heng

    2010-01-01

    We propose the rest-frame 2-10 keV photon index, \\ga, acting as an indicator of the bolometric correction, \\lb/$L_{\\rm 2-10keV}$ (where \\lb~ is the bolometric luminosity and $L_{\\rm 2-10keV}$ is the rest-frame 2-10 keV luminosity), in radio-quiet active galactic nuclei (AGNs). Correlations between \\ga~ and both bolometric correction and Eddington ratio are presented, based on simultaneous X-ray, UV, and optical observations of reverberation -mapped AGNs. These correlations can be compared wit...

  14. Theoretical hydrogen-line ratios for the narrow-line regions of active galactic nuclei

    H-alpha/H-beta (Ha/Hb) and other hydrogen line ratios for narrow line regions (NLR) of active galactic nuclei (AGN) were calculated, and their sensitivity to model parameters was investigated. The computations were performed with the photoionization code CLOUDY, with hydrogen treated as a seven-level plus continuum atom. Ha/Hb was sensitive to the ionization parameter and only weakly dependent on the electron density. Metallicity and the shape of the UV to X-ray continuum had the greatest impacts. It is recommended that Ha/Hb with a value of 3.0 be used as a reddening indicator for NLR of AGN. 21 references

  15. Search for emission of ultra high energy radiation from active galactic nuclei

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 x 10-14 cm-2s-1

  16. Optical spectra of radio-loud and radio-quiet active galactic nuclei

    Many radio galaxies have strong emission lines in their optical spectra. The fraction with such lines is much larger than in ''normal'' galaxies. Radio galaxies generally also have very bright nuclei; thus those with strong emission lines are similar in both respects to Seyfert galaxies. Hence radio and Seyfert galaxies are both generally considered to be similar physical objects: active galactic nuclei. Their observational properties show they are closely related to quasars (quasi-stellar radio sources) and (radio-quiet) QSOs. A short table of the space density of these objects is presented and their optical spectra are discussed. (Auth.)

  17. Does dichotomy of active galactic nuclei only depend on black hole spins?

    Ye, Yong-Chun; Wang, Ding-Xiong

    2004-01-01

    A toy model for jet powers and radio loudness of active galactic nuclei (AGNs) is proposed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion disc. It turns out that both the jet powers and radio-loudness of AGNs are controlled by more than one physical parameter besides the BH spin. The observed dichotomy between radio-loud and radio-quiet AGNs is well interpreted by the two parameters, the BH spin and the power-la...

  18. Search for emission of ultra high energy radiation from active galactic nuclei

    1993-01-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 [times] 10[sup [minus]14] cm[sup [minus]2]s[sup [minus]1].

  19. Search for emission of ultra high energy radiation from active galactic nuclei

    The CYGNUS Collaboration

    1993-05-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 {times} 10{sup {minus}14} cm{sup {minus}2}s{sup {minus}1}.

  20. Invisible Active Galactic Nuclei. II Radio Morphologies & Five New HI 21 cm Absorption Line Detections

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2015-01-01

    We have selected a sample of 80 candidates for obscured radio-loud active galactic nuclei and presented their basic optical/near-infrared (NIR) properties in Paper 1. In this paper, we present both high-resolution radio continuum images for all of these sources and HI 21cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz VLA continuum observations find that 52 sources are compact or have substantial compact components with size

  1. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope

    Wagner, Robert

    2008-01-01

    Since 2004, the MAGIC gamma-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M 87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV gamma-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been...

  2. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope

    Wagner, Robert; Collaboration, for the MAGIC

    2008-01-01

    Since 2004, the MAGIC gamma-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV gamma-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been car...

  3. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  4. Spectrophotometric monitoring of high luminosity active galactic nuclei. Pt. 1. The methods and data

    Perez, E. (Inst. de Astrofisica de Canarias, Tenerife (Spain)); Penston, M.V. (Royal Greenwich Observatory, Cambridge (UK)); Moles, M. (Inst. de Astrofisica de Andulucia, Granada (Spain))

    1989-07-01

    We report on a spectrophotometric monitoring programme of high luminosity active galactic nuclei (AGN) using the 2.5-m Issac Newton telescope. Data acquisition and analysis are explained, with emphasis on the care to be taken when comparing data from different epochs. The data are presented for individual objects. A comparison of the L{alpha}, CIV and CIII profiles shows that, contrary to what has previously been supposed, the profiles of different lines in a single object are not always the same as each other. (author).

  5. Spontaneous cluster activity in the inferior olivary nucleus in brainstem slices from postnatal mice

    Rekling, Jens C; Reveles Jensen, Kristian; Jahnsen, Henrik

    2012-01-01

    A distinctive property of the cerebellar system is olivocerebellar modules, where synchronized electrical activity in neurons in the inferior olivary nucleus (IO) evokes organized activity in the cerebellar cortex. However, the exact function of these modules, and how they are developed, is still...... largely unknown. Here we show that the IO in in vitro slices from postnatal mice spontaneously generates clusters of neurons with synchronous Ca2+ transients. Neurons in the principal olive (PO), and the vestibular-related dorsomedial cell column (dmcc), showed an age-dependent increase in spontaneous...... calcium transients. The spatiotemporal activity pattern was occasionally organized in clusters of co-active neighbouring neurons, with regular (16/min) and irregular (2-3/min) repeating cluster activity in the dmcc and PO, respectively. IO clusters had a diameter of 100-170 µm, lasted ~1 s, and increased...

  6. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    We report on Chandra X-ray observations of four candidate low-mass black hole (M bh ≲ 106 M ☉) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10–2) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼103 s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 1041 erg s–1 or even lower, on the order of 1040 erg s–1 for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 1039 erg s–1 in 2-10 keV.

  7. THE OBSCURED FRACTION OF ACTIVE GALACTIC NUCLEI IN THE XMM-COSMOS SURVEY: A SPECTRAL ENERGY DISTRIBUTION PERSPECTIVE

    The fraction of active galactic nucleus (AGN) luminosity obscured by dust and re-emitted in the mid-IR is critical for understanding AGN evolution, unification, and parsec-scale AGN physics. For unobscured (Type 1) AGNs, where we have a direct view of the accretion disk, the dust covering factor can be measured by computing the ratio of re-processed mid-IR emission to intrinsic nuclear bolometric luminosity. We use this technique to estimate the obscured AGN fraction as a function of luminosity and redshift for 513 Type 1 AGNs from the XMM-COSMOS survey. The re-processed and intrinsic luminosities are computed by fitting the 18 band COSMOS photometry with a custom spectral energy distribution fitting code, which jointly models emission from hot dust in the AGN torus, from the accretion disk, and from the host galaxy. We find a relatively shallow decrease of the luminosity ratio as a function of Lbol, which we interpret as a corresponding decrease in the obscured fraction. In the context of the receding torus model, where dust sublimation reduces the covering factor of more luminous AGNs, our measurements require a torus height that increases with luminosity as h ∝ Lbol0.3-0.4. Our obscured-fraction-luminosity relation agrees with determinations from Sloan Digital Sky Survey censuses of Type 1 and Type 2 quasars and favors a torus optically thin to mid-IR radiation. We find a much weaker dependence of the obscured fraction on 2-10 keV luminosity than previous determinations from X-ray surveys and argue that X-ray surveys miss a significant population of highly obscured Compton-thick AGNs. Our analysis shows no clear evidence for evolution of the obscured fraction with redshift

  8. On the virialization of disk winds: Implications for the black hole mass estimates in active galactic nuclei

    Estimating the mass of a supermassive black hole in an active galactic nucleus usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems to be invalid in BLR models that consist of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, beyond a certain point, the wind material must be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray-heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we determine whether gravity governs the flow properties by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies. We find that in the first two models, the winds are non-virialized, whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/sin 2 i. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum, as in the models considered here, than when it conserves the angular velocity, as in the so-called magneto-centrifugal winds.

  9. On the virialization of disk winds: Implications for the black hole mass estimates in active galactic nuclei

    Kashi, Amit; Proga, Daniel; Nagamine, Kentaro [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4002 (United States); Greene, Jenny [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Barth, Aaron J., E-mail: kashia@physics.unlv.edu [Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697 (United States)

    2013-11-20

    Estimating the mass of a supermassive black hole in an active galactic nucleus usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems to be invalid in BLR models that consist of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, beyond a certain point, the wind material must be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray-heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we determine whether gravity governs the flow properties by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies. We find that in the first two models, the winds are non-virialized, whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/sin {sup 2} i. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum, as in the models considered here, than when it conserves the angular velocity, as in the so-called magneto-centrifugal winds.

  10. Constraints on two active galactic nuclei in the merger remnant cosmos J100043.15+020637.2

    COSMOS J100043.15+020637.2 is a merger remnant at z = 0.36 with two optical nuclei, NW and SE, offset by 500 mas (2.5 kpc). Prior studies suggest two competing scenarios for these nuclei: (1) SE is an active galactic nucleus (AGN) lost from NW due to a gravitational-wave recoil. (2) NW and SE each contain an AGN, signaling a gravitational-slingshot recoil or inspiralling AGNs. We present new images from the Very Large Array (VLA) at a frequency ν = 9.0 GHz and a FWHM resolution θ = 320 mas (1.6 kpc), and the Very Long Baseline Array (VLBA) at ν = 1.52 GHz and θ = 15 mas (75 pc). The VLA imaging is sensitive to emission driven by AGNs and/or star formation, while the VLBA imaging is sensitive only to AGN-driven emission. No radio emission is detected at these frequencies. Folding in prior results, we find: (a) The properties of SE and its adjacent X-ray feature resemble those of the Type 1 AGN in NGC 4151, albeit with a much higher narrow emission-line luminosity. (b) The properties of NW are consistent with it hosting a Compton-thick AGN that warms ambient dust, photoionizes narrow emission-line gas, and is free-free absorbed by that gas. Finding (a) is consistent with scenarios (a) and (b). Finding (b) weakens the case for scenario (a) and strengthens the case for scenario (b). Follow-up observations are suggested.

  11. Uncovering the nucleus candidate for NGC 253

    Günthardt, G I; Camperi, J A; Díaz, R J; Gomez, P L; Bosch, G; Schirmer, M

    2015-01-01

    NGC253 is the nearest spiral galaxy with a nuclear starburst which becomes the best candidate to study the relationship between starburst and AGN activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus. The near infrared spectroscopy could be advantageous in order to shed light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis and through the brightest infrared source. We present evidence showing that the brightest near infrared and mid infrared source in the central region, already known as radio source TH7 and so far considered just a stellar supercluster, in fact, presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. It is the most massive compact infrared object in the central region, located at 2.0" of the symmetry center of the galactic bar. Moreover, our data indicate that this object i...

  12. Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus

    Ken-Ichi Okada

    2013-05-01

    Full Text Available The neuromodulators serotonin, acetylcholine, and dopamine have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the roles of the other neuromodulators remain elusive. Reportedly, neurons in the dorsal raphe nucleus, one major source of serotonin, continually track the state of expectation of future rewards by showing a correlated response to the start of a behavioral task, reward cue presentation, and reward delivery. Here, we show that neurons in the pedunculopontine tegmental nucleus (PPTN, one major source of acetylcholine, showed similar encoding of the expectation of future rewards by a systematic increase or decrease in tonic activity. We recorded and analyzed PPTN neuronal activity in monkeys during a reward conditioned visually guided saccade task. The firing patterns of many PPTN neurons were tonically increased or decreased throughout the task period. The tonic activity pattern of neurons was correlated with their encoding of the predicted reward value; neurons exhibiting an increase or decrease in tonic activity showed higher or lower activity in the large reward-predicted trials, respectively. Tonic activity and reward-related modulation ended around the time of reward delivery. Additionally, some tonic changes in activity started prior to the appearance of the initial stimulus, and were related to the anticipatory fixational behavior. A partially overlapping population of neurons showed both the initial anticipatory response and subsequent predicted reward value-dependent activity modulation by their systematic increase or decrease of tonic activity. These bi-directional reward- and anticipatory behavior-related modulation patterns are suitable for the presumed role of the PPTN in reward processing and

  13. THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100 A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the Hβ R BLR-L relationship. Our best fit for the relationship gives a power-law slope of 0.52 with a range of 0.45-0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic errors in the current set of reverberation measurements from which we determine the form of the R BLR-L relationship.

  14. Does incentive-elicited nucleus accumbens activation differ by substance of abuse? An examination with adolescents

    Hollis C. Karoly

    2015-12-01

    Full Text Available Numerous questions surround the nature of reward processing in the developing adolescent brain, particularly in regard to polysubstance use. We therefore sought to examine incentive-elicited brain activation in the context of three common substances of abuse (cannabis, tobacco, and alcohol. Due to the role of the nucleus accumbens (NAcc in incentive processing, we compared activation in this region during anticipation of reward and loss using a monetary incentive delay (MID task. Adolescents (ages 14–18; 66% male were matched on age, gender, and frequency of use of any common substances within six distinct groups: cannabis-only (n = 14, tobacco-only (n = 34, alcohol-only (n = 12, cannabis + tobacco (n = 17, cannabis + tobacco + alcohol (n = 17, and non-using controls (n = 38. All groups showed comparable behavioral performance on the MID task. The tobacco-only group showed decreased bilateral nucleus accumbens (NAcc activation during reward anticipation as compared to the alcohol-only group, the control group, and both polysubstance groups. Interestingly, no differences emerged between the cannabis-only group and any of the other groups. Results from this study suggest that youth who tend toward single-substance tobacco use may possess behavioral and/or neurobiological characteristics that differentiate them from both their substance-using and non-substance-using peers.

  15. Ensemble spectral variability study of Active Galactic Nuclei from the XMM-Newton serendipitous source catalogue

    Serafinelli, Roberto; Middei, Riccardo

    2016-01-01

    The variability of the X-ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis, who found that slope variations are well correlated with flux variations, and that spectra are typically steeper in the bright phase (softer when brighter behaviour). Not much information is available for the spectral variability of high-luminosity AGNs and quasars. In order to investigate this phenomenon, we use data from the XMM-Newton Serendipitous Source Catalogue, Data Release 5, which contains X-ray observations for a large number of active galactic nuclei in a wide luminosity and redshift range, for several different epochs. This allows to perform an ensemble analysis of the spectral variability for a large sample of quasars. We quantify the spectral variability through the spectral variability parameter $\\beta$, defined as the ratio between the change in spectral slope and the corresponding logarit...

  16. Ensemble spectral variability study of Active Galactic Nuclei from the XMM-Newton serendipitous source catalogue

    Serafinelli, R.; Vagnetti, F.; Middei, R.

    2016-02-01

    The variability of the X-Ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis [1], who found that slope variations are well correlated with flux variations, and that the spectra are typically steeper in the bright phase (softer when brighter behaviour). Not much information is available for the spectral variability of high-luminosity AGNs and quasars. In order to investigate this phenomenon, we use data from the XMM-Newton Serendipitous Source Catalogue, Data Release 5, which contains X- Ray observations for a large number of active galactic nuclei in a wide luminosity and redshift range, for several different epochs. This allows to perform an ensemble analysis of the spectral variability for a large sample of quasars. We quantify the spectral variability through the spectral variability parameter β, defined by Trevese and Vagnetti [2] as the ratio between the change in spectral slope and the corresponding logarithmic flux variation. We find that the spectral variability of quasars has a softer when brighter behaviour, similarly to local AGNs.

  17. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec

  18. Galactic Winds

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  19. Oxytocin activation of neurons in ventral tegmental area and interfascicular nucleus of mouse midbrain.

    Tang, Yamei; Chen, Zhiheng; Tao, Huai; Li, Cunyan; Zhang, Xianghui; Tang, Aiguo; Liu, Yong

    2014-02-01

    Oxytocin (OT) was reported to affect cognitive and emotional behavior by action in ventral tegmental area (VTA) and other brain areas. However, it is still unclear how OT activates VTA and related midline nucleus. Here, using patch-clamp recording, we studied the effects of OT on neuron activity in VTA and interfascicular nucleus (IF). OT dose-dependently and selectively excited small neurons located in medial VTA and the majority of IF neurons but not large neurons in lateral VTA. We found the hyperpolarization-activated current (I(h)) and the membrane capacitance of OT-sensitive neuron were significantly smaller than those of OT-insensitive neurons. The action potential width of OT-sensitive neurons was about half that of OT-insensitive neurons. The OT effect was blocked by the OT receptor antagonist atosiban and WAY-267464 but not by tetrodotoxin, suggesting a direct postsynaptic activation of OT receptors. In addition, the phospholipase C (PLC) inhibitor U73122 antagonized the depolarization by OT. Both the nonselective cation channel (NSCC) antagonist SKF96365 and the Na(+)-Ca(2+) exchanger (NCX) blocker SN-6 attenuated OT effects. These results suggested that the PLC signaling pathway coupling to NSCC and NCX contributes to the OT-mediated activation of neurons in medial VTA and IF. Taken together, our results indicate OT directly acted on medial VTA and especially IF neurons to activate NSCC and NCX via PLC. The direct activation by OT of midbrain neurons may be one mechanism underlying OT effects on social behavior. PMID:24148809

  20. X-Ray bright active galactic nuclei in massive galaxy clusters - II. The fraction of galaxies hosting active nuclei

    Ehlert, S.; von der Linden, A.; Allen, S. W.;

    2013-01-01

    We present a measurement of the fraction of cluster galaxies hosting X-ray bright active galactic nuclei (AGN) as a function of clustercentric distance scaled in units of r500. Our analysis employs high-quality Chandra X-ray and Subaru optical imaging for 42 massive X-ray-selected galaxy cluster...... fields spanning the redshift range 0.2 z ..., both of which are also suppressed near cluster centres to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas. © 2013 The Authors. Published by Oxford University...

  1. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  2. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    Collaboration, The Pierre auger

    2007-12-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [1]. The correlation has maximum significance for cosmic rays with energy greater than {approx} 6 x 10{sup 19} eV and AGN at a distance less than {approx} 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuzmin effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  3. Ion-heated thermal Comptonization models and x-ray spectral correlations in active galactic nuclei

    Recent Ginga observations of the Seyfert 1 galaxies NGC 4051 and MCG 6-30-15 show a positive correlation between the 2-10 keV luminosity and photon spectral index α. Similar behavior has also been reported in Exosat and Einstein observations of other active galactic nuclei, and is suggested in hard x-ray low-state data of the galactic black-hole candidate Cygnus X-1. A two-temperature thermal Comptonization model with internal soft-photon production provides a simple explanation for this correlation. The electron temperature, determined by a balance between ion heating and radiative cooling, decreases in response to an enhancement of the soft photon flux, resulting in a softening of the spectrum and an increase in the soft x-ray luminosity. The bulk of the soft photons are produced through pion production in collisions between the hot ions. Pivoting of the spectrum at photon energies var-epsilon > 50 keV is a consequence of variations in the ion temperature. An important test of the model would be time correlations between soft and hard x-ray bands. 17 refs., 9 figs., 1 tab

  4. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei

    Bartos, Imre; Haiman, Zoltán; Márka, Szabolcs

    2016-01-01

    Laser Interferometer Gravitational-Wave Observatory, LIGO, found direct evidence of double black hole binaries emitting gravitational waves. Galactic nuclei are expected to harbor the densest population of stellar-mass black holes, accounting for as much as ~2% of the mass of the nuclear stellar cluster. A significant fraction (~30%) of these black holes can reside in binaries. We examine the fate of the black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole. We show that binary black holes can migrate into and then rapidly merge within the disk well within a Salpeter time. The binaries may also accrete a significant amount of gas from the disk, well above the Eddington rate. This could lead to detectable X-ray or gamma-ray emission, but would require hyper-Eddington accretion with a few % radiative efficiency, comparable to thin disks. We discuss implications for gravitational wave observations and black hole popul...

  5. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    Abraham, J; Aglietta, M; Aguirre, C; Allard, D; Allekotte, I; Allen, J; Allison, P; Alvarez, C; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Argiro, S; Arisaka, K; Armengaud, E; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Atulugama, B S; Aublin, J; Ave, M; Avila, G; Backer, T; Badagnani, D; Barbosa-Ademarlaudo, F; Barnhill, D; Barroso, S L C; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellido, J A; Ben Zvi, S; Bérat, C; Bergmann, T; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Blasi, P; Bleve, C; Blümer, H; Bohaov, M; Bonifazi, C; Bonino, R; Boratav, M; Brack, J; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Cai, B; Camin, D V; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chye, J; Clark, P D J; Clay, R W; Colombo, E; Conceico, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Donato, C; De Jong, S J; De La Vega, G; de Mello Junior, W J M; De Mello-Neto, J R T; De Mitri, I; De Souza, V; Del Peral, L; Deligny, O; Della Selva, A; Delle Fratte, C; Dembinski, H; Di Giulio, C; Diaz, J C; Dobrigkeit, C; D'Olivo, J C; Dornic, D; Dorofeev, A; dos Anjos, J C; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Epele, L; Erdmann, M; Escobar, C O; Etchegoyen, A; Facal San Luis, P; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Fernández, A; Ferrer, F; Ferry, S; Fick, B; Filevich, A; Filipi, A; Fleck, ccI; Fonte, R; Fracchiolla, C E; Fulgione, W; Garca, B; Garca Gamez, D; Garcia-Pinto, D; Garrido, X; Geenen, H; Gelmini, i G; Gemmeke, H; Ghia, P L; Giller, M; Glass, H; Gold, M S; Golup, G; Gomez Albarracin, F; Gomez Berisso, M; Gmez Herrero, R; Gonalves, P; Goncalvesdo Amaral, M; González, D; Gonzalez, J G; González, M; Gora, D; Gorgi, A; Gouffon, P; Grassi, V; Grillo, A F; Grunfeld, C; Guardincerri, Y; Guarino, F; Guedes, G P; Gutirrez, J; Hague, J D; Hamilton, J C; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hauschildt, T; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Horandel, J; Horneffer, A; Horvat, M; Hrabovsky, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Kaducak, M; Kampert, K H; Karova, T; Kgl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D H; Krieger, A; Krömer, O; Kuempel, D; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lebrun, D; Le Brun, P; Lee, J; Leiguide Oliveira, M A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; López-Aguera, A; LozanoBahilo, J; Luna Garca, R; Maccarone, M C; Macolino, C; Maldera, S; Mancarella, G; Mancenido, M E; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Marquez Falcon, H R; Martello, D; Martínez, J; Martinez Bravo, O; Mathes, H J; Matthews, J; Matthews, ii J A J; Matthiae, Giorgio; Maurizio, D; Mazur, P O; McCauley, T; McEwen, M; McNeil, R R; Medina, M C; Medina-Tanco, G; Meli, A; Melo, D; Menichetti, E; Menschikov, A; Meurer, Chr; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Mollerach, S; Monasor, M; Monnier Ragaigne, D; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Morris, C; Mostaf, M; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, a S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nguyen Thi, T; Nierstenhoefer, N; Nitz, D; Nosek, D; Noka, L; Oehlschläger, J; Ohnuki, T; Olinto, A; Olmos-Gilbaja, V M; Ortiz, M; Ortolani, F; Ostapchenko, S; Otero, L; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petrera, S; Petrinca, P; Petrov, Y; Diep Pham Ngoc Dong Pham Ngoc; Pham Thi, T N; Pichel, A; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Porter, T A; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Redondo, A; Reucroft, S; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivi`re, C; Rizi, V; Roberts, M; Robledo, C; Rodríguez, G; Rodrguez Fras, D; Rodríguez-Martino, J; RodrigueziiRojo, J; Rodriguez-Cabo, I; Ros, G; Rosado, J; Roth, M; Rouill-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scherini, V; Schieler, H; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schovnek, P; Schussler, F; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, i G; Smetniansky De Grande, N; Smialkowski, A; Smda, R; Smith, A G K; Smith, B E; Snow, G R; Sokolsky, P; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Takahashi, J; Tamashiro, A; Tamburro, A; Tacu, O; Tcaciuc, R; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Todero Peixoto, C J; Tom, B; Tonachini, A; Torres, I; Torresi, D; Travnicek, P; Tripathi, A; Tristram, G; Tscherniakhovski, D; Tueros, M; Tunnicliffe, V; Ulrich, R; Unger, M; Urban, M; Valds Galicia, J F; Valino, I; Valore, e L; vanden Berg, A M; van Elewyck, V; Vázquez, R A; Veberi, D; Veiga, A; Velarde, A; Venters, T; Verzi, V; Videla, cM; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wainberg, O; Walker, P; Warner, D; Watson, A A; Westerhoff, S; Wieczorek, G; Wiencke, L; Wilczynska, B; Wilczynski, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Zas, E; Zavrtanik, D; Zavrtanik, M; Zech, A; Zepeda, A; Ziolkowski, M

    2007-01-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) \\cite{science}. The correlation has maximum significance for cosmic rays with energy greater than ~ 6x10^{19}$ eV and AGN at a distance less than ~ 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified {\\em a priori}, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuz'min effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin d...

