WorldWideScience

Sample records for active gain material

  1. The Effects of Activity and Gain Based Virtual Material on Student's Success, Permanency and Attitudes towards Science Lesson

    Tas, Erol

    2015-01-01

    The main objective of this study is to research the effects of a student gains and activity based virtual material on students' success, permanence and attitudes towards science lesson, developed for science and technology lesson 6th grade "Systems in our body" unit. The study, which had a quasi-experimental design, was conducted with…

  2. The Study of Electromagnetic Wave Propogation in Photonic Crystals Via Planewave Based Transfer (Scattering) Matrix Method with Active Gain Material Applications

    Ming LI

    2007-12-01

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.

  3. Active Microwave Metamaterials Incorporating Ideal Gain Devices

    Hao Xin

    2010-12-01

    Full Text Available Incorporation of active devices/media such as transistors for microwave and gain media for optics may be very attractive for enabling desired low loss and broadband metamaterials. Such metamaterials can even have gain which may very well lead to new and exciting physical phenomena. We investigate microwave composite right/left-handed transmission lines (CRLH-TL incorporating ideal gain devices such as constant negative resistance. With realistic lumped element values, we have shown that the negative phase constant of this kind of transmission lines is maintained (i.e., left-handedness kept while gain can be obtained (negative attenuation constant of transmission line simultaneously. Possible implementation and challenging issues of the proposed active CRLH-TL are also discussed.

  4. Physical activity and weight gain during pregnancy

    Haakstad, Lene Annette Hagen

    2010-01-01

    A low level of daily PA and regular recreational exercise was shown in the present study of pregnant women in Oslo. There was a decline in exercise intensity, duration and frequency from before pregnancy and throughout the course of pregnancy. Walking was the most common exercise mode. The results of the multivariate analysis showed that women who decreased regular exercise in the 3rd trimester had higher weight gain and reported to have no social role models with respect to ex...

  5. A lasing mechanism based on absorption boundary of gain materials

    Shi, Jinwei; Chen, Shujing; Fan, Wenjun; Kong, Xiangyu; Liu, Dahe; Zu, Lily

    2013-01-01

    A new kind of mechanism of lasing is investigated experimentally. It is quite different from the traditional laser with cavity and the random laser with random scattering. In this mechanism, the intensity-dependent refractive index effect and thermal lensing effects of the pump beam induce a large gradient of the refractive index in the gain material, which forms a passive equivalent boundary that provides the feedback in the lasing system. A real lasing system, a liquid disk laser, is perfor...

  6. A lasing mechanism based on absorption boundary of gain materials

    Shi, Jinwei; Fan, Wenjun; Kong, Xiangyu; Liu, Dahe; Zu, Lily

    2013-01-01

    A new kind of mechanism of lasing is investigated experimentally. It is quite different from the traditional laser with cavity and the random laser with random scattering. In this mechanism, the intensity-dependent refractive index effect and thermal lensing effects of the pump beam induce a large gradient of the refractive index in the gain material, which forms a passive equivalent boundary that provides the feedback in the lasing system. A real lasing system, a liquid disk laser, is performed, it achieves 2-D omnidirectional radiation with a high efficiency of 28%, its radiation spectral property can be explained by resonant Raman scattering.

  7. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  8. Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....

  9. Physical Activity and Gestational Weight Gain in Hispanic Women

    Chasan-Taber, Lisa; Silveira, Marushka; Lynch, Kristine E.; Pekow, Penelope; Solomon, Caren G.; Markenson, Glenn

    2013-01-01

    Objective Hispanic women have high rates of excessive and inadequate gestational weight gain (GWG) according to Institute of Medicine (IOM) guidelines. Observational studies suggest that physical activity may be associated with GWG but have been conflicting and were largely conducted in non-Hispanic white populations. Design and Methods We prospectively evaluated the association between physical activity and compliance with GWG guidelines, total GWG, and rate of GWG among 1,276 Hispanic parti...

  10. Physical Activity and Gestational Weight Gain in Hispanic Women

    Chasan-Taber, Lisa; Silveira, Marushka; Lynch, Kristine E.; Pekow, Penelope; Solomon, Caren G.; Markenson, Glenn

    2013-01-01

    Objective: Hispanic women have high rates of excessive and inadequate gestational weight gain (GWG) according to Institute of Medicine (IOM) guidelines. Observational studies suggest that physical activity may be associated with GWG but have been conflicting and were largely conducted in non-Hispanic white populations. Design and Methods We prospectively evaluated the association between physical activity and compliance with GWG guidelines, total GWG, and rate of GWG among 1,276 Hispanic part...

  11. High power VCSEL device with periodic gain active region

    Ning, Y. Q., II; Qin, L.; Sun, Y. F.; Li, T.; Cui, J. J.; Peng, B.; Liu, G. Y.; Zhang, Y.; Liu, Y.; Wang, L. J.; Cui, D. F.; Xu, Z. Y.

    2007-11-01

    High power vertical cavity surface emitting lasers with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structure, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the cavity to enhance the coupling between the optical field and the gain region. Large aperture and bottom-emitting configuration was used to improve the beam quality and the heat dissipation. A maximum output power of 1.4W was demonstrated at CW operation for a 400μm-diameter device. The lasing wavelength shifted to 995.5nm with a FWHM of 2nm at a current of 4.8A due to the internal heating and the absence of active water cooling. A ring-shape farfield pattern was induced by the non-homogeneous lateral current distribution in large diameter device. The light intensity at the center of the ring increased with increasing current. A symmetric round light spot at the center and single transverse mode operation with a divergence angle of 16° were observed with current beyond 4.8A.

  12. 20 CFR 416.972 - What we mean by substantial gainful activity.

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false What we mean by substantial gainful activity... Activity § 416.972 What we mean by substantial gainful activity. Substantial gainful activity is work... or profit, whether or not a profit is realized. (c) Some other activities. Generally, we do...

  13. 20 CFR 404.1572 - What we mean by substantial gainful activity.

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false What we mean by substantial gainful activity... Activity § 404.1572 What we mean by substantial gainful activity. Substantial gainful activity is work... or profit, whether or not a profit is realized. (c) Some other activities. Generally, we do...

  14. Role of excited states for the material gain and threshold current density in quantum wire intersubband laser structures

    Herrle, Thomas; Haneder, Stephan; Wegscheider, Werner

    2006-05-01

    We calculated the material gain and the threshold current density for quantum wire intersubband laser structures. In quantum cascade laser devices with active regions of lower dimensionality a reduction of the nonradiative losses and consequently an increase in the material gain and a reduction of the threshold current density is predicted. In our calculations of the material gain and the threshold current density for a realistic quantum wire intersubband laser structure fabricated by the cleaved edge overgrowth (CEO) technique, however, it turns out that excited states formed in those structures even reduce the material gain compared to conventional quantum well cascade lasers. The threshold current density also turns out to be increased due to the reduced material gain on the one hand and due to a small optical confinement factor in such structures on the other hand. The main consequence for the design of such quantum wire laser structures is to avoid the formation of excited states to be able to benefit from the reduction of the dimensionality of the electron system in terms of reduced nonradiative losses.

  15. Slow-light-enhanced gain in active photonic crystal waveguides

    Ek, Sara; Hansen, Per Lunnemann; Chen, Yaohui;

    2014-01-01

    , which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experi- mentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic...... crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar...

  16. Voigt-wave propagation in active materials

    Mackay, Tom G

    2015-01-01

    If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give rise to a material that supports the propagation of Voigt waves with attendant linear gain in amplitude with propagation distance, by infiltration with an active dye.

  17. Wave propagation in birefringent materials with off axis absorption or gain

    Sabooni, Mahmood; Kristensson, Gerhard; Rippe, Lars

    2016-01-01

    The polarization direction of an electromagnetic field changes and eventually reaches a steady state when propagating through a birefringent material with off axis absorption or gain. The steady state orientation direction depends on the magnitude of the absorption (gain) and the phase retardation rate. The change in the polarization direction is experimentally demonstrated in weakly doped ($0.05\\%$) Pr$^{3+}$:Y$_2$SiO$_5$ crystals, where the light polarization, if initially aligned along the most strongly absorbing principal axis, gradually switch to a much less absorbing polarization state during the propagation. This means that the absorption coefficient, $\\alpha$, in birefringent materials generally varies with length. This is important for, e.g., laser crystal gain media, highly absorbing and narrow band spectral filters and quantum memories.

  18. The Gain Properties of 1-D Active Photonic Crystal

    2003-01-01

    The terminology 'ID frequency'(w ID) is proposed after analyzing the 1D active photonic crystal based on the transfer matrix method. The relationship between wID and the structure parameters of the photonic crystal is investigated.

  19. Spontaneous physical activity protects against fat mass gain

    Teske, Jennifer A.; Billington, Charles J.; Kuskowski, Michael A.; Kotz, Catherine M.

    2011-01-01

    It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term. Objective We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, FM and FFM between obesity resistant and Sprague-Dawley rats at specific age intervals. Design and Subjects Body composition, SPA and caloric intake were measured in selectively-bred obesity resistant and out-b...

  20. Propagation of Gaussian Beams through Active GRIN Materials

    Gomez-Varela, A I; Flores-Arias, M T; Bao-Varela, C; Gomez-Reino, C [Grupo de ' Microoptica y Optica GRIN' , Unidad asociada al Instituto de Ciencias de Materiales de Aragon, ICMA/CSIC, Zaragoza, Espana y Escuela de Optica y OptometrIa, Campus Sur s/n, Universidade de Santiago, E15782 Santiago de Compostela (Spain); De la Fuente, X, E-mail: maite.flores@usc.es [Instituto de Ciencia de Materiales de Aragon (Universidad de Zaragoza-CSIC), Maria de Luna 3, E50018 Zaragoza (Spain)

    2011-01-01

    We discussed light propagation through an active GRIN material that exhibits loss or gain. Effects of gain or loss in GRIN materials can be phenomenologically taken into account by using a complex refractive index in the wave equation. This work examines the implication of using a complex refractive index on light propagation in an active GRIN material illuminated by a non-uniform monochromatic wave described by a Gaussian beam. We analyze how a Gaussian beam is propagated through the active material in order to characterize it by the beam parameters and the transverse irradiance distribution.

  1. Propagation of Gaussian Beams through Active GRIN Materials

    We discussed light propagation through an active GRIN material that exhibits loss or gain. Effects of gain or loss in GRIN materials can be phenomenologically taken into account by using a complex refractive index in the wave equation. This work examines the implication of using a complex refractive index on light propagation in an active GRIN material illuminated by a non-uniform monochromatic wave described by a Gaussian beam. We analyze how a Gaussian beam is propagated through the active material in order to characterize it by the beam parameters and the transverse irradiance distribution.

  2. Material properties in complement activation

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud;

    2011-01-01

    activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  3. 20 CFR 220.29 - Work that is considered substantial gainful activity.

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Work that is considered substantial gainful... RAILROAD RETIREMENT ACT DETERMINING DISABILITY Disability Under the Railroad Retirement Act for Any Regular Employment § 220.29 Work that is considered substantial gainful activity. Work is considered to...

  4. Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials

    Cavity coupling in a random laser with a weakly scattering disordered structure formed by ZnO nanoparticles is observed experimentally. The lasing characteristics are quite different from those of a traditional random laser. It is found that the threshold of coherent radiation with gain materials in such a structure is considerably low, and the emission spectrum and the threshold of each peak are orientationally uniform; the possible positions of the coherent peaks are fixed. These characteristics will be very useful in its applications. A new physical mechanism, cavity coupling, is suggested to discuss the lasing system. Nano-scale scatterers play an important role in providing randomly distributed feedback. (letter)

  5. Material science experience gained from the space nuclear rocket program: Insulators

    Although Rover reactors are viewed as the ultimate in high-temperature operating systems, many of the materials used in these reactors (for example, support rods, control drums, and the reflector) have to be held at relatively low temperatures while the reactor operates, in order to maintain their structural integrity. Thus the insulators needed to separate these temperature domains are crucial to the reactor's ultimate operating times and temperatures. All of the reactors that were tested used pyrolytic graphite as the primary insulator. However, it had been long planned to replace the graphite with zirconium carbide and a lengthy and intensive effort to develop the zirconium carbide insulators had been made at the time Rover was terminated. This report details research and development and the experience we gained with both these insulator materials

  6. Hierarchical modeling of active materials

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  7. Phase and gain control policies for robust active vibration control of flexible structures

    Zhang, Kai; Scorletti, Gérard; Ichchou, Mohamed; Mieyeville, F.

    2013-01-01

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H∞ control: according to the set...

  8. Role of nonexercise activity thermogenesis in resistance to fat gain in humans.

    Levine, J A; Eberhardt, N L; Jensen, M D

    1999-01-01

    Humans show considerable interindividual variation in susceptibility to weight gain in response to overeating. The physiological basis of this variation was investigated by measuring changes in energy storage and expenditure in 16 nonobese volunteers who were fed 1000 kilocalories per day in excess of weight-maintenance requirements for 8 weeks. Two-thirds of the increases in total daily energy expenditure was due to increased nonexercise activity thermogenesis (NEAT), which is associated with fidgeting, maintenance of posture, and other physical activities of daily life. Changes in NEAT accounted for the 10-fold differences in fat storage that occurred and directly predicted resistance to fat gain with overfeeding (correlation coefficient = 0.77, probability activation of NEAT dissipates excess energy to preserve leanness and that failure to activate NEAT may result in ready fat gain. PMID:9880251

  9. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice

    Madsen, Birgitte Lindegaard; Matthews, Vance B; Brandt, Claus;

    2013-01-01

    receptor (IL-18R(-/-)), fed a standard chow or high fat diet (HFD). We next performed gain of function experiments in skeletal muscle, in vitro, ex vivo and in vivo. We show that IL-18 is implicated in metabolic homeostasis, inflammation and insulin resistance via mechanisms involving the activation of......-18 into skeletal muscle activated AMPK and concomitantly inhibited high fat diet-induced weight gain. In summary IL-18 enhances AMPK signaling and lipid oxidation in skeletal muscle implicating IL-18 in metabolic homeostasis....

  10. Modeling of gain saturation effects in active semiconductor photonic crystal waveguides

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper, we present a theoretical analysis of slow-light enhanced light amplification in an active semiconductor photonic crystal line defect waveguide. The impact of enhanced light-matter interactions on carrier-depletion-induced modal gain saturation is investigated.......In this paper, we present a theoretical analysis of slow-light enhanced light amplification in an active semiconductor photonic crystal line defect waveguide. The impact of enhanced light-matter interactions on carrier-depletion-induced modal gain saturation is investigated....

  11. Achievement of public health recommendations for physical activity and prevention of gains in adiposity in adults

    Grøntved, A.

    2013-01-01

    Physical activity (PA) is considered a cornerstone in weight control and public health guidelines recommend regular participation to prevent gains in adiposity. It may therefore come as a surprise that the cumulative evidence from observational studies to support this is not strong. A weakness of...

  12. Enhanced optical precursors by Doppler effect via active Raman gain process.

    Peng, Yandong; Niu, Yueping; Zhang, Lida; Yang, Aihong; Jiang, Lin; Gong, Shangqing

    2012-08-15

    A scheme for enhancing precursor pulse by Doppler effect is proposed in a room-temperature active-Raman-gain medium. Due to abnormal dispersion between two gain peaks, main fields are advanced and constructively interfere with optical precursors, which leads to enhancement of the transient pulse at the rise edge of the input. Moreover, after Doppler averaging, the abnormal dispersion intensifies and the constructive interference between precursors and main fields is much strengthened, which boosts the transient spike. Simulation results demonstrate that the peak intensity of precursors could be enhanced nearly 20 times larger than that of the input. PMID:23381248

  13. Limiting Excess Weight Gain in Healthy Pregnant Women: Importance of Energy Intakes, Physical Activity, and Adherence to Gestational Weight Gain Guidelines

    Tamara R. Cohen

    2013-01-01

    Full Text Available Few studies have investigated if compliance with energy intakes, physical activity, and weight gain guidelines attenuate postpartum weight retention (PPWR in mothers attending prenatal classes. We investigated whether (a daily energy intakes within 300 kcal of estimated energy requirements (EERs, (b walking more than 5000 steps/day, (c targeting the recommended weight gain goals for prepregnancy BMI, and/or (d achieving weekly or total gestational weight gain (GWG recommendations minimized PPWR in 54 women attending prenatal classes in Montreal/Ottawa, Canada. Participants completed a validated pregnancy physical activity questionnaire (PPAQ, 3 telephone-validated 24-hr dietary recalls, and wore a pedometer for one week. PPWR was measured 6 weeks after delivery. Results showed that 72% had healthy prepregnancy BMIs. However, 52% consumed >300 kcal/day in excess of their EER, 54% exceeded recommended GWG, and more overweight (93% than normal weight women (38% cited nonrecommended GWG targets. Following delivery, 33% were classified as overweight, and 17% were obese. Multiple logistic regressions revealed that women targeting “recommended weight gain advice” were 3 times more likely to meet total GWG recommendations (OR: 3.2, P<0.05; women who complied with weekly GWG goals minimized PPWR (OR: 4.2, P<0.02. In conclusion, appropriate GWG targets, lower energy intakes, and physical activity should be emphasized in prenatal education programs.

  14. Phase and gain control policies for robust active vibration control of flexible structures

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H∞ control: according to the set of control objectives, phase and gain control policies incorporate necessary weighting functions and determine them in a rational and systematic way; on the other hand, with the appropriate weighting functions efficient H∞ control algorithms can automatically realize phase and gain control policies and generate a satisfactory H∞ controller. The proposed control methodology can be used for both SISO and MIMO systems with collocated or non-collocated sensors and actuators. In this paper, it is validated on a non-collocated piezoelectric cantilever beam. Both numerical simulations and experimental results demonstrate the effectiveness of the proposed control methodology. (paper)

  15. An Active Gain-control System for Avalanche Photo-Diodes under Moderate Temperature Variations

    Kataoka, J; Ikagawa, T; Kotoku, J; Kuramoto, Y; Tsubuku, Y; Saitô, T; Yatsu, Y; Kawai, N; Ishikawa, Y; Kawabata, N

    2006-01-01

    Avalanche photodiodes (APDs) are promising light sensor for various fields of experimental physics. It has been argued, however, that variation of APD gain with temperature could be a serious problem preventing APDs from replacing traditional photomultiplier tubes (PMTs) in some applications. Here we develop an active gain-control system to keep the APD gain stable under moderate temperature variations. As a performance demonstration of the proposed system, we have tested the response of a scintillation photon detector consisting of a 5x5 mm^2 reverse-type APD optically coupled with a CsI(Tl) crystal. We show that the APD gain was successfully controlled under a temperature variation of DT = 20deg, within a time-cycle of 6000 sec. The best FWHM energy resolution of 6.1+-0.2 % was obtained for 662 keV gamma-rays, and the energy threshold was as low as 6.5 keV, by integrating data from +20deg - 0deg cycles. The corresponding values for -20deg - 0deg cycles were 6.9+-0.2 % and 5.2 keV, respectively. These result...

  16. Pregnant women's perceptions of weight gain, physical activity, and nutrition using Theory of Planned Behavior constructs.

    Whitaker, Kara M; Wilcox, Sara; Liu, Jihong; Blair, Steven N; Pate, Russell R

    2016-02-01

    A better understanding of women's perceptions of weight gain and related behaviors during pregnancy is necessary to inform behavioral interventions. We used the Theory of Planned Behavior (TPB) to examine pregnant women's perceptions and intentions toward weight gain, physical activity (PA), and nutrition using a mixed methods study design. Women between 20 and 30 weeks gestation (n = 189) were recruited to complete an Internet-based survey. Salient beliefs toward weight gain, PA, and nutrition were captured through open-ended responses and content analyzed into themes. TPB constructs (attitude, subjective norm, perceived behavioral control, intentions) were examined using Pearson correlations and hierarchical linear regression models. Salient beliefs were consistent with the existing literature in non-pregnant populations, with the addition of many pregnancy-specific beliefs. TPB constructs accounted for 23-39 % of the variance in weight gain, PA, and nutrition intentions, and made varying contributions across outcomes. The TPB is a useful framework for examining women's weight-related intentions during pregnancy. Study implications for intervention development are discussed. PMID:26335313

  17. Low activation materials for fusion

    The viability of fusion as a future energy source may eventually be determined by safety and environmental factors. Control of the induced radioactivity characteristics of the materials used in the first wall and blanket could have a major favorable impact on these issues. In the United States, materials program efforts are focused on developing new structural alloys with radioactive decay characteristics which would greatly simplify long-term waste disposal of reactor components. A range of alloy systems is being explored in order to maintain the maximum number of design options. Significant progress has been made, and it now appears probable that reduced-activation engineering alloys with properties at least equivalent to conventional alloys can be successfully developed and commercialized. 10 refs., 1 fig

  18. Allele specific gain-of-function activity of p53 mutants in lung cancer cells

    Vaughan, Catherine A.; Frum, Rebecca; Pearsall, Isabella; Singh, Shilpa; Windle, Brad; Yeudall, Andrew; Deb, Swati P.; Deb, Sumitra

    2012-01-01

    p53 mutations are mostly single amino acid changes resulting in expression of a stable mutant protein with “gain of function” (GOF) activity having a dominant oncogenic role rather than simple loss of function of wild-type p53. Knock-down of mutant p53 in human lung cancer cell lines with different endogenous p53 mutants results in loss of GOF activity as shown by lowering of cell growth rate. Two lung cancer cell lines, ABC1 and H1437 carrying endogenous mutants p53–P278S and –R267P, both sh...

  19. Photon-activated charge domain in high-gain photoconductive switches

    Wei Shi(施卫); Huiying Dai(戴慧莹); Xiaowei Sun(孙小卫)

    2003-01-01

    We report our experimental observation of charge domain oscillation in semi-insulating GaAs photoconductive semiconductor switches (PCSSs). The high-gain PCSS is intrinsically a photon-activated charge domain device. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length product of 1012 cm-2. We also show that, because of the repeated process of domain formation, the domain travels with a compromised speed of electron saturation velocity and the speed of light. As a result, the transit time of charge domains in PCSS is much shorter than that of traditional Gunn domains.

  20. Gaining A Geological Perspective Through Active Learning in the Large Lecture Classroom

    Kapp, J. L.; Richardson, R. M.; Slater, S. J.

    2008-12-01

    NATS 101 A Geological Perspective is a general education course taken by non science majors. We offer 600 seats per semester, with four large lecture sections taught by different faculty members. In the past we have offered optional once a week study groups taught by graduate teaching assistants. Students often feel overwhelmed by the science and associated jargon, and many are prone to skipping lectures altogether. Optional study groups are only attended by ~50% of the students. Faculty members find the class to be a lot of work, mainly due to the grading it generates. Activities given in lecture are often short multiple choice or true false assignments, limiting the depth of understanding we can evaluate. Our students often lack math and critical thinking skills, and we spend a lot of time in lecture reintroducing ideas students should have already gotten from the text. In summer 2007 we were funded to redesign the course. Our goals were to 1) cut the cost of running the course, and 2) improve student learning. Under our redesign optional study groups were replaced by once a week mandatory break out sessions where students complete activities that have been introduced in lecture. Break out sessions substitute for one hour of lecture, and are run by undergraduate preceptors and graduate teaching assistants (GTAs). During the lecture period, lectures themselves are brief with a large portion of the class devoted to active learning in small groups. Weekly reading quizzes are submitted via the online course management system. Break out sessions allow students to spend more time interacting with their fellow students, undergraduate preceptors, and GTAs. They get one on one help in break out sessions on assignments designed to enhance the lecture material. The active lecture format means less of their time is devoted to listening passively to a lecture, and more time is spent peer learning an interacting with the instructor. Completing quizzes online allows students

  1. Instrumentation amplifier implements second-order active low-pass filter with high gain factor

    A single-ended second-order active low-pass filter can simultaneously provide high gain factor and dc voltage subtraction. This makes it possible to reduce the number of components and signal processing stages needed in an application where small voltage changes are measured on the top of large dc voltage masked by a large amplitude oscillating carrier. The filter described in this paper is constructed from a conventional 3-op-amp instrumentation amplifier and five passive circuit elements. (technical design note)

  2. Pregnant women’s perceptions of weight gain, physical activity, and nutrition using Theory of Planned Behavior constructs

    Whitaker, Kara M.; Wilcox, Sara; Liu, Jihong; Blair, Steven N; Russell R. Pate

    2015-01-01

    A better understanding of women’s perceptions of weight gain and related behaviors during pregnancy is necessary to inform behavioral interventions. We used the Theory of Planned Behavior (TPB) to examine pregnant women’s perceptions and intentions toward weight gain, physical activity (PA), and nutrition using a mixed methods study design. Women between 20 and 30 weeks gestation (n = 189) were recruited to complete an Internet-based survey. Salient beliefs toward weight gain, PA, and nutriti...

  3. Engineering trend analysis: Achieving quality gains and cost reduction in materials

    In the last half-decade, utilities have made many changes in their material and procurement processes because of increased regulatory expectations of the procurement process used to procure nuclear safety-related materials. The changes have been largely driven by concern for fraudulent or misrepresented parts and loss of original equipment manufacturers. The nuclear utilities have responded by endorsing and acting upon the Nuclear Management and Resources Council's (NUMARC's) comprehensive procurement initiative to strengthen their materials procurement process. As the increased emphasis for cost containment and/or reduction is endorsed by most utilities, it is only natural to look at ways to reduce cost in this materials procurement process while maintaining or even increasing quality and safety

  4. Activities for gaining insight into IASCC and continuous evaluation of in-service inspection data

    The report is a documentation of the important results of various international studies conducted to gain insight into the occurrence, mechanisms, and characteristic features of irradiation-assisted stress corrosion cracking, IASCC, as well as measures preventing IASCC in light water reactors. The major information can be summarised as follows: the number of cases of damage clearly induced by IASCC is low, as compared to the damage induced by intergranular stress corrosion cracking, IGSCC. In fact, recent information from a review of documented stress corrosion cracking damage of BWR type reactor internals reveals that an increasing number of cracks formerly thought to have been caused by IASCC now can be attributed to ICSCC as the most probable cause. Generally speaking, current knowledge of the impact of ionizing radiation on the corrosion resistance of LWR materials is rather insufficient. (orig./CB)

  5. Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control

    Jonsson, Jacob; Jonsson, Jacob C.; Lee, Eleanor S.; Rubin, Mike

    2008-08-01

    Shade-screens are widely used in commercial buildings as a way to limit the amount of direct sunlight that can disturb people in the building. The shade screens also reduce the solar heat-gain through glazing the system. Modern energy and daylighting analysis software such as EnergyPlus and Radiance require complete scattering properties of the scattering materials in the system. In this paper a shade screen used in the LBNL daylighting testbed is characterized using a photogoniometer and a normal angle of incidence integrating sphere. The data is used to create a complete bi-directional scattering distribution function (BSDF) that can be used in simulation programs. The resulting BSDF is compared to a model BADFs, both directly and by calculating the solar heat-gain coefficient for a dual pane system using Window 6.

  6. Individual Differences in Striatum Activity to Food Commercials Predict Weight Gain in Adolescents

    Yokum, Sonja; Gearhardt, Ashley N.; Harris, Jennifer L.; Brownell, Kelly D.; Stice, Eric

    2014-01-01

    Objective Adolescents view thousands of food commercials annually, but little is known about how individual differences in neural response to food commercials relate to weight gain. To add to our understanding of individual risk factors for unhealthy weight gain and environmental contributions to the obesity epidemic, we tested the associations between reward region (striatum and orbitofrontal cortex [OFC]) responsivity to food commercials and future change in Body Mass Index (BMI). Design and Methods Adolescents (N = 30) underwent a scan session at baseline while watching a television show edited to include 20 food commercials and 20 non-food commercials. BMI was measured at baseline and 1-year follow-up. Results Activation in the striatum, but not OFC, in response to food commercials relative to non-food commercials and in response to food commercials relative to the television show was positively associated with change in BMI over 1-year follow-up. Baseline BMI did not moderate these effects. Conclusions The results suggest that there are individual differences in neural susceptibility to food advertising. These findings highlight a potential mechanism for the impact of food marketing on adolescent obesity. PMID:25155745

  7. Muscle activity during functional coordination training: implications for strength gain and rehabilitation

    Jørgensen, Marie Birk; Andersen, Lars Louis; Kirk, Niels;

    2010-01-01

    The purpose of this study was to evaluate if different types, body positions, and levels of progression of functional coordination exercises can provide sufficiently high levels of muscle activity to improve strength of the neck, shoulder, and trunk muscles. Nine untrained women were familiarized...... coordination training can be performed with a muscle activity sufficient for strength gain. Functional coordination training may therefore be a good choice for prevention or rehabilitation of musculoskeletal pain or injury in the neck, shoulder, or trunk muscles.......The purpose of this study was to evaluate if different types, body positions, and levels of progression of functional coordination exercises can provide sufficiently high levels of muscle activity to improve strength of the neck, shoulder, and trunk muscles. Nine untrained women were familiarized...... with 7 functional coordination exercises 12 times during 4 weeks before testing. Surface electromyographic (EMG) activity was obtained from rectus abdominus, erector spinae, obliquus externus, and trapezius during the exercises with 2-4 levels of progression. Electromyography was normalized to the...

  8. Measurements of enthalpy-stimulated-scattering gain in the active medium of an iodine photodissociation laser

    Korol' kov, K.S.; Krylov, A.IU.; Nosach, O.IU.; Orlov, E.P. (Fizicheskii Institut, Moscow (USSR))

    1990-07-01

    A method is developed for determining the absolute gain of the nonstationary enthalpy stimulated scattering (NESS) of laser radiation by temperature waves by means of direct measurements of fundamental and impurity beam gains in the laser amplifier. The NESS gain is investigated as a function of the working gas mixture pressure in iodine photodissociation lasers. 11 refs.

  9. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    Zhang, Qi; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  10. Organic active materials for batteries

    Abouimrane, Ali; Weng, Wei; Amine, Khalil

    2016-08-16

    A rechargeable battery includes a compound having at least two active sites, R.sup.1 and R.sup.2; wherein the at least two active sites are interconnected by one or more conjugated moieties; each active site is coordinated to one or more metal ions M.sup.a+ or each active site is configured to coordinate to one or more metal ions; and "a" is 1, 2, or 3.

  11. Exoemissive noise activity of different metallic materials

    Bichevin, V.; Käämbre, H.; Sammelselg, V.; Kelle, H.; Asari, E.; Saks, O.

    1996-11-01

    A method is proposed for testing the exoemission activity of different metals, used as materials in high sensitivity electrometry (attoammetry). The presented test results allow us to select materials with weaker exoelectron spurious currents.

  12. Taxing away M&A : the effect of corporate capital gains taxes on acquisition activity

    Feld, Lars P.; Ruf, Martin; Schreiber, Ulrich; Todtenhaupt, Maximilian; Voget, Johannes

    2016-01-01

    Taxing capital gains is an important obstacle to the efficient allocation of resources because it imposes a transaction cost on the vendor which locks in appreciated assets by raising the vendor's reservation price in prospective transactions. For M&As, this effect has been intensively studied with regard to share-holder taxation, whereas empirical evidence on the effect of capital gains taxes paid by corporations is scarce. This paper analyzes how corporate level taxation of capital gains af...

  13. Strengthening global physical protection practices: Gaining better information on national practices for protection of nuclear material

    There are no international requirements for protecting nuclear material in domestic use, storage or transport. Experts from many countries meeting in Vienna are considering establishing such international requirements. Meanwhile, the foundation for international norms of physical protection is IAEA INFCIRC 225/Rev.4, consensus recommendations for protection systems. In addition to establishing international requirements, practices of physical protection can be strengthened by exchanges of information, for example, comparing recommended standards with the actual practices of states. The more system operators can learn about the threats other states have faced and the successful practices others have used to defend against these threats, the more physical protection is likely to be improved. Research comparing practices shows wide variation from state to state. Better means are needed to systematize exchanges of information on state standards and practices. Conferences such as this one are useful to that end, but they may be too infrequent and too technical for policy makers and others responsible for funding physical protection systems. As a review of two past physical protection conferences has shown, they often do not produce sufficient data in the same subject areas to produce detailed comparisons between very many states. Training is another way to improve physical protection practices. Existing physical protection courses and workshops are very useful, but they do not reach all the audiences that need training. Some regions of the world and some specialized audiences have been left out. For example, one-day seminars that teach basics may be useful for policy makers. More lengthy courses are appropriate for those that design and operate protection systems. Indeed, physical protection practices can be improved by strengthening training for all of those responsible for physical protection, as the experts meeting in Vienna have recommended. (author)

  14. Activation of porous MOF materials

    Hupp, Joseph T; Farha, Omar K

    2013-04-23

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  15. Gestational weight gain by reduced brain melanocortin activity affects offspring energy balance in rats

    Heinsbroek, A. C. M.; van Dijk, G.

    2009-01-01

    Introduction: Excessive gestational body weight gain of mothers may predispose offspring towards obesity and metabolic derangements. It is difficult to discern the effects of maternal obesogenic factors-such as diet and/or thrifty genetic predisposition-from gestational weight gain per se. Methods:

  16. Individual Differences in Striatum Activity to Food Commercials Predict Weight Gain in Adolescents

    Yokum, Sonja; Gearhardt, Ashley N; Harris, Jennifer L.; Brownell, Kelly D.; Stice, Eric

    2014-01-01

    Objective Adolescents view thousands of food commercials annually, but little is known about how individual differences in neural response to food commercials relate to weight gain. To add to our understanding of individual risk factors for unhealthy weight gain and environmental contributions to the obesity epidemic, we tested the associations between reward region (striatum and orbitofrontal cortex [OFC]) responsivity to food commercials and future change in Body Mass Index (BMI). Design an...

  17. Voigt-wave propagation in active materials

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2015-01-01

    If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give ris...

  18. Activity measurements of radon from construction materials

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60×60×60 cm3 were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of 226Ra, 232Th and 40K. The values for the index of the activity concentration (I), radium equivalent activity (Raeq), and external hazard index (Hext) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: ► Radon activity in air related to building materials was measured. ► The index of activity concentration of building materials was evaluated. ► The radium equivalent activity of building materials was evaluated. ► The external hazard index of building materials was evaluated.

  19. Activity measurements of radon from construction materials

    Fior, L.; Nicolosi Correa, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Paschuk, S.A., E-mail: spaschuk@gmail.com [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Denyak, V.V. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Schelin, H.R. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Pele Pequeno Principe Research Institute, Av. Silva Jardim, 1632, Curitiba, PR 80250-200 (Brazil); Soreanu Pecequilo, B.R. [Institute of Nuclear and Energetic Researches, IPEN, Av. Prof. Lineu Prestes, 2242-/05508-000 Sao Paulo (Brazil); Kappke, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil)

    2012-07-15

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60 Multiplication-Sign 60 Multiplication-Sign 60 cm{sup 3} were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K. The values for the index of the activity concentration (I), radium equivalent activity (Ra{sub eq}), and external hazard index (H{sub ext}) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: Black-Right-Pointing-Pointer Radon activity in air related to building materials was measured. Black-Right-Pointing-Pointer The index of activity concentration of building materials was evaluated. Black-Right-Pointing-Pointer The radium equivalent activity of

  20. The role of diet and physical activity in post-transplant weight gain after renal transplantation

    Zelle, Dorien M.; Kok, Trijntje; Dontje, Manon L.; Danchell, Eva I.; Navis, Gerjan; van Son, Willem J.; Bakker, Stephan J. L.; Corpeleijn, Eva

    2013-01-01

    Background Long-term survival of renal transplant recipients (RTR) has not improved over the past 20yr. The question rises to what extent lifestyle factors play a role in post-transplant weight gain and its associated risks after transplantation. Methods Twenty-six RTR were measured for body weight,

  1. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    Chang Zeng-Guang; Niu Yue-Ping; Zhang Jing-Tao; Gong Shang-Qing

    2012-01-01

    We theoretically investigate the Doppler effect on optical bistability in an N type active Raman gain atomic system inside an optical ring cavity.It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region,which has been known as the positive Doppler effect on optical bistability.In addition,we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.

  2. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type

  3. Can physical activity reduce excessive gestational weight gain? Findings from a Chinese urban pregnant women cohort study

    Jiang Hong; Qian Xu; Li Mu; Lynn Henry; Fan Yanyan; Jiang Hongyi; He Fengling; He Gengsheng

    2012-01-01

    Abstract Background Excessive gestational weight gain (GWG) poses negative impact on mothers and their children. It is important to understand the modifiable lifestyle factors associated with excessive GWG during pregnancy to guide future public health practice. Aim To investigate the association between physical activity during pregnancy and GWG of Chinese urban pregnant women. Methods A pregnant women cohort was established between 2005 and 2007 in Changzhou, China. Physical activity levels...

  4. Designing Gain- and Loss-Framed Messages to Increase Physical Activity among University Students Living in two Different Cultures

    Pelin Ozgur Polat

    2015-01-01

    BACKGROUND Widespread evidence indicates that physical activity has positive effects on physical health in long-run. Therefore, adopting exercising habits at early ages is essential for reducing risk of developing chronic diseases. As a result, prevention studies frequently focus on informing young people about possible consequences of engaging or not engaging in physical activity to encourage them to develop a healthy lifestyle. Gain- and loss-framed health messages (Rothman & Salove...

  5. Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry

    Palomo, A.

    2008-09-01

    Full Text Available Alkali-activated fly ash is the primary component of a new generation of high-strength, durable binders with excellent mechanical properties and durability (on occasion bettering traditional Portland cement performance. Moreover, development of these cements may contribute to mitigating CO2 emissions, since the base material is an industrial by-product. The present study was conducted to determine the effect of the composition of the initial materials (SiO2/Al2O3 and Na2O/Al2O3 ratios on the mechanical properties, nature and composition of the reaction products. The results obtained indicate that there is no linear relationship between these ratios and mechanical strength, but rather a series of optimal values above and below which strength declines. In the specific case of the ratios studied in the present paper, these values were: SiO2/Al2O3= 4.0 and Na2O/Al2O3= 1.0 (molar ratios.Las cenizas volantes activadas alcalinamente constituyen la base de una nueva generación de cementos con muy interesantes propiedades mecánicas, adherentes y durables (a veces incluso mejores que las de los cementos Portland tradicionales. Adicionalmente el desarrollo de estos cementos podría contribuir a mitigar las emisiones de CO2 a la atmósfera, ya que el material base de los mismos puede estar formado por subproductos industriales. En la presente investigación se realizó un estudio para determinar la influencia de la composición de los materiales iniciales (ratios SiO2/Al2O3 y Na2O/Al2O3 en las propiedades mecánicas y en la naturaleza y composición de los productos de reacción. Los resultados obtenidos indican que no existe una relación lineal de dichas ratios con las resistencias mecánicas, sino que existen unos valores óptimos, por encima y debajo de los cuales las resistencias mecánicas disminuyen. En el caso concreto de las ratios estudiadas en el presente trabajo estos valores serian: SiO2/Al2O3= 4,0 y Na2O/Al2O3= 1,0 (relaciones molares

  6. Risperidone-induced weight gain and reduced locomotor activity in juvenile female rats: The role of histaminergic and NPY pathways.

    Lian, Jiamei; De Santis, Michael; He, Meng; Deng, Chao

    2015-01-01

    Second generation antipsychotic drugs (SGAs) such as risperidone are increasingly prescribed (mostly for off-label use) to children and adolescents for treating various mental disorders. SGAs cause serious weight gain/obesity and other metabolic side-effects. This study aimed to establish an animal model of risperidone-induced weight gain in female juvenile rats, and to investigate the effects of risperidone on the expression of hypothalamic histaminergic H1 receptors (H1R) and neuropeptides, and their association with weight gain. Female Sprague Dawley rats were treated orally with risperidone (0.3mg/kg, 3 times/day) or vehicle (control) starting from postnatal day (PD) 23 (±1 day) for 3 weeks (a period corresponding to the childhood-adolescent period in humans). In the female juvenile rats, risperidone treatment increased food intake and body weight gain, which started to appear after 12 days' treatment. Risperidone also significantly decreased the locomotor activity of the female rats. Consistently, risperidone significantly elevated mRNA expression of hypothalamic H1R, neuropeptide Y (NPY), and agouti-related peptide (AgRP) compared to controls, and H1R and NPY levels were correlated with risperidone enhanced weight gain and food intake in the female juvenile rats. However, risperidone did not affect hypothalamic proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNA expression. Therefore, these results suggested that risperidone elevated appetite and body weight gain in juveniles via regulation of the hypothalamic H1R, NPY and AgRP pathways, as well as by reducing activity. PMID:25782398

  7. Neutron activation analysis of reference materials

    The importance is pointed out of neutron activation analysis in the preparation of reference materials, and studies are reported conducted recently by UJV. Instrumental neutron activation analysis has been used in testing homogeneity and in determining 28 elements in newly prepared reference standards of coal fly ash designated ENO, EOP and ECH. For accuracy testing, the same method was used in the analysis of NBS SRM-1633a Trace Elements in Coal Fly Ash and IAEA CRM Soil-5 and RM Soil-7. Radiochemical neutron activation analysis was used in determining Cd, Cu, Mn, Mo, and Zn in biological materials NBS SRM-1577 Bovine Liver, Bowen's Kale and in IAEA RM Milk Powder A-11 and Animal Muscle H-4. In all instances very good precision and accuracy of neutron activation analysis results were shown. (author)

  8. Low activated materials as plasma facing component

    Low activated materials such as ferritic steel, vanadium alloy and SiC/SiC composite have to be developed for realization of a fusion demonstration reactor. Major issues concerning these low activated materials have been evaluation of neutron irradiation effects and feasibility as blanket materials. Since these are also in-vessel materials, issues of plasma material interactions have to be investigated. Ferritic steel, F82H, is well oxidized in the atmosphere. Thus, pre-baking is necessary before installation. The required baking temperature is higher than 900 K. Vanadium alloy, V-4Cr-4Ti, absorbs hydrogen well and hydrogen embrittlement takes place when the hydrogen concentration exceeds a critical level. In order to avoid hydrogen absorption, the formation of an oxide layer on the alloy was found to be very useful. In JFT-2M, the vanadium alloy was exposed to a deuterium discharge environment for 9 months. On the alloy surface, an oxide deposition layer with a thickness of 200 nm was formed. The deuterium concentration observed was very low, only 1.3 wppm. SiC/SiC composite may be employed as divertor plates in addition to its use as blanket material. Fuel hydrogen retention was very similar to that of graphite but the chemical erosion was negligibly small. (author)

  9. Activities of publicity and seminar in Nuclear Material Control Center

    In recent years, the issue of nuclear non-proliferation has gained more attention than ever after the discovery of nuclear weapon development in Iraq, possible nuclear development in North Korea, the questionable maintenance of nuclear weapons in ex-Soviet, and the actual testing of nuclear bombs in India and Pakistan. As a result, the scheme to strengthen the effectiveness and improve the efficiency of the IAEA safeguards system has been established and is about to come into effect. In Japan, on the other hand, the need to enhance the international confidence on peaceful use of nuclear materials for the establishment of nuclear fuel recycle, e.g. MOX fuel, is urgent. It is also necessary to strengthen and confirm the 'State's System of Accounting For and Control of Nuclear Material' for the same purpose. In order to promote further understanding of the importance and necessity of the nuclear material control, Nuclear Material Control Center has held seminars for the local governments in nuclear related sites. For the general public, various pamphlets and web site have been used to propagate its information. In this report, we will present the outline of our public relations and seminar presentation activities in Nuclear Material Control Center. (author)

  10. Activities of publicity and seminar in Nuclear Material Control Center

    Tsutsumi, Masayori; Iwamatsu, Yoko; Naruo, Kazuteru [Nuclear Material Control Center, Tokyo (JP)] [and others

    2001-07-01

    In recent years, the issue of nuclear non-proliferation has gained more attention than ever after the discovery of nuclear weapon development in Iraq, possible nuclear development in North Korea, the questionable maintenance of nuclear weapons in ex-Soviet, and the actual testing of nuclear bombs in India and Pakistan. As a result, the scheme to strengthen the effectiveness and improve the efficiency of the IAEA safeguards system has been established and is about to come into effect. In Japan, on the other hand, the need to enhance the international confidence on peaceful use of nuclear materials for the establishment of nuclear fuel recycle, e.g. MOX fuel, is urgent. It is also necessary to strengthen and confirm the 'State's System of Accounting For and Control of Nuclear Material' for the same purpose. In order to promote further understanding of the importance and necessity of the nuclear material control, Nuclear Material Control Center has held seminars for the local governments in nuclear related sites. For the general public, various pamphlets and web site have been used to propagate its information. In this report, we will present the outline of our public relations and seminar presentation activities in Nuclear Material Control Center. (author)

  11. Heuristic use of mental map information gained from behavioural inspection of routines in daily activities (HUMMINGBIRDS)

    HANNES, Els; JANSSENS, Davy; Wets, Geert

    2007-01-01

    This research project aims at identifying the critical spatial factors in an individual’s mental map which influence daily activity travel behaviour in order to improve the agent-based modelling of activity travel behaviour by means of a computational process model. A qualitative travel survey and in depth interviews are used to identify the spatial factors that appear in the destination and travel mode choice heuristics of experts when discussing their activity space. Recorded interviews are...

