WorldWideScience

Sample records for active gain material

  1. The Effects of Activity and Gain Based Virtual Material on Student's Success, Permanency and Attitudes towards Science Lesson

    Tas, Erol

    2015-01-01

    The main objective of this study is to research the effects of a student gains and activity based virtual material on students' success, permanence and attitudes towards science lesson, developed for science and technology lesson 6th grade "Systems in our body" unit. The study, which had a quasi-experimental design, was conducted with…

  2. The Study of Electromagnetic Wave Propogation in Photonic Crystals Via Planewave Based Transfer (Scattering) Matrix Method with Active Gain Material Applications

    Ming LI

    2007-12-01

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.

  3. Active Microwave Metamaterials Incorporating Ideal Gain Devices

    Hao Xin

    2010-12-01

    Full Text Available Incorporation of active devices/media such as transistors for microwave and gain media for optics may be very attractive for enabling desired low loss and broadband metamaterials. Such metamaterials can even have gain which may very well lead to new and exciting physical phenomena. We investigate microwave composite right/left-handed transmission lines (CRLH-TL incorporating ideal gain devices such as constant negative resistance. With realistic lumped element values, we have shown that the negative phase constant of this kind of transmission lines is maintained (i.e., left-handedness kept while gain can be obtained (negative attenuation constant of transmission line simultaneously. Possible implementation and challenging issues of the proposed active CRLH-TL are also discussed.

  4. Physical activity and weight gain during pregnancy

    Haakstad, Lene Annette Hagen

    2010-01-01

    A low level of daily PA and regular recreational exercise was shown in the present study of pregnant women in Oslo. There was a decline in exercise intensity, duration and frequency from before pregnancy and throughout the course of pregnancy. Walking was the most common exercise mode. The results of the multivariate analysis showed that women who decreased regular exercise in the 3rd trimester had higher weight gain and reported to have no social role models with respect to ex...

  5. A lasing mechanism based on absorption boundary of gain materials

    Shi, Jinwei; Chen, Shujing; Fan, Wenjun; Kong, Xiangyu; Liu, Dahe; Zu, Lily

    2013-01-01

    A new kind of mechanism of lasing is investigated experimentally. It is quite different from the traditional laser with cavity and the random laser with random scattering. In this mechanism, the intensity-dependent refractive index effect and thermal lensing effects of the pump beam induce a large gradient of the refractive index in the gain material, which forms a passive equivalent boundary that provides the feedback in the lasing system. A real lasing system, a liquid disk laser, is perfor...

  6. A lasing mechanism based on absorption boundary of gain materials

    Shi, Jinwei; Fan, Wenjun; Kong, Xiangyu; Liu, Dahe; Zu, Lily

    2013-01-01

    A new kind of mechanism of lasing is investigated experimentally. It is quite different from the traditional laser with cavity and the random laser with random scattering. In this mechanism, the intensity-dependent refractive index effect and thermal lensing effects of the pump beam induce a large gradient of the refractive index in the gain material, which forms a passive equivalent boundary that provides the feedback in the lasing system. A real lasing system, a liquid disk laser, is performed, it achieves 2-D omnidirectional radiation with a high efficiency of 28%, its radiation spectral property can be explained by resonant Raman scattering.

  7. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  8. Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....

  9. Physical Activity and Gestational Weight Gain in Hispanic Women

    Chasan-Taber, Lisa; Silveira, Marushka; Lynch, Kristine E.; Pekow, Penelope; Solomon, Caren G.; Markenson, Glenn

    2013-01-01

    Objective Hispanic women have high rates of excessive and inadequate gestational weight gain (GWG) according to Institute of Medicine (IOM) guidelines. Observational studies suggest that physical activity may be associated with GWG but have been conflicting and were largely conducted in non-Hispanic white populations. Design and Methods We prospectively evaluated the association between physical activity and compliance with GWG guidelines, total GWG, and rate of GWG among 1,276 Hispanic parti...

  10. Physical Activity and Gestational Weight Gain in Hispanic Women

    Chasan-Taber, Lisa; Silveira, Marushka; Lynch, Kristine E.; Pekow, Penelope; Solomon, Caren G.; Markenson, Glenn

    2013-01-01

    Objective: Hispanic women have high rates of excessive and inadequate gestational weight gain (GWG) according to Institute of Medicine (IOM) guidelines. Observational studies suggest that physical activity may be associated with GWG but have been conflicting and were largely conducted in non-Hispanic white populations. Design and Methods We prospectively evaluated the association between physical activity and compliance with GWG guidelines, total GWG, and rate of GWG among 1,276 Hispanic part...

  11. High power VCSEL device with periodic gain active region

    Ning, Y. Q., II; Qin, L.; Sun, Y. F.; Li, T.; Cui, J. J.; Peng, B.; Liu, G. Y.; Zhang, Y.; Liu, Y.; Wang, L. J.; Cui, D. F.; Xu, Z. Y.

    2007-11-01

    High power vertical cavity surface emitting lasers with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structure, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the cavity to enhance the coupling between the optical field and the gain region. Large aperture and bottom-emitting configuration was used to improve the beam quality and the heat dissipation. A maximum output power of 1.4W was demonstrated at CW operation for a 400μm-diameter device. The lasing wavelength shifted to 995.5nm with a FWHM of 2nm at a current of 4.8A due to the internal heating and the absence of active water cooling. A ring-shape farfield pattern was induced by the non-homogeneous lateral current distribution in large diameter device. The light intensity at the center of the ring increased with increasing current. A symmetric round light spot at the center and single transverse mode operation with a divergence angle of 16° were observed with current beyond 4.8A.

  12. 20 CFR 416.972 - What we mean by substantial gainful activity.

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false What we mean by substantial gainful activity... Activity § 416.972 What we mean by substantial gainful activity. Substantial gainful activity is work... or profit, whether or not a profit is realized. (c) Some other activities. Generally, we do...

  13. 20 CFR 404.1572 - What we mean by substantial gainful activity.

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false What we mean by substantial gainful activity... Activity § 404.1572 What we mean by substantial gainful activity. Substantial gainful activity is work... or profit, whether or not a profit is realized. (c) Some other activities. Generally, we do...

  14. Role of excited states for the material gain and threshold current density in quantum wire intersubband laser structures

    Herrle, Thomas; Haneder, Stephan; Wegscheider, Werner

    2006-05-01

    We calculated the material gain and the threshold current density for quantum wire intersubband laser structures. In quantum cascade laser devices with active regions of lower dimensionality a reduction of the nonradiative losses and consequently an increase in the material gain and a reduction of the threshold current density is predicted. In our calculations of the material gain and the threshold current density for a realistic quantum wire intersubband laser structure fabricated by the cleaved edge overgrowth (CEO) technique, however, it turns out that excited states formed in those structures even reduce the material gain compared to conventional quantum well cascade lasers. The threshold current density also turns out to be increased due to the reduced material gain on the one hand and due to a small optical confinement factor in such structures on the other hand. The main consequence for the design of such quantum wire laser structures is to avoid the formation of excited states to be able to benefit from the reduction of the dimensionality of the electron system in terms of reduced nonradiative losses.

  15. Slow-light-enhanced gain in active photonic crystal waveguides

    Ek, Sara; Hansen, Per Lunnemann; Chen, Yaohui;

    2014-01-01

    , which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experi- mentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic...... crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar...

  16. Voigt-wave propagation in active materials

    Mackay, Tom G

    2015-01-01

    If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give rise to a material that supports the propagation of Voigt waves with attendant linear gain in amplitude with propagation distance, by infiltration with an active dye.

  17. Wave propagation in birefringent materials with off axis absorption or gain

    Sabooni, Mahmood; Kristensson, Gerhard; Rippe, Lars

    2016-01-01

    The polarization direction of an electromagnetic field changes and eventually reaches a steady state when propagating through a birefringent material with off axis absorption or gain. The steady state orientation direction depends on the magnitude of the absorption (gain) and the phase retardation rate. The change in the polarization direction is experimentally demonstrated in weakly doped ($0.05\\%$) Pr$^{3+}$:Y$_2$SiO$_5$ crystals, where the light polarization, if initially aligned along the most strongly absorbing principal axis, gradually switch to a much less absorbing polarization state during the propagation. This means that the absorption coefficient, $\\alpha$, in birefringent materials generally varies with length. This is important for, e.g., laser crystal gain media, highly absorbing and narrow band spectral filters and quantum memories.

  18. The Gain Properties of 1-D Active Photonic Crystal

    2003-01-01

    The terminology 'ID frequency'(w ID) is proposed after analyzing the 1D active photonic crystal based on the transfer matrix method. The relationship between wID and the structure parameters of the photonic crystal is investigated.

  19. Spontaneous physical activity protects against fat mass gain

    Teske, Jennifer A.; Billington, Charles J.; Kuskowski, Michael A.; Kotz, Catherine M.

    2011-01-01

    It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term. Objective We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, FM and FFM between obesity resistant and Sprague-Dawley rats at specific age intervals. Design and Subjects Body composition, SPA and caloric intake were measured in selectively-bred obesity resistant and out-b...

  20. Propagation of Gaussian Beams through Active GRIN Materials

    Gomez-Varela, A I; Flores-Arias, M T; Bao-Varela, C; Gomez-Reino, C [Grupo de ' Microoptica y Optica GRIN' , Unidad asociada al Instituto de Ciencias de Materiales de Aragon, ICMA/CSIC, Zaragoza, Espana y Escuela de Optica y OptometrIa, Campus Sur s/n, Universidade de Santiago, E15782 Santiago de Compostela (Spain); De la Fuente, X, E-mail: maite.flores@usc.es [Instituto de Ciencia de Materiales de Aragon (Universidad de Zaragoza-CSIC), Maria de Luna 3, E50018 Zaragoza (Spain)

    2011-01-01

    We discussed light propagation through an active GRIN material that exhibits loss or gain. Effects of gain or loss in GRIN materials can be phenomenologically taken into account by using a complex refractive index in the wave equation. This work examines the implication of using a complex refractive index on light propagation in an active GRIN material illuminated by a non-uniform monochromatic wave described by a Gaussian beam. We analyze how a Gaussian beam is propagated through the active material in order to characterize it by the beam parameters and the transverse irradiance distribution.

  1. Propagation of Gaussian Beams through Active GRIN Materials

    We discussed light propagation through an active GRIN material that exhibits loss or gain. Effects of gain or loss in GRIN materials can be phenomenologically taken into account by using a complex refractive index in the wave equation. This work examines the implication of using a complex refractive index on light propagation in an active GRIN material illuminated by a non-uniform monochromatic wave described by a Gaussian beam. We analyze how a Gaussian beam is propagated through the active material in order to characterize it by the beam parameters and the transverse irradiance distribution.

  2. Material properties in complement activation

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud;

    2011-01-01

    activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  3. 20 CFR 220.29 - Work that is considered substantial gainful activity.

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Work that is considered substantial gainful... RAILROAD RETIREMENT ACT DETERMINING DISABILITY Disability Under the Railroad Retirement Act for Any Regular Employment § 220.29 Work that is considered substantial gainful activity. Work is considered to...

  4. Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials

    Cavity coupling in a random laser with a weakly scattering disordered structure formed by ZnO nanoparticles is observed experimentally. The lasing characteristics are quite different from those of a traditional random laser. It is found that the threshold of coherent radiation with gain materials in such a structure is considerably low, and the emission spectrum and the threshold of each peak are orientationally uniform; the possible positions of the coherent peaks are fixed. These characteristics will be very useful in its applications. A new physical mechanism, cavity coupling, is suggested to discuss the lasing system. Nano-scale scatterers play an important role in providing randomly distributed feedback. (letter)

  5. Material science experience gained from the space nuclear rocket program: Insulators

    Although Rover reactors are viewed as the ultimate in high-temperature operating systems, many of the materials used in these reactors (for example, support rods, control drums, and the reflector) have to be held at relatively low temperatures while the reactor operates, in order to maintain their structural integrity. Thus the insulators needed to separate these temperature domains are crucial to the reactor's ultimate operating times and temperatures. All of the reactors that were tested used pyrolytic graphite as the primary insulator. However, it had been long planned to replace the graphite with zirconium carbide and a lengthy and intensive effort to develop the zirconium carbide insulators had been made at the time Rover was terminated. This report details research and development and the experience we gained with both these insulator materials

  6. Hierarchical modeling of active materials

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  7. Phase and gain control policies for robust active vibration control of flexible structures

    Zhang, Kai; Scorletti, Gérard; Ichchou, Mohamed; Mieyeville, F.

    2013-01-01

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H∞ control: according to the set...

  8. Role of nonexercise activity thermogenesis in resistance to fat gain in humans.

    Levine, J A; Eberhardt, N L; Jensen, M D

    1999-01-01

    Humans show considerable interindividual variation in susceptibility to weight gain in response to overeating. The physiological basis of this variation was investigated by measuring changes in energy storage and expenditure in 16 nonobese volunteers who were fed 1000 kilocalories per day in excess of weight-maintenance requirements for 8 weeks. Two-thirds of the increases in total daily energy expenditure was due to increased nonexercise activity thermogenesis (NEAT), which is associated with fidgeting, maintenance of posture, and other physical activities of daily life. Changes in NEAT accounted for the 10-fold differences in fat storage that occurred and directly predicted resistance to fat gain with overfeeding (correlation coefficient = 0.77, probability activation of NEAT dissipates excess energy to preserve leanness and that failure to activate NEAT may result in ready fat gain. PMID:9880251

  9. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice

    Madsen, Birgitte Lindegaard; Matthews, Vance B; Brandt, Claus;

    2013-01-01

    receptor (IL-18R(-/-)), fed a standard chow or high fat diet (HFD). We next performed gain of function experiments in skeletal muscle, in vitro, ex vivo and in vivo. We show that IL-18 is implicated in metabolic homeostasis, inflammation and insulin resistance via mechanisms involving the activation of......-18 into skeletal muscle activated AMPK and concomitantly inhibited high fat diet-induced weight gain. In summary IL-18 enhances AMPK signaling and lipid oxidation in skeletal muscle implicating IL-18 in metabolic homeostasis....

  10. Modeling of gain saturation effects in active semiconductor photonic crystal waveguides

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper, we present a theoretical analysis of slow-light enhanced light amplification in an active semiconductor photonic crystal line defect waveguide. The impact of enhanced light-matter interactions on carrier-depletion-induced modal gain saturation is investigated.......In this paper, we present a theoretical analysis of slow-light enhanced light amplification in an active semiconductor photonic crystal line defect waveguide. The impact of enhanced light-matter interactions on carrier-depletion-induced modal gain saturation is investigated....

  11. Achievement of public health recommendations for physical activity and prevention of gains in adiposity in adults

    Grøntved, A.

    2013-01-01

    Physical activity (PA) is considered a cornerstone in weight control and public health guidelines recommend regular participation to prevent gains in adiposity. It may therefore come as a surprise that the cumulative evidence from observational studies to support this is not strong. A weakness of...

  12. Enhanced optical precursors by Doppler effect via active Raman gain process.

    Peng, Yandong; Niu, Yueping; Zhang, Lida; Yang, Aihong; Jiang, Lin; Gong, Shangqing

    2012-08-15

    A scheme for enhancing precursor pulse by Doppler effect is proposed in a room-temperature active-Raman-gain medium. Due to abnormal dispersion between two gain peaks, main fields are advanced and constructively interfere with optical precursors, which leads to enhancement of the transient pulse at the rise edge of the input. Moreover, after Doppler averaging, the abnormal dispersion intensifies and the constructive interference between precursors and main fields is much strengthened, which boosts the transient spike. Simulation results demonstrate that the peak intensity of precursors could be enhanced nearly 20 times larger than that of the input. PMID:23381248

  13. Pregnant women's perceptions of weight gain, physical activity, and nutrition using Theory of Planned Behavior constructs.

    Whitaker, Kara M; Wilcox, Sara; Liu, Jihong; Blair, Steven N; Pate, Russell R

    2016-02-01

    A better understanding of women's perceptions of weight gain and related behaviors during pregnancy is necessary to inform behavioral interventions. We used the Theory of Planned Behavior (TPB) to examine pregnant women's perceptions and intentions toward weight gain, physical activity (PA), and nutrition using a mixed methods study design. Women between 20 and 30 weeks gestation (n = 189) were recruited to complete an Internet-based survey. Salient beliefs toward weight gain, PA, and nutrition were captured through open-ended responses and content analyzed into themes. TPB constructs (attitude, subjective norm, perceived behavioral control, intentions) were examined using Pearson correlations and hierarchical linear regression models. Salient beliefs were consistent with the existing literature in non-pregnant populations, with the addition of many pregnancy-specific beliefs. TPB constructs accounted for 23-39 % of the variance in weight gain, PA, and nutrition intentions, and made varying contributions across outcomes. The TPB is a useful framework for examining women's weight-related intentions during pregnancy. Study implications for intervention development are discussed. PMID:26335313

  14. Phase and gain control policies for robust active vibration control of flexible structures

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H∞ control: according to the set of control objectives, phase and gain control policies incorporate necessary weighting functions and determine them in a rational and systematic way; on the other hand, with the appropriate weighting functions efficient H∞ control algorithms can automatically realize phase and gain control policies and generate a satisfactory H∞ controller. The proposed control methodology can be used for both SISO and MIMO systems with collocated or non-collocated sensors and actuators. In this paper, it is validated on a non-collocated piezoelectric cantilever beam. Both numerical simulations and experimental results demonstrate the effectiveness of the proposed control methodology. (paper)

  15. An Active Gain-control System for Avalanche Photo-Diodes under Moderate Temperature Variations

    Kataoka, J; Ikagawa, T; Kotoku, J; Kuramoto, Y; Tsubuku, Y; Saitô, T; Yatsu, Y; Kawai, N; Ishikawa, Y; Kawabata, N

    2006-01-01

    Avalanche photodiodes (APDs) are promising light sensor for various fields of experimental physics. It has been argued, however, that variation of APD gain with temperature could be a serious problem preventing APDs from replacing traditional photomultiplier tubes (PMTs) in some applications. Here we develop an active gain-control system to keep the APD gain stable under moderate temperature variations. As a performance demonstration of the proposed system, we have tested the response of a scintillation photon detector consisting of a 5x5 mm^2 reverse-type APD optically coupled with a CsI(Tl) crystal. We show that the APD gain was successfully controlled under a temperature variation of DT = 20deg, within a time-cycle of 6000 sec. The best FWHM energy resolution of 6.1+-0.2 % was obtained for 662 keV gamma-rays, and the energy threshold was as low as 6.5 keV, by integrating data from +20deg - 0deg cycles. The corresponding values for -20deg - 0deg cycles were 6.9+-0.2 % and 5.2 keV, respectively. These result...

  16. Limiting Excess Weight Gain in Healthy Pregnant Women: Importance of Energy Intakes, Physical Activity, and Adherence to Gestational Weight Gain Guidelines

    Tamara R. Cohen

    2013-01-01

    Full Text Available Few studies have investigated if compliance with energy intakes, physical activity, and weight gain guidelines attenuate postpartum weight retention (PPWR in mothers attending prenatal classes. We investigated whether (a daily energy intakes within 300 kcal of estimated energy requirements (EERs, (b walking more than 5000 steps/day, (c targeting the recommended weight gain goals for prepregnancy BMI, and/or (d achieving weekly or total gestational weight gain (GWG recommendations minimized PPWR in 54 women attending prenatal classes in Montreal/Ottawa, Canada. Participants completed a validated pregnancy physical activity questionnaire (PPAQ, 3 telephone-validated 24-hr dietary recalls, and wore a pedometer for one week. PPWR was measured 6 weeks after delivery. Results showed that 72% had healthy prepregnancy BMIs. However, 52% consumed >300 kcal/day in excess of their EER, 54% exceeded recommended GWG, and more overweight (93% than normal weight women (38% cited nonrecommended GWG targets. Following delivery, 33% were classified as overweight, and 17% were obese. Multiple logistic regressions revealed that women targeting “recommended weight gain advice” were 3 times more likely to meet total GWG recommendations (OR: 3.2, P<0.05; women who complied with weekly GWG goals minimized PPWR (OR: 4.2, P<0.02. In conclusion, appropriate GWG targets, lower energy intakes, and physical activity should be emphasized in prenatal education programs.

  17. Low activation materials for fusion

    The viability of fusion as a future energy source may eventually be determined by safety and environmental factors. Control of the induced radioactivity characteristics of the materials used in the first wall and blanket could have a major favorable impact on these issues. In the United States, materials program efforts are focused on developing new structural alloys with radioactive decay characteristics which would greatly simplify long-term waste disposal of reactor components. A range of alloy systems is being explored in order to maintain the maximum number of design options. Significant progress has been made, and it now appears probable that reduced-activation engineering alloys with properties at least equivalent to conventional alloys can be successfully developed and commercialized. 10 refs., 1 fig

  18. Photon-activated charge domain in high-gain photoconductive switches

    Wei Shi(施卫); Huiying Dai(戴慧莹); Xiaowei Sun(孙小卫)

    2003-01-01

    We report our experimental observation of charge domain oscillation in semi-insulating GaAs photoconductive semiconductor switches (PCSSs). The high-gain PCSS is intrinsically a photon-activated charge domain device. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length product of 1012 cm-2. We also show that, because of the repeated process of domain formation, the domain travels with a compromised speed of electron saturation velocity and the speed of light. As a result, the transit time of charge domains in PCSS is much shorter than that of traditional Gunn domains.