  6. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope

    Ackermann, M; Atwood, W; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Gonzalez, J; Bellazzini, R; Bissaldi, E; Blandford, R; Bloom, E; Bonino, R; Bottacini, E; Brandt, T; Bregeon, J; Britto, R; Bruel, P; Buehler, R; Buson, S; Caliandro, G; Cameron, R; Caragiulo, M; Caraveo, P; Casandjian, J; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L; Conrad, J; Cutini, S; D'Abrusco, R; D'Ammando, F; Angelis, A; Desiante, R; Digel, S; Venere, L; Drell, P; Favuzzi, C; Fegan, S; Ferrara, E; Finke, J; Focke, W; Franckowiak, A; Fuhrmann, L; Furniss, A; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I; Grove, J; Guiriec, S; Hewitt, J W; Hill, A; Horan, D; J'ohannesson, G; Johnson, A; Johnson, W; Kataoka, J; Kuss, M; Mura, G; Larsson, S; Latronico, L; Leto, C; Li, J; Li, L; Longo, F; Loparco, F; Lott, B; Lovellette, M; Lubrano, P; Madejski, G; Mayer, M; Mazziotta, M; McEnery, J; Michelson, P; Mizuno, T; Moiseev, A; Monzani, M; Morselli, A; Moskalenko, I; Murgia, S; Nuss, E; Ohno, M; Ohsugi, T; Ojha, R; Omodei, N; Orienti, M; Orlando, E; Paggi, A; Paneque, D; Perkins, J; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T; Rain`o, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Romani, R; Salvetti, D; Schaal, M; Schinzel, F; Schulz, A; Sgr`o, C; Siskind, E; Sokolovsky, K; Spada, F; Spandre, G; Spinelli, P; Stawarz, L; Suson, D; Takahashi, H; Takahashi, T; Tanaka, Y; Thayer, J; Tibaldo, L; Torres, D; Torresi, E; Tosti, G; Troja, E; Uchiyama, Y; Vianello, G; Winer, B; Wood, K; Zimmer, S

    2015-01-01

    The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25, using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes (|b|>10{\\deg}), which is a 71% increase over the second catalog that was based on 2 years of data. There are 28 duplicate associations (two counterparts to the same gamma-ray source), thus 1563 of the 2192 high-latitude gamma-ray sources of the 3FGL catalog are AGNs. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. Based on their spectral properties, these sources are evenly split between FSRQs and BL~Lacs. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., ...

  7. THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE

    We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 γ-ray sources located at high Galactic latitudes (|b|>100) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN 'affiliations' (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing γ-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties-such as γ-ray fluxes and photon power-law spectral indices, redshifts, γ-ray luminosities, variability, and archival radio luminosities-and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the γ-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence.

  8. Stability of Cloud Orbits in the Broad Line Region of Active Galactic Nuclei

    schartmann, Martin Krause Andreas Burkert Marc

    2010-01-01

    We investigate the global dynamic stability of spherical clouds in the Broad Line Region (BLR) of Active Galactic Nuclei (AGN), exposed to radial radiation pressure, gravity of the central black hole (BH), and centrifugal forces assuming the clouds adapt their size according to the local pressure. We consider both, isotropic and anisotropic light sources. In both cases, stable orbits exist also for very sub-Keplerian rotation for which the radiation pressure contributes substantially to the force budget. We demonstrate that highly excentric, very sub-Keplerian stable orbits may be found that also agree with the recent finding by spectropolarimetry that the BLR is disk-like. This gives further support for the model of Marconi et al. 2008, which is designed to improve the agreement between black hole masses derived in certain active galaxies based on BLR dynamics, and black hole masses derived by other means in other galaxies by inclusion of a luminosity dependent term. For anisotropic illumination, the foresho...

  9. Dynamo activities driven by magneto-rotational instability and Parker instability in galactic gaseous disk

    Machida, Mami; Kudoh, Takahiro; Akahori, Takuya; Yoshiaki, Sofue; Matsumoto, Ryoji

    2013-01-01

    We carried out global three-dimensional magneto-hydrodynamic simulations of dynamo activities in galactic gaseous disks without assuming equatorial symmetry. Numerical results indicate the growth of azimuthal magnetic fields non-symmetric to the equatorial plane. As magneto-rotational instability (MRI) grows, the mean strength of magnetic fields is amplified until the magnetic pressure becomes as large as 10% of the gas pressure. When the local plasma $\\beta$ ($ = p_{\\rm gas}/p_{\\rm mag}$) becomes less than 5 near the disk surface, magnetic flux escapes from the disk by Parker instability within one rotation period of the disk. The buoyant escape of coherent magnetic fields drives dynamo activities by generating disk magnetic fields with opposite polarity to satisfy the magnetic flux conservation. The flotation of the azimuthal magnetic flux from the disk and the subsequent amplification of disk magnetic field by MRI drive quasi-periodic reversal of azimuthal magnetic fields in timescale of 10 rotation period...

  10. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathway

    Darrow, Keith N.; Slama, Michaël C. C.; Owoc, Maryanna; Kozin, Elliott; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M. Christian; Lee, Daniel J.

    2016-01-01

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway, and it measured the evoked response to optical stimulation. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50 dB SPL acoustic click stimulus. This broad pattern of activity was consistent with histological confirmation of GFP label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320 Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50 Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics will be necessary to convey information in rates typical of many auditory signals. PMID:25481416

  11. The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals.

    Adi D Dubash

    Full Text Available BACKGROUND: Rho GTPases control many cellular processes, including cell survival, gene expression and migration. Rho proteins reside mainly in the cytosol and are targeted to the plasma membrane (PM upon specific activation by guanine nucleotide exchange factors (GEFs. Accordingly, most GEFs are also cytosolic or associated with the PM. However, Net1, a RhoA-specific GEF predominantly localizes to the cell nucleus at steady-state. Nuclear localization for Net1 has been seen as a mechanism for sequestering the GEF away from RhoA, effectively rendering the protein inactive. However, considering the prominence of nuclear Net1 and the fact that a biological stimulus that promotes Net1 translocation out the nucleus to the cytosol has yet to be discovered, we hypothesized that Net1 might have a previously unidentified function in the nucleus of cells. PRINCIPAL FINDINGS: Using an affinity precipitation method to pulldown the active form of Rho GEFs from different cellular fractions, we show here that nuclear Net1 does in fact exist in an active form, contrary to previous expectations. We further demonstrate that a fraction of RhoA resides in the nucleus, and can also be found in a GTP-bound active form and that Net1 plays a role in the activation of nuclear RhoA. In addition, we show that ionizing radiation (IR specifically promotes the activation of the nuclear pool of RhoA in a Net1-dependent manner, while the cytoplasmic activity remains unchanged. Surprisingly, irradiating isolated nuclei alone also increases nuclear RhoA activity via Net1, suggesting that all the signals required for IR-induced nuclear RhoA signaling are contained within the nucleus. CONCLUSIONS/SIGNIFICANCE: These results demonstrate the existence of a functional Net1/RhoA signaling pathway within the nucleus of the cell and implicate them in the DNA damage response.

  12. X-ray spectra and time variability of active galactic nuclei

    X ray measurements taken with the HEAO-1 and -2 satellites are examined for clues to the source of emissions from active galactic nuclei (AGN). The data covered the energy range 2-100 keV and 0.5-4.5 keV and encompassed quasars, BL Lac objects, Seyfert I galaxies and broadline radio galaxies. The broadline spectra were best fit with a power law with a slope of about 0.68. The continua displayed roughly equivalent energy at all wavelengths except for radio bands. Spectral variability was detected in the BL Lac objects, which may emit optical, UV and soft X ray radiation from optically thin synchrotron emission with a hard X ray tail from inverse Compton scattering. No strong variability was evidenced with other AGN, suggesting that the emitting regions are below the Eddington luminosity and thus exhibit stable flow characteristics. 42 references

  13. Search of high energy neutrino flares from active galactic nuclei with the IceCube detector

    Cruz Silva, Angel Humberto; Bernardini, Elisa [DESY, Platanenallee 6, D 15738 Zeuthen (Germany); Gora, Dariusz [DESY, Platanenallee 6, D 15738 Zeuthen (Germany); Institute of Nuclear Physics PAN, ul. Radzikowskiego 152,31-342 Cracow, Krakow (Poland); Collaboration: IceCube-Collaboration

    2013-07-01

    Active Galactic Nuclei (AGN) are among the best candidates for sources of high energy cosmic rays. One of their properties is the extreme variability in their electromagnetic emission at different wavelengths with flare durations ranging from minutes, in some cases, to several weeks. This photon flares may be correlated with neutrinos emitted from the same source if protons are also accelerated in the AGN relativistic jet. Here we present a new statistical test method to look for neutrino flares from selected AGNs. The method takes into account a list of possible neutrino sources from different categories (FSRQs and BL-Lacs) in a so called stacking approach. The performance and results of the method using IceCube data in its 79 string configuration are presented.

  14. A new approach to the variability characterization of active galactic nuclei

    Middei, R.; Vagnetti, F.; Antonucci, M.; Serafinelli, R.

    2016-02-01

    The normalized excess variance is a popular method used by many authors to estimate the variability of active galactic nuclei (AGNs), especially in the X-ray band. We show that this estimator is affected by the cosmological time dilation, so that it should be appropriately corrected when applied to AGN samples distributed in wide redshift intervals. We propose a formula to modify this estimator, based on the use of the structure function. To verify the presence of the cosmological effect and the reliability of the proposed correction, we use data extracted from the XMM-Newton Serendipitous Source Catalogue, data release 5 (XMMSSC-DR5), and cross-matched with the Sloan Digital Sky Survey quasar catalogue, of data release 7 and 12.

  15. A mid-to far-infrared variability study of eight active galactic nuclei

    In this paper a mid-to far-infrared (MFIR) variability study of a heterogeneous sample of active galactic nuclei (AGN) is presented using data from the Infrared Astronomical Satellite (IRAS). The data have been taken from the IRAS Additional Observation (AO) archives. The source list comprises eight AGN; one Seyfert type 2 galaxy (NGC 1275), three Seyfert type 1 galaxies (NGC 4151, IIIZw2 and AKN 374), two quasars (PG 1351+64 and 1156+295) and two BL Lacertae objects (OJ287 and MKN 501). The observations cover a variety of time-scales from days to months. In only one case, that of the BL Lac object OJ 287, was significant evidence found for variability within the IRAS waveband, although the OVV quasar 1156+295 shows evidence for variability by comparison with archival ground-based data. (author)

  16. Linking the fate of massive black hole binaries to the active galactic nuclei luminosity function

    Dotti, Massimo; Montuori, Carmen

    2015-01-01

    Massive black hole binaries are naturally predicted in the context of the hierarchical model of structure formation. The binaries that manage to lose most of their angular momentum can coalesce to form a single remnant. In the last stages of this process, the holes undergo an extremely loud phase of gravitational wave emission, possibly detectable by current and future probes. The theoretical effort towards obtaining a coherent physical picture of the binary path down to coalescence is still underway. In this paper, for the first time, we take advantage of observational studies of active galactic nuclei evolution to constrain the efficiency of gas-driven binary decay. Under conservative assumptions we find that gas accretion toward the nuclear black holes can efficiently lead binaries of any mass forming at high redshift (> 2) to coalescence within the current time. The observed "downsizing" trend of the accreting black hole luminosity function further implies that the gas inflow is sufficient to drive light ...

  17. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    Giomi, Matteo; Maier, Gernot

    2016-01-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the...

  18. Radius-luminosity and mass-luminosity relationships for active galactic nuclei

    Broad-line region (BLR) sizes derived from spectral variability and BLR line widths are used to directly derive the mass (M) of the central objects of ten active galactic nuclei (AGNs) in a uniform manner. It is shown that the luminosity-weighted C IV 1549-emitting BLR radius (R) correlates with the bolometric luminosity L(Bol) and is consistent with R about sq rt L(Bol). The measurements also permit a verification of the Dibai mass-luminosity (M-L) relationship (previously derived indirectly). It is found that L(Bol) is proportional to M exp (1.1 + or - 0.3). It is found that the efficiency factor epsilon, defined as the ratio of L(Bol) to the Eddington luminosity increases from 0.03 in the low-luminosity Seyferts up to 0.06 in the most luminous objects in the sample. 19 refs

  19. Time domain studies of Active Galactic Nuclei with the Square Kilometre Array

    Bignall, Hayley; Hovatta, Talvikki; Koay, Jun Yi; Lazio, Joseph; Macquart, Jean-Pierre; Reynolds, Cormac

    2015-01-01

    Variability of radio-emitting active galactic nuclei can be used to probe both intrinsic variations arising from shocks, flares, and other changes in emission from regions surrounding the central supermassive black hole, as well as extrinsic variations due to scattering by structures in our own Galaxy. Such interstellar scattering also probes the structure of the emitting regions, with microarcsecond resolution. Current studies have necessarily been limited to either small numbers of objects monitored over long periods of time, or large numbers of objects but with poor time sampling. The dramatic increase in survey speed engendered by the Square Kilometre Array will enable precision synoptic monitoring studies of hundreds of thousands of sources with a cadence of days or less. Statistics of variability, in particular concurrent observations at multiple radio frequencies and in other bands of the electromagnetic spectrum, will probe accretion physics over a wide range of AGN classes, luminosities, and orientat...

  20. EVIDENCE FOR INFRARED-FAINT RADIO SOURCES AS z > 1 RADIO-LOUD ACTIVE GALACTIC NUCLEI

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z ∼> 1) active galactic nuclei.

  1. A note on periodicity of long-term variations of optical continuum in active galactic nuclei

    Lu, Kai-Xing; Bi, Shao-Lan; Wang, Jian-Min

    2016-01-01

    Graham et al. found a sample of active galactic nuclei (AGNs) and quasars from the Catalina Real-time Transient Survey (CRTS) that have long-term periodic variations in optical continuum, the nature of the periodicity remains uncertain. We investigate the periodic variability characteristics of the sample by testing the relations of the observed variability periods with AGN optical luminosity, black hole mass and accretion rates, and find no significant correlations. We also test the observed periods in several different aspects related to accretion disks surrounding single black holes, such as the Keplerian rotational periods of 5100~\\AA\\ photon-emission regions and self-gravity dominated regions and the precessing period of warped disks. These tests shed new lights on understanding AGN variability in general. Under the assumption that the periodic behavior is associated with SMBHB systems in particular, we compare the separations ($\\mathscr{D}_{\\bullet}$) against characteristic radii of broad-line regions (...

  2. The optical polarization signatures of fragmented equatorial dusty structures in Active Galactic Nuclei

    Marin, F

    2015-01-01

    If the existence of an obscuring circumnuclear region around the innermost regions of active galactic nuclei (AGN) has been observationally proven, its geometry remains highly uncertain. The morphology usually adopted for this region is a toroidal structure, but other alternatives, such as flared disks, can be a good representative of equatorial outflows. Those two geometries usually provide very similar spectroscopic signatures, even when they are modeled under the assumption of fragmentation. In this lecture note, we show that the resulting polarization signatures of the two models, either a torus or a flared disk, are quite different from each other. We use a radiative transfer code that computes the 2000 - 8000 angstrom polarization of the two morphologies in a clumpy environment, and show that varying the sizes of a toroidal region has deep impacts onto the resulting polarization, while the polarization of flared disks is independent of the outer radius. Clumpy flared disks also produce higher polarizati...

  3. Photon damping in cosmic-ray acceleration in active galactic nuclei

    Colgate, S.A.

    1983-04-07

    The usual assumption of the acceleration of ultra high energy cosmic rays, greater than or equal to 10/sup 18/ eV in quasars, Seyfert galaxies and other active galactic nuclei is challenged on the basis of the photon interactions with the accelerated nucleons. This is similar to the effect of the black body radiation on particles > 10/sup 20/ eV for times of the age of the universe except that the photon spectrum is harder and the energy density greater by approx. = 10/sup 15/. Hence, a single traversal, radial or circumferential, of radiation whose energy density is no greater than the emitted flux will damp an ultra high energy. Hence, it is unlikely that any reasonable configuration of acceleration can void disastrous photon energy loss. A different site for ultra high energy cosmic ray acceleration must be found.

  4. EDDINGTON RATIO GOVERNS THE EQUIVALENT WIDTH OF Mg II EMISSION LINE IN ACTIVE GALACTIC NUCLEI

    We have investigated the ensemble regularities of the equivalent widths (EWs) of Mg II λ2800 emission line of active galactic nuclei (AGNs), using a uniformly selected sample of 2092 Seyfert 1 galaxies and quasars at 0.45 ≤ z ≤ 0.8 in the spectroscopic data set of the Sloan Digital Sky Survey Fourth Data Release. We find a strong correlation between the EW of Mg II and the AGN Eddington ratio (L/LEdd): EW(Mg II) ∝ (L/L Edd)-0.4. Furthermore, for AGNs with the same L/LEdd, their EWs of Mg II show no correlation with luminosity, black hole mass, or line width, and the Mg II line luminosity is proportional to continuum luminosity, as expected by photoionization theory. Our result shows that Mg II EW is not dependent on luminosity, but is solely governed by L/LEdd.

  5. Relativistic particles and gamma-rays in quasars and active galactic nuclei

    Protheroe, R. J.; Kazanas, D.

    1983-01-01

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via Pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model.

  6. Relativistic particles and gamma-rays in quasars and active galactic nuclei

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a non-thermal spectrum of high energy protons. These protons may be responsible for the secondary production (via πsup(+-) decay) of the radio emitting high energy electrons and also of high energy γ-rays (via π0 decay and inverse Compton interactions of the electrons). The correlation between radio and γ-ray emission implied by the model is in good agreement with observations of 3C273. Observations of the flux of high energy neutrinos from quasars may provide a test for the model. (orig.)

  7. Relativistic particles and gamma-ray in quasars and active galactic nuclei

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model

  8. Relativistic particles and gamma-ray in quasars and active galactic nuclei

    Protheroe, R. J.; Kazanas, D.

    1982-01-01

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model.

  9. Relativistic particles and gamma-ray in quasars and active galactic nuclei

    Protheroe, R.J.; Kazanas, D.

    1982-07-01

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model.

  10. Monitoring the activity variations of galactic X-ray sources with WATCH on EURECA

    Brandt, Søren; Lund, N.

    1995-01-01

    its 11 month operational life, EURECA tracked the Sun, and WATCH gradually scanned across the entire sky. The signals from more than two dozen known galactic X-ray sources have been identified in the data, and the activity state of each source has been recorded as a function of time. For several......Among the many instruments carried on the first EURECA mission was also one aimed at doing astrophysical research. This instrument, WATCH, (Wide Angle Telescope for Cosmic Hard X-rays) is sensitive in the 6 to 150 keV energy range and has a total field of view covering a quarter of the sky. During...... special “offset pointing” program was initiated on request from the WATCH PI. This program proved very successful and allowed WATCH to scan more than 80% of the sky in the course of only two weeks....

  11. X-ray spectroscopy of AGN with the AXAF 'Microcalorimeter'. [Active Galactic Nuclei

    Holt, Stephen S.

    1987-01-01

    A novel technique for X-ray spectroscopy has been configured as part of the definition payload of the AXAF Observatory. It is basically a calorimeter which, operating at 0.1 K, senses the total conversion of single photoelectrically absorbed X-rays via the differential temperature rise of the absorber. The technique promises to achieve less than 10 eV FWHM with near-unit efficiency simultaneously over the entire AXAF bandpass. This combination of high resolution and high efficiency allows for the possibility of investigating thermal, fluorescent and absorption X-ray line features in many types of X-ray source, including a large sample of active galactic nuclei.

  12. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    Tombesi, Francesco

    2016-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been dir...

  13. A Polarimetric Method for Measuring Black Hole Masses in Active Galactic Nuclei

    Piotrovich, M Yu; Silant'ev, N A; Natsvlishvili, T M; Buliga, S D

    2015-01-01

    The structure of the broad emission line region (BLR) in active galactic nuclei (AGN) remains unclear. We test in this paper a flattened configuration model for BLR. The virial theorem, by taking into account the disc shape of BLR, allows us to get a direct connection between the mass of a supermassive black hole (SMBH) and the inclination angle of the accretion flow. The inclination angle itself is derived from the spectropolarimetric data on broad emission lines using the theory for the generation of polarized radiation developed by Sobolev and Chandrasekhar. As the result, the new estimates of SMBH masses in AGN with measured polarization of BLR are presented. It is crucial that the polarimetric data allow also to determine the value of the virial coefficient that is essential for determining SMBH masses.

  14. A polarimetric method for measuring black hole masses in Active Galactic Nuclei

    Piotrovich, M. Yu.; Gnedin, Yu. N.; Silant'ev, N. A.; Natsvlishvili, T. M.; Buliga, S. D.

    2015-11-01

    The structure of the broad emission line region (BLR) in active galactic nuclei (AGN) remains unclear. We test in this paper a flattened configuration model for BLR. The virial theorem, by taking into account the disc shape of BLR, allows us to get a direct connection between the mass of a supermassive black hole (SMBH) and the inclination angle of the accretion flow. The inclination angle itself is derived from the spectropolarimetric data on broad emission lines using the theory for the generation of polarized radiation developed by Sobolev and Chandrasekhar. As the result, the new estimates of SMBH masses in AGN with measured polarization of BLR are presented. It is crucial that the polarimetric data allow also to determine the value of the virial coefficient that is essential for determining SMBH masses.

  15. Search for Correlations between HiRes Stereo Events and Active Galactic Nuclei

    Abbasi, R U; Allen, M; Amman, J F; Archbold, G; Belov, K; Belz, J W; BenZvi, S Y; Bergman, D R; Blake, S A; Boyer, J H; Brusova, O A; Burt, G W; Cannon, C; Cao, Z; Deng, W; Fedorova, Y; Findlay, J; Finley, C B; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Hughes, G; Hüntemeyer, P; Ivanov, D; Jones, B F; Jui, C C H; Kim, K; Kirn, M A; Knapp, B C; Loh, E C; Maestas, M M; Manago, N; Mannel, E J; Marek, L J; Martens, K; Matthews, J N; Moore, S A; O'Neill, A; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M D; Sasaki, D Rodriguez N; Schnetzer, S R; Scott, L M; Seman, M; Sinnis, G; Smith, J D; Snow, R; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Stratton, S R; Thomas, J R; Thomas, S B; Thomson, G B; Tupa, D; Wiencke, L R; Zech, A; Zhang, X

    2008-01-01

    We have searched for correlations between the pointing directions of ultrahigh energy cosmic rays observed by the High Resolution Fly's Eye experiment and Active Galactic Nuclei visible from its northern hemisphere location. No correlations, other than random correlations, have been found. We report our results using search parameters prescribed by the Pierre Auger collaboration. Using these parameters, the Auger collaboration concludes that a positive correlation exists for sources visible to their southern hemisphere location. We also describe results using two methods for determining the chance probability of correlations: one in which a hypothesis is formed from scanning one half of the data and tested on the second half, and another which involves a scan over the entire data set. The most significant correlation found occurred with a chance probability of 24%.

  16. A new approach to the variability characterization of active galactic nuclei

    Middei, Riccardo; Antonucci, Marco; Serafinelli, Roberto

    2016-01-01

    The normalized excess variance is a popular method used by many authors to estimate the variability of active galactic nuclei (AGNs), especially in the X-ray band. We show that this estimator is affected by the cosmological time dilation, so that it should be appropriately corrected when applied to AGN samples distributed in wide redshift intervals. We propose a formula to modify this estimator, based on the use of the structure function. To verify the presence of the cosmological effect and the reliability of the proposed correction, we use data extracted from the XMM-Newton Serendipitous Source Catalogue, data release 5 (XMMSSC-DR5), and cross-matched with the Sloan Digital Sky Survey quasar catalogue, of data release 7 and 12.

