WorldWideScience

Sample records for active dimeric form

  1. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin.

    Hjorth, Christian Fogt; Norrman, Mathias; Wahlund, Per-Olof; Benie, Andrew J; Petersen, Bent O; Jessen, Christian M; Pedersen, Thomas Å; Vestergaard, Kirsten; Steensgaard, Dorte B; Pedersen, Jan Skov; Naver, Helle; Hubálek, František; Poulsen, Christian; Otzen, Daniel

    2016-04-01

    A specific covalently linked dimeric species of insulin high molecular weight products (HMWPs), formed during prolonged incubation of a neutral pharmaceutical formulation of human insulin, were characterized in terms of tertiary structure, self-association, biological activity, and fibrillation properties. The dimer was formed by a covalent link between A21Asn and B29Lys. It was analyzed using static and dynamic light scattering and small-angle X-ray scattering to evaluate its self-association behavior. The tertiary structure was obtained using nuclear magnetic resonance and X-ray crystallography. The biological activity of HMWP was determined using 2 in vitro assays, and its influence on fibrillation was investigated using Thioflavin T assays. The dimer's tertiary structure was nearly identical to that of the noncovalent insulin dimer, and it was able to form hexamers in the presence of zinc. The dimer exhibited reduced propensity for self-association in the absence of zinc but significantly postponed the onset of fibrillation in insulin formulations. Consistent with its dimeric state, the tested species of HMWP showed little to no biological activity in the used assays. This study is the first detailed characterization of a specific type of human insulin HMWP formed during storage of a marketed pharmaceutical formulation. These results indicate that this specific type of HMWP is unlikely to antagonize the physical stability of the formulation, as HMWP retained a tertiary structure similar to the noncovalent dimer and participated in hexamer assembly in the presence of zinc. In addition, increasing amounts of HMWP reduce the rate of insulin fibrillation. PMID:26921119

  2. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin

    Hjorth, Christian Fogt; Norrman, Mathias; Wahlund, Per-Olof; Benie, Andrew J.; Petersen, Bent O.; Jessen, Christian M; Pedersen, Thomas Å.; Vestergaard, Kirsten; Steensgaard, Dorte B; Pedersen, Jan Skov; Naver, Helle; Hubálek, František; Poulsen, Christian; Otzen, Daniel

    2016-01-01

    first detailed characterization of a specific type of human insulin HMWP formed during storage of a marketed pharmaceutical formulation. These results indicate that this specific type of HMWP is unlikely to antagonize the physical stability of the formulation, as HMWP retained a tertiary structure......A specific covalently linked dimeric species of insulin high molecular weight products (HMWPs), formed during prolonged incubation of a neutral pharmaceutical formulation of human insulin, were characterized in terms of tertiary structure, self-association, biological activity, and fibrillation...

  3. Mechanism of FGF receptor dimerization and activation

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  4. The Activation Domain of the Bovine Papillomavirus E2 Protein Mediates Association of DNA-Bound Dimers to form DNA Loops

    Knight, Jonathan D.; Li, Rong; Botchan, Michael

    1991-04-01

    The E2 transactivator protein of bovine papillomavirus binds its specific DNA target sequence as a dimer. We have found that E2 dimers, performed in solution independent of DNA, exhibit substantial cooperativity of DNA binding as detected by both nitrocellulose filter retention and footprint analysis techniques. If the binding sites are widely spaced, E2 forms stable DNA loops visible by electron microscopy. When three widely separated binding sites reside on te DNA, E2 condenses the molecule into a bow-tie structure. This implies that each E2 dimer has at least two independent surfaces for multimerization. Two naturally occurring shorter forms of the protein, E2C and D8/E2, which function in vivo as repressors of transcription, do not form such loops. Thus, the looping function of E2 maps to the 161-amino acid activation domain. These results support the looping model of transcription activation by enhancers.

  5. Molecular mechanisms of asymmetric RAF dimer activation.

    Jambrina, Pablo G; Bohuszewicz, Olga; Buchete, Nicolae-Viorel; Kolch, Walter; Rosta, Edina

    2014-08-01

    Protein phosphorylation is one of the most common post-translational modifications in cell regulatory mechanisms. Dimerization plays also a crucial role in the kinase activity of many kinases, including RAF, CDK2 (cyclin-dependent kinase 2) and EGFR (epidermal growth factor receptor), with heterodimers often being the most active forms. However, the structural and mechanistic details of how phosphorylation affects the activity of homo- and hetero-dimers are largely unknown. Experimentally, synthesizing protein samples with fully specified and homogeneous phosphorylation states remains a challenge for structural biology and biochemical studies. Typically, multiple changes in phosphorylation lead to activation of the same protein, which makes structural determination methods particularly difficult. It is also not well understood how the occurrence of phosphorylation and dimerization processes synergize to affect kinase activities. In the present article, we review available structural data and discuss how MD simulations can be used to model conformational transitions of RAF kinase dimers, in both their phosphorylated and unphosphorylated forms. PMID:25109958

  6. The activation domain of the bovine papillomavirus E2 protein mediates association of DNA-bound dimers to form DNA loops

    Knight, J. D.; Li, R; Botchan, M

    1991-01-01

    The E2 transactivator protein of bovine papillomavirus binds its specific DNA target sequence as a dimer. We have found that E2 dimers, preformed in solution independent of DNA, exhibit substantial cooperativity of DNA binding as detected by both nitrocellulose filter retention and footprint analysis techniques. If the binding sites are widely spaced, E2 forms stable DNA loops visible by electron microscopy. When three widely separated binding sites reside on the DNA, E2 condenses the molecul...

  7. Structure of the Mature Streptococcal Cysteine Protease Exotoxin mSpeB in Its Active Dimeric Form

    Olsen, Johan G; Dagil, Robert; Niclasen, Louise Meinert;

    2009-01-01

    Invasive infections of Streptococcus pyogenes are dependent on the cysteine protease streptococcal pyrogenic exotoxin B. Previous structures of the enzyme have not disclosed the proper active-site configuration. Here, the crystal structure of the mature enzyme is presented to 1.55 A, disclosing a...

  8. Human Erythropoietin Dimers with Markedly Enhanced in vivo Activity

    Sytkowski, Arthur J.; Dotimas Lunn, Elizabeth; Davis, Kerry Lynn; Feldman, Laurie; Siekman, Suvia

    1998-02-01

    Human erythropoietin, a widely used and important therapeutic glycoprotein, has a relatively short plasma half-life due to clearance by glomerular filtration as well as by other mechanisms. We hypothesized that an erythropoietin species with a larger molecular size would exhibit an increased plasma half-life and, potentially, an enhanced biological activity. We now report the production of biologically active erythropoietin dimers and trimers by chemical crosslinking of the conventional monomeric form. We imparted free sulfhydryl residues to a pool of erythropoietin monomer by chemical modification. A second pool was reacted with another modifying reagent to yield monomer with male-imido groups. Upon mixing these two pools, covalently linked dimers and trimers were formed that were biologically active in vitro. The plasma half-life of erythropoietin dimers in rabbits was >24 h compared with 4 h for the monomers. Importantly, erythropoietin dimers were biologically active in vivo as shown by their ability to increase the hematocrits of mice when injected subcutaneously. In addition, the dimers exhibited >26-fold higher activity in vivo than did the monomers and were very effective after only one dose. Dimeric and other oligomeric forms of Epo may have an important role in therapy.

  9. Characterization of dimeric forms of human pituitary growth hormone by bioassay, radioreceptor assay, and radioimmunoassay

    Seven highly purified dimeric forms of human pituitary growth hormone, composed of the monomeric forms 20 K hGH, 22K hGH and 24 k hBH linked together by noncovalent or covalent bounds, have been characterized by an in vitro bioassay (the Nb2 assay), a radioreceptor assay and a radioimmunoassay. Considerable differences in the ability to displace labelled recombinant hGH were observed in the radioreceptor assay. The seven dimeric forms varied over a range between 22 K hGH (most effective) and 20 K hGH. The three covalently-linked dimeric forms had nearly identical affinity constants. The mitogenic action of all but one of the hGH dimers in the Nb2 assay was in the same mutual order as the receptor binding activity in the radioreceptor assay. In the RIA, all dose-response curves were parallel except for those obtained with 20 K hGH and with the dimeric form (20 K-20 K)hGH. In this assay, dimeric variants of the constituents 22 K hGH and 24 K hGH were approximately twice as active as 22 K hGH on a molar basis, suggesting about the same affinity between the the antibodies and each of the monomeric forms. Determination of the amino acid compositions of the dimeric forms provided support for their content of monomeric constituents as established earlier by electrophoretic analysis. (author)

  10. Synthetic covalently linked dimeric form of H2 relaxin retains native RXFP1 activity and has improved in vitro serum stability.

    Nair, Vinojini B; Bathgate, Ross A D; Separovic, Frances; Samuel, Chrishan S; Hossain, Mohammed Akhter; Wade, John D

    2015-01-01

    Human (H2) relaxin is a two-chain peptide member of the insulin superfamily and possesses potent pleiotropic roles including regulation of connective tissue remodeling and systemic and renal vasodilation. These effects are mediated through interaction with its cognate G-protein-coupled receptor, RXFP1. H2 relaxin recently passed Phase III clinical trials for the treatment of congestive heart failure. However, its in vivo half-life is short due to its susceptibility to proteolytic degradation and renal clearance. To increase its residence time, a covalent dimer of H2 relaxin was designed and assembled through solid phase synthesis of the two chains, including a judiciously monoalkyne sited B-chain, followed by their combination through regioselective disulfide bond formation. Use of a bisazido PEG7 linker and "click" chemistry afforded a dimeric H2 relaxin with its active site structurally unhindered. The resulting peptide possessed a similar secondary structure to the native monomeric H2 relaxin and bound to and activated RXFP1 equally well. It had fewer propensities to activate RXFP2, the receptor for the related insulin-like peptide 3. In human serum, the dimer had a modestly increased half-life compared to the monomeric H2 relaxin suggesting that additional oligomerization may be a viable strategy for producing longer acting variants of H2 relaxin. PMID:25685807

  11. Synthetic Covalently Linked Dimeric Form of H2 Relaxin Retains Native RXFP1 Activity and Has Improved In Vitro Serum Stability

    Vinojini B. Nair

    2015-01-01

    Full Text Available Human (H2 relaxin is a two-chain peptide member of the insulin superfamily and possesses potent pleiotropic roles including regulation of connective tissue remodeling and systemic and renal vasodilation. These effects are mediated through interaction with its cognate G-protein-coupled receptor, RXFP1. H2 relaxin recently passed Phase III clinical trials for the treatment of congestive heart failure. However, its in vivo half-life is short due to its susceptibility to proteolytic degradation and renal clearance. To increase its residence time, a covalent dimer of H2 relaxin was designed and assembled through solid phase synthesis of the two chains, including a judiciously monoalkyne sited B-chain, followed by their combination through regioselective disulfide bond formation. Use of a bisazido PEG7 linker and “click” chemistry afforded a dimeric H2 relaxin with its active site structurally unhindered. The resulting peptide possessed a similar secondary structure to the native monomeric H2 relaxin and bound to and activated RXFP1 equally well. It had fewer propensities to activate RXFP2, the receptor for the related insulin-like peptide 3. In human serum, the dimer had a modestly increased half-life compared to the monomeric H2 relaxin suggesting that additional oligomerization may be a viable strategy for producing longer acting variants of H2 relaxin.

  12. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers

    Ichiro N. Maruyama

    2014-04-01

    Full Text Available Receptor tyrosine kinases (RTKs play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights.

  13. Camelliin B and nobotanin I, macrocyclic ellagitannin dimers and related dimers, and their antitumor activity.

    Yoshida, T; Chou, T; Haba, K; Okano, Y; Shingu, T; Miyamoto, K; Koshiura, R; Okuda, T

    1989-11-01

    Camelliin B and nobotanin I, dimeric hydrolyzable tannins of a new class having macrocyclic structures, were isolated from Camellia japonica and Heterocentron roseum, respectively. Nobotanin G and H of the structures related to nobotanin I, were also obtained from H. roseum. Camelliin B and also woodfordin C, a macrocyclic dimer from Woodfordia fruticosa, exhibited marked host-mediated antitumor activities. PMID:2632067

  14. Overexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus

    Venkatakrishna R Jala; V Prakash; N Appaji Rao; H S Savithri

    2002-06-01

    Serine hydroxymethyltransferase (SHMT), a pyridoxal-5′-phosphate (PLP) dependent enzyme catalyzes the interconversion of L-Ser and Gly using tetrahydrofolate as a substrate. The gene encoding for SHMT was amplified by PCR from genomic DNA of Bacillus stearothermophilus and the PCR product was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme was isolated as a mixture of dimer (90%) and tetramer (10%). This is the first report demonstrating the existence of SHMT as a dimer and tetramer in the same organism. The specific activities at 37°C of the dimeric and tetrameric forms were 6.7 U/mg and 4.1 U/mg, respectively. The purified dimer was extremely thermostable with a m of 85°C in the presence of PLP and L-Ser. The temperature optimum of the dimer was 80°C with a specific activity of 32.4 U/mg at this temperature. The enzyme catalyzed tetrahydrofolate-independent reactions at a slower rate compared to the tetrahydrofolate-dependent retro-aldol cleavage of L-Ser. The interaction with substrates and their analogues indicated that the orientation of PLP ring of B. stearothermophilus SHMT was probably different from sheep liver cytosolic recombinant SHMT (scSHMT).

  15. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active-site formation and catalytic specificity.

    Itoh, Yuzuru; Bröcker, Markus J; Sekine, Shun-ichi; Söll, Dieter; Yokoyama, Shigeyuki

    2014-04-17

    The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNA(Sec)). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNA(Sec), formed by seryl-tRNA synthetase, to Sec-tRNA(Sec). SelA, a member of the fold-type-I pyridoxal 5'-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNA(Sec) revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNA(Sec). The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of "depentamerized" SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5'-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. PMID:24456689

  16. Recombinant RXFP1-LDL-A module does not form dimers.

    Petrie, Emma J; Periguini, Matthew A; Bathgate, Ross A D; Gooley, Paul R

    2013-01-01

    The Relaxin receptor, RXFP1, is a complex G-protein coupled receptor (GPCR). It has a rhodopsin-like 7 transmembrane helix region and a large ecto-domain containing Leucine-rich repeats and a Low Desnsity Lipoprotein Class-A module at the N-terminus. RXFP1 and the closely related receptor for INSL3, RXFP2 are the only mammalian GPCRs to contain an LDL-A module. The LDL-A module has been shown to be essential for receptor signal activation. RXFP1, like other GPCRs, has been shown to form dimers however the interface upon association is currently unknown. As LDL-A modules are commonly found as repeats we hypothesized that the LDL-A module may associate at the dimer interface and play a role in receptor activation. To this end we analyzed the ability for the LDL-A module to oligomerise via Analytical Ultracentrifugation (AUC). PMID:24640556

  17. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. PMID:27043172

  18. Overcoming the signaling defect of Lyn-sequestering, signal-curtailing FcepsilonRI dimers: aggregated dimers can dissociate from Lyn and form signaling complexes with Syk.

    Lara, M; Ortega, E; Pecht, I; Pfeiffer, J R; Martinez, A M; Lee, R J; Surviladze, Z; Wilson, B S; Oliver, J M

    2001-10-15

    Clustering the tetrameric (alphabetagamma(2)) IgE receptor, FcepsilonRI, on basophils and mast cells activates the Src-family tyrosine kinase, Lyn, which phosphorylates FcepsilonRI beta and gamma subunit tyrosines, creating binding sites for the recruitment and activation of Syk. We reported previously that FcepsilonRI dimers formed by a particular anti-FcepsilonRI alpha mAb (H10) initiate signaling through Lyn activation and FcepsilonRI subunit phosphorylation, but cause only modest activation of Syk and little Ca(2+) mobilization and secretion. Curtailed signaling was linked to the formation of unusual, detergent-resistant complexes between Lyn and phosphorylated receptor subunits. Here, we show that H10-FcepsilonRI multimers, induced by adding F(ab')(2) of goat anti-mouse IgG to H10-treated cells, support strong Ca(2+) mobilization and secretion. Accompanying the recovery of signaling, H10-FcepsilonRI multimers do not form stable complexes with Lyn and do support the phosphorylation of Syk and phospholipase Cgamma2. Immunogold electron microscopy showed that H10-FcepsilonRI dimers colocalize preferentially with Lyn and are rarely within the osmiophilic "signaling domains" that accumulate FcepsilonRI and Syk in Ag-treated cells. In contrast, H10-FcepsilonRI multimers frequently colocalize with Syk within osmiophilic patches. In sucrose gradient centrifugation analyses of detergent-extracted cells, H10-treated cells show a more complete redistribution of FcepsilonRI beta from heavy (detergent-soluble) to light (Lyn-enriched, detergent-resistant) fractions than cells activated with FcepsilonRI multimers. We hypothesize that restraints imposed by the particular orientation of H10-FcepsilonRI dimers traps them in signal-initiating Lyn microdomains, and that converting the dimers to multimers permits receptors to dissociate from Lyn and redistribute to separate membrane domains that support Syk-dependent signal propagation. PMID:11591756

  19. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  20. Dimer formation of receptor activator of nuclear factor κB induces incomplete osteoclast formation

    Receptor activator of nuclear factor κB-ligand (RANKL) transduces a differentiation signal appropriate to osteoclasts likely through induction a receptor homotrimer; however, biological importance of RANK-trimerizarion is unknown. To address the signaling mechanism of the RANK receptor, we analyzed the effect of two different types of homodimer inducers RANK-TM-FKBP36v and hEpoR-RANK-TM on osteoclastogenesis. Dimerizing component FKBP36v or extracellular portion of human erythropoietin receptor (hEpoR) was fused to RANK lacking the extracellular domain, and the dimerization of this fusion protein was induced by addition of the chemical inducer of dimerization AP20187 or erythropoietin, respectively. Such treatment resulted in induction of TRAP-activity, a marker of osteoclast in a dose dependent manner, with an efficiency equivalent to that of induction by RANKL. However, dimerized-RANK-induced osteoclasts showed relatively low levels of multinucleation, pit forming activity, and expression of calcitonin receptor and cathepsin K, compared with osteoclasts which were induced in the presence of RANKL. As expression of nuclear factor of activated T cells 1 (NFATc1) was also reduced in dimerized-RANK-induced osteoclasts, RANK oligomerization by RANKL is a critical event to generate fully matured osteoclasts through upregulation of NFATc1

  1. Human cystatin C forms an inactive dimer during intracellular trafficking in transfected CHO cells

    Merz, G S; Benedikz, Eirikur; Schwenk, V;

    1997-01-01

    To define the cellular processing of human cystatin C as well as to lay the groundwork for investigating its contribution to lcelandic Hereditary Cerebral Hemorrhage with Amyloidosis (HCHWA-I), we have characterized the trafficking, secretion, and extracellular fate of human cystatin C in...... the cystatin C dimer, formed during intracellular trafficking, is converted to monomer at or before secretion. Cells in which exit from the endoplasmic reticulum (ER) was blocked with brefeldin A contained the 33 kDa species, indicating that cystatin C dimerization occurs in the ER. After removal of......, presumably as a consequence of the low pH of late endosome/lysosomes. As a dimer, cystatin C would be prevented from inhibiting the lysosomal cysteine proteases. These results reveal a novel mechanism, transient dimerization, by which cystatin C is inactivated during the early part of its trafficking through...

  2. Structural and Vibrational Study on Monomer and Dimer Forms and Water Clusters of Acetazolamide

    Aysen E. Ozel

    2013-01-01

    Full Text Available Experimental IR and Raman spectra of solid acetazolamide have been analysed by computing the molecular structures and vibrational spectra of monomer and dimer forms and water clusters of acetazolamide. The possible stable conformers of free acetazolamide molecule in the ground state were obtained by scanning the potential energy surface through the dihedral angles, D1 (1S-2C-6S-9N, D2 (4N-5C-12N-14C, and D3 (5C-12N-14C-16C. The final geometry parameters for the obtained stable conformers were determined by means of geometry optimization, carried out at DFT/B3LYP/6-31G++(d,p theory level. Afterwards the possible dimer forms of the molecule and acetazolamide-H2O clusters were formed and their energetically preferred conformations were investigated using the same method and the same level of theory. The effect of BSSE on the structure and energy of acetazolamide dimer has been investigated. The assignment of the vibrational modes was performed based on the potential energy distribution of the vibrational modes, calculated by using GAR2PED program. The experimental vibrational wavenumbers of solid acetazolamide are found to be in better agreement with the calculated wavenumbers of dimer form of acetazolamide than those of its monomeric form. NBO analysis has been performed on both monomer and dimer geometries.

  3. Dimer formation and transcription activation in the sporulation response regulator Spo0A.

    Lewis, Richard J; Scott, David J; Brannigan, James A; Ladds, Joanne C; Cervin, Marguerite A; Spiegelman, George B; Hoggett, James G; Barák, Imrich; Wilkinson, Anthony J

    2002-02-15

    The response regulator Spo0A is the master control element in the initiation of sporulation in Bacillus subtilis. Like many other multi-domain response regulators, the latent activity of the effector, C-terminal domain is stimulated by phosphorylation on a conserved aspartic acid residue in the regulatory, N-terminal domain. If a threshold concentration of phosphorylated Spo0A is achieved, the transcription of genes required for sporulation is activated, whereas the genes encoding stationary phase sentinels are repressed, and sporulation proceeds. Despite detailed genetic, biochemical and structural characterisation, it is not understood how the phosphorylation signal in the receiver domain is transduced into DNA binding and transcription activation in the distal effector domain. An obstacle to our understanding of Spo0A function is the uncertainty concerning changes in quaternary structure that accompany phosphorylation. Here we have revisited this question and shown unequivocally that Spo0A forms dimers upon phosphorylation and that the subunit interactions in the dimer are mediated principally by the receiver domain. Purified dimers of two mutants of Spo0A, in which the phosphorylatable aspartic acid residue has been substituted, activate transcription from the spoIIG promoter in vitro, whereas monomers do not. This suggests that dimers represent the activated form of Spo0A. PMID:11851334

  4. SUMO chain-induced dimerization activates RNF4.

    Rojas-Fernandez, Alejandro; Plechanovová, Anna; Hattersley, Neil; Jaffray, Ellis; Tatham, Michael H; Hay, Ronald T

    2014-03-20

    Dimeric RING E3 ligases interact with protein substrates and conformationally restrain the ubiquitin-E2-conjugating enzyme thioester complex such that it is primed for catalysis. RNF4 is an E3 ligase containing an N-terminal domain that binds its polySUMO substrates and a C-terminal RING domain responsible for dimerization. To investigate how RNF4 activity is controlled, we increased polySUMO substrate concentration by ablating expression of SUMO protease SENP6. Accumulation of SUMO chains in vivo leads to ubiquitin-mediated proteolysis of RNF4. In vitro we demonstrate that at concentrations equivalent to those found in vivo RNF4 is predominantly monomeric and inactive as an ubiquitin E3 ligase. However, in the presence of SUMO chains, RNF4 is activated by dimerization, leading to both substrate ubiquitylation and autoubiquitylation, responsible for degradation of RNF4. Thus the ubiquitin E3 ligase activity of RNF4 is directly linked to the availability of its polySUMO substrates. PMID:24656128

  5. Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity.

    Miyoung Kim

    Full Text Available BACKGROUND: Translationally Controlled Tumor Protein (TCTP found in nasal lavage fluids of allergic patients was named IgE-dependent histamine-releasing factor (HRF. Human recombinant HRF (HrHRF has been recently reported to be much less effective than HRF produced from activated mononuclear cells (HRFmn. METHODS AND FINDINGS: We found that only NH(2-terminal truncated, but not C-terminal truncated, TCTP shows cytokine releasing activity compared to full-length TCTP. Interestingly, only NH(2-terminal truncated TCTP, unlike full-length TCTP, forms dimers through intermolecular disulfide bonds. We tested the activity of dimerized full-length TCTP generated by fusing it to rabbit Fc region. The untruncated-full length protein (Fc-HrTCTP was more active than HrTCTP in BEAS-2B cells, suggesting that dimerization of TCTP, rather than truncation, is essential for the activation of TCTP in allergic responses. We used confocal microscopy to evaluate the affinity of TCTPs to its putative receptor. We detected stronger fluorescence in the plasma membrane of BEAS-2B cells incubated with Del-N11TCTP than those incubated with rat recombinant TCTP (RrTCTP. Allergenic activity of Del-N11TCTP prompted us to see whether the NH(2-terminal truncated TCTP can induce allergic airway inflammation in vivo. While RrTCTP had no influence on airway inflammation, Del-N11TCTP increased goblet cell hyperplasia in both lung and rhinal cavity. The dimerized protein was found in sera from allergic patients, and bronchoalveolar lavage fluids from airway inflamed mice. CONCLUSIONS: Dimerization of TCTP seems to be essential for its cytokine-like activity. Our study has potential to enhance the understanding of pathogenesis of allergic disease and provide a target for allergic drug development.

  6. A detailed MSn study for the molecular identification of a dimer formed from oxidation of pinene

    Beck, Martin; Hoffmann, Thorsten

    2016-04-01

    Dimeric products formed in the oxidation of α- and β-pinene have been frequently observed in laboratory and field studies of biogenic SOA formation. While their existence is undoubted, their exact chemical structures remain unclear. This study uses a combined two step approach aiming on the molecular identification of the most important of the various dimers that have been observed in biogenic secondary organic aerosol formation, a dimer with the molecular weight 358 g mol-1. The first step is the application of a functional group derivatization technique (esterification) to quantify the number of carboxylic acid groups in the target molecule. Based on the detailed interpretation of the MSn spectra (up to n = 7) of the derivatized product further information about the exact structure of the compound of interest is compiled. To increase the intensity of precursor ions for the MSn-studies and especially to facilitate successive fragmentation of the target molecule, which yields structurally informative product spectra, cationization reagents (Li+, NH4+) are introduced. The results clearly point to the formation of a dimer containing three carboxylic acid groups and a structure containing a terpenylic acid building block and a pinic acid building block, strongly supporting a structure suggestion by Claeys and coworkers (Yasmeen et al., 2010).

  7. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form.