  12. Experiences Gained from Radiation Protection Activities in Egypt and Saudi Arabia

    My official duties and responsibilities in Egypt and Saudi Arabia as radiation safety officer, qualified expert and head of dosimetry section covered the specified branch of radiation protection. This branch may be called Applied Radiation Protection. This branch covers all aspects of personal and environmental dosimetry and monitoring, as well as, radiation measurements and shielding. This branch has been implemented at many universities, medical centers and nuclear organizations in both Egypt and Saudi Arabia. As a result, three subjects have been highlighted 1] Radiation Protection of workers, public and environment, 2) Safety of radioactive materials to ensure its control and 3) Security from unauthorized removal. A program has been proposed as (RPSS program). In this program, radiation workers are responsible for the security of all radioactive materials in their possession including radioactive waste in storage cabinets and sources left unattended on laboratory benches. Occupational radiation exposures have been kept below dose limits at all radiation areas by training increased experience and ability of radiation workers. All radioactive materials that are not in locked storage are under constant surveillance and immediate control at all times by Radiation Safety Officer (RSO) or medical physicist departments. Precautionary measures serve as a guide to safe operations in handling radioactive materials and radiation sources. Certain restricted areas, which contain large quantities of radioactive materials, required additional security measures. Implementation of this program led to secure of radioactive materials from unauthorized removal or access, public health, maintaining exposures as low as reasonably achievable and promoting a protective safe working environment with no contamination. It is recommended to include this program in Radiation Protection Manual and Emergency preparedness procedures at academic institutions, nuclear research facilities and

  13. Determinants of Developmental Gain in Daily Activities in Young Children with Cerebral Palsy.

    Kruijsen-Terpstra, Anne J A; Ketelaar, Marjolijn; Verschuren, Olaf; Smits, Dirk-Wouter; Jongmans, Marian J; Gorter, Jan Willem

    2014-09-18

    ABSTRACT The aim of this study was to examine which child and family characteristics at the child's age of 2 years are determinants of development of self-care and mobility activities over a period of 2 years in young children with cerebral palsy (CP). Longitudinal data of 92 children, representing all levels of the Gross Motor Function Classification System (GMFCS), were analyzed. Children's self-care and mobility activities were assessed with the Functional Skills Scale of the Pediatric Evaluation of Disability Inventory. Development of self-care and mobility activities was related to several child determinants but no family determinants. GMFCS, type of CP, intellectual capacity, and epilepsy were related to the development of self-care and mobility activities, while manual ability and spasticity were related to development of mobility activities. Multivariate analysis indicated that GMFCS and intellectual capacity were the strongest determinants of development of self-care activities, and GMFCS was the strongest determinant of development of mobility activities. The change in self-care and mobility activities was less favorable in severely affected children with severe disability. Knowledge of GMFCS level and intellectual capacity is important in anticipating change over time and goal setting in young children with CP. PMID:25232647

  14. Neutron activation analysis of geological materials

    Neutron activation analysis (NAA) is an extremely sensitive, selective and precise method, which yields a wealth of elemental information from even a small-sized sample. With the recent advances in nuclear reactors and high-efficiency and high-resolution semiconductor detectors, NAA has become a powerful method for multielemental analysis. The concentration of major, minor, and trace elements vary from 1 to 4 orders of magnitude in geological materials. By varying neutron fluxes, irradiation times, decay and counting intervals and using both instrumental and radiochemical techniques in NAA, it is possible to accurately determine about 50 elements in a sample aliquant. The practical aspects of the NAA method as applied to geological materials are discussed in detail, and are demonstrated by the analysis of the United States Geological Survey (USGS) and the International Atomic Energy Agency (IAEA) standard reference geological materials. General aspects of the elemental interpretations in terrestrial samples are also discussed. (author)

  15. Nondestructive gamma activation analysis of mineral materials

    The basic problems are described related to the use of gamma activation analysis. The applicability was studied of instrumental gamma activation analysis (IGAA) in geology. A number of minerals, rocks, marine sediments and reference materials were studied. For irradiation a betatron and a microtron were used. The results show that IGAA allows the simultaneous determination of a number of trace elements at concentrations of tenths of ppm. The results are given of comparisons made of the analytical possibilities of microtron IGAA and reactor INAA in geology. Tables show the results of the application of IGAA, the main products and parameters of photoexcitation reactions and graphically represented are the gamma spectra of measured materials. (J.B.)

  16. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

    Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon

    2016-09-01

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc. PMID:26852013

  17. Reactor neutron activation analysis of industrial materials

    The specific application of neutron activation analysis (n.a.a.) for industrial materials is demonstrated by the determination of impurities in BeO, Al, Si, Cu, Ge, GaP, GaAs, steel, and irradiated uranium. A group scheme gives an orientation about the possibilities of n.a.a. The use of different standards, methods for the measurement of low radioactivities and errors caused by recoil reaction and radiation stimulated diffusion are discussed. (author)

  18. Determinants of developmental gain in daily activities in young children with cerebral palsy

    Kruijsen-Terpstra, Anne JA; Ketelaar, Marjolijn; Verschuren, Olaf; Smits, Dirk-Wouter; Jongmans, Marian J; Gorter, Jan Willem

    2015-01-01

    The aim of this study was to examine which child and family characteristics at the child's age of 2 years are determinants of development of self-care and mobility activities over a period of 2 years in young children with cerebral palsy (CP). Longitudinal data of 92 children, representing all level

  19. Determinants of Developmental Gain in Daily Activities in Young Children with Cerebral Palsy

    Kruijsen-Terpstra, Anne J A; Ketelaar, Marjolijn; Verschuren, Olaf; Smits, Dirk-Wouter; Jongmans, Marian J; Gorter, Jan Willem

    2015-01-01

    The aim of this study was to examine which child and family characteristics at the child's age of 2 years are determinants of development of self-care and mobility activities over a period of 2 years in young children with cerebral palsy (CP). Longitudinal data of 92 children, representing all level

  20. Multiwavelength Dispersion-Tuned Actively Mode-Locked Erbium-Doped Fibre Ring Laser with Gain Competition Suppression

    PAN Shi-Long; LOU Cai-Yun

    2006-01-01

    Multiwavelength dispersion-tuned actively mode-locked erbium-doped fibre ring laser is demonstrated by incorporating a section of highly nonlinear fibre (HNLF) in the laser cavity. The HNLF and the time gate element (modulator) in the fibre laser successfully suppress the gain competition in the erbium-doped fibre, and thus enable multiwavelength operation. Simultaneous generation of 10 GHz pulses up to eight different wavelengths is achieved. Wavelength, spacing and modes number tuning are investigated by changing fibre cavity length, dispersion, and erbium-doped fibre amplifier power, respectively.

  1. New Crystalline Materials for Nonlinear Frequency Conversion, Electro-Optic Modulation, and Mid-Infrared Gain Media

    Adams, J

    2002-08-09

    New crystalline materials were investigated for applications in frequency conversion of near-infrared wavelengths and as gain media for tunable mid-infrared solid-state lasers. GaCa{sub 4}O(BO{sub 3}){sub 3} (GdCOB), YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), LaCa{sub 4}O(BO{sub 3}){sub 3} (LaCOB), and Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} were characterized for frequency conversion of 1 {micro}m lasers. For type I doubling at 1064 nm, LaCOB, GdCOB, and YCOB were found to have effective coupling coefficients (d{sub eff}) of 0.52 {+-} 0.05, 0.78 {+-} 0.06, and 1.12 {+-} 0.07 pm/V, respectively. LaCOB was measured to have angular and thermal sensitivities of 1224 {+-} 184 (cm-rad){sup -1} and < 0.10 (cm-{sup o}C){sup -1}, respectively. The effective coupling coefficient for type II noncritically phasematched (NCPM) doubling at 1064 nm in Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} was measured to be 0.37 {+-} 0.04 pm/V. We predict LaCOB to have a type I NCPM fundamental wavelength of 1042 {+-} 1.5 nm. Due to its low angular and thermal sensitivities for doubling near 1047 nm, LaCOB has potential for frequency doubling of high-average power Nd:LiYF{sub 4} and Yb:Sr{sub 5}(P0{sub 4}){sub 3}F lasers. LaCOB, GdCOB, and YCOB were also investigated for optical parametric oscillator applications and we determined that they may have potential in a Ti:sapphire pumped oscillator. The effective linear electro-optic coefficients (r{sub eff}) were measured along dielectric directions in YCOB and a maximum r{sub eff} of 10.8 pm/V was found. For a crystal with a 5:1 aspect ratio, the corresponding half-wave voltage at 1064 nm would be 19.6 kV. Therefore a Pockels cell composed of two YCOB crystals with 5:1 aspect ratios would have a required half-wave voltage <10 kV. Moderate coupling coefficients (3 x KH{sub 2}PO{sub 4}), low thermal sensitivities, ease of growth to large sizes, non-hygroscopicity, and favorable polishing and coating characteristics make La

  2. Regulation of Nucleotide Metabolism by Mutant p53 Contributes to its Gain-of-Function Activities

    Kollareddy, Madhusudhan; Dimitrova, Elizabeth; Vallabhaneni, Krishna C.; Chan, Adriano; Le, Thuc; Chauhan, Krishna M.; Zunamys I. Carrero; Ramakrishnan, Gopalakrishnan; Watabe, Kounosuke; Haupt, Ygal; Haupt, Sue; Pochampally, Radhika; Boss, Gerard R.; Romero, Damian G.; Radu, Caius G.

    2015-01-01

    SUMMARY Mutant p53 (mtp53) is an oncogene that drives cancer cell proliferation. Here we report that mtp53 associates with the promoters of numerous nucleotide metabolism genes (NMG). Mtp53 knockdown reduces NMG expression and substantially depletes nucleotide pools, which attenuates GTP dependent protein (GTPase) activity and cell invasion. Addition of exogenous guanosine or GTP restores the invasiveness of mtp53 knockdown cells, suggesting that mtp53 promotes invasion by increasing GTP. Add...

  3. The Development of a Digital Marketing Strategy to Gain Active Mobile Game Users in Japan

    Rönkkö, Makiyo

    2014-01-01

    Japan is the world’s biggest spender on mobile apps. This makes it an attractive market, but entering the Japan market is very difficult for Finnish mobile software developers. The goal of this thesis is to identify possible constraints that limit mobile game companies in the Japanese market, and analyze the means of increasing brand awareness and acquiring active game players. The focus is on finding the key elements required for building a digital marketing strategy targeted towards Japanes...

  4. Reduced sympathetic nervous activity. A potential mechanism predisposing to body weight gain.

    Spraul, M.; Ravussin, E.; Fontvieille, A M; Rising, R; Larson, D. E.; Anderson, E. A.

    1993-01-01

    The sympathetic nervous system is recognized to play a role in the etiology of animal and possibly human obesity through its impact on energy expenditure and/or food intake. We, therefore, measured fasting muscle sympathetic nerve activity (MSNA) in the peroneal nerve and its relationship with energy expenditure and body composition in 25 relatively lean Pima Indian males (means +/- SD; 26 +/- 6 yr, 82 +/- 19 kg, 28 +/- 10% body fat) and 19 Caucasian males (29 +/- 5 yr, 81 +/- 13 kg, 24 +/- 9...

  5. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents

    Monique Simons; Johannes Brug; Mai J M Chinapaw; Michiel de Boer; Jaap Seidell; Emely de Vet

    2015-01-01

    OBJECTIVE: The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of healthy weight. METHODS: We assigned 270 gaming (i.e. ≥2 hours/week non-active video game time) adolescents randomly to an intervention group (n = 140) (receiving active video games and encouragement to ...

  6. Information materials and communication activities of ARAO

    ARAO is a public agency responsible for implementing all aspects of radioactive waste management. Its most important mission is certainly the siting of a repository for all low and intermediate level waste in Slovenia. ARAO carries out different communication and information activities to improve the public acceptability of such a facility among the general public, local community, public opinion makers and decision makers. These activities include running of the Visitors' Centre, publishing various informative publications on radioactivity and radiation, nuclear technology and radioactive waste management. ARAO also supports study circles and local information media, has its own web site and communicates with journalists working for Slovenian magazines, newspapers, TV and radio stations. Communication and information activities are assigned about 10 % of the yearly budget of the agency. Most of the finance is spent on running the Visitors' Centre and on publishing information materials for school children, youngsters and teachers. Information on radioactivity and on the work of ARAO provided by the agency is intended to increase the public interest in nuclear issues and to prepare the foundation for an informed and responsible decision on the radioactive waste repository in Slovenia. ARAO has also implemented direct communication, such as workshops, study circles and representations for the local community leadership, and these activities will be intensified in the near future.(author)

  7. Thermoregulation of water foraging honeybees--balancing of endothermic activity with radiative heat gain and functional requirements.

    Kovac, Helmut; Stabentheiner, Anton; Schmaranzer, Sigurd

    2010-12-01

    Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (T(a)) and solar radiation they are likely to be exposed in their natural environment in Middle Europe. The mean thorax temperature (T(th)) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of T(a) (3-30 °C). At warmer conditions (T(a)=30-39 °C) T(th) increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of T(body)-T(a) of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a T(a) of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase T(th) by about 1-3 °C to improve force production of flight muscles. At higher T(a) they exhibited cooling efforts to get rid of excess heat. A high T(th) also allowed regulation of the head temperature high enough to guarantee proper function of the bees' suction pump even at low T(a). This shortened the foraging stays and this way reduced energetic costs. With decreasing T(a) bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance. PMID:20705071

  8. Replacing non-active video gaming by active video gaming to prevent excessive weight gain in adolescents

    Simons, M.; Brug, J.; Chinapaw, M.J.M.; Boer, M. de; Seidell, J.; Vet, E. de

    2015-01-01

    Objective: The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of health

  9. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents

    Simons, Monique; Brug, Johannes; Chinapaw, Mai J M; de Boer, Michiel; Seidell, Jaap; de Vet, Emely

    2015-01-01

    OBJECTIVE: The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of health

  10. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents

    Simons, M.; Brug, J.; Chinapaw, M.J.M.; Boer, de M.; Seidell, J.; Vet, de E.

    2015-01-01

    Objective - The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of healt

  11. Spectral Analysis of Quantum-Dash Lasers: Effect of Inhomogeneous Broadening of the Active-Gain Region

    Khan, Mohammed Zahed Mustafa

    2012-05-01

    The effect of the active region inhomogeneity on the spectral characteristics of InAs/InP quantum-dash (Qdash) lasers is examined theoretically by solving the coupled set of carrier-photon rate equations. The inhomogeneity due to dash size or composition fluctuation is included in the model by considering dispersive energy states and characterized by a Gaussian envelope. In addition, the technique incorporates multilongitudinal photon modes and homogeneous broadening of the optical gain. The results predict a red shift in the central lasing wavelength of Qdash lasers on increasing the inhomogeneous broadening either explicitly or implicitly, which supports various experimental observations. The threshold current density and the lasing bandwidth are also found to increase. © 2012 IEEE.

  12. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents.

    Monique Simons

    Full Text Available The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of healthy weight.We assigned 270 gaming (i.e. ≥ 2 hours/week non-active video game time adolescents randomly to an intervention group (n = 140 (receiving active video games and encouragement to play or a waiting-list control group (n = 130. BMI-SDS (SDS = adjusted for mean standard deviation score, waist circumference-SDS, hip circumference and sum of skinfolds were measured at baseline, at four and ten months follow-up (primary outcomes. Sedentary screen time, physical activity, consumption of sugar-sweetened beverages and snacks, and process measures (not at baseline were assessed with self-reports at baseline, one, four and ten months follow-up. Multi-level-intention to treat-regression analyses were conducted.The control group decreased significantly more than the intervention group on BMI-SDS (β = 0.074, 95%CI: 0.008;0.14, and sum of skinfolds (β = 3.22, 95%CI: 0.27;6.17 (overall effects. The intervention group had a significantly higher decrease in self-reported non-active video game time (β = -1.76, 95%CI: -3.20;-0.32 and total sedentary screen time (Exp (β = 0.81, 95%CI: 0.74;0.88 than the control group (overall effects. The process evaluation showed that 14% of the adolescents played the Move video games every week ≥ 1 hour/week during the whole intervention period.The active video game intervention did not result in lower values on anthropometrics in a group of 'excessive' non-active video gamers (mean ~ 14 hours/week who primarily were of healthy weight compared to a control group throughout a ten-month-period. Even some effects in the unexpected direction were found, with the control group showing lower BMI-SDS and skin folds than the intervention

  13. Weight gain and inflammation regulate aromatase expression in male adipose tissue, as evidenced by reporter gene activity.

    Polari, L; Yatkin, E; Martínez Chacón, M G; Ahotupa, M; Smeds, A; Strauss, L; Zhang, F; Poutanen, M; Saarinen, N; Mäkelä, S I

    2015-09-01

    Obesity and white adipose tissue (WAT) inflammation are associated with enhanced aromatization in women, but little is known about the regulation of aromatase (CYP19A1) gene expression in male WAT. We investigated the impact of weight gain and WAT inflammation on the regulation of CYP19A1 in males, by utilizing the hARO-Luc aromatase reporter mouse model containing a >100-kb 5'-region of the human CYP19A1 gene. We show that hARO-Luc reporter activity is enhanced in WAT of mice with increased adiposity and inflammation. Dexamethasone and TNFα, as well as forskolin and phorbol 12-myristate 13-acetate, upregulate hARO-Luc activity, suggesting the involvement of promoters I.4 and I.3/II. Furthermore, we show that diet enriched with antioxidative plant polyphenols attenuates WAT inflammation and hARO-Luc activity in obese males. In conclusion, our data suggest that obesity-associated WAT inflammation leads to increased peripheral CYP19A1 expression in males, and that polyphenol-enriched diet may have the potential to attenuate excessive aromatization in WAT of obese men. PMID:26054748

  14. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  15. Experience gained with nuclear material accounting and control in storage facility for plutonium dioxide of SChK radiochemical plant

    The task for the computerized accounting of containers at the storage with barcoding equipment for inventory taking has been performed at achieve the pre-commissioning phase. This gave the following upgrade: decrease of the time spent by the personnel in storage compartments with plutonium dioxide during inventory taking, this diminishing the dose for personnel; changeover from traditional record book to computerized accounting of nuclear materials at the storage, which will make it possible to include the local workstation of the storage into computer network for nuclear material (NM) accounting at the Radiochemical plant; test and improve technique for the use of barcoding equipment for further introduction at plants and storage facilities of the SChK. Works are underway for further improvement of the NM accounting at the storage for plutonium dioxide

  16. Light activated nitric oxide releasing materials

    Muizzi Casanas, Dayana Andreina

    The ability to control the location and dosage of biologically active molecules inside the human body can be critical to maximizing effective treatment of cardiovascular diseases like angina. The current standard of treatment relies on the metabolism of organonitrate drugs into nitric oxide (NO), which are not specific, and also show problems with densitization with long-term use. There is a need then to create a treatment method that gives targeted release of NO. Metal-nitrosyl (M-NO) complexes can be used for delivery of NO since the release of NO can be controlled with light. However, the NO-releasing drug must be activated with red light to ensure maximum penetration of light through tissue. However, the release of NO from M-NO complexes with red-light activation is a significant challenge since the energy required to break the metal-NO bond is usually larger than the energy provided by red light. The goal of this project was to create red- sensitive, NO-releasing materials based on Ru-salen-nitrosyl compounds. Our approach was to first modify Ru salen complexes to sensitize the photochemistry for release of NO after red light irradiation. Next, we pursued polymerization of the Ru-salen complexes. We report the synthesis and quantitative photochemical characterization of a series of ruthenium salen nitrosyl complexes. These complexes were modified by incorporating electron donating groups in the salen ligand structure at key locations to increase electron density on the Ru. Complexes with either an --OH or --OCH3 substituent showed an improvement in the quantum yield of release of NO upon blue light irradiation compared to the unmodified salen. These --OH and --OCH3 complexes were also sensitized for NO release after red light activation, however the red-sensitive complexes were unstable and showed ligand substitution on the order of minutes. The substituted complexes remained sensitive for NO release, but only after blue light irradiation. The Ru

  17. Relative contributions of energy expenditure on physical activity, body composition and weight gain to the evolution of impaired glucose tolerance to Frank diabetes

    In modem technological societies the requirement for physical work is diminished and access to food is unrestricted. Under these circumstances a large proportion of the population will gain weight and develop obesity and diabetes. At the individual level, genetic and behavioural factors must combine to lead to an imbalance between energy intake and its expenditure. Weight gain, especially rapid weight gain in a population appears to increase the risk of diabetes sharply. Thus understanding the route to weight gain and obesity, and the modulatory effects of physical activity on development of glucose intolerance is critical to credible intervention strategies to reverse or prevent diabetes in populations especially those in transitional societies. In this proposal we will examine the quantitative importance of non-resting energy expenditure (EE) in populations with rising levels of obesity and high prevalence of diabetes. (author)

  18. Does Structured Quizzing with Process Specific Feedback Lead to Learning Gains in an Active Learning Geoscience Classroom?

    Palsole, S.; Serpa, L. F.

    2013-12-01

    There is a great realization that efficient teaching in the geosciences has the potential to have far reaching effects in outreach to decision and policy makers (Herbert, 2006; Manduca & Mogk, 2006). This research in turn informs educators that the geosciences by the virtue of their highly integrative nature play an important role in serving as an entry point into STEM disciplines and helping developing a new cadre of geoscientists, scientists and a general population with an understanding of science. Keeping these goals in mind we set to design introductory geoscience courses for non-majors and majors that move away from the traditional lecture models which don't necessarily contribute well to knowledge building and retention ((Handelsman et al., 2007; Hake, 1997) to a blended active learning classroom where basic concepts and didactic information is acquired online via webquests, lecturettes and virtual field trips and the face to face portions of the class are focused on problem solving exercises. The traditional way to ensure that students are prepared for the in-class activity is to have the students take a quiz online to demonstrate basic competency. In the process of redesign, we decided to leverage the technology to build quizzes that are highly structured and map to a process (formation of divergent boundaries for example) or sets of earth processes that we needed the students to know before in-class activities. The quizzes can be taken multiple times and provide process specific feedback, thus serving as a heuristic to the students to ensure they have acquired the necessary competency. The heuristic quizzes were developed and deployed over a year with the student data driving the redesign process to ensure synchronicity. Preliminary data analysis indicates a positive correlation between higher student scores on in-class application exercises and time spent on the process quizzes. An assessment of learning gains also indicate a higher degree of self

  19. Conducting polymers as potential active materials in electrochemical supercapacitors

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. [Los Alamos National Lab., NM (United States); Ferraris, J.P. [Texas Univ., Richardson, TX (United States). Dept. of Chemistry

    1992-12-01

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  20. Conducting polymers as potential active materials in electrochemical supercapacitors

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. (Los Alamos National Lab., NM (United States)); Ferraris, J.P. (Texas Univ., Richardson, TX (United States). Dept. of Chemistry)

    1992-01-01

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  1. Analyses of Oxyanion Materials by Prompt Gamma Activation Analysis

    Firestone, Richard B; Perry, D.L.; English, G.A.; Firestone, R.B.; Leung, K.-N.; Garabedian, G.; Molnar, G.L.; Revay, Zs.

    2008-03-24

    Prompt gamma activation analysis (PGAA) has been used to analyze metal ion oxyanion materials that have multiple applications, including medicine, materials, catalysts, and electronics. The significance for the need for accurate, highly sensitive analyses for the materials is discussed in the context of quality control of end products containing the parent element in each material. Applications of the analytical data for input to models and theoretical calculations related to the electronic and other properties of the materials are discussed.

  2. Optimizing the position of insulating materials in flat roofs exposed to sunshine to gain minimum heat into buildings under periodic heat transfer conditions.

    Shaik, Saboor; Talanki, Ashok Babu Puttranga Setty

    2016-05-01

    Building roofs are responsible for the huge heat gain in buildings. In the present work, an analysis of the influence of insulation location inside a flat roof exposed directly to the sun's radiation was performed to reduce heat gain in buildings. The unsteady thermal response parameters of the building roof such as admittance, transmittance, decrement factor, and time lags have been investigated by solving a one-dimensional diffusion equation under convective periodic boundary conditions. Theoretical results of four types of walls were compared with the experimental results available in literature. The results reveal that the roof with insulation placed at the outer side and at the center plane of the roof is the most energy efficient from the lower decrement factor point of view and the roof with insulation placed at the center plane and the inner side of the roof is the best from the highest time lag point of view among the seven studied configurations. The composite roof with expanded polystyrene insulation located at the outer side and at the center plane of the roof is found to be the best roof from the lowest decrement factor (0.130) point of view, and the composite roof with resin-bonded mineral wool insulation located at the center plane and at the inner side of the roof is found to be energy efficient from the highest time lag point (9.33 h) of view among the seven configurations with five different insulation materials studied. The optimum fabric energy storage thicknesses of reinforced cement concrete, expanded polystyrene, foam glass, rock wool, rice husk, resin-bonded mineral wool, and cement plaster were computed. From the results, it is concluded that rock wool has the least optimum fabric energy storage thickness (0.114 m) among the seven studied building roof materials. PMID:26341337

  3. Enclosure for handling high activity materials

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  4. Enclosure for handling high activity materials

    Jimeno de Osso, F.

    1977-07-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  5. Antibacterial nanofiber materials activated by light

    Jesenská, S.; Plištil, L.; Kubát, Pavel; Lang, Kamil; Brožová, Libuše; Popelka, Štěpán; Szatmáry, Lórant; Mosinger, Jiří

    99A, č. 4 (2011), s. 676-683. ISSN 1549-3296 R&D Projects: GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : antibacterial nanofiber materials * photoactive * singlet oxygen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.625, year: 2011

  6. Effect of computer mouse gain and visual demand on mouse clicking performance and muscle activation in a young and elderly group of experienced computer users

    Sandfeld, Jesper; Jensen, Bente R.

    2005-01-01

    The present study evaluated the specific effects of motor demand and visual demands on the ability to control motor output in terms of performance and muscle activation. Young and elderly subjects performed multidirectional pointing tasks with the computer mouse. Three levels of mouse gain and th...... only to a minor degree influenced by mouse gain (and target sizes) indicating that stability of the forearm/hand is of significance during computer mouse control. The study has implications for ergonomists, pointing device manufacturers and software developers....

  7. Natural activities of primordial radionuclides in building materials

    Seven kinds of building materials were analysed for 232Th, 238U and 40K using a direct gamma counting method. The radium equivalent activities for different building materials have been estimated. The calculated radium equivalent activities (Raeq) for all building materials are slightly higher (74.5 to 191 Bq/kg) than the world average value for soil (89 Bq/kg) and they are well below the maximum permissible limit 370 Bq/kg. (author)

  8. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Juho Yliniemi; Paivo Kinnunen; Pasi Karinkanta; Mirja Illikainen

    2016-01-01

    Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW) and glass wool (GW) were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated w...

  9. The Surface Groups and Active Site of Fibrous Mineral Materials

    DONG Fa-qin; WAN Pu; FENG Qi-ming; SONG Gong-bao; PENG Tong-jiang; LI Ping; LI Guo-wu

    2004-01-01

    The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid and alikali etching,strong mechanical and polarity molecular interaction.The results show the active sites concentrate on the ends in stick mineral materials and on the defect or hole edge in pipe mineral materials.The inside active site of mineral materials plays a main role in small molecular substance.The shape of minerals influence their distribution and density of active site.The strong mechanical impulsion and weak chemical force change the active site feature of minerals,the powder process enables minerals exposed more surface group and more combined types.The surface processing with the small polarity molecular or the brand of middle molecular may produce ionation and new coordinate bond,and change the active properties and level of original mineral materials.

  10. From Atmospheric Awareness to Active Materiality

    Wieczorek, Izabela

    2013-01-01

    ‘Atmosphere’ has recently claimed more attention in architectural discourse and practice leading to the revaluation of embodiment as a basis for the interaction with an environment. In this context, architectural space is understood as a space of engagement that ‘appears’ to us as a result...... with an attempt to trace associations and draw out design protocols, focusing on ways in which atmosphere can be consciously generated or manipulated. The aim is thus to examine ‘the atmospheric’ as a spatial quality, an experiential property as well as a sensory background and materiality as one...

  11. Gain of function AMP-activated protein kinase γ3 mutation (AMPKγ3R200Q) in pig muscle increases glycogen storage regardless of AMPK activation.

    Scheffler, Tracy L; Park, Sungkwon; Roach, Peter J; Gerrard, David E

    2016-06-01

    Chronic activation of AMP-activated protein kinase (AMPK) increases glycogen content in skeletal muscle. Previously, we demonstrated that a mutation in the ryanodine receptor (RyR1(R615C)) blunts AMPK phosphorylation in longissimus muscle of pigs with a gain of function mutation in the AMPKγ3 subunit (AMPKγ3(R200Q)); this may decrease the glycogen storage capacity of AMPKγ3(R200Q) + RyR1(R615C) muscle. Therefore, our aim in this study was to utilize our pig model to understand how AMPKγ3(R200Q) and AMPK activation contribute to glycogen storage and metabolism in muscle. We selected and bred pigs in order to generate offspring with naturally occurring AMPKγ3(R200Q), RyR1(R615C), and AMPKγ3(R200Q) + RyR1(R615C) mutations, and also retained wild-type littermates (control). We assessed glycogen content and parameters of glycogen metabolism in longissimus muscle. Regardless of RyR1(R615C), AMPKγ3(R200Q) increased the glycogen content by approximately 70%. Activity of glycogen synthase (GS) without the allosteric activator glucose 6-phosphate (G6P) was decreased in AMPKγ3(R200Q) relative to all other genotypes, whereas both AMPKγ3(R200Q) and AMPKγ3(R200Q) + RyR1(R615C) muscle exhibited increased GS activity with G6P. Increased activity of GS with G6P was not associated with increased abundance of GS or hexokinase 2. However, AMPKγ3(R200Q) enhanced UDP-glucose pyrophosphorylase 2 (UGP2) expression approximately threefold. Although UGP2 is not generally considered a rate-limiting enzyme for glycogen synthesis, our model suggests that UGP2 plays an important role in increasing flux to glycogen synthase. Moreover, we have shown that the capacity for glycogen storage is more closely related to the AMPKγ3(R200Q) mutation than activity. PMID:27302990

  12. Evaluation of new active packaging materials and analytical approaches

    Lantano, Claudia

    2014-01-01

    This PhD thesis deals with the study of different aspects of food contact materials, including active packaging and food safety controls. In the first part of the present work the development and optimization of a simple and reproducible procedure for the realization of new antimicrobial active packaging materials is presented. The sol-gel technique was employed in order to obtain hybrid organic-inorganic films aimed at incorporating lysozyme and natamycin as active agents. The sols were ...

  13. Overview of European Community (Activity 3) work on materials properties of fast reactor structural materials

    The Fast Reactor Coordinating Committee set up in 1974 the Working Group Codes and Standards, and organized its work into four main activities: Manufacturing standards, Structural analysis, Materials and Classification of components. The main purpose of materials activity is to compare and contrast existing national specifications and associated properties relevant to structural materials in fast reactors. Funds are available on a yearly basis for tasks to be carried out through Study Contracts. At present about four Study Contract Reports are prepared each year

  14. Physical Activity and Dietary Behaviors Associated With Weight Gain and Impaired Glucose Tolerance Among Pregnant Latinas123

    Chasan-Taber, Lisa

    2012-01-01

    Pregnancy has been proposed as a critical period for the development of subsequent maternal overweight and/or obesity. Excessive gestational weight gain is, in turn, associated with maternal complications such as cesarean delivery, hypertension, preeclampsia, impaired glucose tolerance, and gestational diabetes mellitus. Although there is substantial evidence that targeting at-risk groups for type 2 diabetes prevention is effective if lifestyle changes are made, relatively little attention ha...

  15. An novel analog programmable power supply for active gain control of the Multi-Pixel Photon Counter (MPPC)

    Li, Zhengwei; Xu, Yupeng; Yan, Bo; Li, Yanguo; Lu, Xuefeng; Li, Xufang; Zhang, Shuo; Chang, Zhi; Li, Jicheng; Zhang, Yifei; Zhao, Jianling

    2016-01-01

    Silicon Photo-Multipliers (SiPM) are regarded as novel photo-detector to replace conventional Photo-Multiplier Tubes (PMTs). However, the breakdown voltage dependence on the ambient temperature results in a gain variation of $\\sim$3$\\% /^{\\circ} \\mathrm C$. This can severely limit the application of this device in experiments with wide range of operating temperature, especially in space telescope. An experimental setup in dark condition was established to investigate the temperature and bias voltage dependence of gain for the Multi-Pixel Photon Counter (MPPC), one type of the SiPM developed by Hamamatsu. The gain and breakdown voltage dependence on operating temperature of an MPPC can be approximated by a linear function, which is similar to the behavior of a zener diode. The measured temperature coefficient of the breakdown voltage is $(59.4 \\pm 0.4$ mV)$/^{\\circ} \\mathrm C$. According to this fact, a programmable power supply based on two zener diodes and an operational amplifier was designed with a positiv...

  16. Active infrared materials for beam steering.

    Brener, Igal; Reno, John Louis; Passmore, Brandon Scott; Gin, Aaron V.; Shaner, Eric Arthur; Miao, Xiaoyu; Barrick, Todd A.

    2010-10-01

    The mid-infrared (mid-IR, 3 {micro}m -12 {micro}m) is a highly desirable spectral range for imaging and environmental sensing. We propose to develop a new class of mid-IR devices, based on plasmonic and metamaterial concepts, that are dynamically controlled by tunable semiconductor plasma resonances. It is well known that any material resonance (phonons, excitons, electron plasma) impacts dielectric properties; our primary challenge is to implement the tuning of a semiconductor plasma resonance with a voltage bias. We have demonstrated passive tuning of both plasmonic and metamaterial structures in the mid-IR using semiconductors plasmas. In the mid-IR, semiconductor carrier densities on the order of 5E17cm{sup -3} to 2E18cm{sup -3} are desirable for tuning effects. Gate control of carrier densities at the high end of this range is at or near the limit of what has been demonstrated in literature for transistor style devices. Combined with the fact that we are exploiting the optical properties of the device layers, rather than electrical, we are entering into interesting territory that has not been significantly explored to date.

  17. Active infrared materials for beam steering

    The mid-infrared (mid-IR, 3 (micro)m -12 (micro)m) is a highly desirable spectral range for imaging and environmental sensing. We propose to develop a new class of mid-IR devices, based on plasmonic and metamaterial concepts, that are dynamically controlled by tunable semiconductor plasma resonances. It is well known that any material resonance (phonons, excitons, electron plasma) impacts dielectric properties; our primary challenge is to implement the tuning of a semiconductor plasma resonance with a voltage bias. We have demonstrated passive tuning of both plasmonic and metamaterial structures in the mid-IR using semiconductors plasmas. In the mid-IR, semiconductor carrier densities on the order of 5E17cm-3 to 2E18cm-3 are desirable for tuning effects. Gate control of carrier densities at the high end of this range is at or near the limit of what has been demonstrated in literature for transistor style devices. Combined with the fact that we are exploiting the optical properties of the device layers, rather than electrical, we are entering into interesting territory that has not been significantly explored to date.

  18. Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks

    We report spectrally resolved gain measurements and simulations for quantum cascade lasers (QCLs) composed of multiple heterogeneous stacks designed for broadband emission in the mid-infrared. The measurement method is first demonstrated on a reference single active region QCL based on a double-phonon resonance design emitting at 7.8 μm. It is then extended to a three-stack active region based on bound-to-continuum designs with a broadband emission range from 7.5 to 10.5 μm. A tight agreement is found with simulations based on a density matrix model. The latter implements exhaustive microscopic scattering and dephasing sources with virtually no fitting parameters. The quantitative agreement is furthermore assessed by measuring gain coefficients obtained by studying the threshold current dependence with the cavity length. These results are particularly relevant to understand fundamental gain mechanisms in complex semiconductor heterostructure QCLs and to move towards efficient gain engineering. Finally, the method is extended to the measurement of the modal reflectivity of an anti-reflection coating deposited on the front facet of the broadband QCL

  19. Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks

    Bidaux, Y.; Terazzi, R.; Bismuto, A.; Gresch, T.; Blaser, S.; Muller, A.; Faist, J.

    2015-09-01

    We report spectrally resolved gain measurements and simulations for quantum cascade lasers (QCLs) composed of multiple heterogeneous stacks designed for broadband emission in the mid-infrared. The measurement method is first demonstrated on a reference single active region QCL based on a double-phonon resonance design emitting at 7.8 μm. It is then extended to a three-stack active region based on bound-to-continuum designs with a broadband emission range from 7.5 to 10.5 μm. A tight agreement is found with simulations based on a density matrix model. The latter implements exhaustive microscopic scattering and dephasing sources with virtually no fitting parameters. The quantitative agreement is furthermore assessed by measuring gain coefficients obtained by studying the threshold current dependence with the cavity length. These results are particularly relevant to understand fundamental gain mechanisms in complex semiconductor heterostructure QCLs and to move towards efficient gain engineering. Finally, the method is extended to the measurement of the modal reflectivity of an anti-reflection coating deposited on the front facet of the broadband QCL.

  20. Neutron-activation analysis of plant materials

    The possibilities offered by non-destructive neutron activation analysis (NAA) for simultaneously determining a large number of micro- and macro-components in plant samples of Bulgarian origin have been studied. Three groups of elements are determined: short half-life isotopes: Al, Mg, Ca, Na, Mn, Cl, Cu; medium half-life isotopes: Br, Na, K; and long half-life isotopes: Fe, Cr, Co, Sc, Pb, Zn. The samples are kept for 1 minute in a fluxes of 6x1012 n.cm2.sec-1 (first group), and of 3x1011 n.cm2.sec-1 for 18 hours (second and third groups). Use is made of a Ge/Li detector and 4000-channel analyser. To test the accuracy of the method, the results of NAA for some standard specimens have been compared with the indicators of other conventional methods tested in 18 laboratories in various countries. The data from NAA for the content of K, Mo, Ca, Mn, Fe, Zn and Cu demonstrate a high degree of coincidence with those from the other methods. Chemical composition of 23 samples of experimental and field crops is determined

  1. Raw materials for low-activation concrete neutron shields

    Concrete surrounding a nuclear accumulates radioisotopes induced by neutron reactions during operation, and this concrete still remains to an enormous degree as radioactive waste after decommissioning. The disposal of such activated concrete is very costly and requires strict supervision. Hence, there has been a strong desire to develop a concrete that retains little residual radioactivity, that is, ''low-activation'' concrete. In the present study, we have identified several raw materials for such concrete - low-activation limestone, quartzite, colemanite, alumina-ceramics, while Portland cement and high-alumina cement - by performing a screening test for neutron irradiation. The results show that low-activation concrete compounded from such low-activation raw materials should serve for neutron shielding. Another noteworthy finding is that limestone occurring near schalstein deposits, and especially when sandwiched between two beds of schalstein, is an excellent low-activation raw material. (author)

  2. The Effect of Length of Exposure to Computer-based Vocabulary Activities on Young Iranian EFL Learners’ Vocabulary Gain

    Karim Sadeghi; Masoumeh Dousti

    2014-01-01

    In recent years, research in the area of CALL and its role on teaching foreign languages has gained a strong foothold. This study was anattempt to explore the effectiveness of CALL technology in comparison to traditional book-based approach in teaching vocabulary to young Iranian EFL learners. As this study addressed young learners in an EFL context, it was supposed that time factor would play a crucial role in this regard. Hence, attending to the possible role of length of exposure to CALL t...

  3. High-Performance 1.55-µm Superluminescent Diode Based on Broad Gain InAs/InGaAlAs/InP Quantum Dash Active Region

    Khan, Mohammed Zahed Mustafa

    2014-08-01

    We report on the high-performance characteristics from superluminescent diodes (SLDs) based on four-stack InAs/InGaAlAs chirped-barrier thickness quantum dash (Qdash) in a well structure. The active region exhibits a measured broad gain spectrum of 140 nm, with a peak modal gain of ~41 cm-1. The noncoated two-section gainabsorber broad-area and ridge-waveguide device configuration exhibits an output power of > 20 mW and > 12 mW, respectively. The corresponding -3-dB bandwidths span ~82 nm and ~72 nm, with a small spectral ripple of <; 0.2 dB, related largely to the contribution from dispersive height dash ensembles of the highly inhomogeneous active region. These C-L communication band devices will find applications in various cross-disciplinary fields of optical metrology, optical coherent tomography, etc.

  4. PILLARS OF THE AUDIT ACTIVITY: MATERIALITY AND AUDIT RISK

    ANA MARIA JOLDOŞ; IONELA CORNELIA STANCIU; GABRIELA GREJDAN

    2010-01-01

    The purpose of this article is to present the issues of materiality and audit risk within the activity of financial audit. The concepts of materiality and audit risk are described from a theoretical perspective, providing approaches found within the national and international literature and within the specific legislation. A case study on the calculation of materiality and audit risk for an entity is presented in the last part of the article. Through the theoretical approach and the case stud...

  5. Soft Active Materials for Actuation, Sensing, and Electronics

    Kramer, Rebecca Krone

    2012-01-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components ...

  6. Setting and Strength Characteristics of Alkali-activated Carbonatite Cementitious Materials with Ground Slag Replacement

    2006-01-01

    The effect of the ground granulated blast-furnace slag (GGBFS) addition, the modulus n (mole ratio of SiO2 to Na2 O ) and the concentration of sodium silicate solution on the compressive strength of the ma terial, i e alkali-activated carbonatite cementitious material (AACCMfor short ) was investigated.In addition, it is found that barium chloride has a satisfactory retarding effect on the setting of AACCM in which more than 20% ( by mass ) groud carbonatite was replaced by GGBFS.As a result, a cementitious material, inwhich ground carbona tite rock served as dominative starting material, with 3-day and 28-da y compressive strength greater than 30 MPa and 60 MPa and with continuous strength gain beyond 90 days was obtained.