  19. Allele specific gain-of-function activity of p53 mutants in lung cancer cells

    Vaughan, Catherine A.; Frum, Rebecca; Pearsall, Isabella; Singh, Shilpa; Windle, Brad; Yeudall, Andrew; Deb, Swati P.; Deb, Sumitra

    2012-01-01

    p53 mutations are mostly single amino acid changes resulting in expression of a stable mutant protein with “gain of function” (GOF) activity having a dominant oncogenic role rather than simple loss of function of wild-type p53. Knock-down of mutant p53 in human lung cancer cell lines with different endogenous p53 mutants results in loss of GOF activity as shown by lowering of cell growth rate. Two lung cancer cell lines, ABC1 and H1437 carrying endogenous mutants p53–P278S and –R267P, both sh...

  20. Gaining A Geological Perspective Through Active Learning in the Large Lecture Classroom

    Kapp, J. L.; Richardson, R. M.; Slater, S. J.

    2008-12-01

    NATS 101 A Geological Perspective is a general education course taken by non science majors. We offer 600 seats per semester, with four large lecture sections taught by different faculty members. In the past we have offered optional once a week study groups taught by graduate teaching assistants. Students often feel overwhelmed by the science and associated jargon, and many are prone to skipping lectures altogether. Optional study groups are only attended by ~50% of the students. Faculty members find the class to be a lot of work, mainly due to the grading it generates. Activities given in lecture are often short multiple choice or true false assignments, limiting the depth of understanding we can evaluate. Our students often lack math and critical thinking skills, and we spend a lot of time in lecture reintroducing ideas students should have already gotten from the text. In summer 2007 we were funded to redesign the course. Our goals were to 1) cut the cost of running the course, and 2) improve student learning. Under our redesign optional study groups were replaced by once a week mandatory break out sessions where students complete activities that have been introduced in lecture. Break out sessions substitute for one hour of lecture, and are run by undergraduate preceptors and graduate teaching assistants (GTAs). During the lecture period, lectures themselves are brief with a large portion of the class devoted to active learning in small groups. Weekly reading quizzes are submitted via the online course management system. Break out sessions allow students to spend more time interacting with their fellow students, undergraduate preceptors, and GTAs. They get one on one help in break out sessions on assignments designed to enhance the lecture material. The active lecture format means less of their time is devoted to listening passively to a lecture, and more time is spent peer learning an interacting with the instructor. Completing quizzes online allows students

  1. Instrumentation amplifier implements second-order active low-pass filter with high gain factor

    A single-ended second-order active low-pass filter can simultaneously provide high gain factor and dc voltage subtraction. This makes it possible to reduce the number of components and signal processing stages needed in an application where small voltage changes are measured on the top of large dc voltage masked by a large amplitude oscillating carrier. The filter described in this paper is constructed from a conventional 3-op-amp instrumentation amplifier and five passive circuit elements. (technical design note)

  2. Pregnant women’s perceptions of weight gain, physical activity, and nutrition using Theory of Planned Behavior constructs

    Whitaker, Kara M.; Wilcox, Sara; Liu, Jihong; Blair, Steven N; Russell R. Pate

    2015-01-01

    A better understanding of women’s perceptions of weight gain and related behaviors during pregnancy is necessary to inform behavioral interventions. We used the Theory of Planned Behavior (TPB) to examine pregnant women’s perceptions and intentions toward weight gain, physical activity (PA), and nutrition using a mixed methods study design. Women between 20 and 30 weeks gestation (n = 189) were recruited to complete an Internet-based survey. Salient beliefs toward weight gain, PA, and nutriti...

  3. Engineering trend analysis: Achieving quality gains and cost reduction in materials

    In the last half-decade, utilities have made many changes in their material and procurement processes because of increased regulatory expectations of the procurement process used to procure nuclear safety-related materials. The changes have been largely driven by concern for fraudulent or misrepresented parts and loss of original equipment manufacturers. The nuclear utilities have responded by endorsing and acting upon the Nuclear Management and Resources Council's (NUMARC's) comprehensive procurement initiative to strengthen their materials procurement process. As the increased emphasis for cost containment and/or reduction is endorsed by most utilities, it is only natural to look at ways to reduce cost in this materials procurement process while maintaining or even increasing quality and safety

  4. Activities for gaining insight into IASCC and continuous evaluation of in-service inspection data

    The report is a documentation of the important results of various international studies conducted to gain insight into the occurrence, mechanisms, and characteristic features of irradiation-assisted stress corrosion cracking, IASCC, as well as measures preventing IASCC in light water reactors. The major information can be summarised as follows: the number of cases of damage clearly induced by IASCC is low, as compared to the damage induced by intergranular stress corrosion cracking, IGSCC. In fact, recent information from a review of documented stress corrosion cracking damage of BWR type reactor internals reveals that an increasing number of cracks formerly thought to have been caused by IASCC now can be attributed to ICSCC as the most probable cause. Generally speaking, current knowledge of the impact of ionizing radiation on the corrosion resistance of LWR materials is rather insufficient. (orig./CB)

  5. Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control

    Jonsson, Jacob; Jonsson, Jacob C.; Lee, Eleanor S.; Rubin, Mike

    2008-08-01

    Shade-screens are widely used in commercial buildings as a way to limit the amount of direct sunlight that can disturb people in the building. The shade screens also reduce the solar heat-gain through glazing the system. Modern energy and daylighting analysis software such as EnergyPlus and Radiance require complete scattering properties of the scattering materials in the system. In this paper a shade screen used in the LBNL daylighting testbed is characterized using a photogoniometer and a normal angle of incidence integrating sphere. The data is used to create a complete bi-directional scattering distribution function (BSDF) that can be used in simulation programs. The resulting BSDF is compared to a model BADFs, both directly and by calculating the solar heat-gain coefficient for a dual pane system using Window 6.

  6. Individual Differences in Striatum Activity to Food Commercials Predict Weight Gain in Adolescents

    Yokum, Sonja; Gearhardt, Ashley N.; Harris, Jennifer L.; Brownell, Kelly D.; Stice, Eric

    2014-01-01

    Objective Adolescents view thousands of food commercials annually, but little is known about how individual differences in neural response to food commercials relate to weight gain. To add to our understanding of individual risk factors for unhealthy weight gain and environmental contributions to the obesity epidemic, we tested the associations between reward region (striatum and orbitofrontal cortex [OFC]) responsivity to food commercials and future change in Body Mass Index (BMI). Design and Methods Adolescents (N = 30) underwent a scan session at baseline while watching a television show edited to include 20 food commercials and 20 non-food commercials. BMI was measured at baseline and 1-year follow-up. Results Activation in the striatum, but not OFC, in response to food commercials relative to non-food commercials and in response to food commercials relative to the television show was positively associated with change in BMI over 1-year follow-up. Baseline BMI did not moderate these effects. Conclusions The results suggest that there are individual differences in neural susceptibility to food advertising. These findings highlight a potential mechanism for the impact of food marketing on adolescent obesity. PMID:25155745

  7. Muscle activity during functional coordination training: implications for strength gain and rehabilitation

    Jørgensen, Marie Birk; Andersen, Lars Louis; Kirk, Niels;

    2010-01-01

    The purpose of this study was to evaluate if different types, body positions, and levels of progression of functional coordination exercises can provide sufficiently high levels of muscle activity to improve strength of the neck, shoulder, and trunk muscles. Nine untrained women were familiarized...... coordination training can be performed with a muscle activity sufficient for strength gain. Functional coordination training may therefore be a good choice for prevention or rehabilitation of musculoskeletal pain or injury in the neck, shoulder, or trunk muscles.......The purpose of this study was to evaluate if different types, body positions, and levels of progression of functional coordination exercises can provide sufficiently high levels of muscle activity to improve strength of the neck, shoulder, and trunk muscles. Nine untrained women were familiarized...... with 7 functional coordination exercises 12 times during 4 weeks before testing. Surface electromyographic (EMG) activity was obtained from rectus abdominus, erector spinae, obliquus externus, and trapezius during the exercises with 2-4 levels of progression. Electromyography was normalized to the...

  8. Measurements of enthalpy-stimulated-scattering gain in the active medium of an iodine photodissociation laser

    Korol' kov, K.S.; Krylov, A.IU.; Nosach, O.IU.; Orlov, E.P. (Fizicheskii Institut, Moscow (USSR))

    1990-07-01

    A method is developed for determining the absolute gain of the nonstationary enthalpy stimulated scattering (NESS) of laser radiation by temperature waves by means of direct measurements of fundamental and impurity beam gains in the laser amplifier. The NESS gain is investigated as a function of the working gas mixture pressure in iodine photodissociation lasers. 11 refs.

  9. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    Zhang, Qi; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  10. Exoemissive noise activity of different metallic materials

    Bichevin, V.; Käämbre, H.; Sammelselg, V.; Kelle, H.; Asari, E.; Saks, O.

    1996-11-01

    A method is proposed for testing the exoemission activity of different metals, used as materials in high sensitivity electrometry (attoammetry). The presented test results allow us to select materials with weaker exoelectron spurious currents.

  11. Organic active materials for batteries

    Abouimrane, Ali; Weng, Wei; Amine, Khalil

    2016-08-16

    A rechargeable battery includes a compound having at least two active sites, R.sup.1 and R.sup.2; wherein the at least two active sites are interconnected by one or more conjugated moieties; each active site is coordinated to one or more metal ions M.sup.a+ or each active site is configured to coordinate to one or more metal ions; and "a" is 1, 2, or 3.

  12. Taxing away M&A : the effect of corporate capital gains taxes on acquisition activity

    Feld, Lars P.; Ruf, Martin; Schreiber, Ulrich; Todtenhaupt, Maximilian; Voget, Johannes

    2016-01-01

    Taxing capital gains is an important obstacle to the efficient allocation of resources because it imposes a transaction cost on the vendor which locks in appreciated assets by raising the vendor's reservation price in prospective transactions. For M&As, this effect has been intensively studied with regard to share-holder taxation, whereas empirical evidence on the effect of capital gains taxes paid by corporations is scarce. This paper analyzes how corporate level taxation of capital gains af...

  13. Strengthening global physical protection practices: Gaining better information on national practices for protection of nuclear material

    There are no international requirements for protecting nuclear material in domestic use, storage or transport. Experts from many countries meeting in Vienna are considering establishing such international requirements. Meanwhile, the foundation for international norms of physical protection is IAEA INFCIRC 225/Rev.4, consensus recommendations for protection systems. In addition to establishing international requirements, practices of physical protection can be strengthened by exchanges of information, for example, comparing recommended standards with the actual practices of states. The more system operators can learn about the threats other states have faced and the successful practices others have used to defend against these threats, the more physical protection is likely to be improved. Research comparing practices shows wide variation from state to state. Better means are needed to systematize exchanges of information on state standards and practices. Conferences such as this one are useful to that end, but they may be too infrequent and too technical for policy makers and others responsible for funding physical protection systems. As a review of two past physical protection conferences has shown, they often do not produce sufficient data in the same subject areas to produce detailed comparisons between very many states. Training is another way to improve physical protection practices. Existing physical protection courses and workshops are very useful, but they do not reach all the audiences that need training. Some regions of the world and some specialized audiences have been left out. For example, one-day seminars that teach basics may be useful for policy makers. More lengthy courses are appropriate for those that design and operate protection systems. Indeed, physical protection practices can be improved by strengthening training for all of those responsible for physical protection, as the experts meeting in Vienna have recommended. (author)

  14. Activation of porous MOF materials

    Hupp, Joseph T; Farha, Omar K

    2013-04-23

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  15. Gestational weight gain by reduced brain melanocortin activity affects offspring energy balance in rats

    Heinsbroek, A. C. M.; van Dijk, G.

    2009-01-01

    Introduction: Excessive gestational body weight gain of mothers may predispose offspring towards obesity and metabolic derangements. It is difficult to discern the effects of maternal obesogenic factors-such as diet and/or thrifty genetic predisposition-from gestational weight gain per se. Methods:

  16. Individual Differences in Striatum Activity to Food Commercials Predict Weight Gain in Adolescents

    Yokum, Sonja; Gearhardt, Ashley N; Harris, Jennifer L.; Brownell, Kelly D.; Stice, Eric

    2014-01-01

    Objective Adolescents view thousands of food commercials annually, but little is known about how individual differences in neural response to food commercials relate to weight gain. To add to our understanding of individual risk factors for unhealthy weight gain and environmental contributions to the obesity epidemic, we tested the associations between reward region (striatum and orbitofrontal cortex [OFC]) responsivity to food commercials and future change in Body Mass Index (BMI). Design an...

  17. Voigt-wave propagation in active materials

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2015-01-01

    If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give ris...

  18. Activity measurements of radon from construction materials

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60×60×60 cm3 were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of 226Ra, 232Th and 40K. The values for the index of the activity concentration (I), radium equivalent activity (Raeq), and external hazard index (Hext) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: ► Radon activity in air related to building materials was measured. ► The index of activity concentration of building materials was evaluated. ► The radium equivalent activity of building materials was evaluated. ► The external hazard index of building materials was evaluated.

  19. Activity measurements of radon from construction materials

    Fior, L.; Nicolosi Correa, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Paschuk, S.A., E-mail: spaschuk@gmail.com [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Denyak, V.V. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Schelin, H.R. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Pele Pequeno Principe Research Institute, Av. Silva Jardim, 1632, Curitiba, PR 80250-200 (Brazil); Soreanu Pecequilo, B.R. [Institute of Nuclear and Energetic Researches, IPEN, Av. Prof. Lineu Prestes, 2242-/05508-000 Sao Paulo (Brazil); Kappke, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil)

    2012-07-15

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60 Multiplication-Sign 60 Multiplication-Sign 60 cm{sup 3} were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K. The values for the index of the activity concentration (I), radium equivalent activity (Ra{sub eq}), and external hazard index (H{sub ext}) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: Black-Right-Pointing-Pointer Radon activity in air related to building materials was measured. Black-Right-Pointing-Pointer The index of activity concentration of building materials was evaluated. Black-Right-Pointing-Pointer The radium equivalent activity of

  20. The role of diet and physical activity in post-transplant weight gain after renal transplantation

    Zelle, Dorien M.; Kok, Trijntje; Dontje, Manon L.; Danchell, Eva I.; Navis, Gerjan; van Son, Willem J.; Bakker, Stephan J. L.; Corpeleijn, Eva

    2013-01-01

    Background Long-term survival of renal transplant recipients (RTR) has not improved over the past 20yr. The question rises to what extent lifestyle factors play a role in post-transplant weight gain and its associated risks after transplantation. Methods Twenty-six RTR were measured for body weight,

  1. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    Chang Zeng-Guang; Niu Yue-Ping; Zhang Jing-Tao; Gong Shang-Qing

    2012-01-01

    We theoretically investigate the Doppler effect on optical bistability in an N type active Raman gain atomic system inside an optical ring cavity.It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region,which has been known as the positive Doppler effect on optical bistability.In addition,we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.

  2. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type

  3. Can physical activity reduce excessive gestational weight gain? Findings from a Chinese urban pregnant women cohort study

    Jiang Hong; Qian Xu; Li Mu; Lynn Henry; Fan Yanyan; Jiang Hongyi; He Fengling; He Gengsheng

    2012-01-01

    Abstract Background Excessive gestational weight gain (GWG) poses negative impact on mothers and their children. It is important to understand the modifiable lifestyle factors associated with excessive GWG during pregnancy to guide future public health practice. Aim To investigate the association between physical activity during pregnancy and GWG of Chinese urban pregnant women. Methods A pregnant women cohort was established between 2005 and 2007 in Changzhou, China. Physical activity levels...

  4. Designing Gain- and Loss-Framed Messages to Increase Physical Activity among University Students Living in two Different Cultures

    Pelin Ozgur Polat

    2015-01-01

    BACKGROUND Widespread evidence indicates that physical activity has positive effects on physical health in long-run. Therefore, adopting exercising habits at early ages is essential for reducing risk of developing chronic diseases. As a result, prevention studies frequently focus on informing young people about possible consequences of engaging or not engaging in physical activity to encourage them to develop a healthy lifestyle. Gain- and loss-framed health messages (Rothman & Salove...

  5. Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry

    Palomo, A.

    2008-09-01

    Full Text Available Alkali-activated fly ash is the primary component of a new generation of high-strength, durable binders with excellent mechanical properties and durability (on occasion bettering traditional Portland cement performance. Moreover, development of these cements may contribute to mitigating CO2 emissions, since the base material is an industrial by-product. The present study was conducted to determine the effect of the composition of the initial materials (SiO2/Al2O3 and Na2O/Al2O3 ratios on the mechanical properties, nature and composition of the reaction products. The results obtained indicate that there is no linear relationship between these ratios and mechanical strength, but rather a series of optimal values above and below which strength declines. In the specific case of the ratios studied in the present paper, these values were: SiO2/Al2O3= 4.0 and Na2O/Al2O3= 1.0 (molar ratios.Las cenizas volantes activadas alcalinamente constituyen la base de una nueva generación de cementos con muy interesantes propiedades mecánicas, adherentes y durables (a veces incluso mejores que las de los cementos Portland tradicionales. Adicionalmente el desarrollo de estos cementos podría contribuir a mitigar las emisiones de CO2 a la atmósfera, ya que el material base de los mismos puede estar formado por subproductos industriales. En la presente investigación se realizó un estudio para determinar la influencia de la composición de los materiales iniciales (ratios SiO2/Al2O3 y Na2O/Al2O3 en las propiedades mecánicas y en la naturaleza y composición de los productos de reacción. Los resultados obtenidos indican que no existe una relación lineal de dichas ratios con las resistencias mecánicas, sino que existen unos valores óptimos, por encima y debajo de los cuales las resistencias mecánicas disminuyen. En el caso concreto de las ratios estudiadas en el presente trabajo estos valores serian: SiO2/Al2O3= 4,0 y Na2O/Al2O3= 1,0 (relaciones molares

  6. Risperidone-induced weight gain and reduced locomotor activity in juvenile female rats: The role of histaminergic and NPY pathways.

    Lian, Jiamei; De Santis, Michael; He, Meng; Deng, Chao

    2015-01-01

    Second generation antipsychotic drugs (SGAs) such as risperidone are increasingly prescribed (mostly for off-label use) to children and adolescents for treating various mental disorders. SGAs cause serious weight gain/obesity and other metabolic side-effects. This study aimed to establish an animal model of risperidone-induced weight gain in female juvenile rats, and to investigate the effects of risperidone on the expression of hypothalamic histaminergic H1 receptors (H1R) and neuropeptides, and their association with weight gain. Female Sprague Dawley rats were treated orally with risperidone (0.3mg/kg, 3 times/day) or vehicle (control) starting from postnatal day (PD) 23 (±1 day) for 3 weeks (a period corresponding to the childhood-adolescent period in humans). In the female juvenile rats, risperidone treatment increased food intake and body weight gain, which started to appear after 12 days' treatment. Risperidone also significantly decreased the locomotor activity of the female rats. Consistently, risperidone significantly elevated mRNA expression of hypothalamic H1R, neuropeptide Y (NPY), and agouti-related peptide (AgRP) compared to controls, and H1R and NPY levels were correlated with risperidone enhanced weight gain and food intake in the female juvenile rats. However, risperidone did not affect hypothalamic proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNA expression. Therefore, these results suggested that risperidone elevated appetite and body weight gain in juveniles via regulation of the hypothalamic H1R, NPY and AgRP pathways, as well as by reducing activity. PMID:25782398

  7. Neutron activation analysis of reference materials

    The importance is pointed out of neutron activation analysis in the preparation of reference materials, and studies are reported conducted recently by UJV. Instrumental neutron activation analysis has been used in testing homogeneity and in determining 28 elements in newly prepared reference standards of coal fly ash designated ENO, EOP and ECH. For accuracy testing, the same method was used in the analysis of NBS SRM-1633a Trace Elements in Coal Fly Ash and IAEA CRM Soil-5 and RM Soil-7. Radiochemical neutron activation analysis was used in determining Cd, Cu, Mn, Mo, and Zn in biological materials NBS SRM-1577 Bovine Liver, Bowen's Kale and in IAEA RM Milk Powder A-11 and Animal Muscle H-4. In all instances very good precision and accuracy of neutron activation analysis results were shown. (author)

  8. Low activated materials as plasma facing component

    Low activated materials such as ferritic steel, vanadium alloy and SiC/SiC composite have to be developed for realization of a fusion demonstration reactor. Major issues concerning these low activated materials have been evaluation of neutron irradiation effects and feasibility as blanket materials. Since these are also in-vessel materials, issues of plasma material interactions have to be investigated. Ferritic steel, F82H, is well oxidized in the atmosphere. Thus, pre-baking is necessary before installation. The required baking temperature is higher than 900 K. Vanadium alloy, V-4Cr-4Ti, absorbs hydrogen well and hydrogen embrittlement takes place when the hydrogen concentration exceeds a critical level. In order to avoid hydrogen absorption, the formation of an oxide layer on the alloy was found to be very useful. In JFT-2M, the vanadium alloy was exposed to a deuterium discharge environment for 9 months. On the alloy surface, an oxide deposition layer with a thickness of 200 nm was formed. The deuterium concentration observed was very low, only 1.3 wppm. SiC/SiC composite may be employed as divertor plates in addition to its use as blanket material. Fuel hydrogen retention was very similar to that of graphite but the chemical erosion was negligibly small. (author)

  9. Activities of publicity and seminar in Nuclear Material Control Center

    In recent years, the issue of nuclear non-proliferation has gained more attention than ever after the discovery of nuclear weapon development in Iraq, possible nuclear development in North Korea, the questionable maintenance of nuclear weapons in ex-Soviet, and the actual testing of nuclear bombs in India and Pakistan. As a result, the scheme to strengthen the effectiveness and improve the efficiency of the IAEA safeguards system has been established and is about to come into effect. In Japan, on the other hand, the need to enhance the international confidence on peaceful use of nuclear materials for the establishment of nuclear fuel recycle, e.g. MOX fuel, is urgent. It is also necessary to strengthen and confirm the 'State's System of Accounting For and Control of Nuclear Material' for the same purpose. In order to promote further understanding of the importance and necessity of the nuclear material control, Nuclear Material Control Center has held seminars for the local governments in nuclear related sites. For the general public, various pamphlets and web site have been used to propagate its information. In this report, we will present the outline of our public relations and seminar presentation activities in Nuclear Material Control Center. (author)

  10. Activities of publicity and seminar in Nuclear Material Control Center

    Tsutsumi, Masayori; Iwamatsu, Yoko; Naruo, Kazuteru [Nuclear Material Control Center, Tokyo (JP)] [and others

    2001-07-01

    In recent years, the issue of nuclear non-proliferation has gained more attention than ever after the discovery of nuclear weapon development in Iraq, possible nuclear development in North Korea, the questionable maintenance of nuclear weapons in ex-Soviet, and the actual testing of nuclear bombs in India and Pakistan. As a result, the scheme to strengthen the effectiveness and improve the efficiency of the IAEA safeguards system has been established and is about to come into effect. In Japan, on the other hand, the need to enhance the international confidence on peaceful use of nuclear materials for the establishment of nuclear fuel recycle, e.g. MOX fuel, is urgent. It is also necessary to strengthen and confirm the 'State's System of Accounting For and Control of Nuclear Material' for the same purpose. In order to promote further understanding of the importance and necessity of the nuclear material control, Nuclear Material Control Center has held seminars for the local governments in nuclear related sites. For the general public, various pamphlets and web site have been used to propagate its information. In this report, we will present the outline of our public relations and seminar presentation activities in Nuclear Material Control Center. (author)

  11. Heuristic use of mental map information gained from behavioural inspection of routines in daily activities (HUMMINGBIRDS)

    HANNES, Els; JANSSENS, Davy; Wets, Geert

    2007-01-01

    This research project aims at identifying the critical spatial factors in an individual’s mental map which influence daily activity travel behaviour in order to improve the agent-based modelling of activity travel behaviour by means of a computational process model. A qualitative travel survey and in depth interviews are used to identify the spatial factors that appear in the destination and travel mode choice heuristics of experts when discussing their activity space. Recorded interviews are...