    Javed M Khan

    Full Text Available Banana lectin (BL is a homodimeric protein categorized among jacalin-related family of lectins. The effect of acidic pH was examined on conformational stability of BL by using circular dichroism, intrinsic fluorescence, 1-anilino-8-napthalene sulfonate (ANS binding, size exclusion chromatography (SEC and dynamic light scattering (DLS. During acid denaturation of BL, the monomerization of native dimeric protein was found at pH 2.0. The elution profile from SEC showed two different peaks (59.65 ml & 87.98 ml at pH 2.0 while single peak (61.45 ml at pH 7.4. The hydrodynamic radii (R h of native BL was 2.9 nm while at pH 2.0 two species were found with R h of 1.7 and 3.7 nm. Furthermore at, pH 2.0 the secondary structures of BL remained unaltered while tertiary structure was significantly disrupted with the exposure of hydrophobic clusters confirming the existence of molten globule like state. The unfolding of BL with different subunit status was further evaluated by urea and temperature mediated denaturation to check their stability. As inferred from high Cm and ΔG values, the monomeric form of BL offers more resistance towards chemical denaturation than the native dimeric form. Besides, dimeric BL exhibited a Tm of 77°C while no loss in secondary structures was observed in monomers even up to 95°C. To the best of our knowledge, this is the first report on monomeric subunit of lectins showing more stability against denaturants than its native dimeric state.

  8. Crystal structure of the dimeric unswapped form of bovine seminal ribonuclease.

    Berisio, R; Sica, F; De Lorenzo, C; Di Fiore, A; Piccoli, R; Zagari, A; Mazzarella, L

    2003-11-01

    Bovine seminal ribonuclease is a unique case of protein dimorphism, since it exists in two dimeric forms, with different biological and kinetic behavior, which interconvert into one another through three-dimensional swapping. Here we report the crystal structure, at 2.2 A resolution, of the unswapped form of bovine seminal ribonuclease. Besides completing the structural definition of bovine seminal ribonuclease conformational dimorphism, this study provides the structural basis to explain the dependence of the enzyme cooperative effects on its swapping state. PMID:14596923

  9. Crystal Structure of the Mycoplasma arthritidis-Derived Mitogen in Apo Form Reveals a 3D Domain-Swapped Dimer

    Liu, L.; Li, Z; Guo, Y; VanVranken, S; Mourad, W; Li, H

    2010-01-01

    Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing particular V{beta} elements of T cell receptor. Here, we report the crystal structure of a MAM mutant K201A in apo form (unliganded) at 2.8-{angstrom} resolutions. We also partially refined the crystal structures of the MAM wild type and another MAM mutant L50A in apo forms at low resolutions. Unexpectedly, the structures of these apo MAM molecules display a three-dimensional domain-swapped dimer. The entire C-terminal domains of these MAM molecules are involved in the domain swapping. Functional analyses demonstrated that the K201A and L50A mutants do not show altered ability to bind to their host receptors and that they stimulate the activation of T cells as efficiently as does the wild type. Structural comparisons indicated that the 'reconstituted' MAM monomer from the domain-swapped dimer displays large differences at the hinge regions from the MAM{sub wt} molecule in the receptor-bound form. Further comparison indicated that MAM has a flexible N-terminal loop, implying that conformational changes could occur upon receptor binding.

  10. Synthesis and antiviral activity of new dimeric inhibitors against HIV-1

    Danel, Krzysztof; Larsen, Louise M.; Pedersen, Erik Bjerreg.;

    2008-01-01

    Sonogashira reaction, ‘click' chemistry or Pd-catalyzed oxidative coupling. The iodo precursor 5 turned out as a potent compound against wild type and mutated HIV-1 virus. All dimeric compounds showed lower activity against HIV-1 than MKC-442, except the asymmetric dimer of AZT and 1a which showed an activity...

  11. Supramolecular hydrogels formed from poly(viologen cross-linked with cyclodextrin dimers and their physical properties

    Yoshinori Takashima

    2012-09-01

    Full Text Available Supramolecular materials with noncovalent bonds have attracted much attention due to their exclusive properties differentiating them from materials formed solely by covalent bonds. Especially interesting are rotor molecules of topological complexes that shuttle along a polymer chain. The shuttling of these molecules should greatly improve the tension strength. Our research employs cyclodextrin (CD as a host molecule, because CD effectively forms polyrotaxanes with polymers. Herein we report the formation of supramolecular hydrogels with an α-CD dimer (α,α-CD dimer as a topological linker molecule, and a viologen polymer (VP as the polymer chain. The supramolecular hydrogel of α,α-CD dimer/VP forms a self-standing gel, which does not relax (G' > G'' in the frequency range 0.01–10 rad·s−1. On the other hand, the supramolecular hydrogel decomposes upon addition of bispyridyl decamethylene (PyC10Py as a competitive guest. Moreover, the β-CD dimer (β,β-CD dimer with VP does not form a supramolecular hydrogel, indicating that complexation between the C10 unit of VP and the α-CD unit of the α,α-CD dimer plays an important role in the formation of supramolecular hydrogels.

  12. Involucratusins A–H: Unusual Cadinane Dimers from Stahlianthus involucratus with Multidrug Resistance Reversal Activity

    Li, Qiang-Ming; Luo, Jian-Guang; Wang, Rui-Zhi; Wang, Xiao-Bing; Yang, Ming-Hua; Luo, Jun; Kong, Ling-Yi

    2016-01-01

    Three novel cadinane dimers, involucratusins A–C (1–3), five unique nor-cadinane-dimers, involucratusins D–H (4–8), together with a known compound (9) were isolated from the rhizomes of Stahlianthus involucratus. Their challenging structures and absolute configurations were determined by spectroscopic data, CD experimentation, chemical conversions and single-crystal X-ray diffraction. Compounds 1–3 are unusual cadinane dimers with new connection and novel cores. Compound 4 is a unique nor-cadinane-dimer, and 5 and 6 are two pairs of hemiketal racemates with novel dinor-cadinane-dimer backbone. Compounds 7 and 8 represent unusual dodecanor-cadinane-dimer and tetradecanor-cadinane-dimer carbon skeletons, respectively. The possible biogenetic pathways of 1–8 were proposed, involving nucleophilic addition, SN2 nucleophilic displacement, [3 + 3] benzannulation, oxidative cleavage, decarboxylation, and oxidative phenol coupling reactions. Multidrug resistance (MDR) reversal activity assay of the isolates were evaluated in doxorubicin-resistant human breast cancer cells (MCF-7/DOX). The combined use of these novel cadinane dimers at a concentration of 10 μM increased the cytotoxicity of doxorubicin by 2.2–5.8-fold. It is the first report about the MDR reversal activity of cadinane dimers. PMID:27406627

  13. Involucratusins A-H: Unusual Cadinane Dimers from Stahlianthus involucratus with Multidrug Resistance Reversal Activity.

    Li, Qiang-Ming; Luo, Jian-Guang; Wang, Rui-Zhi; Wang, Xiao-Bing; Yang, Ming-Hua; Luo, Jun; Kong, Ling-Yi

    2016-01-01

    Three novel cadinane dimers, involucratusins A-C (1-3), five unique nor-cadinane-dimers, involucratusins D-H (4-8), together with a known compound (9) were isolated from the rhizomes of Stahlianthus involucratus. Their challenging structures and absolute configurations were determined by spectroscopic data, CD experimentation, chemical conversions and single-crystal X-ray diffraction. Compounds 1-3 are unusual cadinane dimers with new connection and novel cores. Compound 4 is a unique nor-cadinane-dimer, and 5 and 6 are two pairs of hemiketal racemates with novel dinor-cadinane-dimer backbone. Compounds 7 and 8 represent unusual dodecanor-cadinane-dimer and tetradecanor-cadinane-dimer carbon skeletons, respectively. The possible biogenetic pathways of 1-8 were proposed, involving nucleophilic addition, SN2 nucleophilic displacement, [3 + 3] benzannulation, oxidative cleavage, decarboxylation, and oxidative phenol coupling reactions. Multidrug resistance (MDR) reversal activity assay of the isolates were evaluated in doxorubicin-resistant human breast cancer cells (MCF-7/DOX). The combined use of these novel cadinane dimers at a concentration of 10 μM increased the cytotoxicity of doxorubicin by 2.2-5.8-fold. It is the first report about the MDR reversal activity of cadinane dimers. PMID:27406627

  14. Dimerization of inositol monophosphatase Mycobacterium tuberculosis SuhB is not constitutive, but induced by binding of the activator Mg2+

    Nigou Jérôme

    2007-08-01

    Full Text Available Abstract Background The cell wall of Mycobacterium tuberculosis contains a wide range of phosphatidyl inositol-based glycolipids that play critical structural roles and, in part, govern pathogen-host interactions. Synthesis of phosphatidyl inositol is dependent on free myo-inositol, generated through dephosphorylation of myo-inositol-1-phosphate by inositol monophosphatase (IMPase. Human IMPase, the putative target of lithium therapy, has been studied extensively, but the function of four IMPase-like genes in M. tuberculosis is unclear. Results We determined the crystal structure, to 2.6 Å resolution, of the IMPase M. tuberculosis SuhB in the apo form, and analysed self-assembly by analytical ultracentrifugation. Contrary to the paradigm of constitutive dimerization of IMPases, SuhB is predominantly monomeric in the absence of the physiological activator Mg2+, in spite of a conserved fold and apparent dimerization in the crystal. However, Mg2+ concentrations that result in enzymatic activation of SuhB decisively promote dimerization, with the inhibitor Li+ amplifying the effect of Mg2+, but failing to induce dimerization on its own. Conclusion The correlation of Mg2+-driven enzymatic activity with dimerization suggests that catalytic activity is linked to the dimer form. Current models of lithium inhibition of IMPases posit that Li+ competes for one of three catalytic Mg2+ sites in the active site, stabilized by a mobile loop at the dimer interface. Our data suggest that Mg2+/Li+-induced ordering of this loop may promote dimerization by expanding the dimer interface of SuhB. The dynamic nature of the monomer-dimer equilibrium may also explain the extended concentration range over which Mg2+ maintains SuhB activity.

  15. Tryptophan at the transmembrane–cytosolic junction modulates thrombopoietin receptor dimerization and activation

    Defour, Jean-Philippe; Itaya, Miki; Gryshkova, Vitalina; Brett, Ian C.; Pecquet, Christian; Sato, Takeshi; Smith, Steven O.; Stefan N. Constantinescu

    2013-01-01

    Dimerization of single-pass membrane receptors is essential for activation. In the human thrombopoietin receptor (TpoR), a unique amphipathic RWQFP motif separates the transmembrane (TM) and intracellular domains. Using a combination of mutagenesis, spectroscopy, and biochemical assays, we show that W515 of this motif impairs dimerization of the upstream TpoR TM helix. TpoR is unusual in that a specific residue is required for this inhibitory function, which prevents receptor self-activation....

  16. Tor forms a dimer through an N-terminal helical solenoid with a complex topology

    Baretić, Domagoj; Berndt, Alex; Ohashi, Yohei; Johnson, Christopher M.; Williams, Roger L.

    2016-04-01

    The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended `railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit.

  17. Tor forms a dimer through an N-terminal helical solenoid with a complex topology.

    Baretić, Domagoj; Berndt, Alex; Ohashi, Yohei; Johnson, Christopher M; Williams, Roger L

    2016-01-01

    The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended 'railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit. PMID:27072897

  18. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.

    Li, Qi; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Chen, Yanyu; Zhou, Jian-Min; Dou, Daolong

    2016-01-01

    Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63. PMID:27243217

  19. Structural Basis for a Reciprocating Mechanism of Negative Cooperativity in Dimeric Phosphagen Kinase Activity

    Wu, X.; Ye, S; Guo, S; Yan, W; Bartlam, M; Rao, Z

    2010-01-01

    Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of two protomers, but the significance and mechanism remain unclear. To understand this negative cooperativity further, we determined the first structure of dimeric arginine kinase (dAK), another PK family member, at 1.75 {angstrom}, as well as the structure of its ternary complex with AMPPNP and arginine. Further structural analysis shows that the ligand-free protomer in a ligand-bound dimer opens more widely than the protomers in a ligand-free dimer, which leads to three different states of a dAK protomer. The unexpected allostery of the ligand-free protomer in a ligand-bound dimer should be relayed from the ligand-binding-induced allostery of its adjacent protomer. Mutations that weaken the interprotomer connections dramatically reduced the catalytic activities of dAK, indicating the importance of the allosteric propagation mediated by the homodimer interface. These results suggest a reciprocating mechanism of dimeric PK, which is shared by other ATP related oligomeric enzymes, e.g., ATP synthase. - Wu, X., Ye, S., Guo, S., Yan, W., Bartlam, M., Rao, Z. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.

  20. An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV and anti-cancer activities.

    Ran He

    Full Text Available We recently reported that two artemisinin-derived dimers (dimer primary alcohol 606 and dimer sulfone 4-carbamate 832-4 are significantly more potent in inhibiting human cytomegalovirus (CMV replication than artemisinin-derived monomers. In our continued evaluation of the activities of artemisinins in CMV inhibition, twelve artemisinin-derived dimers and five artemisinin-derived monomers were used. Dimers as a group were found to be potent inhibitors of CMV replication. Comparison of CMV inhibition and the slope parameter of dimers and monomers suggest that dimers are distinct in their anti-CMV activities. A deoxy dimer (574, lacking the endoperoxide bridge, did not have any effect on CMV replication, suggesting a role for the endoperoxide bridge in CMV inhibition. Differences in anti-CMV activity were observed among three structural analogs of dimer sulfone 4-carbamate 832-4 indicating that the exact placement and oxidation state of the sulfur atom may contribute to its anti-CMV activity. Of all tested dimers, artemisinin-derived diphenyl phosphate dimer 838 proved to be the most potent inhibitor of CMV replication, with a selectivity index of approximately 1500, compared to our previously reported dimer sulfone 4-carbamate 832-4 with a selectivity index of about 900. Diphenyl phosphate dimer 838 was highly active against a Ganciclovir-resistant CMV strain and was also the most active dimer in inhibition of cancer cell growth. Thus, diphenyl phosphate dimer 838 may represent a lead for development of a highly potent and safe anti-CMV compound.

  1. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J. (UWA); (St. Vincent); (Queensland)

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  2. Modulation of Bacillus thuringiensis Phosphatidylinositol-Specific Phospholipase C Activity by Mutations in the Putative Dimerization Interface

    Shi, X.; Shao, C; Zhang, X; Zambonelli, C; Redfield, A; Head, J; Seaton, B; Roberts, M

    2009-01-01

    Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more of these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.

  3. Activation of coagulation system and d-dimer levels in children with acute leukemia

    Harun Wijaya

    2014-07-01

    Full Text Available Background D-dimer is a molecule as result of breaking down of excessive fibrin formation from the activation of coagulation system. There is evidence of increased activation of coagulation in patients with acute leukemia which was showed by the increment of d-dimer levels. Objective To evaluate the incidence of activation of coagulation system in children with acute leukemia before receiving chemotherapy. Method This cross-sectional study was performed at Dr. Cipto Mangunkusumo Hospital. All newly-diagnosed children with acute leukemia were included in this study, prior to their receiving any chemotherapy treatment. Blast count, prothrombin time (PTT, activated partial thromboplastin time (APTT, and D-dimer levels were examined after the diagnosis was confirmed by morphology and immunophenotyping studies on bone marrow specimens. Results Out of 22 subjects, 13 subjects had increased D-dimer values. The median D-dimer level of this elevated group was 1,000 (range 500-14,700 ng/mL. In the acute myeloblastic leukemia (AML patients, activation of coagulation was found in 7 out of 8 subjects. The median D-dimer levels was 950 (range 100-14,700 ng/mL. In the acute lymphocytic leukemia (ALL patients, 6 out of 14 subjects had increased activation of coagulation with median D-dimer level of 300 (range 100-3,800 ng/mL. Nine out of 10 subjects with blast cells on peripheral blood smear had a median D-dimer level of 1,000 (range 500-3,800 ng/mL. Both PT and APTT were found normal in all subjects. Conclusion Activation of coagulation system occurs at the time of diagnosis as shown by increased D-dimer levels. The characteristics of activation of coagulation system are different between ALL and AML subjects, as well as between subjects with positive and negative blast counts on peripheral blood smears. Despite the increased activation of coagulation, PT and APTT remain normal. [Paediatr Indones. 2014;54:227-31.].

  4. Radical-Scavenging Activity and Cytotoxicity of p-Methoxyphenol and p-Cresol Dimers

    Ichiro Yokoe; Seiichiro Fujisawa; Mamoru Machino; Takako Ogiwara; Yukio Murakami; Yoshinori Kadoma

    2010-01-01

    Compoundswith two phenolic OH groups like curcumin possess efficient antioxidant and anti-inflammatory activity. We synthesized p-cresol dimer (2,2'-dihydroxy-5,5'-dimethylbiphenol, 2a) and p-methoxyphenol dimer (2,2'-dihydroxy-5,5'-dimethoxybiphenol, 2b) by ortho-ortho coupling reactions of the parent monomers, p-cresol (1a) and p-methoxyphenol (1b), respectively. Their antioxidant activity was determined using the induction period method, and their cytotoxicity towards RAW 264.7 cells was a...

  5. The Ras G Domain Lacks the Intrinsic Propensity to Form Dimers.

    Kovrigina, Elizaveta A; Galiakhmetov, Azamat R; Kovrigin, Evgenii L

    2015-09-01

    Ras GTPase is a molecular switch controlling a number of cellular pathways including growth, proliferation, differentiation, and apoptosis. Recent reports indicated that Ras undergoes dimerization at the membrane surface through protein-protein interactions. If firmly established this property of Ras would require profound reassessment of a large amount of published data and modification of the Ras signaling paradigm. One proposed mechanism of dimerization involves formation of salt bridges between the two GTPase domains (G domains) leading to formation of a compact dimer as observed in Ras crystal structures. In this work, we interrogated the intrinsic ability of Ras to self-associate in solution by creating conditions of high local concentration through irreversibly tethering the two G domains together at their unstructured C-terminal tails. We evaluated possible self-association in this inverted tandem conjugate via analysis of the time-domain fluorescence anisotropy and NMR chemical shift perturbations. We did not observe the increased rotational correlation time expected for the G domain dimer. Variation of the ionic strength (to modulate stability of the salt bridges) did not affect the rotational correlation time in the tandem further supporting independent rotational diffusion of two G domains. In a parallel line of experiments to detect and map weak self-association of the G domains, we analyzed NMR chemical shifts perturbations at a number of sites near the crystallographic dimer interface. The nearly complete lack of chemical shift perturbations in the tandem construct supported a simple model with the independent G domains repelled from each other by their overall negative charge. These results lead us to the conclusion that self-association of the G domains cannot be responsible for homodimerization of Ras reported in the literature. PMID:26331257

  6. Electrochemical, spectral, and computational studies of metalloporphyrin dimers formed by cation complexation of crown ether cavities.

    Chitta, Raghu; Rogers, Lisa M; Wanklyn, Amber; Karr, Paul A; Kahol, Pawan K; Zandler, Melvin E; D'Souza, Francis

    2004-11-01

    The effect on the electrochemical oxidation and reduction potentials of 5,10,15,20-tetrakis(benzo-15-crown-5)porphyrin (TCP) and its metal derivatives (MTCP; M = Mg(II), VO(IV), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Ag(II)) upon potassium ion induced dimerization of the porphyrins was systematically performed in benzonitrile containing 0.1 M (TBA)ClO(4) by differential pulse voltammetry technique. The HOMO--LUMO energy level diagram constructed from the electrochemical data revealed destabilization of the HOMO level and stabilization of the LUMO level upon dimer formation while such a perturbation was larger for the HOMO level than the LUMO level. The geometry and electronic structure of a representative ZnTCP and its dimer, K(4)(ZnTCP)(2), were evaluated by the ab initio B3LYP method utilizing a mixed basis set of 3-21G(*) for Zn, K, O, and N and STO-3G for C and H. The inter-porphyrin ring distance of the dimer calculated from the optimized geometry agreed with the spectroscopically determined one, and the calculated HOMO and LUMO frontier orbitals revealed delocalization on both of the porphyrins rings. The metal-metal distances calculated from the triplet ESR spectra of the K(+) induced porphyrin dimers bearing paramagnetic metal ions in the cavity followed the trend Cu--Cu < VO--VO < Ag--Ag. However, the spectral shifts resulting from the exciton coupling of the interacting porphyrin pi-systems revealed no specific trend with respect to the metal ion in the porphyrin cavity. Additionally, linear trends in the electrochemically measured HOMO--LUMO gap and the energy corresponding to the most intense visible band of both MTCP and K(4)(MTCP)(2) were observed. A reduced HOMO--LUMO gap predicted for the dimer by B3LYP/(3-21G(), STO-3G) calculations was confirmed by the results of optical absorption and electrochemical studies. PMID:15500335

  7. Correlation of biological activity with computationally derived structural features from transmembrane hetero-dimers of HIV-1 Vpu with host factors.

    Li, Li-Hua; Fischer, Wolfgang B

    2014-04-01

    Vpu is an 81 amino acid type I integral membrane protein encoded by human immunodeficiency virus type 1 (HIV-1). It is identified to support viral release by potentially forming ion and substrate conducting channels and by modulating the function of host factors. The focus is on the interaction of the transmembrane domains of Vpu with those of host factors using a combination of molecular dynamics simulations and docking approach. Binding poses and adopted tilt angles of the dimers are analyzed and correlated with experimentally derived activity data from literature. Vpu activity is driven by dimerization with the host protein via its alanine rim Ala-8/11/15/19. Tight binding is shown by an almost parallel alignment of the helices in the dimers. Less parallel alignment is proposed to correlate with lower activity. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking. PMID:24036078

  8. A novel dimeric thymosin beta 4 with enhanced activities accelerates the rate of wound healing

    Xu TJ

    2013-10-01

    Full Text Available Tian-Jiao Xu,1,2,* Qi Wang,1,* Xiao-Wen Ma,1 Zhen Zhang,3 Wei Zhang,1 Xiao-Chang Xue,1 Cun Zhang,1 Qiang Hao,1 Wei-Na Li,1 Ying-Qi Zhang,1 Meng Li11State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China; 2The Institute of Medicine, Qiqihar Medical University, Qiqihar, People’s Republic of China; 3Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA*These authors contributed equally to this workObjective: Thymosin beta 4 (Tβ4 is a peptide with 43 amino acids that is critical for repair and remodeling tissues on the skin, eye, heart, and neural system following injury. To fully realize its utility as a treatment for disease caused by injury, the authors constructed a cost-effective novel Tβ4 dimer and demonstrated that it was better able to accelerate tissue repair than native Tβ4.Methods: A prokaryotic vector harboring two complete Tβ4 genes with a short linker was constructed and expressed in Escherichia coli. A pilot-scale fermentation (10 L was performed to produce engineered bacteria and the Tβ4 dimer was purified by one-step hydrophobic interaction chromatography. The activities of the Tβ4 dimer to promote endothelial cell proliferation, migration, and sprouting were assessed by tetramethylbenzidine (methylthiazol tetrazolium, trans-well, scratch, and tube formation assays. The ability to accelerate dermal healing was assessed on rats.Results: After fermentation, the Tβ4 dimer accounted for about 30% of all the bacteria proteins. The purity of the Tβ4 dimer reached 98% after hydrophobic interaction chromatography purification. An average of 562.4 mg/L Tβ4 dimer was acquired using a 10 L fermenter. In each assay, the dimeric Tβ4 exhibited enhanced activities compared with native Tβ4. Notably, the ability of the dimeric Tβ4 to promote cell migration was almost two times higher

  9. Leukemogenic membrane glycoprotein encoded by Friend spleen focus-forming virus: Transport to cell surfaces and shedding are controlled by disulfide-bonded dimerization and by cleavage of a hydrophobic membrane anchor

    The leukemogenic glycoprotein (gp55) encoded by Friend spleen focus-forming virus is predominantly retained in the rough endoplasmic reticulum (RER). However, a small proportion (ca. 5%) is processed to form a derivative that occurs on plasma membranes and causes mitosis of infected erythroblasts. The authors have now found that gp55 folds heterogeneously in the RER to form components with different disulfide bonds and that this difference may determine their processing fates. RER gp55 consists predominantly of monomers with intrachain disulfide bonds. In contrast, the processed molecules are disulfide-bonded dimers. These dimers are extensively modified in transit to cell surfaces by conversion of four N-linked high-mannose oligosaccharides to complex derivatives and by attachment of a sialylated O-linked oligosaccharide. The plasma membrane dimers are then slowly shed into the medium by a mechanism that involves proteolytic cleavage of approximately 25 membrane-anchoring hydrophobic amino acids from the carboxyl termini of the glycoproteins. Consequently, shed molecules have shorter polypeptide chains than cell-associated gp55. They conclude that gp55 folds into different disulfide-bonded components that do not substantially isomerize, and that only one specific dimer is competent for export from the RER. Mitogenic activity of gp55 could be caused by the cell surface dimers, by the shed derivative, or by the carboxyl-terminal hydrophobic anchors that remain in the membranes after the shedding reaction

  10. Functional Significance of Serotonin Receptor Dimerization

    Herrick-Davis, Katharine

    2013-01-01

    The original model of G protein activation by a single G-protein-coupled receptor (GPCR) is giving way to a new model wherein two protomers of a GPCR dimer interact with a single G protein. This article will review the evidence suggesting that 5-HT receptors form dimers/oligomers and will compare the findings with results obtained from studies with other biogenic amine receptors. Topics to be covered include the origin or biogenesis of dimer formation, potential dimer interface(s), and oligomer size (dimer versus tetramer or higher order). The functional significance will be discussed in terms of G-protein activation following ligand binding to one or two protomers in a dimeric structure, the formation of heterodimers and the development of bivalent ligands. PMID:23811735

  11. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation.

    Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T; Reger, Albert S; Sankaran, Banumathi; Casteel, Darren E; Herberg, Friedrich W; Kim, Choel

    2016-05-01

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. PMID:27066748

  12. EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains.

    Hagman, J; Gutch, M J; H. Lin; Grosschedl, R.

    1995-01-01

    Early B cell factor (EBF) was identified and cloned as a transcription factor expressed specifically in B lymphocytes and adipocytes. This protein was also identified as olfactory factor 1 (Olf-1) in olfactory neurons. In this study, we analyzed the structural requirements for DNA binding, homodimerization and transcriptional activation by EBF. A carboxyl-terminal region, containing a repeat of alpha-helices related to the helix-loop-helix motif, is important for dimerization of EBF in soluti...

  13. P-selectin glycoprotein ligand-1 forms dimeric interactions with E-selectin but monomeric interactions with L-selectin on cell surfaces.