  7. Optically Active Hybrid Materials Constructed from Helically Substituted Polyacetylenes.

    Zhang, Huanyu; Zhao, Biao; Deng, Jianping

    2016-04-01

    Functional materials derived from synthetic helical polymers are attracting increasing interest. Helically substituted polyacetylenes (HSPAs) are especially interesting as typical artificial helical polymers. In recent years, we designed and prepared a series of functional materials based on HSPAs and inorganic materials. The target is to establish some novel hybrid materials that combine the superior properties of both. The examined inorganic materials include silica, graphene, and magnetic Fe3 O4 nanoparticles. Such new functional materials hold great promise and are expected to find practical applications, for instance, as chiral absorbents, chiral sensors, chiral selectors for inducing enantioselective crystallization, chiral catalysts towards asymmetric catalysis, and chiral carriers for enantioselective release. The Personal Account summarizes our major achievements in preparing optically active hybrid materials. We hope it will speed up progress in chiral-related research areas. PMID:26991679

  8. Active video games as a tool to prevent excessive weight gain in adolescents: rationale, design and methods of a randomized controlled trial

    2014-01-01

    Background Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games –i.e. active games- may be a promising alternative to traditional non-active games to promote physical activity and reduce sedentary behaviors in youth. The aim of this manuscript is to describe the design of a study evaluating the effects of a family oriented active game intervention, incorporating several motivational elements, on anthropometrics and health behaviors in adolescents. Methods/Design The study is a randomized controlled trial (RCT), with non-active gaming adolescents aged 12 – 16 years old randomly allocated to a ten month intervention (receiving active games, as well as an encouragement to play) or a waiting-list control group (receiving active games after the intervention period). Primary outcomes are adolescents’ measured BMI-SDS (SDS = adjusted for mean standard deviation score), waist circumference-SDS, hip circumference and sum of skinfolds. Secondary outcomes are adolescents’ self-reported time spent playing active and non-active games, other sedentary activities and consumption of sugar-sweetened beverages. In addition, a process evaluation is conducted, assessing the sustainability of the active games, enjoyment, perceived competence, perceived barriers for active game play, game context, injuries from active game play, activity replacement and intention to continue playing the active games. Discussion This is the first adequately powered RCT including normal weight adolescents, evaluating a reasonably long period of provision of and exposure to active games. Next, strong elements are the incorporating motivational elements for active game play and a comprehensive process evaluation. This trial will provide evidence regarding the potential contribution of active games in prevention of excessive weight gain in

  9. Fusion blanket materials development and recent R and D activities

    Development of structural materials plays an important role in the feasibility of fusion power plant. The candidate structural materials for future fusion reactors are Reduced Activation Ferritic Martensitic (RAFM) steel, nano structured ODS Steel, vanadium alloys and SiC/SiCf composite etc. RAFM steel is presently considered as the structural material for Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) because of its high void swelling resistance and improved thermal properties compared to austenitic steel. Development of RAFM steel in India is being carried out in full swing in collaboration with various research laboratories and steel industries. This paper presents an overview of the Indian activities on fusion blanket materials and describes in brief the efforts made to develop IN-RAFM steel as structural material for the LLCB TBM. In future, due to enhanced properties of vanadium base alloy and nano structured materials like ODS RAFMS, RAFM steel may be replaced by these materials for its application in DEMO relevant fusion reactor. Future R and D activities will be specifically towards the development of these structural materials for fusion reactor

  10. Rare-earth-activated wide bandgap materials for scintillators

    Open f-shell rare-earth (RE) ions in wide bandgap host materials are usually characterized by closely spaced electronic levels due to various electron configurations and charge states. These levels provide convenient luminescent transitions that can be excited by efficient recombination of charge carriers generated in the host material by ionizing radiation. Therefore, it is the area of ionizing radiation detectors, where search for new, fast and efficient scintillator materials for high-energy physics and nuclear medicine, has yielded much of the recent advances in the understanding of radioluminescence and scintillation mechanism in some solid state, UV and VUV luminescent, RE-activated materials. In this paper we shall present selected results of basic experiments such as radioluminescence, VUV spectroscopy, time profiles and thermoluminescence, on barium fluoride (activated with Ce, Pr, Nd, Tb) and two aluminum perovskites, YAlO3 and LuAlO3, activated with Ce. We shall demonstrate that these results point to consecutive carrier capture and recombination at RE ions as the basic mechanism of radioluminescence and scintillation in these materials, despite the strong self-trapping and poor charge transport properties. Consequently, various electron and/or hole traps that intercept and retain for some time the recombining charge carriers play an active role influencing both the scintillation light yield and time profiles of scintillation pulses in these and many other wide bandgap RE-activated luminescent materials

  11. Materials Science Division activity report 1991-1993

    This progress report gives an account of the various research and developmental activities carried out at the Materials Science Division of the Indira Gandhi Centre for Atomic Research, Kalpakkam during 1991-93. It also gives a summary of the results of the research activities, describes the experimental facilities and also list the publications

  12. Verification of completeness and correctness of inventory. Experience gained in the verification of the completeness of the inventory of South Africa's nuclear installations and material

    The activities carried out to verify the correctness of the inventory of nuclear material, included in the initial report, extended over several months and involved long established measures such as the examination of contemporary operating and accounting records, and destructive and non-destructive analysis of the nature and quantity of individual items and batches. The assessment of the completeness of the inventory of South Africa's nuclear installations and material was carried out as a separate exercise by a team of senior members of the IAEA Department of Safeguards specifically appointed for the purpose by the Director General. South Africa's extensive nuclear fuel cycle made the task of the assessment of completeness complex, requiring considerable inspection resources and extensive co-operation from the State authorities regarding the provision of access to defunct facilities and historical operating records. The task was further complicated when, on 24 March 1993, State President de Klerk announced, in broadcast speech to the Parliament, that South Africa had developed and subsequently dismantled a ''limited nuclear deterrent capability'' involving the design and manufacture of seven gun-assembled (HEU) devices. An augmented IAEA team, composed of the personnel assigned to carry out the assessment of completeness, and, among other specialists, nuclear weapons experts were assigned to assess the status of the former weapons programme and to ascertain that all of the nuclear material involved in the programme had been recovered and had been placed under safeguards. 2 refs, 2 tabs

  13. Biodegradation and biocompatibility of mechanically active magnetoelastic materials

    Magnetoelastic (ME) materials have many advantages for use as sensors and actuators due to their wireless, passive nature. This paper describes the application of ME materials as biodegradable implants with controllable degradation rates. Experiments have been conducted to show that degradation rates of ME materials are dependent on the material compositions. In addition, it was shown that the degradation rates of the ME materials can be controlled remotely by applying a magnetic field, which causes the ME materials to generate low-magnitude vibrations that hasten their degradation rates. Another concern of ME materials for medical applications is biocompatibility. Indirect cytotoxicity analyses were performed on two types of ME materials: Metglas™ 2826 MB (FeNiMoB) and iron–gallium alloy. While results indicate Metglas is not biocompatible, the degradation products of iron–gallium materials have shown no adverse effects on cell viability. Overall, these results present the possibility of using ME materials as biodegradable, magnetically-controlled active implants. (paper)

  14. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  15. Soft Active Materials for Actuation, Sensing, and Electronics

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  16. Long-lived activation products in reactor materials

    The purpose of this program was to assess the problems posed to reactor decommissioning by long-lived activation products in reactor construction materials. Samples of stainless steel, vessel steel, concrete, and concrete ingredients were analyzed for up to 52 elements in order to develop a data base of activatable major, minor, and trace elements. Large compositional variations were noted for some elements. Cobalt and niobium concentrations in stainless steel, for example, were found to vary by more than an order of magnitude. A thorough evaluation was made of all possible nuclear reactions that could lead to long lived activation products. It was concluded that all major activation products have been satisfactorily accounted for in decommissioning planning studies completed to date. A detailed series of calculations was carried out using average values of the measured compositions of the appropriate materials to predict the levels of activation products expected in reactor internals, vessel walls, and bioshield materials for PWR and BWR geometries. A comparison is made between calculated activation levels and regulatory guidelines for shallow land disposal according to 10 CFR 61. This analysis shows that PWR and BWR shroud material exceeds the Class C limits and is, therefore, generally unsuitable for near-surface disposal. The PWR core barrel material approaches the Class C limits. Most of the remaining massive components qualify as either Class A or B waste with the bioshield clearly Class A, even at the highest point of activation. Selected samples of activated steel and concrete were subjected to a limited radiochemical analysis program as a verification of the computer model. Reasonably good agreement with the calculations was obtained where comparison was possible. In particular, the presence of 94Nb in activated stainless steel at or somewhat above expected levels was confirmed

  17. Instrumental Neuron Activation Analysis for certification of stainless steel materials

    The use of Instrumental Neuron Activation Analysis (INAA) may contribute to improve the certification of the materials, especially in the case of minor and trace elements. In presented paper the INAA method of analysis of stainless steel materials has been elaborated. The obtained results were compared with those of common analytical techniques. The presented results show the usefulness of the INAA method for the certification of CRMs for the iron and steel industry

  18. Monothioanthraquinone as an organic active material for greener lithium batteries

    Iordache, Adriana; Maurel, Vincent; Mouesca, Jean-Marie; Pécaut, Jacques; Dubois, Lionel; Gutel, Thibaut

    2014-12-01

    In order to reduce the environmental impact of human activities especially transportation and portable electronics, a more sustainable way is required to produce and store electrical energy. Actually lithium battery is one of the most promising solutions for energy storage. Unfortunately this technology is based on the use of transition metal-based active materials for electrodes which are rare, expensive, extracted by mining, can be toxic and hard to recycle. Organic materials are an interesting alternative to replace inorganic counterparts due to their high electrochemical performances and the possibility to produce them from renewable resources. A quinone derivative is synthetized and investigated as novel active material for rechargeable lithium ion batteries which shows higher performances.

  19. PILLARS OF THE AUDIT ACTIVITY: MATERIALITY AND AUDIT RISK

    ANA MARIA JOLDOŞ

    2010-01-01

    Full Text Available The purpose of this article is to present the issues of materiality andaudit risk within the activity of financial audit. The concepts of materiality and audit risk aredescribed from a theoretical perspective, providing approaches found within the national andinternational literature and within the specific legislation. A case study on the calculation ofmateriality and audit risk for an entity is presented in the last part of the article. Through thetheoretical approach and the case study, it was concluded that materiality has an importantrole in determining the type of report to be issued, that is why it can be considered helpful forthose involved in the audit process.

  20. Nondestructive neutron activation analysis of mineral materials. III

    A description is presented of sampling, calibration standards, the method of activation and measurement, activation product identification, the respective nuclear reactions, interfering admixtures, and pre-activation operations. The analysis is described of sulphides, halogenides, oxides, sulphates, carbonates, phosphates, silicates, aluminosilicates, composite minerals containing lanthanides, rocks, tektites, meteors, and plant materials. The method allows determining mainly F, Mg, Al, Ti, V, Nb, Rh, and I which cannot be determined by long-term activation (LTA). It is more sensitive than LTA in determining Ca, Cu, In, and Dy. The analysis takes less time, irradiation and measurement are less costly. The main mineral components are quickly found. (M.K.)

  1. Designing Gain- and Loss-Framed Messages to Increase Physical Activity among University Students Living in two Different Cultures

    Pelin Ozgur Polat

    2015-10-01

    The primary aim of this project is to gather information through using different methods and investigate the determinants of message persuasiveness in university students from the British and Turkish cultures in order to design effective physical activity messages leading intention, attitude and behaviour change. The results of the finalized studies showed the importance of using both qualitative and quantitative methods in message design process.

  2. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.

  3. Mechanical Activation of Construction Binder Materials by Various Mills

    Fediuk, R. S.

    2016-04-01

    The paper deals with the mechanical grinding down to the nano powder of construction materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of portland cement. Mechanical processes during grinding mineral materials cause, along with the increase in their surface energy, increase the Gibbs energy of powders and, respectively, their chemical activity, which also contributes to the high adhesion strength when contacting them with binders. Thus, the set of measures for mechanical activation makes better use of the weight of components filled with cement systems and adjust their properties. At relatively low cost is possible to provide a spectacular and, importantly, easily repeatable results in a production environment.

  4. Active coke: Carbonaceous materials as catalysts for alkane dehydrogenation

    McGregor, J.; Huang, Z; Parrott, E.; Zeitler, J.; Nguyen, K.; Rawson, J.; Carley, A; Hansen, T.; Tessonnier, J.; Su, D.; Teschner, D; Vass, E.; Knop-Gericke, A.; Schlögl, R.; Gladden, L.

    2010-01-01

    The catalytic dehydrogenation (DH) and oxidative dehydrogenation (ODH) of light alkanes are of significant industrial importance. In this work both carbonaceous materials deposited on VOx/Al2O3 catalysts during reaction and unsupported carbon nanofibres (CNFs) are shown to be active for the dehydrogenation of butane in the absence of gas-phase oxygen. Their activity in these reactions is shown to be dependent upon their structure, with different reaction temperatures yielding structurally dif...

  5. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Arslanagic, Samel; Liu, Yan; Malureanu, Radu; Ziolkowski, Richard W.

    2011-01-01

    well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold......, and copper) are employed and compared for the nano-shell layers....

  6. Natural activity of 40K in some Chilean building materials

    Knowledge of the natural level of radioactivity is important to assess the influence of gamma radiation exposure in building materials. The main sources of external radiation exposure in buildings are members of the uranium and thorium decay chains and 40K occurring naturally in building materials, which emit gamma rays.The specific activity of building materials has been reported for many countries. However, for Chilean building materials no such data are available. A study of 40K speciactivity on building materials was carried out with gamma spectrometric system based on high-purity germanium detector. The 40K activity was measured directly by its own gamma-ray line at 1460.8 keV. Samples of gypsum, cement, brick and cement and gravel mixture, widely used in Chile, were used on this work. The samples were corrected by moisture content and the geometrical conditions has been normalized to avoid volumetric corrections. All preliminary results are below the world average of 500 Bq/kg for building materials reported by UNSCEAR

  7. Smart Materials and Active Noise and Vibration Control in Vehicles

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, van M.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are necessa

  8. Technical Support Activities of a Nuclear Materials Management Programme

    The development of a nuclear materials management programme in the United States of America has recognized from its inception the value and need of strong technical support. The success of that programme has depended to a large extent on the development of a closely allied technical support effort. This effort has drawn on the technical competency of top governmental, industrial and academic consultants, in addition to that within the USAEC. Under the planning, development and administration of the USAEC's Division of Nuclear Materials Management, a broad spectrum of technical activities has evolved. These include: (a) The establishment of an Advisory Committee for Standard Reference Materials and Methods of Measurement, (b) Preparation and USAEC co-ordination with the National Bureau of Standards in the development of a series of uranium and plutonium chemical and isotopic standards, (c) Research and development programmes designed to provide improved measurement techniques, (d) Compilation and publication of a book of selected measurement methods for uranium and plutonium. Each of these technical support activities is discussed in some detail, including the conditions that gave rise to their need and development, and their application to the USAEC's nuclear materials management programme. Included is a discussion of the USAEC's Advisory Committee for Standard Reference Materials and Methods of Measurement, which was established to provide guidance to the nuclear materials management programme and recommend research and development activities. Resulting from these recommendations was a USAEC co-operative effort with the National Bureau of Standards for the development of chemical and isotopic standard reference materials of uranium and plutonium; particular attention is devoted to the results of that joint effort. The need for research and development efforts in areas of mutual interest is examined, and the cooperation of other nations of the world is elicited in

  9. Activation of a Ca-bentonite as buffer material

    Document available in extended abstract form only. Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post

  10. Activation of a Ca-bentonite as buffer material

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid

  11. Application of reference materials for quality assessment in neutron activation analysis

    It is generally accepted that an analytical procedure can be regarded as an information production system yielding information on the composition of the analyzed sample. Thus, information theory can be useful and the quantities characterizing the information properties of an analytical method may be applied not only as evaluation criteria but also as objective functions in the optimization. The usability of information theory is demonstrated on the example of neutron activation analysis. Both precision and bias of NAA results are taken into account together with the possible use of reference materials for quality assessment. The influence of the above-mentioned parameters on information properties such as information gain and profitability of NAA results is discussed in detail. It has been proved that information theory is especially useful in choosing suitable reference materials for the quality assessment of routine analytical procedures not only with respect to matrix and analyte concentration in the sample but also to concentrations and uncertainties of certified values in the CRM used. In the extreme trace analysis, CRMs with relatively large uncertainties and very low certified concentrations can still yield rather high information gain of results. (author) 14 refs.; 9 figs

  12. Activation of accelerator construction materials by heavy ions

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  13. Composition adjustment of low activation materials for shallow land burial

    The three representative low activation materials for a fusion reactor are ferritic steel, V-alloy and SiC/SiC composite. The adjustment of the material composition of these materials to increase the fraction of shallow land burial in Japan was considered. In Japan, the fission waste having any single radionuclide exceeding the limiting concentration value, causing 100 μSv year-1 individual dose, determined by the Nuclear Safety Commission will not qualify as a low level waste (LLW), which could be disposed by shallow land burial. The limiting concentration values of radionuclides produced in fusion reactor were derived based on the methodology of the Nuclear Safety Commission. Radionuclide concentrations of the radwastes generated from the fusion power reactors using the three low activation materials based on the composition of existing materials were evaluated. Radwastes are classified into LLW and medium level waste (MLW), which is defined as the waste which does not qualify for LLW because one or more of the radionuclides exceeds the derived limiting concentration value. The weight fraction of MLW among the sum of LLW and MLW is found to be 10% for ferritic steel, 54% for V-alloy and 43% for SiC/SiC. The possibility of decreasing the MLW fraction by the material composition adjustment is considered. It is found that if Nb impurity content in V-alloy and N impurity content in SiC/SiC composite could be reduced, the MLW fraction can be significantly decreased. On the other hand, the content of the alloy component material (W), needs to be reduced to further decrease the MLW fraction in case of the ferritic steel F82H

  14. Transient assembly of active materials fueled by a chemical reaction

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  15. Evaluation and development of advanced nuclear materials: IAEA activities

    Economical, environmental and non-proliferation issues associated with sustainable development of nuclear power bring about a need for optimization of fuel cycles and implementation of advanced nuclear systems. While a number of physical and design concepts are available for innovative reactors, the absence of reliable materials able to sustain new challenging irradiation conditions represents the real bottle-neck for practical implementation of these promising ideas. Materials performance and integrity are key issues for the safety and competitiveness of future nuclear installations being developed for sustainable nuclear energy production incorporating fuel recycling and waste transmutation systems. These systems will feature high thermal operational efficiency, improved utilization of resources (both fissile and fertile materials) and reduced production of nuclear waste. They will require development, qualification and deployment of new and advanced fuel and structural materials with improved mechanical and chemical properties combined with high radiation and corrosion resistance. The extensive, diverse, and expensive efforts toward the development of these materials can be more effectively organized within international collaborative programmes with wide participation of research, design and engineering communities. IAEA carries out a number of international projects supporting interested Member States with the use of available IAEA program implementation tools (Coordinated Research Projects, Technical Meetings, Expert Reviews, etc). The presentation summarizes the activities targeting material developments for advanced nuclear systems, with particular emphasis on fast reactors, which are the focal topics of IAEA Coordinated Research Projects 'Accelerator Simulation and Theoretical Modelling of Radiation Effects' (on-going), 'Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors', 'Examination of advanced fast reactor fuel and core

  16. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 1018 cm−3, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga0.47In0.53As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers

  17. Specific activity measurement of radioelement in construction material

    Human beings have always been exposed to radiation from both natural and technological sources. The main components of the construction materials produced from earth and thus they contain radioelement naturally exist. The most important source of external radiation exposure in buildings is caused by the gamma rays emitted from members of the uranium and thorium decay chains and 40K occurring naturally in building materials. The aim of this work is to determine the specific activity concentrations (Bq/kg) of 226Ra, 232Th and 40K in some building materials used for construction purposes in the houses. The measurement has been performed using gamma ray spectrometer with the NaI(Tl) detector.

  18. 1996 Activities report on energies and raw materials

    The 1996 activity survey of the French General Directory for Energy and Raw Materials, which main objectives are to preserve the competitiveness of French economy, enhance environmental protection, secure the long term supply safety and maintain the public service basis for energy supply, is presented. The main themes of the survey are: the nuclear safety in Eastern Europe, the electric power inland market, the evolution of the oil market in 1996, the situation of refining in France, restructuring the BRGM (Mining and Geological Research Bureau), followed by brief facts concerning the sustainable energy development, nuclear energy, electric power, electricity and gas common issues, gas, coal, petroleum products, raw materials and underground materials. A series of global diagrams concludes the survey

  19. Detection of explosives and active material by nuclear technologies

    The advantages and characteristics of detection of hidden explosives and radioactive materials by nuclear technologies are explained in this paper. The active neutron interrogation technology and their application to detection of explosives are introduced in detail. The non-neutron interrogation technology by gamma method, the commercialized industry neutron sources and gamma ray detectors and their advantages and disadvantages respectively in security application are summarized respectively. The security problem of two typical hidden explosives are discussed with 11 characteristics of a perfect detecting system of explosives. The current research progress in association with particle imaging and fast-pulse neutron system and the passive method to detection of radioactive materials are briefly described. Finally, the paper points out that for detection of hidden explosives and radioactive materials it is necessary to use different technologies for different scenes and targets or use combined technologies. (authors)

  20. Application of smart materials to helicopter rotor active control

    Straub, Friedrich K.; Ealey, Mark A.; Schetky, Lawrence M.

    1997-05-01

    Helicopter design is limited by the compromise inherent in meeting hover and forward flight requirements, and the unsteady environment encountered in forward flight. Active control of helicopter rotors using smart material, in-blade actuation can overcome these barriers and provide substantial reductions in noise and vibrations and improved performance. The present study covers the blade/actuator integration and actuator development for a full scale system to demonstrate active control of noise and vibrations as well as inflight blade tracking on the MD Explorer helicopter. A piezoelectric multilayer stack actuator, driving a trailing edge flap, is used for active control. A shape memory alloy torsion actuator, driving a trailing edge trim tab, is used for inflight tracking. Overall, this DARPA sponsored program entails the design, development, and fabrication of the full scale active control rotor system. If successful, an entry in the NASA Ames 40 X 80 foot wind tunnel and flight tests are planned for a follow on program.

  1. Materials for Active Engagement in Nuclear and Particle Physics Courses

    Loats, Jeff; Schwarz, Cindy; Krane, Ken

    2013-04-01

    Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

  2. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  3. Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

    Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

    2006-05-01

    Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

  4. Visual Contrast Sensitivity Improvement by Right Frontal High-Beta Activity Is Mediated by Contrast Gain Mechanisms and Influenced by Fronto-Parietal White Matter Microstructure.

    Quentin, Romain; Elkin Frankston, Seth; Vernet, Marine; Toba, Monica N; Bartolomeo, Paolo; Chanes, Lorena; Valero-Cabré, Antoni

    2016-06-01

    Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance. PMID:25899709

  5. Materials and Textile Architecture Analyses for Mechanical Counter-Pressure Space Suits using Active Materials

    Buechley, Leah; Newman, Dava; Holschuh, Bradley T.; Obropta, Edward W.

    2012-01-01

    Mechanical counter-pressure (MCP) space suits have the potential to improve the mobility of astronauts as they conduct planetary exploration activities. MCP suits differ from traditional gas-pressurized space suits by applying surface pressure to the wearer using tight-fitting materials rather than pressurized gas, and represent a fundamental change in space suit design. However, the underlying technologies required to provide uniform compression in a MCP garment at sufficient pressures for s...

  6. Non-linear modeling of active biohybrid materials

    Paetsch, C.

    2013-11-01

    Recent advances in engineered muscle tissue attached to a synthetic substrate motivate the development of appropriate constitutive and numerical models. Applications of active materials can be expanded by using robust, non-mammalian muscle cells, such as those of Manduca sexta. In this study, we propose a model to assist in the analysis of biohybrid constructs by generalizing a recently proposed constitutive law for Manduca muscle tissue. The continuum model accounts (i) for the stimulation of muscle fibers by introducing multiple stress-free reference configurations for the active and passive states and (ii) for the hysteretic response by specifying a pseudo-elastic energy function. A simple example representing uniaxial loading-unloading is used to validate and verify the characteristics of the model. Then, based on experimental data of muscular thin films, a more complex case shows the qualitative potential of Manduca muscle tissue in active biohybrid constructs. © 2013 Elsevier Ltd. All rights reserved.

  7. Design of Responsive and Active (Soft) Materials Using Liquid Crystals.

    Bukusoglu, Emre; Bedolla Pantoja, Marco; Mushenheim, Peter C; Wang, Xiaoguang; Abbott, Nicholas L

    2016-06-01

    Liquid crystals (LCs) are widely known for their use in liquid crystal displays (LCDs). Indeed, LCDs represent one of the most successful technologies developed to date using a responsive soft material: An electric field is used to induce a change in ordering of the LC and thus a change in optical appearance. Over the past decade, however, research has revealed the fundamental underpinnings of potentially far broader and more pervasive uses of LCs for the design of responsive soft material systems. These systems involve a delicate interplay of the effects of surface-induced ordering, elastic strain of LCs, and formation of topological defects and are characterized by a chemical complexity and diversity of nano- and micrometer-scale geometry that goes well beyond that previously investigated. As a reflection of this evolution, the community investigating LC-based materials now relies heavily on concepts from colloid and interface science. In this context, this review describes recent advances in colloidal and interfacial phenomena involving LCs that are enabling the design of new classes of soft matter that respond to stimuli as broad as light, airborne pollutants, bacterial toxins in water, mechanical interactions with living cells, molecular chirality, and more. Ongoing efforts hint also that the collective properties of LCs (e.g., LC-dispersed colloids) will, over the coming decade, yield exciting new classes of driven or active soft material systems in which organization (and useful properties) emerges during the dissipation of energy. PMID:26979412

  8. Gain ranging amplifier

    A gain ranging amplifier system is provided for use in the acquisition of data. Voltage offset compensation is utilized to correct errors in the gain ranging amplifier system caused by thermal drift and temperature dependent voltage offsets, both of which are associated with amplifiers in the gain ranging amplifier system

  9. Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide

    Babicheva, Viktoriia E.; Kulkova, Irina V.; Malureanu, Radu;

    2012-01-01

    We investigate plasmonic modulators with a gain material to be implemented as ultra-compact and ultra-fast active nanodevices in photonic integrated circuits. We analyze metal-semiconductor-metal (MSM) waveguides with InGaAsP-based active material layers as ultra-compact plasmonic modulators. The...

  10. Gain-of-function mutations in the Toll-like Receptor pathway: TPL2-mediated ERK1/ERK2 MAPK activation, a path to tumorigenesis in lymphoid neoplasms?

    Simon eRousseau

    2016-05-01

    Full Text Available Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells and NK cells. The Toll-Like Receptor (TLR signalling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signalling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFB and Mitogen Activated Protein Kinase (MAPK pathways to regulate innate immune responses (Kawai and Akira, 2010. Gain-of-function mutations such as MYD88[L265P] activate downstream signalling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK 293 cells led to ERK1/2 MAPK phosphorylation in addition to NFB activation. Moreover, this activation is dependent on the protein kinase Tumour Promoting Locus-2 (TPL-2, activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNP A1, two proteins previously shown to contribute to tumour formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated tumorigenesis occurs via the TPL2-mediated ERK1/2 activation. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumour growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumour cells derived from hematologic malignancies such as Waldenstrom’s Macroglobulinemia, where the

  11. Gain-of-Function Mutations in the Toll-Like Receptor Pathway: TPL2-Mediated ERK1/ERK2 MAPK Activation, a Path to Tumorigenesis in Lymphoid Neoplasms?

    Rousseau, Simon; Martel, Guy

    2016-01-01

    Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells, and NK cells. The Toll-Like Receptor (TLR) signaling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signaling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFκB) and Mitogen Activated Protein Kinase (MAPK) pathways to regulate innate immune responses. Gain-of-function mutations such as MYD88[L265P] activate downstream signaling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK293 cells led to ERK1/2 MAPK phosphorylation in addition to NFκB activation. Moreover, this activation is dependent on the protein kinase Tumor Promoting Locus 2 (TPL2), activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNPA1, two proteins previously shown to contribute to tumor formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated ERK1/2 activation via TPL2 may be a novel path to tumorigenesis. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumor growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumor cells derived from hematologic malignancies such as Waldenstrom's Macroglobulinemia, where the majority of the cells carry the MYD88[L265P

  12. Electric Double-layer Capacitor Based on Activated Carbon Material

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  13. 活性包装材料%Active Packaging Materials

    金国斌

    2006-01-01

    @@ 活性包装的概念 在真空包装(VP)、控制气氛包装(CAP)、调节气氛包装(MAP)中使用新一类的包装材料,这些材料在商品储存流通中能够动态地维持一种有利于产品长期保存的包装微环境,由于这些材料往往具有生态功能,故称活性包装材料(Active Packaging Material)或生命支持材料(Support-Life Packaging Material).

  14. Multiple scattering Compton camera with neutron activation for material inspection

    We designed a multiple scattering Compton camera (MSCC) based on a lanthanum bromide (LaBr3:Ce) scintillator to detect neutron-activated prompt gamma-rays for material inspection. The system parameters such as detector thickness and inter-detector distances were optimized on the basis of figure of merit (FOM). The FOM was maximized when the inter-detector distance and detector thickness were 18 cm and 1.5 cm, respectively. Under the optimized conditions, energy spectra and spatial images were obtained to identify various substances, and the results matched well with theoretical data. The probability of multiple Compton scattering was higher than that of conventional Compton scattering at high energies (~MeV), which proved the effectiveness of MSCC to detect prompt gamma-rays. Simulations with realistic conditions showed the feasibility of using the MSCC investigate of materials in field applications

  15. Enhancing activated-peroxide formulations for porous materials :

    Krauter, Paula; Tucker, Mark D.; Tezak, Matthew S.; Boucher, Raymond

    2012-12-01

    During an urban wide-area incident involving the release of a biological warfare agent, the recovery/restoration effort will require extensive resources and will tax the current capabilities of the government and private contractors. In fact, resources may be so limited that decontamination by facility owners/occupants may become necessary and a simple decontamination process and material should be available for this use. One potential process for use by facility owners/occupants would be a liquid sporicidal decontaminant, such as pHamended bleach or activated-peroxide, and simple application devices. While pH-amended bleach is currently the recommended low-tech decontamination solution, a less corrosive and toxic decontaminant is desirable. The objective of this project is to provide an operational assessment of an alternative to chlorine bleach for low-tech decontamination applications activated hydrogen peroxide. This report provides the methods and results for activatedperoxide evaluation experiments. The results suggest that the efficacy of an activated-peroxide decontaminant is similar to pH-amended bleach on many common materials.

  16. MACRO DEFECT FREE MATERIALS; THE CHALLENGE OF MECHANOCHEMICAL ACTIVATION

    MILAN DRÁBIK

    2012-12-01

    Full Text Available Macro-defect-free (MDF materials belong, according to Odler’s categorisation, to the type of materials where polymers may be successfully combined with cements and water to produce also the parameters of technological novelty and interests. A challenge, which has not been followed or indicated by now, is the option to intensify mixing of dry cement and polymer. The mechanochemical pre-reactions of dry MDF raw mixes consisting of Portland cement and polyphosphate, together with the model of atomic-level interpretations of the formed functional interfaces are proposed, experimentally tested and discussed in the present paper. The results ultimately show the activation of studied system due to the mechanochemical treatment, which consists in the initiation and measurable formation of Al(Fe–O–P cross-links already in the treated raw mixes. The mechanochemical activation of raw mixes in the high energy planetary mill for the duration of 5 minutes is proposed as the specific mixing and activation / pre-reaction step within the entire MDF synthesis procedure.

  17. Summary and analysis of current knowledge gained in the Czech Republic and worldwide concerning materials for safe disposal of radioactive waste and procedures of their assessment

    The following topics are treated: Inventory and nuclear criticality evaluation; investigation into the properties of the forms of waste and packaging materials; investigation into the attenuating, sealing, filling, and structural materials for deep geological repositories; radionuclide interactions in the engineered barrier setting; methodology of modelling in the engineered barrier setting; rock environment and processes in it; and mathematical modelling and overall safety assessment of a deep repository

  18. GREEN SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

    Ayeshamariam A*, Tajun Meera Begam M, Jayachandran M, Praveen Kumar G and M Bououdina

    2013-01-01

    New materials hold the key to fundamental advances in antibacterial and antifungal activities, both of which are vital in order to meet the challenge of global warning of microorganism’s advantages and limitations and the finite nature of medicinal plants. The use of additive to augment the effect of a synthetic or natural drug candidate is well known.  Here we report the use of nanoparticles of tin oxide (SnO2) to enhance the antibacterial and anti fungal potency of Alovera extract when comp...

  19. Relative contributions of energy expenditure on physical activity, body composition and weight gain to the evolution of impaired glucose tolerance to Frank diabetes

    The effect of obesity on glucose intolerance is a mixture of impact of body composition on glucose-insulin relationships as well as the modulation of this metabolism by physical activity. In this project, we seek to measure the energy expenditure on activity, the rate of weight gain and changes in body composition in a free-living population, and to relate these variables to changes in glucose tolerance and insulin sensitivity. We have enrolled a cohort of 280 adults in Idikan, a poor urban community in lbadan, Nigeria, selected by simple random sampling from a population database. In this communication, we report characteristics of the study cohort, findings on evaluation of a physical activity questionnaire and changes in body size, body composition and measures of insulin resistance over a one-year period. Mean age of the men is 49.7 (SD 12.7) years and of the women 44.7 (SD 10.7) years. Mean fasting blood glucose was 4.57 (SD 4.75) mmol/L among men and 3.54 (SD 1.02) mmol/L among women. The modified HIP physical activity (PA) questionnaire was evaluated in a subset of participants for whom scale reliability coefficients of 0.57 and 0.33 were obtained for the occupational and leisure scales of HIP respectively. Two-week test-retest intraclass correlation coefficient was 0.53. On validation against doubly-labelled water measurements, the HIP occupational score showed a positive correlation (r=0.37, p=0.01) with activity energy expenditure per kg body weight (AEE per kg) and a similar correlation of 0. 37 with physical activity level (PAL). Thus, the HIP occupational scale showed adequate consistency, good test-retest reliability and good correlations with measures of physical activity by doubly-labelled water. Over a one-year follow-up period, the participants showed increases in weight, BMI, waist circumferences, fat mass, fasting insulin and insulin-to-glucose ratio. However, HOMA-IR did not significantly change. Overweight increased from 21.3% to 23.9% while

  20. Materials design data for reduced activation martensitic steel type EUROFER

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  1. Smart materials and active noise and vibration control in vehicles

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, M. van [TNO Institute of Applied Physics, Delft (Netherlands)

    2001-07-01

    Results are presented for the reduction of sound radiated from a structure using different control methodologies. Two approaches for active structural acoustic control are mentioned to reduce sound radiated by the structure: the acoustic approach or the vibro-acoustic approach. In both cases integrated actuators in structure materials are necessary to realise feasible products. Furthermore the development of an efficient shaker for Active Isolation techniques is described. The prototype of TNO TPD can produce a force of 400 N up to 250 Hz at a good performance-volume ratio. To enhance the robustness of the active control applications, the use of the subspace identification based control methods are developed. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The performed simulations reveal excellent robustness performance under very general noise conditions or during operation of the control system. Furthermore the development of the techniques can be exploited to realise sound comfort requirements to enhance audible communications of vehicle related applications. To anticipate to these developments in the automotive industry, TNO has set up a Sound and Vibrations Research Centre with Twente University and a research program on Smart Panels with the Delft University. To investigate the potential markets and applications for sound comfort in the means of transportation, TNO-TPD and the Institute of Sound and Vibration Research in England (ISVR) have agreed on a cooperative venture to develop and realise 'active control of electroacoustics' (ACE). (orig.)

  2. Potential active materials for photo-supercapacitor: A review

    Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.

    2015-11-01

    The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.

  3. Strengthening global physical protection practices; gaining better information on national practices for protection of weapons-usable material. Keynote address/session 3

    Full text: Unlike the Non-Proliferation Treaty requirement that non-nuclear-weapon parties provide 'safeguards' information to the IAEA on their nuclear materials and their state systems for accounting and control, there is no related requirement to provide information on state systems of physical protection. A review of 1997 IAEA and Stanford physical protection conference proceedings showed both the absence of information on important practices from many states and the great variation in practices from state to state. Besides the lack of internationally required standards for domestic protection, reasons for the variations described in Stanford-Sandia National Laboratories research include: differences in states' perceptions of the threats to their materials; differences in their abilities to pay the cost of stronger physical protection; differences in their laws and regulatory practices in general; and differences in their cultural attitudes - for example, attitudes toward whether to arm personnel guarding weapon-usable material or to require clearances for personnel with access to such material. The information presented to the 1997 IAEA and Stanford conferences was supplied voluntarily. The two global documents which provide norms for physical protection do not require submission of such information. These are the 1980 Convention on Physical Protection of Nuclear Material and the 1999 IAEA INFCIRC/225/Rev.4. This means that, without bilateral cooperation, no state can find out how other states are protecting their nuclear material. Yet, as IAEA Director General El Baradei has said, '[I]t is not a matter of indifference to other States whether and to what extent [physical protection] responsibility is fulfilled. ...The need for international cooperation becomes evident in situations - where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter and defeat hostile actions against nuclear

  4. Progress of plasma surface interaction study on low activation materials

    Ferritic steel, vanadium alloy and SiC/SiC composite are candidate low activation materials for blanket components and first walls in fusion demonstration reactors. Several issues on these materials as the first wall have been investigated so far. Amount of deuterium retained in mechanically polished ferritic steel, F82H, after deuterium ion irradiation, was observed to be several times smaller than that of stainless steel, 316L SS. Physical sputtering yield of the ferritic steel due to deuterium ion was comparable to that of 316L SS. These results suggest that the property of the ferritic steel as the first wall material is superior to that of 316L SS, with respect to fuel hydrogen retention and in-vessel tritium inventory. Since first walls of blanket modules are exposed to both fuel hydrogen and helium, the helium is also trapped in the walls. Helium retention of V-4Cr-4Ti was investigated using helium ion irradiation apparatus. The amount of helium retained was comparable to those of other plasma facing materials. One of the major concerns in use of SiC/SiC composite for blanket is permeation of helium gas coolant into fusion plasma. Helium gas permeability of the SiC/SiC composite after heat cycles was measured using a vacuum device consisting two chambers. The increase in the permeability was not observed when the heating rate was suitably adjusted. Therefore, the blanket module may be made using only SiC/SiC composite if a vacuum pumping for the inside of blanket module is attached

  5. Towards a reduced activation structural materials database for fusion reactors

    Full text: The development of First Wall, Blanket and Divertor materials which are capable of withstanding many years the high neutron and heat fluxes, is a critical path to fusion power. Therefore, the timely availability of a sound materials database has become an indispensable element in international fusion road maps. In order to provide a related materials database for design, construction, licensing and safe operation of the ITER Test Blanket Modules and of a DEMO reactor, a wealth of R and D results on the European reduced activation ferritic-martensitic steel EUROFER, and on oxide dispersion strengthened (ODS) variants have become available, mainly in the temperature window 250-700 deg. C. Industrial EUROFER-batches of 3.5 and 8.0 tons have been produced with a variety of semi-finished, quality-assured product forms. Extensive chipless shaping and joining experience taking into account different welding procedures and powder technology product forms have demonstrated that EUROFER type steel complies with a wide range of established manufacturing processes. EUROFER is also resistant to high temperature aging, and the existing creep-rupture properties (∼30000 h) indicated long term stability and predictability. To increase the thermal efficiency of blankets beyond 45%, high temperature resistant SiCf/SiC channel inserts for liquid metal coolant tubes are developed. Mechanical and thermal properties of various SiCf/SiC composits have been measured after neutron radiation. Regarding radiation damage resistance of blanket structural materials, a broad based reactor irradiation programme counts several steps from 2 needs to be removed, the design is presently based on tiles made of W (∼2000 deg. C), as well as on structural materials like W-alloy (∼700-1300 deg. C) and RAF(M)-ODS steel (∼650 deg. C). Severe plastic deformation of pure W and W alloys improves ductility, but does not prevent from re-crystallisation between 850 and 1200 deg. C. For the

  6. Application of new active thermally enhanced insulation material (PCM - STOREPET

    Đorđević Đorđe

    2014-01-01

    Full Text Available Lightweight constructions represent an economical alternative to traditional buildings, one of whose main drawbacks is the very high energy load needed to keep internal comfort conditions, as they are unable to curb rapid variations of temperature. When compared to heavier weight materials buildings, it is estimated that to maintain a thermally comfortable temperature range of 18-24°C, low weight materials use between 2 and 3 times the heating and cooling energy needed by a heavy weight material construction. The research concept is based upon the fact that outdoor/indoor heat exchanges (which play a significant part of lightweight buildings cooling and heating loads can be potentially controlled by a new fiber insulation that possesses a thermally active heat storage capacity. During the day, when temperature rises, the peak loads can be largely absorbed by a PCM (Phase Change Material - enhanced fiber insulation layer, only to be slowly discharged back to the environment later (during the night time, when outside temperature drops, without affecting the interior building energy balance, as it is aided by the presence of an standard low heat transfer fiber insulation layer. This approach will provide a much slower response of the building envelope to daily temperature fluctuations, helping in maintaining inside temperature in a comfortable range and thus avoiding the need for extra energy consumptions to accomplish it. Effective levels of indoor comfort will be also guaranteed by the well known fiber materials excellence, when it comes to reduce airborne noise transmission and its superior performance upon controlling the sound resonance in construction cavities. Development of such material is in final phase in frame of European FP7 project STOREPET (FP7-SME-2011-2, Proposal 286730. Project participant from SEE is Construction Cluster „Dundjer” from Niš. Development and application of project results will be presented in this paper

  7. Activity-based Costing (ABC and Activity-based Management(ABMImplementation – Is This the Solution for Organizations to Gain Profitability?

    Ildikó Réka CARDOS

    2011-06-01

    Full Text Available Adherents of ABC/ABM systems claimed traditional management accounting systems generated misleading costs in a contemporary, tumultuous, often changing business environment and implementing ABC/ABM would remedy this. That is why activity-based costing (ABC and activity-based management (ABM represents the symbol of improved competitiveness and efficiency in every organization.The purpose of this article – after analyzing the existing literature in the field – is to emphasize that new cost systems such as ABC and ABM could be a strong couple that assures competitiveness and efficiency for each company. Another objective is to present that, besides its disadvantages, firms implement the ABC/ABM system because it permits better tracing of costs to objects, superior allocation of overheads to cost objects, financial and non-financial analysis and measures useful to managers and management accountants in the decision-making process.

  8. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Ashrafuzzaman, Md [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Lampson, M A [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Greathouse, D V [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); II, R E Koeppe [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); Andersen, O S [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States)

    2006-07-19

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)-Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly-alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  9. VECSEL gain characterization

    Mangold, Mario; Wittwer, Valentin J; Sieber, Oliver D.; Hoffmann, Martin; Krestnikov, Igor L; Livshits, Daniil A.; Golling, Matthias; Südmeyer, Thomas; Keller, Ursula

    2012-01-01

    We present the first full gain characterization of two vertical external cavity surface emitting laser (VECSEL) gain chips with similar designs operating in the 960-nm wavelength regime. We optically pump the structures with continuous-wave (cw) 808-nm radiation and measure the nonlinear reflectivity for 130-fs and 1.4-ps probe pulses as function of probe pulse fluence, pump power, and heat sink temperature. With this technique we are able to measure the saturation behavior for VECSEL gain ch...

  10. GREEN SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

    Ayeshamariam A*, Tajun Meera Begam M, Jayachandran M, Praveen Kumar G and M Bououdina

    2013-01-01

    Full Text Available New materials hold the key to fundamental advances in antibacterial and antifungal activities, both of which are vital in order to meet the challenge of global warning of microorganism’s advantages and limitations and the finite nature of medicinal plants. The use of additive to augment the effect of a synthetic or natural drug candidate is well known.  Here we report the use of nanoparticles of tin oxide (SnO2 to enhance the antibacterial and anti fungal potency of Alovera extract when compared to bulk tinoxide (SnO2.  The possible advantage and limitations of this result will be discussed. It is hoped that this study would lead to the establishment of nanomaterial compounds that could be used to formulate new and more potent antimicrobial drugs of natural origin. Antibacterial activity of Alovera extracts was checked against these gram positive isolates of Staphylococcus aureus, Escherichia Coli E, Salmonella Typhi, Streptococcus pyogenes and gram negative isolates of Pseudomonas Aeruginosa. We observed that effective anti-bacterial and anti-fungal activities for SnO2 nanoparticles, particularly for Streptococcus pyogenes microorganisms and antifungal microorganisms of Aspergillus niger, Mucor indicus microorganism than bulk SnO2.