  12. Experiences Gained from Radiation Protection Activities in Egypt and Saudi Arabia

    My official duties and responsibilities in Egypt and Saudi Arabia as radiation safety officer, qualified expert and head of dosimetry section covered the specified branch of radiation protection. This branch may be called Applied Radiation Protection. This branch covers all aspects of personal and environmental dosimetry and monitoring, as well as, radiation measurements and shielding. This branch has been implemented at many universities, medical centers and nuclear organizations in both Egypt and Saudi Arabia. As a result, three subjects have been highlighted 1] Radiation Protection of workers, public and environment, 2) Safety of radioactive materials to ensure its control and 3) Security from unauthorized removal. A program has been proposed as (RPSS program). In this program, radiation workers are responsible for the security of all radioactive materials in their possession including radioactive waste in storage cabinets and sources left unattended on laboratory benches. Occupational radiation exposures have been kept below dose limits at all radiation areas by training increased experience and ability of radiation workers. All radioactive materials that are not in locked storage are under constant surveillance and immediate control at all times by Radiation Safety Officer (RSO) or medical physicist departments. Precautionary measures serve as a guide to safe operations in handling radioactive materials and radiation sources. Certain restricted areas, which contain large quantities of radioactive materials, required additional security measures. Implementation of this program led to secure of radioactive materials from unauthorized removal or access, public health, maintaining exposures as low as reasonably achievable and promoting a protective safe working environment with no contamination. It is recommended to include this program in Radiation Protection Manual and Emergency preparedness procedures at academic institutions, nuclear research facilities and

  13. Determinants of Developmental Gain in Daily Activities in Young Children with Cerebral Palsy.

    Kruijsen-Terpstra, Anne J A; Ketelaar, Marjolijn; Verschuren, Olaf; Smits, Dirk-Wouter; Jongmans, Marian J; Gorter, Jan Willem

    2014-09-18

    ABSTRACT The aim of this study was to examine which child and family characteristics at the child's age of 2 years are determinants of development of self-care and mobility activities over a period of 2 years in young children with cerebral palsy (CP). Longitudinal data of 92 children, representing all levels of the Gross Motor Function Classification System (GMFCS), were analyzed. Children's self-care and mobility activities were assessed with the Functional Skills Scale of the Pediatric Evaluation of Disability Inventory. Development of self-care and mobility activities was related to several child determinants but no family determinants. GMFCS, type of CP, intellectual capacity, and epilepsy were related to the development of self-care and mobility activities, while manual ability and spasticity were related to development of mobility activities. Multivariate analysis indicated that GMFCS and intellectual capacity were the strongest determinants of development of self-care activities, and GMFCS was the strongest determinant of development of mobility activities. The change in self-care and mobility activities was less favorable in severely affected children with severe disability. Knowledge of GMFCS level and intellectual capacity is important in anticipating change over time and goal setting in young children with CP. PMID:25232647

  14. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

    Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon

    2016-09-01

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc. PMID:26852013

  15. Neutron activation analysis of geological materials

    Neutron activation analysis (NAA) is an extremely sensitive, selective and precise method, which yields a wealth of elemental information from even a small-sized sample. With the recent advances in nuclear reactors and high-efficiency and high-resolution semiconductor detectors, NAA has become a powerful method for multielemental analysis. The concentration of major, minor, and trace elements vary from 1 to 4 orders of magnitude in geological materials. By varying neutron fluxes, irradiation times, decay and counting intervals and using both instrumental and radiochemical techniques in NAA, it is possible to accurately determine about 50 elements in a sample aliquant. The practical aspects of the NAA method as applied to geological materials are discussed in detail, and are demonstrated by the analysis of the United States Geological Survey (USGS) and the International Atomic Energy Agency (IAEA) standard reference geological materials. General aspects of the elemental interpretations in terrestrial samples are also discussed. (author)

  16. Nondestructive gamma activation analysis of mineral materials

    The basic problems are described related to the use of gamma activation analysis. The applicability was studied of instrumental gamma activation analysis (IGAA) in geology. A number of minerals, rocks, marine sediments and reference materials were studied. For irradiation a betatron and a microtron were used. The results show that IGAA allows the simultaneous determination of a number of trace elements at concentrations of tenths of ppm. The results are given of comparisons made of the analytical possibilities of microtron IGAA and reactor INAA in geology. Tables show the results of the application of IGAA, the main products and parameters of photoexcitation reactions and graphically represented are the gamma spectra of measured materials. (J.B.)

  17. Reactor neutron activation analysis of industrial materials

    The specific application of neutron activation analysis (n.a.a.) for industrial materials is demonstrated by the determination of impurities in BeO, Al, Si, Cu, Ge, GaP, GaAs, steel, and irradiated uranium. A group scheme gives an orientation about the possibilities of n.a.a. The use of different standards, methods for the measurement of low radioactivities and errors caused by recoil reaction and radiation stimulated diffusion are discussed. (author)

  18. Determinants of developmental gain in daily activities in young children with cerebral palsy

    Kruijsen-Terpstra, Anne JA; Ketelaar, Marjolijn; Verschuren, Olaf; Smits, Dirk-Wouter; Jongmans, Marian J; Gorter, Jan Willem

    2015-01-01

    The aim of this study was to examine which child and family characteristics at the child's age of 2 years are determinants of development of self-care and mobility activities over a period of 2 years in young children with cerebral palsy (CP). Longitudinal data of 92 children, representing all level

  19. Determinants of Developmental Gain in Daily Activities in Young Children with Cerebral Palsy

    Kruijsen-Terpstra, Anne J A; Ketelaar, Marjolijn; Verschuren, Olaf; Smits, Dirk-Wouter; Jongmans, Marian J; Gorter, Jan Willem

    2015-01-01

    The aim of this study was to examine which child and family characteristics at the child's age of 2 years are determinants of development of self-care and mobility activities over a period of 2 years in young children with cerebral palsy (CP). Longitudinal data of 92 children, representing all level

  20. Multiwavelength Dispersion-Tuned Actively Mode-Locked Erbium-Doped Fibre Ring Laser with Gain Competition Suppression

    PAN Shi-Long; LOU Cai-Yun

    2006-01-01

    Multiwavelength dispersion-tuned actively mode-locked erbium-doped fibre ring laser is demonstrated by incorporating a section of highly nonlinear fibre (HNLF) in the laser cavity. The HNLF and the time gate element (modulator) in the fibre laser successfully suppress the gain competition in the erbium-doped fibre, and thus enable multiwavelength operation. Simultaneous generation of 10 GHz pulses up to eight different wavelengths is achieved. Wavelength, spacing and modes number tuning are investigated by changing fibre cavity length, dispersion, and erbium-doped fibre amplifier power, respectively.

  1. New Crystalline Materials for Nonlinear Frequency Conversion, Electro-Optic Modulation, and Mid-Infrared Gain Media

    Adams, J

    2002-08-09

    New crystalline materials were investigated for applications in frequency conversion of near-infrared wavelengths and as gain media for tunable mid-infrared solid-state lasers. GaCa{sub 4}O(BO{sub 3}){sub 3} (GdCOB), YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), LaCa{sub 4}O(BO{sub 3}){sub 3} (LaCOB), and Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} were characterized for frequency conversion of 1 {micro}m lasers. For type I doubling at 1064 nm, LaCOB, GdCOB, and YCOB were found to have effective coupling coefficients (d{sub eff}) of 0.52 {+-} 0.05, 0.78 {+-} 0.06, and 1.12 {+-} 0.07 pm/V, respectively. LaCOB was measured to have angular and thermal sensitivities of 1224 {+-} 184 (cm-rad){sup -1} and < 0.10 (cm-{sup o}C){sup -1}, respectively. The effective coupling coefficient for type II noncritically phasematched (NCPM) doubling at 1064 nm in Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} was measured to be 0.37 {+-} 0.04 pm/V. We predict LaCOB to have a type I NCPM fundamental wavelength of 1042 {+-} 1.5 nm. Due to its low angular and thermal sensitivities for doubling near 1047 nm, LaCOB has potential for frequency doubling of high-average power Nd:LiYF{sub 4} and Yb:Sr{sub 5}(P0{sub 4}){sub 3}F lasers. LaCOB, GdCOB, and YCOB were also investigated for optical parametric oscillator applications and we determined that they may have potential in a Ti:sapphire pumped oscillator. The effective linear electro-optic coefficients (r{sub eff}) were measured along dielectric directions in YCOB and a maximum r{sub eff} of 10.8 pm/V was found. For a crystal with a 5:1 aspect ratio, the corresponding half-wave voltage at 1064 nm would be 19.6 kV. Therefore a Pockels cell composed of two YCOB crystals with 5:1 aspect ratios would have a required half-wave voltage <10 kV. Moderate coupling coefficients (3 x KH{sub 2}PO{sub 4}), low thermal sensitivities, ease of growth to large sizes, non-hygroscopicity, and favorable polishing and coating characteristics make La

  2. The Development of a Digital Marketing Strategy to Gain Active Mobile Game Users in Japan

    Rönkkö, Makiyo

    2014-01-01

    Japan is the world’s biggest spender on mobile apps. This makes it an attractive market, but entering the Japan market is very difficult for Finnish mobile software developers. The goal of this thesis is to identify possible constraints that limit mobile game companies in the Japanese market, and analyze the means of increasing brand awareness and acquiring active game players. The focus is on finding the key elements required for building a digital marketing strategy targeted towards Japanes...

  3. Regulation of Nucleotide Metabolism by Mutant p53 Contributes to its Gain-of-Function Activities

    Kollareddy, Madhusudhan; Dimitrova, Elizabeth; Vallabhaneni, Krishna C.; Chan, Adriano; Le, Thuc; Chauhan, Krishna M.; Zunamys I. Carrero; Ramakrishnan, Gopalakrishnan; Watabe, Kounosuke; Haupt, Ygal; Haupt, Sue; Pochampally, Radhika; Boss, Gerard R.; Romero, Damian G.; Radu, Caius G.

    2015-01-01

    SUMMARY Mutant p53 (mtp53) is an oncogene that drives cancer cell proliferation. Here we report that mtp53 associates with the promoters of numerous nucleotide metabolism genes (NMG). Mtp53 knockdown reduces NMG expression and substantially depletes nucleotide pools, which attenuates GTP dependent protein (GTPase) activity and cell invasion. Addition of exogenous guanosine or GTP restores the invasiveness of mtp53 knockdown cells, suggesting that mtp53 promotes invasion by increasing GTP. Add...

  4. Reduced sympathetic nervous activity. A potential mechanism predisposing to body weight gain.

    Spraul, M.; Ravussin, E.; Fontvieille, A M; Rising, R; Larson, D. E.; Anderson, E. A.

    1993-01-01

    The sympathetic nervous system is recognized to play a role in the etiology of animal and possibly human obesity through its impact on energy expenditure and/or food intake. We, therefore, measured fasting muscle sympathetic nerve activity (MSNA) in the peroneal nerve and its relationship with energy expenditure and body composition in 25 relatively lean Pima Indian males (means +/- SD; 26 +/- 6 yr, 82 +/- 19 kg, 28 +/- 10% body fat) and 19 Caucasian males (29 +/- 5 yr, 81 +/- 13 kg, 24 +/- 9...

  5. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents

    Monique Simons; Johannes Brug; Mai J M Chinapaw; Michiel de Boer; Jaap Seidell; Emely de Vet

    2015-01-01

    OBJECTIVE: The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of healthy weight. METHODS: We assigned 270 gaming (i.e. ≥2 hours/week non-active video game time) adolescents randomly to an intervention group (n = 140) (receiving active video games and encouragement to ...

  6. Information materials and communication activities of ARAO

    ARAO is a public agency responsible for implementing all aspects of radioactive waste management. Its most important mission is certainly the siting of a repository for all low and intermediate level waste in Slovenia. ARAO carries out different communication and information activities to improve the public acceptability of such a facility among the general public, local community, public opinion makers and decision makers. These activities include running of the Visitors' Centre, publishing various informative publications on radioactivity and radiation, nuclear technology and radioactive waste management. ARAO also supports study circles and local information media, has its own web site and communicates with journalists working for Slovenian magazines, newspapers, TV and radio stations. Communication and information activities are assigned about 10 % of the yearly budget of the agency. Most of the finance is spent on running the Visitors' Centre and on publishing information materials for school children, youngsters and teachers. Information on radioactivity and on the work of ARAO provided by the agency is intended to increase the public interest in nuclear issues and to prepare the foundation for an informed and responsible decision on the radioactive waste repository in Slovenia. ARAO has also implemented direct communication, such as workshops, study circles and representations for the local community leadership, and these activities will be intensified in the near future.(author)

  7. Thermoregulation of water foraging honeybees--balancing of endothermic activity with radiative heat gain and functional requirements.

    Kovac, Helmut; Stabentheiner, Anton; Schmaranzer, Sigurd

    2010-12-01

    Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (T(a)) and solar radiation they are likely to be exposed in their natural environment in Middle Europe. The mean thorax temperature (T(th)) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of T(a) (3-30 °C). At warmer conditions (T(a)=30-39 °C) T(th) increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of T(body)-T(a) of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a T(a) of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase T(th) by about 1-3 °C to improve force production of flight muscles. At higher T(a) they exhibited cooling efforts to get rid of excess heat. A high T(th) also allowed regulation of the head temperature high enough to guarantee proper function of the bees' suction pump even at low T(a). This shortened the foraging stays and this way reduced energetic costs. With decreasing T(a) bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance. PMID:20705071

  8. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents

    Simons, Monique; Brug, Johannes; Chinapaw, Mai J M; de Boer, Michiel; Seidell, Jaap; de Vet, Emely

    2015-01-01

    OBJECTIVE: The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of health

  9. Replacing non-active video gaming by active video gaming to prevent excessive weight gain in adolescents

    Simons, M.; Brug, J.; Chinapaw, M.J.M.; Boer, M. de; Seidell, J.; Vet, E. de

    2015-01-01

    Objective: The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of health

  10. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents

    Simons, M.; Brug, J.; Chinapaw, M.J.M.; Boer, de M.; Seidell, J.; Vet, de E.

    2015-01-01

    Objective - The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of healt

  11. Spectral Analysis of Quantum-Dash Lasers: Effect of Inhomogeneous Broadening of the Active-Gain Region

    Khan, Mohammed Zahed Mustafa

    2012-05-01

    The effect of the active region inhomogeneity on the spectral characteristics of InAs/InP quantum-dash (Qdash) lasers is examined theoretically by solving the coupled set of carrier-photon rate equations. The inhomogeneity due to dash size or composition fluctuation is included in the model by considering dispersive energy states and characterized by a Gaussian envelope. In addition, the technique incorporates multilongitudinal photon modes and homogeneous broadening of the optical gain. The results predict a red shift in the central lasing wavelength of Qdash lasers on increasing the inhomogeneous broadening either explicitly or implicitly, which supports various experimental observations. The threshold current density and the lasing bandwidth are also found to increase. © 2012 IEEE.

  12. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents.

    Monique Simons

    Full Text Available The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of healthy weight.We assigned 270 gaming (i.e. ≥ 2 hours/week non-active video game time adolescents randomly to an intervention group (n = 140 (receiving active video games and encouragement to play or a waiting-list control group (n = 130. BMI-SDS (SDS = adjusted for mean standard deviation score, waist circumference-SDS, hip circumference and sum of skinfolds were measured at baseline, at four and ten months follow-up (primary outcomes. Sedentary screen time, physical activity, consumption of sugar-sweetened beverages and snacks, and process measures (not at baseline were assessed with self-reports at baseline, one, four and ten months follow-up. Multi-level-intention to treat-regression analyses were conducted.The control group decreased significantly more than the intervention group on BMI-SDS (β = 0.074, 95%CI: 0.008;0.14, and sum of skinfolds (β = 3.22, 95%CI: 0.27;6.17 (overall effects. The intervention group had a significantly higher decrease in self-reported non-active video game time (β = -1.76, 95%CI: -3.20;-0.32 and total sedentary screen time (Exp (β = 0.81, 95%CI: 0.74;0.88 than the control group (overall effects. The process evaluation showed that 14% of the adolescents played the Move video games every week ≥ 1 hour/week during the whole intervention period.The active video game intervention did not result in lower values on anthropometrics in a group of 'excessive' non-active video gamers (mean ~ 14 hours/week who primarily were of healthy weight compared to a control group throughout a ten-month-period. Even some effects in the unexpected direction were found, with the control group showing lower BMI-SDS and skin folds than the intervention

  13. Weight gain and inflammation regulate aromatase expression in male adipose tissue, as evidenced by reporter gene activity.

    Polari, L; Yatkin, E; Martínez Chacón, M G; Ahotupa, M; Smeds, A; Strauss, L; Zhang, F; Poutanen, M; Saarinen, N; Mäkelä, S I

    2015-09-01

    Obesity and white adipose tissue (WAT) inflammation are associated with enhanced aromatization in women, but little is known about the regulation of aromatase (CYP19A1) gene expression in male WAT. We investigated the impact of weight gain and WAT inflammation on the regulation of CYP19A1 in males, by utilizing the hARO-Luc aromatase reporter mouse model containing a >100-kb 5'-region of the human CYP19A1 gene. We show that hARO-Luc reporter activity is enhanced in WAT of mice with increased adiposity and inflammation. Dexamethasone and TNFα, as well as forskolin and phorbol 12-myristate 13-acetate, upregulate hARO-Luc activity, suggesting the involvement of promoters I.4 and I.3/II. Furthermore, we show that diet enriched with antioxidative plant polyphenols attenuates WAT inflammation and hARO-Luc activity in obese males. In conclusion, our data suggest that obesity-associated WAT inflammation leads to increased peripheral CYP19A1 expression in males, and that polyphenol-enriched diet may have the potential to attenuate excessive aromatization in WAT of obese men. PMID:26054748

  14. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  15. Experience gained with nuclear material accounting and control in storage facility for plutonium dioxide of SChK radiochemical plant

    The task for the computerized accounting of containers at the storage with barcoding equipment for inventory taking has been performed at achieve the pre-commissioning phase. This gave the following upgrade: decrease of the time spent by the personnel in storage compartments with plutonium dioxide during inventory taking, this diminishing the dose for personnel; changeover from traditional record book to computerized accounting of nuclear materials at the storage, which will make it possible to include the local workstation of the storage into computer network for nuclear material (NM) accounting at the Radiochemical plant; test and improve technique for the use of barcoding equipment for further introduction at plants and storage facilities of the SChK. Works are underway for further improvement of the NM accounting at the storage for plutonium dioxide

  16. Light activated nitric oxide releasing materials

    Muizzi Casanas, Dayana Andreina

    The ability to control the location and dosage of biologically active molecules inside the human body can be critical to maximizing effective treatment of cardiovascular diseases like angina. The current standard of treatment relies on the metabolism of organonitrate drugs into nitric oxide (NO), which are not specific, and also show problems with densitization with long-term use. There is a need then to create a treatment method that gives targeted release of NO. Metal-nitrosyl (M-NO) complexes can be used for delivery of NO since the release of NO can be controlled with light. However, the NO-releasing drug must be activated with red light to ensure maximum penetration of light through tissue. However, the release of NO from M-NO complexes with red-light activation is a significant challenge since the energy required to break the metal-NO bond is usually larger than the energy provided by red light. The goal of this project was to create red- sensitive, NO-releasing materials based on Ru-salen-nitrosyl compounds. Our approach was to first modify Ru salen complexes to sensitize the photochemistry for release of NO after red light irradiation. Next, we pursued polymerization of the Ru-salen complexes. We report the synthesis and quantitative photochemical characterization of a series of ruthenium salen nitrosyl complexes. These complexes were modified by incorporating electron donating groups in the salen ligand structure at key locations to increase electron density on the Ru. Complexes with either an --OH or --OCH3 substituent showed an improvement in the quantum yield of release of NO upon blue light irradiation compared to the unmodified salen. These --OH and --OCH3 complexes were also sensitized for NO release after red light activation, however the red-sensitive complexes were unstable and showed ligand substitution on the order of minutes. The substituted complexes remained sensitive for NO release, but only after blue light irradiation. The Ru

  17. Relative contributions of energy expenditure on physical activity, body composition and weight gain to the evolution of impaired glucose tolerance to Frank diabetes

    In modem technological societies the requirement for physical work is diminished and access to food is unrestricted. Under these circumstances a large proportion of the population will gain weight and develop obesity and diabetes. At the individual level, genetic and behavioural factors must combine to lead to an imbalance between energy intake and its expenditure. Weight gain, especially rapid weight gain in a population appears to increase the risk of diabetes sharply. Thus understanding the route to weight gain and obesity, and the modulatory effects of physical activity on development of glucose intolerance is critical to credible intervention strategies to reverse or prevent diabetes in populations especially those in transitional societies. In this proposal we will examine the quantitative importance of non-resting energy expenditure (EE) in populations with rising levels of obesity and high prevalence of diabetes. (author)

  18. Does Structured Quizzing with Process Specific Feedback Lead to Learning Gains in an Active Learning Geoscience Classroom?