    Yan Zhang

    Full Text Available Interactions of selectins with cell surface glycoconjugates mediate the first step of the adhesion and signaling cascade that recruits circulating leukocytes to sites of infection or injury. P-selectin dimerizes on the surface of endothelial cells and forms dimeric bonds with P-selectin glycoprotein ligand-1 (PSGL-1, a homodimeric sialomucin on leukocytes. It is not known whether leukocyte L-selectin or endothelial cell E-selectin are monomeric or oligomeric. Here we used the micropipette technique to analyze two-dimensional binding of monomeric or dimeric L- and E-selectin with monomeric or dimeric PSGL-1. Adhesion frequency analysis demonstrated that E-selectin on human aortic endothelial cells supported dimeric interactions with dimeric PSGL-1 and monomeric interactions with monomeric PSGL-1. In contrast, L-selectin on human neutrophils supported monomeric interactions with dimeric or monomeric PSGL-1. Our work provides a new method to analyze oligomeric cross-junctional molecular binding at the interface of two interacting cells.

  14. Repair of dipyrimidine dimers formed during the UVC irradiation of sugar beet

    Most of the mutations induced in living organisms by both mid- and short wave UV irradiation are located at dipyrimidine sites. The two major classes of photoproducts induced by UVC are cyclobutane pyrimidine dimers (CPD) and the pyrimidine pyramidones (6,4 photoproducts), constituting the two major mutagenic lesions. This paper reports investigations into the repair efficiency of the two classes of photoproducts induced by UVC and the relative importance of photoreactivation (light repair) and excision repair (dark repair) in sugar beet plants. The overall objective of the study is to determine whether differences in tolerance to UV-induced stress occur in sugar beet varieties. The results from yeast and mammalian systems indicate that 6-4 photoproducts are repaired much more rapidly than cyclobutane dimers. The present work investigates CPD and 6-4 photoproducts independently, as well as total lesions, in sugar beet hypocotyls and cotyledons irradiated with UVC at 20-200 J.m-2. The amount of damage to DNA and the speed of both light and dark repair has been determined in experiments over periods from 30 min to 3 hours. The technique applied involves dot blot immunoassay using a polyclonal antiserum raised against UVC-irradiated DNA. Detection of the individual lesions was based on their differential sensitivities to hot alkali and photoreactivating enzyme. It has been shown that hypocotyls and cotyledons were affected by UV irradiation at all the doses used. The dot blot immunoassay has allowed determination of total lesions and each type of lesion independently in sugar beet tissues. At all UVC doses the damage was repaired in the light (photoreactivation) in 2-3 hours. In hypocotyls some 'dark repair' occurred at the lower doses (20 and 50 Jm-2) but not at the higher doses (100 and 200 Jm-2). Although it can be concluded that sugar beet plants are able to repair damage caused by UVC irradiation, work is continuing to determine which of the two mechanisms is

  15. Structure of 1,5-Anhydro-D-Fructose: X-ray Analysis of Crystalline Acetylated Dimeric Forms

    Lundt, Inge; Andersen, Søren Møller; Marcussen, Jan; Søtofte, Inger; Yu, Shukun

    1998-01-01

    Acetylation of 1,5-anhydro-D-fructose under acidic conditions gave two crystalline acetylated dimeric forms, which by X-ray analysis were shown to be diastereomeric spiroketals formed between C-2 and C-2´/C-3´. The structures of the compounds differed only at the configuration at C-2. Acetylation...... or benzoylation of 1,5-anhydro-D-fructose in pyridine yielded 3,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-3-enos-2-ulopyra -nose or crystalline 1,5-anhydro-3,6-di-O-benzoyl-4-deoxy-D-glycero-hex-3-enos-2-ulo-py ranose....

  16. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells

    Winckler, Pascale; Giannone, Gregory; De Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent

    2013-01-01

    Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule F\\"orster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-...

  17. A redox-dependent dimerization switch regulates activity and tolerance for reactive oxygen species of barley seed glutathione peroxidase

    Navrot, Nicolas; Skjoldager, Nicklas; Bunkenborg, Jakob;

    2015-01-01

    Monomeric and dimeric forms of recombinant barley (Hordeum vulgare subsp. vulgare) glutathione peroxidase 2 (HvGpx2) are demonstrated to display distinctly different functional properties in vitro. Monomeric HvGpx2 thus has five fold higher catalytic efficiency than the dimer towards tert......-butyl hydroperoxide, but is more sensitive to inactivation by hydrogen peroxide. Treatment of the monomer with hydrogen peroxide results in dimer formation. This observed new behavior of a plant glutathione peroxidase suggests a mechanism involving a switch from a highly catalytically competent monomer to a less...

  18. Complex Regulation Pattern of IRF3 Activation Revealed by a Novel Dimerization Reporter System.

    Wang, Zining; Ji, Jingyun; Peng, Di; Ma, Feng; Cheng, Genhong; Qin, F Xiao-Feng

    2016-05-15

    Induction of type I IFN (IFN-I) is essential for host antiviral immune responses. However, IFN-I also plays divergent roles in antibacterial immunity, persistent viral infections, autoimmune diseases, and tumorigenesis. IFN regulatory factor 3 (IRF3) is the master transcription factor that controls IFN-I production via phosphorylation-dependent dimerization in most cell types in response to viral infections and various innate stimuli by pathogen-associated molecular patterns (PAMPs). To monitor the dynamic process of IRF3 activation, we developed a novel IRF3 dimerization reporter based on bimolecular luminescence complementation (BiLC) techniques, termed the IRF3-BiLC reporter. Robust induction of luciferase activity of the IRF3-BiLC reporter was observed upon viral infection and PAMP stimulation with a broad dynamic range. Knockout of TANK-binding kinase 1, the critical upstream kinase of IRF3, as well as the mutation of serine 386, the essential phosphorylation site of IRF3, completely abolished the luciferase activity of IRF3-BiLC reporter, confirming the authenticity of IRF3 activation. Taken together, these results demonstrated that the IRF3-BiLC reporter is a highly specific, reliable, and sensitive system to measure IRF3 activity. Using this reporter system, we further observed that the temporal pattern and magnitude of IRF3 activation induced by various PAMPs are highly complex with distinct cell type-specific characteristics, and IRF3 dimerization is a direct regulatory node for IFN-α/β receptor-mediated feed-forward regulation and crosstalk with other pathways. Therefore, the IRF3-BiLC reporter has multiple potential applications, including mechanistic studies as well as the identification of novel compounds that can modulate IRF3 activation. PMID:27045107

  19. Dimeric aluminum-phosphorus compounds as masked frustrated Lewis pairs for small molecule activation.

    Roters, Steffi; Appelt, Christian; Westenberg, Hauke; Hepp, Alexander; Slootweg, J Chris; Lammertsma, Koop; Uhl, Werner

    2012-08-14

    Hydroalumination of aryldialkynylphosphines RP(C≡C-(t)Bu)(2) (R = Ph, Mes) with equimolar quantities of diethylaluminum hydride afforded mixed alkenyl-alkynyl cyclic dimers in which the dative aluminum-phosphorus bonds are geminal to the exocyclic alkenyl groups. Addition of triethylaluminum to isolated 1 (R = Ph) or to the in situ generated species (R = Mes) caused diethylaluminum ethynide elimination to yield the arylethylphosphorus dimers 2 and 3. These possess a chair-like Al(2)C(2)P(2) heterocycle with intermolecular Al-P interactions. The boat conformation (4) was obtained by the reaction of (t)Bu-P(C≡C-(t)Bu)(2) with di(tert-butyl)aluminum hydride. Despite being dimeric, 2 behaves as a frustrated Lewis pair and activates small molecules. The reaction with carbon dioxide gave cis/trans isomeric AlPC(2)O heterocycles that differ only by the configuration of the exocyclic alkenyl unit. Four isomers resulted from the reaction with phenyl isocyanate. This is caused by cis/trans isomerization of the initial C=O adduct and subsequent rearrangement to the AlPC(2)N heterocycle, being the C=N adduct. PMID:22411491

  20. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair

  1. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    Du, Fengxia [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Minjie [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohua; Yang, Caiyun [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Meng, Hao; Wang, Dong; Chang, Shuang [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Ye [Department of Radiation Oncology, Division of Genomic Stability, Dana Farber Cancer Institute, Harvard Medical School, MA 02134 (United States); Price, Brendan, E-mail: Brendan_Price@dfci.harvard.edu [Department of Radiation Oncology, Division of Genomic Stability, Dana Farber Cancer Institute, Harvard Medical School, MA 02134 (United States); Sun, Yingli, E-mail: sunyl@big.ac.cn [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  2. A new flavan-3-ol dimer from Ficus spragueana leaves and its cytotoxic activity

    Ehab A Ragab

    2013-01-01

    Full Text Available Background: Isolation and structure elucidation of flavan-3-ol constituents from the leaves of Ficus spragueana and their cytotoxic activity. Materials and Methods: Different open silica gel column chromatographic techniques with different solvent systems were used for the separation of the constituents of the ethyl acetate-soluble fraction of the alcoholic extract of Ficus spragueana leaves. The structures of these compounds were assigned on the basis of spectroscopic analyses and comparison with literature data. MTT colorimetric assay method (Viability assay was used for the evaluation of cytotoxic activity of compound 1 against human breast cancer (MCF-7 and human liver cancer (HepG2 cell lines. Results: The isolation of one flavan-3-ol dimer and was identified as (--afzelechin-(4α→8-epicatechin 1, and two flavan-3-ol monomers and were identified as (--epiafzelechin 2 and (--epicatechin 3. Compound 1 was relatively inactive against human breast cancer (MCF-7 cell line at the tested concentrations as compared with the standard. However, at a concentration (50 ΅g it was found to give inhibition upon the proliferation of examined human liver (HepG2 tumor cell line. Conclusions: Compound 1 is a new flavan-3-ol dimer and it showed a potent cytotoxic activity against human liver (HepG2 tumor cell line.

  3. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  4. A disulfide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity. Role of receptor dimerization in signal transduction.

    Labrecque, J; Mc Nicoll, N; Marquis, M; De Léan, A

    1999-04-01

    Natriuretic peptide receptor-A (NPR-A), a particulate guanylyl cyclase receptor, is composed of an extracellular domain (ECD) with a ligand binding site, a transmembrane spanning, a kinase homology domain (KHD), and a guanylyl cyclase domain. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), the natural agonists, bind and activate the receptor leading to cyclic GMP production. This receptor has been reported to be spontaneously dimeric or oligomeric. In response to agonists, the KHD-mediated guanylate cyclase repression is removed, and it is assumed that ATP binds to the KHD. Since NPR-A displays a pair of juxtamembrane cysteines separated by 8 residues, we hypothesized that the removal of one of those cysteines would leave the other unpaired and reactive, thus susceptible to form an interchain disulfide bridge and to favor the dimeric interactions. Here we show that NPR-AC423S mutant, expressed mainly as a covalent dimer, increases the affinity of pBNP for this receptor by enhancing a high affinity binding component. Dimerization primarily depends on ECD since a secreted NPR-A C423S soluble ectodomain (ECDC423S) also documents a covalent dimer. ANP binding to the unmutated ECD yields up to 80-fold affinity loss as compared with the membrane receptor. However, the ECD C423S mutation restores a high binding affinity. Furthermore, C423S mutation leads to cellular constitutive activation (20-40-fold) of basal catalytic production of cyclic GMP by the full-length mutant. In vitro particulate guanylyl cyclase assays demonstrate that NPR-AC423S displays an increased sensitivity to ATP treatment alone and that the effect of ANP + ATP joint treatment is cumulative instead of synergistic. Finally, the cellular and particulate guanylyl cyclase assays indicate that the receptor is desensitized to agonist stimulation. We conclude the following: 1) dimers are functional units of NPR-A guanylyl cyclase activation; and 2) agonists are inducing dimeric contact

  5. Towards squalamine mimics: synthesis and antibacterial activities of head-to-tail dimeric sterol-polyamine conjugates.

    Chen, Wen-Hua; Wennersten, Christine; Moellering, Robert C; Regen, Steven L

    2013-03-01

    Four dimeric sterol-polyamine conjugates have been synthesized from the homo- and hetero-connection of monomeric sterol-polyamine analogs in a head-to-tail manner. These dimeric conjugates show strong antibacterial activity against a broad spectrum of Gram-positive bacteria, whereas their corresponding activities against Gram-negative bacteria are relatively moderate. Though no significant difference was observed in the activities of these conjugates, cholic acid-containing dimeric conjugates generally exhibit higher activities than the corresponding deoxycholic acid-derived analogs. This is in contrast to the finding that a monomeric deoxycholic acid-spermine conjugate was more active than the corresponding cholic acid-derived analog. PMID:23495155

  6. Radical-Scavenging Activity and Cytotoxicity of p-Methoxyphenol and p-Cresol Dimers

    Ichiro Yokoe

    2010-02-01

    Full Text Available Compoundswith two phenolic OH groups like curcumin possess efficient antioxidant and anti-inflammatory activity. We synthesized p-cresol dimer (2,2'-dihydroxy-5,5'-dimethylbiphenol, 2a and p-methoxyphenol dimer (2,2'-dihydroxy-5,5'-dimethoxybiphenol, 2b by ortho-ortho coupling reactions of the parent monomers, p-cresol (1a and p-methoxyphenol (1b, respectively. Their antioxidant activity was determined using the induction period method, and their cytotoxicity towards RAW 264.7 cells was also investigated using a cell counting kit. The stoichiometric factors n (number of free radicals trapped by one mole of antioxidant moiety for 2a and 2b were 3 and 2.8, respectively, being greater than those for 1a and 1b. The ratio of the rate constant of inhibition to that of propagation (kinh/kp for 2a and 2b was similar to that for 2-t-butyl-4-methoxyphenol (BHA, a conventional food antioxidant. The 50% inhibitory dose (ID50 declined in the order 1b > 1a >> 2b > 2a > BHA. The cytotoxicity for 2a and 2b was significantly greater than that for the parent monomers (p < 0.001, but smaller than that for BHA (p < 0.01. Compounds 2a and 2b may be useful as food antioxidants.

  7. Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation

    Behncken, S N; Billestrup, Nils; Brown, R;

    2000-01-01

    Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the gro......Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers...

  8. The dimerization domain of SOX9 is required for transcription activation of a chondrocyte-specific chromatin DNA template

    Coustry, Françoise; Oh, Chun-do; Hattori, Takako; Maity, Sankar N.; de Crombrugghe, Benoit; Yasuda, Hideyo

    2010-01-01

    Mutations in SOX9, a gene essential for chondrocyte differentiation cause the human disease campomelic dysplasia (CD). To understand how SOX9 activates transcription, we characterized the DNA binding and cell-free transcription ability of wild-type SOX9 and a dimerization domain SOX9 mutant. Whereas formation of monomeric mutant SOX9–DNA complex increased linearly with increasing SOX9 concentrations, formation of a wild-type SOX9–DNA dimeric complex increased more slowly suggesting a more sig...

  9. Ultraviolet-endonuclease activity in cell extracts of Saccharomyces cerevisiae mutants defective in excision of pyrimidine dimers

    Cell-free extracts of ultraviolet-sensitive mutants of Saccharomyces cerevisiae defective in excision of pyrimidine dimers, rad1, rad2, rad3, rad4, rad10, and rad16, as well as the extracts of the wild-type strain RAD+, display ultraviolet-endonuclease activity

  10. The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    Bergamin, E.; Hallock, P; Burden, S; Hubbard, S

    2010-01-01

    Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.

  11. Flavan hetero-dimers in the Cymbopogon citratus infusion tannin fraction and their contribution to the antioxidant activity.

    Costa, Gustavo; González-Manzano, Susana; González-Paramás, Ana; Figueiredo, Isabel Vitória; Santos-Buelga, Celestino; Batista, Maria Teresa

    2015-03-01

    Cymbopogon citratus (lemongrass) leaf infusion, a commonly used ingredient in Asian, African and Latin American cuisines, is also used in traditional medicine for the treatment of several pathological conditions; however, little is known about their bioactive compounds. Recent studies revealed the crucial role of the phenolic compounds namely flavonoids and tannins on the infusion bioactivity. Flavonoids have already been characterized; however the tannin fraction of lemongrass infusion is still uncharted. The aim of the present work is to characterize this fraction, and to evaluate its contribution to the antioxidant potential of this plant. Chemical characterization was achieved by HPLC-DAD-ESI/tandem MS and the antioxidant activity was evaluated using DPPH, ABTS and FRAP assays. Hetero-dimeric flavan structures have been described for the first time in lemongrass consisting of apigeniflavan or luteoliflavan units linked to a flavanone, either naringenin or eriodictyol, which may occur as aglycone or glycosylated forms. The antioxidant capacity of the fraction containing these compounds was significantly higher than the infusion, indicating its potential as a source of natural antioxidants. PMID:25652784

  12. E2 polypeptides encoded by bovine papillomavirus type 1 form dimers through the common carboxyl-terminal domain: transactivation is mediated by the conserved amino-terminal domain.

    McBride, A A; Byrne, J C; Howley, P M

    1989-01-01

    The E2 open reading frame (ORF) of bovine papillomavirus type 1 (BPV-1) encodes positive- and negative-acting factors that regulate viral gene expression. The full-length ORF encodes a transactivator, and two transcriptional repressors are expressed from the 3' half of the ORF. Previous analysis has shown that a conserved C-terminal region of 101 amino acids, which is shared by E2 transactivator and repressor proteins, contains the specific DNA binding activity. Further analysis of the E2 transactivator shows that a conserved N-terminal domain of approximately 220 amino acids is crucial for the transcriptional activation function, whereas the variable internal region is not required. The E2 proteins bind to a sequence, ACCGN4CGGT, several copies of which are sufficient to constitute an E2-dependent enhancer. By using a gel retardation assay and proteins derived by in vitro transcription and translation, we were able to show that the E2 polypeptides bind as dimers to a single DNA binding site. The dimeric E2 proteins are stable in the absence of DNA and dimerization is mediated through the DNA binding domain. This may reveal an additional mechanism of repression that could potentially result from the formation of inactive heterodimers between transactivator and repressor species. PMID:2536165

  13. Antiparallel coiled-coil-mediated dimerization of myosin X.

    Lu, Qing; Ye, Fei; Wei, Zhiyi; Wen, Zilong; Zhang, Mingjie

    2012-10-23

    Processive movements of unconventional myosins on actin filaments generally require motor dimerization. A commonly accepted myosin dimerization mechanism is via formation of a parallel coiled-coil dimer by a stretch of amino acid residues immediately carboxyl-terminal to the motor's lever-arm domain. Here, we discover that the predicted coiled-coil region of myosin X forms a highly stable, antiparallel coiled-coil dimer (anti-CC). Disruption of the anti-CC either by single-point mutations or by replacement of the anti-CC with a parallel coiled coil with a similar length compromised the filopodial induction activity of myosin X. We further show that the anti-CC and the single α-helical domain of myosin X are connected by a semirigid helical linker. The anti-CC-mediated dimerization may enable myosin X to walk on both single and bundled actin filaments. PMID:23012428

  14. XIAP Induces NF-kB Activation via the BIR1/TAB1 Interaction and BIR1 Dimerization

    Lu,M.; Lin, S.; Huang, Y.; Kang, Y.; Rich, R.; Lo, Y.; Myszka, D.; Han, J.; Wu, H.

    2007-01-01

    In addition to caspase inhibition, X-linked inhibitor of apoptosis (XIAP) induces NF-{kappa}B and MAP kinase activation during TGF-b and BMP receptor signaling and upon overexpression. Here we show that the BIR1 domain of XIAP, which has no previously ascribed function, directly interacts with TAB1 to induce NF-{kappa}B activation. TAB1 is an upstream adaptor for the activation of the kinase TAK1, which in turn couples to the NF-{kappa}B pathway. We report the crystal structures of BIR1, TAB1, and the BIR1/TAB1 complex. The BIR1/TAB1 structure reveals a striking butterfly-shaped dimer and the detailed interaction between BIR1 and TAB1. Structure-based mutagenesis and knockdown of TAB1 show unambiguously that the BIR1/TAB1 interaction is crucial for XIAP-induced TAK1 and NF-{kappa}B activation. We show that although not interacting with BIR1, Smac, the antagonist for caspase inhibition by XIAP, also inhibits the XIAP/TAB1 interaction. Disruption of BIR1 dimerization abolishes XIAP-mediated NF-{kappa}B activation, implicating a proximity-induced mechanism for TAK1 activation.

  15. Unusual bonding modes of perfluorobenzene in its polymeric (dimeric, trimeric and tetrameric) forms: entirely negative fluorine interacting cooperatively with entirely negative fluorine.

    Varadwaj, Pradeep R; Varadwaj, Arpita; Jin, Bih-Yaw

    2015-12-21

    The F(δ-)···F(δ-) intermolecular synthon was recently observed to be useful for generating a two-dimensional layered supramolecular architecture on the Ag(111) surface (Kawai, et al., ACS Nano, 2015). This was formed when the entirely negative covalently bonded fluorine atoms in phenyleneethynylene(bis(2,3,5,6-tetrafluoro-4-(2,3,4,5,6-pentafluorophenylethynyl)phenyl)-ethyne (BPEPE-F18)) were in close proximity to the same atoms in another BPEPE-F18 molecule. With a view to provide rigorous insights into the physical chemistry of such an intermolecular synthon, we have selected perfluorobenzene (C6F6) as a model compound, and have performed extensive DFT-M06-2X/6-311++G(d,p) investigations on a number of its homomolecular dimers, trimers, and tetramers. Of the twelve (C6F6)2 dimers investigated, a displaced-parallel arrangement with an uncorrected binding energy (ΔE) of -7.4 kcal mol(-1) was found to be the most stable, and an incorporation of the basis set superposition error (BSSE) has significantly reduced its ΔE to -4.7 kcal mol(-1). Besides, the ΔE for a minimum-energy least stable conformation of the same dimer, which involves a single σhole(-)···σhole(-) type F(δ-)···F(δ-) intermolecular bonding interaction, amounts to -0.62 and -0.24 kcal mol(-1) without and with BSSE, respectively. The geometry of another conformation of the dimer, which accompanies a set of three F(δ-)···F(δ-) intermolecular interactions somehow similarly to those observed in the layered supramolecular structure formed by the BPEPE-F18 molecules, lies at a relative energy of 6.5 kcal mol(-1) above the most stable conformation. Passing from the latter dimer to an analogous (C6F6)3 trimer, as well as from the trimer to an analogous (C6F6)4 tetramer, the latter two clusters comprising windmill-type F(δ-)···F(δ-) intermolecular topologies, we have marked a preferential increase in the value of ΔE from -0.94 (dimer) to -2.76 (trimer) to -4.49 kcal mol(-1) (tetramer

  16. Structure–Activity Relationship of Oligomeric Flavan-3-ols: Importance of the Upper-Unit B-ring Hydroxyl Groups in the Dimeric Structure for Strong Activities

    Yoshitomo Hamada

    2015-10-01

    Full Text Available Proanthocyanidins, which are composed of oligomeric flavan-3-ol units, are contained in various foodstuffs (e.g., fruits, vegetables, and drinks and are strongly biologically active compounds. We investigated which element of the proanthocyanidin structure is primarily responsible for this functionality. In this study, we elucidate the importance of the upper-unit of 4–8 condensed dimeric flavan-3-ols for antimicrobial activity against Saccharomyces cerevisiae (S. cerevisiae and cervical epithelioid carcinoma cell line HeLa S3 proliferation inhibitory activity. To clarify the important constituent unit of proanthocyanidin, we synthesized four dimeric compounds, (−-epigallocatechin-[4,8]-(+-catechin, (−-epigallocatechin-[4,8]-(−-epigallocatechin, (−-epigallocatechin-[4,8]-(−-epigallocatechin-3-O-gallate, and (+-catechin-[4,8]-(−-epigallocatechin and performed structure–activity relationship (SAR studies. In addition to antimicrobial activity against S. cerevisiae and proliferation inhibitory activity on HeLa S3 cells, the correlation of 2,2-diphenyl-l-picrylhydrazyl radical scavenging activity with the number of phenolic hydroxyl groups was low. On the basis of the results of our SAR studies, we concluded that B-ring hydroxyl groups of the upper-unit of the dimer are crucially important for strong and effective activity.

  17. UV-sensitivity of hemoglobin dimers in free state and in valency hybrids modification by serotonin

    Changes of oxygen-binding activity of hemoglobin dimers modified by the therapeutical doses of UV-light and serotonin in free state and in valency hybrids are analysed. The prior role of photodissociation to dimers at the UV-radiation action on heme-protein molecules has been shown. It has been observed that the complex between hemoglobin serotonin is formed in fields of αβ-dimers contacts

  18. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-02-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  19. Structural insights into the membrane-extracted dimeric form of the ATPase TraB from the Escherichia coli pKM101 conjugation system

    Waksman Gabriel

    2011-01-01

    Full Text Available Abstract Background Type IV secretion (T4S systems are involved in secretion of virulence factors such as toxins or transforming molecules, or bacterial conjugation. T4S systems are composed of 12 proteins named VirB1-B11 and VirD4. Among them, three ATPases are involved in the assembly of the T4S system and/or provide energy for substrate transfer, VirB4, VirB11 and VirD4. The X-ray crystal structures of VirB11 and VirD4 have already been solved but VirB4 has proven to be reluctant to any structural investigation so far. Results Here, we have used small-angle X-ray scattering to obtain the first structural models for the membrane-extracted, dimeric form of the TraB protein, the VirB4 homolog encoded by the E. coli pKM101 plasmid, and for the monomeric soluble form of the LvhB4 protein, the VirB4 homolog of the T4S system encoded by the Legionella pneumophila lvh operon. We have obtained the low resolution structures of the full-length TraB and of its N- and C-terminal halves. From these SAXS models, we derive the internal organisation of TraB. We also show that the two TraB N- and C-terminal domains are independently involved in the dimerisation of the full-length protein. Conclusions These models provide the first structural insights into the architecture of VirB4 proteins. In particular, our results highlight the modular arrangement and functional relevance of the dimeric-membrane-bound form of TraB.

  20. Comparative studies on the correlation between pyrimidine dimer formation and tyrosinase activity in Cloudman S91 melanoma cells after ultraviolet-irradiation

    The authors compared the induction of pyrimidine dimer densities after UV-irradiation in mouse melanoma cells before and after treatment with cholera toxin. Treatment with cholera toxin stimulated tyrosinase activity up to 50-fold, leading to a marked, visually apparent increase in cellular melanin concentrations. Results indicate that de novo melanin pigmentation induced via the c-AMP pathway is not involved in protection against UV-induced thymine-containing pyrimidine dimers. In separate experiments, irradiation of toxin-treated and untreated mouse melanoma cells with UVC or UVB light produced a 20-30% lower dimer density compared to irradiated human skin fibroblasts. This finding suggests that melanin has some protection properties against UV-induced pyrimidine dimers, although the exact defense mechanism seems highly complex. (author)

  1. Single residue modification of only one dimer within the hemoglobin tetramer reveals autonomous dimer function

    Ackers, Gary K.; Dalessio, Paula M.; Lew, George H.; Daugherty, Margaret A.; Holt, Jo M.