  11. ACTIVE MEDIA: Gain dynamics in a pulsed laser amplifier on CO-He, CO-N2 and CO-O2 gas mixtures

    Vetoshkin, S. V.; Ionin, Andrei A.; Klimachev, Yu M.; Kozlov, A. Yu; Kotkov, A. A.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2007-02-01

    Small-signal gain (SSG) dynamics G(t) in the active medium of a pulsed laser amplifier operating on the v+1→vP(J) vibrational-rotational transitions of the CO molecule, including high (v > 15) vibrational transitions, is studied experimentally. It is demonstrated that as the vibrational number increases from 7 to 31, G changes with time slower, while Gmax decreases in this case by three times. It is found that at a fixed value of v the rate of the SSG rise increases with increasing the rotational number J > 6. It is shown that in oxygen-containing gas mixtures (CO:O2 = 1:19) the value of Gmax at low vibrational levels (for v < 13) can substantially exceed Gmax in mixtures containing nitrogen (CO:N2 = 1:19) instead of oxygen. It is found that the efficiency (47%) of a CO laser on mixtures with a high concentration of oxygen considerably exceeds the efficiency (30%) of a CO laser operating on a nitrogen-containing mixture.

  12. Overexpression of Elafin in Ovarian Carcinoma Is Driven by Genomic Gains and Activation of the Nuclear Factor κB Pathway and Is Associated with Poor Overall Survival

    Adam Clauss

    2010-02-01

    Full Text Available Ovarian cancer is a leading cause of cancer mortality in women. The aim of this study was to elucidate whether whey acidic protein (WAP genes on chromosome 20q13.12, a region frequently amplified in this cancer, are expressed in serous carcinoma, the most common form of the disease. Herein, we report that a trio of WAP genes (HE4, SLPI, and Elafin is overexpressed and secreted by serous ovarian carcinomas. To our knowledge, this is the first report linking Elafin to ovarian cancer. Fluorescence in situ hybridization analysis of primary tumors demonstrates genomic gains of the Elafin locus in a majority of cases. In addition, a combination of peptidomimetics, RNA interference, and chromatin immunoprecipitation experiments shows that Elafin expression can be transcriptionally upregulated by inflammatory cytokines through activation of the nuclear factor κB pathway. Importantly, using a clinically annotated tissue microarray composed of late-stage, high-grade serous ovarian carcinomas, we show that Elafin expression correlates with poor overall survival. These results, combined with our observation that Elafin is secreted by ovarian tumors and is minimally expressed in normal tissues, suggest that Elafin may serve as a determinant of poor survival in this disease.

  13. Numerical Modeling of Multi-Material Active Magnetic Regeneration

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden;

    2009-01-01

    Magnetic refrigeration is a potentially environmentally-friendly alternative to vapour compression technology that is presented in this paper. The magnetocaloric effect in two magnetocaloric compounds in the La(Fe,Co,Si)13 series is presented in terms of their adiabatic temperature change and the...... specific heat as a function of temperature at constant magnetic field. A 2.5-dimensional numerical model of an active magnetic regenerative (AMR) refrigerator device is presented. The experimental AMR located at Risø DTU has been equipped with a parallel-plate based regenerator made of the two materials....... Experimental zero heat-load temperature spans are presented for different operating conditions and the results are compared to predictions of the numerical model. It is concluded that the model reproduces the experimental tendencies and when including thermal parasitic losses to ambient and the predictions...

  14. Surface modification of active material structures in battery electrodes

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  15. Influence of active nano particle size and material composition on multiple quantum emitter enhancements: Their Enhancement and Jamming Effects

    Arslanagic, Samel; Ziolkowski, Richard W.

    2014-01-01

    active coated nano-particles are examined here theoretically with regard to their ability to effectively enhance or jam the responses of quantum emitters, e.g., fluorescing molecules, and nano- antennas to an observer located in their far-field regions. The investigated spherical particles consist of a...... gain-impregnated silica nano-core covered with a nano-shell of a specific plasmonic material. Attention is devoted to the influence of the over-all size of these particles and their material composition on the obtained levels of active enhancement or jamming. Silver, gold and copper are employed as...... their nano- shells. The over-all diameters of the investigated coated nano-particles are taken to be 20 nm, 40 nm, and 60 nm, while maintaining the same ratio of the core radius and shell thickness. It is shown that the jamming levels, particularly when several emitters are present, are significantly...

  16. Thermopower and activation energy of silver iodide based superionic materials

    Silver iodide based glasses, 60Agl-20Ag sub 2 O-20B sub 2O sub 3, 6 Agl-20Ag sub 2 O-20 MoO sub 3 and 60Agl-20Ag sub 2O-20WO sub 3, all in the mol % ratio, were prepared by rapidly quenching the melts of the chemicals in a stainless steel container; kept in a liquid nitrogen bath. The glassy nature of the as-quenched materials was confirmed by X-ray diffraction (XRD). The electrical conductivity of the glasses was measured at various temperatures ranging from 30 to 70 degree C using an impedance bridge operating in the frequency range between 40 Hz to 100 kHz. The plot of In σT versus 1000/T for each glassy material obeys Arrhenius law and the activation energy obtained is between 0.2 to 0.3 eV. Thermopower measurement was also carried out in the same temperature range as the conductivity measurement to obtain the heat of transport

  17. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  18. Reactor neutron activation analysis on reference materials from intercomparison runs

    A review of using the Instrumental Neutron Activation Analysis (INAA) technique in our laboratory to determine major, minor and trace elements in mineral and biological samples from international intercomparison runs organised by IAEA Vienna, IAEA-MEL Monaco, 'pb-anal' Kosice, INCT Warszawa and IPNT Krakow is presented. Neutron irradiation was carried out at WWR-S reactor in Bucharest (short and long irradiation) during 1982-1997 and at TRIGA reactor in Pitesti (long irradiation) during the later period. The following type of materials were analysed: soils, marine sediments, uranium phosphate ore, water sludge, copper flue dust, whey powder, yeast, cereal flour (rye and wheat), marine animal tissue (mussel, garfish and tuna fish), as well as vegetal tissue (seaweed, cabbage, spinach, alfalfa, algae, tea leaves and herbs). The following elements could be, in general, determined: Ag, As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Lu, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, W, Yb and Zn of long-lived radionuclides, as well as Al, Ca, Cl, Cu, Mg, Mn, and Ti of short-lived radionuclides. Data obtained in our laboratory for various matrix samples presented and compared with the intercomparison certified values. The intercomparison exercises offer to the participating laboratories the opportunity to test the accuracy of their analytical methods as well as to acquire valuable Reference Materials/ standards for future analytical applications. (authors)

  19. Relational Information Gain

    Lippi, Marco; Jaeger, Manfred; Frasconi, Paolo;

    2011-01-01

    We introduce relational information gain, a refinement scoring function measuring the informativeness of newly introduced variables. The gain can be interpreted as a conditional entropy in a well-defined sense and can be efficiently approximately computed. In conjunction with simple greedy general...

  20. Health gain versus equity.

    Scott-Samuel, A

    1992-05-01

    A new organisation, the Association for Public Health, has just been formed 'to help deliver real health gain for the population'. Alex Scott-Samuel suggests that the concept of 'health gain' is counter to health equality and needs wider debate. PMID:1624317

  1. Should I Gain Weight?

    ... Can I Help a Friend Who Cuts? Should I Gain Weight? KidsHealth > For Teens > Should I Gain Weight? Print A A A Text Size ... Healthy Habits Matter en español ¿Debería ganar peso? "I want to play hockey, like I did in ...

  2. Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios.

    van den Berge, M; Ozcanhan, G; Zijlstra, S; Lindenbergh, A; Sijen, T

    2016-03-01

    Especially when minute evidentiary traces are analysed, background cell material unrelated to the crime may contribute to detectable levels in the genetic analyses. To gain understanding on the composition of human cell material residing on surfaces contributing to background traces, we performed DNA and mRNA profiling on samplings of various items. Samples were selected by considering events contributing to cell material deposits in exemplary activities (e.g. dragging a person by the trouser ankles), and can be grouped as public objects, private samples, transfer-related samples and washing machine experiments. Results show that high DNA yields do not necessarily relate to an increased number of contributors or to the detection of other cell types than skin. Background cellular material may be found on any type of public or private item. When a major contributor can be deduced in DNA profiles from private items, this can be a different person than the owner of the item. Also when a specific activity is performed and the areas of physical contact are analysed, the "perpetrator" does not necessarily represent the major contributor in the STR profile. Washing machine experiments show that transfer and persistence during laundry is limited for DNA and cell type dependent for RNA. Skin conditions such as the presence of sebum or sweat can promote DNA transfer. Results of this study, which encompasses 549 samples, increase our understanding regarding the prevalence of human cell material in background and activity scenarios. PMID:26736139

  3. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Ziolkowski, Richard W.; Radu Malureanu; Samel Arslanagic; Yan Liu

    2011-01-01

    Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced ...

  4. FIBER GLASS SEMICONDUCTOR LASERS AND THE GAIN COEFFICIENT

    Mustafa TEMİZ

    1999-02-01

    Full Text Available In AlxGa1-xAs choosing x in various per cent of aluminium it is obtained the changing of the index of refraction of the material. So, formed semiconductor lasers by making GaAs/AlxGa1-xAs heterojunction structures with changing the refractive index to confine the electromagnetic waves and injected carriers (current in active of laser in time gives optical gain. It is also based the same method the transmission of the information. In this work in fiber glass and semiconductor lasers the effecting factors to change the optical gain are investigated.

  5. Activation and waste management considerations of fusion materials

    Cheng, E. T.; Saji, G.

    1994-09-01

    Inconel-625 (Ni625), SS316, Ti-6Al-4V (Ti64), ferritic steel (FS), reduced activity ferritic steel (RAFS), manganese steel (Mn-steel), and V5Cr5Ti (V55), were examined for a near-term experimental D-T fueled fusion power reactor with respect to waste management. Activation calculations for these materials were performed assuming one year continuous operation at 1 MW/m 2 wall loading. The results show that the blanket components made of V55, Ti64, Mn-steel, and FS will be allowed for transfer to an on-site dry storage facility after 10 years of cooling after discharge. To transport the discharged blanket components to a permanent disposal site, the cooling time needed can be within 10 years for Ti64 and V55, provided that the impurities (mainly Ni, Nb and Mo) be controlled to an acceptable level. The RAFS and Mn-steel will need about 30 y cooling time because of its Fe and Mn contents. Ni625, 316SS, and FS, however, will require more than 50000 y cooling time because of their Nb and Mo contents. The RAFS, Mn-steel, Ti64 and V55 can be shallow-land wastes if the impurity level for Nb and Mo is dropped below 10 ppm.

  6. ReflectoActive(trademark) Seals for Materials Control and Accountability

    The ReflectoActive(trademark) Seals system, a continuously monitored fiber optic, active seal technology, provides real-time tamper indication for large arrays of storage containers. The system includes a PC running the RFAS software, an Immediate Detection Unit (IDU), an Optical Time Domain Reflectometer (OTDR), links of fiber optic cable, and the methods and devices used to attach the fiber optic cable to the containers. When a breach on any of the attached fiber optic cable loops occurs, the IDU immediately signals the connected computer to control the operations of an OTDR to seek the breach location. The ReflectoActive(trademark) Seals System can be adapted for various types of container closure designs and implemented in almost any container configuration. This automatic protection of valued assets can significantly decrease the time and money required for surveillance. The RFAS software is the multi-threaded, client-server application that monitors and controls the components of the system. The software administers the security measures such as a two-person rule as well as continuous event logging. Additionally the software's architecture provides a secure method by which local or remote clients monitor the system and perform administrative tasks. These features provide the user with a robust system to meet today's material control and accountability needs. A brief overview of the hardware, and different hardware configurations will be given. The architecture of the system software, and its benefits will then be discussed. Finally, the features to be implemented in future versions of the system will be presented

  7. Fusion material transmutation and activation analysis induced by fast neutrons: Anita-IEAF Activation Code Package

    This paper presents the Anita-IEAF code package for the activation characterization of materials exposed to neutrons with energies above 20 MeV. Its origins trace back to the Anita-2000 code (NEA-1638, RSICC CCC-606). Anita-IEAF is able to manage the many reaction channels for neutron energies up to 150 MeV. It computes the radioactive inventories of materials exposed to neutron irradiation, continuously or stepwise. It provides activity, isotopic nuclide density, decay heat, biological hazard, clearance index and gamma ray source spectra at shutdown and at different cooling times. The code package is provided with a complete database that includes neutron activation data library, decay, hazard and clearance data library, and gamma library. The Anita-IEAF neutron activation library was produced by processing the IEAF-2001 data activation files that have been recently released by FZK. It contains the neutron activation cross-sections for 679 nuclides in the 256 neutron energy group structure up to 150 MeV, in EAF format. That group structure includes the standard Vitamin-J 175 groups for energies below 20 MeV and 81 groups for the highest energies. The paper presents also an application of the Anita-IEAF code package to the neutron exposure characterization for the SS-316 liner and heat shield of the Test Cell area of the International Fusion Materials Irradiation Facility (IFMIF). The decay gamma source evaluation for SS-316, needed for dose rate calculations at beam-off IFMIF phase for shielding analysis, is discussed too. (authors)

  8. On capital gain taxation

    Anton Miglo

    2008-01-01

    This note provides an explanation for why tax rates on capital gains are usually lower than ordinary income tax rates based on manager's agency problem related to "empire-building" or the underinvestment problem.

  9. Giant Gain Enhancement in Photonic Crystals with a Degenerate Band Edge

    Othman, Mohamed; Figotin, Alex; Capolino, Filippo

    2014-01-01

    Cavities made of photonic crystals incorporating active material have already demonstrated a stronger gain enhancement when operating at the regular band edge (RBE) of a dispersion diagram. Here instead we propose a new idea that leads to giant gain enhancement based on utilizing the unconventional slow wave resonance associated to a degenerate band edge (DBE) in the dispersion diagram of photonic crystals. We show that the gain enhancement in a Fabry-Perot cavity when operating at the DBE is several orders of magnitude stronger when compared to a cavity of the same length made of a photonic crystal with RBE. We also have found critical conditions for maximizing the total power gain. The giant gain is explained by significant increase in the photon lifetime and the local density of states. We have demonstrated DBE operated cavities that provide for superior gain conditions for lasers, quantum cascade lasers, traveling wave tubes, and distributed amplifiers with solid state.

  10. Molecularly imprinted hydrogels as functional active packaging materials.

    Benito-Peña, Elena; González-Vallejo, Victoria; Rico-Yuste, Alberto; Barbosa-Pereira, Letricia; Cruz, José Manuel; Bilbao, Ainhoa; Alvarez-Lorenzo, Carmen; Moreno-Bondi, María Cruz

    2016-01-01

    This paper describes the synthesis of novel molecularly imprinted hydrogels (MIHs) for the natural antioxidant ferulic acid (FA), and their application as packaging materials to prevent lipid oxidation of butter. A library of MIHs was synthesized using a synthetic surrogate of FA, 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HFA), as template molecule, ethyleneglycol dimethacrylate (EDMA) as cross-linker, and 1-allylpiperazine (1-ALPP) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), in combination with 2-hydroxyethyl methacrylate (HEMA) as functional monomers, at different molar concentrations. The DMAEMA/HEMA-based MIHs showed the greatest FA loading capacity, while the 1-ALLP/HEMA-based polymers exhibited the highest imprinting effect. During cold storage, FA-loaded MIHs protected butter from oxidation and led to TBARs values that were approximately half those of butter stored without protection and 25% less than those recorded for butter covered with hydrogels without FA, potentially extending the shelf life of butter. Active packaging is a new field of application for MIHs with great potential in the food industry. PMID:26213001

  11. Gain modulation by graphene plasmons in aperiodic lattice lasers

    Chakraborty, S.; Marshall, O. P.; Folland, T. G.; Kim, Y.-J.; Grigorenko, A. N.; Novoselov, K. S.

    2016-01-01

    Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene’s Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology.

  12. Gain-assisted optical switching in plasmonic nanocavities

    Yun Shen; Guoping Yu; Jiwu Fu; Liner Zou

    2012-01-01

    A plasmonic cavity filled with active material is proposed to explain optical switching.Optical properties,including transmission,response time,and field distribution of on/off state,are numerically investigated.We demonstrate that such a gain-assisted plasmonic structure can achieve optical switching in the nanodomain and shorten the switching time to the subpicosecond level.Our results indicate the potential application of the proposed structure in optical communication and photonic integrated circuits.%A plasmonic cavity filled with active material is proposed to explain optical switching. Optical properties, including transmission, response time, and field distribution of on/off state, are numerically investigated. We demonstrate that such a gain-assisted plasmonic structure can achieve optical switching in the nan-odomain and shorten the switching time to the subpicosecond level. Our results indicate the potential application of the proposed structure in optical communication and photonic integrated circuits.

  13. The effect of gain saturation in a gain compensated perfect lens

    Andresen, Marte P Hatlo; Haakestad, Magnus W; Krogstad, Harald E; Skaar, Johannes

    2010-01-01

    The transmission of evanescent waves in a gain-compensated perfect lens is discussed. In particular, the impact of gain saturation is included in the analysis, and a method for calculating the fields of such nonlinear systems is developed. Gain compensation clearly improves the resolution; however, a number of nonideal effects arise as a result of gain saturation. The resolution associated with the lens is strongly dependent on the saturation constant of the active medium.

  14. Prompt gamma neutron activation analysis as an active interrogation technique for nuclear materials

    Prompt gamma neutron activation analysis (PGAA) is proposed as an instant, non-destructive method for the analysis of fissile materials and fission products. Measurements by PGAA were made on technetium and uranium compounds, the latter with various enrichments. Measurements were carried out in thermal and cold neutron beams at the Budapest Research Reactor. A beam chopper was used to collect the delayed decay gamma radiation from short lived nuclides separately. Accurate partial gamma ray production cross-sections were determined with internal standardization for a set of prompt and decay gamma rays following neutron capture in 235U, 238U and 99Tc and compared to those from the literature. In the case of 235U fission, prompt gamma lines were also applied.These cross-sections can be used for non-destructive analyses of uranium and technetium and also for the determination of the enrichment of uranium by prompt gamma activation analysis and neutron activation analysis. (author)

  15. DNA polymorphisms and transcript abundance of PRKAG2 and phosphorylated AMP-activated protein kinase in the rumen are associated with gain and feed intake in beef steers

    Beef steers with variation in feed efficiency phenotypes were evaluated previously on a high density SNP panel. Ten markers from rs110125325-rs41652818 on bovine chromosome 4 were associated with average daily gain (ADG). To identify the gene(s) in this 1.2Mb region responsible for variation in AD...

  16. Gaining Mindshare and Timeshare : Marketing Public Libraries

    Paul, Johnson; Kua, Lena; Narayanan, N. Varaprasad

    2005-01-01

    This presentation is an examination of how the National Library Board had successfully gained market share by redefining its market space and remaking the image of libraries and librarians. Libraries were repositioned to gain mindshare and timeshare among Singaporeans, competing against the cinema, TV, video games and other leisure activities, becoming the Third Place after home and work for many.

  17. Receiver Gain Modulation Circuit

    Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen

    2011-01-01

    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by

  18. Thesis on safeguards gains doctorate

    Full text: One of the most complete analyses yet to be made outside the Agency of its Safeguards system for preventing diversion of materials to military purposes has gained for its author a Doctorate of Philosophy. The subject was chosen as a thesis by Miss Gabrielle Martino, daughter of His Excellency Mr. Enrico Martino, Italian Ambassador to Austria and Resident Representative to IAEA. Miss Martino has been studying in the Faculty of Political Science at Rome University. Her thesis, which runs to 110 pages, traces the history of safeguards and the stages in evolution to the system adopted by the General Conference at its 1965 Session held in Tokyo. (author)

  19. Method for monitoring drilling materials for gamma ray activity

    In the preferred and illustrated embodiment taught herein, method steps for monitoring of raw materials to be used in drilling mud are disclosed. The materials are monitored for radioactivity. Procedures for taking such measurements are disclosed, and the extent of gamma radioactivity in the raw materials used in drilling mud is, determined. This is correlated to the increased radiation attributable to mud made from these materials and the effect the mud would have on gamma ray measuring logs. An alternate procedure for testing drilling mud, typically at the well site, is also disclosed. The method detects mud radioactivity from any additives including barite, potassium chloride, well cuttings or others. Excessive background levels due to mud gamma radioactivity in a well may very well mask the data obtained by various logging procedures dependent on gamma radiation. Procedures are also described for either rejecting mud which is too radioactive or correcting the log measurements for mud effects

  20. Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials

    Using a beam of tagged 14.1 MeV neutrons to probe for the presence of fissionable materials, we have measured n-γ-γ coincidences from depleted uranium (DU). The multiple coincidence rate is substantially above that measured from lead, tungsten, and iron. The presence of coincidences involving delayed gammas in the DU time spectra provides a signature for fissionable materials that is distinct from non-fissionable ones. In addition, the information from the tagged neutron involved in the coincidence gives the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is more compact and that produces much less radiation than other solutions

  1. A 3.8 GHz programmable gain amplifier with a 0.1 dB gain step

    A broadband programmable gain amplifier (PGA) with a small gain step and low gain error has been designed in 0.13 μm CMOS technology. The PGA was implemented with open-loop architecture to provide wide bandwidth. A two-stage gain control method, which consists of a resistor ladder attenuator and an active fine gain control stage, provides the small gain step. A look-up table based gain control method is introduced in the fine gain control stage to lower the gain error. The proposed PGA shows a decibel-linear variable gain from −4 to 20 dB with a gain step of 0.1 dB and a gain error less than ±0.05 dB. The 3-dB bandwidth and maximum IIP3 are 3.8 GHz and 17 dBm, respectively. (semiconductor integrated circuits)

  2. Characteristics and antimicrobial activity of copper-based materials

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  3. The impact of materials selection on long-term activation in fusion power plants

    Neutron-induced transmutation of materials in a D-T fusion power plant will give rise to the potential for long-term activation. To ensure that the attractive safety and environmental characteristics of fusion power are not degraded, careful design choices are necessary. An aim of optimising power plant design must be to minimise both the level of activation and the total volume of active material that might ultimately be categorised as waste requiring disposal. Materials selection is central to this optimisation. In this paper we assess the influence of materials choices for a power plant on the waste volume and the potential to clear (i.e. remove from regulatory control) and recycle material. Although the use of low activation materials in regions of high neutron flux is an important part of the strategy to minimise the level of activation, different choices may result from a strategy aimed at minimising the volume of active waste

  4. Evaluation of activity concentration limits for building materials using voxel phantom

    To protect the public from natural radioactive materials, it is necessary to consider the building materials because of natural radioactivity and quantity. There is an annual effective dose limit of 1mSv for products, but an activity concentration limit is necessary for the product screening. We derived the specific effective dose rates by building materials with the MCNPX code and evaluated the activity concentration limits. Using these values, we can suggest the activity concentration index as the following formula

  5. Graded territories: Towards the design, specification and simulation of materially graded bending active structures

    Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette;

    2012-01-01

    The ability to make materials with bespoke behavior affords new perspectives on incorporating material properties within the design process not available through natural materials. This paper reports the design and assembly of two bending-active, fibre-reinforced composite structures. Within these...... structures, the property of bending is activated and varied through bespoke material means so as to match a desired form. Within the architectural design process, formal control depends upon design approaches for material specification and simulation that consider behavior at the level of the material...

  6. Active video games as a tool to prevent excessive weight gain in adolescents : rationale, design and methods of a randomized controlled trial

    Simons, Monique; Mai J M Chinapaw; van de Bovenkamp, Maaike; de Boer, Michiel R; Jacob C Seidell; Brug, Johannes; Vet, Emely

    2014-01-01

    Background: Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games -i.e. active games- may be a promising alternative to traditional non-active games to promote physical activity and reduce sedentary behaviors in youth. The aim of this manuscript is to describe the design of a study evaluating the effects of a family oriented active game inte...

  7. Transient optical gain in germanium quantum wells

    Chatterjee, Sangam; Lange, Christoph; Koester, Niko S.; Schaefer, Martin; Kira, Mackillo; Koch, Stephan W. [Faculty of Physics and Materials Sciences Center, Philipps-Universitaet Marburg (Germany); Chrastina, Daniel; Isella, Giovanni; Kaenel, Hans von [CNISM, Como (Italy); L-NESS, Dipartimento di Fisica del Politecnico di Milano, Como (Italy); Sigg, Hans [Laboratory for Micro and Nanotecnology, Paul Scherrer Institut, Villigen PSI (Switzerland)

    2010-07-01

    One of today's most-sought goals in semiconductor technology is the monolithic integration of microelectronics and photonics on Si. Optical gain is, in general, not expected for Si and Ge or its alloys due to the indirect nature of the band gap in this material system. Here, we show that Ge/SiGe QWs show transient optical gain and may thus be used as an optically-pumped amplifier at room temperature. Further, the nonequilibrium effects which govern the relaxation dynamics of the optically injected carrier distributions in this material were observed and analyzed using a microscopic many-body theory. Strong non-equilibrium gain was obtained on a sub-100 fs time scale. Long-lived gain arising from {gamma}-point transitions is overcompensated by a process bearing the character of free carrier absorption.

  8. Activities of the years 1985/86 Materials Department

    The Materials Department of the National Atomic Energy Commission gives a description of the research done during the period 1985/1986 in the following fields; corrosion and transport of matter, transport phenomena, phase solidification and transformation, mechanical properties, theory of the materials behaviour, and special techniques development. Furthermore it is outlined the rendering of services and the advice given to the nuclear power plants and other institutions. Finally a list of publications, courses, seminars, lectures and presentation to congresses are included. (M.E.L.)

  9. Active video games as a tool to prevent excessive weight gain in adolescents : rationale, design and methods of a randomized controlled trial

    Simons, Monique; Chinapaw, Mai J M; van de Bovenkamp, Maaike; de Boer, Michiel R; Seidell, Jacob C; Brug, Johannes; de Vet, Emely

    2014-01-01

    BACKGROUND: Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games--i.e. active games--may be a promising alternative to traditional non-active gam

  10. Active video games as a tool to prevent excessive weight gain in adolescents: Rationale, design and methods of a randomized controlled trial

    Simons, M.; Chinapaw, M.J.; Bovenkamp, M. van de; Boer, M.R. de; Seidell, J.C.; Brug, J.; Vet, E. de

    2014-01-01

    Background: Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games -i.e. active games- may be a promising alternative to traditional non-active gam

  11. Active video games as a tool to prevent excessive weight gain in adolescents: rationale, design and methods of a randomized controlled trial

    Simons, M.; Chinapaw, M.J.M.; Bovenkamp, van de M.; Boer, de M.R.; Seidell, J.C.; Brug, J.; Vet, de E.

    2014-01-01

    Background Excessive body weight, low physical activity and excessive sedentary time in youth are major public health concerns. A new generation of video games, the ones that require physical activity to play the games –i.e. active games- may be a promising alternative to traditional non-active game

  12. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    Dér, A; Fábián, L.; Valkai, S.; Wolff, E.; Ramsden, Jeremy J.; Ormos, P.

    2006-01-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in in...

  13. Gain optimization method of a DQW superluminescent diode with broad multi-state emission

    Dimas, Clara E.

    2010-01-01

    Optimizing gain through systematic methods of varying current injection schemes analytically is significant to maximize experimentally device yield and evaluation. Various techniques are used to calculate the amplified spontaneous emission (ASE) gain for light emitting devices consisting of single-section and multiple-sections of even length. Recently double quantum well (DQW) superluminescent diodes (SLD) have shown a broad multi-state emission due to mutlielectrodes of non-equal lengths and at high non-equal current densities. In this study, we adopt an improved method utilizing an ASE intensity ratio to calibrate a gain curve based on the sum of the measured ASE spectra to efficiently estimate the gain. Although the laser gain for GaAs/AlGaAs material is well studied, the ASE gain of SLD devices has not been systematically studied particular to further explain the multiple-state emission observed in fabricated devices. In addition a unique gain estimate was achieved where the excited state gain clamps prior to the ground state due to approaching saturation levels. In our results, high current densities in long sectioned active regions achieved sufficient un-truncated gain that show evidence of excited state emission has been observed.

  14. Active coated nanoparticles: impact of plasmonic material choice

    Arslanagic, Samel; Ziolkowski, R.W.

    2011-01-01

    The near- and far-field properties of a number of active coated spherical nanoparticles excited by an electric Hertzian dipole at optical frequencies are investigated. Their enhanced, as well as reduced, radiation effects are demonstrated and compared.......The near- and far-field properties of a number of active coated spherical nanoparticles excited by an electric Hertzian dipole at optical frequencies are investigated. Their enhanced, as well as reduced, radiation effects are demonstrated and compared....

  15. Materials for Consideration in Standardized Canister Design Activities.

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to

  16. Progress in the US program to develop low-activation structural materials for fusion

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current US structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  17. Progress in the U.S. program to develop low-activation structural materials for fusion

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current U.S. structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  18. ACFA - a versatile activation code for coolant and structural materials

    The ACFA code calculates the neutron-induced activation, afterheat, transmutation, gas production, biological hazard potential, and activation gamma ray spectra in the components of a nuclear system. The quantities of interest may be computed by spatial interval and zone or only by zone of the system considered. To calculate the transmutation coefficients for the neutron-induced reactions the code uses multigroup activation cross sections and space-dependent multigroup neutron fluxes in one- or two-dimensional geometry. The neutron reaction types incorporated in the code are: (n,n'), (n,2n), (n,γ), (n,p), (n,α), (n,n'p), (n,n'α)sub(,) (n,t), (n,3n), (n,He-3), (n,d), and (n,n'd) considering both reactions to the ground state and to isomeric states. The code uses a variable dimensioning technique to adapt the core data storage requirements to the particular problem considered and uses the FIDO input system to read the input data. The numerical methods for establishing and solving the decay chain equations are taken from the ORIGEN code. To test the ACFA code and the nuclear data libraries used, the activation, composition change, and gas production in the first wall of the UWMAK-I fusion reactor are calculated. The results of the activation calculation are compared with earlier results of the University of Wisconsin Fusion Study Group. (orig.)

  19. A tolerance analysis on design parameters of parabolic and hyperbolic secant active GRIN materials for laser beam shaping purposes

    The present paper considers two gain GRIN media, characterized by a complex parabolic and hyperbolic secant refractive index profile, for the design of uniform beam shaper systems. A general condition for beam shaping is obtained from the equation describing the evolution of the half-width of a plane Gaussian beam in the GRIN media. The simulation of the irradiance evolution of an input plane Gaussian beam—operating at 575 nm and beam waist radius of 0.45 mm—in each material is shown, in order to examine the beam shaping quality in terms of thickness of the active GRIN media and input beam wavelength. (paper)

  20. Increasing weight-bearing physical activity and calcium-rich foods to promote bone mass gains among 9–11 year old girls: outcomes of the Cal-Girls study

    Hannan Peter

    2005-07-01

    Full Text Available Abstract Background A two-year, community-based, group-randomized trial to promote bone mass gains among 9–11 year-old girls through increased intake of calcium-rich foods and weight-bearing physical activity was evaluated. Methods Following baseline data collection, 30 5th-grade Girl Scout troops were randomized to a two-year behavioral intervention program or to a no-treatment control group. Evaluations were conducted at baseline, one year, and two years. Measures included bone mineral content, density, and area (measured by DXA, dietary calcium intake (24-hour recall, and weight-bearing physical activity (physical activity checklist interview. Mixed-model regression was used to evaluate treatment-related changes in bone mineral content (g for the total body, lumbar spine (L1-L4, proximal femur, one-third distal radius, and femoral neck. Changes in eating and physical activity behavioral outcomes were examined. Results Although the intervention was implemented with high fidelity, no significant intervention effects were observed for total bone mineral content or any specific bone sites. Significant intervention effects were observed for increases in dietary calcium. No significant intervention effects were observed for increases in weight-bearing physical activity. Conclusion Future research needs to identify the optimal dosage of weight-bearing physical activity and calcium-rich dietary behavior change required to maximize bone mass gains in pre-adolescent and adolescent girls.

  1. Activity measurement and effective dose modelling of natural radionuclides in building material

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. - Highlights: • Dose models for indoor radiation exposure due to natural radionuclides in building materials. • Strategies and methods in radionuclide metrology, activity measurement and dose modelling. • Selection of appropriate parameters in radiation protection standards for building materials. • Scientific-based limitations of indoor exposure due to natural radionuclides in building materials

  2. Gaining Relational Competitive Advantages

    Hu, Yimei; Zhang, Si; Li, Jizhen;

    2015-01-01

    Establishing strategic technological partnerships (STPs) with foreign partners is an increasingly studied topic within the innovation management literature. Partnering firms can jointly create sources of relational competitive advantage. Chinese firms often lack research and development (R......&D) capabilities but are increasingly becoming preferred technological partners for transnational corporations. We investigate an STP between a Scandinavian and a Chinese firm and try to explore how to gain relational competitive advantage by focusing on its two essential stages: relational rent generation and...... appropriation. Based on an explorative case study, we develop a conceptual framework that consists of process, organizational alliance factors, and coordination modes that we propose lead to relational competitive advantage....

  3. ACTIVATED CARBONS FROM VEGETAL RAW MATERIALS TO SOLVE ENVIRONMENTAL PROBLEMS

    Viktor Mukhin

    2014-06-01

    Full Text Available Technologies for active carbons obtaining from vegetable byproducts such as straw, nut shells, fruit stones, sawdust, hydrolysis products of corn cobs and sunflower husks have been developed. The physico-chemical characteristics, structural parameters and sorption characteristics of obtained active carbons were determined. The ability of carbonaceous adsorbents for detoxification of soil against pesticides, purification of surface waters and for removal of organic pollutants from wastewaters has been evaluated. The obtained results reveal the effectiveness of their use in a number of environmental technologies.

  4. Bioreactor activated graft material for early implant fixation in bone

    Snoek Henriksen, Susan; Ding, Ming; Overgaard, Søren

    2011-01-01

    from the iliac crest. For both groups, mononuclear cells were isolated, and injected into a perfusion bioreactor (Millenium Biologix AG, Switzerland). Scaffold granules (Ø~900-1500 µm, ~88% porosity) in group 1, consisted of hydroxyapatite (HA, 70%) with β-tricalcium-phosphate (β-TCP, 30%) (Danish...... Technological Institute, Denmark). The granules were coated with poly-lactic acid (PLA) 12%, in order to increase the mechanical strength of the material (Phusis, France). Scaffold granules (Ø~900-1400 µm, 80% porosity) in group 2 consisted of pure HA/β-TCP (FinCeramica, Italy). For both groups, cells were...

  5. Epithermal neutron activation analysis of trace elements in biological materials

    The detection limits of 24 important minor and trace elements were studied in NBS SRM-1571 Orchard Leaves, NBS SRM-1577 Bovine Liver, Bowen's kale and IAEA H-4 Animal Muscle using ENAA method with cadmium and cadmium-boron filter. The lower detection limits have been found for elements As, Au, Ba, Br, Cd, Mo, Ni, Sb, Se, Sm and U by ENAA with cadmium filter and for elements As, Cd, Mo and Ni by ENAA with cadmium-boron filter, respectively, in comparison with INAA method. The results of the determination of elements studied in the above mentioned biological materials are also presented. (author)

  6. Preparation of Biologically Active Materials by Biomimetic Process

    2002-01-01

    In order to form the apatite nuclei on a surface of the substrate,the substrate was placed on or in CaO,SiO2-based glass particles which were soaked in a simulated body fluid with ion concentrations nearly equal to those of human blood plasma,and to make the apatite nuclei grow on the substrate in situ,the substrate was soaked in another solution highly supersaturated with respect to the apatite. The induction period for the apatite nucleation varied from 0 to 4 days depending on the kind of the substrate. The thickness of the apatite layer increases linearly with increasing soaking time in the second solution.The rate of growth of the apatite layer increases with increasing degree of the supersaturation and temperature of the second solution, reaching 7um/d in a solution with ion concentrations which is as 1.5 times as those of the simulated body fluid at 60 ℃. The adhesive strength of the apatite layer to the substrate varies depending on the kind and roughness of the substrate. Polyethyleneterephthalate and polyethersulfone plates abraded with No.400 diamond paste show adhesive strengths of as high as 4 MPa. This type of composite of the bone-like apatite with metals, ceramics and organic polymers might be useful not only as highly bioactive hard tissue-repairing materials with analogous mechanical properties to those of the hard tissues, but also as highly biocompatible soft tissue-repairing materials with ductility.

  7. Effect of Activated Reagent to the Parameters of Electrical Materials Supercapacitor

    Z.D. Kovalyuk

    2016-06-01

    Full Text Available In this work the production and investigation of nano-porous carbon material from organic raw materials of plant origin with different promoters – KOH and ZnCl2. The basic energy capacitive characteristics of materials, the specific capacity of the materials obtained with KOH and ZnCl2 activation is 205 F/g and 138 F/g, respectively

  8. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na+ and Fe3+ solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous material, and

  9. Bioorganically doped sol-gel materials containing amyloglucosidase activity

    Vlad-Oros Beatrice

    2006-01-01

    Full Text Available Amyloglucosidase (AMG from Aspergillus niger was encapsulated in various matrices derived from tetraethoxysilane, methyltriethoxysilane, phenyltriethoxysilane and vinyltriacetoxysilane by different methods of immobilization. The immobilized enzyme was prepared by entrapment in two steps, in one-step and entrapment/deposition, respectively. The activities of the immobilized AMG were assayed and compared with that of the native enzyme. The effects of the organosilaneprecursors and their molar ratios, the immobilization method, the inorganic support (white ceramic, red ceramic, purolite, alumina, TiO2, celite, zeolite and enzyme loading upon the immobilized enzyme activity were tested. The efficiency of the sol-gel biocomposites can be improved through combination of the fundamental immobilization techniques and selection of the precursors.

  10. Exploratory research on mutagenic activity of coal-related materials

    Warshawsky, D.; Schoeny, R. S.

    1980-01-01

    The following samples were found to be mutagenic for strains TA1538, TA98 and TA100 Salmonella typhimurium: ETTM-10, ETTM-11, ETTM-15, ETTM-16, and ETTM-17. ETTM-13 was marginally mutagenic for TA1537. ETTM-14 was slightly mutagenic for TA1537, TA1538, and TA98. Mutagenicity by all samples was demonstrated only in the presence of hepatic enzyme extracts (S9) which provided metabolic activation. ETTM-11 was shown to be the most mutagenic sample assayed thus far; specific activity was 2.79 x 10/sup 4/ TA98 revertants/mg sample. Fractionation by serial extractions with increasingly polar organic solvents was done at least 2 x with ETTM-10, ETTM-11, ETTM-15, ETTM-16 and ETTM-17. For some samples highly mutagenic fractions were observed.

  11. SANS-polymer and functional materials with neutron in Indonesia. Progress report on the collaboration activities?

    Activities on SANS-polymer collaboration program are reported. This paper presents SANS-data from Sodium Dodecyl Sulphate that have been obtained using BATAN's SANS machine in Serpong. Reports are also presented about activities in the groups for functional materials structural determination which includes magnetic, HTc superconducting and superionic conducting materials. Discussions are also given towards the way the collaboration activities were carried out in the last three years as well as impact of neutron scattering facility conditions in Indonesia. (author)

  12. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  13. Research and Teaching: Use of Toulmin's Argumentation Scheme for Student Discourse to Gain Insight about Guided Inquiry Activities in College Chemistry

    Kulatunga, Ushiri; Moog, Richard S.; Lewis, Jennifer E.

    2014-01-01

    Although student production of arguments in group learning environments has been shown to promote scientific reasoning and understanding of science concepts, little previous work has examined the relationship of the structure of curricular materials to the production of argumentation. In this study, we examined this relationship for a collection…

  14. Sudden gains in psychotherapy

    Auður Sjöfn Þórisdóttir 1986

    2014-01-01

    Verkefni þetta samanstendur af fræðilegu yfirliti og rannsóknagrein til birtingar í vísindatímarit. Verkefnið fjallar um tiltekið mynstur breytinga á einkennum geðraskana í sálfræðimeðferð, sem kallast skyndiframfarir (e. sudden gains) og þekkist af skyndilegum og miklum breytingum á einkennum milli tveggja meðferðartíma. Í fræðilega yfirlitinu er farið yfir hvernig þetta breytingamynstur hefur verið skilgreint og skýrt og sagt frá helstu niðurstöðum rannsókna á þessu sviði. Fjallað er um ann...

  15. Change, Gain and Loss

    Fu Mengzi

    2006-01-01

    @@ Five years have passed since the September 11 terrorist attacks occurred. America's counter-terrorism campaign is still on the way.Besides the momentary monumental significance of the fifth anniversary, five years is still too short in regard to the long-term counter-terrorism campaign. Yet, America's president's tenure is eight years at best; most of Bush's presidency time has passed. Five years ago, the U. S. encountered the most serious terrorist attack; the whole nation formed a consensus that counter-terrorism is its utmost priority. President Bush once enjoyed a support rate as high as 90% for over 16 months. But five years later, the trend changes. People can not help but ask: what are the gains and losses of the Republican Party in dealing with national security affairs?

  16. Materials science activities using accelerator facilities at VECC

    Charged particle irradiation on high temperature superconductor (HTSC) Bi-Sr-Ca-Cu-O system stable in ambient conditions is studied extensively. Both light particles like proton and heavy ions like oxygen from VECC have been employed. A notable difference between Bi2Sr2CaCu2O8+x (Bi-2212) and (Bi,Pb)2Sr2Ca2Cu2O10+y (Bi-2223) systems is observed. In former system, particle Irradiation caused knock-out of oxygen generating thereby oxygen vacancies-ideal pinning centres, whereas in Bi-2223 system, irradiation induced knock-out of oxygen was insignificant and it reflected in insignificant enhancement in Jc which was prominent in Bi-2212. It has proposed a model on Oxygen knock-out which was based on tensile stress in Bi-O layer arising from the small Bi3+ ion leading to accommodation of excess loosely bound excess oxygen along a-axis at a leading to 4.8b causing an incommensurate modulation. This excess oxygen being loosely bound is vulnerable to be knocked out by particle irradiation. On the other hand in (Bi,Pb)-2223, the large size Pb(II) partially substitutes for small Bi(III) and thereby the structural strain in Bi-O layer is relieved and hence no loosely bound oxygen. As a result, irradiation induced oxygen knock-out is absent. This manifests in insignificant changes in Jc for Bi-2223 due to particle irradiation in contrast to Bi-2212. Magnetisation Jc , defect sizes by positron annihilation lifetime spectroscopy and pinning potential by magnetoresistance measurements has been analysed. The difference in the behaviour to particle irradiation in these two systems has its manifestations in the pinning mechanism too- statistical pinning in irradiated Bi-2212 and collective weak pinning in Bi-2223. Sometimes, grain boundary pinning becomes more effective as compared to intragranular pinning as has been revealed by our studies in Neon ion irradiated MgB2 system. These have a great impact on the application of these materials in devices. We have also employed low

  17. Microstructural and Mechanical Properties of Alkali Activated Colombian Raw Materials

    Maria Criado

    2016-03-01

    Full Text Available Microstructural and mechanical properties of alkali activated binders based on blends of Colombian granulated blast furnace slag (GBFS and fly ash (FA were investigated. The synthesis of alkali activated binders was conducted at 85 °C for 24 h with different slag/fly ash ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100. Mineralogical and microstructural characterization was carried out by means of X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX and Nuclear magnetic resonance (NMR. Mechanical properties were evaluated through the compressive strength, modulus of elasticity and Poisson’s ratio. The results show that two different reaction products were detected in the slag/fly ash mixtures, a calcium silicate hydrate with Al in its structure (C-A-S-H gel and a sodium aluminosilicate hydrate (N-A-S-H gel with higher number of polymerized species and low content in Ca. It was found that with the increase of the amount of added slag, the amount of C-A-S-H gel increased and the amount of N-A-S-H gel decreased. The matrix was more dense and compact with almost absence of pores. The predominance of slag affected positively the compressive strength, Young’s modulus and Poisson’s ratio, with 80% slag and 20% fly ash concrete being the best mechanical performance blend.