    Palsole, S.; Serpa, L. F.

    2013-12-01

    There is a great realization that efficient teaching in the geosciences has the potential to have far reaching effects in outreach to decision and policy makers (Herbert, 2006; Manduca & Mogk, 2006). This research in turn informs educators that the geosciences by the virtue of their highly integrative nature play an important role in serving as an entry point into STEM disciplines and helping developing a new cadre of geoscientists, scientists and a general population with an understanding of science. Keeping these goals in mind we set to design introductory geoscience courses for non-majors and majors that move away from the traditional lecture models which don't necessarily contribute well to knowledge building and retention ((Handelsman et al., 2007; Hake, 1997) to a blended active learning classroom where basic concepts and didactic information is acquired online via webquests, lecturettes and virtual field trips and the face to face portions of the class are focused on problem solving exercises. The traditional way to ensure that students are prepared for the in-class activity is to have the students take a quiz online to demonstrate basic competency. In the process of redesign, we decided to leverage the technology to build quizzes that are highly structured and map to a process (formation of divergent boundaries for example) or sets of earth processes that we needed the students to know before in-class activities. The quizzes can be taken multiple times and provide process specific feedback, thus serving as a heuristic to the students to ensure they have acquired the necessary competency. The heuristic quizzes were developed and deployed over a year with the student data driving the redesign process to ensure synchronicity. Preliminary data analysis indicates a positive correlation between higher student scores on in-class application exercises and time spent on the process quizzes. An assessment of learning gains also indicate a higher degree of self

  19. Conducting polymers as potential active materials in electrochemical supercapacitors

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. [Los Alamos National Lab., NM (United States); Ferraris, J.P. [Texas Univ., Richardson, TX (United States). Dept. of Chemistry

    1992-12-01

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  20. Conducting polymers as potential active materials in electrochemical supercapacitors

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. (Los Alamos National Lab., NM (United States)); Ferraris, J.P. (Texas Univ., Richardson, TX (United States). Dept. of Chemistry)

    1992-01-01

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  1. Analyses of Oxyanion Materials by Prompt Gamma Activation Analysis

    Firestone, Richard B; Perry, D.L.; English, G.A.; Firestone, R.B.; Leung, K.-N.; Garabedian, G.; Molnar, G.L.; Revay, Zs.

    2008-03-24

    Prompt gamma activation analysis (PGAA) has been used to analyze metal ion oxyanion materials that have multiple applications, including medicine, materials, catalysts, and electronics. The significance for the need for accurate, highly sensitive analyses for the materials is discussed in the context of quality control of end products containing the parent element in each material. Applications of the analytical data for input to models and theoretical calculations related to the electronic and other properties of the materials are discussed.

  2. Optimizing the position of insulating materials in flat roofs exposed to sunshine to gain minimum heat into buildings under periodic heat transfer conditions.

    Shaik, Saboor; Talanki, Ashok Babu Puttranga Setty

    2016-05-01

    Building roofs are responsible for the huge heat gain in buildings. In the present work, an analysis of the influence of insulation location inside a flat roof exposed directly to the sun's radiation was performed to reduce heat gain in buildings. The unsteady thermal response parameters of the building roof such as admittance, transmittance, decrement factor, and time lags have been investigated by solving a one-dimensional diffusion equation under convective periodic boundary conditions. Theoretical results of four types of walls were compared with the experimental results available in literature. The results reveal that the roof with insulation placed at the outer side and at the center plane of the roof is the most energy efficient from the lower decrement factor point of view and the roof with insulation placed at the center plane and the inner side of the roof is the best from the highest time lag point of view among the seven studied configurations. The composite roof with expanded polystyrene insulation located at the outer side and at the center plane of the roof is found to be the best roof from the lowest decrement factor (0.130) point of view, and the composite roof with resin-bonded mineral wool insulation located at the center plane and at the inner side of the roof is found to be energy efficient from the highest time lag point (9.33 h) of view among the seven configurations with five different insulation materials studied. The optimum fabric energy storage thicknesses of reinforced cement concrete, expanded polystyrene, foam glass, rock wool, rice husk, resin-bonded mineral wool, and cement plaster were computed. From the results, it is concluded that rock wool has the least optimum fabric energy storage thickness (0.114 m) among the seven studied building roof materials. PMID:26341337

  3. Enclosure for handling high activity materials

    Jimeno de Osso, F.

    1977-07-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  4. Enclosure for handling high activity materials

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  5. Antibacterial nanofiber materials activated by light

    Jesenská, S.; Plištil, L.; Kubát, Pavel; Lang, Kamil; Brožová, Libuše; Popelka, Štěpán; Szatmáry, Lórant; Mosinger, Jiří

    99A, č. 4 (2011), s. 676-683. ISSN 1549-3296 R&D Projects: GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : antibacterial nanofiber materials * photoactive * singlet oxygen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.625, year: 2011

  6. Effect of computer mouse gain and visual demand on mouse clicking performance and muscle activation in a young and elderly group of experienced computer users

    Sandfeld, Jesper; Jensen, Bente R.

    2005-01-01

    The present study evaluated the specific effects of motor demand and visual demands on the ability to control motor output in terms of performance and muscle activation. Young and elderly subjects performed multidirectional pointing tasks with the computer mouse. Three levels of mouse gain and th...... only to a minor degree influenced by mouse gain (and target sizes) indicating that stability of the forearm/hand is of significance during computer mouse control. The study has implications for ergonomists, pointing device manufacturers and software developers....

  7. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Juho Yliniemi; Paivo Kinnunen; Pasi Karinkanta; Mirja Illikainen

    2016-01-01

    Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW) and glass wool (GW) were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated w...

  8. Natural activities of primordial radionuclides in building materials

    Seven kinds of building materials were analysed for 232Th, 238U and 40K using a direct gamma counting method. The radium equivalent activities for different building materials have been estimated. The calculated radium equivalent activities (Raeq) for all building materials are slightly higher (74.5 to 191 Bq/kg) than the world average value for soil (89 Bq/kg) and they are well below the maximum permissible limit 370 Bq/kg. (author)

  9. The Surface Groups and Active Site of Fibrous Mineral Materials

    DONG Fa-qin; WAN Pu; FENG Qi-ming; SONG Gong-bao; PENG Tong-jiang; LI Ping; LI Guo-wu

    2004-01-01

    The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid and alikali etching,strong mechanical and polarity molecular interaction.The results show the active sites concentrate on the ends in stick mineral materials and on the defect or hole edge in pipe mineral materials.The inside active site of mineral materials plays a main role in small molecular substance.The shape of minerals influence their distribution and density of active site.The strong mechanical impulsion and weak chemical force change the active site feature of minerals,the powder process enables minerals exposed more surface group and more combined types.The surface processing with the small polarity molecular or the brand of middle molecular may produce ionation and new coordinate bond,and change the active properties and level of original mineral materials.

  10. From Atmospheric Awareness to Active Materiality

    Wieczorek, Izabela

    2013-01-01

    ‘Atmosphere’ has recently claimed more attention in architectural discourse and practice leading to the revaluation of embodiment as a basis for the interaction with an environment. In this context, architectural space is understood as a space of engagement that ‘appears’ to us as a result...... with an attempt to trace associations and draw out design protocols, focusing on ways in which atmosphere can be consciously generated or manipulated. The aim is thus to examine ‘the atmospheric’ as a spatial quality, an experiential property as well as a sensory background and materiality as one...

  11. Gain of function AMP-activated protein kinase γ3 mutation (AMPKγ3R200Q) in pig muscle increases glycogen storage regardless of AMPK activation.

    Scheffler, Tracy L; Park, Sungkwon; Roach, Peter J; Gerrard, David E

    2016-06-01

    Chronic activation of AMP-activated protein kinase (AMPK) increases glycogen content in skeletal muscle. Previously, we demonstrated that a mutation in the ryanodine receptor (RyR1(R615C)) blunts AMPK phosphorylation in longissimus muscle of pigs with a gain of function mutation in the AMPKγ3 subunit (AMPKγ3(R200Q)); this may decrease the glycogen storage capacity of AMPKγ3(R200Q) + RyR1(R615C) muscle. Therefore, our aim in this study was to utilize our pig model to understand how AMPKγ3(R200Q) and AMPK activation contribute to glycogen storage and metabolism in muscle. We selected and bred pigs in order to generate offspring with naturally occurring AMPKγ3(R200Q), RyR1(R615C), and AMPKγ3(R200Q) + RyR1(R615C) mutations, and also retained wild-type littermates (control). We assessed glycogen content and parameters of glycogen metabolism in longissimus muscle. Regardless of RyR1(R615C), AMPKγ3(R200Q) increased the glycogen content by approximately 70%. Activity of glycogen synthase (GS) without the allosteric activator glucose 6-phosphate (G6P) was decreased in AMPKγ3(R200Q) relative to all other genotypes, whereas both AMPKγ3(R200Q) and AMPKγ3(R200Q) + RyR1(R615C) muscle exhibited increased GS activity with G6P. Increased activity of GS with G6P was not associated with increased abundance of GS or hexokinase 2. However, AMPKγ3(R200Q) enhanced UDP-glucose pyrophosphorylase 2 (UGP2) expression approximately threefold. Although UGP2 is not generally considered a rate-limiting enzyme for glycogen synthesis, our model suggests that UGP2 plays an important role in increasing flux to glycogen synthase. Moreover, we have shown that the capacity for glycogen storage is more closely related to the AMPKγ3(R200Q) mutation than activity. PMID:27302990

  12. Evaluation of new active packaging materials and analytical approaches

    Lantano, Claudia

    2014-01-01

    This PhD thesis deals with the study of different aspects of food contact materials, including active packaging and food safety controls. In the first part of the present work the development and optimization of a simple and reproducible procedure for the realization of new antimicrobial active packaging materials is presented. The sol-gel technique was employed in order to obtain hybrid organic-inorganic films aimed at incorporating lysozyme and natamycin as active agents. The sols were ...

  13. Overview of European Community (Activity 3) work on materials properties of fast reactor structural materials

    The Fast Reactor Coordinating Committee set up in 1974 the Working Group Codes and Standards, and organized its work into four main activities: Manufacturing standards, Structural analysis, Materials and Classification of components. The main purpose of materials activity is to compare and contrast existing national specifications and associated properties relevant to structural materials in fast reactors. Funds are available on a yearly basis for tasks to be carried out through Study Contracts. At present about four Study Contract Reports are prepared each year

  14. Physical Activity and Dietary Behaviors Associated With Weight Gain and Impaired Glucose Tolerance Among Pregnant Latinas123

    Chasan-Taber, Lisa

    2012-01-01

    Pregnancy has been proposed as a critical period for the development of subsequent maternal overweight and/or obesity. Excessive gestational weight gain is, in turn, associated with maternal complications such as cesarean delivery, hypertension, preeclampsia, impaired glucose tolerance, and gestational diabetes mellitus. Although there is substantial evidence that targeting at-risk groups for type 2 diabetes prevention is effective if lifestyle changes are made, relatively little attention ha...

  15. An novel analog programmable power supply for active gain control of the Multi-Pixel Photon Counter (MPPC)

    Li, Zhengwei; Xu, Yupeng; Yan, Bo; Li, Yanguo; Lu, Xuefeng; Li, Xufang; Zhang, Shuo; Chang, Zhi; Li, Jicheng; Zhang, Yifei; Zhao, Jianling

    2016-01-01

    Silicon Photo-Multipliers (SiPM) are regarded as novel photo-detector to replace conventional Photo-Multiplier Tubes (PMTs). However, the breakdown voltage dependence on the ambient temperature results in a gain variation of $\\sim$3$\\% /^{\\circ} \\mathrm C$. This can severely limit the application of this device in experiments with wide range of operating temperature, especially in space telescope. An experimental setup in dark condition was established to investigate the temperature and bias voltage dependence of gain for the Multi-Pixel Photon Counter (MPPC), one type of the SiPM developed by Hamamatsu. The gain and breakdown voltage dependence on operating temperature of an MPPC can be approximated by a linear function, which is similar to the behavior of a zener diode. The measured temperature coefficient of the breakdown voltage is $(59.4 \\pm 0.4$ mV)$/^{\\circ} \\mathrm C$. According to this fact, a programmable power supply based on two zener diodes and an operational amplifier was designed with a positiv...

  16. Active infrared materials for beam steering

    The mid-infrared (mid-IR, 3 (micro)m -12 (micro)m) is a highly desirable spectral range for imaging and environmental sensing. We propose to develop a new class of mid-IR devices, based on plasmonic and metamaterial concepts, that are dynamically controlled by tunable semiconductor plasma resonances. It is well known that any material resonance (phonons, excitons, electron plasma) impacts dielectric properties; our primary challenge is to implement the tuning of a semiconductor plasma resonance with a voltage bias. We have demonstrated passive tuning of both plasmonic and metamaterial structures in the mid-IR using semiconductors plasmas. In the mid-IR, semiconductor carrier densities on the order of 5E17cm-3 to 2E18cm-3 are desirable for tuning effects. Gate control of carrier densities at the high end of this range is at or near the limit of what has been demonstrated in literature for transistor style devices. Combined with the fact that we are exploiting the optical properties of the device layers, rather than electrical, we are entering into interesting territory that has not been significantly explored to date.

  17. Active infrared materials for beam steering.

    Brener, Igal; Reno, John Louis; Passmore, Brandon Scott; Gin, Aaron V.; Shaner, Eric Arthur; Miao, Xiaoyu; Barrick, Todd A.

    2010-10-01

    The mid-infrared (mid-IR, 3 {micro}m -12 {micro}m) is a highly desirable spectral range for imaging and environmental sensing. We propose to develop a new class of mid-IR devices, based on plasmonic and metamaterial concepts, that are dynamically controlled by tunable semiconductor plasma resonances. It is well known that any material resonance (phonons, excitons, electron plasma) impacts dielectric properties; our primary challenge is to implement the tuning of a semiconductor plasma resonance with a voltage bias. We have demonstrated passive tuning of both plasmonic and metamaterial structures in the mid-IR using semiconductors plasmas. In the mid-IR, semiconductor carrier densities on the order of 5E17cm{sup -3} to 2E18cm{sup -3} are desirable for tuning effects. Gate control of carrier densities at the high end of this range is at or near the limit of what has been demonstrated in literature for transistor style devices. Combined with the fact that we are exploiting the optical properties of the device layers, rather than electrical, we are entering into interesting territory that has not been significantly explored to date.

  18. Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks

    We report spectrally resolved gain measurements and simulations for quantum cascade lasers (QCLs) composed of multiple heterogeneous stacks designed for broadband emission in the mid-infrared. The measurement method is first demonstrated on a reference single active region QCL based on a double-phonon resonance design emitting at 7.8 μm. It is then extended to a three-stack active region based on bound-to-continuum designs with a broadband emission range from 7.5 to 10.5 μm. A tight agreement is found with simulations based on a density matrix model. The latter implements exhaustive microscopic scattering and dephasing sources with virtually no fitting parameters. The quantitative agreement is furthermore assessed by measuring gain coefficients obtained by studying the threshold current dependence with the cavity length. These results are particularly relevant to understand fundamental gain mechanisms in complex semiconductor heterostructure QCLs and to move towards efficient gain engineering. Finally, the method is extended to the measurement of the modal reflectivity of an anti-reflection coating deposited on the front facet of the broadband QCL

  19. Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks

    Bidaux, Y.; Terazzi, R.; Bismuto, A.; Gresch, T.; Blaser, S.; Muller, A.; Faist, J.

    2015-09-01

    We report spectrally resolved gain measurements and simulations for quantum cascade lasers (QCLs) composed of multiple heterogeneous stacks designed for broadband emission in the mid-infrared. The measurement method is first demonstrated on a reference single active region QCL based on a double-phonon resonance design emitting at 7.8 μm. It is then extended to a three-stack active region based on bound-to-continuum designs with a broadband emission range from 7.5 to 10.5 μm. A tight agreement is found with simulations based on a density matrix model. The latter implements exhaustive microscopic scattering and dephasing sources with virtually no fitting parameters. The quantitative agreement is furthermore assessed by measuring gain coefficients obtained by studying the threshold current dependence with the cavity length. These results are particularly relevant to understand fundamental gain mechanisms in complex semiconductor heterostructure QCLs and to move towards efficient gain engineering. Finally, the method is extended to the measurement of the modal reflectivity of an anti-reflection coating deposited on the front facet of the broadband QCL.

  20. Neutron-activation analysis of plant materials

    The possibilities offered by non-destructive neutron activation analysis (NAA) for simultaneously determining a large number of micro- and macro-components in plant samples of Bulgarian origin have been studied. Three groups of elements are determined: short half-life isotopes: Al, Mg, Ca, Na, Mn, Cl, Cu; medium half-life isotopes: Br, Na, K; and long half-life isotopes: Fe, Cr, Co, Sc, Pb, Zn. The samples are kept for 1 minute in a fluxes of 6x1012 n.cm2.sec-1 (first group), and of 3x1011 n.cm2.sec-1 for 18 hours (second and third groups). Use is made of a Ge/Li detector and 4000-channel analyser. To test the accuracy of the method, the results of NAA for some standard specimens have been compared with the indicators of other conventional methods tested in 18 laboratories in various countries. The data from NAA for the content of K, Mo, Ca, Mn, Fe, Zn and Cu demonstrate a high degree of coincidence with those from the other methods. Chemical composition of 23 samples of experimental and field crops is determined

  1. Raw materials for low-activation concrete neutron shields

    Concrete surrounding a nuclear accumulates radioisotopes induced by neutron reactions during operation, and this concrete still remains to an enormous degree as radioactive waste after decommissioning. The disposal of such activated concrete is very costly and requires strict supervision. Hence, there has been a strong desire to develop a concrete that retains little residual radioactivity, that is, ''low-activation'' concrete. In the present study, we have identified several raw materials for such concrete - low-activation limestone, quartzite, colemanite, alumina-ceramics, while Portland cement and high-alumina cement - by performing a screening test for neutron irradiation. The results show that low-activation concrete compounded from such low-activation raw materials should serve for neutron shielding. Another noteworthy finding is that limestone occurring near schalstein deposits, and especially when sandwiched between two beds of schalstein, is an excellent low-activation raw material. (author)

  2. The Effect of Length of Exposure to Computer-based Vocabulary Activities on Young Iranian EFL Learners’ Vocabulary Gain

    Karim Sadeghi; Masoumeh Dousti

    2014-01-01

    In recent years, research in the area of CALL and its role on teaching foreign languages has gained a strong foothold. This study was anattempt to explore the effectiveness of CALL technology in comparison to traditional book-based approach in teaching vocabulary to young Iranian EFL learners. As this study addressed young learners in an EFL context, it was supposed that time factor would play a crucial role in this regard. Hence, attending to the possible role of length of exposure to CALL t...

  3. High-Performance 1.55-µm Superluminescent Diode Based on Broad Gain InAs/InGaAlAs/InP Quantum Dash Active Region

    Khan, Mohammed Zahed Mustafa

    2014-08-01

    We report on the high-performance characteristics from superluminescent diodes (SLDs) based on four-stack InAs/InGaAlAs chirped-barrier thickness quantum dash (Qdash) in a well structure. The active region exhibits a measured broad gain spectrum of 140 nm, with a peak modal gain of ~41 cm-1. The noncoated two-section gainabsorber broad-area and ridge-waveguide device configuration exhibits an output power of > 20 mW and > 12 mW, respectively. The corresponding -3-dB bandwidths span ~82 nm and ~72 nm, with a small spectral ripple of <; 0.2 dB, related largely to the contribution from dispersive height dash ensembles of the highly inhomogeneous active region. These C-L communication band devices will find applications in various cross-disciplinary fields of optical metrology, optical coherent tomography, etc.