  17. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VII. BLAZAR JET ACCELERATION

    We discuss acceleration measurements for a large sample of extragalactic radio jets from the Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments (MOJAVE) program, which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of active galactic nuclei (AGNs). Accelerations are measured from the apparent motion of individual jet features or 'components' which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities. Parallel accelerations, representing changes in apparent speed, are generally larger than perpendicular acceleration that represent changes in apparent direction. The trend for larger parallel accelerations indicates that a significant fraction of these changes in apparent speed are due to changes in intrinsic speed of the component rather than changes in direction to the line of sight. We find an overall tendency for components with increasing apparent speed to be closer to the base of their jets than components with decreasing apparent speed. This suggests a link between the observed pattern motions and the underlying flow which, in some cases, may increase in speed close to the base and decrease in speed further out; however, common hydrodynamical processes for propagating shocks may also play a role. About half of the components show 'non-radial' motion, or a misalignment between the component's structural position angle and its velocity direction, and these misalignments generally better align the component motion with the downstream emission. Perpendicular accelerations are closely linked with non-radial motion. When observed together, perpendicular accelerations are usually in the correct direction to have caused the observed misalignment.

  18. Dietary grape seed polyphenols repress neuron and glia activation in trigeminal ganglion and trigeminal nucleus caudalis

    Durham Paul L

    2010-12-01

    Full Text Available Abstract Background Inflammation and pain associated with temporomandibular joint disorder, a chronic disease that affects 15% of the adult population, involves activation of trigeminal ganglion nerves and development of peripheral and central sensitization. Natural products represent an underutilized resource in the pursuit of safe and effective ways to treat chronic inflammatory diseases. The goal of this study was to investigate effects of grape seed extract on neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis in response to persistent temporomandibular joint inflammation. Sprague Dawley rats were pretreated with 200 mg/kg/d MegaNatural-BP grape seed extract for 14 days prior to bilateral injections of complete Freund's adjuvant into the temporomandibular joint capsule. Results In response to grape seed extract, basal expression of mitogen-activated protein kinase phosphatase 1 was elevated in neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis, and expression of the glutamate aspartate transporter was increased in spinal glia. Rats on a normal diet injected with adjuvant exhibited greater basal levels of phosphorylated-p38 in trigeminal ganglia neurons and spinal neurons and microglia. Similarly, immunoreactive levels of OX-42 in microglia and glial fibrillary acidic protein in astrocytes were greatly increased in response to adjuvant. However, adjuvant-stimulated levels of phosphorylated-p38, OX-42, and glial fibrillary acidic protein were significantly repressed in extract treated animals. Furthermore, grape seed extract suppressed basal expression of the neuropeptide calcitonin gene-related peptide in spinal neurons. Conclusions Results from our study provide evidence that grape seed extract may be beneficial as a natural therapeutic option for temporomandibular joint disorders by suppressing development of peripheral and central sensitization.

  19. Stronger activation of SREBP-1a by nucleus-localized HBx

    We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of the nucleus-localized HBx in regulating host lipogenic pathway and HBV replication. - Highlights: • Nuclear HBx is more effective on activating SREBP-1a and FASN transcription. • Nuclear HBx is more effective on enhancing intracellular lipid accumulation. • Nuclear HBx is more effective on enhancing cell proliferation. • Nuclear HBx up-regulates HBV enhancer I/X promoter activity. • Nuclear HBx increases HBV mRNA level in the context of HBV replication

  20. Stronger activation of SREBP-1a by nucleus-localized HBx

    Wu, Qi [VIDO-InterVac, Veterinary Microbiology, University of Saskatchewan, Saskatoon (Canada); Qiao, Ling [VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Yang, Jian [Drug Discovery Group, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Zhou, Yan [VIDO-InterVac, Veterinary Microbiology, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Liu, Qiang, E-mail: qiang.liu@usask.ca [VIDO-InterVac, Veterinary Microbiology, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2015-05-08

    We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of the nucleus-localized HBx in regulating host lipogenic pathway and HBV replication. - Highlights: • Nuclear HBx is more effective on activating SREBP-1a and FASN transcription. • Nuclear HBx is more effective on enhancing intracellular lipid accumulation. • Nuclear HBx is more effective on enhancing cell proliferation. • Nuclear HBx up-regulates HBV enhancer I/X promoter activity. • Nuclear HBx increases HBV mRNA level in the context of HBV replication.

  1. Herschel far-infrared photometry of the swift burst alert telescope active galactic nuclei sample of the local universe. I. PACS observations

    Far-Infrared (FIR) photometry from the Photodetector Array Camera and Spectrometer on the Herschel Space Observatory is presented for 313 nearby, hard X-ray selected galaxies from the 58 month Swift Burst Alert Telescope (BAT) Active Galactic Nuclei catalog. The present data do not distinguish between the FIR luminosity distributions at 70 and 160 μm for Seyfert 1 and Seyfert 2 galaxies. This result suggests that if the FIR emission is from the nuclear obscuring material surrounding the accretion disk, then it emits isotropically, independent of orientation. Alternatively, a significant fraction of the 70 and 160 μm luminosity could be from star formation, independent of active galactic nucleus (AGN) type. Using a non-parametric test for partial correlation with censored data, we find a statistically significant correlation between the AGN intrinsic power (in the 14-195 keV band) and the FIR emission at 70 and 160 μm for Seyfert 1 galaxies. We find no correlation between the 14-195 keV and FIR luminosities in Seyfert 2 galaxies. The observed correlations suggest two possible scenarios: (1) if we assume that the FIR luminosity is a good tracer of star formation, then there is a connection between star formation and the AGN at sub-kiloparsec scales, or (2) dust heated by the AGN has a statistically significant contribution to the FIR emission. Using a Spearman rank-order analysis, the 14-195 keV luminosities for the Seyfert 1 and 2 galaxies are weakly statistically correlated with the F 70/F 160 ratios.

  2. Activity-dependent regulation of calcium and ribosomes in the chick cochlear nucleus.

    Call, C L; Hyson, R L

    2016-03-01

    Cochlea removal results in the death of 20-30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). Two potentially cytotoxic events, a dramatic rise in intracellular calcium concentration ([Ca(2+)]i) and a decline in the integrity of ribosomes are observed within 1h of deafferentation. Glutamatergic input from the auditory nerve has been shown to preserve NM neuron health by activating metabotropic glutamate receptors (mGluRs), maintaining both normal [Ca(2+)]i and ribosomal integrity. One interpretation of these results is that a common mGluR-activated signaling cascade is required for the maintenance of both [Ca(2+)]i and ribosomal integrity. This could happen if both responses are influenced directly by a common messenger, or if the loss of mGluR activation causes changes in one component that secondarily causes changes in the other. The present studies tested this common-mediator hypothesis in slice preparations by examining activity-dependent regulation of [Ca(2+)]i and ribosomes in the same tissue after selectively blocking group I mGluRs (1-Aminoindan-1,5-dicarboxylic acid (AIDA)) or group II mGluRs (LY 341495) during unilateral auditory nerve stimulation. Changes in [Ca(2+)]i of NM neurons were measured using fura-2 ratiometric calcium imaging and the tissue was subsequently processed for Y10B immunoreactivity (Y10B-ir), an antibody that recognizes a ribosomal epitope. The group I mGluR antagonist blocked the activity-dependent regulation of both [Ca(2+)]i and Y10B-ir, but the group II antagonist blocked only the activity-dependent regulation of Y10B-ir. That is, even when group II receptors were blocked, stimulation continued to maintain low [Ca(2+)]i, but it did not maintain Y10B-ir. These results suggest a dissociation in how calcium and ribosomes are regulated in NM neurons and that ribosomes can be regulated through a mechanism that is independent of calcium regulation. PMID:26739326

  3. Rosetta/OSIRIS: Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    Sierks, Holger

    2015-08-01

    Introduction: The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for broad-band nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations.OSIRIS images the nucleus and the coma of comet 67P/C-G from the arrival throughout early mapping phase, PHILAE landing, and escort phase with close fly-by beginning of the year 2015.The team paper presents the surface morphology and activity of the nucleus as seen in gas, dust, and local jets and the larger scale coma studied by OSIRIS.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.Additional Information: The OSIRIS team is H. Sierks, C. Barbieri, P. Lamy, R. Rodrigo, D. Koschny, H. Rickman, J. Agarwal, M. A'Hearn, I. Bertini, F. Angrilli, M. A. Barucci, J. L. Bertaux, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, S. Fornasier, M. Fulle, O. Groussin, C. Güttler, P. Gutierrez, S. Hviid, W. Ip, L. Jorda, H. U. Keller, J. Knollenberg, R. Kramm, E. Kührt, M. Küppers, L. Lara, M. Lazzarin, J. J. Lopez, S. Lowry, S. Marchi, F. Marzari, H. Michalik, S. Mottola, G. Naletto, N. Oklay, L

  4. Ionized Absorbers in Active Galactic Nuclei and Very Steap Soft X-Ray Quasars

    Fiore, Fabrizio; White, Nicholas (Technical Monitor)

    2000-01-01

    Steep soft X-ray (0.1-2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe II emission, large and fast X-ray variability, and a rather steep 2-10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026. Both objects show similar variations (factor of approximately 2 in 10 ks), despite a factor of approximately 10 difference in the 0.5-10 keV luminosity (7.3 x 10(exp 43) erg/s for PG 1244 + 026 and 6.4 x 10(exp 44) erg/s for NAB 0205 + 024, assuming isotropic emission, H(sub 0) = 50.0 and q(sub 0) = 0.0). The X-ray continuum of the two quasars flattens by 0.5-1 going from the 0.1-2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei. PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centered at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3-0.6 c).

  5. Optical Counterparts of Undetermined Type -Ray Active Galactic Nuclei with Blazar-Like Spectral Energy Distributions

    Giovanni La Mura; Graziano Chiaro; Stefano Ciroi; Piero Rafanelli; David Salvetti; Marco Berton; Valentina Cracco; Fermi-LAT collaboration

    2015-12-01

    During its first four years of scientific observations, the Fermi Large Area Telescope (Fermi-LAT) detected 3033 -ray sources above a 4 significance level. Although most of the extra-galactic sources are active galactic nuclei (AGN) of the blazar class, other families of AGNs are observed too, while a still high fraction of detections (∼30%) remains with uncertain association or classification. According to the currently accepted interpretation, the AGN -ray emission arises from inverse Compton (IC) scattering of low energy photons by relativistic particles confined in a jet, which, in the case of blazars, is oriented very close to our line-of-sight. Taking advantage of data from radio and X-ray wavelengths, which we expect to be produced together with -rays, providing a much better source localization potential, we focused our attention on a sample of -ray Blazar Candidates of Undetermined type (BCUs), starting a campaign of optical spectroscopic observations. The main aims of our investigation include a census of the AGN families that contribute to -ray emission and a study of their redshift distribution, with the subsequent implications on the intrinsic source power. We furthermore analyze which -ray properties can better constrain the nature of the source, thus helping in the study of objects not yet associated with a reliable low frequency counterpart. Here we report on the instruments and techniques used to identify the optical counterparts of -ray sources, we give an overview on the status of our work, and we discuss the implications of a large scale study of -ray emitting AGNs.

  6. UNDERSTANDING AGN-HOST CONNECTION IN PARTIALLY OBSCURED ACTIVE GALACTIC NUCLEI. III. PROPERTIES OF ROSAT-SELECTED SDSS ACTIVE GALACTIC NUCLEI

    As the third paper of our series of studies that aim at examining the AGN-host co-evolution by using partially obscured active galactic nuclei (AGNs), we extend the broad-line composite galaxies (composite AGNs) into ROSAT-selected Seyfert 1.8/1.9 galaxies based upon the ROSAT All Sky Survey/Sloan Digital Sky Survey Data Release 5 (SDSS-DR5) catalog given by Anderson et al. The SDSS spectra of a total of 92 objects are analyzed by the same method used in our previous studies, after requiring the signal-to-noise ratio in the SDSS r' band to be larger than 20. Combining the ROSAT-selected Seyfert galaxies with the composite AGNs reinforces the tight correlation between the line ratio [O I]/Hα versus Dn (4000), and establishes a new tight correlation between [S II]/Hα versus Dn (4000). Both correlations suggest that the two line ratios are plausible age indicators of the circumnuclear stellar population for typical Type I AGNs in which the stellar populations are difficult to derive from their optical spectra. The ROSAT-selected Seyfert galaxies show that the two correlations depend on the soft X-ray spectral slope α X, which is roughly estimated from the hardness ratios by requiring that the X-ray count rates within 0.1-2.4 keV be larger than 0.02 counts s-1. However, we fail to establish a relationship between α X and Dn (4000), which is likely caused by the relatively large uncertainties of both the parameters (especially for α X because of the AGN intrinsic obscuration). The previously established L/L Edd-Dn (4000) evolutionary sequence is reinforced again by the extension to the ROSAT-selected Seyfert galaxies. These X-ray-selected Seyfert galaxies are, however, biased against the two ends of the sequence, which implies that the X-ray Seyfert galaxies present a population at a middle evolutionary stage.

  7. Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats.

    Kiwaki, Kohji; Kotz, Catherine M; Wang, Chuanfeng; Lanningham-Foster, Lorraine; Levine, James A

    2004-04-01

    In humans, nonexercise activity thermogenesis (NEAT) increases with positive energy balance. The mediator of the interaction between positive energy balance and physical activity is unknown. In this study, we address the hypothesis that orexin A acts in the hypothalamic paraventricular nucleus (PVN) to increase nonfeeding-associated physical activity. PVN-cannulated rats were injected with either orexin A or vehicle during the light and dark cycle. Spontaneous physical activity (SPA) was measured using arrays of infrared activity sensors and night vision videotaped recording (VTR). O(2) consumption and CO(2) production were measured by indirect calorimetry. Feeding behavior was assessed by VTR. Regardless of the time point of injection, orexin A (1 nmol) was associated with dramatic increases in SPA for 2 h after injection (orexin A: 6.27 +/- 1.95 x 10(3) beam break count, n = 24; vehicle: 1.85 +/- 1.13 x 10(3), n = 38). This increase in SPA was accompanied by compatible increase in O(2) consumption. Duration of feeding was increased only when orexin A was injected in the early light phase and accounted for only 3.5 +/- 2.5% of the increased physical activity. In a dose-response experiment, increases in SPA were correlated with dose of orexin A linearly up to 2 nmol. PVN injections of orexin receptor antagonist SB-334867 were associated with decreases in SPA and attenuated the effects of PVN-injected orexin A. Thus orexin A can act in PVN to increase nonfeeding-associated physical activity, suggesting that this neuropeptide might be a mediator of NEAT. PMID:14656716

  8. Study of reactions induced by the halo nucleus 11Li with the active target MAYA

    Active targets are perfect tools for the study of nuclear reactions induced by very low intensity radioactive ion beams. They also enable the simultaneous study of direct and compound nuclear reactions. The active target MAYA, built at GANIL, has been used to study the reactions induced by a 4.3*A MeV 11Li beam at the ISAC2 accelerator TRIUMF (Canada). The angular distributions for the elastic scattering and the one and two neutron transfer reaction have been reconstructed. The elastic scattering angular distribution indicates a strong enhancement of the flux absorption with respect to the neighbouring nuclei. From a coupled channel analysis of the two neutron transfer reaction for different three body models, the information on the structure of the halo of the Borromean nucleus 11Li have been extracted. Meanwhile, the energy dependence of the elastic scattering reaction has been studied, using the active target MAYA as a thick target. The resulting spectrum shows a resonance around 3 MeV centre of mass. This resonance could be an isobaric analog state of 12Li, observed in 12Be. R matrix calculations have been performed in order to extract the parameters (spin and parity) of this state. (author)

  9. Activation of Dopamine Receptors in the Nucleus Accumbens Promotes Sucrose-Reinforced Cued Approach Behavior

    du Hoffmann, Johann; Nicola, Saleem M.

    2016-01-01

    Dopamine receptor activation in the nucleus accumbens (NAc) promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety. PMID:27471453

  10. Nucleus accumbens core acetylcholine is preferentially activated during acquisition of drug- vs food-reinforced behavior.

    Crespo, Jose A; Stöckl, Petra; Zorn, Katja; Saria, Alois; Zernig, Gerald

    2008-12-01

    Acquisition of drug-reinforced behavior is accompanied by a systematic increase of release of the neurotransmitter acetylcholine (ACh) rather than dopamine, the expected prime reward neurotransmitter candidate, in the nucleus accumbens core (AcbC), with activation of both muscarinic and nicotinic ACh receptors in the AcbC by ACh volume transmission being necessary for the drug conditioning. The present findings suggest that the AcbC ACh system is preferentially activated by drug reinforcers, because (1) acquisition of food-reinforced behavior was not paralleled by activation of ACh release in the AcbC whereas acquisition of morphine-reinforced behavior, like that of cocaine or remifentanil (tested previously), was, and because (2) local intra-AcbC administration of muscarinic or nicotinic ACh receptor antagonists (atropine or mecamylamine, respectively) did not block the acquisition of food-reinforced behavior whereas acquisition of drug-reinforced behavior had been blocked. Interestingly, the speed with which a drug of abuse distributed into the AcbC and was eliminated from the AcbC determined the size of the AcbC ACh signal, with the temporally more sharply delineated drug stimulus producing a more pronounced AcbC ACh signal. The present findings suggest that muscarinic and nicotinic ACh receptors in the AcbC are preferentially involved during reward conditioning for drugs of abuse vs sweetened condensed milk as a food reinforcer. PMID:18418362

  11. 17β-estradiol attenuates injury-induced microglia activation in the oculomotor nucleus.

    Gyenes, A; Hoyk, Z; Csakvari, E; Siklos, L; Parducz, A

    2010-12-15

    Recent studies provide increasing data indicating the prominent role of estrogens in protecting the nervous system against the noxious consequences of nerve injury. It is also clear that in the process of nerve injury and recovery not only the neurons, but the glial cells are also involved and they are important components of the protective mechanisms. In the present article the effect of 17β-estradiol on injury-induced microglia activation was studied in an animal model. Peripheral axotomy of the oculomotor neurons was achieved by the removal of the right eyeball including the extraocular muscles of ovariectomized adult mice. The time course and the extent of microglia activation was followed by the unbiased morphometric analysis of CD11b immunoreactive structures within the oculomotor nucleus. The first sign of microglia activation appeared after 24 h following injury, the maximal effect was found on the fourth day. In ovariectomized females hormone treatment (daily injection of 17β-estradiol, 5 μg/100 g b.w.) decreased significantly the microglia reaction at postoperative day 4. Our results show that microglia response to nerve injury is affected by estradiol, that is these cells may mediate some of the hormonal effects and may contribute to protective mechanisms resulting in the structural and functional recovery of the nervous system. PMID:20870014

  12. The role of galactic cold gas in low-level supermassive black hole activity

    Alfvin, Erik D; Haynes, Martha P; Gallo, Elena; Giovanelli, Riccardo; Koopmann, Rebecca A; Hodges-Kluck, Edmund; Cannon, John M

    2016-01-01

    The nature of the relationship between low-level supermassive black hole (SMBH) activity and galactic cold gas, if any, is currently unclear. Here, we test whether central black holes may feed at higher rates in gas-rich galaxies, probing SMBH activity well below the active regime down to Eddington ratios of ~1e-7. We use a combination of radio data from the ALFALFA survey and from the literature, along with archival X-ray flux measurements from the Chandra X-ray observatory, to investigate this potential relationship. We construct a sample of 129 late-type galaxies, with MB<-18 out to 50 Mpc, that have both HI masses and sensitive X-ray coverage. Of these, 75 host a nuclear X-ray source, a 58% detection fraction. There is a highly significant correlation between nuclear X-ray luminosity LX and galaxy stellar mass Mstar with a slope of 1.7+/-0.3, and a tentative correlation (significant at the 2.8 sigma level) between LX and HI gas mass MHI. However, a joint fit to LX as a function of both Mstar and MHI fi...

  13. Unveiling the nucleus of NGC 7172

    Smajić, S.; Fischer, S.; Zuther, J.; Eckart, A.

    2012-08-01

    Aims: We present the results of near-infrared (NIR) H + K European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 7172. We investigate the central 800 pc, concentrating on excitation conditions, morphology, and stellar content. NGC 7172 was selected from a sample of the ten nearest Seyfert 2 galaxies from the Veron-Cetty & Veron catalogue. All objects were chosen as test cases for adaptive optics (AO) assisted observations that allow a detailed study (at high spatial and spectral resolution) of the nuclear and host environments. NGC 7172 has a prominent dustlane crossing the central galaxy region from east to west, which makes it an ideal candidate to investigate the effect of obscuration by strong galactic extinction on (active) galaxies and their classification. Methods: The NIR is less influenced by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy and provides us with the opportunity to analyze several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 4″ × 4″ field of view (FOV). Results: We present emission and absorption line measurements in the central 800 pc of NGC 7172. The detection of [Si vi] and broad Paα and Brγ components are clear signs of an accreting super-massive black hole hiding behind the prominent dustlane at visible wavelengths. Hot temperatures of about 1300 K are indicative of a dusty torus in the nuclear region. Narrow components of Paα and Brγ enable us to make an extinction measurement. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation of these lines is caused by an active galactic nucleus. The central region of the galactic disk is predominantly inhabited by gas, dust, and an old K-M type giant stellar population. The gaseous, molecular, and

  14. EXPLORING THE DISK-JET CONNECTION FROM THE PROPERTIES OF NARROW-LINE REGIONS IN POWERFUL YOUNG RADIO-LOUD ACTIVE GALACTIC NUCLEI

    We investigate the optical emission-line flux ratios of narrow-line regions in order to determine whether the formation of active galactic nucleus (AGN) jets requires specific accretion conditions. We find that bright compact radio galaxies, which are powerful radio galaxies in the early stage of the jet activity, exhibit systematically larger flux ratios of [O I]λ6300/[O III]λ5007 and smaller flux ratios of [O III]λ5007/[O III]λ4363 than radio-quiet (RQ) Seyfert 2 galaxies. Comparing the observed line ratios with photoionization models, it is found that the difference in the flux ratio of low- to high-ionization lines (e.g., [O I]λ6300/[O III]λ5007) can be well understood by the difference in the spectral energy distribution (SED) of ionizing sources. Powerful young radio-loud (YRL) AGNs favor SED without a strong big blue bump (BBB), i.e., a radiatively inefficient accretion flow (RIAF), while RQ AGNs are consistent with the models adopting SED with a strong BBB, i.e., a geometrically thin, optically thick disk. These findings imply that the formation of powerful AGN jets requires the accretion disk with harder ionizing SED (i.e., an RIAF). We discuss the obscuring structure of YRL AGNs as a plausible origin of the difference in flux ratios of [O III]λ5007/[O III]λ4363.

  15. Spectral Characteristics of Radiation from the Nucleus of the Seyfert Galaxy NGC 1275 After an Epoch of its Maximum Activity

    Bikmaev, I. F.; Sharipova, L. M.; Galeev, A. I.; Akhmetkhanova, A. É.

    2016-03-01

    The spectral characteristics of radiation from the nucleus of the Seyfert galaxy NGC 1275 are studied on a long time scale. Changes in the profiles of some emission lines and changes in the relative intensities of hydrogen and forbidden lines and their equivalent widths (EWλ ) are demonstrated on a time scale of decades. These studies employed spectral data obtained with the 1.5-m Russian-Turkish telescope (RTT-150) during January 2012 and drew on spectral data published earlier in the literature. These results made it possible to trace the state of the nucleus of NGC 1275 after an activity maximum that occurred during the 1960's.

  16. Increased expression of stefin B in the nucleus of T98G astrocytoma cells delays caspase activation

    Tao eSun

    2012-09-01

    Full Text Available Stefin B (cystatin B is an endogenous inhibitor of cysteine proteinases localized in the nucleus and the cytosol. Loss-of-function mutations in the stefin B gene (CSTB gene were reported in patients with Unverricht-Lundborg disease (EPM1. Our previous results showed that thymocytes isolated from stefin B-deficient mice are more sensitive to apoptosis induced by the protein kinase C inhibitor staurosporin (STS than the wild-type control cells. We have also shown that the increased expression of stefin B in the nucleus of T98G astrocytoma cells delayed cell cycle progression through the S phase. In the present study we examined if the nuclear or cytosolic functions of stefin B are responsible for the accelerated induction of apoptosis observed in the cells from stefin B-deficient mice. We have shown that the overexpression of stefin B in the nucleus, but not in the cytosol of astrocytoma T98G cells, delayed caspase-3 and-7 activation. Pretreatment of cells with the pan-caspase inhibitor z-Val-Ala-Asp(OMe-fluoromethylketone completely inhibited caspase activation, while treatment with the inhibitor of calpains- and papain-like cathepsins (2S,3S-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation. We concluded that the delay of caspase activation in T98G cells overexpressing stefin B in the nucleus is independent of cathepsin inhibition.