  18. Relative contributions of energy expenditure on physical activity, body composition and weight gain to the evolution of impaired glucose tolerance to Frank diabetes. Highlights and achievements

    The effect of obesity on glucose intolerance is a mixture of the impact of body composition on glucose-insulin relationships as well as the modulation of this metabolism by physical activity. Populations of the African diaspora in the Caribbean and the United States have higher levels of obesity, glucose intolerance and diabetes than the ancestral population in West Africa. This is most likely a consequence of lifestyle changes, including an apparent decline in physical activity and dietary changes

  19. Active nondestructive assay of nuclear materials: principles and applications

    Gozani, Tsahi

    1981-01-01

    The purpose of this book is to present, coherently and comprehensively, the wealth of available but scattered information on the principles and applications of active nondestructive analysis (ANDA). Chapters are devoted to the following: background and overview; interactions of neutrons with matter; interactions of ..gamma..-rays with matter; neutron production and sources; ..gamma..-ray production and sources; effects of neutron and ..gamma..-ray transport in bulk media; signatures of neutron- and photon-induced fissions; neutron and photon detection systems and electronics; representative ANDA systems; and instrument analysis, calibration, and measurement control for ANDA. Each chapter has an introductory section describing the relationship of the topic of that chapter to ANDA. Each chapter ends with a section that summarizes the main results and conclusions of the chapter, and a reference list.

  20. Research Progresses of New Type Alkali-activated Cementitious Material Catalyst

    ZHANG Yao-Jun, YANG Meng-Yang, KANG Le, ZHANG Li, ZHANG Ke

    2016-03-01

    Full Text Available Alkali-activated solid aluminosilicate-based cementitious material is one of prospective research fields of advanced inorganic non-metallic materials. Its classification, preparation process, formation mechanism, and potential applications are reviewed in this paper. It is considered that its microstructure and chemical characteristics intensively depend on the raw materials and synthesis conditions. Geopolymers derive from alkali-activated metakaolin or fly ash with low calcium content, while the amorphous calcium silicate hydrate (C-S-H gels root in the chemical-activated solid wastes of granular blast furnace slag, steel slag and other solid aluminosilicate wastes with high calcium contents. Even though durability of alkali-activated cementitious materials as the building structure materials has been widely studied in the past decades, the intrinsic brittleness still restricts their applications in the field of civil and building engineering. Therefore, exploration of a new applied approach is by far the best option. In recent years, many researches report that the alkali-activated cementitious materials are used as novel precursors and catalysts for some kinds of heterogeneous reactions. The latest research progresses on alkali-activated cementitious material-based catalysts are discussed.

  1. Relative contributions of energy expenditure on physical activity, body composition and weight gain to the evolution of impaired glucose tolerance to Frank diabetes. Highlights and achievements

    There is a gradient of diabetes prevalence among populations of the African Diaspora. HYPOTHESIS: The risk of diabetes in transitional populations of the African diaspora is directly related to the rate of anthropornetric change and physical activity. AIMS: - To determine whether risk of incident diabetes and impaired glucose tolerance is related to physical activity in two populations of the African Diaspora with widely different levels of obesity; - To determine whether risk of incident diabetes and impaired glucose tolerance is related to rate of rise in body weight and change in body composition

  2. Micro- and Nanostructured Materials for Active Devices and Molecular Electronics

    Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Mast, Eric S.; Hall, Michael G.; Bonham, Charles C.; Zumhoff, Mac R.; Williford, Rick E.

    2003-10-01

    Traditional single layer barrier coatings are not adequate in preventing degradation of the performance of organic molecular electronic and other active devices. Most advanced devices used in display technology now consist of micro and nanostructured small molecule, polymer and inorganic coatings with thin high reactive group 1A metals. This includes organic electronics such as organic light emitting devices (OLED). The lifetimes of these devices rapidly degrades when they are exposed to atmospheric oxygen and water vapor. Thin film photovoltaics and batteries are also susceptible to degradation by moisture and oxygen. Using in-line coating techniques we apply a composite nanostructured inorganic/polymer thin film barrier that restricts moisture and oxygen permeation to undetectable levels using conventional permeation test equipment. We describe permeation mechanisms for this encapsulation coating and flat panel display and other device applications. Permeation through the multilayer barrier coating is defect and pore limited and can be described by Knudsen diffusion involving a long and tortuous path. Device lifetime is also enhanced by the long lag times required to reach the steady state flux regime. Permeation rates in the range of 10-6 cc,g/m2/d have been achieved and OLED device lifetimes. The structure is robust, yet flexible. The resulting device performance and lifetimes will also be described. The barrier film can be capped with a thin film of transparent conductive oxide yielding an engineered nanostructured device for next generation, rugged, lightweight or flexible displays. This enables, for the first time, thin film encapsulation of emissive organic displays.

  3. Optical gain by a simple photoisomerization process.

    Gallego-Gómez, Francisco; del Monte, Francisco; Meerholz, Klaus

    2008-06-01

    Organic holographic materials are pursued as versatile and cheap data-storage materials. It is generally assumed that under steady-state conditions, only photorefractive holographic media exhibit a non-local response to a light-intensity pattern, which results in an asymmetric two-beam coupling or 'gain', where intensity is transferred from one beam to the other as a measure of writing efficiency. Here, we demonstrate non-local holographic recording in a non-photorefractive material. We demonstrate that reversible photoisomerization gratings recorded in a non-photorefractive azo-based material exhibit large optical gain coefficients beyond 1,000 cm(-1), even for polarization gratings. The grating characteristics differ markedly from classical photorefractive features, but can be modelled by considering the influence of the Poynting vector on the photoisomerization. The external control of the Poynting vector enables manipulation of the gain coefficient, including its sign (the direction of energy exchange), a novel phenomenon we refer to as 'gain steering'. A very high sensitivity of about 100 cm(2) J(-1) was achieved. This high sensitivity, combined with a high spatial resolution, suggests a great technical advantage for applications in image processing and phase conjugation. PMID:18454152

  4. Pregnancy Weight Gain Calculator

    ... Videos Recipes & Menus Seasonal Winter Spring Summer Fall Food Waste Food Safety Newsroom Dietary Guidelines Communicator’s Guide Pregnancy Weight ... Printable Materials MyPlate Videos Recipes & Menus Seasonal Resources Food ... USDA.gov Site Map Policies & Links Our Performance Report Fraud on USDA Contracts ...

  5. Re-evaluation of the use of low activation materials in waste management strategies for fusion

    The world fusion programs have had a long goal that fusion power stations should produce only low level waste and thus not pose a burden for the future generations. However, the environmental impact of waste material is determined not only by the level of activation, but also the total volume of activated material. Since a tokamak power plant is large, the potential to generate a correspondingly large volume of activated material exists. The adoption of low activation materials, while important for reducing the radiotoxicity of the most active components, should be done as part of a strategy that also minimizes the volume of waste material that might be categorized as radioactive, even if lower in level. In this paper we examine different fusion blanket and shield designs in terms of their ability to limit the activation of the large vessel/ex-vessel components (e.g. vacuum vessel, magnets) and we identify the trends that allow improved in-vessel shielding to result in reduced vessel/ex-vessel activation. Recycling and clearance are options for reducing the volume of radioactive waste in a fusion power plant. Thus, the performance of typical fusion power plant designs with respect to recycling and clearance criteria are also assessed, to show the potential for improvement in waste volume reduction by careful selection of materials' combinations. We discuss the impact of these results on fusion waste strategies and on the development of fusion power in the future

  6. Loss/gain on ignition test report

    Document provides the results of tests done on Product Cans from the HC-21C sludge stabilization process. Tests included running a simulated Thermogravimetric Analysis, TGA, on the processed material that have received Loss On Ignition (LOI) sample results that show a gain on ignition or a high LOI and reprocessing product cans with high LOIs. Also, boat material temperatures in the furnace were tracked during the testing

  7. Teacher-and child-managed academic activities in preschool and kindergarten and their influence on children's gains in emergent academic skills

    De Haan, Annika K E; Elbers, Ed; Leseman, Paul P M

    2014-01-01

    The aim of this study was to assess whether children's development benefited from teacher-and child-managed academic activities in the preschool and kindergarten classroom. Extensive systematic observations during four half-days in preschool (n = 8) and kindergarten (n = 8) classrooms revealed that

  8. ANTIMICROBIAL ACTIVITY OF MICROORGANISMS AND COLLOIDAL SILVER BASED ON COMPLEX MATERIALS

    Voitenko O. Yu.

    2014-02-01

    Full Text Available The antimicrobial properties of complex materials containing ultradispersed silver particles directly formed in the Candida albіcans, Escherichia сolі, Pseudomonas fluorescens, and Bacillus cereus cell walls were investigated. Complex material based on pseudomonas was more active against gram-positive bacteria, the yeast like fungi based material was mainly active against colibacillus. After a cell-matrix treatment in a hypertonic solution or by acid hydrolysis, the antimicrobial properties of complex materials increased by 20—40%. In a liquid-phase medium, the complex materials with incorporated silver particles in composition with antibiotics strengthened anti-microbial properties of chloramphenicol, tetracycline and amoxiclav antibiotics with respect to E. faecalis, as well as penicillin antibiotics (ceftriaxone, cefotaxime, amoxicillin, amoxiclav against E. coli. The obtained data can serve as a basis for development of the new antibacterial and fungicide cells based materials impregnated with ultradispersed substances.

  9. Limitations on the Activity Concentration of Mineral Processing Residues Used as Building Material

    The use of mineral processing residue as a building material accounts for a significant proportion of the various uses of such material. The activity concentrations of radionuclides of natural origin in the material can be significantly elevated, resulting in enhanced exposure of occupants of the buildings concerned unless some restriction is placed on the radioactivity content. Accordingly, in order to comply with the dose limitation requirements of the relevant laws and standards, the activity concentration in the material has to be restricted. The use of mineral processing residues in building material is controlled in three categories according to a parameter known as the equivalent concentration, which can guide the product specification of the building material and control the dose received by a building occupant. (author)

  10. Micromechanics and constitutive models for soft active materials with phase evolution

    Wang, Binglian

    Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.

  11. Next Generation , Lightweight, Durable Boot Materials to Provide Active & Passive Thermal Protection Project

    National Aeronautics and Space Administration — The objective of this NASA Phase I SBIR program is to leverage lightweight, durable materials developed by NanoSonic for use within extra vehicular activity (EVA)...

  12. 77 FR 38395 - Agency Information Collection Activities (Advertising, Sales, and Enrollment Materials, and...

    2012-06-27

    ... AFFAIRS Agency Information Collection Activities (Advertising, Sales, and Enrollment Materials, and Candidate Handbooks) Under OMB Review AGENCY: Veterans Benefits Administration, Department of Veterans... Approving Agency employees to ensure that educational institutions or its agents are following VA...

  13. Evaluation of Activation Energy (Ea) Profiles of Nanostructured Alumina Polycarbonate Composite Insulation Materials

    Sudha L. K.; Sukumar Roy; K. Uma Rao

    2014-01-01

    This paper focuses enhancement of the electrical insulation properties of commercial polycarbonate using nanostructured alumina as an additive material. Various polycarbonate composites have been prepared by varying the level of additive material and DC conductivity in presence of oxygen of the derived composite materials has been measured in which activation energy (Ea) profiles of the composites have been evaluated. Results show that the incorporation of additive significantly reduces the E...

  14. Progress in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania

    The paper gives a general overview of the progress, which has been done in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania. It describes the measures, which were taken to strengthen nuclear material accounting and control and physical protection. The current status of the national legislation and the functions of institutions involved in control of nuclear material and combating of illicit trafficking are discussed. (author)

  15. Post-Materialism : A Cultural Factor Influencing Total Entrepreneurial Activity Across Nations

    Uhlaner, Lorraine; Thurik, A. Roy

    2004-01-01

    The study of predictors of entrepreneurial activity at the country level has been dominated by economic influences. However, the relative stability of differences in entrepreneurial activity across countries suggests that other forces such as institutional and/or cultural factors are at play. The objective of this paper is to explore more specifically how post-materialism may help to explain differences in total entrepreneurial activity across countries. Total entrepreneurial activity is defi...

  16. Research activities on structure materials of spallation neutron source at SINQ

    Bauer, G.S.; Dai, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    With the growing interests on powerful spallation neutron sources, especially with liquid metal targets, and accelerator driven energy systems, spallation materials science and technology have been received wide attention. At SINQ, material research activities are focused on: a) liquid metal corrosion; b) radiation damage; and c) interaction of corrosion and radiation damage. (author) 1 fig., refs.

  17. Differences in the Gained Results of the Male Students’ Achievements in First Year in Sport and Sport’s Activities Schooling

    Mitrevski, Viktor; Georgiev, Georgi; Klincarov, Ilija; Popeska, Biljana

    2009-01-01

    The research conducted above 353 male and female high school students from few cities in Macedonia, needs three sub-examples of those examinee students. Those subexamples are all males and their number is 81 from first grade who regularly were attending the sport and sport’s activities schooling in different working conditions. With multi-variance and univariance analysis(MANOVA, ANOVA) there are differences among the achievements of the students, expressed by numerical mark grades in f...

  18. Methane activation under dielectric barrier discharge plasma interacting with mesoporous material

    Kim, J; Park, D; Lee, C.(Institute of Physics, Academia Sinica, Taipei, Taiwan); Lee, D H; Kim, T.

    2015-01-01

    International audience Direct methane activation on a mesoporous material under dielectric barrier discharge (DBD) plasma was investigated in the present study. The specific surface area of the mesoporous material (SBA-15) was controlled by varying the hydrothermal reaction temperature to investigate the effect of the specific surface area on the methane activation. As a result, methane conversion increased as the specific surface area increased and the discharge frequency decreased. Energ...

  19. Gain and energy storage in holmium YLF

    Storm, Mark E.; Deyst, John P.

    1991-01-01

    It is demonstrated that Q-switched holmium lasers are capable of high-gain and high-energy operation at 300 K. Small-signal gain coefficients of 0.50 and 0.12/cm have been measured in YLF and YAG, respectively. Small-signal gains of 0.50/cm are comparable to those achievable in Nd:YAG and are not typical of low-gain materials. This large gain in the Ho:YLF material is made possible by operating the amplifier in the ground state depletion mode. The amplifier performance data and associated analysis presented demonstrate that efficient energy storage is possible with very high excited state ion densities of the Ho 5I7 upper laser level. This is an important result since upconversion can limit the 5I7 population. Although upconversion was still present in this experiment, it was possible to achieve efficient energy storage, demonstrating that the problem is manageable even at high excitation densities in YLF.

  20. Textiles gain intelligence

    Paula Gould

    2003-10-01

    The term ‘smart dresser’ could soon acquire a new meaning. An unlikely alliance between textile manufacturers, materials scientists, and computer engineers has resulted in some truly clever clothing1–4. From self-illuminating handbag interiors to a gym kit that monitors workout intensity, the prototypes just keep coming. But researchers have yet to answer the million-dollar question, perhaps critical to consumer acceptance, will they go in the wash?

  1. Textiles gain intelligence

    Paula Gould

    2003-01-01

    Advances in textile technology, computer engineering, and materials science are promoting a new breed of functional fabrics. Fashion designers are adding wires, circuits, and optical fibers to traditional textiles, creating garments that glow in the dark or keep the wearer warm. Meanwhile, electronics engineers are sewing conductive threads and sensors into body suits that map users’ whereabouts and respond to environmental stimuli. Researchers agree that the development of genuinely interact...

  2. Reducing gain shifts in photomultiplier tubes

    Cohn, Charles E.

    1976-01-01

    A means is provided for reducing gain shifts in multiplier tubes due to varying event count rates. It includes means for limiting the number of cascaded, active dynodes of the multiplier tube to a predetermined number with the last of predetermined number of dynodes being the output terminal of the tube. This output is applied to an amplifier to make up for the gain sacrificed by not totally utilizing all available active stages of the tube. Further reduction is obtained by illuminating the predetermined number of dynodes with a light source of such intensity that noise appearing at the output dynode associated with the illumination is negligible.

  3. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  4. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (Norway))

    2012-01-15

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  5. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  6. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Martone, M. [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  7. Influence of Al content on textural properties and catalytic activity of hierarchical porous aluminosilicate materials

    Ling Xu; Limei Duan; Zongrui Liu; Jingqi Guan; Qiubin Kan

    2013-12-01

    A series of hierarchical porous aluminosilicate materials were prepared using hydrothermal treatment of the composite formed by polystyrene colloidal spheres and aluminosilicate gel. Influence of Al content on the textural properties, acidic properties and catalytic activity of the hierarchical porous aluminosilicate materials was studied. The results showed that textural and acidic properties of the hierarchical porous aluminosilicate materials were strongly related to Al content. As Al content is increased (Si/Al = 25), the hierarchical porous catalysts exhibited higher catalytic activity and major product selectivity for alkylation of phenol with tert-butanol than the catalysts with a lower Al content (Si/Al = 50).

  8. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  9. Recent activities of the nuclear materials accounting sub-committee of nuclear fuel fabricators

    The nuclear materials accounting sub-committee of the Japanese Commercial nuclear fuel fabricators has been active in tackling common issues associated with the nuclear materials accounting and safeguards matters. In addition to internal consultations among the fabricators there have been numerous meetings and information exchanges with relevant organizations relevant to the nuclear materials accounting and safeguards for promoting common interest that is to improve the efficiency and effectiveness of the nuclear materials control related activities. Whereas the fabricators are engaged in fierce battle each other to survive in the increasingly competitive nuclear fuel market, they are committed to mutually educate, endeavor and co-operate with the common cause of national and international authorities to improve the quality of the accounting and safeguards of the nuclear materials. This paper summarizes up-to-date status of the issues on the agenda of the committee such as Short Notice Random Inspection (SNRI). (author)

  10. Gain Flattening Filter Canceling Temperature Dependence of EDFA s gain

    M.; Ohmura; Y.; Ishizawa; H.; Nakaji; K.; Hashimoto; T.; Shibata; M.; Shigehara; A.; Inoue

    2003-01-01

    We have developed a gain flattening filter (GFF) for an erbium doped fiber (EDF) without temperature control systems. This GFF, which consists of temperature-sensitive long period gratings (LPGs) and a temperature compensated slanted fiber Bragg grating (SFBG), follows the gain shift of EDF with temperature. Gain variation of the EDFA less than 0.25dBp-p was achieved with the bandwidth of 37nm, and the temperature range 0-65℃ without any temperature control systems.

  11. Surface modification of powder materials and room temperature activation of V, Ni and TiFe

    Because many properties of materials are mainly affected by the structure of surface or surface layer, surface modification is becoming more and more important in physics and material science research. The surface modifications of bulk materials by laser, ion and electron beam have been extensively investigated and achieved success in many applications. In this paper the authors report the results on the surface modification of V, Nb and TiFe by mechanical alloying with a little LaNi5, which results in room temperature activation of these powder materials. About 10g of mechanically alloyed samples were put into a chamber of H-absorption apparatus and then activated at room temperature. The morphology, structure and composition of the alloyed particles were investigated by means of SEM, X-ray diffraction, TEM and electron microprobe respectively. As a comparison, the hydrogen absorption properties of metal V activated by traditional high temperature treatment were also measured

  12. Surface modification of powder materials and room temperature activation of V, Ni and TiFe

    Lue Manqi; Zhang Haifeng; Wang Yulan; Wei Wenduo (Academia Sinica, Shenyang (China). International Centre of Material Physics)

    1993-11-01

    Because many properties of materials are mainly affected by the structure of surface or surface layer, surface modification is becoming more and more important in physics and material science research. The surface modifications of bulk materials by laser, ion and electron beam have been extensively investigated and achieved success in many applications. In this paper the authors report the results on the surface modification of V, Nb and TiFe by mechanical alloying with a little LaNi[sub 5], which results in room temperature activation of these powder materials. About 10g of mechanically alloyed samples were put into a chamber of H-absorption apparatus and then activated at room temperature. The morphology, structure and composition of the alloyed particles were investigated by means of SEM, X-ray diffraction, TEM and electron microprobe respectively. As a comparison, the hydrogen absorption properties of metal V activated by traditional high temperature treatment were also measured.

  13. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...... the ppM level in samples of biological tissue....

  14. Instrumental neutron and photon activation analyses of selected geochemical reference materials

    Mizera, Jiří; Řanda, Zdeněk

    2010-01-01

    Roč. 284, č. 1 (2010), s. 157-163. ISSN 0236-5731 R&D Projects: GA AV ČR IAA300130706 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron activation analysis * photon activation analysis * geochemical reference materials Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.777, year: 2010

  15. Dense nanostructured materials obtained by spark plasma sintering and field activated pressure assisted synthesis starting from mechanically activated powder mixtures

    Bernard F.

    2004-01-01

    Full Text Available The preparation of highly dense bulk materials with a grain size in the range of a few to a few hundreds nanometers is currently the objective of numerous studies. In our research we have achieved a measure of success in this regard by using the methods of mechanically-activated, field-activated, pressure-assisted synthesis, MAFAPAS, which has been patented, and mechanically-activated spark plasma sintering, MASPS. Both methods, which consist of the combination of a mechanical activation step followed by a consolidation step under the simultaneous influence of an electric field and mechanical pressure, have led to the formation of dense nanostructured ceramics, intermetallics, and composites, such as, MoSi2 FeAl, NbAl3, and TiN-TiB2. In this report, both one-step synthesis-consolidation and sintering of different nanostructured materials by SPS and FAPAS were investigated. .

  16. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops' as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems

  17. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  18. Relative contributions of energy expenditure on physical activity, body composition and weight gain to the evolution of impaired glucose to tolerance to Frank diabetes

    There is a gradient of diabetes prevalence among populations of the African Diaspora, with a rate of about 1% in West Africa, 12% in Jamaica and 16% in the United States. A population-based survey was conducted in an urban community in Jamaica to document the risk factors for the evolution of impaired glucose tolerance to frank diabetes. In a sample of 614 adults, 239 men and 375 women, oral glucose tolerance tests and examinations were conducted at Baseline and after 4-years of Follow-Up. There were significant increases in virtually all weight and adiposity variables for both men and women. Energy expenditure was also measured in a subset of participants at Follow-Up and was related significantly to glucose tolerance status. Among men, baseline age, weight, fat mass, body fat, waist circumference, and change in waist circumference were predictive of worsening glucose tolerance status. Among women, only age and change in waist circumference was a significant predictor. No physical activity parameter was predictive of change in tolerance status. These results provide support for the need to decrease adiposity as an important mechanism to control the rise in diabetes prevalence. (author)

  19. Iron ore tailings used for the preparation of cementitious material by compound thermal activation

    Zhong-lai Yi; Heng-hu Sun; Xiu-quan Wei; Chao Li

    2009-01-01

    In the background of little reuse and large stockpile for iron ore railings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore tailings activated by compound thermal ac-tivation were studied. Testing methods, such as XRD, TG-DTA, and IR were used for researching the phase and structure variety of the iron ore tailings in the process of compound thermal activation. The results reveal that a new cementitious material that contains 30wt% of the iron ore tailings can be obtained by compounded thermal activation, whose mortar strength can come up to the stan-dard of 42.5 cement of China.

  20. The activity of nanocrystalline Fe-based alloys as electrode materials for the hydrogen evolution reaction

    Müller, Christian Immanuel; Sellschopp, Kai; Tegel, Marcus; Rauscher, Thomas; Kieback, Bernd; Röntzsch, Lars

    2016-02-01

    In view of alkaline water electrolysis, the activities for the hydrogen evolution reaction of nanocrystalline Fe-based electrode materials were investigated and compared with the activities of polycrystalline Fe and Ni. Electrochemical methods were used to elucidate the overpotential value, the charge transfer resistance and the double layer capacity. Structural properties of the electrode surface were determined with SEM, XRD and XPS analyses. Thus, a correlation between electrochemical and structural parameters was found. In this context, we report on a cyclic voltammetric activation procedure which causes a significant increase of the surface area of Fe-based electrodes leading to a boost in effective activity of the activated electrodes. It was found that the intrinsic activity of activated Fe-based electrodes is very high due to the formation of a nanocrystalline surface layer. In contrast, the activation procedure influences only the intrinsic activity of the Ni electrodes without the formation of a porous surface layer.

  1. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. PMID:20382474

  2. Use of electrochemically activated aqueous solutions in the manufacture of fur materials

    Danylkovych, Anatoliy G.; Lishchuk, Viktor I.; Romaniuk, Oksana O.

    2016-01-01

    The influence of characteristics of electrochemically activated aqueous processing mediums in the treatment of fur skins with different contents of fatty substances was investigated. The use of electroactive water, namely anolytes and catholytes, forgoing antiseptics or surface-active materials, helped to restore the hydration of fur skins and to remove from them soluble proteins, carbohydrates and fatty substances. The activating effect of anolyte and catholyte in solutions of water on the p...

  3. Influence of mechanochemical activation of a charge on properties of mullite-tialite materials

    Antsiferov V.N.

    2004-01-01

    Full Text Available The influence of mechanochemical activation (MCA of a kaolin-containing charge on the strength of mullite-tialite materials (obtained using methods of semidry molding and polymeric matrix duplication was studied. It is shown that spectral and X-ray indexes of crystallinity of kaolin activated under similar conditions could be used as criteria of MCA efficiency. Parameters of mullite-tialite charge (containing kaolin, alumina and anatase activation were optimized. .

  4. Alkali-activated binders : a review : part 2. about materials and binders manufacture

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2008-01-01

    This paper summarizes current knowledge about alkali-activated binders, by reviewing previously published work. As it is shown in Part 1, alkali-activated binders have emerged as an alternative to (ordinary Portland cement) OPC binders, which seem to have superior durability and environmental impact. The subjects of Part 2 of this paper are prime materials, alkaline activators, additives, curing type and constituents mixing order. Practical problems and theoretical questions are discussed. To...

  5. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber

  6. Saving and gaining energy

    In this interview with Dirk U. Hindrichs from the Schueco International KG company, differences between ecological and economical points of view in general are discussed, as is the world's energy consumption and the visions held by the Schueco company in this respect. The importance of building facades, windows and photovoltaics for his business is discussed, as are solar thermal systems for the production of heat and cold. Further, energy-efficiency and examples of buildings realised internationally are discussed and co-operation with important players in the climate protection area is noted. Hindrichs' opinion, that pro-active actions must be taken by entrepreneurs, is noted.

  7. Quantitative measurements of trace elements with large activation cross section for concrete materials in Japan

    It is expected that some nuclear power reactors are decommissioned successively in the near future, since the nuclear power technology matures in Japan. Then, what proportion of the massive concrete waste materials is regarded as radioactive waste materials? It is a serious problem. Suzuki et at., have measured specific activities for concrete materials in Japan. In present study, we have measured quantitatively microelements with large activation cross section in concrete materials, and furnish basic data for the guiding principle of concrete waste materials. We have collected 158 samples of concrete materials in Japan. The samples were ground into pieces of 100 to 200 meshes. The amount of 100 mg in each sample was exposed to neutrons for 1 h in the nuclear reactor of KUR. We have measured radioactive elements of medium life time (La-140, Np-239, etc.) one week later, and radioactive elements of long life time (Co-60, Eu-152, etc.) one month later with Ge detector. Nineteen microelements with large activation cross section were detected. The distribution of Co-60 and Eu-152 concentrations was obtained. The mean concentration of Co-60 is 15.7 ppm, and gabbros, peridotites and basalts have high Co-60 concentrations. The mean value of Eu-152 is 8.8 x 10-1 ppm. Andesites, basalts, sandstones and shales have high Eu-152 concentrations. The activated concentrations for cement depend on the place of the origin. Since the concrete materials with low natural radioactivities as gabbros and peridotites have a tendency to activation, it is necessary to pay attention for concrete materials in nuclear power plant. The natural specific activities included in concrete materials in Japan are 556.2 (16.0-896.0) Bq/kg for K-40, 33.8 (2.96-87.6) Bq/kg for U-238) and 29.1 (2.63-48.4)Bq/kg for Th-232≅ Ra-228. The quantities of microelements with large activation cross section depend on the species of rocks and the level of the weathering. If we could collect many samples over Japan

  8. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H2MoO4), which is based on molybdenum trioxide (MoO3). The modification of various materials (e.g. polymers, metals) with MoO3 particles or sol–gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Highlights: ► The presented modifications of materials surfaces with MoO3 are non-cytotoxic and decrease biofilm growth and bacteria transmission. ► The material is insensitive towards emerging resistances of bacteria. ► Strong potential to reduce spreading of infectious agents on inanimate surfaces.

  9. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  10. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  11. A new method to evaluate the hydraulic activity of Al-Si materials

    2008-01-01

    Slag,fly ash,gangue and 500℃ calcined gangue are analyzed by using identical coupled plasma optical emission spectroscopy (ICP),X-ray photoelectron spec-troscopy (XPS),infrared spectroscopy (IR) and magnetic angle spinning nuclear magnetic resonance (MAS NMR). Research results show that there is a negative linear relationship between the Si 2p and Al 2p binding energies of Al-Si materials and the compressive strength of aluminosilicate based cementitious materials prepared with these Al-Si materials,i.e. the lower the binding energies,the higher the compressive strength. Indeed,the Si 2p and Al 2p binding energies of Al-Si materials can be used to indicate their hydraulic activity. The binding energies of the four examined materials increase in the order of slag,fly ash,500℃ calcined gangue and untreated gangue. Moreover,the binding energies of Si 2p,Al 2p and O 1s of every Al-Si material have excellent correlation. By using the Al 2p binding energy and 27Al MAS NMR spectra,the coordination number of aluminum in slag is determined to be four,while that in gangue,is six. Based on the aforementioned discoveries,this paper presents a new effective method to evaluate the hydraulic activity of Al-Si materials by using the surface binding energies of silicon and alu-minum of Al-Si materials.

  12. Gain properties of dye-doped polymer thin films

    Gozhyk, I; Rabbani, H; Djellali, N; Forget, S; Chenais, S; Ulysse, C; Brosseau, A; Gauvin, S; Zyss, J; Lebental, M

    2014-01-01

    The demonstration of an electrically pumped organic laser remains a major issue of organic optoelectronics for several decades. Nowadays, hybrid pumping seems a promising compromise where the organic material is optically pumped by an electrically pumped inorganic device on chip. This technical solution requires therefore an optimization of the organic gain medium under optical pumping. Here, we report a detailed study of gain features of dye-doped polymer thin films, in particular we introduce the gain efficiency $K$, in order to facilitate comparison between material and experimental conditions. First, we measure the bulk gain by the means of a pump-probe setup, and then present in details several factors which modify the actual gain of the layer, namely the confinement factor, the pump polarization, the molecular anisotropy, and the re-absorption. The usual model to evaluate the gain leads to an overestimation by more than one order of magnitude, which stresses the importance to design the devices accordin...

  13. Active inspection fission signatures for the detection, quantification and identification of fissionable materials

    Recently there has been heightened interest in active inspection techniques that can nondestructively detect, identify and quantify fissionable materials for security, nonproliferation and nuclear forensics applications. These active techniques use a source of neutrons or high energy photons to stimulate nuclear reactions in the inspection object and then monitor the emitted secondary radiation for unique fissionable material signatures. These signatures are based on detecting emissions from fission reactions (e.g., prompt and delayed neutrons) and/or non fission reactions (e.g., nuclear resonance fluorescence). In this presentation, the authors will present recent experimental results using prompt neutrons, delayed neutrons and delayed γ rays as fissionable material signatures. The research first focused on how to detect these emissions in an intense radiation environment and the algorithms required to produce unique fissionable material signatures. The sensitivity, accuracy, speed and isotope specificity of each signature was then explored. Current work is focusing on how to effectively combine multiple signatures. (author)

  14. Impregnated active carbons to control atmospheric emissions: influence of impregnation methodology and raw material on the catalytic activity.

    Alvim-Ferraz, Maria C M; Gaspar, Carla M T B

    2005-08-15

    Previous studies have reported the influence of raw material on the catalytic activity of metal oxides impregnated in activated carbons. However, knowledge was as yet quite scarce for impregnation performed before activation. The main objective of the study here reported was the development of such knowledge. Olive stones, pinewood sawdust, nutshells, and almond shells were recycled to prepare the activated carbons. Transition metal oxides (CoO, Co3O4, and CrO3) were impregnated aiming to prepare activated carbons to be used for the complete catalytic oxidation of benzene. When impregnation was performed after activation the impregnated species were deposited on the internal surface, blocking part of the initial porous texture. When impregnation was performed before activation, the metal species acted as catalysts during the activation step, allowing better catalyst distribution on a more well-developed mesoporous texture. Co3O4 was the best catalyst and almond shells were the best support. With this catalyst/support pair a conversion of 90% was possible at 404 K, the lowest temperature of all the carbons studied. Good conversions were obtained at temperatures that guarantee carbon stability (lower than 575 K). It was concluded that activated carbon was a suitable support for metal oxide catalysts aiming for the complete oxidation of benzene, especially when a suitable porous texture is induced, by performing the impregnation step before activation. PMID:16173586

  15. Calculation of corrections in the neutron activation analysis of oxygen in powdered and granulated materials

    Presented is a formula for the correction calculation at the analysis of oxygen in materials by the neutron activation method. A nomogram is plotted for the calculation of corrections taking into account the oxygen of capsule material and of air being in the internal volume of the capsule due to its incomplete filling. The accuracy of corrections according to nomogram is 2-3x10-4 mass %

  16. Dual active material composite cathode structures for Li-ion batteries

    Whitacre, J.F. [Carnegie Mellon University, Departments of Materials Science and Engineering/Engineering and Public Policy, Pittsburgh, PA 15213 (United States); Zaghib, K. [Institut de Recherche d' Hydro-Quebec, 1800 Lionel Boulet, Varennes, QC (Canada); West, W.C.; Ratnakumar, B.V. [Jet Propulsion Laboratory, Electrochemical Technologies Group, California Institute of Technology, Pasadena, CA, 91109 (United States)

    2008-03-01

    The efficacy of composite Li-ion battery cathodes made by mixing active materials that possessed either high-rate capability or high specific energy was examined. The cathode structures studied contained carbon-coated LiFePO{sub 4} and either Li[Li{sub 0.17}Mn{sub 0.58}Ni{sub 0.25}]O{sub 2} or LiCoO{sub 2}. These active materials were arranged using three different electrode geometries: fully intermixed, fully separated, or layered. Discharge rate studies, cycle-life evaluation, and electrochemical impedance spectroscopy studies were conducted using coin cell test structures containing Li-metal anodes. Results indicated that electrode configuration was correlated to rate capability and degree of polarization if there was a large differential between the rate capabilities of the two active material species. (author)

  17. The determination of plutonium alpha activity in urine, faeces and biological materials

    Methods have been developed for the determination of plutonium alpha activity in urine, faeces and biological materials. The chemical stages involved give practically complete separation of all extraneous material from the plutonium, which is electrodeposited on to a 0.5 inch stainless steel disc to produce a thin high resolution source. The limit of detection is 0.025 μμc/sample (sixteen-hour count) when the sources are counted in a small scintillator counter, but is lowest when counted in a counter which counts particles of energy 5.05-5.25 MeV only, and which therefore discriminates against small quantities of α-active materials introduced with the reagents in the final electrodeposition stage of the process. (Any such alpha activity may readily be identified by alpha pulse height analysis). (author)

  18. Use of silicon carbide sludge to form porous alkali-activated materials for insulating application

    Prud'homme, E.; Joussein, E.; Rossignol, S.

    2015-07-01

    One of the objectives in the field of alkali-activated materials is the development of materials having greater thermal performances than conventional construction materials such as aerated concrete. The aim of this paper is to present the possibility to obtain controlled porosity and controlled thermal properties with geopolymer materials including a waste like silicon carbide sludge. The porosity is created by the reaction of free silicon contains in silicon carbide sludge leading to the formation of hydrogen. Two possible ways are investigated to control the porosity: modification of mixture formulation and additives introduction. The first way is the most promising and allowed the formation of materials presenting the same density but various porosities, which shows that the material is adaptable to the application. The insulation properties are logically linked to the porosity and density of materials. A lower value of thermal conductivity of 0.075 W.m-1.K-1 can be reached for a material with a low density of 0.27 g.cm-3. These characteristics are really good for a mineral-based material which always displays non-negligible resistance to manipulation.

  19. Drug-induced weight gain.

    Ness-Abramof, Rosane; Apovian, Caroline M

    2005-01-01

    Drug-induced weight gain is a serious side effect of many commonly used drugs leading to noncompliance with therapy and to exacerbation of comorbid conditions related to obesity. Improved glycemic control achieved by insulin, insulin secretagogues or thiazolidinedione therapy is generally accompanied by weight gain. It is a problematic side effect of therapy due to the known deleterious effect of weight gain on glucose control, increased blood pressure and worsening lipid profile. Weight gain may be lessened or prevented by adherence to diet and exercise or combination therapy with metformin. Weight gain is also common in psychotropic therapy. The atypical antipsychotic drugs (clozapine, olanzepine, risperidone and quetiapine) are known to cause marked weight gain. Antidepressants such as amitriptyline, mirtazapine and some serotonin reuptake inhibitors (SSRIs) also may promote appreciable weight gain that cannot be explained solely by improvement in depressive symptoms. The same phenomenon is observed with mood stabilizers such as lithium, valproic acid and carbamazepine. Antiepileptic drugs (AEDs) that promote weight gain include valproate, carbamazepine and gabapentin. Lamotrigine is an AED that is weight-neutral, while topiramate and zonisamide may induce weight loss. PMID:16341287

  20. Instrumental neutron activation analysis of marine sediment in-house reference material

    Reference materials play an important role in demonstrating the quality and reliability of analytical data. The advantage of using in-house reference materials is that they provide a relatively cheap option as compared to using commercially available certified reference material (CRM) and can closely resemble the laboratory routine test sample. A marine sediment sample was designed as an in-house reference material, in the framework of quality assurance and control (QA/QC) program of the Neutron Activation Analysis (NAA) Laboratory at Nuclear Malaysia. The NAA technique was solely used for the homogeneity test of the marine sediment sample. The CRM of IAEA- Soil 7 and IAEA- SL1 (Lake Sediment) were applied in the analysis as compatible matrix based reference materials for QA purposes. (Author)

  1. Toward improved guidelines for reduced activation materials development in the US

    A principal goal of the US fusion materials program is to develop new materials so as to minimize the activation of future fusion reactor structures. The objective is to improve the environmental acceptability of fusion power. The current guideline is that structural materials should meet the requirements of 10CFR61 for near-surface burial as radioactive waste. Analyses of the bases for the concentration limits in 10CFR61, and the trend toward conservatism in radioactive waste disposal, strongly suggest that the criteria in 10CFR61 will not be conservative when applied to fusion reactor waste materials. It is recommended that emphasis be placed on developing a strategy for the controlled recycling of radioactive materials within the nuclear industry. It is also recommended that a systematic sampling of the public perception of fusion power be initiated. (orig.)

  2. Preparation of Ammonia Adsorbent by Carbonizing and Activating Mixture of Biomass Material and Hygroscopic Salt

    LONG Zhen; BU Xianbiao; LU Zhenneng; LI Huashan; MA Weibin

    2015-01-01

    We put forward a new and ingenious method for the preparation of a new adsorbent by soaking, carbonizing and activating the mixture of hygroscopic salt and biomass material. The new adsorbent has high porosity, uniform distribution and high content of CaCl2, and exhibits high adsorption performance. The ammonia uptake and specific cooling power (SCP) at 5 min adsorption time can reach as high as 0.19 g•g-1 and 793.9 W•kg-1, respectively. The concept of utilizing the biomass materials and hygroscopic salts as raw materials for the preparation of adsorbents is of practical interest with respect to the potential quantity of biomass materials around the world, indicating that there would be a new market for biomass materials.

  3. Neutrons formed by heavy ions and activation induced in different materials

    This work deals with the Spiral project and more particularly with the neutrons flux formed by heavy ions and the activation induced in different materials. Indeed, the beams power suggests the interest of different materials behaviour study for allowing a possible selection to optimize radioprotection. Moreover, it is important to establish the activation mechanisms in order to be able to extrapolate the measures realized at 400 W (actual GANIL) to those of the future running taking into account the radioisotopes real mixtures formed during the reaction and their daughter products. A best knowledge of energizing and angular neutrons distributions is searched too. (O.L.). 11 refs., 23 figs., 9 tabs

  4. Gain Flattening Filter Canceling Temperature Dependence of EDFA's gain

    M. Ohmura; Y. Ishizawa; H. Nakaji; K. Hashimoto; T. Shibata; M. Shigehara; A. Inoue

    2003-01-01

    We have developed a gain flattening filter(GFF) for an erbium doped fiber (EDF) without temperature control systems. This GFF, which consists of temperature-sensitive long period gratings (LPGs)and a temperature compensated slanted fiber Bragg grating (SFBG), follows the gain shift of EDF with temperature. Gain variation of the EDFA less than 0.25dBp-p was achieved with the bandwidth of 37nm,and the temperature range 0-65℃ without and temperature control systems.

  5. Optical properties of nanowire metamaterials with gain

    Isidio de Lima, Joaquim Junior; Adam, Jost; Rego, Davi;

    2016-01-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide...... constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications....

  6. Scaling the Raman gain coefficient: Applications to Germanosilicate fibers

    Rottwitt, Karsten; Bromage, J.; Stentz, A.J.;

    2003-01-01

    This paper presents a comprehensive analysis of the temperature dependence of a Raman amplifier and the scaling of the Raman gain coefficient with wavelength, modal overlap, and material composition. The temperature dependence is derived by applying a quantum theoretical description, whereas the...... scaling of the Raman gain coefficient is derived using a classical electromagnetic model. We also present experimental verification of our theoretical findings....

  7. Post-Materialism as a Cultural Factor Influencing Entrepreneurial Activity across Nations

    Uhlaner, Lorraine; Thurik, Roy; Hutjes, J.

    2002-01-01

    textabstractThe study of the determinants of entrepreneurship at the country level has been dominated by economic influences. The relative stability of differences in levels of entrepreneurship across coun-tries suggests that other forces such as certain institutional and/or cultural factors are at play. The objective of this paper is to explore how post-materialism explains differences in entrepreneurial activity across countries. Entrepreneurial activity is defined as the percent of a count...

  8. A mini review on NiFe-based materials as highly active oxygen evolution reaction electrocatalysts

    Gong, Ming; Dai, Hongjie

    2014-01-01

    Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air battery, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the earl...

  9. Post-Materialism as a Cultural Factor Influencing Entrepreneurial Activity across Nations

    2002-01-01

    The study of the determinants of entrepreneurship at the country level has been dominated by economic influences. The relative stability of differences in levels of entrepreneurship across coun-tries suggests that other forces such as certain institutional and/or cultural factors are at play. The objective of this paper is to explore how post-materialism explains differences in entrepreneurial activity across countries. Entrepreneurial activity is defined as the percent of a country?s popula-...

  10. Incidents of illicit trafficking and other unauthorized activities involving nuclear and other radioactive materials (1993-2005)

    The confirmed incidents of illicit trafficking and other unauthorized activities involving nuclear and other radioactive materials between 1993-2005 shows that, 27% involved nuclear materials, 62% radioactive materials,7% involved both nuclear and other radioactive materials while the remainder involved other radioactive and non radioactive materials.Also 80% of nuclear material which was recovered during the same period was not reported as stolen or lost.