    2002-07-01

    The mechanism of cooperativity in the human hemoglobin tetramer (a dimer of dimers) has historically been modeled as a simple two-state system in which a low-affinity structural form (T) switches, on ligation, to a high-affinity form (R), yielding a net loss of hydrogen bonds and salt bridges in the dimer-dimer interface. Modifications that weaken these cross-dimer contacts destabilize the quaternary T tetramer, leading to decreased cooperativity and enhanced ligand affinity, as demonstrated in many studies on symmetric double modifications, i.e., a residue site modified in both - or both -subunits. In this work, hybrid tetramers have been prepared with only one modified residue, yielding molecules composed of a wild-type dimer and a modified dimer. It is observed that the cooperative free energy of ligation to the modified dimer is perturbed to the same extent whether in the hybrid tetramer or in the doubly modified tetramer. The cooperative free energy of ligation to the wild-type dimer is unperturbed, even in the hybrid tetramer, and despite the overall destabilization of the T tetramer by the modification. This asymmetric response by the two dimers within the same tetramer shows that loss of dimer-dimer contacts is not communicated across the dimer-dimer interface, but is transmitted through the dimer that bears the modified residue. These observations are interpreted in terms of a previously proposed dimer-based model of cooperativity with an additional quaternary (T/R) component.

  2. The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization.

    Cukier, Cyprian D; Maveyraud, Laurent; Saurel, Olivier; Guillet, Valérie; Milon, Alain; Gervais, Virginie

    2016-06-01

    Thanatos associated protein 11 (THAP11) is a cell cycle and cell growth regulator differentially expressed in cancer cells. THAP11 belongs to a distinct family of transcription factors recognizing specific DNA sequences via an atypical zinc finger motif and regulating diverse cellular processes. Outside the extensively characterized DNA-binding domain, THAP proteins vary in size and predicted domains, for which structural data are still lacking. We report here the crystal structure of the C-terminal region of human THAP11 protein, providing the first 3D structure of a coiled-coil motif from a THAP family member. We further investigate the stability, dynamics and oligomeric properties of the determined structure combining molecular dynamics simulations and biophysical experiments. Our results show that the C-ter region of THAP11 forms a left-handed parallel homo-dimeric coiled-coil structure possessing several unusual features. PMID:26975212

  3. DNA melting properties of the dityrosine cross-linked dimer of Ribonuclease A.

    Dinda, Amit Kumar; Chattaraj, Saparya; Ghosh, Sudeshna; Tripathy, Debi Ranjan; Dasgupta, Swagata

    2016-09-01

    Several DNA binding proteins exist in dimeric form when bound with DNA to be able to exhibit various biological processes such as DNA repair, DNA replication and gene expression. Various dimeric forms of Ribonuclease A (RNase A) and other members of the ribonuclease A superfamily are endowed with a multitude of biological activities such as antitumor and antiviral activity. In the present study, we have compared the DNA binding properties between the RNase A monomer and the dityrosine (DT) cross-linked RNase A dimer, and checked the inhibitory effect of DNA on the ribonucleolytic activity of the dimeric protein. An agarose gel based assay shows that like the monomer, the dimer also binds with DNA. The number of nucleotides bound per monomer unit of the dimer is higher than the number of nucleotides that bind with the each monomer. From fluorescence measurements, the association constant (Ka) values for complexation of the monomer and the dimer with ct-DNA are (4.95±0.45)×10(4)M(-1) and (1.29±0.05)×10(6)M(-1) respectively. Binding constant (Kb) values for the binding of the monomer and the dimer with ct-DNA were determined using UV-vis spectroscopy and were found to be (4.96±1.67)×10(4)M(-1) and (4.32±0.31)×10(5)M(-1) respectively. Circular dichroism studies shows that the dimer possesses significant effect on DNA conformation. The melting profile for the ct-DNA-dimer indicated that the melting temperature (Tm) for the ct-DNA-dimer complex is lower compared to the ct-DNA-monomer complex. The ribonucleolytic activity of the dimer, like the monomer, diminishes upon binding with DNA. PMID:27475778

  4. Dimerization of Protegrin-1 in Different Environments

    Yiannis N. Kaznessis

    2010-09-01

    Full Text Available The dimerization of the cationic β-hairpin antimicrobial peptide protegrin-1 (PG1 is investigated in three different environments: water, the surface of a lipid bilayer membrane, and the core of the membrane. PG1 is known to kill bacteria by forming oligomeric membrane pores, which permeabilize the cells. PG1 dimers are found in two distinct, parallel and antiparallel, conformations, known as important intermediate structural units of the active pore oligomers. What is not clear is the sequence of events from PG1 monomers in solution to pores inside membranes. The step we focus on in this work is the dimerization of PG1. In particular, we are interested in determining where PG1 dimerization is most favorable. We use extensive molecular dynamics simulations to determine the potential of mean force as a function of distance between two PG1 monomers in the aqueous subphase, the surface of model lipid bilayers and the interior of these bilayers. We investigate the two known distinct modes of dimerization that result in either a parallel or an antiparallel β-sheet orientation. The model bilayer membranes are composed of anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG and palmitoyl-oleoyl-phosphatidylethanolamine (POPE in a 1:3 ratio (POPG:POPE. We find the parallel PG1 dimer association to be more favorable than the antiparallel one in water and inside the membrane. However, we observe that the antiparallel PG1 β-sheet dimer conformation is somewhat more stable than the parallel dimer association at the surface of the membrane. We explore the role of hydrogen bonds and ionic bridges in peptide dimerization in the three environments. Detailed knowledge of how networks of ionic bridges and hydrogen bonds contribute to peptide stability is essential for the purpose of understanding the mechanism of action for membrane-active peptides as well as for designing peptides which can modulate membrane properties. The findings are suggestive of the

  5. In vitro release and antibacterial activity of poly(oleic/linoleic acid dimer:sebacic acid)-gentamicin

    YANGXiu-Fen; ZHOUZhi-Bin; 等

    2003-01-01

    AIM:To investigate whether poly(oleic/linoleic acid dimer:sebacic acid)-getamicin[Poly(OAD/LOAD:SA)-gentamicin]delivery system was useful to treat chronic osteomyelitis.METHODS:Drug delivery system consisted of gentamicin sufate dispersed in a copolymer containing oleic/linoleic acid dimer(OAD/LOAD)and sebacic acid(SA)in a 1:1 weight ration.The gentamicin releast from[Poly(OAD/LOAD:SA)-gentamicin]was tested in water 0.9% saline,and phosphate buffer 0.1mol/L,RESULTS:The gentamicin concentration peak was found on d2,then slowly decreased.considerable amout of gentamicin was still released on d 50.From d 2 o d 50,the gentamicin concentration in the releasing fluids was from 59 to 42128-fold and 1.8 to 1314-fold of the MIC for Staphylococcus aureus and Escherichia coli,respectively.Staphylococcus aureus and Escherichia coli were strongly inhibited by the releasing fluids for 50d.The gentamicin release and anti-bacterial activity in the three media were similar.only in 0.1mol/L phosphate buffer,from d 2 to 14 it was lower.CONCLUSION:Poly(OAD/LOAD:SA)-gentamicin was useful to treat chronic osteomyelitis.

  6. PARTICIPATION AS A FORM OF ECONOMIC ACTIVITY

    Sorin Briciu; Iustin Atanasiu Pop; Oana Raluca Ivan

    2010-01-01

    This paper attempts to define the concept of participations and its manifestations in theRomanian economy. Within this research a number of questions related to participations as a form ofeconomic activity have raised, questions that led to the formulation of certain hypotheses which weretested based on data obtained from the analysis of national and international literature. This paper canbe considered as a start of a research that will extend to financial investments. The researchmethodolog...

  7. Kit receptor dimerization is driven by bivalent binding of stem cell factor.

    Lemmon, M A; Pinchasi, D; Zhou, M; Lax, I; Schlessinger, J

    1997-03-01

    Most growth factors and cytokines activate their receptors by inducing dimerization upon binding. We have studied binding of the dimeric cytokine stem cell factor (SCF) to the extracellular domain of its receptor Kit, which is a receptor tyrosine kinase similar to the receptors for platelet-derived growth factor and colony-stimulating factor-1. Calorimetric studies show that one SCF dimer binds simultaneously to two molecules of the Kit extracellular domain. Gel filtration and other methods show that this results in Kit dimerization. It has been proposed that SCF-induced Kit dimerization proceeds via a conformational change that exposes a key receptor dimerization site in the fourth of the five immunoglobulin (Ig)-like domains in Kit. We show that a form of Kit containing just the first three Ig domains (Kit-123) binds to SCF with precisely the same thermodynamic parameters as does Kit-12345. Analytical ultracentrifugation, light scattering, and gel filtration show that Kit-123 dimerizes upon SCF binding in a manner indistinguishable from that seen with Kit-12345. These data argue that the fourth Ig-like domain of Kit is not required for SCF-induced receptor dimerization and provide additional support for a model in which bivalent binding of the SCF dimer provides the driving force for Kit dimerization. PMID:9045650

  8. A dimeric peptide with erythropoiesis-stimulating activity uniquely affects erythropoietin receptor ligation and cell surface expression.

    Verma, Rakesh; Green, Jennifer M; Schatz, Peter J; Wojchowski, Don M

    2016-08-01

    Erythropoiesis-stimulating agents (ESAs) that exert long-acting antianemia effects have been developed recently, but their mechanisms are poorly understood. Analyses reveal unique erythropoietin receptor (EPOR)-binding properties for one such ESA, the synthetic EPOR agonist peginesatide. Compared with recombinant human EPO and darbepoietin, peginesatide exhibited a slow on rate, but sustained EPOR residency and resistant displacement. In EPO-dependent human erythroid progenitor UT7epo cells, culture in peginesatide unexpectedly upmodulated endogenous cell surface EPOR levels with parallel increases in full-length EPOR-68K levels. These unique properties are suggested to contribute to the durable activity of this (and perhaps additional) dimeric peptide hematopoietic growth factor receptor agonist. PMID:27174804

  9. An unidentified ultraviolet-B-specific photoreceptor mediates transcriptional activation of the cyclobutane pyrimidine dimer photolyase gene in plants.

    Ioki, Motohide; Takahashi, Shinya; Nakajima, Nobuyoshi; Fujikura, Kohei; Tamaoki, Masanori; Saji, Hikaru; Kubo, Akihiro; Aono, Mitsuko; Kanna, Machi; Ogawa, Daisuke; Fukazawa, Jutarou; Oda, Yoshihisa; Yoshida, Seiji; Watanabe, Masakatsu; Hasezawa, Seiichiro; Kondo, Noriaki

    2008-12-01

    Cyclobutane pyrimidine dimers (CPDs) constitute a majority of DNA lesions caused by ultraviolet-B (UVB). CPD photolyase, which rapidly repairs CPDs, is essential for plant survival under sunlight containing UVB. Our earlier results that the transcription of the cucumber CPD photolyase gene (CsPHR) was activated by light have prompted us to propose that this light-driven transcriptional activation would allow plants to meet the need of the photolyase activity upon challenges of UVB from sunlight. However, molecular mechanisms underlying the light-dependent transcriptional activation of CsPHR were unknown. In order to understand spectroscopic aspects of the plant response, we investigated the wavelength-dependence (action spectra) of the light-dependent transcriptional activation of CsPHR. In both cucumber seedlings and transgenic Arabidopsis seedlings expressing reporter genes under the control of the CsPHR promoter, the action spectra exhibited the most predominant peak in the long-wavelength UVB waveband (around 310 nm). In addition, a 95-bp cis-acting region in the CsPHR promoter was identified to be essential for the UVB-driven transcriptional activation of CsPHR. Thus, we concluded that the photoperception of long-wavelength UVB by UVB photoreceptor(s) led to the induction of the CsPHR transcription via a conserved cis-acting element. PMID:18825406

  10. Dimerization and oligomerization of the chaperone calreticulin

    Jørgensen, Charlotte S; Ryder, L Rebekka; Steinø, Anne; Højrup, Peter; Hansen, Jesper; Beyer, N Helena; Heegaard, Niels H H; Houen, Gunnar

    2003-01-01

    The chaperone calreticulin is a highly conserved eukaryotic protein mainly located in the endoplasmic reticulum. It contains a free cysteine SH group but does not form disulfide-bridged dimers under physiological conditions, indicating that the SH group may not be fully accessible in the native...... calreticulin was oligomerized. Thus, calreticulin shares the ability to self-oligomerize with other important chaperones such as GRP94 and HSP90, a property possibly associated with their chaperone activity....

  11. Crystal Structure of a Novel Dimeric Form of NS5A Domain I Protein from Hepatitis C Virus

    Love, Robert A.; Brodsky, Oleg; Hickey, Michael J.; Wells, Peter A.; Cronin, Ciarán N.; Pfizer

    2009-07-10

    A new protein expression vector design utilizing an N-terminal six-histidine tag and tobacco etch virus protease cleavage site upstream of the hepatitis C virus NS5A sequence has resulted in a more straightforward purification method and improved yields of purified NS5A domain I protein. High-resolution diffracting crystals of NS5A domain I (amino acids 33 to 202) [NS5A(33-202)] were obtained by using detergent additive crystallization screens, leading to the structure of a homodimer which is organized differently from that published previously (T. L. Tellinghuisen, J. Marcotrigiano, and C. M. Rice, Nature 435:374-379, 2005) yet is consistent with a membrane association model for NS5A. The monomer-monomer interface of NS5A(33-202) features an extensive buried surface area involving the most-highly conserved face of each monomer. The two alternate structural forms of domain I now available may be indicative of the multiple roles emerging for NS5A in viral RNA replication and viral particle assembly.

  12. Ultraviolet-B sensitivities in Japanese lowland rice [Oryza sativa] cultivars: Cyclobutane pyrimidine dimer photolyase activity and gene mutation

    There is a cultivar difference in the response to ultraviolet-B (UVB: 280-320 um) in rice (Oryza saliva L.). Among Japanese lowland rice cultivars, Sasanishiki, a leading Japanese rice cultivar, is resistant to the damaging effects of UVB while Norin 1, a close relative, is less resistant. We found previously that Norin 1 was deficient in cyclobutane pyrimidine dimer (CPD) photorepair ability and suggested that the UVB sensitivity in rice depends largely on CPD photorepair ability. In order to verify that suggestion, we examined the correlation between UVB sensitivity and CPD photolyase activity in 17 rice cultivars of progenitors and relatives in breeding of UV-resistant Sasanishiki and UV- sensitive Norin 1. The amino acid at position 126 of the deduced amino acid sequence of CPD photolyase in cultivars including such as Norin 1 was found to be arginine, the CPD photolyase activities of which were lower. The amino acid at that position in cultivars including such as Sasanishiki was glutamine. Furthermore, cultivars more resistant to UVB were found to exhibit higher photolyase activities than less resistant cultivars. These results emphasize that single amino acid alteration from glutamine to arginine leads to a deficit of CPD photolyase activity and that CPD photolyase activity is one of the main factors determining UVB sensitivity in rice

  13. Yang-Lee edge singularities from extended activity expansions of the dimer density for bipartite lattices of dimensionality 2⩽d⩽7

    Butera, P.; Pernici, M.

    2012-07-01

    We have extended, in most cases through 24th order, the series expansions of the dimer density in powers of the activity in the case of bipartite [(hyper)-simple-cubic and (hyper)-body-centered-cubic] lattices of dimensionalities 2⩽d⩽7. A numerical analysis of these data yields estimates of the exponents characterizing the Yang-Lee edge singularities for lattice ferromagnetic spin models as d varies between the lower and the upper critical dimensionalities. Our results are consistent with, but more extensive and sometimes more accurate than, those obtained from the existing dimer series or from the estimates of related exponents for lattice animals, branched polymers, and fluids. We mention also that it is possible to obtain estimates of the dimer constants from our series for the various lattices.

  14. Yang-Lee edge singularities from extended activity expansions of the dimer density for bipartite lattices of dimensionality 2 <= d <= 7

    Paolo ButeraDipartimento di Fisica Universita' di Milano-Bicocca and Istituto Nazionale di Fisica Nucleare Sezione di Milano-Bicocca; Mario Pernici(INFN, Sezione di Milano)

    2012-01-01

    We have extended, in most cases through 24th order, the series expansions of the dimer density in powers of the activity in the case of bipartite ((hyper)-simple-cubic and (hyper)-body-centered-cubic) lattices of dimensionalities 2

  15. Crystallization and preliminary x-ray crystallography data of the dimer of tetramer s (abcd)2 of extracellular hemoglobin from Glossoscolex paulistus in cyano met form

    Full text. The extracellular hemoglobin from Glossoscolex paulistus has a molecular weight near to 3.1 x 106 Da and a structure organized in a double-layered hexagonal oligomer. The tertiary complex of dimer of tetramers (abcd)2 was obtained by chromography in Sephadex G-200, in pH 9.0, as a result of alkaline dissociation. Aiming to obtain a better understanding of the oligomeric structure and specially for the inter subunit interactions the extracellular hemoglobins, we have obtained crystals of dimer of tetramers (abcd)2 of hemoglobin from Glossoscolex and we are studying the in behavior in different conditions of precipitants and pH's. Our goal is to solve the crystal structure in order to characterize, at atomic level, the subunits contacts, heme environment and differences in residues involved in oxygenation in order to understand in this hemoglobin. The crystallization experiments the protein concentration in the cyanomet form was about 10 mg/ml and the experiments were carried out at 180C. The optimal crystallization condition achieved from factorial assays was 10% (w/v). Polyethylene glycol (PEG) 8,000 and 8%(v/v) ethylene glycol in 100 mM HEPES pH 7.5. The optimization of this condition was carried out with the variation of PEG concentrations from 6% up to 10% (by 1% step) and pH between 7.0 and 8.0. A quite critical p-H-dependence has been observed on crystal nucleation, decreasing from pH 7.0, in which the number of microcrystals in higher, up to pH 8.0, in which crystals did not appear even at higher PEG 8,000 (10% w/v). As several structures of hemoglobin from different sources (vertebrate and invertebrates) are available, we hope to solve their structure of hemoglobin from Glossoscolex paulistus by Molecular Replacement, even though the tetramer organization may be different in the earthworm as compared related to other known tetrameric hemoglobin structures. (author)

  16. Biginkgosides A-I, Unexpected Minor Dimeric Flavonol Diglycosidic Truxinate and Truxillate Esters from Ginkgo biloba Leaves and Their Antineuroinflammatory and Neuroprotective Activities.

    Ma, Guang-Lei; Xiong, Juan; Yang, Guo-Xun; Pan, Li-Long; Hu, Chang-Ling; Wang, Wei; Fan, Hui; Zhao, Qiu-Hua; Zhang, Hai-Yan; Hu, Jin-Feng

    2016-05-27

    Nine unexpected new flavonol glycoside cyclodimers in the truxinate (1-7, biginkgosides A-G, respectively) or truxillate [biginkgosides H (8) and I (9)] forms were isolated as minor components from the extract of Ginkgo biloba leaves. The new dimers possess an unusual cyclobutane ring formed by a [2+2]-cycloaddition between two symmetric (for compounds 1-5 and 7-9) or nonsymmetric (for 6) flavonol coumaroyl glucorhamnosides. A plausible biosynthetic pathway for these new compounds based on the frontier molecular orbital theory of cycloaddition reactions is briefly discussed. An antineuroinflammatory screening revealed that biginkgosides E (5) and H (8) inhibited nitric oxide production in lipopolysaccharide-activated BV-2 microglial cells, with IC50 values of 2.91 and 17.23 μM, respectively. Additionally, biginkgoside F (6) showed a significant neuroprotective effect (34.3% increase in cell viability at 1 μM) against Aβ25-35-induced cell viability decrease in SH-SY5Y neuroblastoma cells. PMID:27140807

  17. Synthesis of a series of novel dihydroartemisinin monomers and dimers containing chalcone as a linker and their anticancer activity.

    Gaur, Rashmi; Pathania, Anup Singh; Malik, Fayaz Ahmad; Bhakuni, Rajendra Singh; Verma, Ram Kishor

    2016-10-21

    A new series of monomer and dimer derivatives of dihydroartemisinin (DHA) containing substituted chalcones as a linker were synthesized and investigated for their cytotoxicity in human cancer cell lines HL-60 (leukemia), Mia PaCa-2 (pancreatic cancer), PC-3 (prostate cancer), LS180 (colon cancer) and HEPG2 (hepatocellular carcinoma). Some of these derivatives have greater antiproliferative and cytotoxic effects in tested cell lines than parent compound DHA. The structures of the all compounds were confirmed by IR, (1)H NMR and mass spectral data. Among the new derivatives, compounds 8, 14, 15, 20 and 24 were found to be more active than parent DHA against tested human cancer cell lines. DHA derivatives were found to be most active in human leukemia cell lines with compounds 8, 14, 15, 20 and 24 showed IC50 values less than 1 μM for 48 h whereas DHA has IC50 value of 2 μM at same time period. The most potent compounds 8 with IC50 = 0.3 μM (at par with doxorubicin (IC50 = 0.3 μM)) and 15 with IC50 = 0.4 μM, of the series, six and three times active than DHA (with IC50 = 2 μM) respectively were selected for further mechanistic work in human leukemia HL-60 cells. PMID:27371926

  18. Circumnuclear Star Forming Activity in NGC 3982

    Shui-Nai Zhang; Qiu-Sheng Gu; Yi-Peng Wang

    2008-01-01

    We present a study of the nearby Seyfert galaxy NGC 3982 using optical,infrared and X-ray data acquired by SDSS,Spitzer and Chandra.Our main results are as follows:(1) A simple stellar population synthesis on the nuclear and circumnuclear SDSS spectra gives unambiguous evidence of young stellar components in both the nuclear and circumnuclear regions.(2) The Spitzer Infrared Spectrograph (IRS) spectrum of the central region (~3") shows a power-law continuum,a silicate emission feature at 9.7 μm,and significant PAH emission features at 7.7,8.6,11.3 and 12.7/zm,suggesting the coexistence of AGN and starburst activities in the central region of NGC 3982.(3) We estimate the star formation rate (SFR) of the circumnuclear (~5"-20") region from the Ha luminosity to be for the active nucleus of NGC 3982 from radio to X-ray,and obtain a bolometric luminosity of Lbol=4.5×1042 erg s-1,corresponding to an Eddington ratio (Lbol/LEdd) of 0.014.The HST image of NGC 3982 shows a nuclear mini-spiral between the circumnuclear starforming region and the nucleus,which could be the channel through which gas is transported to the supermassive black hole from the circumnuclear star-forming region.

  19. The Nudix Hydrolase CDP-Chase, a CDP-Choline Pyrophosphatase, Is an Asymmetric Dimer with Two Distinct Enzymatic Activities

    Duong-Ly, Krisna C.; Gabelli, Sandra B.; Xu, WenLian; Dunn, Christopher A.; Schoeffield, Andrew J.; Bessman, Maurice J.; Amzel, L. Mario (Loyola); (JHU)

    2011-09-06

    A Nudix enzyme from Bacillus cereus catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. Here, we show that in addition, the enzyme has a 3{prime} {yields} 5{prime} RNA exonuclease activity. The structure of the free enzyme, determined to a 1.8-{angstrom} resolution, shows that the enzyme is an asymmetric dimer. Each monomer consists of two domains, an N-terminal helical domain and a C-terminal Nudix domain. The N-terminal domain is placed relative to the C-terminal domain such as to result in an overall asymmetric arrangement with two distinct catalytic sites: one with an 'enclosed' Nudix pyrophosphatase site and the other with a more open, less-defined cavity. Residues that may be important for determining the asymmetry are conserved among a group of uncharacterized Nudix enzymes from Gram-positive bacteria. Our data support a model where CDP-choline hydrolysis is catalyzed by the enclosed Nudix site and RNA exonuclease activity is catalyzed by the open site. CDP-Chase is the first identified member of a novel Nudix family in which structural asymmetry has a profound effect on the recognition of substrates.

  20. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4

    The UV endonucleases from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. The authors have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV-treated, [3H]thymine-labeled poly(dA) x poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical-(5 kJ/m2, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. The data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. The results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies

  1. Covalently dimerized SecA is functional in protein translocation.

    de Keyzer, Jeanine; van der Sluis, Eli O; Spelbrink, Robin E J; Nijstad, Niels; de Kruijff, Ben; Nouwen, Nico; van der Does, Chris; Driessen, Arnold J M

    2005-10-21

    The ATPase SecA provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. SecA exists as a dimer in solution, but the exact oligomeric state of SecA during membrane binding and preprotein translocation is a topic of debate. To study the requirements of oligomeric changes in SecA during protein translocation, a non-dissociable SecA dimer was formed by oxidation of the carboxyl-terminal cysteines. The cross-linked SecA dimer interacts with the SecYEG complex with a similar stoichiometry as non-cross-linked SecA. Cross-linking reversibly disrupts the SecB binding site on SecA. However, in the absence of SecB, the activity of the disulfide-bonded SecA dimer is indistinguishable from wild-type SecA. Moreover, SecYEG binding stabilizes a cold sodium dodecylsulfate-resistant dimeric state of SecA. The results demonstrate that dissociation of the SecA dimer is not an essential feature of the protein translocation reaction. PMID:16115882

  2. Dioxygen and water activation processes on multi-Ru-substituted polyoxometalates: comparison with the "blue-dimer" water oxidation catalyst.