  17. Star formation near the galactic center

    The gross radio and far-IR properties of the interstellar medium within approx. 150 pc of the galactic nucleus can be accounted for in terms of ionization and heating by massive Population I stars in much the same way as in the galactic disk. However, except for the core of Sgr B2, which may be relatively far from the galactic nucleus, and except for a few luminous evolved supergiants seen near the galactic nucleus, direct evidence for the formation or the presence of O and B stars is lacking. A few H2O masers might attest to sites of star formation, but their frequency of occurrence is far less than one would deduce by analogy with molecular clouds in the galactic disk. (Auth.)

  18. Activation of 5-hyrdoxytryptamine 7 receptors within the rat nucleus tractus solitarii modulates synaptic properties.

    Matott, Michael P; Kline, David D

    2016-03-15

    Serotonin (5-HT) is a potent neuromodulator with multiple receptor types within the cardiorespiratory system, including the nucleus tractus solitarii (nTS) - the central termination site of visceral afferent fibers. The 5-HT7 receptor facilitates cardiorespiratory reflexes through its action in the brainstem and likely in the nTS. However, the mechanism and site of action for these effects is not clear. In this study, we examined the expression and function of 5-HT7 receptors in the nTS of Sprague-Dawley rats. 5-HT7 receptor mRNA and protein were identified across the rostrocaudal extent of the nTS. To determine 5-HT7 receptor function, we examined nTS synaptic properties following 5-HT7 receptor activation in monosynaptic nTS neurons in the in vitro brainstem slice preparation. Application of 5-HT7 receptor agonists altered tractus solitarii evoked and spontaneous excitatory postsynaptic currents which were attenuated with a selective 5-HT7 receptor antagonist. 5-HT7 receptor-mediated changes in excitatory postsynaptic currents were also altered by block of 5-HT1A and GABAA receptors. Interestingly, 5-HT7 receptor activation also reduced the amplitude but not frequency of GABAA-mediated inhibitory currents. Together these results indicate a complex role for 5-HT7 receptors in the nTS that mediate its diverse effects on cardiorespiratory parameters. PMID:26779891

  19. The Relationship of Active Galactic Nuclei & Quasars With Their Local Galaxy Environment

    Strand, Natalie Erin

    2009-01-01

    We explore how the local environment is related to properties of active galactic nuclei (AGNs) of various luminosities. Recent simulations and observations are converging on the view that the extreme luminosity of quasars, the brightest of AGNs, is fueled in major mergers of gas-rich galaxies. In such a picture, quasars, the highest luminosity AGNs, are expected to be located in regions with a higher density of galaxies on small scales where mergers are more likely to take place. However, in this picture, the activity observed in low-luminosity AGNs is due to secular processes that are less dependent on the local galaxy density. To test this hypothesis, we compare the local photometric galaxy density on kiloparsec scales around spectroscopic type I and type II quasars to the local density around lower-luminosity spectroscopic type I and type II AGNs. To minimize projection effects and evolution in the photometric galaxy sample we use to characterize AGN environments, we place our random control sample at the ...

  20. The Evolution of Active Galactic Nuclei in Clusters of Galaxies from the Dark Energy Survey

    Bufanda, E; Jeltema, T E; Rykoff, E S; Rozo, E; Martini, P; Abbott, T M C; Abdalla, F B; Allam, S; Banerji, M; Benoit-Levy, A; Bertin, E; Brooks, D; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Cunha, C E; da Costa, L N; Desai, S; Diehl, H T; Dietrich, J P; Evrard, A E; Neto, A Fausti; Flaugher, B; Frieman, J; Gerdes, D W; Goldstein, D A; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Kuehn, K; Kuropatkin, N; Lima, M; Maia, M A G; Marshall, J L; Melchior, P; Miquel, R; Mohr, J J; Ogando, R; Plazas, A A; Romer, A K; Rooney, P; Sanchez, E; Santiago, B; Scarpine, V; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Tarle, G; Thomas, D; Tucker, D L; Walker, A R

    2016-01-01

    The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. In this paper, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10^43 ergs s^-1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 and 2 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship betwe...

  1. Active galactic nuclei at z ~ 1.5: I. Spectral energy distribution and accretion discs

    Capellupo, Daniel M; Lira, Paulina; Trakhtenbrot, Benny; Mejía-Restrepo, Julían

    2014-01-01

    The physics of active super massive black holes (BHs) is governed by their mass (M_BH), spin (a*) and accretion rate ($\\dot{M}$). This work is the first in a series of papers with the aim of testing how these parameters determine the observable attributes of active galactic nuclei (AGN). We have selected a sample in a narrow redshift range, centered on z~1.55, that covers a wide range in M_BH and $\\dot{M}$, and are observing them with X-shooter, covering rest wavelengths ~1200-9800 \\AA. The current work covers 30 such objects and focuses on the origin of the AGN spectral energy distribution (SED). After estimating M_BH and $\\dot{M}$ based on each observed SED, we use thin AD models and a Bayesian analysis to fit the observed SEDs in our sample. We are able to fit 22/30 of the SEDs. Out of the remaining 8 SEDs, 3 can be fit by the thin AD model by correcting the observed SED for reddening within the host galaxy and 4 can be fit by adding a disc wind to the model. In four of these 8 sources, Milky Way-type exti...

  2. DYNAMO ACTIVITIES DRIVEN BY MAGNETOROTATIONAL INSTABILITY AND THE PARKER INSTABILITY IN GALACTIC GASEOUS DISKS

    Machida, Mami [Department of Physics, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Nakamura, Kenji E. [Department of Mechanical Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Kudoh, Takahiro [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Akahori, Takuya [Korea Astronomy and Space Science Institute, Daedeokdaero 776, Yuseong-Gu, Daejeon 305-348 (Korea, Republic of); Sofue, Yoshiaki [Institute of Astronomy, University of Tokyo, Mitaka 181-8588, Tokyo (Japan); Matsumoto, Ryoji, E-mail: mami@phys.kyushu-u.ac.jp [Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2013-02-10

    We carried out global three-dimensional magnetohydrodynamic simulations of dynamo activities in galactic gaseous disks without assuming equatorial symmetry. Numerical results indicate the growth of azimuthal magnetic fields non-symmetric to the equatorial plane. As the magnetorotational instability (MRI) grows, the mean strength of magnetic fields is amplified until the magnetic pressure becomes as large as 10% of the gas pressure. When the local plasma {beta} (=p {sub gas}/p {sub mag}) becomes less than 5 near the disk surface, magnetic flux escapes from the disk by the Parker instability within one rotation period of the disk. The buoyant escape of coherent magnetic fields drives dynamo activities by generating disk magnetic fields with opposite polarity to satisfy the magnetic flux conservation. The flotation of the azimuthal magnetic flux from the disk and the subsequent amplification of disk magnetic field by the MRI drive quasi-periodic reversal of azimuthal magnetic fields on a timescale of 10 rotation periods. Since the rotation speed decreases with radius, the interval between the reversal of azimuthal magnetic fields increases with radius. The rotation measure computed from the numerical results shows symmetry corresponding to a dipole field.

  3. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  4. Active Galactic Nuclei with Double-peaked Narrow Lines: Are They Dual AGNs?

    Wang, J -M; Hu, C; Mao, W -M; Zhang, S; Bian, W -H

    2009-01-01

    Double-peaked [O III]5007, profiles in active galactic nuclei (AGNs) may provide evidence for the existence of dual AGNs, but a good diagnostic for selecting them is currently lacking. Starting from $\\sim$ 7000 active galaxies in SDSS DR7, we assemble a sample of 87 type 2 AGNs with double-peaked [O III]5007, profiles. The nuclear obscuration in the type 2 AGNs allows us to determine redshifts of host galaxies through stellar absorption lines. We typically find that one peak is redshifted and another is blueshifted relative to the host galaxy. We find a strong correlation between the ratios of the shifts and the double peak fluxes. The correlation can be naturally explained by the Keplerian relation predicted by models of co-rotating dual AGNs. The current sample statistically favors that most of the [O III] double-peaked sources are dual AGNs and disfavors other explanations, such as rotating disk and outflows. These dual AGNs have a separation distance at $\\sim 1$ kpc scale, showing an intermediate phase of...

  5. MID- AND FAR-INFRARED PROPERTIES OF A COMPLETE SAMPLE OF LOCAL ACTIVE GALACTIC NUCLEI

    Ichikawa, Kohei; Ueda, Yoshihiro [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake cho, Kyoto 606-8502 (Japan); Terashima, Yuichi [Department of Physics, Faculty of Science, Ehime University, Matsuyama 790-8577 (Japan); Oyabu, Shinki [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Gandhi, Poshak; Nakagawa, Takao [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Matsuta, Keiko, E-mail: ichikawa@kusastro.kyoto-u.ac.jp [Department of Space and Astronautical Science, Graduate University for Advanced Studies, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-07-20

    We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with Infrared Astronomical Satellite and Wide-field Infrared Survey Explorer. Out of 135 non-blazer AGNs in the Swift/BAT nine-month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 {mu}m band. We find good correlation between their hard X-ray and MIR luminosities over three orders of magnitude (42 < log {lambda}L{sub {lambda}}(9, 18 {mu}m) < 45), which is tighter than that with the FIR luminosities at 90 {mu}m. This suggests that thermal emission from hot dusts irradiated by the AGN emission dominate the MIR fluxes. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori rather than homogeneous ones. We find excess signals around 9 {mu}m in the averaged infrared spectral energy distribution from heavy obscured 'new type' AGNs with small scattering fractions in the X-ray spectra. This could be attributed to the polycyclic aromatic hydrocarbon emission feature, suggesting that their host galaxies have strong starburst activities.

  6. The Near-Infrared Coronal Line Spectrum of 54 Nearby Active Galactic Nuclei

    Rodríguez-Ardila, A; Portilla, J G; Tejeiro, J M

    2011-01-01

    (Abridge) The relationship between coronal line (CL) emission and nuclear activity in active galactic nuclei (AGNs) is analyzed, for the first time, based on NIR spectra. The 8 CLs studied, of Si, S, Fe, Al and Ca elements and corresponding to ionization potentials (IP) in the range 125-450 eV, are detected in 67% (36 AGNs) of the sample. The four most frequent CLs - [SiVI] 19630\\AA, [SVIII] 9913\\AA, [SIX] 12520\\AA\\ and [SiX] 14320\\AA, - display a narrow range in luminosity, with most lines located in the interval logL 39-40 erg/s. We found that the non-detection is largely associated with either a lost of spatial resolution or increasing object distance. Yet, there are AGNs where the lack of CLs may be genuine and reflect an AGN ionising continuum lacking photons below a few keV. The FWHM of the lines profiles increases with increasing IP up to energies around 300 eV, where a maximum in the FWHM is reached. For higher IP lines, the FWHM remains nearly constant or decreases with increasing IP. We ascribe this...

  7. Far-infrared and accretion luminosities of the present-day active galactic nuclei

    Matsuoka, Kenta

    2015-01-01

    We investigate the relation between star formation (SF) and black hole accretion luminosities, using a sample of 492 type-2 active galactic nuclei (AGNs) at z < 0.22, which are detected in the far-infrared (FIR) surveys with AKARI and Herschel. We adopt FIR luminosities at 90 and 100 um as SF luminosities, assuming the proposed linear proportionality of star formation rate with FIR luminosities. By estimating AGN luminosities from [OIII]5007 and [OI]6300 emission lines, we find a positive linear trend between FIR and AGN luminosities over a wide dynamical range. This result appears to be inconsistent with the recent reports that low-luminosity AGNs show essentially no correlation between FIR and X-ray luminosities, while the discrepancy is likely due to the Malmquist and sample selection biases. By analyzing the spectral energy distribution, we find that pure-AGN candidates, of which FIR radiation is thought to be AGN-dominated, show significantly low-SF activities. These AGNs hosted by low-SF galaxies are...

  8. p38 MAP Kinase Links CAR Activation and Inactivation in the Nucleus via Phosphorylation at Threonine 38

    Hori, Takeshi; Moore, Rick

    2016-01-01

    Nuclear receptor constitutive androstane receptor (CAR, NR1I3), which regulates hepatic drug and energy metabolisms as well as cell growth and death, is sequestered in the cytoplasm as its inactive form phosphorylated at threonine 38. CAR activators elicit dephosphorylation, and nonphosphorylated CAR translocates into the nucleus to activate its target genes. CAR was previously found to require p38 mitogen-activated protein kinase (MAPK) to transactivate the cytochrome P450 2B (CYP2B) genes. Here we have demonstrated that p38 MAPK forms a complex with CAR, enables it to bind to the response sequence, phenobarbital-responsive enhancer module (PBREM), within the CYP2B promoter, and thus recruits RNA polymerase II to activate transcription. Subsequently, p38 MAPK elicited rephosphorylation of threonine 38 to inactivate CAR and exclude it from the nucleus. Thus, nuclear p38 MAPK exerted dual regulation by sequentially activating and inactivating CAR-mediated transcription through phosphorylation of threonine 38. PMID:27074912

  9. p38 MAP Kinase Links CAR Activation and Inactivation in the Nucleus via Phosphorylation at Threonine 38.

    Hori, Takeshi; Moore, Rick; Negishi, Masahiko

    2016-06-01

    Nuclear receptor constitutive androstane receptor (CAR, NR1I3), which regulates hepatic drug and energy metabolisms as well as cell growth and death, is sequestered in the cytoplasm as its inactive form phosphorylated at threonine 38. CAR activators elicit dephosphorylation, and nonphosphorylated CAR translocates into the nucleus to activate its target genes. CAR was previously found to require p38 mitogen-activated protein kinase (MAPK) to transactivate the cytochrome P450 2B (CYP2B) genes. Here we have demonstrated that p38 MAPK forms a complex with CAR, enables it to bind to the response sequence, phenobarbital-responsive enhancer module (PBREM), within the CYP2B promoter, and thus recruits RNA polymerase II to activate transcription. Subsequently, p38 MAPK elicited rephosphorylation of threonine 38 to inactivate CAR and exclude it from the nucleus. Thus, nuclear p38 MAPK exerted dual regulation by sequentially activating and inactivating CAR-mediated transcription through phosphorylation of threonine 38. PMID:27074912

  10. Endogenous Opiates in the Nucleus Tractus Solitarius Mediate Electroacupuncture-Induced Sleep Activities in Rats

    Chiung-Hsiang Cheng

    2011-01-01

    Full Text Available Electroacupuncture (EA possesses various therapeutic effects, including alleviation of pain, reduction of inflammation and improvement of sleep disturbance. The mechanisms of EA on sleep improvement, however, remain to be determined. It has been stated in ancient Chinese literature that the Anmian (EX17 acupoint is one of the trigger points that alleviates insomnia. We previously demonstrated that EA stimulation of Anmian acupoints in rats during the dark period enhances non-rapid eye movement (NREM sleep, which involves the induction of cholinergic activity in the nucleus tractus solitarius (NTS. In addition to cholinergic activation of the NTS, activation of the endogenous opioidergic system may also be a mechanism by which acupuncture affects sleep. Therefore, this study was designed to investigate the involvement of the NTS opioidergic system in EA-induced alterations in sleep. Our present results indicate that EA of Anmian acupoints increased NREM sleep, but not rapid eye movement sleep, during the dark period in rats. This enhancement in NREM sleep was dose-dependently blocked by microinjection of opioid receptor antagonist, naloxone, and the μ-opioid receptor antagonist, naloxonazine, into the NTS; administrations of δ-receptor antagonist, natrindole, and the κ-receptor antagonist, nor-binaltrophimine, however, did not affect EA-induced alterations in sleep. Furthermore, β-endorphin was significantly increased in both the brainstem and hippocampus after the EA stimuli, an effect blocked by administration of the muscarinic antagonist scopolamine into the NTS. Our findings suggest that mechanisms of EA-induced NREM sleep enhancement may be mediated, in part, by cholinergic activation, stimulation of the opiodergic neurons to increase the concentrations of β-endorphin and the involvement of the μ-opioid receptors.

  11. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation.

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations-similar fluctuation structure at different time scales-that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)-a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)-the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the SCN. The

  12. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M.; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations—similar fluctuation structure at different time scales—that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)—a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)—the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the

  13. Fueling active galactic nuclei. II. Spatially resolved molecular inflows and outflows

    Davies, R. I.; Erwin, P.; Burtscher, L.; Lin, M.; Orban de Xivry, G.; Rosario, D. J.; Schnorr-Müller, A. [Max-Planck-Institute für Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Maciejewski, W. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park, 146 Brownlow Hill, L3 5RF (United Kingdom); Hicks, E. K. S. [Astronomy Department, University of Alaska, Anchorage, Alaska 99508 (United States); Emsellem, E. [European Southern Observatory, Karl-Schwarzschild Str. 1, D-85748 Garching (Germany); Dumas, G. [Institut de Radio Astronomie Millimétrique (IRAM), 300 Rue de la Piscine, Domaine Universitaire, F-38406 Saint Martin d' Heres (France); Malkan, M. A. [Astronomy Division, University of California, Los Angeles, CA 90095-1562 (United States); Müller-Sánchez, F. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Tran, A. [Department of Astronomy, University of Washington Seattle, WA 98195 (United States)

    2014-09-10

    We analyze the two-dimensional distribution and kinematics of the stars as well as molecular and ionized gas in the central few hundred parsecs of five active and five matched inactive galaxies. The equivalent widths of the Brγ line indicate that there is no ongoing star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0 S(1) H{sub 2} kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H{sub 2} kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three active galactic nuclei (AGNs), and hydrodynamical models indicate it can be driven by a large-scale bar. In three of the five AGNs, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk, which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall back onto the disk, and with moderate outflow rates, they will have only a local impact on the host galaxy. H{sub 2} was detected in two inactive galaxies. These exhibit chaotic circumnuclear dust morphologies and have molecular structures that are counter-rotating with respect to the main gas component, which could lead to gas inflow in the near future. In our sample, all four galaxies with chaotic dust morphology in the circumnuclear region exist in moderately dense groups with 10-15 members where accretion of stripped gas can easily occur.

  14. Deep Chandra Observations of HCG 16 - I. Active Nuclei, Star formation and Galactic Winds

    O'Sullivan, E; Vrtilek, J M; Giacintucci, S; Trevisan, M; David, L P; Ponman, T J; Mamon, G A; Raychaudhury, S

    2014-01-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610~MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation and the high luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe-K$\\alpha$ emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infra-red and ultra-vio...

  15. Evidence for activity at the Galactic center based on low frequency radio continuum observations

    Aperture synthesis observations of the galactic center region at 123.0 and 110.6 MHz reveal striking asymmetric steep spectrum (α≤-0.8) radio lobes. The northern galactic lobe (NGL) appears to be a unique galactic source and cannot be easily classified as an SNR, extragalactic source, or a foreground object. The southern ''lobe'' appears directly linked to the galactic center and has been identified by Yusef-Zadeh et al. as a low energy jet emanating from Sgr-A. We present here new 80 MHz observations of an expanded region around the galactic center obtained one year after the initial set of observations. Excellent morphological agreement between these separate sets of observations confirm the persistence of the NGL as the dominant emission feature in the entire region at these frequencies. The similarities of this source with the jet feature suggest a common origin. Together with the compact nonthermal source located at the galactic center, the properties and geometry of these sources resemble the radio lobes observed in the nuclei of Seyfert galaxies

  16. ON THE 10 μm SILICATE FEATURE IN ACTIVE GALACTIC NUCLEI

    The 10 μm silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 μm silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r -1.5 and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual ∼60-80. The source bolometric luminosity is ∼3 x 1012 Lsun. Our modeling suggests that ∼<35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 μm emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 μm silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed distribution, and the feature

  17. Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons.

    Mooney, R.; Konishi, M

    1991-01-01

    Although neural circuits mediating various simple behaviors have been delineated, those generating more complex behaviors are less well described. The discrete structure of avian song control nuclei promises that circuits controlling complex behaviors, such as birdsong, can also be understood. To this end, we developed an in vitro brain slice preparation containing the robust nucleus of the archistriatum (RA), a forebrain song control nucleus, and its inputs from two other song nuclei, the ca...

  18. Neuropeptide Y acts in the paraventricular nucleus to suppress sympathetic nerve activity and its baroreflex regulation.

    Cassaglia, Priscila A; Shi, Zhigang; Li, Baoxin; Reis, Wagner L; Clute-Reinig, Nicholas M; Stern, Javier E; Brooks, Virginia L

    2014-04-01

    Neuropeptide Y (NPY), a brain neuromodulator that has been strongly implicated in the regulation of energy balance, also acts centrally to inhibit sympathetic nerve activity (SNA); however, the site and mechanism of action are unknown. In chloralose-anaesthetized female rats, nanoinjection of NPY into the paraventricular nucleus of the hypothalamus (PVN) dose-dependently suppressed lumbar SNA (LSNA) and its baroreflex regulation, and these effects were blocked by prior inhibition of NPY Y1 or Y5 receptors. Moreover, PVN injection of Y1 and Y5 receptor antagonists in otherwise untreated rats increased basal and baroreflex control of LSNA, indicating that endogenous NPY tonically inhibits PVN presympathetic neurons. The sympathoexcitation following blockade of PVN NPY inhibition was eliminated by prior PVN nanoinjection of the melanocortin 3/4 receptor inhibitor SHU9119. Moreover, presympathetic neurons, identified immunohistochemically using cholera toxin b neuronal tract tracing from the rostral ventrolateral medulla (RVLM), express NPY Y1 receptor immunoreactivity, and patch-clamp recordings revealed that both NPY and α-melanocyte-stimulating hormone (α-MSH) inhibit and stimulate, respectively, PVN-RVLM neurons. Collectively, these data suggest that PVN NPY inputs converge with α-MSH to influence presympathetic neurons. Together these results identify endogenous NPY as a novel and potent inhibitory neuromodulator within the PVN that may contribute to changes in SNA that occur in states associated with altered energy balance, such as obesity and pregnancy. PMID:24535439

  19. Discrete knot ejection from the jet in a nearby low-luminosity active galactic nucleus, M81*

    King, Ashley L.; Miller, Jon M.; Bietenholz, Michael; Gültekin, Kayhan; Reynolds, Mark T.; Mioduszewski, Amy; Rupen, Michael; Bartel, Norbert

    2016-08-01

    Observational constraints of the relativistic jets from black holes have largely come from the most powerful and extended jets, leaving the nature of the low-luminosity jets a mystery. M81* is one of the nearest low-luminosity jets and it emitted an extremely large radio flare in 2011, allowing us to study compact core emission with unprecedented sensitivity and linear resolution. Using a multiwavelength campaign, we were able to track the flare as it re-brightened and became optically thick. Simultaneous X-ray observations indicated that the radio re-brightening was preceded by a low-energy X-ray flare at least 12 days earlier. Associating the time delay (tdelay) between the two bands with the cooling time in a synchrotron flare, we find that the magnetic field strength was 1.9 field estimate from spectral energy distribution modelling, B < 10.2 G. In addition, Very Long Baseline Array observations at 23 GHz clearly illustrate a discrete knot moving at a low relativistic speed of vapp/c = 0.51 +/- 0.17 associated with the initial radio flare. The observations indicate radial jet motions for the first time in M81*. This has profound implications for jet production, as it means radial motion can be observed in even the lowest-luminosity AGN, but at slower velocities and smaller radial extents (≍104 RG).

  20. X-ray polarization fluctuations induced by cloud eclipses in active galactic nuclei

    Marin, F

    2014-01-01

    Context: A fraction of active galactic nuclei (AGN) show dramatic X-ray spectral changes on the day-to-week time scales associated with variation in the line of sight of the cold absorber. Aims: We intend to model the polarization fluctuations arising from an obscuration event, thereby offering a method of determining whether flux variations are due to occultation or extreme intrinsic emission variability. Methods: Undertaking 1 - 100 keV polarimetric simulations with the Monte Carlo code STOKES, we simulated the journey of a variety of cold gas clouds in front of an extended primary source. We varied the hydrogen column density nH and size of the absorber, as well as the initial polarization state of the emitting source, to cover a wide range of scenarios. Results: For unpolarized primary fluxes, large (about 50deg) variations of the polarization position angle psi are expected before and after an occultation event, which is associated with very low residual polarization degrees (P lower than 1 per cent). In...

  1. The SAMI Galaxy Survey: Unveiling the nature of kinematically offset active galactic nuclei

    Allen, J T; Scott, N; Fogarty, L M R; Ho, I -T; Medling, A M; Leslie, S K; Bland-Hawthorn, J; Bryant, J J; Croom, S M; Goodwin, M; Green, A W; Konstantopoulos, I S; Lawrence, J S; Owers, M S; Richards, S N; Sharp, R

    2015-01-01

    We have observed two kinematically offset active galactic nuclei (AGN), whose ionised gas is at a different line-of-sight velocity to their host galaxies, with the SAMI integral field spectrograph (IFS). One of the galaxies shows gas kinematics very different to the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionised gas kinematics at the galaxy's centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, bu...