  11. Contribution of activation products to fusion accident risk: Part II. Effects of alternative materials and designs

    Comparison of accident-hazard potentials associated with neutron-activation products in fusion reactors of various designs and structural materials suffers from a number of shortcomings in the readily available hazard-index data. Neither inventories of curies nor biological hazard potentials (BHPs) are satisfactory indices of hazard even if consistently computed, and between-study inconsistencies in neutronics packages and BHP calculations further obscure the meaning of comparisons based on these measures. The authors present here the results of internally consistent calculations of radioactive inventories, BHPs, and off-site dose potentials associated with the first walls of nine reactor-design/first-wall-material combinations. A recent mirror-reactor design reduces off-site dose potentials by a factor of 2 compared to a muchstudied early tokamak, for a given first-wall material. Holding design fixed, HT-9 ferritic steel offers a factor of 2 reduction in dose potential compared to Type 316 stainless steel. By the dose-potential measure, molybdenum is the worst of the materials investigated and silicon carbide is by far the best. Hazards in realizable accidents depend not only on the hypothetical dose potentials, as calculated here, but also on the actual release fractions of first-wall (or other activated) material. Review of the theoretical and experimental evidence bearing on release fractions suggests that, for most candidate materials, high release fractions from designs containing liquid lithium cannot yet be convincingly ruled out

  12. Contribution of activation products to fusion accident risk: part II. Effects of alternative materials and designs

    Comparison of accident-hazard potentials associated with neutron-activation products in fusion reactors of various designs and structural materials suffers from a number of shortcomings in the readily available hazard-index data. Neither inventories of curies nor biological hazard potentials (BHPs) are satisfactory indices of hazard even if consistently computed, and between-study inconsistencies in neutronics packages and BHP calculations further obscure the meaning of comparisons based on these measures. We present here the results of internally consistent calculations of radioactive inventories, BHPs, and off-site dose potentials associated with the first walls of nine reactor-design/first-wall-material combinations. A recent mirror-reactor design reduces off-site dose potentials by a factor of 2 compared to a muchstudied early tokamak, for a given first-wall material. Holding design fixed, HT-9 ferritic steel offers a factor of 2 reduction in dose potential compared to Type 316 stainless steel. By the dose-potential measure, molybdenum is the worst of the materials investigated and silicon carbide is by far the best. Hazards in realizable accidents depend not only on the hypothetical dose potentials, as calculated here, but also on the actual release fractions of first-wall (or other activated) material. Review of the theoretical and experimental evidence bearing on release fractions suggests that, for most candidate materials, high release fractions from designs containing liquid lithium cannot yet be convincingly ruled out

  13. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min

  14. People* Working . . . *Especially Women . . . A Book of Materials, Activities, and Ideas for the Classroom Teacher.

    Valiant, Sharon

    This bibliography lists publications and other media, historical facts, and suggestions for activities that show women as working and accomplishing people. Materials are from all grade levels (K-12) and many subject areas. Arrangement is in three sections. Part I deals with women who have worked but not for wages, the pioneer, the homemaker, and…

  15. Natural activities of 238U, 232Th and 40K in building materials

    Seven kinds of building materials were analysed for 238U, 232Th and 40K using a direct γ-counting method. The activity concentrations measured for 238U (30-448 Bq kg-1) and 40K (328-7541 Bq kg-1) were greater than the world average activity for soil (25 and 370 Bq kg-1, respectively) for all building materials analysed, while the activity concentrations of 232Th were found to exceed the average of 25 Bq kg-1 (soil) for red-clay brick (51 Bq kg-1) and ceiling asbestos sheet materials (162 Bq kg-1). The calculated Ra equivalent activities (Raeq) for all materials are higher than the world average value for soil (89 Bq kg-1). For red-clay brick and ceiling asbestos, the Raeq values are found to exceed the limit of 370 Bq kg-1, equivalent to a γ-dose of 1.5 mSv yr-1. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Active packaging materials from Poly(Lactic Acid)and Pectin composites

    Active packaging of foods is receiving considerable attention from the food industry and food researchers. The ability to wrap foods in packaging materials that can provide additional functions, such as retaining freshness or preventing spoilage and pathogen growth, would be very important for the f...

  17. Active Learning and Just-in-Time Teaching in a Material and Energy Balances Course

    Liberatore, Matthew W.

    2013-01-01

    The delivery of a material and energy balances course is enhanced through a series of in-class and out-of-class exercises. An active learning classroom is achieved, even at class sizes over 150 students, using multiple instructors in a single classroom, problem solving in teams, problems based on YouTube videos, and just-in-time teaching. To avoid…

  18. Progress report on R + D activities in 1980 of the Institut fuer Material- und Festkoerperforschung

    The activities of IMF in the following fields are discussed: 1) Project Schneller Brueter (core, cladding, and structural materials; safety analyses; instrumentation; core monitoring.) 2) Project Nukleare Sicherheit (fuel element behaviour during accidents; core meltdown) 3) Project Wiederaufarbeitung und Abfallbehandlung (reprocessing and waste treatment) 4) Fusion technology 5) Innovation research. (RW)

  19. Low-Activation structural ceramic composites for fusion power reactors: materials development and main design issues

    This paper is devoted to the development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (orig.)

  20. Activation of TZM and stainless steel divertor materials in the NET fusion machine

    This paper presents the results of the activation and decay heat calculations for the divertor plate materials of the Next European Torus (NET). The basic option assessed enables molybdenum alloy TZM and AISI 316L as material for divertor cooling channels. Burn time, effective irradiation time history, and fluence dependence on activation, decay heat, and contact dose is assessed. Impact of the material impurity level on the radioactive inventory is also investigated. The ANITA code is used, with updated cross sections and decay data libraries based on EFF-2 and EAF-3 evaluation files. The flux-weighted spectrum provided by XSDRNPM or ANISN 1-D codes has been used. The real NET geometry was modelled with the 3-D MCNP Monte Carlo neutron transport code. ((orig.))

  1. History, progress, achievement and future prospect of research activities on fusion materials by Japanese university researchers

    Research activities on fusion materials by Japanese university researchers are reviewed. Organized research on fusion materials has been initiated around mid 1970s under auspices of Monbusho (Ministry of Education, Science and Culture). Particularly effective was the Special Research Project on Fusion for fiscal year 1980 - 1989. At the same time, Japan/U.S. collaboration on fusion materials (1982 - 2000) has been very successful, yielding numerous useful results. The highlights of the technical achievement of these projects are briefly summarized. Both of these projects may be characterized to be composed of two major tasks, namely, fundamental aspects of alloy development for fusion and high fluence irradiation effects under fusion reactor environment. The basic philosophy of the project is discussed. The recent trend is to organize the university research activities into a comprehensive research network. (orig.)

  2. Low-activation structural ceramic composites for fusion power reactors: materials development and main design issues

    Development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics is discussed, for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (author) 11 refs.; 3 figs

  3. Large-Area, Highly Ordered Array of Graphitic Carbon Materials Using Surface Active Chitosan Prepatterns.

    Baek, Youn-Kyoung; Kim, Dae Woo; Yang, Seung Bo; Lee, Jung-Goo; Kim, Young Kuk; Jung, Hee-Tae

    2015-02-01

    We demonstrate that chitosan prepatterns can generate not only highly periodic DNA pattern but also various types of graphitic carbon materials such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO) and reduced graphene oxide (RGO). Scanning electron microscopy (SEM), fluorescence imaging and Raman spectroscopic results revealed that the graphitic carbon materials were selectively deposited on the surface of the periodic chitosan patterns by the electrostatic interaction between protonated amine groups of chitosan and the negative charged carbon materials. One proof-of-concept application of the system to the fabrication of electrical devices based on the micropatterns of SWNTs and RGO was also demonstrated. The strategy to use highly surface active chitosan pattern that can easily fabricate highly periodic pattern via a variety of lithographic tools may pave the way for the production of periodic arrays of graphitic carbon materials for large area device integration. PMID:26353637

  4. Trace element determination in a mussel reference material using short irradiation instrumental neutron activation analysis

    Moreira, Edson G.; Seo, Daniele; Vasconcellos, Marina B.A.; Saiki, Mitiko, E-mail: emoreira@ipen.b, E-mail: mbvascon@ipen.b, E-mail: mitiko@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The production of certified reference materials in Brazil, and the consequent availability to national end users, is an important task for the enhancement of Metrology in Chemistry status in the country, as these materials are used for method validation, equipment calibration and for establishing metrological traceability links. In this study, Instrumental Neutron Activation Analysis (INAA) was applied to the determination of magnesium, manganese and vanadium in a mussel reference material produced at IPEN-CNEN/SP. For the determination of these elements via the comparative INAA method, the respective analytical radionuclides, {sup 27}Mg, {sup 56}Mn, and {sup 52}V, are short lived and then, short irradiations are used. The main advantage over longer irradiation methods is the faster output of analytical results. Six subsamples from two bottles of the Perna perna mussel reference material were analyzed. Each subsample was simultaneously irradiated with elemental standards for 10 s at the IEA - R1 research nuclear reactor through a pneumatic transfer system. After suitable decay periods, gamma radioactivity measurements were carried out, using a hyperpure germanium detector. The accuracy of the method was checked by using the NIST SRM 1566b - 'Oyster Tissue' certified reference material. The comparison of the obtained results to the robust mean of the interlaboratorial collaborative trial used for the characterization of the mussel reference material showed that the short irradiation INAA method is suitable for the characterization of new reference materials. (author)

  5. Trace element determination in a mussel reference material using short irradiation instrumental neutron activation analysis

    The production of certified reference materials in Brazil, and the consequent availability to national end users, is an important task for the enhancement of Metrology in Chemistry status in the country, as these materials are used for method validation, equipment calibration and for establishing metrological traceability links. In this study, Instrumental Neutron Activation Analysis (INAA) was applied to the determination of bromine, chlorine, magnesium, manganese, potassium and vanadium in a mussel reference material produced at IPEN-CNEN/SP. For the determination of these elements via the comparative INAA method, the respective analytical radionuclides, 80Br, 38Cl, 27Mg, 56Mn, 42K and 52V, are short lived and then, short irradiations are used. Six subsamples from two bottles of the Perna perna mussel reference material were analyzed. Each subsample was simultaneously irradiated with elemental standards for 10 s at the IEA-R1 research nuclear reactor through a pneumatic transfer system. After suitable decay periods, gamma radioactivity measurements were carried out, using a hyperpure germanium detector. The accuracy of the method was checked by using the NIST SRM 1566b-'Oyster Tissue' certified reference material. The comparison of the results obtained in this study to the robust mean of the interlaboratorial collaborative trial used for the characterization of the mussel reference material was performed via z-score tests. The comparison showed that the short irradiation INAA method is suitable for the characterization of new reference materials. (author)

  6. Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules.

    Díaz, Dafne I; Beristain, Cesar I; Azuara, Ebner; Luna, Guadalupe; Jimenez, Maribel

    2015-01-01

    Blackberry (Rubus fruticosus) juice possesses compounds with antioxidant activity, which can be protected by different biopolymers used in the microencapsulation. Therefore, the effects of cell wall material including maltodextrin (MD), Arabic gum (GA) and whey protein concentrate (WPC) were evaluated on the physicochemical and antioxidant properties of encapsulated blackberries using a spray-drying technique. Anthocyanin concentration, polymeric colour, total polyphenols, radical scavenging activity of the 1,1-diphenyl-2-picrilhydrazil radical, reducing power and the stability at different storage conditions were evaluated. GA and MD conferred a similar protection to the antioxidant compounds when the microcapsules were stored at low water activities (aw  0.902), whereas WPC presented a high protection. Therefore, the selection of the best wall material for blackberry juice encapsulation depends of the conditions of storage of the powder. PMID:26006741

  7. Leaching experiment of alkali-activated cementitious materials solidified forms of radioactive incineration ash

    In order to solidify safely radioactive incineration ash, the alkali-activated cementitious materials were prepared with slag, fly ash, cement and zeolite, with water glass or sodium silicate (sulfate) as the activator. The recommended formulation of solidification matrix is 65% (mass fraction, the same below) slag, 10% fly ash, 20% zeolite, 2% cement, 3% Ca (OH)2. Adding quantity of water glass is 5%, when addition of 30% radioactive incineration ash, with 0.34-0.35 of the ratio of water and ash, the mechanical property of solidification forms performs well. The leaching rate of U for the cement wastes forms is 6.0 x 10-6 cm/d in 35 d, and the long time leaching rate is very low. The results of diffusion coefficient of U in the solidification forms indicate that retention capability about U of alkali-activated cementitious materials si good. The leaching mechanisms of solidification forms are discussed. (authors)

  8. A computational framework for the optimal design of morphing processes in locally activated smart material structures

    A proof-of-concept study is presented for a strategy to obtain maximally efficient and accurate morphing structures composed of active materials such as shape memory polymers (SMP) through synchronization of adaptable and localized activation and actuation. The work focuses on structures or structural components entirely composed of thermo-responsive SMP, and particularly utilizes the ability of such materials to display controllable variable stiffness. The study presents and employs a computational inverse mechanics approach that combines a computational representation of the SMP thermo-mechanical behavior with a nonlinear optimization algorithm to determine location, magnitude and sequencing of the activation and actuation to obtain a desired shape change subject to design objectives such as prevention of damage. Two numerical examples are presented in which the synchronization of the activation and actuation and the location of activation excitation were optimized with respect to the combined thermal and mechanical energy for design concepts in morphing skeletal structural components. In all cases the concept of localized activation along with the optimal design strategy were able to produce far more energy efficient morphing structures and more accurately reach the desired shape change in comparison to traditional methods that require complete structural activation prior to actuation. (paper)

  9. Influence of KOH activation techniques on pore structure and electrochemical property of carbon electrode materials

    LI Jing; LI Jie; LAI Yan-qing; SONG Hai-sheng; ZHANG Zhi-an; LIU Ye-xiang

    2006-01-01

    Taking the selection of coal-tar pitch as precursor and KOH as activated agent, the activated carbon electrode material was fabricated for supercapacitor. The surface area and the pore structure of activated carbon were analyzed by Nitro adsorption method. The electrochemical properties of the activated carbons were determined using two-electrode capacitors in 6 mol/L KOH aqueous electrolytes. The influences of activated temperature and mass ratio ofKOH to C on the pore structure and electrochemical property of porous activated carbon were investigated in detail. The reasons for the changes of pore structure and electrochemical performance of activated carbon prepared under different conditions were also discussed theoretically. The results indicate that the maximum specific capacitance of 240 F/g can be obtained in alkaline medium, and the surface area, the pore structure and the specific capacitance of activated carbon depend on the treatment methods; the capacitance variation of activated carbon cannot be interpreted only by the change of surface area and pore structure, the lattice order and the electrolyte wetting effect of the activated carbon should also be taken into account.

  10. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    Yaoran Li

    Full Text Available Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4 were larger than gains in the capacity of the central executive (d = 1.6 that in turn were larger than gains in phonological memory span (d = 1.1. First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  11. Influence of Composite Phosphate Inorganic Antibacterial Materials Containing Rare Earth on Activated Water Property of Ceramics

    梁金生; 梁广川; 祁洪飞; 吴子钊; 冀志江; 金宗哲

    2004-01-01

    Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of 17O-NMR for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.

  12. High Efficient Enrichment and Activated Dissolution of Refractory Low Grade Rh-containing Material

    WU Xiaofeng; DONG Haigang; TONG Weifeng; ZHAO Jiachun; ZENG Rui

    2012-01-01

    Aiming to the low-grade rhodium-containing waste materials,a new process was proposed to enrich and activate rhodium by smelting using iron oxide as a trapping agent and activator.A rhodium concentrate was obtained by the separation of base metals and precious metals.The concentrate was reacted with dilute aqua regia to obtain rhodium solution.The factors influencing the enrichment and activation effects were discussed in this paper.The results showed that the dissolution rate is greater than 99% under the optimum conditions.In this process,the activation of rhodium was finished in the enrichment process.The iron oxide is both a trapping agent and activator,which simplifies the process and reduce the cost.

  13. CO2 Activated Carbon Aerogel with Enhanced Electrochemical Performance as a Supercapacitor Electrode Material.

    Lee, Eo Jin; Lee, Yoon Jae; Kim, Jeong Kwon; Hong, Ung Gi; Yi, Jongheop; Yoon, Jung Rag; Song, In Kyu

    2015-11-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde in ambient conditions. A series of activated carbon aerogels (ACA-X, X = 1, 2, 3, 4, 5, and 6 h) were then prepared by CO2 activation of CA with a variation of activation time (X) for use as an electrode material for supercapacitor. Specific capacitances of CA and ACA-X electrodes were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples, ACA-5 h showed the highest BET surface area (2574 m2/g) and the highest specific capacitance (100 F/g). It was found that CO2 activation was a very efficient method for enhancing physicochemical property and supercapacitive electrochemical performance of activated carbon aerogel. PMID:26726618

  14. Assembly of a Metalloporphyrin-Polyoxometalate Hybrid Material for Highly Efficient Activation of Molecular Oxygen.

    Zhu, Shu-Lan; Xu, Xuan; Ou, Sha; Zhao, Min; He, Wei-Long; Wu, Chuan-De

    2016-08-01

    Organic metalloporphyrins and inorganic polyoxometalates (POMs) are two kinds of efficient molecular catalysts to prompt a variety of chemical reactions. They have been used as active moieties for the synthesis of porous materials to realize highly efficient heterogeneous catalysis. Both of them are regarded as the organic/inorganic equivalent counterparts to complement the individual features. Therefore, the combination of metalloporphyrins and POMs in the same hybrid materials might generate interesting catalytic properties by emerging their unique individual functions. To avoid the random connections between metalloporphyrins, POMs, and lanthanide connecting nodes, we have developed a "step-by-step" aggregation strategy, including the reaction of POMs with metal ions to bind metal nodes on the surfaces of POMs at the first step and the reaction of the resulting POM derivatives with metalloporphyrin linkers to result in hybrid materials at the second step. Catalytic experiments demonstrate that the resulting hybrid material exhibits interesting catalytic properties in the heterogeneous epoxidation of olefins, in which the conversion, epoxide selectivity, turnover number, and turnover frequency for the epoxidation of styrene to (1,2-epoxyethyl)benzene are >99%, 94%, 220000, and 22000 h(-1), respectively. These results demonstrate that the collaborative work of multiple active sites in hybrid materials can achieve superior high efficiency in heterogeneous catalysis. PMID:27408952

  15. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  16. Certification of biological reference materials: participation of the Neutron Activation Laboratory (LAN-IPEN/CNEN-SP)

    Analytical laboratories have as one of their important goals to demonstrate their competence allowing international acceptance and comparison of analytical data. The IPEN Neutron Activation Laboratory (LAN-IPEN) has implemented its Quality Assurance Program which comprises, among other activities, the participation in intercomparison runs. As a part of this Quality Assurance Program, LAN-IPEN has participated in interlaboratorial trials to analyze two biological candidate reference materials: INCT-CF-3 Corn Flour and INCT-SBF-4 Soya Bean Flour from the Institute of Nuclear Chemistry And Technology (Warszawa, Poland). The elements Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn were analyzed in the candidate reference materials by instrumental neutron activation analysis (INAA). The performance of the laboratory was statistically evaluated in relation to the consensus values for these materials using the Z-Score test. This laboratory evaluation method has been accepted as a standard by ISO/IUPAC. In the present study, adequate Z-Score values (|Z|<2) were observed for all of the analyzed elements, confirming the accuracy of the nuclear methodology employed. The contribution of LAN-IPEN in the certification of the reference materials analyzed was very important, since the results provided were used in the statistical evaluation of the certified value. (author)

  17. Effects of Gain Changes on RPM Performance

    The mission of the U.S. Department of Energy/National Nuclear Security Administration's (DOE/NNSA's) Office of the Second Line of Defense (SLD) is to strengthen the capability of foreign governments to deter, detect, and interdict the illicit trafficking of special nuclear and other radioactive materials across international borders and through the global maritime shipping system. The goal of this mission is to reduce the probability of these materials being fashioned into a weapon of mass destruction or radiological dispersal device that could be used against the United States or its international partners. This goal is achieved primarily through the installation and operation of radiation detection equipment at border crossings, airports, seaports, and other strategic locations around the world. In order to effectively detect the movement of radioactive material, the response of these radiation detectors to various materials in various configurations must be well characterized. Oak Ridge National Laboratory (ORNL) investigated two aspects of Radiation Portal Monitor (RPM) settings, based on a preliminary investigation done by the Los Alamos National Laboratory (LANL): source-to-detector distance effect on amplifier gain and optimized discriminator settings. This report discusses this investigation. A number of conclusions can be drawn from the ORNL testing. First, for increased distance between the source and the detector, thus illuminating the entire detector rather than just the center of the detector (as is done during detector alignments), an increase in gain may provide a 5-15% increase in sensitivity (Fig. 4). However, increasing the gain without adjusting the discriminator settings is not recommended as this makes the monitor more sensitive to electronic noise and temperature-induced fluctuations. Furthermore, if the discriminators are adjusted in relation to the increase in gain, thus appropriately discriminating against electronic noise, the sensitivity

  18. Acoustic gain in piezoelectric semiconductors at ε-near-zero response

    Willatzen, Morten; Christensen, Johan

    2014-01-01

    We demonstrate strong acoustic gain in electric-field biased piezoelectric semiconductors at frequencies near the plasmon frequency in the terahertz range. When the electron drift velocity produced by an external electric field is higher than the speed of sound, Cherenkov radiation of phonons...... an electrically controlled piezoelectric slab waveguide. This extreme sound field enhancement in an active piezo material shows potential for acoustic sensing and loss compensation in metamaterials and nonlinear devices....

  19. Activation of structural materials due to recoil protons in light water reactor

    The long-lived radioactivities of structural materials induced by recoil protons in BWR were estimated for land disposal of low level waste after reactor decommisioning. Reactions of interest are listed. Method of calculation of the proton spectrum in materials was developed. A program PEGASUS-P was developed by modifying PEGASUS to calculate proton induced reaction cross sections. The proton-induced activities are shown as not exceeding 1/1000 of that of a typical neutron induced nuclide, Ni-63, for cooling up to 1000 years after irradiation of 40 years. (author)

  20. The feasibility of recycling and clearance of active materials from fusion power plants

    Zucchetti, M. [EURATOM/ENEA Fusion Association, Politecnico di Torino (Italy)]. E-mail: massimo.zucchetti@polito.it; El-Guebaly, L.A. [University of Wisconsin-Madison, Madison, WI (United States); Forrest, R.A. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Marshall, T.D. [Idaho National Laboratory, Idaho Falls (United States); Taylor, N.P. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Tobita, K. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2007-08-01

    In order to minimize the quantity of active materials that require long-term storage, arising during operation and after fusion power plant decommissioning, maximum use should be made of both recycling within the nuclear industry and clearance. For the latter, revised limits have been recently issued at the international level and in the US and Europe. In this paper the implications for fusion materials of these new levels are considered. Concerning recycling, power plant studies have employed criteria based solely on radiological parameters. Reviews of remote procedures currently used within the nuclear industry suggest that these criteria have been unduly conservative and should be revised.

  1. Instrumental neutron activation analysis for the certification of biological reference materials

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 22 minor and trace constituents in two proposed Standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques, Czechoslovakia. Also some biological standards such as Bowen's Kale, Cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of reference materials of biological matrices. (author). 7 refs., 1 tab

  2. High gain/broadband oxide glasses for next generation Raman amplifiers

    Rivero, Clara A.

    Interest in Raman amplification has undergone a revival due to the rapidly increasing bandwidth requirements for communications transmission, both for long haul and local area networks, and recent developments in the telecom fiber industry and diode laser technology. In contrast to rare earth doped fiber amplifiers, for which the range of wavelengths is fixed and limited, Raman gain bandwidths are larger and the operating wavelength is fixed only by the pump wavelength and the bandwidth of the Raman active medium. In this context, glasses are the material of choice for this application due to their relatively broad spectral response, and ability of making them into optical fiber. This dissertation summarizes findings on different oxide-based glasses that have been synthesized and characterized for their potential application as Raman gain media. Two main glass families were investigated: phosphate-based glass matrices for broadband Raman gain application and TeO2-based glasses for high Raman gain amplification. A phosphate network was preferred for the broadband application since the phosphate Raman active modes can provide amplification above 1000 cm-1, whilst TeO2-based glasses were selected for the high gain application due to their enhanced nonlinearities and polarizabilities among the other oxide-based network formers. The results summarized in this dissertation show that phosphate-based glasses can provide Raman amplification bandwidths of up to 40 THz, an improvement of almost 5 times the bandwidth of SiO2. On the other hand, tellurite-based glasses appear to be promising candidates for high gain discrete Raman applications, providing peak Raman gain coefficients of up to 50 times higher than SiO 2, at 1064 nm. Although, visible spontaneous Raman scattering cross-section measurement is the most frequently used tool for estimating the strength and spectral distribution of Raman gain in materials, especially glasses, there are some issues that one needs to be

  3. Red, green, and blue lasing enabled by single-exciton gain in colloidal quantum dot films

    Nurmikko, Arto V.; Dang, Cuong

    2016-06-21

    The methods and materials described herein contemplate the use films of colloidal quantum dots as a gain medium in a vertical-cavity surface-emitting laser. The present disclosure demonstrates a laser with single-exciton gain in the red, green, and blue wavelengths. Leveraging this nanocomposite gain, the results realize a significant step toward full-color single-material lasers.

  4. Neutron activation analysis applied to the chemical composition of metallic materials

    The physical properties of metallic materials, such as mechanical properties, corrosion resistance and others are determined by their chemical composition, which influences the various steps of the production process and the economic value attained by the materials. Instrumental neutron activation analysis was used in this work to evaluate the chemical composition of iron, steel, silicon and ferrosilicon reference materials. The concentration of the elements As, Co, Cr, Mn, Mo, Ni, V and W were analyzed in the iron and steel samples whereas As, Br, Co, Cr, K, Eu, Fe, La, Mn, Mo, Na, Nd, U, Th, Sb, Sc, Sm, Tb, V, W and Yb were determined in silicon and ferrosilicon samples. Accuracy was assessed comparing obtained results to reference materials certified values. Results of about 10 % were achieved for most of the elements. Precision was assessed by replicate measurements, and the results of about 10 % were also achieved. Accuracy and precision results showed that the technique is suitable for the metallic materials composition analysis. Interferences of Cr and Mn in V, Fe and Co in Mn; Co in Fe and Cr in Ti were quantified and only the last one was critical to the analysis of the materials employed in this work. (author)

  5. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    Rawl, Richard R [ORNL; Scofield, Patricia A [ORNL; Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low

  6. Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure-activity relationship, and membrane-active mode of action.

    Hoque, Jiaul; Akkapeddi, Padma; Yadav, Vikas; Manjunath, Goutham B; Uppu, Divakara S S M; Konai, Mohini M; Yarlagadda, Venkateswarlu; Sanyal, Kaustuv; Haldar, Jayanta

    2015-01-28

    Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint. PMID:25541751

  7. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material; Remocion de azul indigo y cadmio presentes en soluciones acuosas empleando un material zeolitico modificado y un material carbonoso activado

    Gutierrez S, E. E.

    2011-07-01

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na{sup +} and Fe{sup 3+} solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous

  8. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".

    Banerjee, Arghya; Chattopadhyay, Kalyan K

    2008-01-01

    Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices. PMID:19076042

  9. The activation analysis of the pinbadge paint that is doubted as a radioactive material

    Some toy badges that we obtained emitted fluorescence strongly, when there were irradiated by an ultra violet lamp in a dark room. They were left on X ray negative films for several hours and one of them blackened films. Owing to these facts, we doubted if it is a radioactive material. In order to search if it is a radioactive material or not, a portion of the badge paint was examined by a liquid scintillation analyzer and an ammeter which is connected to a photo diode. Consequently, the badge paint was not identified a radioactive material. Then, to find the reason why some badges emitted under an ultra violet lamp and one badge paint blackened X ray negative films, neutron activation analysis was applied to the badge paint sample. As a result, we finally found that the badge paint was made of phosphorescent phosphor because it contains aluminum. (author)

  10. A chemical activity evaluation of two dental calcium silicate-based materials

    Chalas Renata

    2015-06-01

    Full Text Available Calcium silicate-based materials are interesting products widely used in dentistry. The study was designed to compare the chemical reaction between analyzed two preparates and dentin during cavity lining. In our work, dentinal discs were prepared from human extracted teeth filled with Biodentine and MTA+. The samples were then analyzed by way of SEM, EDS and Raman spectroscopy. The obtained results revealed differences in elemental composition between both materials. Biodentine showed higher activity in contact with dentine. Moreover, the interfacial layer in the tooth filled by Biodentine was wider than that in the tooth filled with MTA+. The applied methods of analysis confirmed that both materials have a bioactive potential which is a promising ability.

  11. Non-destructive analysis of ancient Egyptian vitreous materials by neutron activation analysis

    Chemical compositions of ancient Egyptian glass are one of the key information for identifying the location of the original material for production. The ordinary chemical analysis is however restricted because variable remains can not be destroyed. Thus sensitive analytical method in non-destructive manner is required. The neutron activation analysis was used in this research and the content of Ca, Cl, Al and Mn were found in ancient Egyptian glass and peak area of them were compared with those in the sand samples taken from several areas around Egypt because sand was thought as the raw material of such glasses. As a result, we found three different patterns in chemical compositions in the surrounding sand samples and we expect this pattern might be a good indicator of location of raw sand material. (author)

  12. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    Highlights: ► The adsorption/desorption of chitosan onto PET plastic film was studied. ► Chitosan was reversible attached onto PET plastic films. ► Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  13. Assessment of alpha activity of building materials commonly used in West Bengal, India

    This paper, reports for the first time, an extensive study of alpha activity of all widely used building materials (plaster of Paris, stone chips, marble, white cement, mosaic stone, limestone, sand, granite, cement brick, asbestos, red brick, cement tile, ceramic tile and ceramics) in West Bengal, India. The alpha activities have been measured using Solid State Nuclear Track Detector (SSNTD), a very sensitive detector for alpha particles. The samples were collected from local markets of Kolkata. The measured average alpha activities ranged from 22.7 ± 2.5 to 590.6 ± 16.8 Bq kg-1. The alpha activity of ceramic tiles was highest and provides additional data to estimate the effect of environmental radiation exposure on human health

  14. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  15. Determination of trace elements in NIES environmental reference materials by instrumental neutron activation analysis

    Concentrations of trace elements in environmental reference materials prepared by the National Institute for Environmental Studies of Japan (NIES) were determined by instrumental neutron activation analysis (INAA). Mussel, Human Hair, Tea Leaves and Sargasso reference material samples (ca. 150∼1200 mg) were irradiated by thermal neutron without cadmium filter and epithermal neutron with cadmium filter at Musashi Institute of Technology Research Reactor (MITRR). The activated samples were measured by three methods; conventional γ-ray spectrometry using a coaxial Ge detector, anticoincidence counting spectrometry and coincidence counting spectrometry. The γ-ray spectrometric system (GAMA system) was developed by the authors. As a result, they could determined about 30 - 50 elements by the combination of these irradiation and counting methods. The analyzed values were in good agreement with NIES certified values

  16. High current gain transistor laser

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-06-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge.

  17. Gamma activity as a guide for the building raw materials selection and controlling the environmental hazards

    The spectrometric measurements can provide an alarm for the radiation activity and radioelement concentrations. The activity increase over the ambient background can be achieved by well calibrated gamma-spectrometers. In comparison between Wadi El-Dahl and Abu Zawal quarries for building raw materials (feldspar), the activity concentration of El-Dahl stream sediments are 54.5 and 44.5 Bq/kg for uranium and thorium respectively. While the activity concentration of Abu Zawal rock quarry are 167.03 and 79.77 Bq/kg for uranium and thorium respectively. These activities yielding effective dose rates of 0.63 mSv/y for Wadi El-Dahl stream sediments and 1.48 mSv/y for Abu Zawal rock quarry. In summary, the spectrometric measurements are excellent selective tool to monitoring the environment against the radiation risk. In this aspect, Wadi El-Dahl stream sediment quarry considered as the more suitable for producing feldspar as a raw materials to building industry. In comparison, Abu Zawal rock quarry has a higher effective dose rate exceeds the international permissible limits which is 1 mSv/y. A total of 19 feldspar samples were completely described regarding their general chemical features by using x-ray fluorescence. From the study all the samples contain high concentration of barium and rubidium which can separate using different methods in order to use in different important industry.

  18. Estimated long lived isotope activities in ET-RR-1 reactor structural materials for decommissioning study

    The first Egyptian research reactor, ET-RR-1 is tank type with light water as a moderator, coolant and reflector. Its nominal power is 2MWt and the average thermal neutron flux is 10 13 n/cm2 sec-1. Its criticality was on the fall of 1961. The reactor went through several modifications and updating and is still utilized for experimental research. A plan for decommissioning of ET-RR-1 reactor should include estimation of radioactivity in structural materials. The inventory will help in assessing the radiological consequences of decommissioning. This paper presents a conservative calculation to estimate the activity of the long lived isotopes which can be produced by neutron activation. The materials which are presented in significant quantities in the reactor structural materials are aluminum, cast iron, graphite, ordinary and iron shot concrete. The radioactivity of each component is dependent not only upon the major elements, but also on the concentration of the trace elements. The main radioactive inventory are expected to be from 60Co and 55Fe which are presented in aluminium as trace elements and in large quantities in other construction materials. (author)

  19. Guidance and methods for satisfying low specific activity material and surface contaminated object regulatory requirements

    The US Department of Transportation (DOT) and the US Nuclear Regulatory Commission (NRC) have prepared a comprehensive set of draft guidance for shippers and inspectors to use when applying the newly imposed regulatory requirements for low specific activity (LSA) material and surface contaminated objects (SCOs). These requirements represent significant departures in some areas from the manner in which these materials and objects were regulated by the earlier versions of the regulations. The proper interpretation and application of the regulatory criteria can require a fairly complex set of decisions be made. To assist those trying to apply these regulatory requirements, a detailed set of logic flow diagrams representing decisions related to multiple factors were prepared and included in the draft report for comment on Categorizing and Transporting Low Specific Activity Materials and Surface Contaminated Objects. These logic flow diagrams, as developed, are specific to the US regulations, but were readily adaptable to the IAEA regulations. The diagrams have been modified accordingly and tied directly to specific paragraphs in IAEA Safety Series No. 6. This paper provides the logic flow diagrams adapted to the IAEA regulations, and demonstrates how these diagrams can be used to assist consignors and inspectors in assessing compliance of shipments with the LSA material and SCO regulatory requirements

  20. Neutron induced activation in the EVEDA accelerator materials: Implications for the accelerator maintenance

    The Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility project should result in an accelerator prototype for which the analysis of the dose rates evolution during the beam-off phase is a necessary task for radioprotection and maintenance feasibility purposes. Important aspects of the computational methodology to address this problem are discussed, and dose rates for workers inside the accelerator vault are assessed and found to be not negligible.

  1. An accuracy analysis of Army Material System Analysis Activity discrete reliability growth model

    Thalieb, Rio M.

    1988-01-01

    The accuracy of the discrete reliability growth model developed by Army Material System Analysis Activity (AMSAA) is analysed. The mean, standard deviation, and 95 precent confidence interval of the estimate of reliability resulting from simulating the AMSAA discrete reliability growth model are computed. The mean of the estimate of reliability from the AMSAA discrete reliability growth model is compared with the mean of the reliability estimate using the Exponential discrete reliability grow...

  2. Neutron induced activation in the EVEDA accelerator materials: Implications for the accelerator maintenance

    Sanz, J. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain)], E-mail: jsanz@ind.uned.es; Garcia, M.; Sauvan, P.; Lopez, D. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain); Moreno, C.; Ibarra, A.; Sedano, L. [CIEMAT, 28040 Madrid (Spain)

    2009-04-30

    The Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility project should result in an accelerator prototype for which the analysis of the dose rates evolution during the beam-off phase is a necessary task for radioprotection and maintenance feasibility purposes. Important aspects of the computational methodology to address this problem are discussed, and dose rates for workers inside the accelerator vault are assessed and found to be not negligible.

  3. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Marlen Lopez; Ramon Rubio; Santiago Martın; Ben Croxford; Richard Jackson

    2015-01-01

    In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and nee...

  4. Neutron Activation Analysis of Biological Materials by Means of Neutron Multiplicator

    We have studied the possibilities of instrumental neutron activation analysis of freeze-dried biological materials performed with neutron multiplicator of average power (subcritical assembly PS-1). Neutron flux in the vertical channel amounts to 2.3*106n/cm2sec, concentrations of Na, Al and Mn were determined in freeze-dried samples of blue-green alga Spirulina platensis (S.platensis) (author)

  5. Adsorption and photocatalysis in water treatment:active, abundant and inexpensive materials and methods

    Pirilä, M. (Minna)

    2015-01-01

    Abstract Water contamination is a global problem and the growing utilization of limited water resources creates a need for efficient purification methods. Industrial effluents are polluting the natural waters, e.g. uncontrolled mining activities in developing countries have created numerous environmental hazards and different types of pollutants. This study focuses on novel adsorbents and photocatalytic materials in order to reach the aim of more efficient and affordable water treatment. ...

  6. Multifunctional Chitosan-Copper Oxide Hybrid Material: Photocatalytic and Antibacterial Activities

    Yuvaraj Haldorai; Jae-Jin Shim

    2013-01-01

    Chitosan (CS) anchored copper oxide (CuO) hybrid material was prepared by chemical precipitation method. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the formation of CS-CuO hybrid. Transmission electron microscopy (TEM) analysis showed the immobilization of CuO nanoparticles on the surface of CS. The hybrid was also characterized by thermogravimetric analysis (TGA) and zeta potential. The hybrid exhibited high photocatalytic activity as evident from t...

  7. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  8. Managing nuclear knowledge: IAEA activities and international coordination. Including resource material full text CD-ROM

    The present CD-ROM summarizes some activities carried out by the Departments of Nuclear Energy and Nuclear Safety and Security in the area of nuclear knowledge management in the period 2003-2005. It comprises, as open resource, most of the relevant documents in full text, including policy level documents, reports, presentation material by Member States and meeting summaries. The collection starts with a reprint of the report to the IAEA General Conference 2004 on Nuclear Knowledge [GOV/2004/56-GC(48)/12] summarizing the developments in nuclear knowledge management since the 47th session of the General Conference in 2003 and covers Managing Nuclear Knowledge including safety issues and Information and Strengthening Education and Training for Capacity Building. It contains an excerpt on Nuclear Knowledge from the General Conference Resolution [GC(48)/RES/13] on Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications. On the CD-ROM itself, all documents can easily be accessed by clicking on their titles on the subject pages (also printed at the end of this Working Material). Part 1 of the CD-ROM covers the activities in the period 2003-2005 and part 2 presents a resource material full text CD-ROM on Managing Nuclear Knowledge issued in October 2003

  9. Preparation and Application of Active Composite Antibacterial Material Containing Ag + and Zn2+

    2005-01-01

    A kind of active composite antibacterial material was prepared with CaHPO4 as the container,Ag + and Zn2+ were adsorbed through ion-exchange, then it was doped with small scale of rare earth and photocatalyst, and was finally calcined at a certain temperature. The properties and application of the composite material antibacterial were investigated. Some tests show that the as-prepared antibacterial powders modified by opaque agents such as SnO2 and ZrO2 , possess beautiful white and excellent climate resistance at normal temperatures and are promising candidate materials for antibacterial plastics and dope. The result of the application in glaze indicates that Ag + can still exist stably, with no color change for the glaze, even being sintered at 1 200 ℃.SEM, EDS, antibacterial activity analyses and contrast tests reveal that the as-prepared antibacterial powders and the antibacterial glaze both have excellent antibacterial activities, without color change, in the case of dark or brightness.

  10. Critical Dimensions of Water-tamped Slabs and Spheres of Active Material

    Greuling, E.; Argo, H.: Chew, G.; Frankel, M. E.; Konopinski, E.J.; Marvin, C.; Teller, E.

    1946-08-06

    The magnitude and distribution of the fission rate per unit area produced by three energy groups of moderated neutrons reflected from a water tamper into one side of an infinite slab of active material is calculated approximately in section II. This rate is directly proportional to the current density of fast neutrons from the active material incident on the water tamper. The critical slab thickness is obtained in section III by solving an inhomogeneous transport integral equation for the fast-neutron current density into the tamper. Extensive use is made of the formulae derived in "The Mathematical Development of the End-Point Method" by Frankel and Goldberg. In section IV slight alterations in the theory outlined in sections II and III were made so that one could approximately compute the critical radius of a water-tamper sphere of active material. The derived formulae were applied to calculate the critical dimensions of water-tamped slabs and spheres of solid UF{sub 6} leaving various (25) isotope enrichment fractions. Decl. Dec. 16, 1955.

  11. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up

  12. Antibacterial Activity of Hydrophobic Composite Materials Containing a Visible-Light-Sensitive Photocatalyst

    Kentaro Yamauchi

    2011-01-01

    Full Text Available The conventional superhydrophobic surface offered by PTFE provides no sterilization performance and is not sufficiently repellent against organic liquids. These limit PTFE's application in the field of disinfection and result a lack of durability. N-doped TiO2 photocatalyst added PTFE composite material was developed to remedy these shortcomings. This paper reports the surface characteristics, and the bactericidal and self-cleaning performance of the newly-developed composite material. The material exhibited a contact angle exceeding 150 degrees consistent with its hydrophobicity despite the inclusion of the hydrophilic N-doped TiO2. The surface free energy obtained for this composite was 5.8 mN/m. Even when exposed to a weak fluorescent light intensity (100 lx for 24 hours, the viable cells of gram-negative E. coli on the 12% N-doped TiO2-PTFE film were reduced 5 logs. The higher bactericidal activity was also confirmed on the gram-positive MRSA. Compared with the N-doped TiO2 coating only, the inactivation rate of the composite material was significantly enhanced. Utilizing the N-doped TiO2 with the PTFE composite coating could successfully remove, by UV illumination, oleic acid adsorbed on its surface. These results demonstrate the potential applicability of the novel N-doped TiO2 photocatalyst hydrophobic composite material for both indoor antibacterial action and outdoor contamination prevention.

  13. Releasing resources for reinvestment in health gain.

    Riley, C D; Warner, M M; Simpson, D; Felvus, J

    1992-01-01

    The National Health Services in Wales has adopted a strategic approach based on health gain. Five approaches to meeting this problem are considered (i) eliminating basic inefficiencies; (ii) eliminating unnecessary clinical activity; (iii) doing what is done now but differently; (iv) investing now to save later and (v) withdrawing from a particular area of activity, because it is less important than other competing claims. Each of these is briefly considered with particular reference to the Welsh situation. Three particular lines of advance are identified to achieve the above: creating new sources of information; working more effectively across organisational boundaries; and making the cultural changes to make it all possible. PMID:10166349

  14. 十年教材建设:成就、问题及建议%The Gain and Loss of the Ten Year's Teaching Material Construction

    靳玉乐; 王洪席

    2012-01-01

    中小学教材建设是基础教育课程改革的基础工程,在我国教育发展战略中占据重要地位。教材建设不仅有利于彰显国家意志、延续文化传承、推进学科发展,而且对于学生综合素质养成以及提高教育教学质量具有积极作用。新课程改革以来,中小学教材建设在教师教材观转变、教材政策的逐步改进、教材管理制度构建等方面均取得了巨大成就,但也遭遇到了教材的基础理论研究不足、多样化格局下的无序、教育学和心理学理论应用不充分等流弊与困境。未来的教材建设应加强教材的理论研究和实验研究、推动主流教材的形成、促进教学方法的同步变革、建立科学的教材评价体系,并开展后期培训,实现教师对教材的创造性再开发。%The teaching material construction for primary and secondary schools is the basic project for basic education curriculum reform, which occupies the important place in the educational development in China. Teaching material construction is not only benifical for the expression of national willpower, the continue of cultural dissemination and heritage, the prmotion of subject development, but also for the cultivation of studnets' comprehensive quality and the improvement of educational and teaching quality. Since the curriculum reform, great achievements have been got in the change of teachers' outlook for teaching materials, the breakthrough of the teaching material policy of one syllabus and one kind of textbook , the construction of teaching material management. At the same time, there exist some difficulties , such as the lack of basic theory research on teaching materials, the disoder of the diversified teaching material markets, the insufficient application of padagogy and psychology. The future teaching material construction should pay attention to the theoritical research and experimental research on teaching materials, promote

  15. Overview of the research activities in SWIP on materials and fabrication technologies for ITER and beyond

    SWIP is an institute for fusion reactor researches for energy. Many activities have been conducted in the institute on the R and D of fusion reactor materials and key technologies for ITER in-vessel component since China joined the ITER program and parts of the components will be procured in China. The activities also include the development of materials for the TBM that will be made in China and tested in ITER. Material development for ITER includes the ITER specified Be plate and CuCrZr alloy. Much progress has been made since 2006. Now the technology for manufacturing high purity (>99%) is obtained and several ingots has been fabricated by vacuum hot pressing. Their major mechanical and physical properties were measured, all almost satisfies the ITER's specification for the material. For ITER-TBM, a structural material named as CLF-1, a type of reduced activation ferritic/matensitic steel (RAFM), was developed. The steel showed good properties of high-temperature strength and low ductile-brittle transition temperature. PFM of W alloy and its coating on Cu and carbon based materials was investigated in past years. High heat flux test of the coated materials show good resistance to thermal crack. Vanadium based alloys, as a promising candidate for future advanced blanket, were also studied, with most studies concentrated on strengthening the alloy by aging and clod rolling and the efforts to optimize the thermo-mechanical process. The technologies to join Chinese VHP-Be tile to CuCrZr heat sink plate and CuCrZr plate to SS back plate for ITER first wall panel fabrication were developed. Both employed a HIP process, which showed promising for the joining. Both small samples and mockups specified by the ITER international organization for qualification were fabricated. The interface was carefully analyzed; a clear diffusion layer was identified. Samples from the mockups were mechanically tested and some were high heat flux tested with an electron beam facility

  16. The role of nuclear material control center and safeguards activities in Japan

    The Atomic Energy Basic Law was enacted as early as in 1955 when the activities in the area of nuclear energy research and development started, and from the outset, Japan's nuclear energy was limited exclusively for peaceful purpose. Japan has accepted the IAEA safeguards from the beginning with respect to an IAEA project for the supply of natural uranium, and to the supply of equipment and nuclear or other materials from the bilateral agreement partner countries. The NPT was ratified by Japan in 1976, and the safeguards agreement of the so called INFCIRC/153 type became effective in 1977. It was during the course of preparing to accede to the NPT when the independent non-profit organization - the Nuclear Material Control Center (NMCC) was created with the Government initiatives on April 15th 1972 in Tokyo. Under the INFCIRC/153 type safeguards agreement, the state is required to establish and maintain a system of accounting for and control (SSAC) of all nuclear materials subject to the Agency's Safeguards. The IAEA applies full scope safeguards with respect to all nuclear materials whether supplied by bilateral agreement partner countries or produced or processed indigenously. Application of IAEA safeguards involves the following five major areas: Acquisition of design information on nuclear facilities, Keeping nuclear material accountancy and operation records, Collection of nuclear material accountancy reports, Inspection at facility sites, Evaluation of results of inspection, including analysis of Material Unaccounted For (MUF). Responsibilities to conduct these functions rest primarily with the Japanese Government. However, the technical aspects of these tasks are entrusted with the NMCC. The main purpose of the NMCC is to function as the central organ of the nation's domestic safeguards system under the guidance of and contract with the Science and technology Agency of the Government. The NMCC is commissioned by the Government to process nuclear material

  17. Heritability of gestational weight gain

    Andersson, Elina Scheers; Silventoinen, Karri; Tynelius, Per;

    2015-01-01

    Gestational weight gain (GWG) is a complex trait involving intrauterine environmental, maternal environmental, and genetic factors. However, the extent to which these factors contribute to the total variation in GWG is unclear. We therefore examined the genetic and environmental influences on the...