    Kuznetsov, Aleksey E; Geletii, Yurii V; Hill, Craig L; Morokuma, Keiji; Musaev, Djamaladdin G

    2009-05-20

    Dioxygen and water activation on multi-Ru-substituted polyoxometalates were studied using the B3LYP density functional method. It was shown that the reaction of the Ru(2)-substituted gamma-Keggin polyoxotungstate {gamma-[(H(2)O)Ru(III)-(mu-OH)(2)-Ru(III)(H(2)O)][SiW(10)O(36)]}(4-), I(H(2)O), with O(2) is a 4-electron highly exothermic [DeltaE(gas) = 62.5 (DeltaE(gas) + DeltaG(solv(water)) = 24.6) kcal/mol] process and leads to formation of (H(2)O){gamma-[(O)Ru-(mu-OH)(2)-Ru(O)](H(2)O)[SiW(10)O(36)]}(4-), IV(H(2)O). Both the stepwise (or dissociative) and the concerted (or associative) pathways of this reaction occurring with and without water dissociation, respectively, were examined, and the latter has been found to be kinetically more favorable. It was shown that the first 1e-oxidation is achieved by the H(2)O-to-O(2) substitution, which might occur with a maximum of 23.1 (10.5) kcal/mol barrier and leads to the formation of {gamma-[(OO)Ru-(mu-OH)(2)-Ru(H(2)O)](H(2)O)[SiW(10)O(36)]}(4-), II(H(2)O). The second 1e-oxidation is initiated by the proton transfer from the coordinated water molecule to the superoxide (OO(-)) ligand in II(H(2)O) and is completed upon formation of hydroperoxo-hydroxo intermediate {gamma-[(OOH)Ru-(mu-OH)(2)-Ru(OH)](H(2)O)[SiW(10)O(36)]}(4-), III-1(H(2)O). The final 2e-oxidation occurs upon the proton transfer from the terminal OH-ligand to the Ru-coordinated OOH fragment and is completed at the formation of (H(2)O)...{gamma-[(O)Ru-(mu-OH)(2)-Ru(O)](H(2)O)[SiW(10)O(36)]}(4-), IV(H(2)O), with two Ru=O bonds. Each step in the associative pathway is exothermic and occurs with small energy barriers. During the process, the oxidation state of Ru centers increases from +3 to +4. The resulting IV(H(2)O) with a {Ru(O)-(mu-OH)(2)-Ru(O)} core should be formulated to have the Ru(IV)=O(*) units, rather than the Ru(V)=O groups. The reverse reaction, water oxidation by IV(H(2)O), is found to be highly endothermic and cannot occur; this finding is

  3. Agonistic induction of a covalent dimer in a mutant of natriuretic peptide receptor-A documents a juxtamembrane interaction that accompanies receptor activation.

    Labrecque, J; Deschênes, J; McNicoll, N; De Léan, A

    2001-03-16

    The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular domain with a ligand binding site, a transmembrane-spanning domain, a kinase homology domain, and a guanylyl cyclase domain. In response to agonists (atrial natriuretic peptide (ANP) and brain natriuretic peptide), the kinase homology domain-mediated guanylate cyclase repression is removed, which allows the production of cyclic GMP. Previous work from our laboratory strongly indicated that agonists are exerting their effects through the induction of a juxtamembrane dimeric contact. However, a direct demonstration of this mechanism remains to be provided. As a tool, we are now using the properties of a new mutation, D435C. It introduces a cysteine at a position in NPR-A corresponding to a supplementary cysteine found in NPR-C6, another receptor of this family (a disulfide-linked dimer). Although this D435C mutation only leads to trace levels of NPR-A disulfide-linked dimer at basal state, covalent dimerization can be induced by a treatment with rat ANP or with other agonists. The NPR-A(D435C) mutant has not been subjected to significant structural alterations, since it shares with the wild type receptor a similar dose-response pattern of cellular guanylyl cyclase activation. However, a persistent activation accompanies NPR-A(D435C) dimer formation after the removal of the inducer agonist. On the other hand, a construction where the intracellular domain of NPR-A(D435C) has been truncated (DeltaKC(D435C)) displays a spontaneous and complete covalent dimerization. In addition, the elimination of the intracellular domain in wild type DeltaKC and DeltaKC(D435C) is associated with an increase of agonist binding affinity, this effect being more pronounced with the weak agonist pBNP. Also, a D435C secreted extracellular domain remains unlinked even after incubation with rat ANP. In summary, these results demonstrate, in a dynamic fashion, the agonistic induction of a dimeric contact in the

  4. Forming the organizational structure for activities

    U. S. Barash

    2013-04-01

    Full Text Available Purpose. Development of theoretical and methodological foundations of efficiency of freight cars operating companies in railway reform through improved management structure them. Methodology. A theoretical and methodological approach for building effective management structure of freight wagons operating companies of different ownership forms is proposed, its introduction will significantly reduce detention of cars on technical stations under loading operations and maintenance, and thereby to improve the quality parameters of rolling stock usage in reform conditions of Ukraine railway transport. Findings. An improved control mechanism of cargo transportation is developed, it is different from the existing by its adaptation to the conditions of the reformed sector and the organization of management companies which together with the Ukrainian Transport and Logistics Center (UTLC centralize management of all freight cars of domestic and foreign operating companies. Originality. It is proposed for management of cargo transportation in wagons operating companies of different ownership to organize a series of management companies that would have the right to dispose of universal cars of other domestic operating companies, being on leasehold basis, and to direct them to current and scheduled repairs by themselves; to organize the cargo transportation in wagons of domestic and foreign operating companies on a contractual terms, depending on the type and content of the contract, on the basis of additional contracts for a separate fee to perform current and scheduled repair of freight cars; the management company organizational structure is developed, it includes simultaneously two directions of activity: commercial and repair, it will reduce the stay time of rolling stock on the engineering stations during loading and in a non-operating park as far as this company will manage a significant part of the production cycle of the transportation process

  5. Electronic spectroscopy of transition metal dimer

    Qian, Yue; 钱玥

    2013-01-01

    This thesis reports laser spectroscopic studies of gas-phase transition metal dimers using laser ablation/reaction with free jet expansion and laser-induced fluorescence (LIF) spectroscopy technique. Themolecules studied in this work are palladium dimer (Pd2) and vanadium dimer (V2). Many compounds formed from these transition metals are important and functional catalysts in chemical reactions. Therefore, it is of great significance to start from the fundamental level to understand the prope...

  6. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization

  7. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ichinose, Junji [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nakajima, Jun [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nagase, Takahide; Ohishi, Nobuya [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Takai, Daiya, E-mail: dtakai-ind@umin.ac.jp [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  8. Inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers

    Exposing skin to UVB (280-320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase, which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosomes treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320-400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function

  9. Two active forms of Zymomonas mobilis levansucrase. An ordered microfibril structure of the enzyme promotes levan polymerization.

    Goldman, Dan; Lavid, Noa; Schwartz, Alon; Shoham, Gil; Danino, Dganit; Shoham, Yuval

    2008-11-21

    Fructansucrases, members of glycoside hydrolase family 68, catalyze both sucrose hydrolysis and the polymerization of fructose to beta-d-fructofuranose polymers. The resulting fructan polymers are distinguished by the nature of the glycosidic bond: inulin (beta-(2-1)-fructofuranose) and levan (beta-(2-6)-fructofuranose). In this study we demonstrate that Zymomonas mobilis levansucrase exists in two active forms, depending on the pH and ionic strength. At pH values above 7.0, the enzyme is mainly a dimer, whereas at pH values below 6.0, the protein forms well ordered microfibrils that precipitate out of the solution. These two forms are readily interchangeable simply by changing the pH. Surprisingly the manner in which the enzyme is arranged strongly affects its product specificity and kinetic properties. At pH values above 7.0, the activity of the enzyme as a dimer is mainly sucrose hydrolysis and the synthesis of short fructosaccharides (degree of polymerization, 3). At pH values below 6.0, in its microfibril form, the enzyme catalyzes almost exclusively the synthesis of levan (a degree of polymerization greater than 20,000). This difference in product specificity appears to depend on the form of the enzyme, dimer versus microfibril, and not directly on the pH. Images made by negative stain transmission electron microscopy reveal that the enzyme forms a very ordered structure of long fibrils that appear to be composed of repeating rings of six to eight protein units. A single amino acid replacement of H296R abolished the ability of the enzyme to form microfibrils with organized fibril networks and to synthesize levan at pH 6.0. PMID:18809687

  10. The Complex Interplay between the Neck and Hinge Domains in Kinesin-1 Dimerization and Motor ActivityD⃞

    Bathe, Friederike; Hahlen, Katrin; Dombi, Renate; Driller, Lucia; Schliwa, Manfred; Woehlke, Guenther

    2005-01-01

    Kinesin-1 dimerizes via the coiled-coil neck domain. In contrast to animal kinesins, neck dimerization of the fungal kinesin-1 NcKin requires additional residues from the hinge. Using chimeric constructs containing or lacking fungal-specific elements, the proximal part of the hinge was shown to stabilize the neck coiled-coil conformation in a complex manner. The conserved fungal kinesin hinge residue W384 caused neck coiled-coil formation in a chimeric NcKin construct, including parts of the ...

  11. RecFOR is not required for pneumococcal transformation but together with XerS for resolution of chromosome dimers frequently formed in the process.

    Calum Johnston

    2015-01-01

    Full Text Available Homologous recombination (HR is required for both genome maintenance and generation of diversity in eukaryotes and prokaryotes. This process initiates from single-stranded (ss DNA and is driven by a universal recombinase, which promotes strand exchange between homologous sequences. The bacterial recombinase, RecA, is loaded onto ssDNA by recombinase loaders, RecBCD and RecFOR for genome maintenance. DprA was recently proposed as a third loader dedicated to genetic transformation. Here we assessed the role of RecFOR in transformation of the human pathogen Streptococcus pneumoniae. We firstly established that RecFOR proteins are not required for plasmid transformation, strongly suggesting that DprA ensures annealing of plasmid single-strands internalized in the process. We then observed no reduction in chromosomal transformation using a PCR fragment as donor, contrasting with the 10,000-fold drop in dprA- cells and demonstrating that RecFOR play no role in transformation. However, a ∼1.45-fold drop in transformation was observed with total chromosomal DNA in recFOR mutants. To account for this limited deficit, we hypothesized that transformation with chromosomal DNA stimulated unexpectedly high frequency (>30% of cells formation of chromosome dimers as an intermediate in the generation of tandem duplications, and that RecFOR were crucial for dimer resolution. We validated this hypothesis, showing that the site-specific recombinase XerS was also crucial for dimer resolution. An even higher frequency of dimer formation (>80% of cells was promoted by interspecies transformation with Streptococcus mitis chromosomal DNA, which contains numerous inversions compared to pneumococcal chromosome, each potentially promoting dimerization. In the absence of RecFOR and XerS, dimers persist, as confirmed by DAPI staining, and can limit the efficiency of transformation, since resulting in loss of transformant chromosome. These findings strengthen the view that

  12. Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer.

    Xue, Li; Rovira, Xavier; Scholler, Pauline; Zhao, Han; Liu, Jianfeng; Pin, Jean-Philippe; Rondard, Philippe

    2015-02-01

    G protein-coupled receptors (GPCRs) are major players in cell communication. Although they form functional monomers, increasing evidence indicates that GPCR dimerization has a critical role in cooperative phenomena that are important for cell signal integration. However, the structural bases of these phenomena remain elusive. Here, using well-characterized receptor dimers, the metabotropic glutamate receptors (mGluRs), we show that structural changes at the dimer interface are linked to receptor activation. We demonstrate that the main dimer interface is formed by transmembrane α helix 4 (TM4) and TM5 in the inactive state and by TM6 in the active state. This major change in the dimer interface is required for receptor activity because locking the TM4-TM5 interface prevents activation by agonist, whereas locking the TM6 interface leads to a constitutively active receptor. These data provide important information on the activation mechanism of mGluRs and improve our understanding of the structural basis of the negative cooperativity observed in these GPCR dimers. PMID:25503927

  13. Dimerization of norbornene on zeolite catalysts

    N. G. Grigor’eva; S. V. Bubennov; L. M. Khalilov; B. I. Kutepov

    2015-01-01

    The high activity and selectivity of H‐Beta and H‐ZSM‐12 zeolites in the dimerization of norbornene was established. The norbornene conversion reached 100%in chlorinated paraffin and argon gas medium, with a selectivity of dimer formation of 88%–98%. Four stereo‐isomers of the bis‐2,2’‐norbornylidene structure were identified in the dimer fraction, with the (Z)‐anti‐bis‐2,2’‐norbornylidene prevailing over the others.

  14. Taxation and forms of organizing business activities

    Đinđić Srđan

    2013-01-01

    Full Text Available This paper takes sample tax regimes and tendencies from the developed countries in the EU-15 and the USA, and uses them to analyse the influence of taxation on the choice of organizational form of profit-oriented entities in Serbia. In order to understand how the procedure of taxation affects the sphere of business decision-making it is necessary to focus on the tax status of business losses and valorization and the effects of the double taxation of dividends. The rule of successive deduction of losses ensures the fiscally transparent entity receives a tax saving in the form of a reduction of the present value of the total paid tax. Meanwhile the corporation is handicapped because it postpones loss deductions, that is, it postpones tax saving, which directly influences the level of the present value of saved tax. The global trend of gradually moving from the classical system towards shareholder relief provision, above all in the form of a reduced withholding tax rate on dividends, has two opposing features: it simplifies the tax procedure while neglecting the distributional aims (consequences of taxation. The analysis of a particular practical example from the Serbian tax context enables us to draw a conclusion in relation to the relative taxes paid by entrepreneurs versus enterprises. The developed countries favour fiscally transparent entities, whereas Serbia allocates tax privileges to enterprises.

  15. Antioxidant activity directed isolations form punica granatum

    The extracts derived from pomegranate juice following antioxidant activity directed isolation were screened for their antioxidant activity through their ability to scavenge 2,2- diphenyl-l-picrylhydrazyl (DPPH) radicals. Only fractions which exhibited >50/0 DPPH scavenging effect at each step of isolation were selected for further purification and their ability to reduce peroxide formation (peroxide value) in heated com oil. Phytochemical analysis of the pure compounds finally obtained, revealed the presence of pelargonidin-3- galactose (Pg-3-galactose), cyanidin-3-glucose (Cy-3-Glucose), gallic acid, quercetin and myricetin in the fractions exhibiting >50% DPPH scavenging potential. The order of antioxidant activity of these pure compounds by DPPH method was found to be gallic acid> quercetin> myricetin> Cy-3-galactose> Pg-3-Glucose while order with respect to reduction in peroxide value (PV) was the reverse of DPPH. (author)

  16. Atomic resolution crystal structure of VcLMWPTP-1 from Vibrio cholerae O395: Insights into a novel mode of dimerization in the low molecular weight protein tyrosine phosphatase family

    Nath, Seema; Banerjee, Ramanuj; Sen, Udayaditya, E-mail: udayaditya.sen@saha.ac.in

    2014-07-18

    Highlights: • VcLMWPTP-1 forms dimer in solution. • The dimer is catalytically active unlike other reported dimeric LMWPTPs. • The formation of extended dimeric surface excludes the active site pocket. • The surface bears closer resemblance to eukaryotic LMWPTPs. - Abstract: Low molecular weight protein tyrosine phosphatase (LMWPTP) is a group of phosphotyrosine phosphatase ubiquitously found in a wide range of organisms ranging from bacteria to mammals. Dimerization in the LMWPTP family has been reported earlier which follows a common mechanism involving active site residues leading to an enzymatically inactive species. Here we report a novel form of dimerization in a LMWPTP from Vibrio cholera 0395 (VcLMWPTP-1). Studies in solution reveal the existence of the dimer in solution while kinetic study depicts the active form of the enzyme. This indicates that the mode of dimerization in VcLMWPTP-1 is different from others where active site residues are not involved in the process. A high resolution (1.45 Å) crystal structure of VcLMWPTP-1 confirms a different mode of dimerization where the active site is catalytically accessible as evident by a tightly bound substrate mimicking ligand, MOPS at the active site pocket. Although being a member of a prokaryotic protein family, VcLMWPTP-1 structure resembles very closely to LMWPTP from a eukaryote, Entamoeba histolytica. It also delineates the diverse surface properties around the active site of the enzyme.

  17. Atomic resolution crystal structure of VcLMWPTP-1 from Vibrio cholerae O395: Insights into a novel mode of dimerization in the low molecular weight protein tyrosine phosphatase family

    Highlights: • VcLMWPTP-1 forms dimer in solution. • The dimer is catalytically active unlike other reported dimeric LMWPTPs. • The formation of extended dimeric surface excludes the active site pocket. • The surface bears closer resemblance to eukaryotic LMWPTPs. - Abstract: Low molecular weight protein tyrosine phosphatase (LMWPTP) is a group of phosphotyrosine phosphatase ubiquitously found in a wide range of organisms ranging from bacteria to mammals. Dimerization in the LMWPTP family has been reported earlier which follows a common mechanism involving active site residues leading to an enzymatically inactive species. Here we report a novel form of dimerization in a LMWPTP from Vibrio cholera 0395 (VcLMWPTP-1). Studies in solution reveal the existence of the dimer in solution while kinetic study depicts the active form of the enzyme. This indicates that the mode of dimerization in VcLMWPTP-1 is different from others where active site residues are not involved in the process. A high resolution (1.45 Å) crystal structure of VcLMWPTP-1 confirms a different mode of dimerization where the active site is catalytically accessible as evident by a tightly bound substrate mimicking ligand, MOPS at the active site pocket. Although being a member of a prokaryotic protein family, VcLMWPTP-1 structure resembles very closely to LMWPTP from a eukaryote, Entamoeba histolytica. It also delineates the diverse surface properties around the active site of the enzyme

  18. Neutron scattering in dimers

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    1986-01-01

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  19. Discovery, Total Synthesis and Key Structural Elements for the Immunosuppressive Activity of Cocosolide, a Symmetrical Glycosylated Macrolide Dimer from Marine Cyanobacteria.

    Gunasekera, Sarath P; Li, Yang; Ratnayake, Ranjala; Luo, Danmeng; Lo, Jeannette; Reibenspies, Joseph H; Xu, Zhengshuang; Clare-Salzler, Michael J; Ye, Tao; Paul, Valerie J; Luesch, Hendrik

    2016-06-01

    A new dimeric macrolide xylopyranoside, cocosolide (1), was isolated from the marine cyanobacterium preliminarily identified as Symploca sp. from Guam. The structure was determined by a combination of NMR spectroscopy, HRMS, X-ray diffraction studies and Mosher's analysis of the base hydrolysis product. Its carbon skeleton closely resembles that of clavosolides A-D isolated from the sponge Myriastra clavosa, for which no bioactivity is known. We performed the first total synthesis of cocosolide (1) along with its [α,α]-anomer (26) and macrocyclic core (28), thus leading to the confirmation of the structure of natural 1. The convergent synthesis featured Wadsworth-Emmons cyclopropanation, Sakurai annulation, Yamaguchi macrocyclization/dimerization reaction, α-selective glycosidation and β-selective glycosidation. Compounds 1 and 26 potently inhibited IL-2 production in both T-cell receptor dependent and independent manners. Full activity requires the presence of the sugar moiety as well as the intact dimeric structure. Cocosolide also suppressed the proliferation of anti-CD3-stimulated T-cells in a dose-dependent manner. PMID:27139508

  20. Single residue modification of only one dimer within the hemoglobin tetramer reveals autonomous dimer function

    Ackers, Gary K.; Dalessio, Paula M.; Lew, George H.; Daugherty, Margaret A.; Holt, Jo M.

    2002-01-01

    The mechanism of cooperativity in the human hemoglobin tetramer (a dimer of αβ dimers) has historically been modeled as a simple two-state system in which a low-affinity structural form (T) switches, on ligation, to a high-affinity form (R), yielding a net loss of hydrogen bonds and salt bridges in the dimer–dimer interface. Modifications that weaken these cross-dimer contacts destabilize the quaternary T tetramer, leading to decreased cooperativity and enhanced ligand affinity, as demonstrat...

  1. Neutron scattering in dimers

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer excitati......Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  2. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation

    Freeman, Caroline L.; Hesketh, Geoffrey; Seaman, Matthew N J

    2014-01-01

    Retromer is a vital element of the endosomal protein sorting machinery and comprises two subcomplexes that operate together to sort membrane proteins (cargo) and tubulate membranes. Tubules are formed by a dimer of sorting nexins, a key component of which is SNX1. Cargo selection is mediated by the VPS35–VPS29–VPS26 trimer, which additionally recruits the WASH complex through VPS35 binding to the WASH complex subunit FAM21. Loss of function of the WASH complex leads to dysregulation of endoso...

  3. Dimerization of the glucan phosphatase laforin requires the participation of cysteine 329.

    Pablo Sánchez-Martín

    Full Text Available Laforin, encoded by a gene that is mutated in Lafora Disease (LD, OMIM 254780, is a modular protein composed of a carbohydrate-binding module and a dual-specificity phosphatase domain. Laforin is the founding member of the glucan-phosphatase family and regulates the levels of phosphate present in glycogen. Multiple reports have described the capability of laforin to form dimers, although the function of these dimers and their relationship with LD remains unclear. Recent evidence suggests that laforin dimerization depends on redox conditions, suggesting that disulfide bonds are involved in laforin dimerization. Using site-directed mutagenesis we constructed laforin mutants in which individual cysteine residues were replaced by serine and then tested the ability of each protein to dimerize using recombinant protein as well as a mammalian cell culture assay. Laforin-Cys329Ser was the only Cys/Ser mutant unable to form dimers in both assays. We also generated a laforin truncation lacking the last three amino acids, laforin-Cys329X, and this truncation also failed to dimerize. Interestingly, laforin-Cys329Ser and laforin-Cys329X were able to bind glucans, and maintained wild type phosphatase activity against both exogenous and biologically relevant substrates. Furthermore, laforin-Cys329Ser was fully capable of participating in the ubiquitination process driven by a laforin-malin complex. These results suggest that dimerization is not required for laforin phosphatase activity, glucan binding, or for the formation of a functional laforin-malin complex. Cumulatively, these results suggest that cysteine 329 is specifically involved in the dimerization process of laforin. Therefore, the C329S mutant constitutes a valuable tool to analyze the physiological implications of laforin's oligomerization.

  4. Water Aerobics as a Form of Health Activities

    Anna S. Batrak; Antonina V. Polyakova

    2013-01-01

    The offered literature review considers water aerobics as a form of health activities. Water aerobics is wide spread and popular, especially among women, because it is also the form of adaptive and health activities. It enlarges general physiological effect of physical exercises on the human body. Regular exercises improve physical fitness and physical development, health, mood, sleep, intensify activities and working efficiency.

  5. A Nove Asymmetric ent—Kauranoid Dimer from Isodon enanderianus

    纳智; 黎胜红; 等

    2002-01-01

    Further investigation on the aerial parts of Isodon enanderianus afforded a novel asymmetric ent-kauranoid dimer,enanderi-nanin J(1).The structure of the dimer was elucidated by means of spectroscopic methods (including 2D NMR tecniques ),Enanderinanin J was a dimer of xerophilusin A and probably formed by [4+2] cycloaddition.

  6. A Novel Asymmetric ent-Kauranoid Dimer from Isodon enanderianus

    NA,Zhi(纳智); LI,Sheng-Hong(黎胜红); XIANG,Wei(项伟); ZHAO,Ai-Hua(赵爱华); LI,Chao-Ming(李朝明); SUN,Han-Dong(孙汉董)

    2002-01-01

    Further investigation on the aerial parts of Isodon enanderianus afforded a novel asymmetric ent-kauranoid dimer, enanuderinaninJ (1). The structure of the dimer was elucidated by means of spectroscopic methods (including 2D NMR techniques ). Enanderinanin J was a dimer of xerophilusin A and probably formed by [ 4 + 2] cycloaddition.

  7. Peptides interfering 3A protein dimerization decrease FMDV multiplication

    Mónica González-Magaldi; Ángela Vázquez-Calvo; de la Torre, Beatriz G; Javier Valle; David Andreu; Francisco Sobrino

    2015-01-01

    Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic ??-helices (??1 and ??2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides ??1, ??2 and that span...

  8. Double-dimer pairings and skew Young diagrams

    Kenyon, Richard W.; Wilson, David B.

    2010-01-01

    We study the number of tilings of skew Young diagrams by ribbon tiles shaped like Dyck paths, in which the tiles are "vertically decreasing". We use these quantities to compute pairing probabilities in the double-dimer model: Given a planar bipartite graph $G$ with special vertices, called nodes, on the outer face, the double-dimer model is formed by the superposition of a uniformly random dimer configuration (perfect matching) of $G$ together with a random dimer configuration of the graph fo...

  9. Antioxidative activity of bound-form phenolics in potato peel.

    Nara, Kazuhiro; Miyoshi, Takayuki; Honma, Tamaki; Koga, Hidenori

    2006-06-01

    Free and bound-form phenolics were isolated from potato (cv. Toyoshiro) flesh and peel. The free and bound-form phenolics in the peel showed high DPPH radical scavenging activity, while those in the flesh showed low activity. The total amount of chlorogenic acid and caffeic acid in the free-form phenolics from the peel was highly correlated with the DPPH radical scavenging activity. Ferulic acid was identified as the active radical scavenging compound in the bound-form phenolics from the peel. The potato peel may therefore offer an effective source of an antioxidative. PMID:16794331

  10. Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate.

    Yingzhi Xu

    Full Text Available 3-Hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35 is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60-80 that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects.

  11. Disulphide bridges of phospholipase C of Chlamydomonas reinhardtii modulates lipid interaction and dimer stability.

    Mayanka Awasthi

    Full Text Available BACKGROUND: Phospholipase C (PLC is an enzyme that plays pivotal role in a number of signaling cascades. These are active in the plasma membrane and triggers cellular responses by catalyzing the hydrolysis of membrane phospholipids and thereby generating the secondary messengers. Phosphatidylinositol-PLC (PI-PLC specifically interacts with phosphoinositide and/or phosphoinositol and catalyzes specific cleavage of sn-3- phosphodiester bond. Several isoforms of PLC are known to form and function as dimer but very little is known about the molecular basis of the dimerization and its importance in the lipid interaction. PRINCIPAL FINDINGS: We herein report that, the disruption of disulphide bond of a novel PI-specific PLC of C. reinhardtii (CrPLC can modulate its interaction affinity with a set of phospholipids and also the stability of its dimer. CrPLC was found to form a mixture of higher oligomeric states with monomer and dimer as major species. Dimer adduct of CrPLC disappeared in the presence of DTT, which suggested the involvement of disulphide bond(s in CrPLC oligomerization. Dimer-monomer equilibrium studies with the isolated fractions of CrPLC monomer and dimer supported the involvement of covalent forces in the dimerization of CrPLC. A disulphide bridge was found to be responsible for the dimerization and Cys7 seems to be involved in the formation of the disulphide bond. This crucial disulphide bond also modulated the lipid affinity of CrPLC. Oligomers of CrPLC were also captured in in vivo condition. CrPLC was mainly found to be localized in the plasma membrane of the cell. The cell surface localization of CrPLC may have significant implication in the downstream regulatory function of CrPLC. SIGNIFICANCE: This study helps in establishing the role of CrPLC (or similar proteins in the quaternary structure of the molecule its affinities during lipid interactions.

  12. Direct assessment of the effect of the Gly380Arg achondroplasia mutation on FGFR3 dimerization using quantitative imaging FRET.