  2. Simulating the formation of disk galaxies: The impact of Jets from Active Galactic Nuclei

    Okamoto, Takashi; Bower, Richard G

    2007-01-01

    Recent semi-analytic models have highlighted the role of AGN jets in regulating the formation of galaxies. In this paper, we present a new implementation of feedback due to active galactic nuclei (AGN) in cosmological hydrodynamic simulations of galaxy formation in which AGN feedback is assumed to heat the halo gas through the production of jets. Combining a theoretical model of mass accretion onto black holes with a multiphase description of star-forming gas, we self-consistently follow evolution of both galaxies and their central black holes. The novelty in our model is that we consider the two distinct accretion modes: standard radiatively efficient thin accretion disks and radiatively inefficient accretion flows which we will generically refer to as RIAFs; motivated by the theoretical modelsfor jet production in accretion disks, we assume that only the RIAF is responsible for the production of powerful jets. The focus of this paper is to investigate the interplay between galaxies and their central black h...

  3. X-ray spectra and time variability of active galactic nuclei

    The X-ray spectra of broad line active galactic nuclei (AGN) of all types (Seyfert I's, NELG's, broadline radio galaxies) are well fit by a power law in the .5 to 100 keV band of man energy slope alpha .68 + or - .15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability. On time scales longer than 12 hours most radio quiet AGN do not show strong, delta I/I .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristics timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable than radio quiet AGN on long, tau approx 6 month, timescales

  4. Changing-Look Active Galactic Nuclei With The Time Domain Spectroscopic Survey (TDSS)

    Runnoe, J.

    2015-09-01

    Changing-look active galactic nuclei (CL-AGNs) present a unique opportunity to study AGN unification and physics. They are observed to transformation between the Type 1 and 2 classifications, supporting a picture in which both orientation to the observer and intrinsic spectral and luminosity evolution can play important roles in unification. In the same spirit, CL-AGNs also offer a way to study behavior brought about by abrupt changes in the accretion rate and may represent a previously unappreciated mode of quasar variability: prolonged "on-" and "off-states". CL-AGNs are uncommon, with only a handful identified to date, but several have been discovered in the Time Domain Spectroscopic Survey (TDSS), and these are likely just the tip of the iceberg. The TDSS offers a promising way of discovering substantial numbers of CL-AGN because it will revisit several thousand objects with previous spectra from the SDSS, many of which are selected based on substantial photometric variability. A statistical sample of these objects will allow us to move beyond the detailed case studies and start to understand the underlying physical mechanisms responsible for these dramatic spectral changes. I will describe our systematic search for CL-AGN in the TDSS and discuss what we have learned from a growing sample of these objects.

  5. The optical polarization signatures of fragmented equatorial dusty structures in Active Galactic Nuclei

    Marin, F.; Stalevski, M.

    2015-12-01

    If the existence of an obscuring circumnuclear region around the innermost regions of active galactic nuclei (AGN) has been observationally proven, its geometry remains highly uncertain. The morphology usually adopted for this region is a toroidal structure, but other alternatives, such as flared disks, can be a good representative of equatorial outflows. Those two geometries usually provide very similar spectroscopic signatures, even when they are modeled under the assumption of fragmentation. In this lecture note, we show that the resulting polarization signatures of the two models, either a torus or a flared disk, are quite different from each other. We use a radiative transfer code that computes the 2000 -- 8000 Å polarization of the two morphologies in a clumpy environment, and show that varying the sizes of a toroidal region has deep impacts onto the resulting polarization, while the polarization of flared disks is independent of the outer radius. Clumpy flared disks also produce higher polarization degrees (˜ 10 % at best) together with highly variable polarization position angles.

  6. Current issues in the X-ray properties of active galactic nuclei

    Some issues raised by soft X-ray spectra and hours variability observations of active galactic nuclei (AGN), made possible by improved energy calibration of the Einstein IPC and the launch of Exosat into a unique 72-hour highly elliptical orbit, are presented. Explanations for steep soft excesses in quasars include the emission from the hot tail of an accretion disk spectrum, and from optically thin bremsstrahlung at 1-2 x 10 to the 6th K from a large volume. Mechanisms for the approximately 1.0 slope in the 0.2-4 keV soft IPC X-ray band quasars include direct synchrotron emission, unsaturated Comptonization of an arbitrary seed spectrum, and synchro-Compton scattering from the infrared. The Exosat observation of NGC 4051 revealed six 1-hour cycles with spectral changes during the variations. AGN time variations may now be able to limit emission models through studying, for example, the lag times between soft and hard variations. 47 references

  7. On the Contribution of Active Galactic Nuclei to the High-Redshift Metagalactic Ionizing Background

    D'Aloisio, Anson; McQuinn, Matthew; Trac, Hy; Shapiro, Paul R

    2016-01-01

    Motivated by the claimed detection of a large population of faint active galactic nuclei (AGN) at high redshift, recent studies have proposed models in which AGN contribute significantly to the z > 4 H I ionizing background. In some models, AGN are even the chief sources of reionization. If correct, these models would make necessary a complete revision to the standard view that galaxies dominated the high-redshift ionizing background. It has been suggested that AGN-dominated models can better account for two recent observations that appear to be in conflict with the standard view: (1) large opacity variations in the z ~ 5.5 H I Lyman-alpha forest, and (2) slow evolution in the mean opacity of the He II Lyman-alpha forest. Large spatial fluctuations in the ionizing background from the brightness and rarity of AGN may account for the former, while the earlier onset of He II reionization in these models may account for the latter. Here we show that models in which AGN emissions source >~ 50 % of the ionizing bac...

  8. THREE-YEAR SWIFT-BAT SURVEY OF ACTIVE GALACTIC NUCLEI: RECONCILING THEORY AND OBSERVATIONS?

    It is well accepted that unabsorbed as well as absorbed active galactic nuclei (AGNs) are needed to explain the nature and shape of the Cosmic X-ray background (CXB), even if the fraction of highly absorbed objects (dubbed Compton-thick sources) still substantially escapes detection. We derive and analyze the absorption distribution using a complete sample of AGNs detected by Swift-BAT in the first three years of the survey. The fraction of Compton-thick AGNs represents only 4.6% of the total AGN population detected by Swift-BAT. However, we show that once corrected for the bias against the detection of very absorbed sources the real intrinsic fraction of Compton-thick AGNs is 20-6+9%. We proved for the first time (also in the Burst Alert Telescope (BAT) band) that the anti-correlation of the fraction of absorbed AGNs and luminosity is tightly connected to the different behavior of the X-ray luminosity functions (XLFs) of absorbed and unabsorbed AGNs. This points toward a difference between the two subsamples of objects with absorbed AGNs being, on average, intrinsically less luminous than unobscured ones. Moreover, the XLFs show that the fraction of obscured AGNs might also decrease at very low luminosity. This can be successfully interpreted in the framework of a disk cloud outflow scenario as the disappearance of the obscuring region below a critical luminosity. Our results are discussed in the framework of population synthesis models and the origin of the CXB.

  9. Radio/gamma-ray time delay in the parsec-scale cores of active galactic nuclei

    Pushkarev, A B; Lister, M L

    2010-01-01

    We report the detection of a non-zero time delay between radio emission measured by the VLBA at 15.4 GHz and gamma-ray radiation (gamma-ray leads radio) registered by the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope for a sample of 183 radio and gamma-ray bright active galactic nuclei (AGNs). For the correlation analysis we used 100 MeV - 100 GeV gamma-ray photon fluxes, taken from monthly binned measurements from the first Fermi LAT catalog, and 15.4 GHz radio flux densities from the MOJAVE VLBA program. The correlation is most pronounced if the core flux density is used, strongly indicating that the gamma-ray emission is generated within the compact region of the 15 GHz VLBA core. Determining the Pearson's r and Kendall's tau correlation coefficients for different time lags, we find that for the majority of sources the radio/gamma-ray delay ranges from 1 to 8 months in the observer's frame and peaks at about 1.2 months in the source's frame. We interpret the primary source of the ...

  10. Coexistence of Gravitationally Bound and Radiation Driven CIV Emission Line Regions in Active Galactic Nuclei

    Wang, Huiyuan; Zhou, Hongyan; Liu, Bo; Wang, Jianguo; Yuan, Weimin; Dong, Xiaobo

    2011-01-01

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g. CIV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally bound BELR, which are supported respectively by blueshift of the CIV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the CIV and MgII lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the CIV region is different from that of MgII, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the CIV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the CIV line region is largely dominated by outflow a...

  11. THE BALDWIN EFFECT IN THE NARROW EMISSION LINES OF ACTIVE GALACTIC NUCLEI

    The anti-correlations between the equivalent widths of emission lines and the continuum luminosity in active galactic nuclei (AGNs), known as the Baldwin effect, are well established for broad lines, but are less well studied for narrow lines. In this paper we explore the Baldwin effect of narrow emission lines over a wide range of ionization levels and critical densities using a large sample of broad-line, radio-quiet AGNs taken from Sloan Digital Sky Survey Data Release 4. These type 1 AGNs span three orders of magnitude in continuum luminosity. We show that most narrow lines show a similar Baldwin effect slope of about –0.2, while the significant deviations of the slopes for [N II] λ6583, [O II] λ3727, [Ne V] λ3425, and the narrow component of Hα can be explained by the influence of metallicity, star formation contamination, and possibly by the difference in the shape of the UV-optical continuum. The slopes do not show any correlation with either the ionization potential or the critical density. We show that a combination of 50% variations in continuum near 5100 Å and a lognormal distribution of observed luminosity can naturally reproduce a constant Baldwin effect slope of –0.2 for all narrow lines. The variations of the continuum could be due to variability, intrinsic anisotropic emission, or an inclination effect.

  12. On the central abundances of Active Galactic Nuclei and Star-forming Galaxies

    Dors, O L; Hagele, G F; Rodrigues, I; Grebel, E K; Pilyugin, L S; Freitas-Lemes, P; Krabbe, A C

    2015-01-01

    We examine the relation between oxygen abundances in the narrow-line regions (NLRs) of active galactic nuclei (AGNs) estimated from the optical emission lines through the strong-line method (the theoretical calibration of Storchi-Bergmann et al.(1998)), via the direct Te-method, and the central intersect abundances in the host galaxies determined from the radial abundance gradients. We found that the Te-method underestimates the oxygen abundances by up to ~2 dex (with average value of ~0.8 dex) compared to the abundances derived through the strong-line method. This confirms the existence of the so-called "temperature problem" in AGNs. We also found that the abundances in the centres of galaxies obtained from their spectra trough the strong-line method are close to or slightly lower than the central intersect abundances estimated from the radial abundance gradient both in AGNs and Star-forming galaxies. The oxygen abundance of the NLR is usually lower than the maximum attainable abundance in galaxies (~2 times...

  13. Prospect for Future MeV Gamma-ray Active Galactic Nuclei Population Studies

    Inoue, Yoshiyuki; Odaka, Hirokazu; Takada, Atsushi; Ichinohe, Yuto; Saito, Shinya; Takeda, Shin'ichiro; Takahashi, Tadayuki

    2015-01-01

    While the X-ray, GeV gamma-ray, and TeV gamma-ray skies have been extensively studied, the MeV gamma-ray sky is not well investigated after the Imaging Compton Telescope (COMPTEL) scanned the sky about two decades ago. In this paper, we investigate prospects for active galactic nuclei population studies with future MeV gamma-ray missions using recent spectral models and luminosity functions of Seyfert and flat spectrum radio quasars (FSRQs). Both of them are plausible candidates as the origins of the cosmic MeV gamma-ray background. If the cosmic MeV gamma-ray background radiation is dominated by non-thermal emission from Seyferts, the sensitivity of 10^-12 erg cm^-2 s^-1 is required to detect several hundred Seyferts in the entire sky. If FSRQs make up the cosmic MeV gamma-ray background, the sensitivity of ~4 x 10^-12 erg cm^-2 s^-1 is required to detect several hundred FSRQs following the recent FSRQ X-ray luminosity function. However, based on the latest FSRQ gamma-ray luminosity function, with which FSRQ...

  14. HerMES: Disentangling active galactic nuclei and star formation in the radio source population

    Rawlings, J I; Symeonidis, M; Bock, J; Cooray, A; Farrah, D; Guo, K; Hatziminaoglou, E; Ibar, E; Oliver, S J; Roseboom, I G; Scott, Douglas; Seymour, N; Vaccari, M; Wardlow, J L

    2015-01-01

    We separate the extragalactic radio source population above ~50 uJy into active galactic nuclei (AGN) and star-forming sources. The primary method of our approach is to fit the infrared spectral energy distributions (SEDs), constructed using Spitzer/IRAC and MIPS and Herschel/SPIRE photometry, of 380 radio sources in the Extended Chandra Deep Field-South. From the fitted SEDs, we determine the relative AGN and star-forming contributions to their infrared emission. With the inclusion of other AGN diagnostics such as X-ray luminosity, Spitzer/IRAC colours, radio spectral index and the ratio of star-forming total infrared flux to k-corrected 1.4 GHz flux density, qIR, we determine whether the radio emission in these sources is powered by star formation or by an AGN. The majority of these radio sources (60 per cent) show the signature of an AGN at some wavelength. Of the sources with AGN signatures, 58 per cent are hybrid systems for which the radio emission is being powered by star formation. This implies that r...

  15. The resolved star-formation relation in nearby active galactic nuclei

    Casasola, Viviana; Combes, Francoise; Garcia-Burillo, Santiago

    2015-01-01

    We present an analysis of the relation between star formation rate (SFR) surface density (sigmasfr) and mass surface density of molecular gas (sigmahtwo), commonly referred to as the Kennicutt-Schmidt (K-S) relation, at its intrinsic spatial scale, i.e. the size of giant molecular clouds (10-150 pc), in the central, high-density regions of four nearby low-luminosity active galactic nuclei (AGN). We used interferometric IRAM CO(1-0) and CO(2-1), and SMA CO(3-2) emission line maps to derive sigmahtwo and HST-Halpha images to estimate sigmasfr. Each galaxy is characterized by a distinct molecular SF relation at spatial scales between 20 to 200 pc. The K-S relations can be sub-linear, but also super-linear, with slopes ranging from 0.5 to 1.3. Depletion times range from 1 and 2Gyr, compatible with results for nearby normal galaxies. These findings are valid independently of which transition, CO(1-0), CO(2-1), or CO(3-2), is used to derive sigmahtwo. Because of star-formation feedback, life-time of clouds, turbule...

  16. Modeling the Emission from Turbulent Relativistic Jets in Active Galactic Nuclei

    Victoria Calafut; Paul J. Wiita

    2015-06-01

    We present a numerical model developed to calculate observed fluxes of relativistic jets in active galactic nuclei. The observed flux of each turbulent eddy is dependent upon its variable Doppler boosting factor, computed as a function of the relativistic sum of the individual eddy and bulk jet velocities, and our viewing angle to the jet. The total observed flux is found by integrating the radiation from the eddies over the turbulent spectrum. We consider jets that contain turbulent eddies that have either standard Kolmogorov or recently derived relativistic turbulence spectra. We also account for the time delays in receiving the emission of the eddies due to their different simulated positions in the jet, as well as due to the varying beaming directions as they turn over. We examine these theoretical light curves and compute power spectral densities (PSDs) for a range of viewing angles, bulk velocities of the jet, and turbulent velocities. These PSD slopes depend significantly on the turbulent velocity, and are essentially independent of viewing angle and bulk velocity. The flux variations produced in the simulations for realistic values of the parameters tested are consistent with the types of variations observed in radio-loud AGN as, for example, recently measured with the Kepler satellite, as long as the turbulent velocities are not too high.

  17. Study of Swift/BAT Selected Low-luminosity Active Galactic Nuclei Observed with Suzaku

    Kawamuro, Taiki; Tazaki, Fumie; Terashima, Yuichi; Mushotzky, Richard

    2016-01-01

    We systematically analyze the broadband (0.5--200 keV) X-ray spectra of hard X-ray ($>10$ keV) selected local low-luminosity active galactic nuclei (LLAGNs) observed with {\\it Suzaku} and {\\it Swift}/BAT. The sample consists of ten LLAGNs detected with {\\it Swift}/BAT with intrinsic 14--195 keV luminosities smaller than $10^{42}$ erg s$^{-1}$ available in the {\\it Suzaku} archive, covering a wide range of the Eddington ratio from $10^{-5}$ to $10^{-2}$. The overall spectra can be reproduced with an absorbed cut-off power law, often accompanied by reflection components from distant cold matter, and/or optically-thin thermal emission from the host galaxy. In all objects, relativistic reflection components from the innermost disk are not required. Eight objects show a significant narrow iron-K$\\alpha$ emission line. Comparing their observed equivalent widths with the predictions from the Monte-Carlo based torus model by \\cite{Ike09}, we constrain the column density in the equatorial plane to be $\\log N^{\\rm eq}_...

  18. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  19. Ultra-High-Energy Cosmic Rays from Low-Luminosity Active Galactic Nuclei

    Dutan, Ioana

    2014-01-01

    We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power $P_{\\mathrm{j}} \\leqslant 10^{46}$ erg s$^{-1}$. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies $ \\geqslant 50$ EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We find that the UHECR flux is dependent on the {\\it observed radio flux density, the distance to the AGN, and the BH mass}, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 ...

  20. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  1. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years

  2. A growth-rate indicator for Compton-thick active galactic nuclei

    Brightman, M; Ballantyne, D R; Baloković, M; Brandt, W N; Chen, C -T; Comastri, A; Farrah, D; Gandhi, P; Harrison, F A; Ricci, C; Stern, D; Walton, D J

    2016-01-01

    Due to their heavily obscured central engines, the growth rate of Compton-thick (CT) active galactic nuclei (AGN) is difficult to measure. A statistically significant correlation between the Eddington ratio, {\\lambda}$_{Edd}$, and the X-ray power-law index, {\\Gamma}, observed in unobscured AGN offers an estimate of their growth rate from X-ray spectroscopy (albeit with large scatter). However, since X-rays undergo reprocessing by Compton scattering and photoelectric absorption when the line-of-sight to the central engine is heavily obscured, the recovery of the intrinsic {\\Gamma} is challenging. Here we study a sample of local, predominantly Compton-thick megamaser AGN, where the black hole mass, and thus Eddington luminosity, are well known. We compile results on X-ray spectral fitting of these sources with sensitive high-energy (E> 10 keV) NuSTAR data, where X-ray torus models which take into account the reprocessing effects have been used to recover the intrinsic {\\Gamma} values and X-ray luminosities, L$_...

  3. A note on periodicity of long-term variations of optical continuum in active galactic nuclei

    Lu, Kai-Xing; Li, Yan-Rong; Bi, Shao-Lan; Wang, Jian-Min

    2016-06-01

    Graham et al. found a sample of active galactic nuclei (AGNs) and quasars from the Catalina Real-time Transient Survey (CRTS) that have long-term periodic variations in optical continuum. The nature of the periodicity remains uncertain. We investigate the periodic variability characteristics of the sample by testing the relations of the observed variability periods with AGN optical luminosity, black hole mass and accretion rates, and find no significant correlations. We also test the observed periods in several different aspects related to accretion discs surrounding single black holes, such as the Keplerian rotational periods of 5100 Å photon-emission regions and self-gravity dominated regions and the precessing period of warped discs. These tests shed new lights on understanding AGN variability in general. Under the assumption that the periodic behaviour is associated with supermassive black hole binary systems in particular, we compare the separations (r {D}_{bullet }) against characteristic radii of broad-line regions (R_riptscriptstyle BLR) of the binaries and find r {D}_{bullet }≈ 0.05R_riptscriptstyle BLR. This interestingly implies that these binaries have only circumbinary BLRs.

  4. A note on periodicity of long-term variations of optical continuum in active galactic nuclei

    Lu, Kai-Xing; Li, Yan-Rong; Bi, Shao-Lan; Wang, Jian-Min

    2016-04-01

    Graham et al. found a sample of active galactic nuclei (AGNs) and quasars from the Catalina Real-time Transient Survey (CRTS) that have long-term periodic variations in optical continuum, the nature of the periodicity remains uncertain. We investigate the periodic variability characteristics of the sample by testing the relations of the observed variability periods with AGN optical luminosity, black hole mass and accretion rates, and find no significant correlations. We also test the observed periods in several different aspects related to accretion disks surrounding single black holes, such as the Keplerian rotational periods of 5100 Å photon-emission regions and self-gravity dominated regions and the precessing period of warped disks. These tests shed new lights on understanding AGN variability in general. Under the assumption that the periodic behavior is associated with SMBHB systems in particular, we compare the separations (D_{bullet }) against characteristic radii of broad-line regions (RBLR) of the binaries and find D_{bullet }≈ 0.05R_{BLR}. This interestingly implies that these binaries have only circumbinary BLRs.

  5. Optical Spectral Properties of Swift BAT Hard X-ray Selected Active Galactic Nuclei Sources

    Winter, Lisa M; Koss, Michael; Veilleux, Sylvain; Keeney, Brian; Mushotzky, Richard F

    2010-01-01

    The Swift Burst Alert Telescope (BAT) survey of Active Galactic Nuclei (AGN) is providing an unprecedented view of local AGNs ( = 0.03) and their host galaxy properties. In this paper, we present an analysis of the optical spectra of a sample of 64 AGNs from the 9-month survey, detected solely based on their 14-195 keV flux. Our analysis includes both archived spectra from the Sloan Digital Sky Survey and our own observations from the 2.1-m Kitt Peak National Observatory telescope. Among our results, we include line ratio classifications utilizing standard emission line diagnostic plots, [O III] 5007 A luminosities, and H-beta derived black hole masses. As in our X-ray study, we find the type 2 sources to be less luminous (in [O III] 5007 A and 14-195 keV luminosities) with lower accretion rates than the type 1 sources. We find that the optically classified LINERs, H II/composite galaxies, and ambiguous sources have the lowest luminosities, while both broad line and narrow line Seyferts have similar luminosit...

  6. X-Ray Spectral Parameters for a Sample of 95 Active Galactic Nuclei

    Vasylenko, A; Fedorova, E

    2015-01-01

    We present a broadband X-ray analysis of a new homogeneous sample of 95 active galactic nuclei (AGN) from the 22-month Swift/BAT all-sky survey. For this sample we treated jointly the X-ray spectra observed by XMM-Newton and INTEGRAL missions for the total spectral range of 0.5-250 keV. Photon index \\Gamma, relative reflection R, equivalent width of Fe $K_{\\alpha}$ line (EW Fe $K_{\\alpha}$), hydrogen column density $N_{H}$, exponential cut-off energy $E_{c}$ and intrinsic luminosity $L_{corr}$ are determined for all objects of the sample. We investigated correlations \\Gamma - R, EW Fe $K_{\\alpha}$ - $L_{corr}$, \\Gamma - $E_{c}$, EW Fe $K_{\\alpha}$ - $N_{H}$. Dependence \\Gamma - R for Seyfert 1 and 2 type of galaxies has been investigated separately. We found that the relative reflection parameter at low power-law indexes for Seyfert 2 galaxies is systematically higher than for Seyfert 1 ones. This can be related to an increasing contribution of the reflected radiation from the gas-dust torus. Our data show th...

  7. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    Worpel, Hauke [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia); Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E. [Monash Centre for Astrophysics, School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Beutler, Florian [ICRAR, University of Western Australia, 35 Stirling Highway, Perth, WA 6009 (Australia)

    2013-07-20

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.

  8. Detailed Shape and Evolutionary Behavior of the X-ray Luminosity Function of Active Galactic Nuclei

    Miyaji, T; Salvato, M; Brusa, M; Cappelluti, N; Civano, F; Puccetti, S; Elvis, M; Brunner, H; Fotopoulou, S; Ueda, Y; Griffiths, R E; Koekemoer, A M; Akiyama, M; Comastri, A; Gilli, R; Lanzuisi, G; Merloni, A; Vignali, C

    2015-01-01

    We construct the rest-frame 2--10 keV intrinsic X-ray luminosity function of Active Galactic Nuclei (AGNs) from a combination of X-ray surveys from the all-sky Swift BAT survey to the Chandra Deep Field-South. We use ~3200 AGNs in our analysis, which covers six orders of magnitude in flux. The inclusion of the XMM and Chandra COSMOS data has allowed us to investigate the detailed behavior of the XLF and evolution. In deriving our XLF, we take into account realistic AGN spectrum templates, absorption corrections, and probability density distributions in photometric redshift. We present an analytical expression for the overall behavior of the XLF in terms of the luminosity-dependent density evolution, smoothed two power-law expressions in 11 redshift shells, three-segment power-law expression of the number density evolution in four luminosity classes, and binned XLF. We observe a sudden flattening of the low luminosity end slope of the XLF slope at z>~0.6. Detailed structures of the AGN downsizing have been als...