  18. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing. PMID:19540649

  19. Effect of gamma irradiation on fluoride release and antibacterial activity of resin dental materials

    This study evaluated the effect of gamma irradiation on fluoride release and antibacterial activity of FluroShield (FS) and Clearfil Protect Bond (CPB). Four groups were formed: G1-FS + gamma; G2-FS without gamma; G3-CPB + gamma; G4-CPB without gamma. For fluoride release analysis, 12 disks of each material were prepared and covered with nail polish, except for one side (50.4 mm2 area). G1 and G3 were sterilized with a 14.5 KGy dose at 27 deg C for 24 h, while G2 and G4 (controls) were not sterilized and were maintained under the same time and temperature conditions. Fluoride release measurements were made in duplicate (n=6) by an ion specific electrode. The antibacterial activity of the CPB and FS against Streptococcus mutans after gamma sterilization was evaluated by the agar-disc diffusion method. The diameter of the zones of microbial growth inhibition was recorded after 48 h. Data were analyzed statistically by ANOVA and Tukey's test (alpha=5%). Gamma sterilization decreased the fluoride release of FS by approximately 50%, while CPB was not affected. There was no statistically significant difference (p>0.05) in the antibacterial effect of CPB between gamma and non-gamma sterilization groups. FS presented no antibacterial activity. Gamma irradiation decreased the fluoride release of FS, but did not affect the antibacterial activity of the studied materials. (author)

  20. Effect of gamma irradiation on fluoride release and antibacterial activity of resin dental materials

    Carvalho, Fabiola Galbiatti de; Fucio, Suzana Beatriz Portugal de; Correr-Sobrinho, Lourenco [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Dept. of Dental Materials; Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Puppin-Rontani, Regina Maria [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Dept. of Pedriatric Dentistry], e-mail: rmpuppin@fop.unicamp.br

    2009-07-01

    This study evaluated the effect of gamma irradiation on fluoride release and antibacterial activity of FluroShield (FS) and Clearfil Protect Bond (CPB). Four groups were formed: G1-FS + gamma; G2-FS without gamma; G3-CPB + gamma; G4-CPB without gamma. For fluoride release analysis, 12 disks of each material were prepared and covered with nail polish, except for one side (50.4 mm{sup 2} area). G1 and G3 were sterilized with a 14.5 KGy dose at 27 deg C for 24 h, while G2 and G4 (controls) were not sterilized and were maintained under the same time and temperature conditions. Fluoride release measurements were made in duplicate (n=6) by an ion specific electrode. The antibacterial activity of the CPB and FS against Streptococcus mutans after gamma sterilization was evaluated by the agar-disc diffusion method. The diameter of the zones of microbial growth inhibition was recorded after 48 h. Data were analyzed statistically by ANOVA and Tukey's test (alpha=5%). Gamma sterilization decreased the fluoride release of FS by approximately 50%, while CPB was not affected. There was no statistically significant difference (p>0.05) in the antibacterial effect of CPB between gamma and non-gamma sterilization groups. FS presented no antibacterial activity. Gamma irradiation decreased the fluoride release of FS, but did not affect the antibacterial activity of the studied materials. (author)

  1. New type adsorbent material of impregnated activated carbon fibers for iodine filter

    Impregnated granular activated carbon bed filters have been used worldwide to treat nuclear power plant exhaust gases of containing iodine and extensive experimental studies have been conducted. It has been discovered that the impregnated granular activated carbon has some inherent defect such as the ignition temperature is lower, the adsorption efficiency and capacity were lower and affected strongly by relative humidity and the adsorption velocity is lower. A new type impregnated activated carbon fibers (IACF) material was developed. The IACF is a felt material which has a wealth of micropores, low apparent density, high chemical stability, significantly higher ignition temperature, low affinity for water, high adsorption velocity, and the shape of IACF can be tailored to achieve the best adsorption results. Therefore, the IACF is possessed of a high adsorption capacity and efficiency in high relative humidity (> 95% R.H.). According to the ASTM D 3803 method A test, the result showed that the adsorption efficiency of >99% in bed depth of 2.5 cm. In this work, the various surface structural parameters, surface chemical characteristics and adsorption dynamics were studied by the x-ray diffraction, infrared absorption, and x-ray photoelectron spectrometry method. The results show that the various characteristics of the IACF are better than existing nuclear grade granular activated carbon

  2. Novel measurement method of activation energy of non-metallic materials for NPP

    This paper presents novel technique and its applicability for measuring activation energy of non-metallic materials for NPPs (nuclear power plants). The Ea is a principal property for life assessment and accelerating thermal aging of equipment during environmental qualification. The Ea is conventionally obtained by tensile test using UTM (Universal Testing Machine). However, this conventional method has many difficulties such as lots of big standardized specimens required and long measuring time of at least 3 months. Moreover, this is not only an inapplicable method during inservice inspection but destructive method, which are main obstacles for using UTM. Fortunately, newly developed technique for the Ea such as TGA (Thermo-gravimetric Analysis) and DMA (Dynamic Mechanical Analysis) can eliminate almost all the problems of UTM. The common TGA is to measure weight change with time under constant heating rate. TGA was devised to perform the compositional analysis of materials such as rubber, carbon black, filler, volatile, etc., and to determine the thermal stability/decomposition, stoichiometry of reactions, and kinetics of reaction, by weight changes of materials when heated. TGA method has various advantages such as small amount of the sample (e.g. 20 mg), shortened measuring time of approximately 2 days, and virtually non-destructive method. In this study, we have tried to find the justification of TGA utilization for Ea measurement by comparing the measured TGA data to UTM data for three cable materials. Considering reasonable consistency of our TGA data with UTM data, we conclude that TGA method gives convenient way to measure the activation energy for EPR, CR, and CSP materials with many merits, such as measuring time, specimen size and quantity required, and test expenses. (author)

  3. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors

    Leitner, K.; Lerf, A.; Winter, M.; Besenhard, J. O.; Villar-Rodil, S.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J. M. D.

    Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300-2800 m 2 g -1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated by using cyclic voltammetry and impedance spectroscopy. Values for the capacitance of 175 F g -1 in sulfuric acid were obtained. Further on, it was observed that the specific capacitance and the performance of the electrode increase significantly with increasing burn-off degree. We believe that this fact can be attributed to the increase of surface area and porosity with increasing burn-off.

  4. Waste minimization activities in the Materials Fabrication Division at Lawrence Livermore National Laboratory

    The mission of the Materials Fabrication Division (MFD) is to provide fabrication services and technology in support of all programs at Lawrence Livermore National Laboratory (LLNL). MFD involvement is called for when fabrication activity requires levels of expertise, technology, equipment, process development, hazardous processes, security, or scheduling that is typically not commercially available. Customers are encouraged to utilize private industry for fabrication activity requiring routine processing or for production applications. Our waste minimization (WM) program has been directed at source reduction and recycling in concert with the working definition of waste minimization used by EPA. The principal focus of WM activities has been on hazardous wastes as defined by RCRA, however, all pollutant emissions into air, water and land are being considered as part of the program. The incentives include: (1) economics, (2) regulatory conformance, (3) public image and (4) environmental concern. This report discusses the waste minimization program at LLNL

  5. Partially Hydrogenated Graphene Materials Exhibit High Electrocatalytic Activities Related to Unintentional Doping with Metallic Impurities.

    Jankovský, Ondřej; Libánská, Alena; Bouša, Daniel; Sedmidubský, David; Matějková, Stanislava; Sofer, Zdeněk

    2016-06-13

    Partially hydrogenated graphene materials, synthesized by the chemical reduction/hydrogenation of two different graphene oxides using zinc powder in acidic environment or aluminum powder in alkaline environment, exhibit high electrocatalytic activities, as well as electrochemical sensing properties. The starting graphene oxides and the resultant hydrogenated graphenes were characterized in detail. Their electrocatalytic activity was examined in the oxygen reduction reaction, whereas sensing properties towards explosives were tested by using picric acid as a redox probe. Findings indicate that the high electrocatalytic performance originates not only from the hydrogenation of graphene, but also from unintentional contamination of graphene with manganese and other metals during synthesis. A careful evaluation of the obtained data and a detailed chemical analysis are necessary to identify the origin of this anomalous electrocatalytic activity. PMID:27167069

  6. DETERMINATION OF ANTIMICROBIAL ACTIVITY OF ETHANOLIC EXTRACTS FROM SOME KINDS OF RAW MATERIALS WITH TANNINS

    Boyko NN

    2015-04-01

    Full Text Available This paper presents data about determination of antimicrobial activity of extracts from some kinds of raw materials (13 plants with tannins. It was determined some kinds of technological parameters of extracts (concentration of total solids and density. A simple to use valuation method of antimicrobial properties of extracts – well method has been suggested and applied; for quantitative estimation of antimicrobial activity of extracts and compare them with each other, special mathematic method (vector algebra theory has been applied. It was determined parameters of antimicrobial properties of extracts: a complex indicator of medication antimicrobial activity for quantitative estimation of antimicrobial effect - A, and correlation coefficient - r (degree of similarity to the standard, which demonstrate the spectrum of antimicrobial activity of medication. It has been selected the most promising extracts that have the medium antimicrobial activity, which obtained from the root of bergenia crassifolia А=1.89; the root of potentilla erecta А=1.92; the bark of corylus avellana А=1.76; the leaf of cotinus coggygria А=2.21. Low level of antimicrobial activity has been demonstrated by the extract obtained from the cone of alnus incana А=0.78, r=0.58. It is noted antimicrobial properties of the solutions of tannin and gallic acids 0.5% m / m in 70% vol. ethanol, that showed respectively moderate and low strength antimicrobial properties: А=1.65, r=0.99 and А=1.26, r=0.91. This potentially allows to predict the antimicrobial properties of extracts from plants containing derivatives of tannin and gallic acids on their concentration in them. It has been shown in general that raw materials that contain different kinds of tannins have possibility to use in complex phytochemical medications as antimicrobial component.

  7. Performance of phosphoric acid activated montmorillonite as buffer materials for radioactive waste repository

    In this study, the performance of phosphoric acid activated montmorillonite (PAmmt) was evaluated by cesium ions adsorption experiments. The PAmmt samples were obtained by activating with 1, 3 and 5 mol L-1 of phosphoric acid, respectively under reflux for 3, 12, and 24 h. Experimental results demonstrated that the treatment of raw K-10 montmorillonite with phosphoric acid increased the materials' affinity for Cs uptake and no significant amount of suspension solids were produced. A relatively insignificant variation in the CEC value was observed. Furthermore, PAmmt also showed high adsorption selectivity toward Cs ions. The improved sorptive properties were mainly related to the increased surface area and the relatively higher surface charge density. Increased specific surface area was the resulted from partial decomposition of lamellar structure of mmt; while the higher surface charge density was caused by the protonation of octahedral Al-OH sites during the acid activation. Generally speaking, stronger acid concentration and longer activation times would produce relatively more decomposed PAmmt particles. However, as the activation exceeds 3 h, the precipitation of Si4+ would passivate PAmmt against further acid attacks. Based upon our results, acid activation by phosphoric acid could produce PAmmt samples with high sorption capacity and selectivity, and good structural integrity, which are beneficial to be used at radioactive waste repository.

  8. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  9. Photoluminescence Mechanism and Photocatalytic Activity of Organic-Inorganic Hybrid Materials Formed by Sequential Vapor Infiltration.

    Akyildiz, Halil I; Stano, Kelly L; Roberts, Adam T; Everitt, Henry O; Jur, Jesse S

    2016-05-01

    Organic-inorganic hybrid materials formed by sequential vapor infiltration (SVI) of trimethylaluminum into polyester fibers are demonstrated, and the photoluminescence of the fibers is evaluated using a combined UV-vis and photoluminescence excitation (PLE) spectroscopy approach. The optical activity of the modified fibers depends on infiltration thermal processing conditions and is attributed to the reaction mechanisms taking place at different temperatures. At low temperatures a single excitation band and dual emission bands are observed, while, at high temperatures, two distinct absorption bands and one emission band are observed, suggesting that the physical and chemical structure of the resulting hybrid material depends on the SVI temperature. Along with enhancing the photoluminescence intensity of the PET fibers, the internal quantum efficiency also increased to 5-fold from ∼4-5% to ∼24%. SVI processing also improved the photocatalytic activity of the fibers, as demonstrated by photodeposition of Ag and Au metal particles out of an aqueous metal salt solution onto fiber surfaces via UVA light exposure. Toward applications in flexible electronics, well-defined patterning of the metallic materials is achieved by using light masking and focused laser rastering approaches. PMID:27063955

  10. Microscopic theory of the glassy dynamics of passive and active network materials.

    Wang, Shenshen; Wolynes, Peter G

    2013-03-28

    Signatures of glassy dynamics have been identified experimentally for a rich variety of materials in which molecular networks provide rigidity. Here we present a theoretical framework to study the glassy behavior of both passive and active network materials. We construct a general microscopic network model that incorporates nonlinear elasticity of individual filaments and steric constraints due to crowding. Based on constructive analogies between structural glass forming liquids and random field Ising magnets implemented using a heterogeneous self-consistent phonon method, our scheme provides a microscopic approach to determine the mismatch surface tension and the configurational entropy, which compete in determining the barrier for structural rearrangements within the random first order transition theory of escape from a local energy minimum. The influence of crosslinking on the fragility of inorganic network glass formers is recapitulated by the model. For active network materials, the mapping, which correlates the glassy characteristics to the network architecture and properties of nonequilibrium motor processes, is shown to capture several key experimental observations on the cytoskeleton of living cells: Highly connected tense networks behave as strong glass formers; intense motor action promotes reconfiguration. The fact that our model assuming a negative motor susceptibility predicts the latter suggests that on average the motorized processes in living cells do resist the imposed mechanical load. Our calculations also identify a spinodal point where simultaneously the mismatch penalty vanishes and the mechanical stability of amorphous packing disappears. PMID:23556772

  11. Effect of alkali-activation on aluminosilicate-based cementitious materials

    2008-01-01

    High-performance aluminosilieate-based eementitious materials were produced with fly ash from a coal power plant as one of the major raw materials.The structures of fly ash containing aluminosilicate-based cementitious materials were compared before and after treatment by the methods of nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM).During the 28 d curing time,the compressive strength of water glass and fly ash samples increased from 9.08 MPa to 26.75 MPa.The results show that most of the stiff shells are destroyed after mechanical grinding and chemical activation.Magic angle spinning (MAS)NMR of 27Al shows that the wide peak becomes narrow and the main peak shifts to the direction of low field,indicating the decrease of polymerization degree,the enhancing of activity,the decrease of six-coordination structure,and the increase of small and symmetrical four-coordination polyhedron structure within the aluminum-oxygen polyhedron network.Comparisons between MAS NMR of 29Si with different treatments suggest that Q0 disappears,the quantity of Q2 increases,and the quantity of Q4 decreases.The polym

  12. Synthesis of Iminodiacetate Functionalized Polypropylene Films and Their Efficacy as Antioxidant Active-Packaging Materials.

    Lin, Zhuangsheng; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-06-01

    The introduction of metal-chelating ligands to the food-contact surface of packaging materials may enable the removal of synthetic chelators (e.g., ethylenediamine tetra-acetic acid (EDTA)) from food products. In this study, the metal-chelating ligand iminodiacetate (IDA) was covalently grafted onto polypropylene surfaces to produce metal-chelating active-packaging films. The resulting films were able to chelate 138.1 ± 26 and 210.0 ± 28 nmol/cm(2) Fe(3+) and Cu(2+) ions, respectively, under acidic conditions (pH 3.0). The films demonstrated potent antioxidant efficacy in two model food systems. In an emulsified-oil system, the chelating materials extended the lag phase of both lipid hydroperoxide and hexanal formation from 5 to 25 days and were as effective as EDTA. The degradation half-life of ascorbic acid in an aqueous solution was extended from 5 to 14 days. This work demonstrates the potential application of surface-grafted chelating IDA ligands as effective antioxidant active food-packaging materials. PMID:27243793

  13. Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete

    Zhang, M.H.; Malhotra, V.M. [CANMET, Ottawa, Ontario (Canada)

    1995-12-01

    Canada Centre for Mineral and Energy Technology (CANMET) has an ongoing program dealing with the development of concrete having long-term durability. One of the means of achieving this objective is to incorporate supplementary cementing materials such as silica fume, fly ash, slag, and rick husk ash in concrete. The incorporation of these supplementary cementing materials in concrete leads to reduction in its porosity; this, in turn, leads to reduced permeability and increased durability of concrete. This paper presents the results of the physical and chemical properties of a thermally activated alumino-silicate material (MK), and deals with the properties of fresh and hardened concrete incorporating this material. The properties of fresh concrete investigated included workability, bleeding, setting time, and autogenous temperature rise. The properties of the hardened concrete investigated included compressive, splitting-tensile and flexural strengths, Young`s modulus of elasticity, drying shrinkage, resistance to chloride-ion penetration, freezing and thawing, and salt-scaling resistance. The properties of the MK concrete were also compared with those of the control portland cement concrete and the silica fume concrete.

  14. Towards a reduced activation structural materials database for fusion DEMO reactors

    The development of First Wall, Blanket and Divertor materials which are capable of withstanding many years the high neutron and heat fluxes, is a critical path to fusion power. Therefore, the timely availability of a sound materials database has become an indispensable element in international fusion road maps. In order to provide materials design data for short term needs of ITER Test Blanket Modules and for a DEMOnstration fusion reactor, a wealth of R and D results on the European reduced activation ferritic-martensitic steel EUROFER, and on oxide dispersion strengthened variants are being characterized, mainly in the temperature window 250-650 deg. C. The characterisation includes irradiations up to 15 dpa in the mixed spectrum reactor HFR and up to 75 dpa in the fast breeder reactor BOR60. Industrial EUROFER-batches of 3.5 and 7.5 tons have been produced with a variety of semi-finished, quality-assured product forms. To increase thermal efficiency of blankets, high temperature resistant SiCf/SiC channel inserts for liquid metal coolant tubes are also developed. Regarding radiation damage resistance, a broad based reactor irradiation programs counts several steps from ≤5dpa (ITER TBMs) up to 75 dpa (DEMO). For the European divertor designers, a materials data base is presently being set up for pure W and W alloys, and related reactor irradiations are foreseen with temperatures from 650-1000 deg. C. (author)

  15. Simultaneous comparison of thrombogenic reactions to different combinations of anticoagulants, activated clotting times, and materials.

    Nagai, Mirei; Iwasaki, Kiyotaka; Umezu, Mitsuo; Ozaki, Makoto

    2014-11-01

    Thrombogenic reactions under multiple interactions of pharmacological agents, doses, and materials have not been well understood yet. The aim of this study was to investigate the ability to simultaneously compare thrombogenic reactions to different combinations of anticoagulants, doses, and blood-contacting materials, in a single human blood using an in vitro test method. Four venous blood samples were drawn from each of six healthy volunteers into syringes that contained two different amounts of heparin and argatroban to set the activated clotting time (ACT) to approximately 200 or 500 s, respectively. The four blood samples from each volunteer were immediately poured into two clinical-grade extracorporeal circulation tubes: a polyvinyl chloride (PVC) tube and a poly(2-methoxyethyl acrylate)-coated (PMEA) PVC tube. These tubes with an inner diameter of 12.7 mm were rotated at 183 rpm in a 37°C chamber for 10 min. The results indicated that the in vitro thrombogenicity test method was capable of assessing differences in platelet factor 4 and β-thromboglobulin increases among different combinations of the two materials, two anticoagulants, and two ACTs. Higher amounts of total plasma proteins were absorbed on PVC tubes than on PMEA-coated tubes when using the same anticoagulant and dose. These data elucidate that the in vitro thrombogenicity test method is useful for the simultaneous quantitative evaluation of the influences of various combinations of materials, pharmacological agents, and doses on thrombogenicity in a single human blood. PMID:24652689

  16. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the 75Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations

  17. Separation of interfering elements in the neutron activation analysis of lanthanides in geological materials

    A chemical procedure has been developed for the separation of U, Th, Fe, Sc, Na,Ta, and Mo which interfere in the neutron activation analysis of the lanthanide elements in geological materials. This procedure is based on the solvent extraction of interferents using a solution of tetracycline in benzyl alcohol. The lanthanide elements remaining in the aqueous phase are coprecipitated on calcium oxalate or ferric hydroxide for irradiation and subsequent determination by gamma ray spectrometry. The chemical separation procedure was applied in the analysis of lanthanides in two international geological reference materials GSP-1 (USGS), GS-N (CRPG) and in the analysis of a volcanic rock from Pocos de Caldas, MG, Brazil. The sensitivities for all the lanthanides were determined. (author)

  18. The physical protection of nuclear material and nuclear facilities including activities to combat nuclear terrorism

    The paper describes present of physical protection of nuclear facilities and materials in the Czech Republic; the basic concept and regulation in physical protection and the effort made to strengthen the national regulatory programmes; the role of the police as a response force and the role of the new private security companies; the upgrading of the physical protection systems at the different types of the nuclear installations to fulfill the more strict requirements of the new Atomic Law No. 18/1997 Coll. and Regulation No. 144/1997 Coll., on physical protection of nuclear materials and nuclear facilities; activities carried out in connection with governmental decision No. 479 dated 19 May 2004 on National action plan to combat terrorism. (author)

  19. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 x 107 n/cm2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values

  20. Homogeneity study on biological candidate reference materials: the role of neutron activation analysis

    Silva, Daniel P.; Moreira, Edson G., E-mail: dsilva.pereira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)

  1. Certified reference materials for analytical quality control in neutron activation analysis

    Analytical quality control in neutron activation analysis (NAA) requires the use of certified reference materials (CRM) in order to produce reliable analytical results. It is essential to evaluate the performance of NAA method when analyzing various sample matrices. Therefore, the CRM selected for an analysis should be suitable for the type of samples. There are many aspects such as concentration range, matrix match, sample size and uncertainty, which need to be considered when selecting a suitable CRM. Eventually, results of analysis of CRM were plotted into control charts in order to evaluate the qualify of the data. This is to ensure that the results are within the 95 % confidence interval as stipulated in the certificate of CRM. Thus, this article aims to discuss the uses of certified reference materials for quality control purposes in NAA involving various sample matrices. (author)

  2. Homogeneity study on biological candidate reference materials: the role of neutron activation analysis

    Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)

  3. Neutron activation analysis as a tool for checking homogeneity of certified reference materials

    Homogeneity of reference materials for inorganic trace analysis (Oriental Tobacco Leaves [CTA-OTL-1], Apatite Concentrate [CTA-AC-1], Virginia Tobacco Leaves [CTA-VTL-2] and Spruce Shoots [RMF II]) was studied by neutron activation analysis. Series of samples of a given nominal mass from various containers were analyzed for several elements and the results compared by Fisher''s test with analogous series of results for samples from container. Sampling variance was estimated for several elements in some of the material studied, from overall variance and components of analytical variance. The results were interpreted with the aid of Visman''s theory and Ingamell''s sampling constant. It was confirmed that Virginia Tobacco Leaves [CTA-VTL-2] is very homogeneous and can be recommended for microchemical work. (author)

  4. Multielement analysis of environmental reference materials by instrumental neutron activation analysis

    Concentrations of trace elements in environmental reference materials prepared by the National Institute for Environmental Studies, Japan (NIES) and by the National Institute of Standards and Technology, USA (NIST) were determined by instrumental neutron activation analysis (INAA). NIES CRM No. 5 Human Hair, No. 6 Mussel, No. 7 Tea Leaves, No. 8 Vehicle Exhaust Particulates, No. 9 Sargasso and No. 10 Rice Flour-unpolished samples (ca. 150 - 1200 mg) and NIST SRM 1632a Bituminous Coal, SRM 1635 Sub-bituminous Coal and SRM 1633a Coal Fly Ash samples (ca. 10 - 150 mg) were irradiated at the Musashi Institute of Technology Research Reactor (MITRR). Concentrations of 28 - 52 elements in these NIES and NIST environmental reference materials were determined by two irradiation methods and four γ-ray counting methods. The determined values were in good agreement with the NIES and NIST certified values. (author)

  5. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2004-01-01

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 × 10 7 n/cm 2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values.

  6. Multifunctional radical-doped polyoxometalate-based host-guest material: photochromism and photocatalytic activity.

    Liao, Jian-Zhen; Zhang, Hai-Long; Wang, Sa-Sa; Yong, Jian-Ping; Wu, Xiao-Yuan; Yu, Rongmin; Lu, Can-Zhong

    2015-05-01

    An effective strategy to synthesize multifunctional materials is the incorporation of functional organic moieties and metal oxide clusters via self-assembly. A rare multifunctional radical-doped zinc-based host-guest crystalline material was synthesized with a fast-responsive reversible ultraviolet visible light photochromism, photocontrolled tunable luminescence, and highly selective photocatalytic oxidation of benzylic alcohols as a result of blending of distinctively different functional components, naphthalenediimide tectons, and polyoxometalates (POMs). It is highly unique to link π-electron-deficient organic tectons and POMs by unusual POMs anion-π interactions, which are not only conducive to keeping the independence of each component but also effectively promoting the charge transfer or exchange among the components to realize the fast-responsive photochromism, photocontrolled tunable luminescence, and photocatalytic activity. PMID:25859742

  7. Zwitterionic Cellulose Carbamate with Regioselective Substitution Pattern: A Coating Material Possessing Antimicrobial Activity.

    Elschner, Thomas; Lüdecke, Claudia; Kalden, Diana; Roth, Martin; Löffler, Bettina; Jandt, Klaus D; Heinze, Thomas

    2016-04-01

    A polyzwitterion is synthesized by regioselective functionalization of cellulose possessing a uniform charge distribution. The positively charged ammonium group is present at position 6, while the negative charge of carboxylate is located at positions 2 and 3 of the repeating unit. The molecular structure of the biopolymer derivative is proved by NMR spectroscopy. This cellulose-based zwitterion is applied to several support materials by spin-coating and characterized by means of atomic force microscope, contact angle measurements, ellipsometry, and X-ray photoelectron spectroscopy. The coatings possess antimicrobial activity depending on the support materials (glass, titanium, tissue culture poly(styrene)) as revealed by confocal laser scanning microscopy and live/dead staining. PMID:26632022

  8. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials.

    Suresh, S

    2016-01-01

    In this study the adsorption of Basic Violet, 14 from aqueous solution onto sulphuric acid activated materials prepared from Calophyllum inophyllum (CS) and Theobroma cacao (TS) shells were investigated. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models. The results showed that CS has a superior adsorption capacity compared to the TS. The adsorption capacity was found to be 1416.43 mg/g for CS and 980.39 mg/g for TS. The kinetic data results at different concentrations were analysed using pseudo first-order and pseudo-second order model. Boyd plot indicates that the dye adsorption onto CS and TS is controlled by film diffusion. The adsorbents were characterised by scanning electron microscopy. The materials used in this study were economical waste products and hence can be an attractive alternative to costlier adsorbents for dye removal in industrial wastewater treatment processes. PMID:27330899

  9. Use of electrochemically activated aqueous solutions in the manufacture of fur materials.

    Danylkovych, Anatoliy G; Lishchuk, Viktor I; Romaniuk, Oksana O

    2016-01-01

    The influence of characteristics of electrochemically activated aqueous processing mediums in the treatment of fur skins with different contents of fatty substances was investigated. The use of electroactive water, namely anolytes and catholytes, forgoing antiseptics or surface-active materials, helped to restore the hydration of fur skins and to remove from them soluble proteins, carbohydrates and fatty substances. The activating effect of anolyte and catholyte in solutions of water on the processes of treating raw furs is explained by their special physical and chemical properties, namely the presence of free radicals, ions and molecules of water which easily penetrate cells' membranes and into the structure of non-collagen components and microfiber structure of dermic collagen. The stage of lengthy acid and salt treatment is excluded from the technical treatment as a result of using electroactivated water with high oxidizing power. A low-cost technology of processing different kinds of fur with the use of electroactivated water provides for substantial economy of water and chemical reagents, a two to threefold acceleration of the soaking and tanning processes and creation of highly elastic fur materials with a specified set of physical and chemical properties. At the same time the technology of preparatory processes of fur treatment excludes the use of such toxic antiseptics as formalin and sodium silicofluoride, which gives grounds to regard it as ecologically safe. PMID:27026908

  10. Determination of arsenic in food and dietary supplement standard reference materials by neutron activation analysis

    Arsenic was measured in food and dietary supplement standard reference materials by neutron activation analysis for the purpose of assigning certified or reference As mass fractions and to assess material homogeneity. Instrumental neutron activation analysis was used to value assign As in candidate SRM 3532 Calcium Dietary Supplement and candidate SRM 3262 Hypericum perforatum (St. John's Wort) Aerial Parts down to about 100 μg/kg. Values were also determined for two additional candidate St. John's Wort SRMs with As mass fractions 24Na and 82Br limited the reproducibility of the method below 100 μg/kg. For measurement of lower As mass fractions, a radiochemical neutron activation analysis method with extraction of As3+ into diethyl-dithiocarbamate in chloroform and detection limits down to 0.1 μg/kg. As was used to value-assign As mass fractions for SRM 3280 Multivitamin/Multielement Tablets and for candidate SRM 3233 Fortified Breakfast Cereal, and at <10 μg/kg in candidate SRM 1845a Whole Egg Powder. (author)

  11. Activation of structural materials due to recoil protons in light water reactor

    The long-lived radioactivities of structural materials induced by recoil protons in BWR were estimated for land disposal of low level waste after reactor decommissioning. Reaction products of interest are 53Mn, 91Nb, 94Nb, 97Tc, 125Sb, 173Lu and 174Lu. A method of calculating the proton spectrum in materials was presented. The program PEGASUS-P was developed by modifying the PEGASUS, a preequilibrium and multistep evaporation theory code, to calculate proton reaction cross sections. The proton-induced activities in stainless steel, Inconel and Zircaloy-2 were calculated under typical irradiation conditions in an operating BWR. It was shown that even the most dominant activity due to 91Nb from Zircaloy-2 did not exceed 1/1,000 of that of a typical neutron induced activity of 63Ni for cooling up to 1,000 yr after the irradiation of 40 yr. The results are believed to hold for the case of PWR as well. (author)

  12. Progress in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania

    Full text: The paper gives a general overview of the progress which has been made in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania. It describes the measures which were taken to strengthen nuclear material accounting and control and physical protection. The current status of the national legislation and the functions of institutions involved in control of nuclear material and combating of illicit trafficking are discussed. Lithuania, similar to many countries, did not avoid a new type of a crime - smuggling of nuclear materials - which was observed in the 1990's. The most serious case in Lithuania happened in 1993 when fresh fuel assembly was stolen from Ignalina NPP. This assembly contains approximately 124 kg of UO2 (enrichment 2%). 100 kg of the pellets from this assembly was found later in several pieces at different places. This case served as a strong stimulus to strengthen prevention measures of Illicit trafficking. The legal basis was created and governmental institutions were obliged with special duties related with nuclear material. The laws and regulations set the order for the shipment and handling of nuclear material. The penalties for violation of these laws and regulations specified in Penal Code and Administrative Code were made stricter. The State system of accounting for and control of nuclear material (SSAC) is a very important element in prevention of the illicit trafficking. The Regulations of Accounting for and Control of Nuclear Material at Nuclear Facilities and LOFs was issued by the State Nuclear Power Safety Inspectorate (VATESI) on 10 December 1997 following the provisions of the Law on Nuclear Energy. Lithuania extended its international obligations by ratifying the Protocol Additional to the Safeguards Agreement (entered into force on 5 July 2000). The fully computerized nuclear material accountancy system was created at Ignalina NPP. The system gives the possibility to find the

  13. Characterization of environmentally-friendly alkali activated slag cements and ancient building materials

    Sakulich, Aaron Richard

    Alternative cement technologies are an area of increasing interest due to growing environmental concerns and the relatively large carbon footprint of the cement industry. Many new cements have been developed, but one of the most promising is that made from granulated, ground blast furnace slag activated by a high-pH solution. Another is related to the discovery that some of the pyramid limestone blocks may have been cast using a combination of diatomaceous earth activated by lime which provides the high pH needed to dissolve the diatomaceous earth and bind the limestone aggregate together. The emphasis of this thesis is not on the latter---which was explored elsewhere---but on the results supplying further evidence that some of the pyramid blocks were indeed reconstituted limestone. The goal of this work is to chemically and mechanically characterize both alkali-activated slag cements as well as a number of historic materials, which may be ancient analogues to cement. Alkali activated slag cements were produced with a number of additives; concretes were made with the addition of a fine limestone aggregate. These materials were characterized mechanically and by XRD, FTIR, SEM, and TGA. Samples from several Egyptian pyramids, an 'ancient floor' in Colorado, and the 'Bosnian Pyramids' were investigated. In the cements, it has been unequivocally shown that C-S-H, the same binding phase that is produced in ordinary portland cement, has been produced, as well as a variety of mineral side products. Significant recarbonation occurs during the first 20 months, but only for the Na2CO3-activated formulae. Radiocarbon dating proves that the 'Bosnian Pyramids' and 'ancient floors' are not made from any type of recarbonated lime; however, Egyptian pyramid limestones were finite, thus suggesting that they are of a synthetic nature. XRD and FTIR results were inconclusive, while TGA results indicate the limestones are identical to naturally occurring limestones, and SEM

  14. Extraction of organic materials from red water by metal-impregnated lignite activated carbon

    Highlights: ► Metal-impregnated lignite activated carbon was investigated as adsorbent. ► Adsorbent for the extraction of organic materials from 2,4,6-trinitrotoluene (TNT) red water. ► Effects of different metals on the extraction were investigated and discussed. ► Many loading factors of Cu2+ were found having great influences on the extraction. ► Extraction performances and mechanism of TNT red water on Cu/LAC were investigated. - Abstract: Extraction of organic materials from 2,4,6-trinitrotoluene (TNT) red water by lignite activated carbon (LAC) impregnated with Cu2+, Ba2+, Sn2+, Fe3+, Ca2+ and Ag+ was investigated. The affinity to organic materials in red water was found to follow the order: Cu/LAC > Sn/LAC > Ag/LAC > Ba/LAC > Fe/LAC > Ca/LAC, which was explained by the hard and soft acid base (HSAB) theory. Cu2+ showed the best performance and several parameters were further studied. X-ray photoelectron spectroscopy (XPS) verified effective loading of Cu2+ on the LAC surface. The water quality before and after treated by Cu/LAC was evaluated using high performance liquid chromatograph, Gas Chromatography/Mass Spectroscopy (GC/MS), UV–vis spectroscopy and other analyses. The extraction performances and mechanism of organic materials on Cu/LAC were investigated through static methods. The experimental results showed that Cu/LAC possessed stronger extraction ability for the sulfonated nitrotoluenes than the non-sulfonated nitrotoluenes, the kinetic data fitted the pseudo-second-order kinetic model well. In addition, the leaching out of Cu2+ from Cu/LAC was found much lower in the 100 times diluted red water (0.074%) than in the raw water (10.201%). Column adsorptions with more concentrated red water were also studied. Finally, Cu/LAC was observed to possess excellent reusability as well.

  15. An active thermography approach for thermal and electrical characterization of thermoelectric materials

    Streza, M.; Longuemart, S.; Guilmeau, E.; Strzalkowski, K.; Touati, K.; Depriester, M.; Maignan, A.; Sahraoui, A. Hadj

    2016-07-01

    The enhancement of figure of merit (ZT) of thermoelectrics is becoming extremely important for an efficient conversion of thermal energy into electrical energy. In this respect, reliable measurements of thermal and electrical parameters are of paramount importance in order to characterize thermoelectric materials in terms of their efficiency. In this work, a combined theoretical-experimental active thermography approach is presented. The method consists of selecting the right sequential interdependence between the excitation frequency and the sampling rate of the infrared camera, by computing a temporal Fourier analysis of each pixel of the recorded IR image. The method is validated by using a reference sample which is then applied to a recent synthesized titanium trisulphide thermoelectric material (TiS3). By combining AC and steady-state experiments, one can obtain information on both thermal and electrical parameters of TE materials (namely thermal diffusivity, Seebeck coefficient). The thermal diffusivity and thermal conductivity of TiS3 are also measured using photothermal radiometry technique (PTR) and the resulting values of these parameters are α  =  9.7*10‑7 m2 s‑1 and k  =  2.2 W m‑1 K, respectively. The results obtained with the two techniques are in good agreement. In the case of TE materials, the main benefit of the proposed method is related to its non-contact nature and the possibility of obtaining the electric potential and temperature at the same probes. The Seebeck coefficient obtained by active IR thermography (S  =  ‑554 μV K‑1) is consistent with the one obtained using an ULVAC-ZEM3 system (S  =  ‑570 μV K‑1). For a large number of users of thermographic cameras, which are not equipped with a lock-in thermography module, the present approach provides an affordable and cheaper solution.

  16. Gain functionalization of silica microresonators.

    Yang, Lan; Vahala, K J

    2003-04-15

    Erbium-doped solgel films are applied to the surface of silica microspheres to create low-threshold microactivity lasers. This gain functionalization can be applied by use of a number of different dopants, thereby extending the wavelength range of this class of device. Also, by varying the doping concentration and thickness of the applied solgel layer, one can vary the laser dynamics so that both continuous-wave and pulsating modes of operation are possible. PMID:12703910

  17. Optical gain in porous silicon

    Herynková, Kateřina; Pelant, Ivan

    Cham : Springer International Publishing, 2014 - (Canham, L.), s. 345-354 ISBN 978-3-319-05743-9 R&D Projects: GA ČR GPP204/12/P235; GA AV ČR KJB100100903; GA AV ČR(CZ) IAA101120804 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * porous silicon * optical gain Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  19. IDENTIFICATION OF LECTINS OF ZEA MAYS RAW MATERIAL AND THE STUDY OF LECTIN ACTIVITY

    Karpiuk UV

    2013-03-01

    Full Text Available The aime of the study was to identify lectins in the Zea mays raw material: roots, stems, heads, leaves and corn silk and study their activity. Lectins activity has been studied using the biological method of ratuserytroagglutination. This method is based on formation of aggregates of lectins and rats erythrocytes. The activity unit was the floor amount of lectins that agglutinate erythrocytes. The protein nature of extracts that agglutinate has been determined using Bradford method. The lectins activity of Zea mays roots was 6,21±0,11 unit/mg of protein; of heads – 2,61±0,17 unit/mg of protein; of leaves – 0,62 ±0,05 unit/mg of protein; of corn silk – 1,06±0,08 unit/mg of protein; of stems – 0,97±0,09 unit/mg of protein. The greatest lectins activity was in leaves, stems and corn silk.

  20. The Astronomy Workshop: Computer Assisted Learning Tools with Instructor Support Materials and Student Activities

    Deming, Grace; Hamilton, D.; Hayes-Gehrke, M.

    2006-12-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive World Wide Web tools that were developed under the direction of Doug Hamilton for use in undergraduate classes, as supplementary materials appropriate for grades 9-12, and by the general public. The philosophy of the website is to foster student and public interest in astronomy by capitalizing on their fascination with computers and the internet. Many of the tools were developed by graduate and undergraduate students at UMD. This website contains over 20 tools on topics including scientific notation, giant impacts, extrasolar planets, astronomical distances, planets, moons, comets, and asteroids. Educators around the country at universities, colleges, and secondary schools have used the Astronomy Workshop’s tools and activities as homework assignments, in-class demos, or extra credit. Since 2005, Grace Deming has assessed several of the Astronomy Workshop’s tools for clarity and effectiveness by interviewing students as they used tools on the website. Based on these interviews, Deming wrote student activities and instructor support materials and posted them to the website. Over the next three years, we will continue to interview students, develop web materials, and field-test activities. We are targeting classes in introductory undergraduate astronomy courses and grades 11-12 for our Spring 2007 field tests. We are interested in hearing your ideas on how we can make the Astronomy Workshop more appealing to educators, museum directors, specialty programs, and professors. This research is funded by NASA EPO grants NNG04GM18G and NNG06GGF99G.

  1. Prompt gamma activation analysis for non-destructive characterization of chipped stone tools and raw materials

    Recently, several archaeometrical projects were started on the prehistoric collection of the Hungarian National Museum. Among the analytical methods applied, non-destructive prompt gamma activation analysis (PGAA) has a special importance. Based on major- and trace components, characterization of stone tools and their raw materials were performed. Until now, 160 pieces from Carpathian Basin and from the surrounding area (Romania, Croatia, Ukraine, Poland and the Mediterranean region) have been analyzed, including both archaeological and geological pieces. Obsidian and Szeletian felsitic porphyry objects adequately separable with PGAA. Identification of high silica silex categories, however, is much more difficult. (author)

  2. A history of semi-active laser dome and window materials

    Sullivan, Roger M.

    2014-05-01

    Semi-Active Laser (SAL) guidance systems were developed starting in the mid-1960's and today form an important class of precision guided weapons. The laser wavelengths generally fall in the short wave infrared region of the spectrum. Relative to passive, image based, infrared seekers the optical demands placed on the domes or windows of SAL seekers is very modest, allowing the use of low cost, easily manufactured materials, such as polycarbonate. This paper will examine the transition of SAL window and dome science and technology from the laboratory to battlefield, with special emphasis on the story of polycarbonate domes.

  3. Studies on the behaviour of ancient man-made materials as analogues of materials used for the disposal of high-activity and long lived waste

    The disposal of high-activity and long lived waste (HLW) requires the study of ancient materials distinguished by their longevity in different environments in order to predict the long-term durability of the waste containers. The patina thickness of pre-Columbian and historical artefacts from Argentina was measured and their corrosion rates determined. The results can be used as an example of the durability of some man-made materials for designing HLW repositories. (author)

  4. Development of pupils’ transfer skills by means of hands’ on activities with artisan materials in natural sciences classes

    Liliana Ciascai; Luminiţa Chicinaş

    2008-01-01

    Hands’ on activities with artisan materials used in order to realize different practical devices helpful in learning process are one of the most frequently used activity in science classes. Usually, the main strengthnesses of these activities are: a deeper learning, an increased motivation of pupils for actively learning and development of practical skills. The aim of our paper is to find out if using systematically hands’ on activities in order to realize different practical devices contribu...