    Jesse Placone

    Full Text Available The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH, the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand.

  13. Small angle x-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimers in solution

    Jørgensen, Anders Dysted; Nøhr, Jane; Kastrup, Jette Sandholm;

    2008-01-01

    The industrially important glucoamylase 1 is an exo-acting glycosidase with substrate preference for alpha-1,4 and alpha-1,6 linkages at non-reducing ends of starch. It consists of a starch binding and a catalytic domain interspersed by a highly glycosylated polypeptide linker. The linker function......, which lacks a starch binding domain, and an engineered low-glycosylated variant of glucoamylase 1 with a short linker. Low resolution solution structures show that the linker adopts a compact structure rendering a well defined extended overall conformation to glucoamylase. We demonstrate that binding of...... a short heterobidentate inhibitor simultaneously directed toward the catalytic and starch binding domains causes dimerization of glucoamylase and not, as suggested previously, an intramolecular conformational rearrangement mediated by linker flexibility. Our results suggest that glucoamylase...

  14. Pu-238 fuel form activities, January 1-31, 1981

    1981-02-01

    This monthly report for /sup 238/Pu Fuel Form Activities has two main sections: SRP-PuFF facility and SRL Fuel Form Activities. The program status, budget information, and milestone schedules are discussed in each main section. The Work Breakdown Structure (WBS) for this program is shown. Only one monthly report per year is processed for EDB.

  15. Structure of a Rabbit Muscle Fructose-1,6-Bisphosphate Aldolase A Dimer Variant

    Sherawat,M.; Tolan, D.; Allen, K.

    2008-01-01

    Fructose-1,6-bisphosphate aldolase (aldolase) is an essential enzyme in glycolysis and gluconeogenesis. In addition to this primary function, aldolase is also known to bind to a variety of other proteins, a property that may allow it to perform 'moonlighting' roles in the cell. Although monomeric and dimeric aldolases possess full catalytic activity, the enzyme occurs as an unusually stable tetramer, suggesting a possible link between the oligomeric state and these noncatalytic cellular roles. Here, the first high-resolution X-ray crystal structure of rabbit muscle D128V aldolase, a dimeric form of aldolase mimicking the clinically important D128G mutation in humans associated with hemolytic anemia, is presented. The structure of the dimer was determined to 1.7 Angstroms resolution with the product DHAP bound in the active site. The turnover of substrate to produce the product ligand demonstrates the retention of catalytic activity by the dimeric aldolase. The D128V mutation causes aldolase to lose intermolecular contacts with the neighboring subunit at one of the two interfaces of the tetramer. The tertiary structure of the dimer does not significantly differ from the structure of half of the tetramer. Analytical ultracentrifugation confirms the occurrence of the enzyme as a dimer in solution. The highly stable structure of aldolase with an independent active site is consistent with a model in which aldolase has evolved as a multimeric scaffold to perform other noncatalytic functions.

  16. Dimerized Mott insulators in hexagonal optical lattices

    We study bosonic atoms in optical honeycomb lattices with anisotropic tunneling and find dimerized Mott insulator (MI) phases with fractional filling. These incompressible insulating phases are characterized by an interaction-driven localization of particles in respect to the individual dimers and large local particle-number fluctuations within the dimers. We calculate the ground-state phase diagrams and the excitation spectra using an accurate cluster mean-field method. The cluster treatment enables us to probe the fundamental excitations of the dimerized MI where the excitation gap is dominated by the intra-dimer tunneling amplitude. This allows the distinction from normal Mott insulating phases gapped by the on-site interaction. In addition, we present analytical results for the phase diagram derived by a higher-order strong-coupling perturbative expansion approach. By computing finite lattices with large diameters the influence of a harmonic confinement is discussed in detail. It is shown that a large fraction of atoms forms the dimerized MI under experimental conditions. The necessary anisotropic tunneling can be realized either by periodic driving of the optical lattice or by engineering directly a dimerized lattice potential. The dimers can be mapped to their antisymmetric states creating a lattice with coupled p-orbitals. (paper)

  17. Hetero-metallic trigonal cage-shaped dimeric Ni3K core complex of L-proline ligand: Synthesis, structural, electrochemical and DNA binding and cleavage activities

    S Nagasubramanian; A Jayamani; V Thamilarasan; G Aravindan; V Ganesan; N Sengottuvelan

    2014-05-01

    Hetero-metallic trigonal cage-shaped dimeric Ni3K core complex of L-proline ligand has been synthesized and characterized. Single crystal X-ray diffraction analysis showed that the hetero-metallic Ni(II)-K(I) complex has a dimeric structure with nine coordinated potassium atoms and six coordinated nickel atoms. The cyclic voltammograms of the complex exhibited two successive quasireversible reduction waves at ($E^{1}_{pc} = −1.02$ V and $E^{2}_{pc} = −1.33$ V) and two successive irreversible oxidation waves ($E^{1}_{pa} = 0.95$ V and $E^{2}_{pa} = 1.45$ V) versus Ag/AgCl in DMF solution. Interaction of the complex with calf-thymus DNA (CT DNA) has been studied using spectroscopic techniques. The complex is an avid DNA binder with a binding constant of 3.6 × 108 M-1. The complex showed efficient oxidative cleavage of supercoiled pBR322 DNA in the presence of the reducing agent hydrogen peroxide involving hydroxyl radical (°OH) species. As evidenced from the control experiment, DNA cleavage in the presence of °OH radical was inhibited by quenchers, viz. DMSO and KI. The complex showed in vitro antimicrobial activity against four bacteria and two fungi and the activity is greater than that of the free ligand.

  18. Water Aerobics as a Form of Health Activities

    Anna S. Batrak

    2013-09-01

    Full Text Available The offered literature review considers water aerobics as a form of health activities. Water aerobics is wide spread and popular, especially among women, because it is also the form of adaptive and health activities. It enlarges general physiological effect of physical exercises on the human body. Regular exercises improve physical fitness and physical development, health, mood, sleep, intensify activities and working efficiency.

  19. Structure of a rabbit muscle fructose-1, 6-bisphosphate aldolase A dimer variant

    The X-ray crystallographic structure of a dimer variant of fructose-1, 6-bisphosphate aldolase demonstrates a stable oligomer that mirrors half of the native tetramer. The presence of product demonstrates that this is an active form. Fructose-1, 6-bisphosphate aldolase (aldolase) is an essential enzyme in glycolysis and gluconeogenesis. In addition to this primary function, aldolase is also known to bind to a variety of other proteins, a property that may allow it to perform ‘moonlighting’ roles in the cell. Although monomeric and dimeric aldolases possess full catalytic activity, the enzyme occurs as an unusually stable tetramer, suggesting a possible link between the oligomeric state and these noncatalytic cellular roles. Here, the first high-resolution X-ray crystal structure of rabbit muscle D128V aldolase, a dimeric form of aldolase mimicking the clinically important D128G mutation in humans associated with hemolytic anemia, is presented. The structure of the dimer was determined to 1.7 Å resolution with the product DHAP bound in the active site. The turnover of substrate to produce the product ligand demonstrates the retention of catalytic activity by the dimeric aldolase. The D128V mutation causes aldolase to lose intermolecular contacts with the neighboring subunit at one of the two interfaces of the tetramer. The tertiary structure of the dimer does not significantly differ from the structure of half of the tetramer. Analytical ultracentrifugation confirms the occurrence of the enzyme as a dimer in solution. The highly stable structure of aldolase with an independent active site is consistent with a model in which aldolase has evolved as a multimeric scaffold to perform other noncatalytic functions

  20. Structure of a rabbit muscle fructose-1, 6-bisphosphate aldolase A dimer variant

    Sherawat, Manashi [Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2394 (United States); Tolan, Dean R., E-mail: tolan@bu.edu [Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215 (United States); Allen, Karen N., E-mail: tolan@bu.edu [Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2394 (United States)

    2008-05-01

    The X-ray crystallographic structure of a dimer variant of fructose-1, 6-bisphosphate aldolase demonstrates a stable oligomer that mirrors half of the native tetramer. The presence of product demonstrates that this is an active form. Fructose-1, 6-bisphosphate aldolase (aldolase) is an essential enzyme in glycolysis and gluconeogenesis. In addition to this primary function, aldolase is also known to bind to a variety of other proteins, a property that may allow it to perform ‘moonlighting’ roles in the cell. Although monomeric and dimeric aldolases possess full catalytic activity, the enzyme occurs as an unusually stable tetramer, suggesting a possible link between the oligomeric state and these noncatalytic cellular roles. Here, the first high-resolution X-ray crystal structure of rabbit muscle D128V aldolase, a dimeric form of aldolase mimicking the clinically important D128G mutation in humans associated with hemolytic anemia, is presented. The structure of the dimer was determined to 1.7 Å resolution with the product DHAP bound in the active site. The turnover of substrate to produce the product ligand demonstrates the retention of catalytic activity by the dimeric aldolase. The D128V mutation causes aldolase to lose intermolecular contacts with the neighboring subunit at one of the two interfaces of the tetramer. The tertiary structure of the dimer does not significantly differ from the structure of half of the tetramer. Analytical ultracentrifugation confirms the occurrence of the enzyme as a dimer in solution. The highly stable structure of aldolase with an independent active site is consistent with a model in which aldolase has evolved as a multimeric scaffold to perform other noncatalytic functions.

  1. Effect of the Principle of Activating Blood Circulation to Break Stasis on GMP-140 and D2 Dimer in Patients with Acute Cerebral Infarction

    WANG Ning

    2005-01-01

    Objective:To explore the clinical efficacy of the principle of activating blood circulation to break stasis (ABCBS) and its influence on platelet membranous protein particle (GMP-140) and D2 dimer (Ddimer) before and after treatment. Methods: Eighty-eight patients with blood stasis syndrome (BSS) of acute cerebral infarction (ACI) were randomly divided into two groups, both of which were treated with conventional treatment, i.e. with western medicine (WM), with Salvia injection added through intravenously dripping.One of the two groups was used as the control and the other group as the treated group who had ABCBS herbs orally taken in addition. The duration of treatment course for both groups was 3 weeks. Results: There were changes in both groups over clinical symptoms, nerve function deficit scoring and GMP-140, D-dimer, but the treated group showed significantly better than that of the control group, (P<0.05). Conclusion: ABCBS principle could serve as an important auxiliary treating method for BSS of ACI, as it can effectively alter the blood of ACI patients which was viscous, condense, coagulant and aggregating.

  2. Effect of Electrochemically Activated Water on Spore-Forming Bacteria

    Pankiv, Nataliya; Palianytsia, Liubov; Berezovska, Nataliya; Kosiv, Ruslana

    2013-01-01

    The effect of electrochemically activated water on the viability spore-forming bacteria Bacillus and Clostridium genera is investigated. It is established that the anolyte inhibits the growth of microorganisms, causing the death of 98% of the cells.

  3. Activated Microglia do not form Functional Gap Junctions in vivo

    Wasseff, Sameh K.; Scherer, Steven S.

    2014-01-01

    We investigated whether microglia form gap junctions with themselves, or with astrocytes, oligodendrocytes, or neurons in vivo in normal mouse brains, and in pathological conditions that induce microglial activation - brain injury, a model of Alzheimer’s disease. Although microglia are in close physical proximity to glia and neurons, they do not form functional gap junctions under these pathological conditions.

  4. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells.

    Pham, Anh; Bortolazzo, Anthony; White, J Brandon

    2012-10-19

    Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death. PMID:23000408

  5. Form-Focused Discovery Activities in English Classes

    Ogeyik, Muhlise Cosgun

    2011-01-01

    Form-focused discovery activities allow language learners to grasp various aspects of a target language by contributing implicit knowledge by using discovered explicit knowledge. Moreover, such activities can assist learners to perceive and discover the features of their language input. In foreign language teaching environments, they can be used…

  6. Non-cysteine linked MUC1 cytoplasmic dimers are required for Src recruitment and ICAM-1 binding induced cell invasion

    Gunasekara Nirosha

    2011-07-01

    Full Text Available Abstract Background The mucin MUC1, a type I transmembrane glycoprotein, is overexpressed in breast cancer and has been correlated with increased metastasis. We were the first to report binding between MUC1 and Intercellular adhesion molecule-1 (ICAM-1, which is expressed on stromal and endothelial cells throughout the migratory tract of a metastasizing breast cancer cell. Subsequently, we found that MUC1/ICAM-1 binding results in pro-migratory calcium oscillations, cytoskeletal reorganization, and simulated transendothelial migration. These events were found to involve Src kinase, a non-receptor tyrosine kinase also implicated in breast cancer initiation and progression. Here, we further investigated the mechanism of MUC1/ICAM-1 signalling, focusing on the role of MUC1 dimerization in Src recruitment and pro-metastatic signalling. Methods To assay MUC1 dimerization, we used a chemical crosslinker which allowed for the detection of dimers on SDS-PAGE. We then generated MUC1 constructs containing an engineered domain which allowed for manipulation of dimerization status through the addition of ligands to the engineered domain. Following manipulation of dimerization, we immunoprecipitated MUC1 to investigate recruitment of Src, or assayed for our previously observed ICAM-1 binding induced events. To investigate the nature of MUC1 dimers, we used both non-reducing SDS-PAGE and generated a mutant construct lacking cysteine residues. Results We first demonstrate that the previously observed MUC1/ICAM-1signalling events are dependent on the activity of Src kinase. We then report that MUC1 forms constitutive cytoplasmic domain dimers which are necessary for Src recruitment, ICAM-1 induced calcium oscillations and simulated transendothelial migration. The dimers are not covalently linked constitutively or following ICAM-1 binding. In contrast to previously published reports, we found that membrane proximal cysteine residues were not involved in

  7. Activism and capitalism: On the forms of engagement

    Matković Aleksandar

    2016-01-01

    Full Text Available This short essay aims at providing an outline for a critical reflection on the notion of activism and to bring to attention the significance for distinguishing between different forms of engagement in contemporary neoliberal societies. The article traces the history of the notion of ‘activism’ and argues that it went hand in hand with the reduction of heterogeneous political activity to immediate generic action. In order to counter such a reduction, the article relies on the work of Ellen Meiksins Wood and her critical history of the development of the liberal conception of citizenship. In conclusion, it will be argued that the conceptual significance of the notion of capitalism is crucial for distinguishing between different forms and figures of political activity - from the ‘activist’, ‘active citizen’ and what Engin Isin termed ‘activist citizenship’.

  8. RING domain dimerization is essential for RNF4 function.

    Liew, Chu Wai; Sun, Huaiyu; Hunter, Tony; Day, Catherine L

    2010-10-01

    RNF4 [RING (really interesting new gene) finger protein 4] family ubiquitin ligases are RING E3 ligases that regulate the homoeostasis of SUMOylated proteins by promoting their ubiquitylation. In the present paper we report that the RING domain of RNF4 forms a stable dimer, and that dimerization is required for ubiquitin transfer. Our results suggest that the stability of the E2~ubiquitin thioester bond is regulated by RING domain dimerization. PMID:20681948

  9. New sesquiterpene dimers from Inula britannica inhibit NF-kappaB activation and NO and TNF-alpha production in LPS-stimulated RAW264.7 cells.

    Jin, Hui Zi; Lee, Dongho; Lee, Jeong Hyung; Lee, Kyeong; Hong, Young-Soo; Choung, Dong-Ho; Kim, Young Ho; Lee, Jung Joon

    2006-01-01

    A bioassay-guided isolation of an ethyl acetate-soluble extract of the aerial parts of Inula britannica var. chinensis (Rupr.) Regel, using an in vitro NF-kappaB reporter gene assay, led to the isolation of four new sesquiterpene dimers bearing a norbornene moiety, inulanolides A-D, and three known sesquiterpenes, 1,6alpha-dihydroxyeriolanolide, 1-acetoxy-6alpha-hydroxyeriolanolide, and eupatolide. The structures of the new compounds were elucidated by spectroscopic methods. Among these compounds, inulanolides B and D and eupatolide, exhibited potent inhibitory activity on the LPS-induced NF-kappaB activation with IC50 values of 0.49 microM, 0.48 microM, and 1.54 microM, respectively. Consistent with their inhibitory effect on NF-kappaB activation, compounds and also strongly inhibited the production of NO and TNF-alpha in the LPS-stimulated RAW264.7 cells with IC50 values in the range of 2 microM. PMID:16450294

  10. The importance of alfalfa mosaic virus coat protein dimers in the initiation of replication.

    Choi, Jiwon; Kim, Bong-Suk; Zhao, Xiaoxia; Loesch-Fries, Sue

    2003-01-01

    Deletion and substitution mutations affecting the oligomerization of alfalfa mosaic virus (AMV) coat protein (CP) were studied in protoplasts to determine their effect on genome activation, an early step in AMV replication. The CP mutants that formed dimers, CPDeltaC9 and CPC-A(R)F, were highly active in initiating replication with 63-84% of wild-type (wt) CP activity. However, all mutants that did not form dimers, CPDeltaC18, CPDeltaC19, CPC-WFP, and CPC-W, were much less active with 19-33% of wt CP activity. The accumulation and solubility of mutant CPs expressed from a virus-based vector in Nicotiana benthamiana were similar to that of wt CP. Analysis of CP-RNA interactions indicated that CP dimers and CP monomers interacted very differently with AMV RNA 3' ends. These results suggest that CP dimers are more efficient for replication than CP monomers because of differences in RNA binding rather than differences in expression and accumulation of the mutant CPs in infected cells. PMID:12504539

  11. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication.

    Mónica González-Magaldi

    Full Text Available Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2 that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7 sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target.

  12. Dimerization of Np(V) and media effects in concentrated solutions

    Highly concentrated (up to 3.56 mol L-1) binary solutions of NpO2NO3 were prepared to investigate the self-association of Np(V). By using visible/NIR absorption spectrophotometry and chemometric techniques, Np(V) was shown to be only monomeric below 0.2 mol L-1, to exist under its monomeric and dimeric forms between 0.2 and 2 mol L-1, to begin to form self-associates of higher degrees above 2 mol L-1. In the range 0.2 mol L-1 Np(V) -1, the neptunium distribution between the free NpO2+ and dimeric (NpO2)22+ forms was determined by Raman spectroscopy. The simple solution concept was used to establish the activity function for the reaction of dimerization. Such a water activity function can be used to calculate the apparent dimer formation constant for any solution of known composition and water activity, provided that this solution is simple. (orig.)

  13. Dimerization of Np(V) and media effects in concentrated solutions

    Gregoire-Kappenstein, A.C.; Moisy, Ph.; Blanc, P. [Commissariat a l' Energie Atomique, Bagnols-sur-Ceze (France); Cote, G. [ENSCP Lab. d' Electrochimie et de Chimie Analytique, Paris (France)

    2003-07-01

    Highly concentrated (up to 3.56 mol L{sup -1}) binary solutions of NpO{sub 2}NO{sub 3} were prepared to investigate the self-association of Np(V). By using visible/NIR absorption spectrophotometry and chemometric techniques, Np(V) was shown to be only monomeric below 0.2 mol L{sup -1}, to exist under its monomeric and dimeric forms between 0.2 and 2 mol L{sup -1}, to begin to form self-associates of higher degrees above 2 mol L{sup -1}. In the range 0.2 mol L{sup -1} < C{sub Np(V)} < 2 mol L{sup -1}, the neptunium distribution between the free NpO{sub 2}{sup +} and dimeric (NpO{sub 2}){sub 2}{sup 2+} forms was determined by Raman spectroscopy. The simple solution concept was used to establish the activity function for the reaction of dimerization. Such a water activity function can be used to calculate the apparent dimer formation constant for any solution of known composition and water activity, provided that this solution is simple. (orig.)

  14. Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain

    Viral envelope glycoproteins are oligomeric and the quaternary structure is critical for their membrane fusion activity. Typically the transmembrane glycoproteins of class I fusion proteins contain the oligomerization domains and the surface glycoproteins (SU) are monomeric. However, it has been previously demonstrated [J. Biol. Chem. 277 (2002) 19727] that the SU of a murine hepatitis coronavirus (MHV) forms dimers, the dimerization domain overlaps the receptor-binding domain (RBD) and that this dimeric state is important for binding to receptor molecules that initiates entry into cells. We have previously expressed various soluble fragments of the SARS-CoV SU and identified stably folded fragments (residues 272-537) that contain the RBD [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Here, we further characterize these and other fragments in an attempt to identify possible dimerization domains and their role for membrane fusion. We demonstrate that the SU and a shorter 260-amino acid N-terminal fragment (residues 17-276), which folds independently, form dimers. In contrast to the previously characterized MHV SU dimerization, this fragment is upstream and distinct from the RBD. Its deletion abolished S-mediated cell membrane fusion but retained the SU-receptor-binding function indicating the possibility for a role in post-receptor binding steps of the virus entry mechanism. Interestingly, the whole soluble S ectodomain (Se) that contains the dimerization domain but not the transmembrane domain and the cytoplasmic tail forms trimers suggesting the existence of a trimerization domain in the TM subunit in its prefusion state that may lead to a conformation unfavorable for formation of higher-order multimeric structures. These results demonstrate the existence of SU dimers and Se trimers, and indicate the possibility for an unknown mechanism of their role in entry. They also further characterize the S-mediated membrane fusion and could be important for understanding

  15. Silicate rock and rock forming mineral neutron activation analysis

    A neutron-activation scheme for the determination of nine rare earths and other trace elements in various rock forming minerals (feldspars, ilmenite, magnetite, pyroxenes) and silicate rocks is presented. The procedure is based on three different irradiations involving three separate samples: - epithermal neutron irradiation (2 days) followed by nondestructive analysis; - thermal neutron irradiation (1 day) followed by instrumental analysis; - thermal neutron irradiation (1 week) followed by radiochemical analysis (precipitation, anion exchange separation, liquid-liquid extraction). Two USGS reference samples - granite G-2 and andesite AGV-1 - have been analysed in order to assess the accuracy of the proposed procedure. Our results agree with previous neutron-activation data. (orig.)

  16. Antiparallel coiled-coil–mediated dimerization of myosin X

    Lu, Qing; Ye, Fei; Wei, Zhiyi; Wen, Zilong; Zhang, Mingjie

    2012-01-01

    Processive movements of unconventional myosins on actin filaments generally require motor dimerization. A commonly accepted myosin dimerization mechanism is via formation of a parallel coiled-coil dimer by a stretch of amino acid residues immediately carboxyl-terminal to the motor’s lever-arm domain. Here, we discover that the predicted coiled-coil region of myosin X forms a highly stable, antiparallel coiled-coil dimer (anti-CC). Disruption of the anti-CC either by single-point mutations or ...

  17. Elementary Forms of Religious Life in Animal Rights Activism

    Kerstin Jacobsson

    2014-01-01

    Many scholars have noted that secular belief systems, despite lack of a spiritual base, can possess qualities and display features similar to religion. The most well-known and forceful formulation of this is, arguably, Durkheim's claim that elementary forms of religious life pervade collective life in all societies. This article suggests that animal rights activism can fruitfully be analyzed as an instance of "secular religion". Drawing on Durkheim and based on a study of animal rights activi...

  18. Photoionization of helium dimers

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  19. Multicritical tensor models and hard dimers on spherical random lattices

    Bonzom, Valentin

    2012-01-01

    Random tensor models which display multicritical behaviors in a remarkably simple fashion are presented. They come with entropy exponents \\gamma = (m-1)/m, similarly to multicritical random branched polymers. Moreover, they are interpreted as models of hard dimers on a set of random lattices for the sphere in dimension three and higher. Dimers with their exclusion rules are generated by the different interactions between tensors, whose coupling constants are dimer activities. As an illustrati...

  20. Mutation D816V alters the internal structure and dynamics of c-KIT receptor cytoplasmic region: implications for dimerization and activation mechanisms.

    Elodie Laine

    2011-06-01

    Full Text Available The type III receptor tyrosine kinase (RTK KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD simulations, normal modes analysis (NMA and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites.

  1. Tetraphenylporphyrin dimers. An optical and magnetic resonance study

    Benthem, L.

    1984-01-01

    Tetraphenylporphyrin (TPP) molecules have been linked together to form dimers, using two positions of the phenyl groups at which the linking chain, which consisted mostly of 5 atoms, is attached (ortho or para position). The resulting dimers have different relative orientations of the porphyrin macr

  2. Interaction of the αβ dimers of the insulin-like growth factor I receptor required for receptor autophosphorylation

    The authors have recently found that association of the two αβ dimers of the insulin-like growth factor I (IGF I) receptor is required for formation of a high-affinity binding site for IGF I. To determine the structural requirements for IGF I activated kinase activity, they have examined the effect of dissociation of the two αβ dimers of the IGF I receptor on β subunit autophosphorylation. The αβ dimers formed after treatment with 2 mM dithiothreitol (DTT) at pH 8.75 for 5 min were separated from IGF I receptor remaining as tetramers after DTT treatment by fast protein liquid chromatography on a Superose 6 gel filtration column. Purification of the αβ dimers was confirmed by Western blot analysis using 125I-labeled αIR-3, a monoclonal antibody to the IGF I receptor. Autophosphorylation of the IGF I receptor (αβ)2 tetramer, treated without DTT or remaining after DTT treatment, is stimulated 1.6-2.9-fold by IGF I. In contrast, autophosporylation of the αβ dimers incubated in the presence or absence of IGF I (100 ng/mL) does not occur. Both IGF I receptor dimers and tetramers exhibit similar kinase activities using the synthetic substrate Arg-Arg-Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Gly, indicating that the failure to detect autophosphorylation of the IGF I receptor dimers does not result from inactivation of the kinase by DTT treatment. They conclude that autophosphorylation of the IGF I receptor depends upon the interaction of the two αβ dimers

  3. Monomer-dimer model explains the results of radiation inactivation: binding characteristics of insulin receptor purified from human placenta

    The technique of radiation inactivation has been used on highly purified human placental insulin receptor in order to determine the functional molecular size responsible for the insulin binding and to evaluate the affinity regulator hypothesis, which has been proposed to explain the increase in specific insulin binding to rat liver membranes observed at low radiation does. Three different types of inactivation curves were observed: (1) biphasic with an enhanced binding activity after exposure to low radiation doses, (2) nonlinear with no change in binding activity after exposure to low radiation doses, and (3) linear with a loss in the binding activity with increasing radiation exposures. A monomer-dimer model was the simplest model that best described the three types of radiation inactivation curves observed. The model predicts that an increase in insulin binding activity would result after exposure to low radiation doses when the initial dimer/monomer ratio is equal to or greater than 1 and a monomer is more active than a dimer. The monomer size of the binding activity was estimated to be 227,000 daltons by this model. To substantiate this model, the purified receptor was fractionated by Sepharose CL-6B chromatography. The insulin binding profile of this column indicated two peaks. These studies suggest that the affinity regulator does not exist as a separate structural protein but is due to the dimeric form of the receptor. The dimeric form (α2β2) possesses a much lower specific activity for insulin binding than does the monomeric αβ form (under the standard conditions), but the dimeric structure is necessary to observe the negative cooperative binding isotherm

  4. Alkane dimers interaction

    Ferrighi, Lara; Madsen, Georg Kent Hellerup; Hammer, Bjørk

    The interaction energies of a series of n-alkane dimers, from methane to decane, have been investigated with Density Functional Theory (DFT), using the MGGA-M06-L density functional. The results are compared both to the available wavefunction-based values as well as to dispersion corrected DFT...