  9. Long-term variability of active galactic nuclei from the "Planck" catalog

    Volvach, A. E.; Kardashev, N. S.; Larionov, M. G.; Volvach, L. N.

    2016-07-01

    A complete sample of 104 bright active galactic nuclei (AGNs) from the "Planck" catalog (early results) were observed at 36.8 GHz with the 22-m radio telescope of the Crimean Astrophysical Observatory (CrAO).Variability indices of the sources at this frequency were determined based on data from theWMAP space observatory, theMetsa¨ hovi RadioObservatory (Finland), and the CrimeanAstrophysical Observatory. New observational results confirm that the variability of these AGNs is stronger in the millimeter than at other radio wavelengths. The variability indices probably change as a result of the systematic decrease in the AGN flux densities in the transition to the infrared. Some radio sources demonstrate significant flux-density variations, including decreases, which sometimes cause them to fall out of the analysed sample. The change of the variability index in the millimeter is consistent with the suggestion that this variability is due to intrinsic processes in binary supermassive black holes at an evolutionary stage close to coalescence. All 104 of the sources studied are well known objects that are included in various radio catalogs and have flux densities exceeding 1 Jy at 36.8 GHz.

  10. Light element nucleosynthesis from jet-cloud interactions in active galactic nuclei

    The production of light nuclei via the interactions of jets from the central engines of active galactic nuclei (AGNs) and the surrounding medium are studied. Several environments ranging from hot, dense knots of gas near the central engine to the cold broad line region clouds are simulated by a nuclear reaction network that couples the thermonuclear processes in the cloud to the reactions between the jet particles and the cloud. Reaction products from the jet-cloud interactions are followed until they react or are thermalized, which may involve several subsequent reactions. Enhanced production of light nuclei well above their primordial abundances is possible even, under some conditions, of CNO nuclei. In these scenarios, the jets can enhance abundances of CNO nuclei by first producing excess amounts of nuclei with A<8, then by increasing the cloud density to the point at which the thermonuclear reaction rates become important. The comparison to observed abundances in quasars (QSOs) leads to the conclusion that the interactions of ejected matter from AGNs may be responsible for large observed abundances of light nuclei in addition to significant abundances of nuclei in the CNO region

  11. The different neighbours around Type-1 and Type-2 active galactic nuclei

    Villarroel, Beatriz

    2014-01-01

    One of the most intriguing open issues in galaxy evolution is the structure and evolution of active galactic nuclei (AGN) that emit intense light believed to come from an accretion disk near a super-massive black hole (Rees 1984, Lynden-Bell 1969). To understand the zoo of different AGN classes, it has been suggested that all AGN are the same type of object viewed from different angles (Antonucci 1993). This model -- called AGN unification -- has been successful in predicting e.g. the existence of hidden broad optical lines in the spectrum of many narrow-line AGN. But this model is not unchallenged (Tran 2001) and it is an open problem whether more than viewing angle separates the so-called Type-1 and Type-2 AGN. Here we report the first large-scale study that finds strong differences in the galaxy neighbours to Type-1 and Type-2 AGN with data from the Sloan Digital Sky Survey (SDSS) (York et al. 2000) Data Release 7 (DR7) (Abazajian et al. 2008) and Galaxy Zoo (Lintott et al, 2008, Lintott et al 2011). We fi...

  12. The subarcsecond mid-infrared view of local active galactic nuclei: III. Polar dust emission

    Asmus, D; Gandhi, P

    2016-01-01

    Recent mid-infrared (MIR) interferometric observations showed in few active galactic nuclei (AGN) that the bulk of the infrared emission originates from the polar region above the putative torus, where only little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGN. Out of 149 Seyferts in the MIR atlas of local AGN (Asmus et al.), 21 show extended MIR emission on single dish images. In 18 objects, the extended MIR emission aligns with the system axis position angle, established by [OIII], radio, polarisation and maser based position angle measurements. The relative amount of resolved MIR emission is at least 40 per cent and scales with the [OIV] fluxes implying a strong connection between the extended continuum and [OIV] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emi...

  13. ESTIMATING BLACK HOLE MASSES IN ACTIVE GALACTIC NUCLEI USING THE Mg II λ2800 EMISSION LINE

    We investigate the relationship between the linewidths of broad Mg II λ2800 and Hβ in active galactic nuclei (AGNs) to refine them as tools to estimate black hole (BH) masses. We perform a detailed spectral analysis of a large sample of AGNs at intermediate redshifts selected from the Sloan Digital Sky Survey, along with a smaller sample of archival ultraviolet spectra for nearby sources monitored with reverberation mapping (RM). Careful attention is devoted to accurate spectral decomposition, especially in the treatment of narrow-line blending and Fe II contamination. We show that, contrary to popular belief, the velocity width of Mg II tends to be smaller than that of Hβ, suggesting that the two species are not cospatial in the broad-line region. Using these findings and recently updated BH mass measurements from RM, we present a new calibration of the empirical prescriptions for estimating virial BH masses for AGNs using the broad Mg II and Hβ lines. We show that the BH masses derived from our new formalisms show subtle but important differences compared to some of the mass estimators currently used in the literature.

  14. Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks

    Gonzalez-Martin, O; Acosta-Pulido, J A; Masegosa, J; Papadakis, I E; Rodriguez-Espinosa, J M; Marquez, I; Hernandez-Garcia, L

    2014-01-01

    (Abridged) Many classes of active galactic nuclei (AGN) have been defined entirely throughout optical wavelengths while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepancies that have not been fully understood yet. The aim of this paper is to study the "synapses" between the X-ray and optical classifications. For the first time, the new EFLUXER task allowed us to analyse broad band X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB), transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2). The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components. We suggest that this is related to a large degree of obscuration at X-rays. The S1, S1.8...

  15. Invisible Active Galactic Nuclei. II Radio Morphologies & Five New HI 21 cm Absorption Line Detections

    Yan, Ting; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2015-01-01

    We have selected a sample of 80 candidates for obscured radio-loud active galactic nuclei and presented their basic optical/near-infrared (NIR) properties in Paper 1. In this paper, we present both high-resolution radio continuum images for all of these sources and HI 21cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz VLA continuum observations find that 52 sources are compact or have substantial compact components with size 0.1 Jy at 4.9 GHz. The most compact 36 sources were then observed with the VLBA at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, a detection rate of CSOs ~3 times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty seven sources were observed for HI 21cm absorption at their photometric or spectroscopic redshifts with only ...

  16. Constraining the Contribution of Galaxies and Active Galactic Nuclei to Cosmic Reionization

    Yoshiura, Shintaro; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Shimabukuro, Hayato; Takahashi, Keitaro

    2016-01-01

    We constrain the contribution of high-$z$ galaxies and active galactic nuclei (AGNs) to reionization, by comparing numerically computed H/He reionization with the observed HI/HeII fractions at various redshifts and optical depth to Thomson scattering. In the model, the contribution of galaxies is controlled by a parameter $f_{\\rm esc}$ which indicates the escape fraction of ionizing photons from the galaxies, adopting an observed cosmic star formation history. On the other hand, in order to take ionizing photons from ANGs into account, observed X-ray luminosity functions and a composite spectral energy density with the energies in the range of $13.6\\rm eV$ to $100\\rm keV$ are assumed at $z\\leq3$, while the redshift evolution of AGN abundance at $z>3$ is assumed to be proportional to $(1+z)^\\beta$, where $\\beta$ is a parameter in the model. We find that there are observationally allowed sets of the parameters $f_{\\rm esc}$ and $\\beta$. According to the comparisons, $\\beta$ should satisfy $-4.20.18$ are also un...

  17. The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei

    Du, Pu; Hu, Chen; Ho, Luis C; Li, Yan-Rong; Bai, Jin-Ming

    2016-01-01

    Broad emission lines in active galactic nuclei (AGNs) mainly arise from gas photoionized by continuum radiation from an accretion disk around a central black hole. The shape of the broad-line profile, described by ${\\cal D}_{_{\\rm H\\beta}}={\\rm FWHM}/\\sigma_{_{\\rm H\\beta}}$, the ratio of full width at half maximum to the dispersion of broad H$\\beta$, reflects the dynamics of the broad-line region (BLR) and correlates with the dimensionless accretion rate ($\\dot{\\mathscr{M}}$) or Eddington ratio ($L_{\\rm bol}/L_{\\rm Edd}$). At the same time, $\\dot{\\mathscr{M}}$ and $L_{\\rm bol}/L_{\\rm Edd}$ correlate with ${\\cal R}_{\\rm Fe}$, the ratio of optical Fe II to H$\\beta$ line flux emission. Assembling all AGNs with reverberation mapping measurements of broad H$\\beta$, both from the literature and from new observations reported here, we find a strong bivariate correlation of the form $\\log(\\dot{\\mathscr{M}},L_{\\rm bol}/L_{\\rm Edd})=\\alpha+\\beta{\\cal D}_{_{\\rm H\\beta}}+\\gamma{\\cal R}_{\\rm Fe},$ where $\\alpha=(2.47,0.31...

  18. The Nature of Active Galactic Nuclei with Velocity Offset Emission Lines

    Müller-Sánchez, Francisco; Stern, Daniel; Harrison, Fiona A

    2016-01-01

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ~0.18", OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520 and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa$\\alpha$ emission 0.2" from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of en...

  19. NO EVIDENCE FOR A SYSTEMATIC Fe II EMISSION LINE REDSHIFT IN TYPE 1 ACTIVE GALACTIC NUCLEI

    Sulentic, Jack W. [Instituto de Astrofisica de Andalucia, CSIC (Spain); Marziani, Paola [INAF, Astronomical Observatory of Padova (Italy); Zamfir, Sebastian; Meadows, Zachary A., E-mail: sulentic@iaa.es, E-mail: paola.marziani@oapd.inaf.it, E-mail: szamfir@uwsp.edu, E-mail: Zachary.A.Meadows@uwsp.edu [Department of Physics and Astronomy, University of Wisconsin, Stevens Point (United States)

    2012-06-10

    We test the recent claim by Hu et al. that Fe II emission in type 1 active galactic nuclei shows a systematic redshift relative to the local source rest frame and broad-line H{beta}. We compile high signal-to-noise median composites using Sloan Digital Sky Survey spectra from both the Hu et al. sample and our own sample of the 469 brightest DR5 spectra. Our composites are generated in bins of FWHM H{beta} and Fe II strength as defined in our 4D Eigenvector 1 formalism. We find no evidence for a systematic Fe II redshift and consistency with previous assumptions that Fe II shift and width (FWHM) follow H{beta} shift and FWHM in virtually all sources. This result is consistent with the hypothesis that Fe II emission (quasi-ubiquitous in type 1 sources) arises from a broad-line region with geometry and kinematics the same as that producing the Balmer lines.

  20. BeppoSAX view of radio-loud Active Galactic Nuclei

    Grandi, P; Fiocchi, M; Grandi, Paola; Malaguti, Giuseppe; Fiocchi, Mariateresa

    2006-01-01

    A systematic analysis of a large sample of radio-loud Active Galactic Nuclei available in the BeppoSAX public archive has been performed. The sample includes 3 Narrow Line Radio Galaxies (NLRG), 10 Broad Line Radio Galaxies (BLRG), 6 Steep Spectrum Radio Quasars (SSRQ), and 16 Flat Spectrum Radio Quasars (FSRQ). According to the unified models, these classes correspond to objects with increasing viewing angles. As expected, the presence of a non-thermal beamed component emerges clearly in FSRQ. This class shows in fact a featureless continuum (with the exception of 3C273), and a significantly flatter average spectral slope. On the contrary, traces of a non-thermal Doppler enhanced radiation are elusive in the other classes. We find that the iron line equivalent widths (EW) are generally weaker in radio- loud AGN than in Seyfert 1 galaxies, and confirm the presence of an X-ray Baldwin effect, i.e. a decrease of EW with the 2--10 keV luminosity (L) from Seyferts to BLRG and quasars. Since the EW--L anti-correla...

  1. Evidence of the Link between Broad Emission Line Regions and Accretion Disks in Active Galactic Nuclei

    Yun Xu; Xin-Wu Cao

    2007-01-01

    There is observational evidence that broad-line regions (BLRs) exist in most active galactic nuclei (AGNs), but their origin is still unclear. One scenario is that the BLRs originate from winds accelerated from the hot coronae of the disks, and the winds are suppressed when the black hole is accreting at low rates. This model predicts a relation between (m) ((m) = (M)/(M)Edd) and the FWHM of broad emission lines. We estimate the central black hole masses for a sample of bright AGNs by using their broad Hβ line-widths and optical luminosities. The dimensionless accretion rates (m) = (M)/(M)Edd are derived from the optical continuum luminosities by using two different models: using an empirical relation between the bolometric luminosity Lbol and the optical luminosity ((m) = Lbol/LEdd, a fixed radiative efficiency is adopted); and calculating the optical spectra of accretion disks as a function of (m). We find a significant correlation between the derived (m) and the observed line width of Hβ,FWHM∝ (m)-0.37, which almost overlaps the disk-corona model calculations, if the viscosity α≈ 0.1 - 0.2 is adopted. Our results provide strong evidence for the physical link between the BLRs and accretion disks in AGNs.

  2. Off-axis irradiation and the polarization of broad emission lines in active galactic nuclei

    Goosmann, Rene W; Marin, Frederic

    2013-01-01

    The STOKES Monte Carlo radiative transfer code has been extended to model the velocity dependence of the polarization of emission lines. We use STOKES to present improved modelling of the velocity-dependent polarization of broad emission lines in active galactic nuclei. We confirm that off-axis continuum emission can produce observed velocity dependencies of both the degree and position angle of polarization. The characteristic features are a dip in the percentage polarization and an S-shaped swing in the position angle of the polarization across the line profile. Some differences between our STOKES results and previous modelling of polarization due to off-axis emission are noted. In particular we find that the presence of an offset between the maximum in line flux and the dip in the percentage of polarization or the central velocity of the swing in position angle does not necessarily imply that the scattering material is moving radially. Our model is an alternative scenario to the equatorial scattering disk ...

  3. Low-Mass Active Galactic Nuclei with Rapid X-Ray Variability

    Ho, Luis

    2016-01-01

    We present a detailed study of the optical spectroscopic properties of 12 active galactic nuclei (AGNs) with candidate low-mass black holes (BHs) selected by Kamizasa et al. through rapid X-ray variability. The high-quality, echellette Magellan spectra reveal broad H$\\alpha$ emission in all the sources, allowing us to estimate robust viral BH masses and Eddington ratios for this unique sample. We confirm that the sample contains low-mass BHs accreting at high rates: the median $M_{\\rm BH} = 1.2\\times 10^6M_\\odot$ and median $L_{\\rm bol}/L_{\\rm Edd}=0.44$. The sample follows the $M_{\\rm BH}-\\sigma_*$ relation, within the considerable scatter typical of pseudobulges, the probable hosts of these low-mass AGNs. Various lines of evidence suggest that ongoing star formation is prevalent in these systems. We propose a new strategy to estimate star formation rates in AGNs hosted by low-mass, low-metallicity galaxies, based on modification of an existing method using the strength of [O II] $\\lambda 3727$, [O III] $\\la...

  4. Long-Term X-ray Variability of Typical Active Galactic Nuclei in the Distant Universe

    Yang, G; Luo, B; Xue, Y; Bauer, F; Sun, M; Kim, S; Schulze, S; Zheng, X; Paolillo, M; Shemmer, O; Liu, T; Schneider, D; Vignali, C; Vito, F; Wang, J -X

    2016-01-01

    We perform long-term ($\\approx 15$ yr, observed-frame) X-ray variability analyses of the 68 brightest radio-quiet active galactic nuclei (AGNs) in the 6 Ms $Chandra$ Deep Field-South (CDF-S) survey; the majority are in the redshift range of $0.6-3.1$, providing access to penetrating rest-frame X-rays up to $\\approx 10-30$ keV. Twenty-four of the 68 sources are optical spectral type I AGNs, and the rest (44) are type II AGNs. The time scales probed in this work are among the longest for X-ray variability studies of distant AGNs. Photometric analyses reveal widespread photon-flux variability: $90\\%$ of AGNs are variable above a 95% confidence level, including many X-ray obscured AGNs and several optically classified type II quasars. We characterize the intrinsic X-ray luminosity ($L_{\\rm{X}}$) and absorption ($N_{\\rm{H}}$) variability via spectral fitting. Most (74%) sources show $L_{\\rm{X}}$ variability; the variability amplitudes are generally smaller for quasars. A Compton-thick candidate AGN shows variabili...

  5. Offset Active Galactic Nuclei as Tracers of Galaxy Mergers and Supermassive Black Hole Growth

    Comerford, Julia M

    2014-01-01

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey, by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18314 Type 2 AGNs at z<0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km/s < |v| < 410 km/s. When we account for projection effects in the observed velocities, we estimate that 4% - 8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric l...

  6. DETECTING ACTIVE GALACTIC NUCLEI USING MULTI-FILTER IMAGING DATA. II. INCORPORATING ARTIFICIAL NEURAL NETWORKS

    Dong, X. Y.; De Robertis, M. M., E-mail: xydong@yorku.ca [Physics and Astronomy Department, York University, Toronto, ON M3J 1P3 (Canada)

    2013-10-01

    This is the second paper of the series Detecting Active Galactic Nuclei Using Multi-filter Imaging Data. In this paper we review shapelets, an image manipulation algorithm, which we employ to adjust the point-spread function (PSF) of galaxy images. This technique is used to ensure the image in each filter has the same and sharpest PSF, which is the preferred condition for detecting AGNs using multi-filter imaging data as we demonstrated in Paper I of this series. We apply shapelets on Canada-France-Hawaii Telescope Legacy Survey Wide Survey ugriz images. Photometric parameters such as effective radii, integrated fluxes within certain radii, and color gradients are measured on the shapelets-reconstructed images. These parameters are used by artificial neural networks (ANNs) which yield: photometric redshift with an rms of 0.026 and a regression R-value of 0.92; galaxy morphological types with an uncertainty less than 2 T types for z ≤ 0.1; and identification of galaxies as AGNs with 70% confidence, star-forming/starburst (SF/SB) galaxies with 90% confidence, and passive galaxies with 70% confidence for z ≤ 0.1. The incorporation of ANNs provides a more reliable technique for identifying AGN or SF/SB candidates, which could be very useful for large-scale multi-filter optical surveys that also include a modest set of spectroscopic data sufficient to train neural networks.

  7. DETECTING ACTIVE GALACTIC NUCLEI USING MULTI-FILTER IMAGING DATA. II. INCORPORATING ARTIFICIAL NEURAL NETWORKS

    This is the second paper of the series Detecting Active Galactic Nuclei Using Multi-filter Imaging Data. In this paper we review shapelets, an image manipulation algorithm, which we employ to adjust the point-spread function (PSF) of galaxy images. This technique is used to ensure the image in each filter has the same and sharpest PSF, which is the preferred condition for detecting AGNs using multi-filter imaging data as we demonstrated in Paper I of this series. We apply shapelets on Canada-France-Hawaii Telescope Legacy Survey Wide Survey ugriz images. Photometric parameters such as effective radii, integrated fluxes within certain radii, and color gradients are measured on the shapelets-reconstructed images. These parameters are used by artificial neural networks (ANNs) which yield: photometric redshift with an rms of 0.026 and a regression R-value of 0.92; galaxy morphological types with an uncertainty less than 2 T types for z ≤ 0.1; and identification of galaxies as AGNs with 70% confidence, star-forming/starburst (SF/SB) galaxies with 90% confidence, and passive galaxies with 70% confidence for z ≤ 0.1. The incorporation of ANNs provides a more reliable technique for identifying AGN or SF/SB candidates, which could be very useful for large-scale multi-filter optical surveys that also include a modest set of spectroscopic data sufficient to train neural networks

  8. Ensemble X-ray variability of Active Galactic Nuclei. II. Excess Variance and updated Structure Function

    Vagnetti, F; Antonucci, M; Paolillo, M; Serafinelli, R

    2016-01-01

    Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the latest release of the XMM-Newton Serendipitous Source Catalogue, with redshift between 0.1 and 5, and X-ray luminosities, in the 0.5-4.5 keV band, between 10^{42} and 10^{47} erg/s. We caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, taking account of the light-curve duration in the rest-frame, on the basis of the knowle...

  9. A hybrid model for the evolution of galaxies and Active Galactic Nuclei in the infrared

    Cai, Zhen-Yi; Xia, Jun-Qing; De Zotti, Gianfranco; Negrello, Mattia; Gruppioni, Carlotta; Rigby, Emma; Castex, Guillaume; Delabrouille, Jacques; Danese, Luigi

    2013-01-01

    [Abridged] We present a comprehensive investigation of the cosmological evolution of the luminosity function (LF) of galaxies and active galactic nuclei (AGN) in the infrared (IR). Based on the observed dichotomy in the ages of stellar populations of early-type galaxies on one side and late-type galaxies on the other, the model interprets the epoch-dependent LFs at z \\geq 1.5 using a physical model for the evolution of proto-spheroidal galaxies and of the associated AGNs, while IR galaxies at z<1.5 are interpreted as being mostly late-type 'cold' (normal) and 'warm' (starburst) galaxies. As for proto-spheroids, in addition to the epoch-dependent LFs of stellar and AGN components separately, we have worked out the evolving LFs of these objects as a whole (stellar plus AGN component). The model provides a physical explanation for the observed positive evolution of both galaxies and AGNs up to z \\simeq 2.5 and for the negative evolution at higher redshifts, for the sharp transition from Euclidean to extremely...

  10. A Simple test for the existence of two accretion modes in active galactic nuclei

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  11. Radiation-driven Outflows from and Radiative Support in Dusty Tori of Active Galactic Nuclei

    Chan, Chi-Ho; Krolik, Julian H.

    2016-07-01

    Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei (AGNs), but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Near-Eddington infrared (IR) and ultraviolet (UV) luminosities coupled with high dust opacities at these frequencies suggest that radiation pressure on dust can play a significant role in shaping the torus. To explore the possible effects of radiation pressure, we perform three-dimensional radiative hydrodynamics simulations of an initially smooth torus. Our code solves the hydrodynamics equations, the time-dependent multi–angle group IR radiative transfer (RT) equation, and the time-independent UV RT equation. We find a highly dynamic situation. IR radiation is anisotropic, leaving primarily through the central hole. The torus inner surface exhibits a break in axisymmetry under the influence of radiation and differential rotation; clumping follows. In addition, UV radiation pressure on dust launches a strong wind along the inner surface; when scaled to realistic AGN parameters, this outflow travels at ˜ 5000 {(M/{10}7{M}ȯ )}1/4 {[{L}{UV}/(0.1{L}{{E}})]}1/4 {km} {{{s}}}-1 and carries ˜ 0.1 {(M/{10}7{M}ȯ )}3/4 {[{L}{UV}/(0.1{L}{{E}})]}3/4 M ⊙ yr‑1, where M, {L}{UV}, and {L}{{E}} are the mass, UV luminosity, and Eddington luminosity of the central object respectively.

  12. Constraints on the outer radius of the broad emission line region of active galactic nuclei

    Landt, Hermine; Elvis, Martin; Karovska, Margarita

    2014-01-01

    Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Pa alpha and Pa beta, and find that it scales with the ionising continuum luminosity roughly as expected from photoionisation theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution ...

  13. Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-12-01

    By performing a global magnetohydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. This is a natural extension into the central few 100 pc of the magnetic activity, which is observed as molecular loops at radii from a few 100 pc to 1 kpc. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which we discuss from a viewpoint of the outflow from the bulge.

  14. Tracing the Physical Conditions in Active Galactic Nuclei with Time-Dependent Chemistry

    Meijerink, Rowin; Kamp, Inga; Aresu, Giambattista; Thi, Wing-Fai; Woitke, Peter

    2013-01-01

    We present an extension of the code ProDiMo that allows for a modeling of processes pertinent to active galactic nuclei and to an ambient chemistry that is time dependent. We present a proof-of-concept and focus on a few astrophysically relevant species, e.g., H+, H2+ and H3+; C+ and N+; C and O; CO and H2O; OH+, H2O+ and H3O+; HCN and HCO+. We find that the freeze-out of water is strongly suppressed and that this affects the bulk of the oxygen and carbon chemistry occurring in AGN. The commonly used AGN tracer HCN/HCO+ is strongly time-dependent, with ratios that vary over orders of magnitude for times longer than 10^4 years. Through ALMA observations this ratio can be used to probe how the narrow-line region evolves under large fluctuations in the SMBH accretion rate. Strong evolutionary trends, on time scales of 10^4-10^8 years, are also found in species such as H3O+, CO, and H2O. These reflect, respectively, time dependent effects in the ionization balance, the transient nature of the production of molecu...