  4. PILLARS OF THE AUDIT ACTIVITY: MATERIALITY AND AUDIT RISK

    ANA MARIA JOLDOŞ; IONELA CORNELIA STANCIU; GABRIELA GREJDAN

    2010-01-01

    The purpose of this article is to present the issues of materiality and audit risk within the activity of financial audit. The concepts of materiality and audit risk are described from a theoretical perspective, providing approaches found within the national and international literature and within the specific legislation. A case study on the calculation of materiality and audit risk for an entity is presented in the last part of the article. Through the theoretical approach and the case stud...

  5. Soft Active Materials for Actuation, Sensing, and Electronics

    Kramer, Rebecca Krone

    2012-01-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components ...

  6. Setting and Strength Characteristics of Alkali-activated Carbonatite Cementitious Materials with Ground Slag Replacement

    2006-01-01

    The effect of the ground granulated blast-furnace slag (GGBFS) addition, the modulus n (mole ratio of SiO2 to Na2 O ) and the concentration of sodium silicate solution on the compressive strength of the ma terial, i e alkali-activated carbonatite cementitious material (AACCMfor short ) was investigated.In addition, it is found that barium chloride has a satisfactory retarding effect on the setting of AACCM in which more than 20% ( by mass ) groud carbonatite was replaced by GGBFS.As a result, a cementitious material, inwhich ground carbona tite rock served as dominative starting material, with 3-day and 28-da y compressive strength greater than 30 MPa and 60 MPa and with continuous strength gain beyond 90 days was obtained.

  7. Optically Active Hybrid Materials Constructed from Helically Substituted Polyacetylenes.

    Zhang, Huanyu; Zhao, Biao; Deng, Jianping

    2016-04-01

    Functional materials derived from synthetic helical polymers are attracting increasing interest. Helically substituted polyacetylenes (HSPAs) are especially interesting as typical artificial helical polymers. In recent years, we designed and prepared a series of functional materials based on HSPAs and inorganic materials. The target is to establish some novel hybrid materials that combine the superior properties of both. The examined inorganic materials include silica, graphene, and magnetic Fe3 O4 nanoparticles. Such new functional materials hold great promise and are expected to find practical applications, for instance, as chiral absorbents, chiral sensors, chiral selectors for inducing enantioselective crystallization, chiral catalysts towards asymmetric catalysis, and chiral carriers for enantioselective release. The Personal Account summarizes our major achievements in preparing optically active hybrid materials. We hope it will speed up progress in chiral-related research areas. PMID:26991679

  8. Active video games as a tool to prevent excessive weight gain in adolescents: rationale, design and methods of a randomized controlled trial

    2014-01-01

    Background Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games –i.e. active games- may be a promising alternative to traditional non-active games to promote physical activity and reduce sedentary behaviors in youth. The aim of this manuscript is to describe the design of a study evaluating the effects of a family oriented active game intervention, incorporating several motivational elements, on anthropometrics and health behaviors in adolescents. Methods/Design The study is a randomized controlled trial (RCT), with non-active gaming adolescents aged 12 – 16 years old randomly allocated to a ten month intervention (receiving active games, as well as an encouragement to play) or a waiting-list control group (receiving active games after the intervention period). Primary outcomes are adolescents’ measured BMI-SDS (SDS = adjusted for mean standard deviation score), waist circumference-SDS, hip circumference and sum of skinfolds. Secondary outcomes are adolescents’ self-reported time spent playing active and non-active games, other sedentary activities and consumption of sugar-sweetened beverages. In addition, a process evaluation is conducted, assessing the sustainability of the active games, enjoyment, perceived competence, perceived barriers for active game play, game context, injuries from active game play, activity replacement and intention to continue playing the active games. Discussion This is the first adequately powered RCT including normal weight adolescents, evaluating a reasonably long period of provision of and exposure to active games. Next, strong elements are the incorporating motivational elements for active game play and a comprehensive process evaluation. This trial will provide evidence regarding the potential contribution of active games in prevention of excessive weight gain in

  9. Fusion blanket materials development and recent R and D activities

    Development of structural materials plays an important role in the feasibility of fusion power plant. The candidate structural materials for future fusion reactors are Reduced Activation Ferritic Martensitic (RAFM) steel, nano structured ODS Steel, vanadium alloys and SiC/SiCf composite etc. RAFM steel is presently considered as the structural material for Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) because of its high void swelling resistance and improved thermal properties compared to austenitic steel. Development of RAFM steel in India is being carried out in full swing in collaboration with various research laboratories and steel industries. This paper presents an overview of the Indian activities on fusion blanket materials and describes in brief the efforts made to develop IN-RAFM steel as structural material for the LLCB TBM. In future, due to enhanced properties of vanadium base alloy and nano structured materials like ODS RAFMS, RAFM steel may be replaced by these materials for its application in DEMO relevant fusion reactor. Future R and D activities will be specifically towards the development of these structural materials for fusion reactor

  10. Rare-earth-activated wide bandgap materials for scintillators

    Open f-shell rare-earth (RE) ions in wide bandgap host materials are usually characterized by closely spaced electronic levels due to various electron configurations and charge states. These levels provide convenient luminescent transitions that can be excited by efficient recombination of charge carriers generated in the host material by ionizing radiation. Therefore, it is the area of ionizing radiation detectors, where search for new, fast and efficient scintillator materials for high-energy physics and nuclear medicine, has yielded much of the recent advances in the understanding of radioluminescence and scintillation mechanism in some solid state, UV and VUV luminescent, RE-activated materials. In this paper we shall present selected results of basic experiments such as radioluminescence, VUV spectroscopy, time profiles and thermoluminescence, on barium fluoride (activated with Ce, Pr, Nd, Tb) and two aluminum perovskites, YAlO3 and LuAlO3, activated with Ce. We shall demonstrate that these results point to consecutive carrier capture and recombination at RE ions as the basic mechanism of radioluminescence and scintillation in these materials, despite the strong self-trapping and poor charge transport properties. Consequently, various electron and/or hole traps that intercept and retain for some time the recombining charge carriers play an active role influencing both the scintillation light yield and time profiles of scintillation pulses in these and many other wide bandgap RE-activated luminescent materials

  11. Materials Science Division activity report 1991-1993

    This progress report gives an account of the various research and developmental activities carried out at the Materials Science Division of the Indira Gandhi Centre for Atomic Research, Kalpakkam during 1991-93. It also gives a summary of the results of the research activities, describes the experimental facilities and also list the publications

  12. Biodegradation and biocompatibility of mechanically active magnetoelastic materials

    Magnetoelastic (ME) materials have many advantages for use as sensors and actuators due to their wireless, passive nature. This paper describes the application of ME materials as biodegradable implants with controllable degradation rates. Experiments have been conducted to show that degradation rates of ME materials are dependent on the material compositions. In addition, it was shown that the degradation rates of the ME materials can be controlled remotely by applying a magnetic field, which causes the ME materials to generate low-magnitude vibrations that hasten their degradation rates. Another concern of ME materials for medical applications is biocompatibility. Indirect cytotoxicity analyses were performed on two types of ME materials: Metglas™ 2826 MB (FeNiMoB) and iron–gallium alloy. While results indicate Metglas is not biocompatible, the degradation products of iron–gallium materials have shown no adverse effects on cell viability. Overall, these results present the possibility of using ME materials as biodegradable, magnetically-controlled active implants. (paper)

  13. Verification of completeness and correctness of inventory. Experience gained in the verification of the completeness of the inventory of South Africa's nuclear installations and material

    The activities carried out to verify the correctness of the inventory of nuclear material, included in the initial report, extended over several months and involved long established measures such as the examination of contemporary operating and accounting records, and destructive and non-destructive analysis of the nature and quantity of individual items and batches. The assessment of the completeness of the inventory of South Africa's nuclear installations and material was carried out as a separate exercise by a team of senior members of the IAEA Department of Safeguards specifically appointed for the purpose by the Director General. South Africa's extensive nuclear fuel cycle made the task of the assessment of completeness complex, requiring considerable inspection resources and extensive co-operation from the State authorities regarding the provision of access to defunct facilities and historical operating records. The task was further complicated when, on 24 March 1993, State President de Klerk announced, in broadcast speech to the Parliament, that South Africa had developed and subsequently dismantled a ''limited nuclear deterrent capability'' involving the design and manufacture of seven gun-assembled (HEU) devices. An augmented IAEA team, composed of the personnel assigned to carry out the assessment of completeness, and, among other specialists, nuclear weapons experts were assigned to assess the status of the former weapons programme and to ascertain that all of the nuclear material involved in the programme had been recovered and had been placed under safeguards. 2 refs, 2 tabs

  14. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  15. Soft Active Materials for Actuation, Sensing, and Electronics

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  16. Long-lived activation products in reactor materials

    The purpose of this program was to assess the problems posed to reactor decommissioning by long-lived activation products in reactor construction materials. Samples of stainless steel, vessel steel, concrete, and concrete ingredients were analyzed for up to 52 elements in order to develop a data base of activatable major, minor, and trace elements. Large compositional variations were noted for some elements. Cobalt and niobium concentrations in stainless steel, for example, were found to vary by more than an order of magnitude. A thorough evaluation was made of all possible nuclear reactions that could lead to long lived activation products. It was concluded that all major activation products have been satisfactorily accounted for in decommissioning planning studies completed to date. A detailed series of calculations was carried out using average values of the measured compositions of the appropriate materials to predict the levels of activation products expected in reactor internals, vessel walls, and bioshield materials for PWR and BWR geometries. A comparison is made between calculated activation levels and regulatory guidelines for shallow land disposal according to 10 CFR 61. This analysis shows that PWR and BWR shroud material exceeds the Class C limits and is, therefore, generally unsuitable for near-surface disposal. The PWR core barrel material approaches the Class C limits. Most of the remaining massive components qualify as either Class A or B waste with the bioshield clearly Class A, even at the highest point of activation. Selected samples of activated steel and concrete were subjected to a limited radiochemical analysis program as a verification of the computer model. Reasonably good agreement with the calculations was obtained where comparison was possible. In particular, the presence of 94Nb in activated stainless steel at or somewhat above expected levels was confirmed

  17. Instrumental Neuron Activation Analysis for certification of stainless steel materials

    The use of Instrumental Neuron Activation Analysis (INAA) may contribute to improve the certification of the materials, especially in the case of minor and trace elements. In presented paper the INAA method of analysis of stainless steel materials has been elaborated. The obtained results were compared with those of common analytical techniques. The presented results show the usefulness of the INAA method for the certification of CRMs for the iron and steel industry

  18. Monothioanthraquinone as an organic active material for greener lithium batteries

    Iordache, Adriana; Maurel, Vincent; Mouesca, Jean-Marie; Pécaut, Jacques; Dubois, Lionel; Gutel, Thibaut

    2014-12-01

    In order to reduce the environmental impact of human activities especially transportation and portable electronics, a more sustainable way is required to produce and store electrical energy. Actually lithium battery is one of the most promising solutions for energy storage. Unfortunately this technology is based on the use of transition metal-based active materials for electrodes which are rare, expensive, extracted by mining, can be toxic and hard to recycle. Organic materials are an interesting alternative to replace inorganic counterparts due to their high electrochemical performances and the possibility to produce them from renewable resources. A quinone derivative is synthetized and investigated as novel active material for rechargeable lithium ion batteries which shows higher performances.

  19. PILLARS OF THE AUDIT ACTIVITY: MATERIALITY AND AUDIT RISK

    ANA MARIA JOLDOŞ

    2010-01-01

    Full Text Available The purpose of this article is to present the issues of materiality andaudit risk within the activity of financial audit. The concepts of materiality and audit risk aredescribed from a theoretical perspective, providing approaches found within the national andinternational literature and within the specific legislation. A case study on the calculation ofmateriality and audit risk for an entity is presented in the last part of the article. Through thetheoretical approach and the case study, it was concluded that materiality has an importantrole in determining the type of report to be issued, that is why it can be considered helpful forthose involved in the audit process.

  20. Nondestructive neutron activation analysis of mineral materials. III

    A description is presented of sampling, calibration standards, the method of activation and measurement, activation product identification, the respective nuclear reactions, interfering admixtures, and pre-activation operations. The analysis is described of sulphides, halogenides, oxides, sulphates, carbonates, phosphates, silicates, aluminosilicates, composite minerals containing lanthanides, rocks, tektites, meteors, and plant materials. The method allows determining mainly F, Mg, Al, Ti, V, Nb, Rh, and I which cannot be determined by long-term activation (LTA). It is more sensitive than LTA in determining Ca, Cu, In, and Dy. The analysis takes less time, irradiation and measurement are less costly. The main mineral components are quickly found. (M.K.)

  1. Designing Gain- and Loss-Framed Messages to Increase Physical Activity among University Students Living in two Different Cultures

    Pelin Ozgur Polat

    2015-10-01

    The primary aim of this project is to gather information through using different methods and investigate the determinants of message persuasiveness in university students from the British and Turkish cultures in order to design effective physical activity messages leading intention, attitude and behaviour change. The results of the finalized studies showed the importance of using both qualitative and quantitative methods in message design process.

  2. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.

  3. Mechanical Activation of Construction Binder Materials by Various Mills

    Fediuk, R. S.

    2016-04-01

    The paper deals with the mechanical grinding down to the nano powder of construction materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of portland cement. Mechanical processes during grinding mineral materials cause, along with the increase in their surface energy, increase the Gibbs energy of powders and, respectively, their chemical activity, which also contributes to the high adhesion strength when contacting them with binders. Thus, the set of measures for mechanical activation makes better use of the weight of components filled with cement systems and adjust their properties. At relatively low cost is possible to provide a spectacular and, importantly, easily repeatable results in a production environment.

  4. Active coke: Carbonaceous materials as catalysts for alkane dehydrogenation

    McGregor, J.; Huang, Z; Parrott, E.; Zeitler, J.; Nguyen, K.; Rawson, J.; Carley, A; Hansen, T.; Tessonnier, J.; Su, D.; Teschner, D; Vass, E.; Knop-Gericke, A.; Schlögl, R.; Gladden, L.

    2010-01-01

    The catalytic dehydrogenation (DH) and oxidative dehydrogenation (ODH) of light alkanes are of significant industrial importance. In this work both carbonaceous materials deposited on VOx/Al2O3 catalysts during reaction and unsupported carbon nanofibres (CNFs) are shown to be active for the dehydrogenation of butane in the absence of gas-phase oxygen. Their activity in these reactions is shown to be dependent upon their structure, with different reaction temperatures yielding structurally dif...

  5. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Arslanagic, Samel; Liu, Yan; Malureanu, Radu; Ziolkowski, Richard W.

    2011-01-01

    well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold......, and copper) are employed and compared for the nano-shell layers....

  6. Natural activity of 40K in some Chilean building materials

    Knowledge of the natural level of radioactivity is important to assess the influence of gamma radiation exposure in building materials. The main sources of external radiation exposure in buildings are members of the uranium and thorium decay chains and 40K occurring naturally in building materials, which emit gamma rays.The specific activity of building materials has been reported for many countries. However, for Chilean building materials no such data are available. A study of 40K speciactivity on building materials was carried out with gamma spectrometric system based on high-purity germanium detector. The 40K activity was measured directly by its own gamma-ray line at 1460.8 keV. Samples of gypsum, cement, brick and cement and gravel mixture, widely used in Chile, were used on this work. The samples were corrected by moisture content and the geometrical conditions has been normalized to avoid volumetric corrections. All preliminary results are below the world average of 500 Bq/kg for building materials reported by UNSCEAR

  7. Smart Materials and Active Noise and Vibration Control in Vehicles

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, van M.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are necessa

  8. Technical Support Activities of a Nuclear Materials Management Programme

    The development of a nuclear materials management programme in the United States of America has recognized from its inception the value and need of strong technical support. The success of that programme has depended to a large extent on the development of a closely allied technical support effort. This effort has drawn on the technical competency of top governmental, industrial and academic consultants, in addition to that within the USAEC. Under the planning, development and administration of the USAEC's Division of Nuclear Materials Management, a broad spectrum of technical activities has evolved. These include: (a) The establishment of an Advisory Committee for Standard Reference Materials and Methods of Measurement, (b) Preparation and USAEC co-ordination with the National Bureau of Standards in the development of a series of uranium and plutonium chemical and isotopic standards, (c) Research and development programmes designed to provide improved measurement techniques, (d) Compilation and publication of a book of selected measurement methods for uranium and plutonium. Each of these technical support activities is discussed in some detail, including the conditions that gave rise to their need and development, and their application to the USAEC's nuclear materials management programme. Included is a discussion of the USAEC's Advisory Committee for Standard Reference Materials and Methods of Measurement, which was established to provide guidance to the nuclear materials management programme and recommend research and development activities. Resulting from these recommendations was a USAEC co-operative effort with the National Bureau of Standards for the development of chemical and isotopic standard reference materials of uranium and plutonium; particular attention is devoted to the results of that joint effort. The need for research and development efforts in areas of mutual interest is examined, and the cooperation of other nations of the world is elicited in

  9. Application of reference materials for quality assessment in neutron activation analysis

    It is generally accepted that an analytical procedure can be regarded as an information production system yielding information on the composition of the analyzed sample. Thus, information theory can be useful and the quantities characterizing the information properties of an analytical method may be applied not only as evaluation criteria but also as objective functions in the optimization. The usability of information theory is demonstrated on the example of neutron activation analysis. Both precision and bias of NAA results are taken into account together with the possible use of reference materials for quality assessment. The influence of the above-mentioned parameters on information properties such as information gain and profitability of NAA results is discussed in detail. It has been proved that information theory is especially useful in choosing suitable reference materials for the quality assessment of routine analytical procedures not only with respect to matrix and analyte concentration in the sample but also to concentrations and uncertainties of certified values in the CRM used. In the extreme trace analysis, CRMs with relatively large uncertainties and very low certified concentrations can still yield rather high information gain of results. (author) 14 refs.; 9 figs

  10. Activation of a Ca-bentonite as buffer material

    Document available in extended abstract form only. Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post

  11. Activation of a Ca-bentonite as buffer material

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid

  12. Activation of accelerator construction materials by heavy ions

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  13. Composition adjustment of low activation materials for shallow land burial

    The three representative low activation materials for a fusion reactor are ferritic steel, V-alloy and SiC/SiC composite. The adjustment of the material composition of these materials to increase the fraction of shallow land burial in Japan was considered. In Japan, the fission waste having any single radionuclide exceeding the limiting concentration value, causing 100 μSv year-1 individual dose, determined by the Nuclear Safety Commission will not qualify as a low level waste (LLW), which could be disposed by shallow land burial. The limiting concentration values of radionuclides produced in fusion reactor were derived based on the methodology of the Nuclear Safety Commission. Radionuclide concentrations of the radwastes generated from the fusion power reactors using the three low activation materials based on the composition of existing materials were evaluated. Radwastes are classified into LLW and medium level waste (MLW), which is defined as the waste which does not qualify for LLW because one or more of the radionuclides exceeds the derived limiting concentration value. The weight fraction of MLW among the sum of LLW and MLW is found to be 10% for ferritic steel, 54% for V-alloy and 43% for SiC/SiC. The possibility of decreasing the MLW fraction by the material composition adjustment is considered. It is found that if Nb impurity content in V-alloy and N impurity content in SiC/SiC composite could be reduced, the MLW fraction can be significantly decreased. On the other hand, the content of the alloy component material (W), needs to be reduced to further decrease the MLW fraction in case of the ferritic steel F82H

  14. Transient assembly of active materials fueled by a chemical reaction

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  15. Evaluation and development of advanced nuclear materials: IAEA activities

    Economical, environmental and non-proliferation issues associated with sustainable development of nuclear power bring about a need for optimization of fuel cycles and implementation of advanced nuclear systems. While a number of physical and design concepts are available for innovative reactors, the absence of reliable materials able to sustain new challenging irradiation conditions represents the real bottle-neck for practical implementation of these promising ideas. Materials performance and integrity are key issues for the safety and competitiveness of future nuclear installations being developed for sustainable nuclear energy production incorporating fuel recycling and waste transmutation systems. These systems will feature high thermal operational efficiency, improved utilization of resources (both fissile and fertile materials) and reduced production of nuclear waste. They will require development, qualification and deployment of new and advanced fuel and structural materials with improved mechanical and chemical properties combined with high radiation and corrosion resistance. The extensive, diverse, and expensive efforts toward the development of these materials can be more effectively organized within international collaborative programmes with wide participation of research, design and engineering communities. IAEA carries out a number of international projects supporting interested Member States with the use of available IAEA program implementation tools (Coordinated Research Projects, Technical Meetings, Expert Reviews, etc). The presentation summarizes the activities targeting material developments for advanced nuclear systems, with particular emphasis on fast reactors, which are the focal topics of IAEA Coordinated Research Projects 'Accelerator Simulation and Theoretical Modelling of Radiation Effects' (on-going), 'Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors', 'Examination of advanced fast reactor fuel and core

  16. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 1018 cm−3, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga0.47In0.53As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers

  17. 1996 Activities report on energies and raw materials

    The 1996 activity survey of the French General Directory for Energy and Raw Materials, which main objectives are to preserve the competitiveness of French economy, enhance environmental protection, secure the long term supply safety and maintain the public service basis for energy supply, is presented. The main themes of the survey are: the nuclear safety in Eastern Europe, the electric power inland market, the evolution of the oil market in 1996, the situation of refining in France, restructuring the BRGM (Mining and Geological Research Bureau), followed by brief facts concerning the sustainable energy development, nuclear energy, electric power, electricity and gas common issues, gas, coal, petroleum products, raw materials and underground materials. A series of global diagrams concludes the survey

  18. Detection of explosives and active material by nuclear technologies

    The advantages and characteristics of detection of hidden explosives and radioactive materials by nuclear technologies are explained in this paper. The active neutron interrogation technology and their application to detection of explosives are introduced in detail. The non-neutron interrogation technology by gamma method, the commercialized industry neutron sources and gamma ray detectors and their advantages and disadvantages respectively in security application are summarized respectively. The security problem of two typical hidden explosives are discussed with 11 characteristics of a perfect detecting system of explosives. The current research progress in association with particle imaging and fast-pulse neutron system and the passive method to detection of radioactive materials are briefly described. Finally, the paper points out that for detection of hidden explosives and radioactive materials it is necessary to use different technologies for different scenes and targets or use combined technologies. (authors)

  19. Specific activity measurement of radioelement in construction material

    Human beings have always been exposed to radiation from both natural and technological sources. The main components of the construction materials produced from earth and thus they contain radioelement naturally exist. The most important source of external radiation exposure in buildings is caused by the gamma rays emitted from members of the uranium and thorium decay chains and 40K occurring naturally in building materials. The aim of this work is to determine the specific activity concentrations (Bq/kg) of 226Ra, 232Th and 40K in some building materials used for construction purposes in the houses. The measurement has been performed using gamma ray spectrometer with the NaI(Tl) detector.