  5. Double-dimer pairings and skew Young diagrams

    Kenyon, Richard W

    2010-01-01

    We study the number of tilings of skew Young diagrams by ribbon tiles shaped like Dyck paths, in which the tiles are "vertically decreasing". We use these quantities to compute pairing probabilities in the double-dimer model: Given a planar bipartite graph $G$ with special vertices, called nodes, on the outer face, the double-dimer model is formed by the superposition of a uniformly random dimer configuration (perfect matching) of $G$ together with a random dimer configuration of the graph formed from $G$ by deleting the nodes. The double-dimer configuration consists of loops, doubled edges, and chains that start and end at the boundary nodes. We are interested in how the chains connect the nodes. An interesting special case is when the graph is $\\varepsilon(\\Z\\times\\N)$ and the nodes are at evenly spaced locations on the boundary $\\R$ as the grid spacing $\\varepsilon\\to 0$.

  6. THE RESEARCH ACTIVITY OF THE STUDENTS AT CLINICAL DEPARTMENTS AS THE ACTIVE EDUCATIONAL FORM

    T.P. Denisova

    2007-09-01

    Full Text Available A definition of the educational research activity of the students at clinical departments of medical high school is present at the paper. Major methods of this active educational form organization were discussed at the body paper. Differential markers of educational research and scientific research activities of the students were shown.

  7. Pathologically activated neuroprotection via uncompetitive blockade of N-methyl-D-aspartate receptors with fast off-rate by novel multifunctional dimer bis(propyl)-cognitin.

    Luo, Jialie; Li, Wenming; Zhao, Yuming; Fu, Hongjun; Ma, Dik-Lung; Tang, Jing; Li, Chaoying; Peoples, Robert W; Li, Fushun; Wang, Qinwen; Huang, Pingbo; Xia, Jun; Pang, Yuanping; Han, Yifan

    2010-06-25

    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and gamma-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [(3)H]MK-801 with a K(i) value of 0.27 mum, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation. PMID:20404346

  8. Interferon-λ1 Linked to a Stabilized Dimer of Fab Potently Enhances both Antitumor and Antiviral Activities in Targeted Cells

    Liu, Donglin; Chang, Chien-Hsing; Rossi, Edmund A.; Cardillo, Thomas M.; Goldenberg, David M.

    2013-01-01

    The type III interferons (IFNs), comprising IFN-λ1, IFN-λ2, and IFN-λ3, behave similarly to IFN-α in eliciting antiviral, antitumor, and immune-modulating activities. Due to their more restricted cellular targets, IFN-λs are attractive as potential alternatives to existing therapeutic regimens based on IFN-αs. We have applied the DOCK-AND-LOCK™ method to improve the anti-proliferative potency of IFN-λ1 up to 1,000-fold in targeted cancer cell lines by tethering stabilized Fab dimers, derived from hRS7 (humanized anti-Trop-2), hMN-15 (humanized anti-CEACAM6), hL243 (humanized anti-HLA-DR), and c225 (chimeric anti-EGFR), to IFN-λ1 site-specifically, resulting in novel immunocytokines designated (E1)-λ1, (15)-λ1, (C2)-λ1, and (c225)-λ1, respectively. Targeted delivery of IFN-λ1 via (15)-λ1 or (c225)-λ1 to respective antigen-expressing cells also significantly increased antiviral activity when compared with non-targeting (C2)-λ1, as demonstrated in human lung adenocarcinoma cell line A549 by (15)-λ1 against encephalomyocarditis virus (EC50 = 22.2 pM versus 223 pM), and in human hepatocarcinoma cell line Huh-7 by (c225)-λ1 against hepatitis C virus (EC50 = 0.56 pM versus 91.2 pM). These promising results, which are attributed to better localization and stronger binding of IFN-λ1 to antibody-targeted cells, together with the favorable pharmacokinetic profile of (E1)-λ1 in mice (T1/2 = 8.6 h), support further investigation of selective prototypes as potential antiviral and antitumor therapeutic agents. PMID:23696859

  9. Fire testing of fully active medium-level waste forms

    The effect of heat on packaged intermediate level waste (ILW) has been studied. This was done in order to be able to predict the behaviour of the ILW under accident conditions involving fire during transport or at the repository. In the study, experimental data were obtained and used in the development and validation of theoretical models to describe aspects of the behaviour of the waste form when subjected to heat. The prime objective was to be able to predict the amounts of radioactive materials released from a given incident. Four ILW streams were selected for experimental study. These four were chosen as the minimum that could be studied to provide a set of data that could be used in the prediction of the behaviour of the majority of ILW produced in the UK. Heating experiments were carried out on a small scale using packaged ILW samples made from active wastes or inactive simulants. Data were obtained on temperatures in the waste form, production of volatile materials, carry-forward of solid particulate materials and carry-forward of radionuclides. The results were used, together with data from full-scale experiments with inactive simulant ILW carried out at Winfrith, to develop and validate a theoretical model. This model calculates the temperature profiles within a package of immobilized ILW as a function of the applied heating conditions. The temperature of the waste form is used to predict the release of radioactive materials from the package. 4 refs., 65 figs., 13 tabs

  10. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor

    Presman, Diego M; Ogara, M Florencia; Stortz, Martín;

    2014-01-01

    , reversible, and DNA-independent ligand-induced model for GR dimerization. We demonstrate that the GRdim forms dimers in vivo whereas adding another mutation in the ligand-binding domain (I634A) severely compromises homodimer formation. Contrary to dogma, no correlation between the GR monomeric/dimeric state...

  11. 'Number-forms' in neuroimaging?;- a PET activation study

    Full text: In 1880 Francis Galton reported a mental imagery study in which imagers were able to describe and draw arithmetic operations called 'number-forms' (NF). While many studies have reported NFs, little is known about their neural basis. We report a PET case study of a normal volunteer who invoked NFs during mental arithmetic tasks. This PET study used two conditions, repetition and calculation, presented bi-aurally while the subject was blindfolded. The calculation condition required the subject to say out loud the answers to arithmetic tasks, eg. 'nineteen minus seven'. A post-test protocol for vividness of visual imagery during calculation (PVVIC), based on the interviews of Galton (1880) and Seron and colleagues (1992), identified AF, a 43year-old women, as the highest imager (PVVIC - 95%) from a group of 12 normal volunteers. She was able to accurately describe and draw a well-used imagery strategy for mental arithmetic. Her results were contrasted with non-imager, FM (PVVIC - 10%). AF's MRI guided PET results showed significant rCBF activations during the calculation tasks including the right precuneus, right superior frontal gyrus (BA8), left superior parietal lobe (BA7), left visual cortex, medial thalamus and cerebellum. Except for the activation in the right BA8, common to both subjects, AF's areas were not activated by FM. These data confirm previous PET findings that the precuneus plays a major role in mental imagery and point to a neural network for mental imagery during simple calculation. AF's imagery strategies could be the first number-forms reported in a neuroimaging study. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  12. Dimerization of the human papillomavirus type 16 E2 N terminus results in DNA looping within the upstream regulatory region.

    Hernandez-Ramon, Elena E; Burns, Julie E; Zhang, Wenke; Walker, Hannah F; Allen, Stephanie; Antson, Alfred A; Maitland, Norman J

    2008-05-01

    Papillomavirus E2 proteins play a central role in regulating viral gene expression and replication. DNA-binding activity is associated with the C-terminal domain of E2, which forms a stable dimer, while the N-terminal domain is responsible for E2's replication and transactivation functions. The crystal structure of the latter domain revealed a second dimerization interface on E2 which may be responsible for DNA loop formation in the regulatory region of the human papillomavirus (HPV) genome. We investigated the biological significance of the N-terminal dimerization by introducing single amino acid substitutions into the dimerization interface. As expected, these substitutions did not influence the C-terminal dimerization and DNA-binding functions of E2. However, the mutations led to reduced transactivation of a synthetic E2-responsive reporter gene, while HPV DNA replication was unaffected. The effect of the mutations on DNA looping was visualized by atomic force microscopy. While wild-type E2 was able to generate DNA loops, all three mutant E2 proteins were defective in this ability. Our results suggest that N-terminal dimerization plays a role in E2-mediated transactivation, probably via DNA looping, a common mechanism for remote regulation of gene transcription. PMID:18337573

  13. FAK dimerization controls its kinase-dependent functions at focal adhesions

    Brami-Cherrier, Karen

    2014-01-30

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK\\'s kinase-dependent functions-autophosphorylation of tyrosine-397-requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. © 2014 The Authors.

  14. Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation

    Song, Gyun Jee; Jones, Brian W.; Hinkle, Patricia M.

    2007-01-01

    The G protein-coupled thyrotropin (TSH)-releasing hormone (TRH) receptor forms homodimers. Regulated receptor dimerization increases TRH-induced receptor endocytosis. These studies test whether dimerization increases receptor phosphorylation, which could potentiate internalization. Phosphorylation at residues 355–365, which is critical for internalization, was measured with a highly selective phospho-site-specific antibody. Two strategies were used to drive receptor dimerization. Dimerization...

  15. Gene activation by triplex-forming oligonucleotide coupled to the activating domain of protein VP16.

    Kuznetsova, S.; Ait-Si-Ali, S; Nagibneva, I; Troalen, F; Le Villain, J P; Harel-Bellan, A; Svinarchuk, F

    1999-01-01

    Triplex-forming oligonucleotides (TFOs) are generally designed to inhibit transcription or DNA replication but can be used for more diverse purposes. Here we have designed a chimera peptide-TFO able to activate transcription from a target gene. The designed hybrid molecule contains a triplex-forming sequence, linked through a phosphoroamidate bond to several minimal transcriptional activation domains derived from Herpes simplex virus protein 16 (VP16). We show here that this TFO-peptide chime...

  16. Bis(triethanolamine)bis(μ2-trimesato)dicobalt(II): a Co(II) dimer with an unreported two-dimensional supramolecular topology formed from triethanolamine and trimesic acid ligands.

    Xie, Min; Xu, Guo-Hai

    2016-02-01

    Supramolecular networks are an important subset in the field of coordination polymer (CP) frameworks and are widely encountered in crystal engineering research. The search for novel topologies continues to be a significant goal in CP chemistry. The dimeric compound bis(μ-5-carboxybenzene-1,3-dicarboxylato-κ(2)O(1):O(3))bis[(triethanolamine-κ(4)N,O,O',O'')cobalt(II)], [Co2(C9H4O6)2(C6H15NO3)2], formed from the coligands 5-carboxybenzene-1,3-dicarboxylate (tmaH(2-)) and triethanolamine (teaH3), namely [Co(μ2-tmaH)(teaH3)]2, was synthesized and characterized by single-crystal and powder X-ray diffraction analyses, IR spectroscopy, thermogravimetric analysis (TGA) and magnetic measurements. The crystal structure features a zero-dimensional molecular structure consisting of centrosymmetric macrocyclic dinuclear complexes. Four classical hydrogen bonds between carboxylate groups and hydroxyethyl arms stabilize and extend the molecules into a two-dimensional supramolecular network. The topological analysis indicates that an unreported (3,5)-binodal supramolecular topology with a short Schläfli symbol of (4.5.6)(4.5(5).6(3).7) can be achieved by means of intermolecular hydrogen bonds. The crystal structure accounts for the potential to obtain unique topological types from two excellent hydrogen-bonding candidates, i.e. tmaH3 and teaH3. A variable-temperature magnetic study shows the existence of antiferromagnetic behaviour in the complex. PMID:26846500

  17. Bacteriochlorophyll dimers in photosynthesis

    The X-ray crysallagraphic study of reaction center (RC) single crystals of the photosynthetic bacteria Rps.Viridis and Rb. sphaeroides confirms the existence of bacteriochlorophyll (BChl) dimers which were postulated earlier from EPR and ENDOR studies at low temperature to be the primary electron donors P960 and P870. Apart from the spatial structure of these dimers a knowlegde of the electron density distribution in various electronic stated in indispensable for an understanding of their functional properties. For P870+ and P960+ under physiological ocnditions the electron spin density distrubutions were obtained by ENDOR-in-solution via the hyperifne couplings. The comparison between the EPR/ENDOR data of P870+ and P960+ in RC's and of onomeric BChl a. and BChl b. shows that the primary donors are pie conjugated supermolecules with more or less asymmetric spin dnesity distrubutions over the dimer halves. Theoretical spian and charge densities were calculated by an all-valence electron SCF MO method, RHF-INDO/SP, using coordinates from refined X-ray data. These calculations yield asymmetry ratios similar to those observed.Consequences of the asymmetries in the charge distribution with respect to the observed unidirectionality of the electron transfer are discussed. (author). 29 refs.; 4 figs

  18. The Circumnuclear Star-forming Activities along the Hubble Sequence

    Shi, L; Peng, Z; Shi, Lei; Gu, Qiusheng; Peng, Zhixin

    2005-01-01

    In order to study the circumnuclear star-forming activity along the Hubble sequence, we cross-correlate the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) with the Third Reference Catalog of Bright Galaxies (RC3) to derive a large sample of 1015 galaxies with both morphological and spectral information. Among these, 385 sources are classified as star-forming galaxies and the SDSS fibre covered the circumnuclear regions (0.2 $-$ 2.0 kpc). By using the spectral synthesis method to remove the contribution from the underlying old stellar population, we measure the emission lines fluxes accurately which are then used to estimate the star formation rates(SFRs). Our main findings are that: (1) Early-type spirals show much larger H$\\alpha$ luminosities and hence higher SFRs, they also suffer more extinctions than late-type ones. The equivalent widths (EWs) of H$\\alpha$ emission lines show the similar trend, however, the very late types (Sdm $\\sim$ Irr) do have large fractions of high EWs. (2) We confirm that D$_n...

  19. Evaluation of performance including influence by interfering substances of the Innovance D-dimer assay on the Sysmex coagulation analyzer.

    Park, Seo-Jin; Chi, Hyun-Sook; Chun, Soh Hyun; Jang, Seongsoo; Park, Chan-Jeoung

    2011-01-01

    D-dimer is formed during activation of the coagulation system and is commonly assayed in order to diagnose disseminated intravascular coagulation, deep vein thrombosis, and pulmonary embolism. Enzyme-linked immunosorbent assay has been validated as the reference method, but it is a time-consuming procedure. The objective of this study was to evaluate a new immunoturbidimetric, particle-enhanced, Innovance(®) D-dimer immunoassay. A total of 129 plasma samples from apparently healthy individuals and 298 samples from patients were collected for linearity, precision, and correlation studies. Testing the precision of low- and high-controls yielded CV values of 2.08% and 1.76%, respectively. The central 95% non-parametric reference interval estimated from healthy controls was 0.093-0.68 mg/L Fibrinogen Equivalent Units (FEU; median, 0.26 mg/L FEU). Comparison analysis yielded acceptable correlation with the STA Liatest(®) D-dimer assay (R(2) = 0.9471). At a cut-off level of FEU, the sensitivity and specificity indices of the Innovance D-dimer assay were 99.7% and 89.1%, respectively. Thus the Innovance D-dimer method showed acceptable precision and linearity, and the assay results showed acceptable correlation with the STA Liatest D-dimer method. The Innovance method was relatively unaffected by potential interfering substances such as bilirubin and hemoglobin. In conclusion, the Innovance D-dimer assay is suitable for monitoring D-dimer concentrations in various clinical conditions and should be useful in clinical laboratories. PMID:21325250

  20. P–C-Activated Bimetallic Rhodium Xantphos Complexes: Formation and Catalytic Dehydrocoupling of Amine–Boranes**

    Johnson, Heather C; Weller, Andrew S

    2015-01-01

    {Rh(xantphos)}-based phosphido dimers form by P–C activation of xantphos (4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) in the presence of amine–boranes. These dimers are active dehydrocoupling catalysts, forming polymeric [H2BNMeH]n from H3B⋅NMeH2 and dimeric [H2BNMe2]2 from H3B⋅NMe2H at low catalyst loadings (0.1 mol %). Mechanistic investigations support a dimeric active species, suggesting that bimetallic catalysis may be possible in amine–borane dehydropolymerization. PMID:26140498

  1. 76 FR 42129 - Agency Information Collection Activities: Case Submission Form, Case Assistance Form

    2011-07-18

    ... to bring to the attention of the CIS Ombudsman (``trend''). For case problems, the CIS Ombudsman will... have been cosmetic changes to the form including punctuation and formatting. The title of the form...

  2. α-Helix-peptides comprising the human nuclear receptor ERRγ competitively provoke inhibition of functional homomeric dimerization.

    Liu, Xiaohui; Nishimura, Hirokazu; Fujiyama, Akina; Matsushima, Ayami; Shimohigashi, Miki; Shimohigashi, Yasuyuki

    2016-11-01

    Estrogen-related receptor γ (ERRγ) is a constitutively active nuclear receptor functioning as a transcription factor. ERRγ binds to a single half site designated as ERRE that has only a single DNA-binding motif. However, with regard to the subunit structure, it remains a matter of controversy whether ERRγ binds as a monomer or dimer. Because the ligand-binding domain (LBD) of ERRγ was in a homodimer form in its X-ray crystal structure, the peptide fragments present in the dimer interfaces would perturb or destabilize the dimer structure by inhibiting the mutual interaction among ERRγ molecules. Thus, to demonstrate the essential homodimer structure of ERRγ, we utilized the peptides corresponding to the α-helix peptides 7 (H7), H9, and H10/11 in order to test such inhibitor activity. These selections were done based on a structural analysis of the X-ray crystal structures of ERRγ-LBD, which forms a head-to-head dimer structure. Peptides were evaluated by means of a luciferase reporter gene assay, in which ERRγ exhibited a high constitutive activity with no ligand. When the peptide was expressed in the HeLa cells together with ERRγ, these peptides clearly showed a concentration-dependent activity inhibition, indicating that ERRγ is indeed homodimerized as required for DNA transcription activity. The present results strongly suggest that human nuclear receptor ERRγ functions as a genuine homomeric dimer with symmetrical dimeric interface regions. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 547-554, 2016. PMID:26662629

  3. D-二聚体及血液流变学与类风湿关节炎疾病活动的关系%The relationship between D- two dimers and blood rheology with disease activity of rheumatoid arthritis

    王胜男; 林素仙; 姜建昌; 陈萍; 吕望

    2014-01-01

    Objective:To detecte the level of blood plasma fibrinogen(FIB),fibrin degradation products(FDP),D-two dimer (DD) in patients with rheumatoid arthritis(RA),and to explore their relationship with the disease activity of RA.Methods:60 cases with RA were selected from January 2011 to August 2013,in which 30 cases of activity as the RA group,30 cases of stability RA as the control group.Thrombotic diseases and tumor were excluded.All the patients were with no operation and trauma history in recent 6 months.Clinical and laboratory indexes were recorded,and study the relationship of its activity in patients with RA grade(DAS28 score),erythrocyte sedimentation rate(ESR),C reactive protein(CRP),rheumatoid factor(RF) and other indicators.Results:In the activity RA group D-two dimer,FIB,FDP were increased,and the differences were statistically significant compared with the stability RA group(P<0.01).The DAS28 levels in the two D-dimer increased group was higher than normal two D-dimer group(P<0.0l).In patients with RA,ESR,CRP and RF levels in two D-dimer increased group were higher than in normal two D-dimer group(P<0.05).Conclusion:The levels of D-two dimer and FIB,FDP in patients with RA were increased,and closely related to disease activity.Coagulation-fibrinolytic system may play a role in the progression of RA and pathological process activation.%目的:检测类风湿关节炎(RA)患者血中血浆纤维蛋白原(FIB)、纤维蛋白降解产物(FDP)、D一二聚体(DD)水平,并探讨它们与RA疾病活动的关系。方法:2011年1月-2013年8月收治RA患者60例,其中活动性RA组30例,稳定性RA对照组30例。记录患者的临床和实验室指标,并研究其与RA患者疾病活动度(DAS28评分)、红细胞沉降率(ESR)、C反应蛋白(CRP)、类风湿因子(RF)等指标的关系。结果:活动性RA组D-二聚体、FIB、FDP均升高,与稳定性RA组比较差异有统计学意义(P<0.01)。在RA患者中D-二聚体增高组DAS28水

  4. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity. PMID:1445216

  5. Configurational entropy and cooperativity between ligand binding and dimerization in glycopeptide antibiotics.

    Jusuf, Sutjano; Loll, Patrick J; Axelsen, Paul H

    2003-04-01

    Oligomerization and ligand binding are thermodynamically cooperative processes in many biochemical systems, and the mechanisms giving rise to cooperative behavior are generally attributed to changes in structure. In glycopeptide antibiotics, however, these cooperative processes are not accompanied by significant structural changes. To investigate the mechanism by which cooperativity arises in these compounds, fully solvated molecular dynamics simulations and quasiharmonic normal-mode analysis were performed on chloroeremomycin, vancomycin, and dechlorovancomycin. Configurational entropies were derived from the vibrational modes recovered from ligand-free and ligand-bound forms of the monomeric and dimeric species. Results indicate that both ligand binding and dimerization incur an entropic cost as vibrational activity in the central core of the antibiotic is shifted to higher frequencies with lower amplitudes. Nevertheless, ligand binding and dimerization are cooperative because the entropic cost of both processes occurring together is less than the cost of these processes occurring separately. These reductions in configurational entropy are more than sufficient in magnitude to account for the experimentally observed cooperativity between dimerization and ligand binding. We conclude that biochemical cooperativity can be mediated through changes in vibrational activity, irrespective of the presence or absence of concomitant structural change. This may represent a general mechanism of allostery underlying cooperative phenomena in diverse macromolecular systems. PMID:12656635

  6. Stereoselective self-sorting in the self-assembly of a Phe-Phe extended guanidiniocarbonyl pyrrole carboxylate zwitterion: formation of two diastereomeric dimers with significantly different stabilities.

    Rodler, Fabian; Sicking, Wilhelm; Schmuck, Carsten

    2011-07-28

    The 'dipeptide extended' guanidiniocarbonyl pyrrole carboxylate zwitterion GCP-Phe-Phe 1 forms stable dimers in DMSO. However, dimerization is highly stereoselective. Only homochiral dimers are formed and the (L,L)·(L,L) dimer (K(dim) > 10(5) M(-1)) is significantly more stable by a factor of 10(3) than the diastereomeric (D,L)·(D,L) dimer (K(dim) = 120 M(-1)). PMID:21670799

  7. A variant form of the human deleted in malignant brain tumor 1 (DMBT1 gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3.

    Jens Madsen

    Full Text Available The protein deleted in malignant brain tumors (DMBT1 and the trefoil factor (TFF proteins have all been proposed to have roles in epithelial cell growth and cell differentiation and shown to be up regulated in inflammatory bowel diseases. A panel of monoclonal antibodies was raised against human DMBT1(gp340. Analysis of lung washings and colon tissue extracts by Western blotting in the unreduced state, two antibodies (Hyb213-1 and Hyb213-6 reacted with a double band of 290 kDa in lung lavage. Hyb213-6, in addition, reacted against a double band of 270 kDa in colon extract while Hyb213-1 showed no reaction. Hyb213-6 showed strong cytoplasmic staining in epithelial cells of both the small and large intestine whereas no staining was seen with Hyb213-1. The number of DMBT1(gp340 positive epithelial cells, stained with Hyb213-6, was significantly up regulated in inflammatory colon tissue sections from patients with ulcerative colitis (p<0.0001 and Crohn's disease (p = 0.006 compared to normal colon tissue. Immunohistochemical analysis of trefoil factor TFF1, 2 and 3 showed that TFF1 and 3 localized to goblet cells in both normal colon tissue and in tissue from patients with ulcerative colitis or Crohn's disease. No staining for TFF2 was seen in goblet cells in normal colon tissue whereas the majority of tissue sections in ulcerative colitis and Crohn's disease showed sparse and scattered TFF2 positive goblet cells. DMBT1 and TFF proteins did therefore not co-localize in the same cells but localized in adjacent cells in the colon. The interaction between DMBT1(gp340 and trefoil TFFs proteins was investigated using an ELISA assay. DMBT1(gp340 bound to solid-phase bound recombinant dimeric TFF3 in a calcium dependent manner (p<0.0001 but did not bind to recombinant forms of monomeric TFF3, TFF2 or glycosylated TFF2. This implies a role for DMBT1 and TFF3 together in inflammatory bowel disease.

  8. A flexible loop at the dimer interface is a part of the active site of the adjacent monomer of Escherichia coli orotate phosphoribosyltransferase

    Henriksen, Annette; Aghajari, Nushin; Jensen, Kaj Frank; Gajhede, Michael

    1996-01-01

    the fold of a flexible loop region with a highly conserved amino acid sequence among OPRTases, a region known to take part in catalysis. The structure of this region was not determined in the model used for molecular replacement, and it involves interactions at the dimer interface through a bound...... region for the orotate part of OMP (residues 25-27), and the pyrophosphate binding region (residues 71-73)....

  9. Butyrylcholinesterase: K variant, plasma activity, molecular forms and rivastigmine treatment in Alzheimer's disease in a Southern Brazilian population.