  15. The location of the dust causing internal reddening of active galactic nuclei

    Heard, Clio Z P

    2016-01-01

    We use the Balmer decrements of the broad-line regions (BLRs) and narrow-line regions (NLRs) of active galactic nuclei (AGNs) as reddening indicators to investigate the location of the dust for four samples of AGNs with reliable estimates of the NLR contribution to the Balmer lines. Intercomparison of the NLR and BLR Balmer decrements indicates that the reddening of the NLR sets a lower limit to the reddening of the BLR. Almost no objects have high NLR reddening but low BLR reddening. The reddening of the BLR is often substantially greater than the reddening of the NLR. The BLR reddening is correlated with the equivalent widths of [O III] lines and the intensity of the [O III] lines relative to broad H\\beta. We find these relationships to be consistent with the predictions of a simple model where the additional dust reddening the BLR is interior to the NLR. We thus conclude that the dust causing the additional reddening of the accretion disc and BLR is mostly located at a smaller radius than the NLR.

  16. MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep.

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H

    2009-05-01

    Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area and project diffusely throughout the central nervous system, including areas that participate in the generation and maintenance of sleep and wakefulness. Recent studies have shown that hypothalamic MCHergic neurons are active during active sleep (AS), and that intraventricular microinjections of MCH induce AS sleep; however, there are no data available regarding the manner in which MCHergic neurons participate in the control of this behavioral state. Utilizing immunohistochemical and retrograde tracing techniques, we examined, in the cat, projections from MCHergic neurons to the nucleus pontis oralis (NPO), which is considered to be the executive area that is responsible for the generation and maintenance of AS. In addition, we explored the effects on sleep and waking states produced by the microinjection of MCH into the NPO. We first determined that MCHergic fibers and terminals are present in the NPO. We also found that when a retrograde tracer (cholera toxin subunit B) was placed in the NPO MCHergic neurons of the hypothalamus were labeled. When MCH was microinjected into the NPO, there was a significant increase in the amount of AS (19.8+/-1.4% versus 11.9+/-0.2%, P<0.05) and a significant decrease in the latency to AS (10.4+/-4.2 versus 26.6+/-2.3 min, P<0.05). The preceding anatomical and functional data support our hypothesis that the MCHergic system participates in the regulation of AS by modulating neuronal activity in the NPO. PMID:19269278

  17. Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus.

    Yan Jin

    Full Text Available Sodium salicylate (NaSal, a tinnitus inducing agent, can activate serotonergic (5-HTergic neurons in the dorsal raphe nucleus (DRN and can increase serotonin (5-HT level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain.

  18. The ventrolateral preoptic nucleus is required for propofol-induced inhibition of locus coeruleus neuronal activity.

    Zhang, Yu; Yu, Tian; Yuan, Jie; Yu, Bu-Wei

    2015-12-01

    The mechanisms underlying the unconsciousness of general anesthesia are not completely understood. Accumulating evidence indicates the ventrolateral preoptic nucleus (VLPO) in the endogenous sleep circuits may contribute to loss of consciousness (LOC) induced by GABA-enhancing anesthetics. However, there are few studies that look into distinct sleep pathway in the sleep-wake system. In the neural pathway from VLPO to the locus coeruleus (LC), we compared the inhibition effect of propofol on the LC activity before and after VLPO lesion in vivo rats. Systemic administration of propofol (20 mg/kg, i.p.) in normal rats caused a fast and obvious inhibition of LC neurons spontaneous firing (from 0.24 ± 0.06 to 0.12 ± 0.03 Hz). The LC neuronal firing rate of VLPO lesion rats only decreased to 0.18 ± 0.05 Hz (P = 0.021 vs. non-VLPO rats) after the propofol injection, and the time to reach the maximal inhibition level was also prolonged in VLPO lesion rats (2.3 ± 0.7 vs. 5.8 ± 1.2 min, P = 0.037). Microinjections of a selective GABAA receptor antagonist (SR95531) into the LC fully reversed the inhibitory effect of propofol on the LC neuronal activity, but did not significantly affect the latency to loss of righting reflex of rats after propofol administration (3.4 ± 0.9 vs. 3.7 ± 1.2 min, P = 0.639). Our results indicated that VLPO is necessary for the propofol-induced inhibition of LC activity, but the LC may not play an important role in the propofol-induced LOC. PMID:26306695

  19. Leptin in nucleus of the solitary tract alters the cardiovascular responses to aortic baroreceptor activation.

    Ciriello, John

    2013-06-01

    Recent data suggests that neurons expressing the long form of the leptin receptor form at least two distinct groups within the caudal nucleus of the solitary tract (NTS): a group within the lateral NTS (Slt) and one within the medial (Sm) and gelantinosa (Sg) NTS. Discrete injections of leptin into Sm and Sg, a region that receives chemoreceptor input, elicit increases in arterial pressure (AP) and renal sympathetic nerve activity (RSNA). However, the effect of microinjections of leptin into Slt, a region that receives baroreceptor input is unknown. Experiments were done in the urethane-chloralose anesthetized, paralyzed and artificially ventilated Wistar or Zucker obese rat to determine leptin's effect in Slt on heart rate (HR), AP and RSNA during electrical stimulation of the aortic depressor nerve (ADN). Depressor sites within Slt were first identified by the microinjection of l-glutamate (Glu; 0.25M; 10nl) followed by leptin microinjections. In the Wistar rat leptin microinjection (50ng; 20nl) into depressor sites within the lateral Slt elicited increases in HR and RSNA, but no changes in AP. Additionally, leptin injections into Slt prior to Glu injections at the same site or to stimulation of the ADN were found to attenuate the decreases in HR, AP and RSNA to both the Glu injection and ADN stimulation. In Zucker obese rats, leptin injections into NTS depressor sites did not elicit cardiovascular responses, nor altered the cardiovascular responses elicited by stimulation of ADN. Those data suggest that leptin acts at the level of NTS to alter the activity of neurons that mediate the cardiovascular responses to activation of the aortic baroreceptor reflex. PMID:23535030

  20. Sensitivity of the hypothalamic paraventricular nucleus to the locomotor-activating effects of neuromedin U in obesity

    Novak, Colleen M.; Zhang, Minzhi; James A Levine

    2007-01-01

    Obesity is associated with a decrease in energy expenditure relative to energy intake. The decrease in physical activity associated with obesity in several species, including humans, contributes to decreased energy expenditure. Several hormones and neuropeptides that affect appetite also modulate physical activity, including neuromedin U (NMU), a peptide found in the gut and brain. We have demonstrated that NMU microinjected into the hypothalamic paraventricular nucleus (PVN) in rats increase...

  1. High-energy neutrino production from photo-hadronic interactions of gamma rays from Active Galactic Nuclei at source

    Arteaga-Velazquez, J C

    2013-01-01

    Recent astronomical observations reveal that Active Galactic Nuclei (AGN) are sources of high-energy radiation. For example, the Fermi-LAT and Hess telescopes have detected gamma-ray emissions from the cores of several types of AGN's. Even more, the Pierre Auger observatory has found a correlation of ultra-high energy cosmic ray events with the position of Active Galactic Nuclei, such as Centaurus A. In this way, according to particle physics, a flux of high-energy neutrinos should be expected from the interactions of cosmic and gamma-rays with the ambient matter and radiation at the source. In this work, estimations of the diffuse neutrino flux from AGN's arising from interactions of the gamma radiation with the gas and dust of the sources will be presented.

  2. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  3. Semianalytic Models of Two-Phase Disk Winds in Active Galactic Nuclei with Combined Hydromagnetic and Radiative Driving

    Everett, John E.

    2002-01-01

    (abridged) We present a semianalytic model of steady-state magnetically and radiatively driven disk outflows in Active Galactic Nuclei (AGNs) consisting of a continuous wind with embedded clouds. The continuous outflow is launched from the disk surface as a centrifugally driven wind, whereas the clouds are uplifted from the disk by the ram pressure of the continuous outflow. In addition, the continuous wind and clouds are subject to both line and continuum radiative acceleration. We describe ...

  4. Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    Cheung, Edmond; Athanassoula, E; Bamford, Steven P; Bell, Eric F; Bosma, A; Cardamone, Carolin N; Casteels, Kevin R V; Faber, S M; Fang, Jerome J; Fortson, Lucy F; Kocevski, Dale D; Koo, David C; Laine, Seppo; Lintott, Chris; Masters, Karen L; Melvin, Thomas; Nichol, Robert C; Schawinski, Kevin; Simmons, Brooke; Smethurst, Rebecca; Willett, Kyle W

    2014-01-01

    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.

  5. New Swift/XRT observations confirm that the active Galactic center transient is AX J1745.6-2901

    Degenaar, N.; Kennea, J.A.; Wijnands, R.; Reynolds, M. T.; Miller, J M; Gehrels, N.

    2013-01-01

    Ongoing Swift/XRT monitoring observations of the Galactic center have allowed us to refine the position of the X-ray transient that is currently active (ATel #5222). Utilizing the position-enhancement algorithm described by Goad et al. (2007) and Evans et al. (2009), we find: R. A. (J2000) = 17:45:35.64 Dec. (J2000) = -29:01:35.9

  6. KEPLER PHOTOMETRY OF FOUR RADIO-LOUD ACTIVE GALACTIC NUCLEI IN 2010-2012

    Wehrle, Ann E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Wiita, Paul J.; Di Lorenzo, Paolo; Revalski, Mitchell; Silano, Daniel; Sprague, Dan [Department of Physics, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628 (United States); Unwin, Stephen C., E-mail: awehrle@spacescience.org [Jet Propulsion Laboratory, Mail Stop 321-100, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2013-08-20

    We have used Kepler photometry to characterize variability in four radio-loud active galactic nuclei (AGN; three quasars and one object tentatively identified as a Seyfert 1.5 galaxy) on timescales from minutes to months, comparable to the light crossing time of the accretion disk around the central supermassive black hole or the base of the relativistic jet. Kepler's almost continuous observations provide much better temporal coverage than is possible from ground-based observations. We report the first such data analyzed for quasars. We have constructed power spectral densities using eight Kepler quarters of long-cadence (30-minute) data for three AGN, six quarters for one AGN and two quarters of short-cadence (1-minute) data for all four AGN. On timescales longer than about 0.2-0.6 days, we find red noise with mean power-law slopes ranging from -1.8 to -1.2, consistent with the variability originating in turbulence either behind a shock or within an accretion disk. Each AGN has a range of red noise slopes which vary slightly by month and quarter of observation. No quasi-periodic oscillations of astrophysical origin were detected. We detected flares of several days long when brightness increased by 3%-7% in two objects. No flares on timescales of minutes to hours were detected. Our observations imply that the duty cycle for enhanced activity in these radio-loud AGN is small. These well-sampled AGN light curves provide an impetus to develop more detailed models of turbulence in jets and instabilities in accretion disks.

  7. XMM FOLLOW-UP OBSERVATIONS OF THREE SWIFT BAT-SELECTED ACTIVE GALACTIC NUCLEI

    We present XMM-Newton observations of three active galactic nuclei (AGNs) taken as part of a hunt to find very heavily obscured Compton-thick AGNs. For obscuring columns greater than 1025 cm-2, AGNs are only visible at energies below 10 keV via reflected/scattered radiation, characterized by a flat power law. We therefore selected three objects (ESO 417-G006, IRAS 05218-1212, and MCG -01-05-047) from the Swift Burst Alert Telescope (BAT) hard X-ray survey catalog with Swift X-ray Telescope (XRT) 0.5-10 keV spectra with flat power-law indices as candidate Compton-thick sources for follow-up observations with the more sensitive instruments on XMM-Newton. The XMM spectra, however, rule out reflection-dominated models based on the weakness of the observed Fe Kα lines. Instead, the spectra are well fit by a model of a power-law continuum obscured by a Compton-thin absorber plus a soft excess. This result is consistent with previous follow-up observations of two other flat-spectrum BAT-detected AGNs. Thus, out of the six AGNs in the 22 month BAT catalog with apparently flat Swift XRT spectra, all five that have had follow-up observations are not likely Compton thick. We also present new optical spectra of two of these objects, IRAS 05218-1212 and MCG -01-05-047. Interestingly, though both the AGNs have similar X-ray spectra, their optical spectra are completely different, adding evidence against the simplest form of the geometric unified model of AGNs. IRAS 05218-1212 appears in the optical as a Seyfert 1, despite the ∼8.5 x 1022 cm-2 line-of-sight absorbing column indicated by its X-ray spectrum. MCG -01-05-047's optical spectrum shows no sign of AGN activity; it appears as a normal galaxy.

  8. KEPLER PHOTOMETRY OF FOUR RADIO-LOUD ACTIVE GALACTIC NUCLEI IN 2010-2012

    We have used Kepler photometry to characterize variability in four radio-loud active galactic nuclei (AGN; three quasars and one object tentatively identified as a Seyfert 1.5 galaxy) on timescales from minutes to months, comparable to the light crossing time of the accretion disk around the central supermassive black hole or the base of the relativistic jet. Kepler's almost continuous observations provide much better temporal coverage than is possible from ground-based observations. We report the first such data analyzed for quasars. We have constructed power spectral densities using eight Kepler quarters of long-cadence (30-minute) data for three AGN, six quarters for one AGN and two quarters of short-cadence (1-minute) data for all four AGN. On timescales longer than about 0.2-0.6 days, we find red noise with mean power-law slopes ranging from –1.8 to –1.2, consistent with the variability originating in turbulence either behind a shock or within an accretion disk. Each AGN has a range of red noise slopes which vary slightly by month and quarter of observation. No quasi-periodic oscillations of astrophysical origin were detected. We detected flares of several days long when brightness increased by 3%-7% in two objects. No flares on timescales of minutes to hours were detected. Our observations imply that the duty cycle for enhanced activity in these radio-loud AGN is small. These well-sampled AGN light curves provide an impetus to develop more detailed models of turbulence in jets and instabilities in accretion disks

  9. X-ray Polarimetry - a Tool for the Galactic center diagnosis

    Marin, F

    2015-01-01

    Was the Milky Way galaxy a low-luminosity active galactic nucleus (AGN) in the past? Can we find traces of remnant structures supporting this idea? What is the three-dimensional arrangement of matter around our central supermassive black hole? A number of fundamental questions concerning our own Galactic center remain controversial. To reveal the structure of the high-energy sky around our galactic core, a technique more sensitive to the morphology of the emitters than spectroscopy is needed. In this lecture note, I describe how X-ray polarimetry can open a new observational window by precisely measuring the three-dimensional position of the scattering material in the Galactic center. The observed polarization degree and polarization position angle would also determine unambiguously the primary source of emission and trace the centennial history of our supermassive black hole by detecting echoes of its past activity thanks to astrophysical mirrors. Finally, the synergy between X-ray polarimetry and infrared a...

  10. Keck/ESI Long-slit Spectroscopy of SBS 1421+511: A Recoiling Quasar Nucleus in an Active Galaxy Pair?

    Sun, Luming; Zhou, Hongyan; Hao, Lei; Jiang, Peng; Ge, Jian; Ji, Tuo; Ma, Jingzhe; Zhang, Shaohua; Shu, Xinwen

    2016-02-01

    We present Keck/Echellette Spectrograph and Imager long-slit spectroscopy of SBS 1421+511, a system consisting of a quasar at z = 0.276 and an extended source 3″ north of the quasar. The quasar shows a blue-skewed profile of Balmer broad emission lines, which can be well modeled as emissions from a circular disk with a blueshift velocity of ˜1400 km s-1. The blueshift is better interpreted as resulting from a recoiling active black hole than from a super-massive black hole binary, since the line profile almost kept steady for over one decade in the quasar rest frame. Alternative interpretations are possible as well, such as emissions from a bipolar outflow or a circular disk with spiral emissivity perturbations. The extended source shows Seyfert-like narrow-line ratios and a [O iii] luminosity of \\gt 1.4× {10}8{L}⊙ , with almost the same redshift as the quasar and a projected distance of 12.5 kpc at the redshift. SBS 1421+511 is thus likely to be an interacting galaxy pair with a dual active galactic nucleus. Alternatively, the quasar companion only appears to be active but not necessarily so: the gas before/in/behind the companion galaxy is illuminated by the quasar as an extended emission-line region is detected at a similar distance in the opposite direction southern to the quasar, which may be generated either by tidal interactions between the galaxy pair or large-scale outflows from the quasar.

  11. GABA signaling in the nucleus tractus solitarius sets the level of activity in dorsal motor nucleus of the vagus cholinergic neurons in the vagovagal circuit

    Herman, Melissa A.; Cruz, Maureen T.; Sahibzada, Niaz; Verbalis, Joseph; Gillis, Richard A.

    2008-01-01

    It has been proposed that there is an “apparent monosynaptic” connection between gastric vagal afferent nerve terminals and inhibitory projection neurons in the nucleus tractus solitarius (NTS) and that two efferent parallel pathways from the dorsal motor nucleus of the vagus (DMV) influence peripheral organs associated with these reflexes (6). The purpose of our study was to verify the validity of these views as they relate to basal control of gastric motility. To test the validity of a dire...

  12. Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome.

    Nicholas A Donnelly

    Full Text Available Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC and nucleus accumbens (NAcb and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT, which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.

  13. Synchronization of PER1 protein in Parabrachial nucleus in a natural model of food anticipatory activity

    Juárez, Claudia; Morgado, Elvira; Waliszewski, Stefan M.; Martínez, Armando J.; Meza, Enrique; Caba, Mario

    2012-01-01

    Rabbit pups represent a natural model of food anticipatory activity (FAA). FAA is the behavioral output of a putative food entrainable oscillator (FEO). It had been suggested that the FEO is comprised of a distributed system of clocks that work in concert in response to gastrointestinal input by food. Scheduled food intake synchronizes several nuclei in the brain, and the hypothalamus has received particular attention. On the contrary, brainstem nuclei, despite being among the brain structures to first receive food cues, have been scarcely studied. Here we analyzed by immunohistochemistry possible oscillation of FOS and PER1 proteins through a complete 24 h cycle in the dorsal vagal complex (DVC) and parabrachial nucleus (PBN) of seven to eight day old rabbit pups scheduled to nurse during the night (02:00) or day (10:00) and also in fasted subjects to explore the possible persistence of oscillations. We found a clear induction of FOS that peaks 1.5 h after nursing in all nuclei studied. PER1 was only synchronized in the PBN, reaching highest values 12 h after nursing. Only PER1 oscillations persisted in fasted subjects. We conclude that the DVC nuclei are probably more related to the transmission of food cues to other brain regions but that the PBN participates in the integration of information essential for FAA. Our results support previous findings suggesting that the DVC nuclei, but not PBN, are not essential for FAA. We suggest that PBN is a key component of the proposed distributed system of clocks involved in FAA. PMID:22471601

  14. X-ray variability and the inner region in active galactic nuclei

    We present theoretical models of X-ray variability attributable to orbital signatures from an accretion disk including emission region size, quasi-periodic oscillations (QPOs), and its quality factor Q, and the emergence of a break frequency in the power spectral density shape. We find a fractional variability amplitude of Fvar∝M∙−0.4. We conduct a time series analysis on X-ray light curves (0.3-10 keV) of a sample of active galactic nuclei (AGNs). A statistically significant bend frequency is inferred in 9 of 58 light curves (16%) from 3 AGNs for which the break timescale is consistent with the reported BH spin but not with the reported BH mass. Upper limits of 2.85 × 107 M ☉ in NGC 4051, 8.02 × 107 M ☉ in MRK 766, and 4.68 × 107 M ☉ in MCG-6-30-15 are inferred for maximally spinning BHs. For REJ 1034+396 where a QPO at 3733 s was reported, we obtain an emission region size of (6-6.5) M and a BH spin of a ≲ 0.08. The relativistic inner region of a thin disk, dominated by radiation pressure and electron scattering, is likely to host the orbital features as the simulated Q ranges from 6.3 × 10–2 to 4.25 × 106, containing the observed Q. The derived value of Q ∼ 32 for REJ 1034+396 therefore suggests that the AGN hosts a thin disk.

  15. X-ray variability and the inner region in active galactic nuclei

    Mohan, P.; Mangalam, A., E-mail: prashanth@iiap.res.in, E-mail: mangalam@iiap.res.in [Indian Institute of Astrophysics, Sarjapur Road, Koramangala, Bangalore 560034 (India)

    2014-08-20

    We present theoretical models of X-ray variability attributable to orbital signatures from an accretion disk including emission region size, quasi-periodic oscillations (QPOs), and its quality factor Q, and the emergence of a break frequency in the power spectral density shape. We find a fractional variability amplitude of F{sub var}∝M{sub ∙}{sup −0.4}. We conduct a time series analysis on X-ray light curves (0.3-10 keV) of a sample of active galactic nuclei (AGNs). A statistically significant bend frequency is inferred in 9 of 58 light curves (16%) from 3 AGNs for which the break timescale is consistent with the reported BH spin but not with the reported BH mass. Upper limits of 2.85 × 10{sup 7} M {sub ☉} in NGC 4051, 8.02 × 10{sup 7} M {sub ☉} in MRK 766, and 4.68 × 10{sup 7} M {sub ☉} in MCG-6-30-15 are inferred for maximally spinning BHs. For REJ 1034+396 where a QPO at 3733 s was reported, we obtain an emission region size of (6-6.5) M and a BH spin of a ≲ 0.08. The relativistic inner region of a thin disk, dominated by radiation pressure and electron scattering, is likely to host the orbital features as the simulated Q ranges from 6.3 × 10{sup –2} to 4.25 × 10{sup 6}, containing the observed Q. The derived value of Q ∼ 32 for REJ 1034+396 therefore suggests that the AGN hosts a thin disk.

  16. LONG-TERM OPTICAL CONTINUUM COLOR VARIABILITY OF NEARBY ACTIVE GALACTIC NUCLEI

    We examine whether the spectral energy distribution of optical continuum emission of active galactic nuclei (AGNs) changes during flux variation, based on accurate and frequent monitoring observations of 11 nearby Seyfert galaxies and QSOs carried out in the B, V, and I bands for seven years by the MAGNUM telescope. The multi-epoch flux data in any two different bands obtained on the same night show a very tight linear flux-to-flux relationship for all target AGNs. The flux of the host galaxy within the photometric aperture is carefully estimated by surface brightness fitting to available high-resolution Hubble Space Telescope images and MAGNUM images. The flux of narrow emission lines in the photometric bands is also estimated from available spectroscopic data. We find that the non-variable component of the host galaxy plus narrow emission lines for all target AGNs is located on the fainter extension of the linear regression line of multi-epoch flux data in the flux-to-flux diagram. This result strongly indicates that the spectral shape of AGN continuum emission in the optical region (∼4400-7900 A) does not systematically change during flux variation. The trend of spectral hardening that optical continuum emission becomes bluer as it becomes brighter, which has been reported by many studies, is therefore interpreted as the domination of the variable component of the nearly constant spectral shape of an AGN as it brightens over the non-variable component of the host galaxy plus narrow lines, which is usually redder than AGN continuum emission.

  17. MEASURING X-RAY VARIABILITY IN FAINT/SPARSELY SAMPLED ACTIVE GALACTIC NUCLEI

    Allevato, V. [Department of Physics, University of Helsinki, Gustaf Haellstroemin katu 2a, FI-00014 Helsinki (Finland); Paolillo, M. [Department of Physical Sciences, University Federico II, via Cinthia 6, I-80126 Naples (Italy); Papadakis, I. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, 71003 Heraklion (Greece); Pinto, C. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584-CA Utrecht (Netherlands)

    2013-07-01

    We study the statistical properties of the normalized excess variance of variability process characterized by a ''red-noise'' power spectral density (PSD), as in the case of active galactic nuclei (AGNs). We perform Monte Carlo simulations of light curves, assuming both a continuous and a sparse sampling pattern and various signal-to-noise ratios (S/Ns). We show that the normalized excess variance is a biased estimate of the variance even in the case of continuously sampled light curves. The bias depends on the PSD slope and on the sampling pattern, but not on the S/N. We provide a simple formula to account for the bias, which yields unbiased estimates with an accuracy better than 15%. We show that the normalized excess variance estimates based on single light curves (especially for sparse sampling and S/N < 3) are highly uncertain (even if corrected for bias) and we propose instead the use of an ''ensemble estimate'', based on multiple light curves of the same object, or on the use of light curves of many objects. These estimates have symmetric distributions, known errors, and can also be corrected for biases. We use our results to estimate the ability to measure the intrinsic source variability in current data, and show that they could also be useful in the planning of the observing strategy of future surveys such as those provided by X-ray missions studying distant and/or faint AGN populations and, more in general, in the estimation of the variability amplitude of sources that will result from future surveys such as Pan-STARRS and LSST.