  20. Application of smart materials to helicopter rotor active control

    Straub, Friedrich K.; Ealey, Mark A.; Schetky, Lawrence M.

    1997-05-01

    Helicopter design is limited by the compromise inherent in meeting hover and forward flight requirements, and the unsteady environment encountered in forward flight. Active control of helicopter rotors using smart material, in-blade actuation can overcome these barriers and provide substantial reductions in noise and vibrations and improved performance. The present study covers the blade/actuator integration and actuator development for a full scale system to demonstrate active control of noise and vibrations as well as inflight blade tracking on the MD Explorer helicopter. A piezoelectric multilayer stack actuator, driving a trailing edge flap, is used for active control. A shape memory alloy torsion actuator, driving a trailing edge trim tab, is used for inflight tracking. Overall, this DARPA sponsored program entails the design, development, and fabrication of the full scale active control rotor system. If successful, an entry in the NASA Ames 40 X 80 foot wind tunnel and flight tests are planned for a follow on program.

  1. Materials for Active Engagement in Nuclear and Particle Physics Courses

    Loats, Jeff; Schwarz, Cindy; Krane, Ken

    2013-04-01

    Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

  2. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  3. Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

    Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

    2006-05-01

    Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

  4. Visual Contrast Sensitivity Improvement by Right Frontal High-Beta Activity Is Mediated by Contrast Gain Mechanisms and Influenced by Fronto-Parietal White Matter Microstructure.

    Quentin, Romain; Elkin Frankston, Seth; Vernet, Marine; Toba, Monica N; Bartolomeo, Paolo; Chanes, Lorena; Valero-Cabré, Antoni

    2016-06-01

    Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance. PMID:25899709

  5. Materials and Textile Architecture Analyses for Mechanical Counter-Pressure Space Suits using Active Materials

    Buechley, Leah; Newman, Dava; Holschuh, Bradley T.; Obropta, Edward W.

    2012-01-01

    Mechanical counter-pressure (MCP) space suits have the potential to improve the mobility of astronauts as they conduct planetary exploration activities. MCP suits differ from traditional gas-pressurized space suits by applying surface pressure to the wearer using tight-fitting materials rather than pressurized gas, and represent a fundamental change in space suit design. However, the underlying technologies required to provide uniform compression in a MCP garment at sufficient pressures for s...

  6. Non-linear modeling of active biohybrid materials

    Paetsch, C.

    2013-11-01

    Recent advances in engineered muscle tissue attached to a synthetic substrate motivate the development of appropriate constitutive and numerical models. Applications of active materials can be expanded by using robust, non-mammalian muscle cells, such as those of Manduca sexta. In this study, we propose a model to assist in the analysis of biohybrid constructs by generalizing a recently proposed constitutive law for Manduca muscle tissue. The continuum model accounts (i) for the stimulation of muscle fibers by introducing multiple stress-free reference configurations for the active and passive states and (ii) for the hysteretic response by specifying a pseudo-elastic energy function. A simple example representing uniaxial loading-unloading is used to validate and verify the characteristics of the model. Then, based on experimental data of muscular thin films, a more complex case shows the qualitative potential of Manduca muscle tissue in active biohybrid constructs. © 2013 Elsevier Ltd. All rights reserved.

  7. Design of Responsive and Active (Soft) Materials Using Liquid Crystals.

    Bukusoglu, Emre; Bedolla Pantoja, Marco; Mushenheim, Peter C; Wang, Xiaoguang; Abbott, Nicholas L

    2016-06-01

    Liquid crystals (LCs) are widely known for their use in liquid crystal displays (LCDs). Indeed, LCDs represent one of the most successful technologies developed to date using a responsive soft material: An electric field is used to induce a change in ordering of the LC and thus a change in optical appearance. Over the past decade, however, research has revealed the fundamental underpinnings of potentially far broader and more pervasive uses of LCs for the design of responsive soft material systems. These systems involve a delicate interplay of the effects of surface-induced ordering, elastic strain of LCs, and formation of topological defects and are characterized by a chemical complexity and diversity of nano- and micrometer-scale geometry that goes well beyond that previously investigated. As a reflection of this evolution, the community investigating LC-based materials now relies heavily on concepts from colloid and interface science. In this context, this review describes recent advances in colloidal and interfacial phenomena involving LCs that are enabling the design of new classes of soft matter that respond to stimuli as broad as light, airborne pollutants, bacterial toxins in water, mechanical interactions with living cells, molecular chirality, and more. Ongoing efforts hint also that the collective properties of LCs (e.g., LC-dispersed colloids) will, over the coming decade, yield exciting new classes of driven or active soft material systems in which organization (and useful properties) emerges during the dissipation of energy. PMID:26979412

  8. Gain ranging amplifier

    A gain ranging amplifier system is provided for use in the acquisition of data. Voltage offset compensation is utilized to correct errors in the gain ranging amplifier system caused by thermal drift and temperature dependent voltage offsets, both of which are associated with amplifiers in the gain ranging amplifier system

  9. Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide

    Babicheva, Viktoriia E.; Kulkova, Irina V.; Malureanu, Radu;

    2012-01-01

    We investigate plasmonic modulators with a gain material to be implemented as ultra-compact and ultra-fast active nanodevices in photonic integrated circuits. We analyze metal-semiconductor-metal (MSM) waveguides with InGaAsP-based active material layers as ultra-compact plasmonic modulators. The...

  10. Gain-of-Function Mutations in the Toll-Like Receptor Pathway: TPL2-Mediated ERK1/ERK2 MAPK Activation, a Path to Tumorigenesis in Lymphoid Neoplasms?

    Rousseau, Simon; Martel, Guy

    2016-01-01

    Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells, and NK cells. The Toll-Like Receptor (TLR) signaling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signaling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFκB) and Mitogen Activated Protein Kinase (MAPK) pathways to regulate innate immune responses. Gain-of-function mutations such as MYD88[L265P] activate downstream signaling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK293 cells led to ERK1/2 MAPK phosphorylation in addition to NFκB activation. Moreover, this activation is dependent on the protein kinase Tumor Promoting Locus 2 (TPL2), activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNPA1, two proteins previously shown to contribute to tumor formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated ERK1/2 activation via TPL2 may be a novel path to tumorigenesis. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumor growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumor cells derived from hematologic malignancies such as Waldenstrom's Macroglobulinemia, where the majority of the cells carry the MYD88[L265P

  11. Gain-of-function mutations in the Toll-like Receptor pathway: TPL2-mediated ERK1/ERK2 MAPK activation, a path to tumorigenesis in lymphoid neoplasms?

    Simon eRousseau

    2016-05-01

    Full Text Available Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells and NK cells. The Toll-Like Receptor (TLR signalling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signalling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFB and Mitogen Activated Protein Kinase (MAPK pathways to regulate innate immune responses (Kawai and Akira, 2010. Gain-of-function mutations such as MYD88[L265P] activate downstream signalling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK 293 cells led to ERK1/2 MAPK phosphorylation in addition to NFB activation. Moreover, this activation is dependent on the protein kinase Tumour Promoting Locus-2 (TPL-2, activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNP A1, two proteins previously shown to contribute to tumour formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated tumorigenesis occurs via the TPL2-mediated ERK1/2 activation. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumour growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumour cells derived from hematologic malignancies such as Waldenstrom’s Macroglobulinemia, where the

  12. 活性包装材料%Active Packaging Materials

    金国斌

    2006-01-01

    @@ 活性包装的概念 在真空包装(VP)、控制气氛包装(CAP)、调节气氛包装(MAP)中使用新一类的包装材料,这些材料在商品储存流通中能够动态地维持一种有利于产品长期保存的包装微环境,由于这些材料往往具有生态功能,故称活性包装材料(Active Packaging Material)或生命支持材料(Support-Life Packaging Material).

  13. Electric Double-layer Capacitor Based on Activated Carbon Material

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  14. Multiple scattering Compton camera with neutron activation for material inspection

    We designed a multiple scattering Compton camera (MSCC) based on a lanthanum bromide (LaBr3:Ce) scintillator to detect neutron-activated prompt gamma-rays for material inspection. The system parameters such as detector thickness and inter-detector distances were optimized on the basis of figure of merit (FOM). The FOM was maximized when the inter-detector distance and detector thickness were 18 cm and 1.5 cm, respectively. Under the optimized conditions, energy spectra and spatial images were obtained to identify various substances, and the results matched well with theoretical data. The probability of multiple Compton scattering was higher than that of conventional Compton scattering at high energies (~MeV), which proved the effectiveness of MSCC to detect prompt gamma-rays. Simulations with realistic conditions showed the feasibility of using the MSCC investigate of materials in field applications

  15. Enhancing activated-peroxide formulations for porous materials :

    Krauter, Paula; Tucker, Mark D.; Tezak, Matthew S.; Boucher, Raymond

    2012-12-01

    During an urban wide-area incident involving the release of a biological warfare agent, the recovery/restoration effort will require extensive resources and will tax the current capabilities of the government and private contractors. In fact, resources may be so limited that decontamination by facility owners/occupants may become necessary and a simple decontamination process and material should be available for this use. One potential process for use by facility owners/occupants would be a liquid sporicidal decontaminant, such as pHamended bleach or activated-peroxide, and simple application devices. While pH-amended bleach is currently the recommended low-tech decontamination solution, a less corrosive and toxic decontaminant is desirable. The objective of this project is to provide an operational assessment of an alternative to chlorine bleach for low-tech decontamination applications activated hydrogen peroxide. This report provides the methods and results for activatedperoxide evaluation experiments. The results suggest that the efficacy of an activated-peroxide decontaminant is similar to pH-amended bleach on many common materials.

  16. MACRO DEFECT FREE MATERIALS; THE CHALLENGE OF MECHANOCHEMICAL ACTIVATION

    MILAN DRÁBIK

    2012-12-01

    Full Text Available Macro-defect-free (MDF materials belong, according to Odler’s categorisation, to the type of materials where polymers may be successfully combined with cements and water to produce also the parameters of technological novelty and interests. A challenge, which has not been followed or indicated by now, is the option to intensify mixing of dry cement and polymer. The mechanochemical pre-reactions of dry MDF raw mixes consisting of Portland cement and polyphosphate, together with the model of atomic-level interpretations of the formed functional interfaces are proposed, experimentally tested and discussed in the present paper. The results ultimately show the activation of studied system due to the mechanochemical treatment, which consists in the initiation and measurable formation of Al(Fe–O–P cross-links already in the treated raw mixes. The mechanochemical activation of raw mixes in the high energy planetary mill for the duration of 5 minutes is proposed as the specific mixing and activation / pre-reaction step within the entire MDF synthesis procedure.

  17. Summary and analysis of current knowledge gained in the Czech Republic and worldwide concerning materials for safe disposal of radioactive waste and procedures of their assessment

    The following topics are treated: Inventory and nuclear criticality evaluation; investigation into the properties of the forms of waste and packaging materials; investigation into the attenuating, sealing, filling, and structural materials for deep geological repositories; radionuclide interactions in the engineered barrier setting; methodology of modelling in the engineered barrier setting; rock environment and processes in it; and mathematical modelling and overall safety assessment of a deep repository

  18. GREEN SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

    Ayeshamariam A*, Tajun Meera Begam M, Jayachandran M, Praveen Kumar G and M Bououdina

    2013-01-01

    New materials hold the key to fundamental advances in antibacterial and antifungal activities, both of which are vital in order to meet the challenge of global warning of microorganism’s advantages and limitations and the finite nature of medicinal plants. The use of additive to augment the effect of a synthetic or natural drug candidate is well known.  Here we report the use of nanoparticles of tin oxide (SnO2) to enhance the antibacterial and anti fungal potency of Alovera extract when comp...

  19. Relative contributions of energy expenditure on physical activity, body composition and weight gain to the evolution of impaired glucose tolerance to Frank diabetes

    The effect of obesity on glucose intolerance is a mixture of impact of body composition on glucose-insulin relationships as well as the modulation of this metabolism by physical activity. In this project, we seek to measure the energy expenditure on activity, the rate of weight gain and changes in body composition in a free-living population, and to relate these variables to changes in glucose tolerance and insulin sensitivity. We have enrolled a cohort of 280 adults in Idikan, a poor urban community in lbadan, Nigeria, selected by simple random sampling from a population database. In this communication, we report characteristics of the study cohort, findings on evaluation of a physical activity questionnaire and changes in body size, body composition and measures of insulin resistance over a one-year period. Mean age of the men is 49.7 (SD 12.7) years and of the women 44.7 (SD 10.7) years. Mean fasting blood glucose was 4.57 (SD 4.75) mmol/L among men and 3.54 (SD 1.02) mmol/L among women. The modified HIP physical activity (PA) questionnaire was evaluated in a subset of participants for whom scale reliability coefficients of 0.57 and 0.33 were obtained for the occupational and leisure scales of HIP respectively. Two-week test-retest intraclass correlation coefficient was 0.53. On validation against doubly-labelled water measurements, the HIP occupational score showed a positive correlation (r=0.37, p=0.01) with activity energy expenditure per kg body weight (AEE per kg) and a similar correlation of 0. 37 with physical activity level (PAL). Thus, the HIP occupational scale showed adequate consistency, good test-retest reliability and good correlations with measures of physical activity by doubly-labelled water. Over a one-year follow-up period, the participants showed increases in weight, BMI, waist circumferences, fat mass, fasting insulin and insulin-to-glucose ratio. However, HOMA-IR did not significantly change. Overweight increased from 21.3% to 23.9% while

  20. Materials design data for reduced activation martensitic steel type EUROFER

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  1. Smart materials and active noise and vibration control in vehicles

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, M. van [TNO Institute of Applied Physics, Delft (Netherlands)

    2001-07-01

    Results are presented for the reduction of sound radiated from a structure using different control methodologies. Two approaches for active structural acoustic control are mentioned to reduce sound radiated by the structure: the acoustic approach or the vibro-acoustic approach. In both cases integrated actuators in structure materials are necessary to realise feasible products. Furthermore the development of an efficient shaker for Active Isolation techniques is described. The prototype of TNO TPD can produce a force of 400 N up to 250 Hz at a good performance-volume ratio. To enhance the robustness of the active control applications, the use of the subspace identification based control methods are developed. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The performed simulations reveal excellent robustness performance under very general noise conditions or during operation of the control system. Furthermore the development of the techniques can be exploited to realise sound comfort requirements to enhance audible communications of vehicle related applications. To anticipate to these developments in the automotive industry, TNO has set up a Sound and Vibrations Research Centre with Twente University and a research program on Smart Panels with the Delft University. To investigate the potential markets and applications for sound comfort in the means of transportation, TNO-TPD and the Institute of Sound and Vibration Research in England (ISVR) have agreed on a cooperative venture to develop and realise 'active control of electroacoustics' (ACE). (orig.)

  2. Potential active materials for photo-supercapacitor: A review

    Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.

    2015-11-01

    The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.

  3. Strengthening global physical protection practices; gaining better information on national practices for protection of weapons-usable material. Keynote address/session 3

    Full text: Unlike the Non-Proliferation Treaty requirement that non-nuclear-weapon parties provide 'safeguards' information to the IAEA on their nuclear materials and their state systems for accounting and control, there is no related requirement to provide information on state systems of physical protection. A review of 1997 IAEA and Stanford physical protection conference proceedings showed both the absence of information on important practices from many states and the great variation in practices from state to state. Besides the lack of internationally required standards for domestic protection, reasons for the variations described in Stanford-Sandia National Laboratories research include: differences in states' perceptions of the threats to their materials; differences in their abilities to pay the cost of stronger physical protection; differences in their laws and regulatory practices in general; and differences in their cultural attitudes - for example, attitudes toward whether to arm personnel guarding weapon-usable material or to require clearances for personnel with access to such material. The information presented to the 1997 IAEA and Stanford conferences was supplied voluntarily. The two global documents which provide norms for physical protection do not require submission of such information. These are the 1980 Convention on Physical Protection of Nuclear Material and the 1999 IAEA INFCIRC/225/Rev.4. This means that, without bilateral cooperation, no state can find out how other states are protecting their nuclear material. Yet, as IAEA Director General El Baradei has said, '[I]t is not a matter of indifference to other States whether and to what extent [physical protection] responsibility is fulfilled. ...The need for international cooperation becomes evident in situations - where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter and defeat hostile actions against nuclear

  4. Progress of plasma surface interaction study on low activation materials

    Ferritic steel, vanadium alloy and SiC/SiC composite are candidate low activation materials for blanket components and first walls in fusion demonstration reactors. Several issues on these materials as the first wall have been investigated so far. Amount of deuterium retained in mechanically polished ferritic steel, F82H, after deuterium ion irradiation, was observed to be several times smaller than that of stainless steel, 316L SS. Physical sputtering yield of the ferritic steel due to deuterium ion was comparable to that of 316L SS. These results suggest that the property of the ferritic steel as the first wall material is superior to that of 316L SS, with respect to fuel hydrogen retention and in-vessel tritium inventory. Since first walls of blanket modules are exposed to both fuel hydrogen and helium, the helium is also trapped in the walls. Helium retention of V-4Cr-4Ti was investigated using helium ion irradiation apparatus. The amount of helium retained was comparable to those of other plasma facing materials. One of the major concerns in use of SiC/SiC composite for blanket is permeation of helium gas coolant into fusion plasma. Helium gas permeability of the SiC/SiC composite after heat cycles was measured using a vacuum device consisting two chambers. The increase in the permeability was not observed when the heating rate was suitably adjusted. Therefore, the blanket module may be made using only SiC/SiC composite if a vacuum pumping for the inside of blanket module is attached

  5. Towards a reduced activation structural materials database for fusion reactors

    Full text: The development of First Wall, Blanket and Divertor materials which are capable of withstanding many years the high neutron and heat fluxes, is a critical path to fusion power. Therefore, the timely availability of a sound materials database has become an indispensable element in international fusion road maps. In order to provide a related materials database for design, construction, licensing and safe operation of the ITER Test Blanket Modules and of a DEMO reactor, a wealth of R and D results on the European reduced activation ferritic-martensitic steel EUROFER, and on oxide dispersion strengthened (ODS) variants have become available, mainly in the temperature window 250-700 deg. C. Industrial EUROFER-batches of 3.5 and 8.0 tons have been produced with a variety of semi-finished, quality-assured product forms. Extensive chipless shaping and joining experience taking into account different welding procedures and powder technology product forms have demonstrated that EUROFER type steel complies with a wide range of established manufacturing processes. EUROFER is also resistant to high temperature aging, and the existing creep-rupture properties (∼30000 h) indicated long term stability and predictability. To increase the thermal efficiency of blankets beyond 45%, high temperature resistant SiCf/SiC channel inserts for liquid metal coolant tubes are developed. Mechanical and thermal properties of various SiCf/SiC composits have been measured after neutron radiation. Regarding radiation damage resistance of blanket structural materials, a broad based reactor irradiation programme counts several steps from 2 needs to be removed, the design is presently based on tiles made of W (∼2000 deg. C), as well as on structural materials like W-alloy (∼700-1300 deg. C) and RAF(M)-ODS steel (∼650 deg. C). Severe plastic deformation of pure W and W alloys improves ductility, but does not prevent from re-crystallisation between 850 and 1200 deg. C. For the

  6. Application of new active thermally enhanced insulation material (PCM - STOREPET

    Đorđević Đorđe

    2014-01-01

    Full Text Available Lightweight constructions represent an economical alternative to traditional buildings, one of whose main drawbacks is the very high energy load needed to keep internal comfort conditions, as they are unable to curb rapid variations of temperature. When compared to heavier weight materials buildings, it is estimated that to maintain a thermally comfortable temperature range of 18-24°C, low weight materials use between 2 and 3 times the heating and cooling energy needed by a heavy weight material construction. The research concept is based upon the fact that outdoor/indoor heat exchanges (which play a significant part of lightweight buildings cooling and heating loads can be potentially controlled by a new fiber insulation that possesses a thermally active heat storage capacity. During the day, when temperature rises, the peak loads can be largely absorbed by a PCM (Phase Change Material - enhanced fiber insulation layer, only to be slowly discharged back to the environment later (during the night time, when outside temperature drops, without affecting the interior building energy balance, as it is aided by the presence of an standard low heat transfer fiber insulation layer. This approach will provide a much slower response of the building envelope to daily temperature fluctuations, helping in maintaining inside temperature in a comfortable range and thus avoiding the need for extra energy consumptions to accomplish it. Effective levels of indoor comfort will be also guaranteed by the well known fiber materials excellence, when it comes to reduce airborne noise transmission and its superior performance upon controlling the sound resonance in construction cavities. Development of such material is in final phase in frame of European FP7 project STOREPET (FP7-SME-2011-2, Proposal 286730. Project participant from SEE is Construction Cluster „Dundjer” from Niš. Development and application of project results will be presented in this paper

  7. Activity-based Costing (ABC and Activity-based Management(ABMImplementation – Is This the Solution for Organizations to Gain Profitability?