  5. Active Learning through Materials Development: A Project for the Advanced L2 Classroom

    Katrina Daly Thompson

    2008-01-01

    Full Text Available Building on the notion of active learning, the assumption that students learn more when given opportunities to practice using their skills and to receive feedback on their performance, this article de-scribes a project undertaken in an Advanced (third-year Swahili course in which students were given the opportunity to develop L2 materials for computer-mediated peer instruction. The article exam-ines the goals, design and results of the project in light of the litera-ture on active learning and learner autonomy, and suggests how the project might be improved in order to serve as a model for other Ad-vanced L2 courses.

  6. Charge particle activation analysis of light element impurities in high purity materials

    Charged particle activation analysis (CPAA) of low Z element impurities like oxygen, carbon, nitrogen, boron etc. can be determined with high sensitivity and accuracy in high purity materials at ppm to ppb levels. The oxygen and carbon impurities in ppm levels have been determined in high purity metals like copper, silicon, stainless steel, tantalum, magnesium and aluminium using 40 MeV alpha-charge particles at Variable Energy Cyclotron Centre, Calcutta. Radiochemical separations were carried out to separate the radioactive products 18F and 11C formed by the nuclear reaction 16O (α pn) 18F and 12C (α, αn) 11C, respectively. Determination of carbon by deuteron activation is also studied using the nuclear reaction12C(d,n) 13N. (author). 4 refs., 1 tab

  7. Plasmonic modulator based on thin metal-semiconductor-metal waveguide with gain core

    Babicheva, Viktoriia; Malureanu, Radu; Lavrinenko, Andrei

    2013-01-01

    We focus on plasmonic modulators with a gain core to be implemented as active nanodevices in photonic integrated circuits. In particular, we analyze metal–semiconductor–metal (MSM) waveguides with InGaAsP-based active material layers. A MSM waveguide enables high field localization and therefore...... calculated numerically. We optimize the structure by considering thin metal layers. A thin single metal layer supports an asymmetric mode with a high propagation constant. Implementing such layers as the waveguide claddings allows to achieve several times higher effective indices than in the case of a...

  8. Large Optical Gain AlInN-Delta-GaN Quantum Well for Deep Ultraviolet Emitters

    Tan, Chee-Keong; Sun, Wei; Borovac, Damir; Tansu, Nelson

    2016-01-01

    The optical gain and spontaneous emission characteristics of low In-content AlInN-delta-GaN quantum wells (QWs) are analyzed for deep ultraviolet (UV) light emitting diodes (LEDs) and lasers. Our analysis shows a large increase in the dominant transverse electric (TE) polarized spontaneous emission rate and optical gain. The remarkable enhancements in TE-polarized optical gain and spontaneous emission characteristics are attributed to the dominant conduction (C)-heavy hole (HH) transitions achieved by the AlInN-delta-GaN QW structure, which could lead to its potential application as the active region material for high performance deep UV emitters. In addition, our findings show that further optimizations of the delta-GaN layer in the active region are required to realize the high performance AlInN-based LEDs and lasers with the desired emission wavelength. This work illuminates the high potential of the low In-content AlInN-delta-GaN QW structure to achieve large dominant TE-polarized spontaneous emission rates and optical gains for high performance AlN-based UV devices. PMID:26961170

  9. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    Zemljic, Lidija Fras, E-mail: lidija.fras@uni-mb.si [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Tkavc, Tina [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Vesel, Alenka [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Sauperl, Olivera [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The adsorption/desorption of chitosan onto PET plastic film was studied. Black-Right-Pointing-Pointer Chitosan was reversible attached onto PET plastic films. Black-Right-Pointing-Pointer Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  10. Neutron-activation study of figurines, pottery, and workshop materials from the Athenian Agora, Greece

    Ceramic specimens from the excavations of the Agora of ancient Athens, Greece, including material from factories, i.e., trial firing pieces, pottery and figurine wasters, datable to the Protogeometric, Subgeometric, and Classical Periods, and stylistically related figurines and pottery were analyzed by neutron activation. The factory material from the three distinct chronological periods separated respectively into three significantly different compositional groups, indicating either that separate sources of clay were used during each of these periods or that some other significant changes in the traditions of fabrication had occurred. Many of the figurines and sherds analyzed coincided in composition with one of these three groups and therefore were shown to be consistent with the output of Athenian workshops. Some specimens of Corinthian style formed a separate compositional group as did some other specimens that agreed in composition with a clay from Aegina. Comparison of these results with previous analyses on file in the Brookhaven Data Bank revealed a number of specimens that corresponded both in style and composition to the Agora material. Most significant was a sizable amount of Classical Greek pottery excavated in southern France, in Israel, and in Cyprus that conformed in composition to the Attic Classical Group. 6 figures, 2 tables

  11. Present activities within ICPO-Interpol to combat illegal traffic in radioactive materials

    The International Criminal Police Organization, also known as Interpol, was created in 1923. The number of Member States is now 177, and the Interpol General Secretariat (headquarters) is situated in Lyon, France. The purpose of the organization is to ensure and promote the widest possible mutual assistance between all police authorities, within the limits of the laws existing in the various countries, and to establish and develop all institutions likely to contribute effectively to the prevention and suppression of ordinary crimes, including illegal traffic in nuclear and radioactive materials. Each Member State has an Interpol National Central Bureau through which international police co-operation is co-ordinated. In 1995 ICPO-Interpol carried out a study in order to obtain insight into trafficking in radioactive substances and related fraud within eastern and western European countries and North America. The organization is now maintaining a database on seizures and thefts of nuclear and radioactive materials and on individuals involved in this crime, all as reported by Member States. In the future the organization will be involved in a joint training programme with the International Atomic Energy Agency and the World Customs Organization. The paper describes the organization and activities of ICPO-Interpol in relation to the illegal trafficking of radioactive materials. (author)

  12. Evaluation of homogeneity of selected reference materials for selenium by cyclic neutron activation analysis

    The homogeneity of four reference materials was evaluated for Se by cyclic instrumental neutron activation analysis (CINAA). The relative standard deviation for Se measurements at ppb levels by CINAA was <12% for NIST Wheat Flour (SRM 1567) in 5-10 mg samples, while it was <11% for Chinese Hair (HH-CH-1), <13% for IAEA Animal Muscle (H-4) and 25% for IAEA Animal Blood (A-13) in 50 mg samples. The highest relative subsampling uncertainties were observed in the mass range of samples ≤50 mg for Chinese Hair, ≤100 mg for Wheat Flour and Animal Muscle and ≤300 mg for Animal Blood. The results of a one-way analysis of variance indicate that all reference materials above these mass ranges are adequately homogeneous with respect to Se distribution. Our data suggest that these materials, except Animal Blood, can be used as reference standards for Se in quality assurance programs well below the sample masses recommended by the issuing agencies. (author) 14 refs.; 2 figs.; 5 tabs

  13. Activating Students' Motivation in Speaking in English for Tourism Class by Using Authentic Materials and Tasks

    侯志燕

    2008-01-01

    The author analyzes the existing problems in English for Tourism class and possible reasons why students are not highly motivated in oral communication practice:unconsciousness of the ongoing changing tourism industry, failure in their past learning, fear of losing faces,lack of words, structures and cultural background etc.Aiming to change the present situation and stimulate students'motivation in speaking, she offers some possible ways tO the problems based on her perspectives:(1)choose authenfic materials relevant to student's future career,(2)adapt a more current coulee book which is more authentically tourist-based in content.(3)adapt authentic video and TV tourist based materials related to the experience of tourism.(4)adapt authentic materials to make it more accessible and comprehemible by adaing some proper authendc materiaIs from difierent sources and tasks.(5)organize tearm activities based on authentic situations without changing the dialogue format in order to maintain redundancy of communication but in a real life focus.

  14. Survival of bacteria in nuclear waste buffer materials. The influence of nutrients, temperature and water activity

    The concept of deep geological disposal of spent fuel is common to many national nuclear waste programs. Long-lived radioactive waste will be encapsulated in canisters made of corrosion resistant materials e.g. copper and buried several hundred meters below ground in a geological formation. Different types of compacted bentonite clay, or mixtures with sand, will be placed as a buffer around the waste canisters. A major concern for the performance of the canisters is that sulphate-reducing bacteria (SRB) may be present in the clay and induce corrosion by production of hydrogen sulphide. This report presents data on viable counts of SRB in the bedrock of Aespoe hard rock laboratory. A theoretical background on the concept water activity is given, together with basic information about SRB. Some results on microbial populations from a full scale buffer test in Canada is presented. These results suggested water activity to be a strong limiting factor for survival of bacteria in compacted bentonite. As a consequence, experiments were set up to investigate the effect from water activity on survival of SRB in bentonite. Here we show that survival of SRB in bentonite depends on the availability of water and that compacting a high quality bentonite to a density of 2.0 g/cm3, corresponding to a water activity (aw) of 0.96, prevented SRB from surviving in the clay. 24 refs

  15. Problems in complying with regulations related to low activity materials: Industry, medical, research

    The new Basic Safety Standards (BSS) for protection against ionizing radiation and for the safety of radiation sources contain nuclide specific exemption levels on reporting. In many cases, these exemption levels differ orders of magnitude, higher or lower, compared to those from the old standards. For the natural radionuclides, the exempted specific activity is much lower (10 or even 1 Bq/g, depending on the radionuclide, compared to 500 Bq/g in the old BSS). As a consequence, industrial activities with certain minerals or raw materials containing elevated concentrations of radionuclides, which were exempted from the radiation protection control system under the old BSS, may have to be declared as radiologically relevant activities and may now come under regulatory control. Examples of these activities are the phosphate ore processing, the refining of a number of metals, the use of slag, and the oil and natural gas production. This might give rise, in some cases, to large volumes of waste which should be treated, conditioned and disposed of in a controlled way. For artificial radionuclides with higher exemption levels, the use of such radionuclides for industrial, medical or research purposes, such as tracers, sealed sources and beta lights, may increase considerably without being controlled any longer by the regulatory system. (author)

  16. Characterizing proton-activated materials to develop PET-mediated proton range verification markers.

    Cho, Jongmin; Ibbott, Geoffrey S; Kerr, Matthew D; Amos, Richard A; Stingo, Francesco C; Marom, Edith M; Truong, Mylene T; Palacio, Diana M; Betancourt, Sonia L; Erasmus, Jeremy J; DeGroot, Patricia M; Carter, Brett W; Gladish, Gregory W; Sabloff, Bradley S; Benveniste, Marcelo F; Godoy, Myrna C; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials ((18)O, Cu, and (68)Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm(-3)) and beef (~1.0 g cm(-3)) were embedded with Cu or (68)Zn foils of several volumes (10-50 mm(3)). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils' PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers. PMID:27203621

  17. Special Form Testing of Sealed Source Encapsulation for High-Alpha-Activity Actinide Materials

    Martinez, Oscar A [ORNL

    2016-01-01

    In the United States all transportation of radioactive material is regulated by the U.S. Department of Transportation (DOT). Beginning in 2008 a new type of sealed-source encapsulation package was developed and tested by Oak Ridge National Laboratory (ORNL). These packages contain high-alpha-activity actinides and are regulated and transported in accordance with the requirements for DOT Class 7 hazardous material. The DOT provides specific regulations pertaining to special form encapsulation designs. The special form designation indicates that the encapsulated radioactive contents have a very low probability of dispersion even when subjected to significant structural events. The special form designs have been shown to simplify the delivery, transport, acceptance, and receipt processes. It is intended for these sealed-source encapsulations to be shipped to various facilities making it very advantageous for them to be certified as special form. To this end, DOT Certificates of Competent Authority (CoCAs) have been sought for the design suitable for containing high-alpha-activity actinide materials. This design consists of the high-alpha-activity material encapsulated within a triangular zirconia canister, referred to as a ZipCan, tile that is then enclosed by a spherical shell. The spherical shell design, with ZipCan tile inside, was tested for compliance with the special form regulations found in 49 CFR 173.469. The spherical enclosure was subjected to 9-m impact, 1 m percussion, and 10-minute thermal tests at the Packaging Evaluation Facility located at the National Transportation Research Center in Knoxville, TN USA and operated by ORNL. Before and after each test, the test units were subjected to a helium leak check and a bubble test. The ZipCan tiles and core were also subjected to the tests required for ISO 2919:2012(E), including a Class IV impact test and heat test and subsequently subjected to helium leakage rate tests [49 CFR 173.469(a)(4)(i)]. The impact

  18. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm‑3) and beef (~1.0 g cm‑3) were embedded with Cu or 68Zn foils of several volumes (10–50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1–5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20–40 min of scan time using various delay times (30–150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  19. Instrumental neutron activation analysis of geological materials from Northern Palawan and Mariduque Island, Philippines

    An instrumental neutron activation analysis of geological materials comprising of heavy mineral panned concentrates and surface soil samples taken from northern Palawan and Marinduque Island, Philippines was conducted. This work was carried out primarily to determine the distribution of uranium, thorium, rare earths and other trace elements in the Philippine environment in connection with the nationwide geochemical exploration program and the IAEA technical co-operation project on gamma ray spectrometric survey in the country. Moreover, the geochemical data obtained will form part of the national database for nuclear resource assessment, mineral exploration and environmental studies. The utilization of the instrumental neutron activation analysis technique in the multielemental determination of geological materials has been very useful in mineral exploration, environmental studies and other related researches. The sensitivity of this technique has been very effective not only in the determination of the major elements but for the trace elements as well. In this study, about 96 geological samples wee analyzed for 15 elements after the spectral analysis. In all, 810 elemental determinations were completed. In the northern Palawan district, the areas with high radioactivity were disclosed by the relatively high concentrations of thorium and, to a lesser extent, uranium. Moreover, areas with possible potential for gold was delineated as well as for the rare earth metals. In Marinduque Island, the distribution of the elements are generally sporadic which indicate various lithological sources and a diverse geology. (author). 7 refs., 1 fig., 9 tabs

  20. Non-destructive testing of composite materials by means of active thermography-based tools

    Lizaranzu, Miguel; Lario, Alberto; Chiminelli, Agustín; Amenabar, Ibán

    2015-07-01

    Infrared analysis tools are nowadays widely used for the non-destructive testing of components made up in composite materials, belonging to many different industrial sectors. Being a non-contact method, its capability for the inspection of large areas in short periods of time justifies the great number of works and technical studies that can be found in this field. The growing interest in the technique is also supported by the development, during recent years, of increasingly powerful equipment and data analysis tools. In order to establish a base of knowledge to assist defect identification in real components inspections, the design and manufacturing of inspection samples including controlled defects, is a frequently used strategy. This paper deals with the analysis, by means of transient active thermography, of a set of inspection patterns made out of different composite materials and configurations that can be found in the wind turbine blade manufacturing industry. The design and manufacturing of these patterns are described, including different types of representative defects, stack configurations and composite manufacturing techniques. Reference samples are then inspected by means of active thermography analysis tools and the results obtained are discussed.

  1. Ablation, surface activation, and electroless metallization of insulating materials by pulsed excimer laser irradiation

    Pulsed-laser irradiation of wide bandgap ceramic substrates, using photons with sub-bandgap energies, activates the ceramic surface for subsequent electroless copper deposition. The copper deposit is confined within the irradiated region when the substrate is subsequently immersed in an electroless copper bath. However, a high laser fluence (typically several j/cm2) and repeated laser shots are needed to obtain uniform copper coverage by this direct-irradiation process. In contrast, by first applying an evaporated SiOx thin film (with x ∼1), laser ablation at quite low energy density (∼0.5 J/cm2) results in re-deposition on the ceramic substrate of material that is catalytic for subsequent electroless copper deposition. Experiments indicate that the re-deposited material is on silicon, on which copper nucleates. Using an SiOx film on a laser-transparent substrate, quite fine (∼12 μm) copper lines can be formed at the boundary of the region that is laser-etched in SiOx. Using SiOx with an absorbing (polycrystalline) ceramic substrate, more-or-less uniform activation and subsequent copper deposition are obtained. In the later case, interactions with the ceramic substrate also may be important for uniform deposition

  2. Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)

    This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans

  3. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  4. Summarizing report on research and development activities in 1989, KfK Institute of Materials and Solid State Research

    This annual report of the Institute for Materials and Solid State Research (IMF) summarizes the institute's activities in the following fields and projects: 1) Fast Breeder project, PSB. Work here concentrated on core, cladding, and structural materials, safety analyses, and core monitoring. 2) Nuclear Fusion Project, PKF, (structural materials, superconducting magnets, blanket development). 3) Radioactive Waste Processing (PWA) and waste management (analysis of residues from dissolution of LWR fuels in nitric acid; materials testing of an austenitic steel in HNO3). 4) Ultimate disposal of radioactive waste (corrosive testing of materials for HAW containers). 5) Environment and safety (mechanical and chemical behaviour of LWR fuel elements at high temperatures). 6) Materials and solid state research (high-temperature materials, ceramics, superconducting materials). An annex to the annual report presents the bibliographic data of all reports and other publications written by members of the institute. (MM)

  5. Photonuclear Activation Analysis of Biological Materials for Various Elements, including Fluorine

    Photonuclear activation analysis (PNAA) studies of a number of kinds of biological and non-biological materials have been carried out at these laboratories, in addition to highflux thermal-neutron and moderate-flux 14-MeV neutron activation analyses of the same materials. The photonuclear studies are carried out with the two high-current electron linear accelerators at the laboratory - machines of 17 MeV and 45 MeV maximum energies. These accelerators can be operated at electron energies anywhere from 2 MeV up to the maximum, and at integrated beam currents up to 0.5 mA. The partially diffused electron beam is absorbed in a water-cooled tungsten converter, to produce an intense bremsstrahlung beam. Samples are irradiated in a pneumatic tube just in front of the converter, or in a spinning multi-sample rack just beyond the pneumatic tube. Some of the advantages of high-flux PNAA, as compared with high-flux thermal-neutron activation analysis, in certain instances are: (1) some elements, such as C, N, and O, can be determined more sensitively, (2) the 24Na interference encountered in the thermal-neutron activation of many biological samples is eliminated, (3) many interfering activities can be eliminated by adjustment of the electron energy to values below the thresholds of interfering reactions, (4) alternate products, in some cases of more convenient half-lives or gamma-ray energies than those produced by (n, γ) reactions, can be formed, and (5) the problem of self-shielding is eliminated. The high penetrability of the bremsstrahlung photons makes the method more generally useful than charged-particle activation analysis. The experimentally determined limits of detection of some 40 elements studied, mostly by the (γ, γ') and (γ, n) reactions, will be reported, as well as photonuclear results on samples of hair, blood, urine, whisky, wood, tobacco and green plants. Detailed studies of the determination of fluorine in biological samples, by the 19F(γ, n)18F

  6. [Fast food promotes weight gain].

    Stender, Steen; Dyerberg, Jørn; Astrup, Arne V

    2007-05-01

    The total amounts of fat in a fast food menu consisting of French fries and fried Chicken Nuggets from McDonald's and KFC, respectively, bought in 35 different countries vary from 41 to 71 gram. In most countries the menu contained unacceptably high amounts of industrially-produced trans fat which contributes to an increased risk of ischaemic heart disease, weight gain, abdominal fat accumulation and type 2 diabetes. The quality of the ingredients in fast food ought to be better and the size of the portions smaller and less energy-dense so that frequent fast food meals do not increase the risk of obesity and diseases among customers. PMID:17537359

  7. Gaining and sustaining schistosomiasis control

    Ezeamama, Amara E; He, Chun-La; Shen, Ye;

    2016-01-01

    strategies. RESULTS: These studies of different treatment schedules with PZQ will provide the most comprehensive data thus far on the optimal frequency and continuity of PCT for schistosomiasis infection and morbidity control. CONCLUSIONS: We expect that the study outcomes will provide data for decision...... 2009, SCORE held a series of meetings to specify empirical questions and design studies related to different schedules of PCT for schistosomiasis control in communities with high (gaining control studies) and moderate (sustaining control studies) prevalence of Schistosoma infection among school...

  8. A gain-coefficient switched Alexandrite laser

    Lee, Chris J.; van der Slot, Peter J. M.; Boller, Klaus-J.

    2012-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  9. A gain-coefficient switched Alexandrite laser

    Lee, C. J.; van der Slot, P. J. M.; Boller, K. J.

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ

  10. Active millimeter-wave imaging system for material analysis and object detection

    Zech, Christian; Hülsmann, Axel; Kallfass, Ingmar; Tessmann, Axel; Zink, Martin; Schlechtweg, Michael; Leuther, Arnulf; Ambacher, Oliver

    2011-11-01

    The use of millimeter-waves for imaging purposes is becoming increasingly important, as millimeter-waves can penetrate most clothing and packaging materials, so that the detector does not require physical contact with the object. This will offer a view to the hidden content of e.g. packets or bags without the need to open them, whereby packaging and content will not be damaged. Nowadays X-ray is used, but as the millimeter-wave quantum energy is far below the ionization energy, it is less harmful for the human health. In this paper we report an active millimeter-wave imaging tomograph for material analysis and concealed object detection purposes. The system is build using in-house W-band components. The object is illuminated with low-power millimeter-waves in the frequency range between 89 and 96GHz; mirrors are used to guide and focus the beam. The object is moved through the focus point to scan the object pixel by pixel. Depending on the actual material some parts of the waves are reflected, the other parts penetrate the object. A single-antenna transmit and receive module is used for illumination and measurement of the material-specific reflected power. A second receiver module is used to measure the transmitted wave. All information is processed for amplitude and phase images by a computer algorithm. The system can be used for security, such as detecting concealed weapons, explosives or contrabands at airports and other safety areas, but also quality assurance applications, e.g. during production to detect defects. Some imaging results will be presented in this paper.

  11. Materials design data for reduced activation martensitic steel type F82H

    This paper presents materials data for design of ITER test blanket modules with the reduced activation ferritic martensitic steel type F82H as structural material. From the physical properties databases, variations of modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. Also reported are Poisson's ratio and magnetic properties. From the tension test results, nominal and minimum stress values of Sy and Su are derived and used for calculation of allowable primary membrane stress intensity Sm. Likewise, uniform and total elongations, as well as reduction of area data, are used for calculation of minimum and true ductility at rupture values. From the instrumented Charpy impact and fracture toughness test data, ductile to brittle transition temperature, toughness and behavior of material in different fracture modes are evaluated. The effect of specimen size and geometry are discussed but preference is given to standard size specimens. From the fatigue data, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves, using a reduction factor of 2 on strain and a reduction factor of 20 on number of cycles to failure. Cyclic hardening curves are also derived and compared with monotonic hardening curves. From the creep data, time dependent allowable stresses Sr and St are calculated. Combination of tension and creep results are used to deduce Smt and isochronus curves. Finally, irradiated and aged materials data are compared to insure that the safety margins incorporated in unirradiated design limits are not exceeded

  12. Research of Low Activation Structural Material for Fusion Reactor in SWIP

    Full text: Development of low activation structural materials is a critical path to fusion power plant. This paper briefly reviews the strategies for structural materials development in Southwestern Institute of Physics (SWIP) and the current status of the materials under investigation. To provide material database for the China Helium-cooled ceramic breeder TBM, several 1000 kg heats of CLF-1 RAFM steel have been produced with the chemical composition of Fe-8.5Cr-1.5W-0.25V-0.5Mn-0.1Ta-0.1C-0.03 N (wt.%). The material has a fully martensitic microstructure without either Laves phase or delta ferrite phases after an optimized normalizing and tempering heat treatment. A large number of material properties were evaluated, including mechanical properties and physical properties. Studies on the thermal ageing showed no obvious degradation in tensile properties even after ageing at 550°C and 600°C for 6000 h. Various joining technologies were investigated, such as TIG welding, electron beam welding and hot isostatic pressing bonding. In addition, researches on the influence of magnetic fields on mechanical properties were carried out for understanding the applicability of the RAFM steel in fusion reactors. A 30 kg V-4Cr-4Ti alloy ingot and various Ti3SiC2 particle dispersion strengthened vanadium alloys (PDS) were developed. For SWIP-30 good control of impurities was achieved with the sum of C, N, and O less than 430 wppm. Thermo-mechanical Treatment has been investigated, which increases the alloy’s tensile strength significantly. The ultimate tensile strength can reach 562 MPa with 7% total elongation at 700°C. Cold working before aging manifests better strengthening effect due to the strong interaction of dislocations and precipitations. PDS-vanadium alloys have much higher mechanical strength. After vacuum annealing at 1000 — 1200°C, the alloy can achieve 1108 MPa in RT ultimate tensile strength, and total elongation of 16.8%. The alloy has ultra-fine grain

  13. Pilot activities to create effective training materials on inclusive value chains : Effective training materials on inclusive value chains

    Guijt, W.J.; Blomne Sopov, M.; Reuver, R.

    2013-01-01

    This report describes efforts to develop training materials to stimulate adoption of more inclusive ways of doing business. The target audiences are private companies, collaborating organisations and business students. The report includes links to two videos on coffee in Kenya and soy-based products

  14. Pilot activities to create effective training materials on inclusive value chains : Effective training materials on inclusive value chains

    Guijt, W.J.; Blomne Sopov, M.; Reuver, R.

    2013-01-01

    This report describes efforts to develop training materials to stimulate adoption of more inclusive ways of doing business. The target audiences are private companies, collaborating organisations and business students. The report includes links to two videos on coffee in Kenya and soy-based products in Ethiopia, as well as a general approach. Report number CDI-13-016

  15. Acaricidal activities of materials derived from Pyrus ussuriensis fruits against stored food mites.

    Jeon, Ju-Hyun; Yang, Ji-Yeon; Lee, Hoi-Seon

    2012-07-01

    The acaricidal activities of materials derived from Pyrus ussuriensis fruits were evaluated against Tyrophagus putrescentiae and compared with that of commercial acaricide (benzyl benzoate). On the basis of the 50 % lethal dose (LD(50)) values, the ethyl acetate fraction of the fractions obtained from an aqueous extract of P. ussuriensis fruits had the highest acaricidal activity (16.32 μg/cm(2)) against T. putrescentiae. The acaricidal constituent of P. ussuriensis fruits was isolated by chromatographic techniques and identified as 1,4-benzoquinone. On the basis of the LD(50) values, 1,4-benzoquinone (1.98 μg/cm(2)) was 5.9 times more toxic than benzyl benzoate (11.69 μg/cm(2)), followed by 2-isopropyl-5-methyl-1,4-benzoquinone (3.29 μg/cm(2)), and 2,3-dimethoxy-5-methyl-1,4-benzoquinone (5.03 μg/cm(2)) against T. putrescentiae in the fumigant bioassay. In a filter paper bioassay, the acaricidal activity of 1,4-benzoquinone (0.07 μg/cm(2)) was 120.1 times more effective than that of benzyl benzoate (8.41 μg/cm(2)), followed by 2-isopropyl-5-methyl-1,4-benzoquinone (0.11 μg/cm(2)) and 2,3-dimethoxy-5-methyl-1,4-benzoquinone (0.30 μg/cm(2)) against T. putrescentiae. These results demonstrate that P. ussuriensis fruit-derived material and its derivatives have potential as new preventive agents for the control of stored food mites. PMID:22980009

  16. Gaining independence through institutional repositories

    Buckholtz, Alison

    2002-01-01

    The author presents SPARC's Initiative about open archives and its relationship with the OAI. Institutional repositories are institutionally defined as a content generated by institutional community, have a scholarly content: preprints and working papers, published articles, enduring teaching materials, student theses, etc. And also are cumulative and perpetual (preserve ongoing access to material) and interoperable and open access: free, online, global.

  17. Information Gains from Cosmological Probes

    Grandis, S; Refregier, A; Amara, A; Nicola, A

    2015-01-01

    In light of the growing number of cosmological observations, it is important to develop versatile tools to quantify the constraining power and consistency of cosmological probes. Originally motivated from information theory, we use the relative entropy to compute the information gained by Bayesian updates in units of bits. This measure quantifies both the improvement in precision and the 'surprise', i.e. the tension arising from shifts in central values. Our starting point is a WMAP9 prior which we update with observations of the distance ladder, supernovae (SNe), baryon acoustic oscillations (BAO), and weak lensing as well as the 2015 Planck release. We consider the parameters of the flat $\\Lambda$CDM concordance model and some of its extensions which include curvature and Dark Energy equation of state parameter $w$. We find that, relative to WMAP9 and within these model spaces, the probes that have provided the greatest gains are Planck (10 bits), followed by BAO surveys (5.1 bits) and SNe experiments (3.1 ...

  18. Estimating the potential gains from mergers

    Bogetoft, Peter; Wang, Dexiang

    2005-01-01

    We introduce simple production economic models to estimate the potential gains from mergers. We decompose the gains into technical ef¿ciency, size (scale) and harmony (mix) gains, and we discuss alternative ways to capture these gains. We propose to approximate the production processes using the...... non-parametric. Data Envelopment Analysis (DEA) approach, and we use the resulting operational approach to estimate the potential gains from merging agricultural extension of¿ces in Denmark....

  19. Effects of Microwave Pretreatment of Apple Raw Material on the Nutrients and Antioxidant Activities of Apple Juice

    Shaoying Zhang; Rui Zhang

    2014-01-01

    Microwave technology has been widely applied in food processing. To investigate the effects of microwave pretreatment of raw material on the nutrients and antioxidant activities of apple juice, the apple materials were treated with 90, 270, 450, 720, and 900 W microwave at 25, 50, 75, 100, and 125 s, respectively. The results showed that after the raw materials were treated with microwave, the vitamin C, amino nitrogen, and anthocyanin content decreased, and the total flavonoids and polypheno...

  20. 3-d Brownian dynamics simulations of the smallest units of an active biological material

    Luettmer-Strathmann, Jutta; Paudyal, Nabina; Adeli Koudehi, Maral

    Motor proteins generate stress in a cytoskeletal network by walking on one strand of the network while being attached to another one. A protein walker in contact with two elements of the network may be considered the smallest unit of an active biological material. In vitro experiments, mathematical modeling and computer simulations have provided important insights into active matter on large and on very small length and time scales. However, it is still difficult to model the effects of local environment and interactions at intermediate scales. Recently, we developed a coarse-grained, three-dimensional model for a motor protein transporting cargo by walking on a substrate. In this work, we simulate a tethered motor protein pulling a substrate with elastic response. As the walker progresses, the retarding force due to the substrate tension increases until contact fails. We present simulation results for the effect of motor-protein activity on the tension in the substrate and the effect of the retarding force on the processivity of the molecular motor.

  1. 温故而知新——探析传统建筑的生态设计方法%GAIN NEW INSIGHTS THROUGH REVIEWING OLD MATERIAL --Construction of the eco-design methods and measures

    武蕴斌; 郑海晨; 张英

    2012-01-01

    人类为生存而依附的建筑及其建成环境是自然的再生装置,也是生态系统的一个组成部分。通过建筑与自然和谐共生,合理利用地上地下空间;利用可再生资源,降低建筑耗能;材料的循环利用和再生的三个层面,“温故”了人类早期文明建筑给予我们生态设计方法及措施的启示。提出对于这方面的研究而言,只有发掘其永恒的内在生态“原型”,才能从更深层次上认识到建筑存在的生态意义,这是建筑可持续发展的根本,也是传统建筑所蕴含的长久生命力与精神所在。%Lan Zhou Zip code:730050 Abstract: The natural regeneration device is the attachment of human survival and completion of the construction environment, it is also an integral part of the ecosystem.By the author of architecture and nature in harmony symbiotic, rational use of underground space and the ground;Using the renewable resources, reducing energy-consuming construction; The use of recycled materials and renewable three levels, "Wen Gu" of early human civilization to our ecological construction methods and design measures to enlightenment .Made for this kind of research, only to explore its eternal inner ecology "prototype",Will they be able to understand more deep-seated to building the ecological significance. This is the fundamental building sustainable development, is also implied in traditional architecture and the spirit of the long-term vitality.

  2. 10 CFR 35.2060 - Records of calibrations of instruments used to measure the activity of unsealed byproduct material.

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of calibrations of instruments used to measure the... MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2060 Records of calibrations of instruments used to measure the activity of unsealed byproduct material. A licensee shall maintain a record of...

  3. Crossing Cultures--Third World Women. A Book of Materials, Activities, and Ideas for the Classroom Teacher.

    Valiant, Sharon

    This resource bibliography includes and briefly discusses activities and instructional materials on the lives of women in the non-European/non-white world, suitable for use in elementary and secondary school rooms. The books, films, and other materials give a sampling of ideas and contributions often overlooked in middle-class America (for…

  4. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  5. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al2O3 and coprecipitation with Fe(OH)3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  6. Analysis of induced gamma activation by D-T neutrons in selected fusion reactor relevant materials with EAF-2010

    Klix Axel; Fischer Ulrich; Gehre Daniel

    2016-01-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors t...

  7. Impregnated active carbons to control atmospheric emissions. 2. Influence of the raw material on the porous texture.

    Alvim-Ferraz, M C M; Todo-Bom Gaspar, C M

    2003-10-01

    The preparation of impregnated active carbons was optimized, in order to use them as catalysts for the deep oxidation of volatile organic compounds on atmospheric emissions. When impregnation is performed on the raw material or after activation, the influence of raw material on the texture and on the catalyst dispersion is already well studied. This paper aims to analyze the influence of raw material when the impregnation step is performed after the carbonization of different carbon precursors, as yet knowledge is very scarce. Olive stones, pinewood sawdust, nut shells, and almond shells were used as raw materials. In order to evaluate the influence of impregnation methodology of CoO, Co(3)O(4), and CrO(3) on the catalyst dispersion in the porous carbon texture, the impregnation step was made after activation and between carbonization and activation. On the first sequence, for all the raw materials, the impregnated oxides must be deposited on the internal surface, blocking part of the initial porous texture. When the impregnation step is conducted after carbonization, metal species act as catalysts during the activation step. The textures developed strongly depend either on the raw material or on the chemical state and distribution of the catalyst in the carbonized material. Olive stones and sawdust carbons stay with a microporous texture with very narrow pores where catalysts are not deposited. In nut shell and almond shell carbons, metal species are dispersed in the largest micropores and in a well-developed mesoporous texture. PMID:12957595

  8. Fresnel reflection from a cavity with net roundtrip gain

    A planewave incident on an active etalon with net roundtrip gain may be expected to diverge in field amplitude, yet applying the Fresnel formalism to Maxwell's equations admits a convergent solution. We describe this solution mathematically and provide additional insight by demonstrating the response of such a cavity to an incident beam of light. Cavities with net roundtrip gain have often been overlooked in the literature, and a clear understanding of their behavior yields insight to negative refraction in nonmagnetic media, a duality between loss and gain, amplified total internal reflection, and the negative-index lens

  9. Fresnel reflection from a cavity with net roundtrip gain

    Mansuripur, Tobias S., E-mail: mansuripur@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mansuripur, Masud [College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-24

    A planewave incident on an active etalon with net roundtrip gain may be expected to diverge in field amplitude, yet applying the Fresnel formalism to Maxwell's equations admits a convergent solution. We describe this solution mathematically and provide additional insight by demonstrating the response of such a cavity to an incident beam of light. Cavities with net roundtrip gain have often been overlooked in the literature, and a clear understanding of their behavior yields insight to negative refraction in nonmagnetic media, a duality between loss and gain, amplified total internal reflection, and the negative-index lens.

  10. Processes for making dense, spherical active materials for lithium-ion cells

    Kang, Sun-Ho; Amine, Khalil

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  11. Neutron activation analysis for the determination of contaminants in food contact materials

    A neutron activation method has been developed for the analysis of high density polyethylene, low density polyethylene,polypropylene, polyethylene terephthalate and polystyrene. Samples weighing 2-5 g were irradiated in a thermal neutron flux of 1016 neutrons m-2 s-1 and measured with gamma ray spectrometry for 64 elements. With the method developed here over 50 elements can be detected at concentrations below 1 mg/kg. Correction factors were applied for neutron flux variation and counting geometry. The method was validated using reference material citrus leaves (NIST) for Na, Mg, Al, K, Ca, Mn, Cu, Sr and I, and a suite of 'in house' standards doped with Al, Cr, Co, Mg, Zn and Sb confirmed repeatability of the method was used to measure inorganic contaminants in the raw polymers and retail samples of plastic packaging used in contact with food. (author). 3 refs., 6 tabs

  12. Modelling of ion sorption on complex solid materials. Synthesis of research activities

    In this HDR (Accreditation to Supervise Researches) report, the author proposes an overview of his research activities which are part of efforts of qualification and quantification of retention capacities of synthetic and artificial materials used to confine nuclear wastes in an underground geological site by absorption of radio-elements possibly passed into solution. More specifically, these research works focused on models aimed at predicting the behaviour of a mixing with respect to adsorption, and thus at avoiding too cumbersome experimental characterizations. The author presents the designed modelling approach and models, describes the implemented scientific approach and the associated data acquisition methodology, and discusses the obtained results. He finally proposed an assessment of these research works, and discusses research perspectives on a short and medium term

  13. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  14. Optimal design of hollow core–shell structural active materials for lithium ion batteries

    Wenjuan Jiang

    2015-01-01

    Full Text Available To mitigate mechanical and chemical degradation of active materials, hollow core–shell structures have been applied in lithium ion batteries. Without embedding of lithium ions, the rigid coating shell can constrain the inward volume deformation. In this paper, optimal conditions for the full use of inner hollow space are identified in terms of the critical ratio of shell thickness and inner size and the state of charge. It is shown that the critical ratios are 0.10 and 0.15 for Si particle and tube (0.12 and 0.18 for Sn particle and tube, and above which there is lack of space for further lithiation.

  15. Characterization of tetraketone ligands for active materials of all-uranium redox flow battery

    For active materials of the all-uranium redox flow battery for power storage, two tetraketone ligands, which possess two monomer acetylacetone moieties, were investigated in terms of the complexation with uranium. Detailed NMR measurements were conducted to reveal the keto-enol tautomerism of the tetraketones in CDCl3 and titration measurements were carried out in water-dioxane (1:1 (v/v)) solutions to evaluate formation constants with metal ions at III-VI valences. Although the first acid dissociation constants for tetraketones are close to that for the acetylacetone, the formation constants of tetraketones at large coordination numbers are larger than those of acetylacetone. On the basis of these formation constants, the thermodynamic distributions of tetraketone complexes are evaluated in the solution to demonstrate that the change in the coordination number is not expected during the redox reactions contrary to the case of the acetylacetone

  16. Instrumental neutron activation analysis of rib bone samples and of bone reference materials

    The instrumental neutron activation analysis method was used for the determination of trace elements in rib bone samples taken from autopsies of accident victims. The elements Br, Ca, Cl, Cr, Fe, Mg, Mn, Na, P, Sr, Rb and Zn were determined in cortical tissues by using short and long irradiations with thermal neutron flux of the IEA-R1m nuclear reactor. The reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were also analyzed in order to evaluate the precision and the accuracy of the results. It was verified that lyophilization is the most convenient process for drying bone samples since it does not cause any element losses. Comparisons were made between the results obtained for rib samples and the literature values as well as between the results obtained for different ribs from a single individual and for bones from different individuals. (author)

  17. Determination of hafnium and zirconium in geological materials by neutron activation analysis

    In this paper, neutron activation analysis was developed for determining hafnium and zirconium in geological materials. The USGS geological standard rocks GSP-1 (granodiorite) and W-1 (di abase). The Brazilian geological standards GB-1 (granite) and BB-1 (basalt) from Instituto de Geociencias da Universidade da Bahia and P-1 a uraniferous rock from Pocos de Caldas, MG, Brazil were analyzed. Hafnium present in these rocks was analyzed by purely instrumental method by irradiating with both thermal and epithermal neutrons from IEA-R1 nuclear research reactor. In the case of zirconium depending on the sample a radiochemical separation was required. 154 Eu and 152 Eu radioisotopes emit gamma rays with energies too close to those emitted by 95 Zr and they cause interferences. (author)

  18. HIGH-ENERGY-DENSITY ELECTRODE ON THE BASIS OF ACTIVATED CARBON MATERIAL FOR HYBRID SUPERCAPACITORS

    Highlights: • Electron microscopy and Raman spectroscopy indicate formation of the C*xI. • The entropy-related contribution to ΔGof(C*xI) is dominate. • One-electron transfer of the C*xI formation and its reversibility were experimentally shown. • The obtained high values of parameters of GD are: P = 2.28 W g−1, C = 1254 C g−1, Cf = 7376 F g−1, W = 1426 J g−1. • Practical values of W and C are equal to 82% and 87% of the theoretical values respectively. - ABSTRACT: The “Norit DLC Supra 30” commercial activated carbon material (NS commercial ACM) has been investigated as a polarized electrode for a hybrid supercapacitor (HS) in aqueous ZnI2 solution. Energy-dispersive X-ray spectroscopy and Raman spectroscopy have shown that there is considerable increase in response of iodine atoms of the electrochemically adsorbed material as compared to that of the initial material. Thermodynamic functions of the process of the Cx*I formation have been determined; they indicate that the entropy-related contribution to Gibbs free energy dominates there. The drawn theoretical Langmuir isotherm and capacity-voltage characteristic were compared with corresponding experimental ones. One-electron transfers of the process of iodine electrosorption and the reversibility of this process have been experimentally shown. The obtained experimental value of the specific pseudocapacitive discharge (Cf) is equal to 7376 F g−1 at the efficiency of the cycle of 93 %. Practical discharge has the following parameters: specific power (P) is 2.28 W g−1, specific energy (W) is 1426 J g−1, specific capacity (C) is 1254 C g−1. The obtained practical values of specific energy and capacity are equal to 82 % and 87 % of the theoretical values respectively

  19. Evaluation of radiochemical neutron activation analysis methods for determination of arsenic in biological materials.

    Paul, Rick L

    2011-01-01

    Radiochemical neutron activation analysis (RNAA) with retention on hydrated manganese dioxide (HMD) has played a key role in the certification of As in biological materials at NIST. Although this method provides very high and reproducible yields and detection limits at low microgram/kilogram levels, counting geometry uncertainties may arise from unequal distribution of As in the HMD, and arsenic detection limits may not be optimal due to significant retention of other elements. An alternate RNAA procedure with separation of arsenic by solvent extraction has been investigated. After digestion of samples in nitric and perchloric acids, As(III) is extracted from 2 M sulfuric acid solution into a solution of zinc diethyldithiocarbamate in chloroform. Counting of (76)As allows quantitation of arsenic. Addition of an (77)As tracer solution prior to dissolution allows correction for chemical yield and counting geometries, further improving reproducibility. The HMD and solvent extraction procedures for arsenic were compared through analysis of SRMs 1577c (bovine liver), 1547 (peach leaves), and 1575a (pine needles). Both methods gave As results in agreement with certified values with comparable reproducibility. However, the solvent extraction method yields a factor of 3 improvement in detection limits and is less time-consuming than the HMD method. The new method shows great promise for use in As certification in reference materials. PMID:21133431

  20. Twenty five years of reference material activity at Agriculture and Agri-Food Canada.

    Ihnat, M

    2001-06-01

    In the mid 1970s, the available RMs, notably Bowen's Kale and Orchard Leaves and Bovine liver from National Bureau of Standards (NBS), although of great benefit, were overwhelmingly insufficiently representative, in respect of matrix and elemental composition, of the wide range of natural products submitted for analysis and in worldwide commerce. To provide additional coverage, an RM development project was initiated with input from cooperating analysts leading to an Agriculture and Agri-Food Canada/National Institute of Standards and Technology (NIST) cooperative venture and development of a total of 12 different agricultural/food RMs. With a total of 303 concentration values for 34 elements and a wide range of matrix components such as ash, silica, protein, fat, carbohydrate and fiber, these RMs significantly augment the world repertoire of biological control materials. A final material under consideration is a highly reliable, discrete, synthetic RM for quality control and calibration. This paper summarizes the research and developmental activities undertaken during the past quarter of a century related to RM development at Agriculture and Agri-Food Canada and includes a short historical background, conceptual considerations, preparation, physical characterization, homogeneity estimation, chemical characterization, calculation of recommended reference values and associated uncertainties, methodology development and application, and performance of inorganic analytical methods in a multielement, multilaboratory, collaborative characterization campaign. PMID:11451252