  18. Role of active galactic nuclei in the luminous infrared galaxy phase at z ≤ 3

    Lin, Ming-Yi; Hashimoto, Yasuhiro; Foucaud, Sébastien

    2016-03-01

    To understand the interactions between active galactic nuclei (AGNs) and star formation during the evolution of galaxies, we investigate 142 galaxies detected in both X-ray and 70 μm observations in the COSMOS (Cosmic Evolution Survey) field. All of our data are obtained from the archive X-ray point-source catalogues from Chandra and XMM-Newton observations, and the far-infrared 70 μm point-source catalogue from Spitzer-MIPS observations. Although the IRAC [3.6 μm]-[4.5 μm] versus [5.8 μm]-[8.0 μm] colours of our sample indicate that only ˜63 per cent of our sources would be classified as AGNs, the ratio of the rest-frame 2-10 keV luminosity to the total infrared luminosity (8-1000 μm) shows that the entire sample has comparatively higher X-ray luminosity than that expected from pure star-forming galaxies, suggesting the presence of an AGN in all of our sources. From an analysis of the X-ray hardness ratio, we find that sources with both 70 μm and X-ray detection tend to have a higher hardness ratio relative to the whole X-ray-selected source population, suggesting the presence of more X-ray absorption in the 70 μm detected sources. In addition, we find that the observed far-infrared colours of 70 μm detected sources with and without X-ray emission are similar, suggesting the far-infrared emission could be mainly powered by star formation.

  19. LINE SHIFTS, BROAD-LINE REGION INFLOW, AND THE FEEDING OF ACTIVE GALACTIC NUCLEI

    Velocity-resolved reverberation mapping suggests that the broad-line regions (BLRs) of active galactic nuclei (AGNs) can have significant net inflow. We use the STOKES radiative transfer code to show that electron and Rayleigh scattering off the BLR and torus naturally explains the blueshifted profiles of high-ionization lines and the ionization dependence of the blueshifts. This result is insensitive to the geometry of the scattering region. If correct, then this model resolves the long-standing conflict between the absence of outflow implied by velocity-resolved reverberation mapping and the need for outflow if the blueshifting is the result of obscuration. The accretion rate implied by the inflow is sufficient to power the AGN. We suggest that the BLR is part of the outer accretion disk and that similar magnetohydrodynamic processes are operating. In the scattering model, the blueshifting is proportional to the accretion rate so high-accretion-rate AGNs will show greater high-ionization line blueshifts, as is observed. Scattering can lead to systematically too high black hole mass estimates from the C IV line. We note many similarities between narrow-line region (NLR) and BLR blueshiftings, and suggest that NLR blueshiftings have a similar explanation. Our model explains the higher blueshifts of broad absorption line QSOs if they are more highly inclined. Rayleigh scattering from the BLR and torus could be more important in the UV than electron scattering for predominantly neutral material around AGNs. The importance of Rayleigh scattering versus electron scattering can be assessed by comparing line profiles at different wavelengths arising from the same emission-line region.

  20. IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA

    Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L2-10keV(erg s–1) ≥44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log NH (cm–2) = 23.5 ± 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.

  1. HerMES: disentangling active galactic nuclei and star formation in the radio source population

    Rawlings, J. I.; Page, M. J.; Symeonidis, M.; Bock, J.; Cooray, A.; Farrah, D.; Guo, K.; Hatziminaoglou, E.; Ibar, E.; Oliver, S. J.; Roseboom, I. G.; Scott, Douglas; Seymour, N.; Vaccari, M.; Wardlow, J. L.

    2015-10-01

    We separate the extragalactic radio source population above ˜50 μJy into active galactic nuclei (AGN) and star-forming sources. The primary method of our approach is to fit the infrared spectral energy distributions (SEDs), constructed using Spitzer/IRAC (Infrared Array Camera) and Multiband Imaging Photometer for Spitzer (MIPS) and Herschel/SPIRE photometry, of 380 radio sources in the Extended Chandra Deep Field-South. From the fitted SEDs, we determine the relative AGN and star-forming contributions to their infrared emission. With the inclusion of other AGN diagnostics such as X-ray luminosity, Spitzer/IRAC colours, radio spectral index and the ratio of star-forming total infrared flux to k-corrected 1.4 GHz flux density, qIR, we determine whether the radio emission in these sources is powered by star formation or by an AGN. The majority of these radio sources (60 per cent) show the signature of an AGN at some wavelength. Of the sources with AGN signatures, 58 per cent are hybrid systems for which the radio emission is being powered by star formation. This implies that radio sources which have likely been selected on their star formation have a high AGN fraction. Below a 1.4 GHz flux density of 1 mJy, along with finding a strong contribution to the source counts from pure star-forming sources, we find that hybrid sources constitute 20-65 per cent of the sources. This result suggests that hybrid sources have a significant contribution, along with sources that do not host a detectable AGN, to the observed flattening of the source counts at ˜1 mJy for the extragalactic radio source population.

  2. MEASURING X-RAY VARIABILITY IN FAINT/SPARSELY SAMPLED ACTIVE GALACTIC NUCLEI

    We study the statistical properties of the normalized excess variance of variability process characterized by a ''red-noise'' power spectral density (PSD), as in the case of active galactic nuclei (AGNs). We perform Monte Carlo simulations of light curves, assuming both a continuous and a sparse sampling pattern and various signal-to-noise ratios (S/Ns). We show that the normalized excess variance is a biased estimate of the variance even in the case of continuously sampled light curves. The bias depends on the PSD slope and on the sampling pattern, but not on the S/N. We provide a simple formula to account for the bias, which yields unbiased estimates with an accuracy better than 15%. We show that the normalized excess variance estimates based on single light curves (especially for sparse sampling and S/N < 3) are highly uncertain (even if corrected for bias) and we propose instead the use of an ''ensemble estimate'', based on multiple light curves of the same object, or on the use of light curves of many objects. These estimates have symmetric distributions, known errors, and can also be corrected for biases. We use our results to estimate the ability to measure the intrinsic source variability in current data, and show that they could also be useful in the planning of the observing strategy of future surveys such as those provided by X-ray missions studying distant and/or faint AGN populations and, more in general, in the estimation of the variability amplitude of sources that will result from future surveys such as Pan-STARRS and LSST.

  3. BLACK HOLE SPIN AND THE RADIO LOUD/QUIET DICHOTOMY OF ACTIVE GALACTIC NUCLEI

    Radio loud active galactic nuclei (AGNs) are on average 1000 times brighter in the radio band compared to radio quiet AGNs. We investigate whether this radio loud/quiet dichotomy can be due to differences in the spin of the central black holes (BHs) that power the radio-emitting jets. Using general relativistic magnetohydrodynamic simulations, we construct steady state axisymmetric numerical models for a wide range of BH spins (dimensionless spin parameter 0.1 ≤ a ≤ 0.9999) and a variety of jet geometries. We assume that the total magnetic flux through the BH horizon at radius rH(a) is held constant. If the BH is surrounded by a thin accretion disk, we find that the total BH power output depends approximately quadratically on the angular frequency of the hole, P ∝ Ω2H ∝ (a/rH)2. We conclude that, in this scenario, differences in the BH spin can produce power variations of only a few tens at most. However, if the disk is thick such that the jet subtends a narrow solid angle around the polar axis, then the power dependence becomes much steeper, P ∝ Ω4H or even ∝Ω6H. Power variations of 1000 are then possible for realistic BH spin distributions. We derive an analytic solution that accurately reproduces the steeper scaling of jet power with ΩH and we provide a numerical fitting formula that reproduces all our simulation results. We discuss other physical effects that might contribute to the observed radio loud/quiet dichotomy of AGNs.

  4. THE EVOLUTION OF ACTIVE GALACTIC NUCLEI IN WARM DARK MATTER COSMOLOGY

    Menci, N.; Fiore, F.; Lamastra, A. [INAF, Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio (Italy)

    2013-04-01

    Recent measurements of the abundance of active galactic nuclei (AGNs) with low luminosities (L{sub 2-10} {<=} 10{sup 44} erg s{sup -1} in the 2-10 keV energy band) at high redshifts (z {>=} 4) provide a serious challenge for cold dark matter (CDM) models based on interaction-driven fueling of AGNs. Using a semi-analytic model of galaxy formation we investigate how such observations fit in a warm dark matter (WDM) scenario of galaxy formation, and compare the results with those obtained in the standard CDM scenario with different efficiencies for the stellar feedback. Taking on our previous exploration of galaxy formation in WDM cosmology, we assume as a reference case a spectrum which is suppressed-compared to the standard CDM case-below a cutoff scale Almost-Equal-To 0.2 Mpc corresponding (for thermal relic WDM particles) to a mass m{sub X} = 0.75 keV. We run our fiducial semi-analytic model with such a WDM spectrum to derive AGN luminosity functions from z Almost-Equal-To 6 to the present over a wide range of luminosities (10{sup 43} {<=} L{sub 2-10}/erg s{sup -1} {<=} 10{sup 46} in the 2-10 keV X-ray band), to compare with recent observations and with the results in the CDM case. When compared with the standard CDM case, the luminosity distributions we obtain assuming a WDM spectrum are characterized by a similar behavior at low redshift, and by a flatter slope at faint magnitudes for z {>=} 3, which provide an excellent fit to present observations. We discuss how such a result compares with CDM models with maximized feedback efficiency, and how future deep AGN surveys will allow for a better discrimination between feedback and cosmological effects on the evolution of AGNs in interaction-driven models for AGN fueling.

  5. The INTEGRAL High-energy Cut-off Distribution of Type 1 Active Galactic Nuclei

    Malizia, A.; Molina, M.; Bassani, L.; Stephen, J. B.; Bazzano, A.; Ubertini, P.; Bird, A. J.

    2014-02-01

    In this Letter we present the primary continuum parameters, the photon index Γ, and the high-energy cut-off E c of 41 type-1 Seyfert galaxies extracted from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) complete sample of active galactic nuclei (AGNs). We performed broadband (0.3-100 keV) spectral analysis by simultaneously fitting the soft and hard X-ray spectra obtained by XMM and INTEGRAL/IBIS-Swift/BAT, respectively, in order to investigate the general properties of these parameters, in particular their distribution and mean values. We find a mean photon index of 1.73 with a standard deviation of 0.17 and a mean high-energy cut-off of 128 keV with a standard deviation of 46 keV for the whole sample. This is the first time that the cut-off energy is constrained in such a large number of AGNs. We have 26 measurements of the cut-off, which corresponds to 63% of the entire sample, distributed between 50 and 200 keV. There are a further 11 lower limits mostly below 300 keV. Using the main parameters of the primary continuum, we have been able to obtain the actual physical parameters of the Comptonizing region, i.e., the plasma temperature kT e from 20 to 100 keV and the optical depth τ < 4. Finally, with the high signal-to-noise ratio spectra starting to come from NuSTAR it will soon be possible to better constrain the cut-off values in many AGNs, allowing the determination of more physical models and thus better understand the continuum emission and geometry of the region surrounding black holes.

  6. INVISIBLE ACTIVE GALACTIC NUCLEI. I. SAMPLE SELECTION AND OPTICAL/NEAR-IR SPECTRAL ENERGY DISTRIBUTIONS

    In order to find more examples of the elusive high-redshift molecular absorbers, we have embarked on a systematic discovery program for highly obscured, radio-loud 'invisible active galactic nuclei' using the Very Large Array Faint Images of the Radio Sky at Twenty centimeters radio survey in conjunction with the Sloan Digital Sky Survey (SDSS) to identify 82 strong (≥300 mJy) radio sources positionally coincident with late-type, presumably gas-rich galaxies. In this first paper, the basic properties of this sample are described including the selection process and the analysis of the spectral energy distributions (SEDs) derived from the optical (SDSS) + near-IR (NIR) photometry obtained by us at the Apache Point Observatory 3.5 m. The NIR images confirm the late-type galaxy morphologies found by SDSS for these sources in all but a few (6 of 70) cases (12 previously well studied or misclassified sources were culled). Among 70 sources in the final sample, 33 show galaxy type SEDs, 17 have galaxy components to their SEDs, and 20 have quasar power-law continua. At least nine sources with galaxy SEDs have K-band flux densities too faint to be giant ellipticals if placed at their photometric redshifts. Photometric redshifts for this sample are analyzed and found to be too inaccurate for an efficient radio-frequency absorption line search; spectroscopic redshifts are required. A few new spectroscopic redshifts for these sources are presented here but more will be needed to make significant progress in this field. Subsequent papers will describe the radio continuum properties of the sample and the search for redshifted H I 21 cm absorption.

  7. CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ∼30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales σ-circumflex. Imposing cuts on minimum τ and σ-circumflex allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E ≥ 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ∼3 years in the rest frame of the jet, in contrast with the ∼320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  8. An optical and near-infrared color-magnitude diagram for type I Active Galactic Nuclei

    Palmer, Robert J.; Gibbs, John; Gorjian, Varoujan; Pruett, Lee; Young, Diedre; Boyd, Robert; Byrd, Joy; Cheshier, Jaicie; Chung, Stephanie; Clark, Ruby; Fernandez, Joseph; Gonzales, Elyse; Kumar, Anika; McGinnis, Gillian; Palmer, John; Perrine, Luke; Phelps, Brittney; Reginio, Margaret; Richter, Kristi; Sanchez, Elias; Washburn, Claire

    2016-01-01

    This project is seeking another standard candle for measuring cosmic distances by trying to establish a color-magnitude diagram for active galactic nuclei (AGN). Type I AGN selected from the NASA/IPAC Extragalactic Database (NED) were used to establish a correlation between the color and the luminosity of AGN. This work builds on previous NASA/IPAC Teacher Archive Research Program team attempts to establish such a relationship. This is novel in that it uses both optical and 1-2 micron near-infrared (NIR) wavelengths as a better color discriminator of the transition between accretion-dominated and dust/torus-dominated emission.Photometric data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS) was extracted and analyzed for type I AGN with redshifts z < 0.20. Our color-magnitude diagram for the area where the dust vaporizes is analogous to a stellar Hertzsprung-Russell (HR) diagram. Data from SDSS and 2MASS were specifically selected to focus on the sublimation boundary between the coolest part of the accretion disk and the hottest region of the inner edge of the dusty torus surrounding the accretion disk to find the greatest ratio for the color. The more luminous the AGN, the more extended the dust sublimation radius, causing a larger hot dust emitting surface area, which corresponds to a greater NIR luminosity.Our findings suggest that the best correlations correspond to colors associated with the Sloan z band and any of the 2MASS bands with slight variations dependent on redshift. This may result in a tool for using AGN as a standard for cosmic distances. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  9. GPU-BASED MONTE CARLO DUST RADIATIVE TRANSFER SCHEME APPLIED TO ACTIVE GALACTIC NUCLEI

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman and Wood method to reduce the calculation time, and the Fleck and Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 μm silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.

  10. Modulation of the firing activity of female dorsal raphe nucleus serotonergic neurons by neuroactive steroids.

    Robichaud, M; Debonnel, G

    2004-07-01

    Important gender differences in mood disorders result in a greater susceptibility for women. Accumulating evidence suggests a reciprocal modulation between the 5-hydroxytryptamine (5-HT) system and neuroactive steroids. Previous data from our laboratory have shown that during pregnancy, the firing activity of 5-HT neurons increases in parallel with progesterone levels. This study was undertaken to evaluate the putative modulation of the 5-HT neuronal firing activity by different neurosteroids. Female rats received i.c.v. for 7 days a dose of 50 micro g/kg per day of one of the following steroids: progesterone, pregnenolone, 5beta-pregnane-3,20-dione (5beta-DHP), 5beta-pregnan-3alpha-ol,20-one, 5beta-pregnan-3beta-ol,20-one, 5alpha-pregnane-3,20-dione, 5alpha-pregnan-3alpha-ol,20-one (allopregnanolone, 3alpha,5alpha-THP), 5alpha-pregnane-3beta-ol,20-one and dehydroepiandrosterone (DHEA). 5beta-DHP and DHEA were also administered for 14 and 21 days (50 micro g/kg per day, i.c.v.) as well as concomitantly with the selective sigma 1 (sigma1) receptor antagonist NE-100. In vivo, extracellular unitary recording of 5-HT neurons performed in the dorsal raphe nucleus of these rats revealed that DHEA, 5beta-DHP and 3alpha,5alpha-THP significantly increased the firing activity of the 5-HT neurons. Interestingly, 5beta-DHP and DHEA showed different time-frames for their effects with 5beta-DHP having its greatest effect after 7 days to return to control values after 21 days, whereas DHEA demonstrated a sustained effect over the 21 day period. NE-100 prevented the effect of DHEA but not of 5beta-DHP, thus indicating that its sigma1 receptors mediate the effect of DHEA but not that of 5beta-DHP. In conclusion, our results offer a cellular basis for potential antidepressant effects of neurosteroids, which may prove important particularly for women with affective disorders. PMID:15225127

  11. CaMKII Activity in the Ventral Tegmental Area Gates Cocaine-Induced Synaptic Plasticity in the Nucleus Accumbens

    Liu, Xiaojie; Liu, Yong; Zhong, Peng; Wilkinson, Brianna; Qi, Jinshun; Olsen, Christopher M; Bayer, K. Ulrich; Liu, Qing-song

    2013-01-01

    Addictive drugs such as cocaine induce synaptic plasticity in discrete regions of the reward circuit. The aim of the present study is to investigate whether cocaine-evoked synaptic plasticity in the ventral tegmental area (VTA) and nucleus accumbens (NAc) is causally linked. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of long-term synaptic plasticity, learning, and drug addiction. We examined whether blocking CaMKII activity in the VTA affected cocaine conditio...

  12. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    Hu, Y.; Liu, X.; D. QIAO

    2015-01-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting ex...

  13. Mechanical Compression and Nucleus Pulposus Application on Dorsal Root Ganglia Differentially Modify Evoked Neuronal Activity in the Thalamus

    Nilsson, Elin; Brisby, Helena; Rask, Katarina; Hammar, Ingela

    2013-01-01

    Abstract A combination of mechanical compression caused by a protruding disc and leakage of nucleus pulposus (NP) from the disc core is presumed to contribute to intervertebral disc hernia-related pain. Experimental models of disc hernia including both components have resulted in changes in neuronal activity at the level of the dorsal root ganglion (DRG) and spinal cord, but changes within the brain have been less well studied. However, acute application of NP to a DRG without mechanical comp...

  14. Nucleus Paragigantocellularis Afferents in Male and Female Rats: Organization, Gonadal Steroid Sensitivity, and Activation During Sexual Behavior

    Normandin, Joseph J.; Murphy, Anne Z.

    2008-01-01

    The central regulation of genital reflexes is poorly understood. The brainstem nucleus paragigantocellularis (nPGi) of rats is a well-established source of tonic inhibition of genital reflexes. However the organization, gonadal steroid sensitivity, and activity of nPGi afferents during sex have not been fully characterized in male and female rats. To delineate the anatomical and physiological organization of nPGi afferents, the retrograde tracer Fluorogold (FG) was injected into the nPGi of s...

  15. Activation of Astroglial Calcium Signaling by Endogenous Metabolites Succinate and Gamma-Hydroxybutyrate in the Nucleus Accumbens

    Molnár, Tünde; Héja, László; Emri, Zsuzsa; Simon, Ágnes; Nyitrai, Gabriella; Pál, Ildikó; Kardos, Julianna

    2011-01-01

    Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signaling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC) and gamma-hydroxybutyrate (GHB) that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc). Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neur...

  16. Activation of astroglial calcium signaling by endogenous metabolites succinate and gamma-hydroxybutyrate in the nucleus accumbens

    Zsuzsa Emri; Julianna Kardos

    2011-01-01

    Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signalling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC) and gamma-hydroxybutyrate (GHB) that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc). Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neu...

  17. Activation of CREB in the nucleus accumbens shell produces anhedonia and resistance to extinction of fear in rats

    Muschamp, John W.; Van’t Veer, Ashlee; Parsegian, Aram; Gallo, Miranda S.; Chen, Melissa; Neve, Rachael L; Meloni, Edward G.; Carlezon, William A.

    2011-01-01

    Stress triggers psychiatric conditions including depressive and anxiety disorders. The mechanisms by which stress produces persistent changes in behavior are not fully understood. Here we show in rats that stress (footshock) activates the transcription factor CREB (cAMP response element binding protein) within the nucleus accumbens shell (NAS), a brain area involved in encoding reward and aversion. To examine the behavioral significance of altered CREB function in the NAS, we used viral vecto...

  18. The anterior and posterior pedunculopontine tegmental nucleus are involved in behavior and neuronal activity of the cuneiform and entopeduncular nuclei.

    Jin, X; Schwabe, K; Krauss, J K; Alam, M

    2016-05-13

    Loss of cholinergic neurons in the mesencephalic locomotor region, comprising the pedunculopontine nucleus (PPN) and the cuneiform nucleus (CnF), is related to gait disturbances in late stage Parkinson's disease (PD). We investigate the effect of anterior or posterior cholinergic lesions of the PPN on gait-related motor behavior, and on neuronal network activity of the PPN area and basal ganglia (BG) motor loop in rats. Anterior PPN lesions, posterior PPN lesions or sham lesions were induced by stereotaxic microinjection of the cholinergic toxin AF64-A or vehicle in male Sprague-Dawley rats. First, locomotor activity (open field), postural disturbances (Rotarod) and gait asymmetry (treadmill test) were assessed. Thereafter, single-unit and oscillatory activities were measured in the non-lesioned area of the PPN, the CnF and the entopeduncular nucleus (EPN), the BG output region, with microelectrodes under urethane anesthesia. Additionally, ECoG was recorded in the motor cortex. Injection of AF64-A into the anterior and posterior PPN decreased cholinergic cell counts as compared to naive controls (Ppathophysiology of gait disturbance in PD. PMID:26880033

  19. High-frequency oscillations and seizure activity and in the human anterior nucleus of the thalamus

    Rektor, I.; Doležalová, I.; Chrastina, J.; Jurák, Pavel; Halámek, Josef; Brázdil, M.

    2015-01-01

    Roč. 56, S1 (2015), s. 29-30. ISSN 0013-9580. [International Epilepsy Congress /31./. 05.09.2015-09.09.2015, Istanbul] Institutional support: RVO:68081731 Keywords : high-frequency oscillations * anterior nucleus of the thalamus Subject RIV: FS - Medical Facilities ; Equipment

  20. The Potential for Cubesats to Determine Black Holes Masses in Nearby Active Galactic Nuclei and Contribute to Other Time Domain Science

    Gorjian, Varoujan; Ardila, David R.; Barth, Aaron J.; Janson, Siegfried; Kochanek, Christopher S.; Malkan, Matthew Arnold; Peterson, Bradley M.; Rowen, Darren; Seager, Sara; Shkolnik, Evgenya L.

    2016-01-01

    A 3U (30cmx10cmx10cm) CubeSat with a 9cm diameter aperture telescope can deliver unprecedented time domain coverage in the ultraviolet (UV) for the purposes of Active Galactic Nucleus (AGN) reverberation mapping to determine supermassive black hole (SMBH) masses. SMBH's reside at the centers of most, if not all, massive galaxies and accretion onto those black holes generates a great deal of emission peaking in the UV. These accretion disks are also surrounded by a nearby, fast moving gas region called the Broad Line Region (BLR). As light pulses generated near the black hole spread out, they first illuminate the accretion disk, and then the BLR. For a sample of bright AGN, a dedicated cubesat can follow these changes in brightness on a daily basis for up to 100 days from low Earth orbit. With such monitoring of changes in the accretion disk and then the BLR, an accurate distance between the two regions can be determined. Combining this UV coverage with optical emission-line spectroscopy from the ground allows for a direct measurement of the mass of the central black hole. This exchange of time resolution for spatial resolution can also be used to determine the structure of the central region of the AGN. Ground-based photometric and spectroscopic measurements will complement the UV by tracing the optically emitting and hence cooler regions of the AGN to provide one of the best measurements of supermassive black hole masses.In addition to the primary science mission, the long observing campaigns and the large field of view required to get comparison stars for relative photometry allow for other competitive science. We have identified UV activity in M dwarfs as ancillary science that can be addressed with such a cubesat. This activity will have a strong impact on the habitability of any possible planet around the star.