    Ildikó Réka CARDOS

    2011-06-01

    Full Text Available Adherents of ABC/ABM systems claimed traditional management accounting systems generated misleading costs in a contemporary, tumultuous, often changing business environment and implementing ABC/ABM would remedy this. That is why activity-based costing (ABC and activity-based management (ABM represents the symbol of improved competitiveness and efficiency in every organization.The purpose of this article – after analyzing the existing literature in the field – is to emphasize that new cost systems such as ABC and ABM could be a strong couple that assures competitiveness and efficiency for each company. Another objective is to present that, besides its disadvantages, firms implement the ABC/ABM system because it permits better tracing of costs to objects, superior allocation of overheads to cost objects, financial and non-financial analysis and measures useful to managers and management accountants in the decision-making process.

  8. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Ashrafuzzaman, Md [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Lampson, M A [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Greathouse, D V [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); II, R E Koeppe [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); Andersen, O S [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States)

    2006-07-19

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)-Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly-alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  9. VECSEL gain characterization

    Mangold, Mario; Wittwer, Valentin J; Sieber, Oliver D.; Hoffmann, Martin; Krestnikov, Igor L; Livshits, Daniil A.; Golling, Matthias; Südmeyer, Thomas; Keller, Ursula

    2012-01-01

    We present the first full gain characterization of two vertical external cavity surface emitting laser (VECSEL) gain chips with similar designs operating in the 960-nm wavelength regime. We optically pump the structures with continuous-wave (cw) 808-nm radiation and measure the nonlinear reflectivity for 130-fs and 1.4-ps probe pulses as function of probe pulse fluence, pump power, and heat sink temperature. With this technique we are able to measure the saturation behavior for VECSEL gain ch...

  10. Overexpression of Elafin in Ovarian Carcinoma Is Driven by Genomic Gains and Activation of the Nuclear Factor κB Pathway and Is Associated with Poor Overall Survival

    Adam Clauss

    2010-02-01

    Full Text Available Ovarian cancer is a leading cause of cancer mortality in women. The aim of this study was to elucidate whether whey acidic protein (WAP genes on chromosome 20q13.12, a region frequently amplified in this cancer, are expressed in serous carcinoma, the most common form of the disease. Herein, we report that a trio of WAP genes (HE4, SLPI, and Elafin is overexpressed and secreted by serous ovarian carcinomas. To our knowledge, this is the first report linking Elafin to ovarian cancer. Fluorescence in situ hybridization analysis of primary tumors demonstrates genomic gains of the Elafin locus in a majority of cases. In addition, a combination of peptidomimetics, RNA interference, and chromatin immunoprecipitation experiments shows that Elafin expression can be transcriptionally upregulated by inflammatory cytokines through activation of the nuclear factor κB pathway. Importantly, using a clinically annotated tissue microarray composed of late-stage, high-grade serous ovarian carcinomas, we show that Elafin expression correlates with poor overall survival. These results, combined with our observation that Elafin is secreted by ovarian tumors and is minimally expressed in normal tissues, suggest that Elafin may serve as a determinant of poor survival in this disease.

  11. ACTIVE MEDIA: Gain dynamics in a pulsed laser amplifier on CO-He, CO-N2 and CO-O2 gas mixtures

    Vetoshkin, S. V.; Ionin, Andrei A.; Klimachev, Yu M.; Kozlov, A. Yu; Kotkov, A. A.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2007-02-01

    Small-signal gain (SSG) dynamics G(t) in the active medium of a pulsed laser amplifier operating on the v+1→vP(J) vibrational-rotational transitions of the CO molecule, including high (v > 15) vibrational transitions, is studied experimentally. It is demonstrated that as the vibrational number increases from 7 to 31, G changes with time slower, while Gmax decreases in this case by three times. It is found that at a fixed value of v the rate of the SSG rise increases with increasing the rotational number J > 6. It is shown that in oxygen-containing gas mixtures (CO:O2 = 1:19) the value of Gmax at low vibrational levels (for v < 13) can substantially exceed Gmax in mixtures containing nitrogen (CO:N2 = 1:19) instead of oxygen. It is found that the efficiency (47%) of a CO laser on mixtures with a high concentration of oxygen considerably exceeds the efficiency (30%) of a CO laser operating on a nitrogen-containing mixture.

  12. GREEN SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

    Ayeshamariam A*, Tajun Meera Begam M, Jayachandran M, Praveen Kumar G and M Bououdina

    2013-01-01

    Full Text Available New materials hold the key to fundamental advances in antibacterial and antifungal activities, both of which are vital in order to meet the challenge of global warning of microorganism’s advantages and limitations and the finite nature of medicinal plants. The use of additive to augment the effect of a synthetic or natural drug candidate is well known.  Here we report the use of nanoparticles of tin oxide (SnO2 to enhance the antibacterial and anti fungal potency of Alovera extract when compared to bulk tinoxide (SnO2.  The possible advantage and limitations of this result will be discussed. It is hoped that this study would lead to the establishment of nanomaterial compounds that could be used to formulate new and more potent antimicrobial drugs of natural origin. Antibacterial activity of Alovera extracts was checked against these gram positive isolates of Staphylococcus aureus, Escherichia Coli E, Salmonella Typhi, Streptococcus pyogenes and gram negative isolates of Pseudomonas Aeruginosa. We observed that effective anti-bacterial and anti-fungal activities for SnO2 nanoparticles, particularly for Streptococcus pyogenes microorganisms and antifungal microorganisms of Aspergillus niger, Mucor indicus microorganism than bulk SnO2.

  13. Influence of active nano particle size and material composition on multiple quantum emitter enhancements: Their Enhancement and Jamming Effects

    Arslanagic, Samel; Ziolkowski, Richard W.

    2014-01-01

    active coated nano-particles are examined here theoretically with regard to their ability to effectively enhance or jam the responses of quantum emitters, e.g., fluorescing molecules, and nano- antennas to an observer located in their far-field regions. The investigated spherical particles consist of a...... gain-impregnated silica nano-core covered with a nano-shell of a specific plasmonic material. Attention is devoted to the influence of the over-all size of these particles and their material composition on the obtained levels of active enhancement or jamming. Silver, gold and copper are employed as...... their nano- shells. The over-all diameters of the investigated coated nano-particles are taken to be 20 nm, 40 nm, and 60 nm, while maintaining the same ratio of the core radius and shell thickness. It is shown that the jamming levels, particularly when several emitters are present, are significantly...

  14. Numerical Modeling of Multi-Material Active Magnetic Regeneration

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden;

    2009-01-01

    Magnetic refrigeration is a potentially environmentally-friendly alternative to vapour compression technology that is presented in this paper. The magnetocaloric effect in two magnetocaloric compounds in the La(Fe,Co,Si)13 series is presented in terms of their adiabatic temperature change and the...... specific heat as a function of temperature at constant magnetic field. A 2.5-dimensional numerical model of an active magnetic regenerative (AMR) refrigerator device is presented. The experimental AMR located at Risø DTU has been equipped with a parallel-plate based regenerator made of the two materials....... Experimental zero heat-load temperature spans are presented for different operating conditions and the results are compared to predictions of the numerical model. It is concluded that the model reproduces the experimental tendencies and when including thermal parasitic losses to ambient and the predictions...

  15. Surface modification of active material structures in battery electrodes

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  16. Reactor neutron activation analysis on reference materials from intercomparison runs

    A review of using the Instrumental Neutron Activation Analysis (INAA) technique in our laboratory to determine major, minor and trace elements in mineral and biological samples from international intercomparison runs organised by IAEA Vienna, IAEA-MEL Monaco, 'pb-anal' Kosice, INCT Warszawa and IPNT Krakow is presented. Neutron irradiation was carried out at WWR-S reactor in Bucharest (short and long irradiation) during 1982-1997 and at TRIGA reactor in Pitesti (long irradiation) during the later period. The following type of materials were analysed: soils, marine sediments, uranium phosphate ore, water sludge, copper flue dust, whey powder, yeast, cereal flour (rye and wheat), marine animal tissue (mussel, garfish and tuna fish), as well as vegetal tissue (seaweed, cabbage, spinach, alfalfa, algae, tea leaves and herbs). The following elements could be, in general, determined: Ag, As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Lu, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, W, Yb and Zn of long-lived radionuclides, as well as Al, Ca, Cl, Cu, Mg, Mn, and Ti of short-lived radionuclides. Data obtained in our laboratory for various matrix samples presented and compared with the intercomparison certified values. The intercomparison exercises offer to the participating laboratories the opportunity to test the accuracy of their analytical methods as well as to acquire valuable Reference Materials/ standards for future analytical applications. (authors)

  17. Thermopower and activation energy of silver iodide based superionic materials

    Silver iodide based glasses, 60Agl-20Ag sub 2 O-20B sub 2O sub 3, 6 Agl-20Ag sub 2 O-20 MoO sub 3 and 60Agl-20Ag sub 2O-20WO sub 3, all in the mol % ratio, were prepared by rapidly quenching the melts of the chemicals in a stainless steel container; kept in a liquid nitrogen bath. The glassy nature of the as-quenched materials was confirmed by X-ray diffraction (XRD). The electrical conductivity of the glasses was measured at various temperatures ranging from 30 to 70 degree C using an impedance bridge operating in the frequency range between 40 Hz to 100 kHz. The plot of In σT versus 1000/T for each glassy material obeys Arrhenius law and the activation energy obtained is between 0.2 to 0.3 eV. Thermopower measurement was also carried out in the same temperature range as the conductivity measurement to obtain the heat of transport

  18. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  19. Should I Gain Weight?

    ... Can I Help a Friend Who Cuts? Should I Gain Weight? KidsHealth > For Teens > Should I Gain Weight? Print A A A Text Size ... Healthy Habits Matter en español ¿Debería ganar peso? "I want to play hockey, like I did in ...

  20. Relational Information Gain

    Lippi, Marco; Jaeger, Manfred; Frasconi, Paolo;

    2011-01-01

    We introduce relational information gain, a refinement scoring function measuring the informativeness of newly introduced variables. The gain can be interpreted as a conditional entropy in a well-defined sense and can be efficiently approximately computed. In conjunction with simple greedy general...

  1. Health gain versus equity.

    Scott-Samuel, A

    1992-05-01

    A new organisation, the Association for Public Health, has just been formed 'to help deliver real health gain for the population'. Alex Scott-Samuel suggests that the concept of 'health gain' is counter to health equality and needs wider debate. PMID:1624317

  2. FIBER GLASS SEMICONDUCTOR LASERS AND THE GAIN COEFFICIENT

    Mustafa TEMİZ

    1999-02-01

    Full Text Available In AlxGa1-xAs choosing x in various per cent of aluminium it is obtained the changing of the index of refraction of the material. So, formed semiconductor lasers by making GaAs/AlxGa1-xAs heterojunction structures with changing the refractive index to confine the electromagnetic waves and injected carriers (current in active of laser in time gives optical gain. It is also based the same method the transmission of the information. In this work in fiber glass and semiconductor lasers the effecting factors to change the optical gain are investigated.

  3. Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios.

    van den Berge, M; Ozcanhan, G; Zijlstra, S; Lindenbergh, A; Sijen, T

    2016-03-01

    Especially when minute evidentiary traces are analysed, background cell material unrelated to the crime may contribute to detectable levels in the genetic analyses. To gain understanding on the composition of human cell material residing on surfaces contributing to background traces, we performed DNA and mRNA profiling on samplings of various items. Samples were selected by considering events contributing to cell material deposits in exemplary activities (e.g. dragging a person by the trouser ankles), and can be grouped as public objects, private samples, transfer-related samples and washing machine experiments. Results show that high DNA yields do not necessarily relate to an increased number of contributors or to the detection of other cell types than skin. Background cellular material may be found on any type of public or private item. When a major contributor can be deduced in DNA profiles from private items, this can be a different person than the owner of the item. Also when a specific activity is performed and the areas of physical contact are analysed, the "perpetrator" does not necessarily represent the major contributor in the STR profile. Washing machine experiments show that transfer and persistence during laundry is limited for DNA and cell type dependent for RNA. Skin conditions such as the presence of sebum or sweat can promote DNA transfer. Results of this study, which encompasses 549 samples, increase our understanding regarding the prevalence of human cell material in background and activity scenarios. PMID:26736139

  4. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Ziolkowski, Richard W.; Radu Malureanu; Samel Arslanagic; Yan Liu

    2011-01-01

    Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced ...

  5. Activation and waste management considerations of fusion materials

    Cheng, E. T.; Saji, G.

    1994-09-01

    Inconel-625 (Ni625), SS316, Ti-6Al-4V (Ti64), ferritic steel (FS), reduced activity ferritic steel (RAFS), manganese steel (Mn-steel), and V5Cr5Ti (V55), were examined for a near-term experimental D-T fueled fusion power reactor with respect to waste management. Activation calculations for these materials were performed assuming one year continuous operation at 1 MW/m 2 wall loading. The results show that the blanket components made of V55, Ti64, Mn-steel, and FS will be allowed for transfer to an on-site dry storage facility after 10 years of cooling after discharge. To transport the discharged blanket components to a permanent disposal site, the cooling time needed can be within 10 years for Ti64 and V55, provided that the impurities (mainly Ni, Nb and Mo) be controlled to an acceptable level. The RAFS and Mn-steel will need about 30 y cooling time because of its Fe and Mn contents. Ni625, 316SS, and FS, however, will require more than 50000 y cooling time because of their Nb and Mo contents. The RAFS, Mn-steel, Ti64 and V55 can be shallow-land wastes if the impurity level for Nb and Mo is dropped below 10 ppm.

  6. ReflectoActive(trademark) Seals for Materials Control and Accountability

    The ReflectoActive(trademark) Seals system, a continuously monitored fiber optic, active seal technology, provides real-time tamper indication for large arrays of storage containers. The system includes a PC running the RFAS software, an Immediate Detection Unit (IDU), an Optical Time Domain Reflectometer (OTDR), links of fiber optic cable, and the methods and devices used to attach the fiber optic cable to the containers. When a breach on any of the attached fiber optic cable loops occurs, the IDU immediately signals the connected computer to control the operations of an OTDR to seek the breach location. The ReflectoActive(trademark) Seals System can be adapted for various types of container closure designs and implemented in almost any container configuration. This automatic protection of valued assets can significantly decrease the time and money required for surveillance. The RFAS software is the multi-threaded, client-server application that monitors and controls the components of the system. The software administers the security measures such as a two-person rule as well as continuous event logging. Additionally the software's architecture provides a secure method by which local or remote clients monitor the system and perform administrative tasks. These features provide the user with a robust system to meet today's material control and accountability needs. A brief overview of the hardware, and different hardware configurations will be given. The architecture of the system software, and its benefits will then be discussed. Finally, the features to be implemented in future versions of the system will be presented

  7. Fusion material transmutation and activation analysis induced by fast neutrons: Anita-IEAF Activation Code Package

    This paper presents the Anita-IEAF code package for the activation characterization of materials exposed to neutrons with energies above 20 MeV. Its origins trace back to the Anita-2000 code (NEA-1638, RSICC CCC-606). Anita-IEAF is able to manage the many reaction channels for neutron energies up to 150 MeV. It computes the radioactive inventories of materials exposed to neutron irradiation, continuously or stepwise. It provides activity, isotopic nuclide density, decay heat, biological hazard, clearance index and gamma ray source spectra at shutdown and at different cooling times. The code package is provided with a complete database that includes neutron activation data library, decay, hazard and clearance data library, and gamma library. The Anita-IEAF neutron activation library was produced by processing the IEAF-2001 data activation files that have been recently released by FZK. It contains the neutron activation cross-sections for 679 nuclides in the 256 neutron energy group structure up to 150 MeV, in EAF format. That group structure includes the standard Vitamin-J 175 groups for energies below 20 MeV and 81 groups for the highest energies. The paper presents also an application of the Anita-IEAF code package to the neutron exposure characterization for the SS-316 liner and heat shield of the Test Cell area of the International Fusion Materials Irradiation Facility (IFMIF). The decay gamma source evaluation for SS-316, needed for dose rate calculations at beam-off IFMIF phase for shielding analysis, is discussed too. (authors)

  8. On capital gain taxation

    Anton Miglo

    2008-01-01

    This note provides an explanation for why tax rates on capital gains are usually lower than ordinary income tax rates based on manager's agency problem related to "empire-building" or the underinvestment problem.

  9. Giant Gain Enhancement in Photonic Crystals with a Degenerate Band Edge

    Othman, Mohamed; Figotin, Alex; Capolino, Filippo

    2014-01-01

    Cavities made of photonic crystals incorporating active material have already demonstrated a stronger gain enhancement when operating at the regular band edge (RBE) of a dispersion diagram. Here instead we propose a new idea that leads to giant gain enhancement based on utilizing the unconventional slow wave resonance associated to a degenerate band edge (DBE) in the dispersion diagram of photonic crystals. We show that the gain enhancement in a Fabry-Perot cavity when operating at the DBE is several orders of magnitude stronger when compared to a cavity of the same length made of a photonic crystal with RBE. We also have found critical conditions for maximizing the total power gain. The giant gain is explained by significant increase in the photon lifetime and the local density of states. We have demonstrated DBE operated cavities that provide for superior gain conditions for lasers, quantum cascade lasers, traveling wave tubes, and distributed amplifiers with solid state.

  10. Gain modulation by graphene plasmons in aperiodic lattice lasers

    Chakraborty, S.; Marshall, O. P.; Folland, T. G.; Kim, Y.-J.; Grigorenko, A. N.; Novoselov, K. S.

    2016-01-01

    Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene’s Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology.

  11. Gain-assisted optical switching in plasmonic nanocavities

    Yun Shen; Guoping Yu; Jiwu Fu; Liner Zou

    2012-01-01

    A plasmonic cavity filled with active material is proposed to explain optical switching.Optical properties,including transmission,response time,and field distribution of on/off state,are numerically investigated.We demonstrate that such a gain-assisted plasmonic structure can achieve optical switching in the nanodomain and shorten the switching time to the subpicosecond level.Our results indicate the potential application of the proposed structure in optical communication and photonic integrated circuits.%A plasmonic cavity filled with active material is proposed to explain optical switching. Optical properties, including transmission, response time, and field distribution of on/off state, are numerically investigated. We demonstrate that such a gain-assisted plasmonic structure can achieve optical switching in the nan-odomain and shorten the switching time to the subpicosecond level. Our results indicate the potential application of the proposed structure in optical communication and photonic integrated circuits.

  12. Molecularly imprinted hydrogels as functional active packaging materials.

    Benito-Peña, Elena; González-Vallejo, Victoria; Rico-Yuste, Alberto; Barbosa-Pereira, Letricia; Cruz, José Manuel; Bilbao, Ainhoa; Alvarez-Lorenzo, Carmen; Moreno-Bondi, María Cruz

    2016-01-01

    This paper describes the synthesis of novel molecularly imprinted hydrogels (MIHs) for the natural antioxidant ferulic acid (FA), and their application as packaging materials to prevent lipid oxidation of butter. A library of MIHs was synthesized using a synthetic surrogate of FA, 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HFA), as template molecule, ethyleneglycol dimethacrylate (EDMA) as cross-linker, and 1-allylpiperazine (1-ALPP) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), in combination with 2-hydroxyethyl methacrylate (HEMA) as functional monomers, at different molar concentrations. The DMAEMA/HEMA-based MIHs showed the greatest FA loading capacity, while the 1-ALLP/HEMA-based polymers exhibited the highest imprinting effect. During cold storage, FA-loaded MIHs protected butter from oxidation and led to TBARs values that were approximately half those of butter stored without protection and 25% less than those recorded for butter covered with hydrogels without FA, potentially extending the shelf life of butter. Active packaging is a new field of application for MIHs with great potential in the food industry. PMID:26213001

  13. The effect of gain saturation in a gain compensated perfect lens

    Andresen, Marte P Hatlo; Haakestad, Magnus W; Krogstad, Harald E; Skaar, Johannes

    2010-01-01

    The transmission of evanescent waves in a gain-compensated perfect lens is discussed. In particular, the impact of gain saturation is included in the analysis, and a method for calculating the fields of such nonlinear systems is developed. Gain compensation clearly improves the resolution; however, a number of nonideal effects arise as a result of gain saturation. The resolution associated with the lens is strongly dependent on the saturation constant of the active medium.

  14. Prompt gamma neutron activation analysis as an active interrogation technique for nuclear materials

    Prompt gamma neutron activation analysis (PGAA) is proposed as an instant, non-destructive method for the analysis of fissile materials and fission products. Measurements by PGAA were made on technetium and uranium compounds, the latter with various enrichments. Measurements were carried out in thermal and cold neutron beams at the Budapest Research Reactor. A beam chopper was used to collect the delayed decay gamma radiation from short lived nuclides separately. Accurate partial gamma ray production cross-sections were determined with internal standardization for a set of prompt and decay gamma rays following neutron capture in 235U, 238U and 99Tc and compared to those from the literature. In the case of 235U fission, prompt gamma lines were also applied.These cross-sections can be used for non-destructive analyses of uranium and technetium and also for the determination of the enrichment of uranium by prompt gamma activation analysis and neutron activation analysis. (author)

  15. DNA polymorphisms and transcript abundance of PRKAG2 and phosphorylated AMP-activated protein kinase in the rumen are associated with gain and feed intake in beef steers

    Beef steers with variation in feed efficiency phenotypes were evaluated previously on a high density SNP panel. Ten markers from rs110125325-rs41652818 on bovine chromosome 4 were associated with average daily gain (ADG). To identify the gene(s) in this 1.2Mb region responsible for variation in AD...

  16. Gaining Mindshare and Timeshare : Marketing Public Libraries

    Paul, Johnson; Kua, Lena; Narayanan, N. Varaprasad

    2005-01-01

    This presentation is an examination of how the National Library Board had successfully gained market share by redefining its market space and remaking the image of libraries and librarians. Libraries were repositioned to gain mindshare and timeshare among Singaporeans, competing against the cinema, TV, video games and other leisure activities, becoming the Third Place after home and work for many.

  17. Receiver Gain Modulation Circuit

    Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen

    2011-01-01

    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by

  18. Thesis on safeguards gains doctorate

    Full text: One of the most complete analyses yet to be made outside the Agency of its Safeguards system for preventing diversion of materials to military purposes has gained for its author a Doctorate of Philosophy. The subject was chosen as a thesis by Miss Gabrielle Martino, daughter of His Excellency Mr. Enrico Martino, Italian Ambassador to Austria and Resident Representative to IAEA. Miss Martino has been studying in the Faculty of Political Science at Rome University. Her thesis, which runs to 110 pages, traces the history of safeguards and the stages in evolution to the system adopted by the General Conference at its 1965 Session held in Tokyo. (author)

  19. A 3.8 GHz programmable gain amplifier with a 0.1 dB gain step

    A broadband programmable gain amplifier (PGA) with a small gain step and low gain error has been designed in 0.13 μm CMOS technology. The PGA was implemented with open-loop architecture to provide wide bandwidth. A two-stage gain control method, which consists of a resistor ladder attenuator and an active fine gain control stage, provides the small gain step. A look-up table based gain control method is introduced in the fine gain control stage to lower the gain error. The proposed PGA shows a decibel-linear variable gain from −4 to 20 dB with a gain step of 0.1 dB and a gain error less than ±0.05 dB. The 3-dB bandwidth and maximum IIP3 are 3.8 GHz and 17 dBm, respectively. (semiconductor integrated circuits)

  20. Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials

    Using a beam of tagged 14.1 MeV neutrons to probe for the presence of fissionable materials, we have measured n-γ-γ coincidences from depleted uranium (DU). The multiple coincidence rate is substantially above that measured from lead, tungsten, and iron. The presence of coincidences involving delayed gammas in the DU time spectra provides a signature for fissionable materials that is distinct from non-fissionable ones. In addition, the information from the tagged neutron involved in the coincidence gives the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is more compact and that produces much less radiation than other solutions

  1. Method for monitoring drilling materials for gamma ray activity

    In the preferred and illustrated embodiment taught herein, method steps for monitoring of raw materials to be used in drilling mud are disclosed. The materials are monitored for radioactivity. Procedures for taking such measurements are disclosed, and the extent of gamma radioactivity in the raw materials used in drilling mud is, determined. This is correlated to the increased radiation attributable to mud made from these materials and the effect the mud would have on gamma ray measuring logs. An alternate procedure for testing drilling mud, typically at the well site, is also disclosed. The method detects mud radioactivity from any additives including barite, potassium chloride, well cuttings or others. Excessive background levels due to mud gamma radioactivity in a well may very well mask the data obtained by various logging procedures dependent on gamma radiation. Procedures are also described for either rejecting mud which is too radioactive or correcting the log measurements for mud effects

  2. Characteristics and antimicrobial activity of copper-based materials

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  3. The impact of materials selection on long-term activation in fusion power plants

    Neutron-induced transmutation of materials in a D-T fusion power plant will give rise to the potential for long-term activation. To ensure that the attractive safety and environmental characteristics of fusion power are not degraded, careful design choices are necessary. An aim of optimising power plant design must be to minimise both the level of activation and the total volume of active material that might ultimately be categorised as waste requiring disposal. Materials selection is central to this optimisation. In this paper we assess the influence of materials choices for a power plant on the waste volume and the potential to clear (i.e. remove from regulatory control) and recycle material. Although the use of low activation materials in regions of high neutron flux is an important part of the strategy to minimise the level of activation, different choices may result from a strategy aimed at minimising the volume of active waste

  4. Evaluation of activity concentration limits for building materials using voxel phantom

    To protect the public from natural radioactive materials, it is necessary to consider the building materials because of natural radioactivity and quantity. There is an annual effective dose limit of 1mSv for products, but an activity concentration limit is necessary for the product screening. We derived the specific effective dose rates by building materials with the MCNPX code and evaluated the activity concentration limits. Using these values, we can suggest the activity concentration index as the following formula

  5. Active video games as a tool to prevent excessive weight gain in adolescents : rationale, design and methods of a randomized controlled trial

    Simons, Monique; Mai J M Chinapaw; van de Bovenkamp, Maaike; de Boer, Michiel R; Jacob C Seidell; Brug, Johannes; Vet, Emely

    2014-01-01

    Background: Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games -i.e. active games- may be a promising alternative to traditional non-active games to promote physical activity and reduce sedentary behaviors in youth. The aim of this manuscript is to describe the design of a study evaluating the effects of a family oriented active game inte...

  6. Graded territories: Towards the design, specification and simulation of materially graded bending active structures

    Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette;

    2012-01-01

    The ability to make materials with bespoke behavior affords new perspectives on incorporating material properties within the design process not available through natural materials. This paper reports the design and assembly of two bending-active, fibre-reinforced composite structures. Within these...... structures, the property of bending is activated and varied through bespoke material means so as to match a desired form. Within the architectural design process, formal control depends upon design approaches for material specification and simulation that consider behavior at the level of the material...

  7. Transient optical gain in germanium quantum wells

    Chatterjee, Sangam; Lange, Christoph; Koester, Niko S.; Schaefer, Martin; Kira, Mackillo; Koch, Stephan W. [Faculty of Physics and Materials Sciences Center, Philipps-Universitaet Marburg (Germany); Chrastina, Daniel; Isella, Giovanni; Kaenel, Hans von [CNISM, Como (Italy); L-NESS, Dipartimento di Fisica del Politecnico di Milano, Como (Italy); Sigg, Hans [Laboratory for Micro and Nanotecnology, Paul Scherrer Institut, Villigen PSI (Switzerland)

    2010-07-01

    One of today's most-sought goals in semiconductor technology is the monolithic integration of microelectronics and photonics on Si. Optical gain is, in general, not expected for Si and Ge or its alloys due to the indirect nature of the band gap in this material system. Here, we show that Ge/SiGe QWs show transient optical gain and may thus be used as an optically-pumped amplifier at room temperature. Further, the nonequilibrium effects which govern the relaxation dynamics of the optically injected carrier distributions in this material were observed and analyzed using a microscopic many-body theory. Strong non-equilibrium gain was obtained on a sub-100 fs time scale. Long-lived gain arising from {gamma}-point transitions is overcompensated by a process bearing the character of free carrier absorption.

  8. Activities of the years 1985/86 Materials Department

    The Materials Department of the National Atomic Energy Commission gives a description of the research done during the period 1985/1986 in the following fields; corrosion and transport of matter, transport phenomena, phase solidification and transformation, mechanical properties, theory of the materials behaviour, and special techniques development. Furthermore it is outlined the rendering of services and the advice given to the nuclear power plants and other institutions. Finally a list of publications, courses, seminars, lectures and presentation to congresses are included. (M.E.L.)

  9. Active video games as a tool to prevent excessive weight gain in adolescents : rationale, design and methods of a randomized controlled trial

    Simons, Monique; Chinapaw, Mai J M; van de Bovenkamp, Maaike; de Boer, Michiel R; Seidell, Jacob C; Brug, Johannes; de Vet, Emely

    2014-01-01

    BACKGROUND: Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games--i.e. active games--may be a promising alternative to traditional non-active gam

  10. Active video games as a tool to prevent excessive weight gain in adolescents: Rationale, design and methods of a randomized controlled trial

    Simons, M.; Chinapaw, M.J.; Bovenkamp, M. van de; Boer, M.R. de; Seidell, J.C.; Brug, J.; Vet, E. de

    2014-01-01

    Background: Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games -i.e. active games- may be a promising alternative to traditional non-active gam

  11. Active video games as a tool to prevent excessive weight gain in adolescents: rationale, design and methods of a randomized controlled trial

    Simons, M.; Chinapaw, M.J.M.; Bovenkamp, van de M.; Boer, de M.R.; Seidell, J.C.; Brug, J.; Vet, de E.

    2014-01-01

    Background Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games –i.e. active games- may be a promising alternative to traditional non-active game

  12. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    Dér, A; Fábián, L.; Valkai, S.; Wolff, E.; Ramsden, Jeremy J.; Ormos, P.

    2006-01-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in in...

  13. Gain optimization method of a DQW superluminescent diode with broad multi-state emission

    Dimas, Clara E.

    2010-01-01

    Optimizing gain through systematic methods of varying current injection schemes analytically is significant to maximize experimentally device yield and evaluation. Various techniques are used to calculate the amplified spontaneous emission (ASE) gain for light emitting devices consisting of single-section and multiple-sections of even length. Recently double quantum well (DQW) superluminescent diodes (SLD) have shown a broad multi-state emission due to mutlielectrodes of non-equal lengths and at high non-equal current densities. In this study, we adopt an improved method utilizing an ASE intensity ratio to calibrate a gain curve based on the sum of the measured ASE spectra to efficiently estimate the gain. Although the laser gain for GaAs/AlGaAs material is well studied, the ASE gain of SLD devices has not been systematically studied particular to further explain the multiple-state emission observed in fabricated devices. In addition a unique gain estimate was achieved where the excited state gain clamps prior to the ground state due to approaching saturation levels. In our results, high current densities in long sectioned active regions achieved sufficient un-truncated gain that show evidence of excited state emission has been observed.

  14. Active coated nanoparticles: impact of plasmonic material choice

    Arslanagic, Samel; Ziolkowski, R.W.

    2011-01-01

    The near- and far-field properties of a number of active coated spherical nanoparticles excited by an electric Hertzian dipole at optical frequencies are investigated. Their enhanced, as well as reduced, radiation effects are demonstrated and compared.......The near- and far-field properties of a number of active coated spherical nanoparticles excited by an electric Hertzian dipole at optical frequencies are investigated. Their enhanced, as well as reduced, radiation effects are demonstrated and compared....

  15. Materials for Consideration in Standardized Canister Design Activities.

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to

  16. Increasing weight-bearing physical activity and calcium-rich foods to promote bone mass gains among 9–11 year old girls: outcomes of the Cal-Girls study

    Hannan Peter

    2005-07-01

    Full Text Available Abstract Background A two-year, community-based, group-randomized trial to promote bone mass gains among 9–11 year-old girls through increased intake of calcium-rich foods and weight-bearing physical activity was evaluated. Methods Following baseline data collection, 30 5th-grade Girl Scout troops were randomized to a two-year behavioral intervention program or to a no-treatment control group. Evaluations were conducted at baseline, one year, and two years. Measures included bone mineral content, density, and area (measured by DXA, dietary calcium intake (24-hour recall, and weight-bearing physical activity (physical activity checklist interview. Mixed-model regression was used to evaluate treatment-related changes in bone mineral content (g for the total body, lumbar spine (L1-L4, proximal femur, one-third distal radius, and femoral neck. Changes in eating and physical activity behavioral outcomes were examined. Results Although the intervention was implemented with high fidelity, no significant intervention effects were observed for total bone mineral content or any specific bone sites. Significant intervention effects were observed for increases in dietary calcium. No significant intervention effects were observed for increases in weight-bearing physical activity. Conclusion Future research needs to identify the optimal dosage of weight-bearing physical activity and calcium-rich dietary behavior change required to maximize bone mass gains in pre-adolescent and adolescent girls.

  17. A tolerance analysis on design parameters of parabolic and hyperbolic secant active GRIN materials for laser beam shaping purposes

    The present paper considers two gain GRIN media, characterized by a complex parabolic and hyperbolic secant refractive index profile, for the design of uniform beam shaper systems. A general condition for beam shaping is obtained from the equation describing the evolution of the half-width of a plane Gaussian beam in the GRIN media. The simulation of the irradiance evolution of an input plane Gaussian beam—operating at 575 nm and beam waist radius of 0.45 mm—in each material is shown, in order to examine the beam shaping quality in terms of thickness of the active GRIN media and input beam wavelength. (paper)

  18. Progress in the US program to develop low-activation structural materials for fusion

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current US structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  19. Progress in the U.S. program to develop low-activation structural materials for fusion

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current U.S. structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  20. ACFA - a versatile activation code for coolant and structural materials

    The ACFA code calculates the neutron-induced activation, afterheat, transmutation, gas production, biological hazard potential, and activation gamma ray spectra in the components of a nuclear system. The quantities of interest may be computed by spatial interval and zone or only by zone of the system considered. To calculate the transmutation coefficients for the neutron-induced reactions the code uses multigroup activation cross sections and space-dependent multigroup neutron fluxes in one- or two-dimensional geometry. The neutron reaction types incorporated in the code are: (n,n'), (n,2n), (n,γ), (n,p), (n,α), (n,n'p), (n,n'α)sub(,) (n,t), (n,3n), (n,He-3), (n,d), and (n,n'd) considering both reactions to the ground state and to isomeric states. The code uses a variable dimensioning technique to adapt the core data storage requirements to the particular problem considered and uses the FIDO input system to read the input data. The numerical methods for establishing and solving the decay chain equations are taken from the ORIGEN code. To test the ACFA code and the nuclear data libraries used, the activation, composition change, and gas production in the first wall of the UWMAK-I fusion reactor are calculated. The results of the activation calculation are compared with earlier results of the University of Wisconsin Fusion Study Group. (orig.)

  1. Activity measurement and effective dose modelling of natural radionuclides in building material

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. - Highlights: • Dose models for indoor radiation exposure due to natural radionuclides in building materials. • Strategies and methods in radionuclide metrology, activity measurement and dose modelling. • Selection of appropriate parameters in radiation protection standards for building materials. • Scientific-based limitations of indoor exposure due to natural radionuclides in building materials

  2. Gaining Relational Competitive Advantages

    Hu, Yimei; Zhang, Si; Li, Jizhen;

    2015-01-01

    Establishing strategic technological partnerships (STPs) with foreign partners is an increasingly studied topic within the innovation management literature. Partnering firms can jointly create sources of relational competitive advantage. Chinese firms often lack research and development (R......&D) capabilities but are increasingly becoming preferred technological partners for transnational corporations. We investigate an STP between a Scandinavian and a Chinese firm and try to explore how to gain relational competitive advantage by focusing on its two essential stages: relational rent generation and...... appropriation. Based on an explorative case study, we develop a conceptual framework that consists of process, organizational alliance factors, and coordination modes that we propose lead to relational competitive advantage....

  3. ACTIVATED CARBONS FROM VEGETAL RAW MATERIALS TO SOLVE ENVIRONMENTAL PROBLEMS

    Viktor Mukhin

    2014-06-01

    Full Text Available Technologies for active carbons obtaining from vegetable byproducts such as straw, nut shells, fruit stones, sawdust, hydrolysis products of corn cobs and sunflower husks have been developed. The physico-chemical characteristics, structural parameters and sorption characteristics of obtained active carbons were determined. The ability of carbonaceous adsorbents for detoxification of soil against pesticides, purification of surface waters and for removal of organic pollutants from wastewaters has been evaluated. The obtained results reveal the effectiveness of their use in a number of environmental technologies.

  4. Epithermal neutron activation analysis of trace elements in biological materials

    The detection limits of 24 important minor and trace elements were studied in NBS SRM-1571 Orchard Leaves, NBS SRM-1577 Bovine Liver, Bowen's kale and IAEA H-4 Animal Muscle using ENAA method with cadmium and cadmium-boron filter. The lower detection limits have been found for elements As, Au, Ba, Br, Cd, Mo, Ni, Sb, Se, Sm and U by ENAA with cadmium filter and for elements As, Cd, Mo and Ni by ENAA with cadmium-boron filter, respectively, in comparison with INAA method. The results of the determination of elements studied in the above mentioned biological materials are also presented. (author)

  5. Bioreactor activated graft material for early implant fixation in bone

    Snoek Henriksen, Susan; Ding, Ming; Overgaard, Søren

    2011-01-01

    from the iliac crest. For both groups, mononuclear cells were isolated, and injected into a perfusion bioreactor (Millenium Biologix AG, Switzerland). Scaffold granules (Ø~900-1500 µm, ~88% porosity) in group 1, consisted of hydroxyapatite (HA, 70%) with β-tricalcium-phosphate (β-TCP, 30%) (Danish...... Technological Institute, Denmark). The granules were coated with poly-lactic acid (PLA) 12%, in order to increase the mechanical strength of the material (Phusis, France). Scaffold granules (Ø~900-1400 µm, 80% porosity) in group 2 consisted of pure HA/β-TCP (FinCeramica, Italy). For both groups, cells were...

  6. Preparation of Biologically Active Materials by Biomimetic Process

    2002-01-01

    In order to form the apatite nuclei on a surface of the substrate,the substrate was placed on or in CaO,SiO2-based glass particles which were soaked in a simulated body fluid with ion concentrations nearly equal to those of human blood plasma,and to make the apatite nuclei grow on the substrate in situ,the substrate was soaked in another solution highly supersaturated with respect to the apatite. The induction period for the apatite nucleation varied from 0 to 4 days depending on the kind of the substrate. The thickness of the apatite layer increases linearly with increasing soaking time in the second solution.The rate of growth of the apatite layer increases with increasing degree of the supersaturation and temperature of the second solution, reaching 7um/d in a solution with ion concentrations which is as 1.5 times as those of the simulated body fluid at 60 ℃. The adhesive strength of the apatite layer to the substrate varies depending on the kind and roughness of the substrate. Polyethyleneterephthalate and polyethersulfone plates abraded with No.400 diamond paste show adhesive strengths of as high as 4 MPa. This type of composite of the bone-like apatite with metals, ceramics and organic polymers might be useful not only as highly bioactive hard tissue-repairing materials with analogous mechanical properties to those of the hard tissues, but also as highly biocompatible soft tissue-repairing materials with ductility.

  7. Effect of Activated Reagent to the Parameters of Electrical Materials Supercapacitor

    Z.D. Kovalyuk

    2016-06-01

    Full Text Available In this work the production and investigation of nano-porous carbon material from organic raw materials of plant origin with different promoters – KOH and ZnCl2. The basic energy capacitive characteristics of materials, the specific capacity of the materials obtained with KOH and ZnCl2 activation is 205 F/g and 138 F/g, respectively

  8. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na+ and Fe3+ solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous material, and

  9. Exploratory research on mutagenic activity of coal-related materials

    Warshawsky, D.; Schoeny, R. S.

    1980-01-01

    The following samples were found to be mutagenic for strains TA1538, TA98 and TA100 Salmonella typhimurium: ETTM-10, ETTM-11, ETTM-15, ETTM-16, and ETTM-17. ETTM-13 was marginally mutagenic for TA1537. ETTM-14 was slightly mutagenic for TA1537, TA1538, and TA98. Mutagenicity by all samples was demonstrated only in the presence of hepatic enzyme extracts (S9) which provided metabolic activation. ETTM-11 was shown to be the most mutagenic sample assayed thus far; specific activity was 2.79 x 10/sup 4/ TA98 revertants/mg sample. Fractionation by serial extractions with increasingly polar organic solvents was done at least 2 x with ETTM-10, ETTM-11, ETTM-15, ETTM-16 and ETTM-17. For some samples highly mutagenic fractions were observed.

  10. Bioorganically doped sol-gel materials containing amyloglucosidase activity

    Vlad-Oros Beatrice

    2006-01-01

    Full Text Available Amyloglucosidase (AMG from Aspergillus niger was encapsulated in various matrices derived from tetraethoxysilane, methyltriethoxysilane, phenyltriethoxysilane and vinyltriacetoxysilane by different methods of immobilization. The immobilized enzyme was prepared by entrapment in two steps, in one-step and entrapment/deposition, respectively. The activities of the immobilized AMG were assayed and compared with that of the native enzyme. The effects of the organosilaneprecursors and their molar ratios, the immobilization method, the inorganic support (white ceramic, red ceramic, purolite, alumina, TiO2, celite, zeolite and enzyme loading upon the immobilized enzyme activity were tested. The efficiency of the sol-gel biocomposites can be improved through combination of the fundamental immobilization techniques and selection of the precursors.