    Bono, G F; Simão-Silva, D P; Batistela, M S; Josviak, N D; Dias, P F R; Nascimento, G A; Souza, R L R; Piovezan, M R; Souza, R K M; Furtado-Alle, L

    2015-02-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which there is a decline of cholinergic function. The symptomatic AD treatment involves the use of ChEIs (cholinesterase inhibitors) as rivastigimine, a dual inhibitor. The human butyrylcholinesterase (BChE) is an enzyme that has specific roles in cholinergic neurotransmission and it has been associated with AD. In the serum, BChE is found in four main molecular forms: G1 (monomer); G1-ALB (monomer linked to albumin); G2 (dimer); and G4 (tetramer). The interaction between the products of BCHE gene and CHE2 locus results in CHE2 C5+ and CHE2 C5- phenotypes. CHE2 C5+ phenotype and BChE-K are factors that influence on BChE activity. This work aimed to verify the proportions of BChE molecular forms, total and relative activity in 139 AD patients and 139 elderly controls, taking into account K variant, CHE2 locus, rivastigmine treatment and clinical dementia rating (CDR) of AD patients. Phenotypic frequencies of CHE2 C5+ and frequency of the carriers of the K allele were similar between groups. Total BChE activity in plasma was significantly lower in AD patients than in elderly controls. Furthermore, we found that reduction on plasma BChE activity is associated directly with AD progression in AD patients and that rivastigmine treatment has a stronger effect on BChE activity within the CDR2 group. The reduction in BChE activity did not occur proportionally in all molecular forms. Multiple regression analysis results confirmed that AD acts as the main factor in plasma BChE activity reduction and that severe stages are related with an even greater reduction. These findings suggest that the reduction of total plasma BChE and relative BChE molecular forms activity in AD patients is probably associated with a feedback mechanism and provides a future perspective of using this enzyme as a possible plasmatic secondary marker for AD. PMID:25624079

  10. Chaperone-like activities of different molecular forms of beta-casein. Importance of polarity of N-terminal hydrophilic domain.

    Yousefi, Reza; Shchutskaya, Yulia Y; Zimny, Jaroslaw; Gaudin, Jean-Charles; Moosavi-Movahedi, Ali A; Muronetz, Vladimir I; Zuev, Yuriy F; Chobert, Jean-Marc; Haertlé, Thomas

    2009-08-01

    As a member of intrinsically unstructured protein family, beta-casein (beta-CN) contains relatively high amount of prolyl residues, adopts noncompact and flexible structure and exhibits chaperone-like activity in vitro. Like many chaperones, native beta-CN does not contain cysteinyl residues and exhibits strong tendencies for self-association. The chaperone-like activities of three recombinant beta-CNs wild type (WT) beta-CN, C4 beta-CN (with cysteinyl residue in position 4) and C208 beta-CN (with cysteinyl residue in position 208), expressed and purified from E. coli, which, consequently, lack the phosphorylated residues, were examined and compared with that of native beta-CN using insulin and alcohol dehydrogenase as target/substrate proteins. The dimers (beta-CND) of C4-beta-CN and C208 beta-CN were also studied and their chaperone-like activities were compared with those of their monomeric forms. Lacking phosphorylation, WT beta-CN, C208 beta-CN, C4 beta-CN and C4 beta-CND exhibited significantly lower chaperone-like activities than native beta-CN. Dimerization of C208 beta-CN with two distal hydrophilic domains considerably improved its chaperone-like activity in comparison with its monomeric form. The obtained results demonstrate the significant role played by the polar contributions of phosphorylated residues and N-terminal hydrophilic domain as important functional elements in enhancing the chaperone-like activity of native beta-CN. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 623-632, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com. PMID:19322774

  11. Dimer model for Tau proteins bound in microtubule bundles

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  12. Hyaluronidase activity in gynaecological cancer tissues with different metastatic forms.

    Tamakoshi, K.; Kikkawa, F; Maeda, O; Suganuma, N; Yamagata, S.; T. Yamagata; Tomoda, Y

    1997-01-01

    We investigated hyaluronidase activity in gynaecological normal and malignant tissues. Hyaluronidase activity in culture medium of tissue specimens was detected by hyaluronic acid zymography and quantified by densitometry. Hyaluronidase activity was shown as one dominant band (molecular weight 65 kDa) at pH 3.5. Hyaluronidase activity was significantly higher in normal ovary (P < 0.05) and normal endometrium (P< 0.05) than in normal cervix. One dominant 65-kDa hyaluronidase was expressed in 1...

  13. Tetraphenylporphyrin dimers. An optical and magnetic resonance study

    Benthem, L.

    1984-01-01

    Tetraphenylporphyrin (TPP) molecules have been linked together to form dimers, using two positions of the phenyl groups at which the linking chain, which consisted mostly of 5 atoms, is attached (ortho or para position). The resulting dimers have different relative orientations of the porphyrin macrocycles w.r.t. each other and different centre-to-centre distances. Using standard procedures, metal ions have been inserted into the porphyrin ring; depending on the type of experiment different m...

  14. Versatile SPR aptasensor for detection of lysozyme dimer in oligomeric and aggregated mixtures.

    Vasilescu, Alina; Purcarea, Cristina; Popa, Elena; Zamfir, Medana; Mihai, Iuliana; Litescu, Simona; David, Sorin; Gaspar, Szilveszter; Gheorghiu, Mihaela; Jean-Louis Marty

    2016-09-15

    A Surface Plasmon Resonance (SPR) sensor for the quantitation of lysozyme dimer in monomer-dimer mixtures, reaching a detection limit of 1.4nM dimer, has been developed. The sensor is based on an aptamer which, although developed for the monomeric form, binds also the dimeric form but with a strikingly different kinetics. The aptasensor was calibrated using a dimer obtained by cross-linking. Sensorgrams acquired with the aptasensor in monomer-dimer mixtures were analysed using Principal Components Analysis and Multiple Regression to establish correlations with the dimer content in the mixtures. The method allows the detection of 0.1-1% dimer in monomer solutions without any separation. As an application, the aptasensor was used to qualitatively observe the initial stages of aggregation of lysozyme solutions at 60°C and pH 2, through the variations in lysozyme dimer amounts. Several other methods were used to characterize the lysozyme dimer obtained by cross-linking and confirm the SPR results. This work highlights the versatility of the aptasensor, which can be used, by simply tuning the experimental conditions, for the sensitive detection of either the monomer or the dimer and for the observation of the aggregation process of lysozyme. PMID:27135941

  15. A peroxiredoxin cDNA from Taiwanofungus camphorata: role of Cys31 in dimerization.

    Huang, Chih-Yu; Chen, Yu-Ting; Wen, Lisa; Sheu, Dey-Chyi; Lin, Chi-Tsai

    2014-01-01

    Peroxiredoxins (Prxs) play important roles in antioxidant defense and redox signaling pathways. A Prx isozyme cDNA (TcPrx2, 745 bp, EF552425) was cloned from Taiwanofungus camphorata and its recombinant protein was overexpressed. The purified protein was shown to exist predominantly as a dimer by sodium dodecyl sulfate-polyacrylamide gel electrolysis in the absence of a reducing agent. The protein in its dimeric form showed no detectable Prx activity. However, the protein showed increased Prx activity with increasing dithiothreitol concentration which correlates with dissociation of the dimer into monomer. The TcPrx2 contains two Cys residues. The Cys(60) located in the conserved active site is the putative active peroxidatic Cys. The role of Cys(31) was investigated by site-directed mutagenesis. The C31S mutant (C(31) → S(31)) exists predominantly as a monomer with noticeable Prx activity. The Prx activity of the mutant was higher than that of the corresponding wild-type protein by nearly twofold at 12 μg/mL. The substrate preference of the mutant was H2O2 > cumene peroxide > t-butyl peroxide. The Michaelis constant (K M) value for H2O2 of the mutant was 0.11 mM. The mutant enzyme was active under a broad pH range from 6 to 10. The results suggest a role of Cys(31) in dimerization of the TcPrx2, a role which, at least in part, may be involved in determining the activity of Prx. The C(31) residue does not function as a resolving Cys and therefore the TcPrx2 must follow the reaction mechanism of 1-Cys Prx. This TcPrx2 represents a new isoform of Prx family. PMID:24194195

  16. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Naveen Kumar

    2013-11-01

    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  17. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    Pham, Anh; Bortolazzo, Anthony [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States); White, J. Brandon, E-mail: Brandon.White@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  18. Heterodimeric interaction between retinoid X receptor alpha and orphan nuclear receptor OR1 reveals dimerization-induced activation as a novel mechanism of nuclear receptor activation.

    Wiebel, F F; Gustafsson, J.A.

    1997-01-01

    OR1 is a member of the steroid/thyroid hormone nuclear receptor superfamily which has been described to mediate transcriptional responses to retinoids and oxysterols. On a DR4 response element, an OR1 heterodimer with the nuclear receptor retinoid X receptor alpha (RXR alpha) has been described to convey transcriptional activation in both the absence and presence of the RXR ligand 9-cis retinoic acid, the mechanisms of which have remained unclear. Here, we dissect the effects of RXR alpha and...

  19. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase

    Danielsen, E M

    1990-01-01

    explants. For aminopeptidase N, dimerization did not begin until 5-10 min after synthesis, and maximal dimerization by cross-linking of the transient form of the enzyme required 1 h, whereas the mature form of aminopeptidase N cross-linked with unchanged efficiency from 45 min to 3 h of labeling. Formation...... of dimers of this enzyme therefore occurs prior to the Golgi-associated processing, and the slow rate of dimerization may be the rate-limiting step in the transport from the endoplasmic reticulum to the Golgi complex. For lactase-phlorizin hydrolase, the posttranslational processing includes a...... proteolytic cleavage of its high molecular weight precursor. Since only the mature form and not the precursor of this enzyme could be cross-linked, formation of tightly associated dimers only takes place after transport out of the endoplasmic reticulum. Dimerization of the two brush border enzymes therefore...

  20. Combined Use of Residual Dipolar Couplings and Solution X-ray Scattering To Rapidly Probe Rigid-Body Conformational Transitions in a Non-phosphorylatable Active-Site Mutant of the 128 kDa Enzyme I Dimer

    Takayama, Yuki; Schwieters, Charles D.; Grishaev, Alexander; Ghirlando, Rodolfo; Clore, G. Marius (NIH)

    2012-10-23

    The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidine and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN{sup {alpha}/{beta}} subdomain and an aspartate (Asp129) on the EIN{sup {alpha}} subdomain results in a small ({approx}9{sup o}) reorientation of the EIN{sup {alpha}} and EIN{sup {alpha}/{beta}} subdomains that is in turn propagated to a larger reorientation ({approx}26{sup o}) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations.

  1. The arthritis-associated HLA-B*27:05 allele forms more cell surface B27 dimer and free heavy chain ligands for KIR3DL2 than HLA-B*27:09

    Cauli, A; Shaw, J; Giles, J.; Hatano, H; Rysnik, O; Payeli, S.; McHugh, K; Dessole, G; G. Porru; Desogus, E; Fiedler, S.; Hölper, S; CARETTE A.; Blanco-Gelaz, MA; Vacca, A.

    2013-01-01

    OBJECTIVES: HLA-B*27:05 is associated with AS whereas HLA-B*27:09 is not associated. We hypothesized that different interactions with KIR immune receptors could contribute to the difference in disease association between HLA-B*27:05 and HLAB*27:09. Thus, the objective of this study was to compare the formation of β2m-free heavy chain (FHC) including B27 dimers (B272) by HLA-B*27:05 and HLA-B*27:09 and their binding to KIR immunoreceptors. METHODS: We studied the formation of HLA-B*27:05 and H...

  2. The arthritis-associated HLA-B*27:05 allele forms more cell surface B27 dimer and free heavy chain ligands for KIR3DL2 than HLA-B*27:09.

    Cauli, A; Shaw, J; Giles, J.; Hatano, H; Rysnik, O; Payeli, S.; McHugh, K; Dessole, G; G. Porru; Desogus, E; Fiedler, S.; Hölper, S; CARETTE A.; Blanco-Gelaz, MA; Vacca, A.

    2013-01-01

    OBJECTIVES: HLA-B*27:05 is associated with AS whereas HLA-B*27:09 is not associated. We hypothesized that different interactions with KIR immune receptors could contribute to the difference in disease association between HLA-B*27:05 and HLAB*27:09. Thus, the objective of this study was to compare the formation of β2m-free heavy chain (FHC) including B27 dimers (B272) by HLA-B*27:05 and HLA-B*27:09 and their binding to KIR immunoreceptors. METHODS: We studied the formation of HLA-B*27:05 and H...

  3. Mechanically driven activation of polyaniline into its conductive form.

    Baytekin, Bilge; Baytekin, H Tarik; Grzybowski, Bartosz A

    2014-07-01

    Mechanical treatment of polymers produces surface cations and anions which, as demonstrated here for the first time, can drive chemical reactions. In particular, it is shown that such a mechanical treatment transforms nonconductive polyaniline into its conductive form. These results provide a mechanical means of patterning conductive polymers and also coating small polymer objects with conductive polyaniline films preventing accumulation of static electricity. PMID:24824971

  4. Chromophore structure of the physiologically active form (Pfr) of phytochrome

    RÜDIGER, W.; Thümmler, F.; Cmiel, E.; Schneider, S

    1983-01-01

    Chromopeptides were prepared by proteolytic digestion of phytochrome (far-red absorbing form, Pfr) and of phycocyanin. The phycocyanobilin peptide, the chromophore of which is Z,Z,Z-configurated, was modified to the Z,Z,E isomeric chromophore. It has been demonstrated earlier that the Pfr chromopeptide and the Z,Z,E-configurated phycocyanin chromopeptide behave similarly with regard to spectral and chromatographic properties and reactivity. We present evidence here, obtained by high-resolutio...

  5. Tectonic Activity on Pluto After the Charon-Forming Impact

    Barr, Amy C.; Collins, Geoffrey C.

    2014-01-01

    The Pluto-Charon system, likely formed from an impact, has reached the endpoint of its tidal evolution. During its evolution into the dual-synchronous state, the equilibrium tidal figures of Pluto and Charon would have also evolved as angular momentum was transferred from Pluto's spin to Charon's orbit. The rate of tidal evolution is controlled by Pluto's interior physical and thermal state. We examine three interior models for Pluto: an undifferentiated rock/ice mixture, differentiated with ...

  6. The Cyclicity as Evolution Form of Economic Activities

    Ungureanu, Laura

    2008-01-01

    The persistent of cycles was remark even to the 19th century economists and the rigorous theory of fluctuation or bussines cycle are take form past century. In the analyses dynamics macroeconomic area is can observe a big variety of method and techniques for research fluctuates from economy and financial date. A complex way for evidence the economic cycles is to determine limits cycles for the dynamical system which model the economic phenomenon.

  7. Dimerization of a Viral SET Protein Endows its Function

    H Wei; M Zhou

    2011-12-31

    Histone modifications are regarded as the most indispensible phenomena in epigenetics. Of these modifications, lysine methylation is of the greatest complexity and importance as site- and state-specific lysine methylation exerts a plethora of effects on chromatin structure and gene transcription. Notably, paramecium bursaria chlorella viruses encode a conserved SET domain methyltransferase, termed vSET, that functions to suppress host transcription by methylating histone H3 at lysine 27 (H3K27), a mark for eukaryotic gene silencing. Unlike mammalian lysine methyltransferases (KMTs), vSET functions only as a dimer, but the underlying mechanism has remained elusive. In this study, we demonstrate that dimeric vSET operates with negative cooperativity between the two active sites and engages in H3K27 methylation one site at a time. New atomic structures of vSET in the free form and a ternary complex with S-adenosyl homocysteine and a histone H3 peptide and biochemical analyses reveal the molecular origin for the negative cooperativity and explain the substrate specificity of H3K27 methyltransferases. Our study suggests a 'walking' mechanism, by which vSET acts all by itself to globally methylate host H3K27, which is accomplished by the mammalian EZH2 KMT only in the context of the Polycomb repressive complex.

  8. Quality checking task force destructive testing of active waste forms

    The implications of sampling and testing of full size active packages of intermediate level wastes are summarised in this report. Sampling operations are technically feasible but a major difficulty will be the disposal of secondary waste. A literature survey indicated that destructive testing of wasteforms is not carried out as a routine operation in Europe or the USA. (author)

  9. Thrombomodulin Binding Selects the Catalytically Active Form of Thrombin.

    Handley, Lindsey D; Treuheit, Nicholas A; Venkatesh, Varun J; Komives, Elizabeth A

    2015-11-01

    Human α-thrombin is a serine protease with dual functions. Thrombin acts as a procoagulant, cleaving fibrinogen to make the fibrin clot, but when bound to thrombomodulin (TM), it acts as an anticoagulant, cleaving protein C. A minimal TM fragment consisting of the fourth, fifth, and most of the sixth EGF-like domain (TM456m) that has been prepared has much improved solubility, thrombin binding capacity, and anticoagulant activity versus those of previous TM456 constructs. In this work, we compare backbone amide exchange of human α-thrombin in three states: apo, D-Phe-Pro-Arg-chloromethylketone (PPACK)-bound, and TM456m-bound. Beyond causing a decreased level of amide exchange at their binding sites, TM and PPACK both cause a decreased level of amide exchange in other regions including the γ-loop and the adjacent N-terminus of the heavy chain. The decreased level of amide exchange in the N-terminus of the heavy chain is consistent with the historic model of activation of serine proteases, which involves insertion of this region into the β-barrel promoting the correct conformation of the catalytic residues. Contrary to crystal structures of thrombin, hydrogen-deuterium exchange mass spectrometry results suggest that the conformation of apo-thrombin does not yet have the N-terminus of the heavy chain properly inserted for optimal catalytic activity, and that binding of TM allosterically promotes the catalytically active conformation. PMID:26468766

  10. MspA nanopores from subunit dimers.

    Pavlenok, Mikhail; Derrington, Ian M; Gundlach, Jens H; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID

  11. MspA nanopores from subunit dimers.

    Mikhail Pavlenok

    Full Text Available Mycobacterium smegmatis porin A (MspA forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore

  12. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation.

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W; Lin, Jialing; Li, Jianing

    2016-01-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model - using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation. PMID:27381287

  13. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing

    2016-07-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.

  14. Rotational spectra of propargyl alcohol dimer: A dimer bound with three different types of hydrogen bonds

    Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer [A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initio calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and “Atoms in Molecules” analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O–H⋯O, O–H⋯π, and C–H⋯π. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact

  15. How to use D-dimer in acute cardiovascular care

    Giannitsis, Evangelos; Mair, Johannes; Christersson, Christina;

    2015-01-01

    and subsequent degradation of cross-linked fibrin by plasmin. Many different assays for D-dimer testing are currently used in routine care. However, these tests are neither standardized nor harmonized. Consequently, only clinically validated assays and assay specific decision limits should be used for routine...... testing. For the exclusion of pulmonary embolism/deep vein thrombosis, age-adjusted cut-offs are recommend. Clinicians must be aware of the validated use of their hospital's D-dimer assay to avoid inappropriate use of this biomarker in routine care.......D-dimer testing is important to aid in the exclusion of venous thromboembolic events (VTEs), including deep venous thrombosis and pulmonary embolism, and it may be used to evaluate suspected aortic dissection. D-dimer is produced upon activation of the coagulation system with the generation...

  16. Metal membrane with dimer slots as a universal polarizer

    Zhukovsky, Sergei; Zalkovskij, Maksim; Malureanu, Radu;

    2014-01-01

    electromagnetic response of an arbitrary dimer based on the Green functions approach. The theory confirms that a great variety of polarization properties, such as birefringence, chirality and elliptical dichroism, can be achieved in a metal layer with such slot-dimer patterning (i.e. in a metasurface). Optical...... properties of the metasurface can be extensively tuned by varying the geometry (shape and dimensions) of the dimer, for example, by adjusting the sizes and mutual placement of the slots (e.g. inter-slot distance and alignment angle). Three basic shapes of dimers are analyzed: II-shaped (parallel slots), V...... UV lithography with subsequent Ni growth. Such metasurfaces were characterized using time-domain THz spectroscopy. The samples exhibit pronounced optical activity (500 degrees per wavelength) and high transmission: even though the slots cover only 4.3 % of the total membrane area the amplitude...

  17. Active Curved Polymers Form Vortex Patterns on Membranes

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-01

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

  18. 78 FR 26648 - Agency Information Collection Activities: Passenger List/Crew List (CBP Form I-418)

    2013-05-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Passenger List/Crew... concerning the Passenger List/Crew List (CBP Form I-418). This request for comment is being made pursuant to...: Passenger List/Crew List. OMB Number: 1651-0103. Form Number: CBP Form I-418. Abstract: CBP Form I-418...

  19. 77 FR 2561 - Agency Information Collection Activities: Passenger List/Crew List (CBP Form I-418)

    2012-01-18

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Passenger List/Crew... concerning the Passenger List/Crew List (CBP Form I-418). This request for comment is being made pursuant to...: Passenger List/Crew List. OMB Number: 1651-0103. Form Number: CBP Form I-418. Abstract: CBP Form I-418...

  20. Nuclear Activity is more prevalent in Star-Forming Galaxies

    Rosario, D J; Lutz, D; Netzer, H; Bauer, F E; Berta, S; Magnelli, B; Popesso, P; Alexander, D; Brandt, W N; Genzel, R; Maiolino, R; Mullaney, J R; Nordon, R; Saintonge, A; Tacconi, L; Wuyts, S

    2013-01-01

    We explore the question of whether low and moderate luminosity Active Galactic Nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation to quiescence. This notion has been suggested by studies of the UV-to-optical colors of AGN hosts, which find them to be common among galaxies in the so-called "Green Valley", a region of galaxy color space believed to be composed mostly of galaxies undergoing star-formation quenching. Combining the deepest current X-ray and Herschel. PACS far-infrared (FIR) observations of the two Chandra Deep Fields (CDFs) with redshifts, stellar masses and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U-V color distributions and SFR distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z~2, but we show that such colors ar...

  1. Tectonic Activity on Pluto After the Charon-Forming Impact

    Barr, Amy C

    2014-01-01

    The Pluto-Charon system, likely formed from an impact, has reached the endpoint of its tidal evolution. During its evolution into the dual-synchronous state, the equilibrium tidal figures of Pluto and Charon would have also evolved as angular momentum was transferred from Pluto's spin to Charon's orbit. The rate of tidal evolution is controlled by Pluto's interior physical and thermal state. We examine three interior models for Pluto: an undifferentiated rock/ice mixture, differentiated with ice above rock, and differentiated with an ocean. For the undifferentiated case without an ocean, the Pluto-Charon binary does not evolve to its current state unless its internal temperature $T_i>200$ K, which would likely lead to strong tidal heating, melting, and differentiation. Without an ocean, Pluto's interior temperature must be higher than 240 K for Charon to evolve on a time scale less than the age of the solar system. Further tidal heating would likely create an ocean. If New Horizons finds evidence of ancient t...

  2. Probing an Interfacial Surface in the Cyanide Dihydratase from Bacillus pumilus, A Spiral Forming Nitrilase

    Park, Jason M.; Mulelu, Andani; Sewell, B. Trevor; Benedik, Michael J.

    2016-01-01

    Nitrilases are of significant interest both due to their potential for industrial production of valuable products as well as degradation of hazardous nitrile-containing wastes. All known functional members of the nitrilase superfamily have an underlying dimer structure. The true nitrilases expand upon this basic dimer and form large spiral or helical homo-oligomers. The formation of this larger structure is linked to both the activity and substrate specificity of these nitrilases. The sequenc...

  3. RACK1 and β-arrestin2 attenuate dimerization of PDE4 cAMP phosphodiesterase PDE4D5.

    Bolger, Graeme B

    2016-07-01

    PDE4 family cAMP-selective cyclic nucleotide phosphodiesterases are important in the regulation of cAMP abundance in numerous systems, and thereby play an important role in the regulation of PKA and EPAC activity and the phosphorylation of CREB. We have used the yeast 2-hybrid system to demonstrate recently that long PDE4 isoforms form homodimers, consistent with data obtained recently by structural studies. The long PDE4 isoform PDE4D5 interacts selectively with β-arrestin2, implicated in the regulation of G-protein-coupled receptors and other cell signaling components, and also with the β-propeller protein RACK1. In the present study, we use 2-hybrid approaches to demonstrate that RACK1 and β-arrestin2 inhibit the dimerization of PDE4D5. We also show that serine-to-alanine mutations at PKA and ERK1/2 phosphorylation sites on PDE4D5 detectably ablate dimerization. Conversely, phospho-mimic serine-to-aspartate mutations at the MK2 and oxidative stress kinase sites ablate dimerization. Analysis of PDE4D5 that is locked into the dimeric configuration by the formation of a trans disulfide bond between Ser261 and Ser602 shows that RACK1 interacts strongly with both the monomeric and dimeric forms, but that β-arrestin2 interacts exclusively with the monomeric form. This is consistent with the concept that β-arrestin2 can preferentially recruit the monomeric, or "open," form of PDE4D5 to β2-adrenergic receptors, where it can regulate cAMP signaling. PMID:26257302

  4. Heat of Hydration of Low Activity Cementitious Waste Forms

    Nasol, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  5. Identification of biotransformation products of citalopram formed in activated sludge.

    Beretsou, Vasiliki G; Psoma, Aikaterini K; Gago-Ferrero, Pablo; Aalizadeh, Reza; Fenner, Kathrin; Thomaidis, Nikolaos S

    2016-10-15

    Citalopram (CTR) is a worldwide highly consumed antidepressant which has demonstrated incomplete removal by conventional wastewater treatment. Despite its global ubiquitous presence in different environmental compartments, little is known about its behaviour and transformation processes during wastewater treatment. The present study aims to expand the knowledge on fate and transformation of CTR during the biological treatment process. For this purpose, batch reactors were set up to assess biotic, abiotic and sorption losses of this compound. One of the main objectives of the study was the identification of the formed transformation products (TPs) by applying suspect and non-target strategies based on liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS). The complementary use of reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) for the identification of polar TPs, and the application of in-house developed quantitative structure-retention relationship (QSRR) prediction models, in addition to the comprehensive evaluation of the obtained MS/MS spectra, provided valuable information to support identification. In total, fourteen TPs were detected and thirteen of them were tentatively identified. Four compounds were confirmed (N-desmethylCTR, CTR amide, CTR carboxylic acid and 3-oxo-CTR) through the purchase of the corresponding reference standard. Probable structures based on diagnostic evidence were proposed for the additional nine TPs. Eleven TPs are reported for the first time. A transformation pathway for the biotransformation of CTR was proposed. The presence of the identified TPs was assessed in real wastewater samples through retrospective analysis, resulting in the detection of five compounds. Finally, the potential ecotoxicological risk posed by CTR and its TPs to different trophic levels of aquatic organisms was evaluated by means of risk quotients. PMID:27459150

  6. [L forms of Staphylococcus aureus. Behavior of coagulase, hemolytic and desoxyribonuclease activities and antibiotic sensitivity].

    Loschiavo, F; Giarrizzo, S

    1977-01-01

    L Forms derived from strains of coagulase positive Staphylococcus aureus, have, on the whole, preserved their DNAsic, haemolitic and coagulastic activities. L. forms showed high resistence to antibiotics acting on the bacterial cell-wall. The sensibility to other antibiotics was, roughly, analogous for the L forms as well as for the bacterial strains ones, with the exception of the clortetraciclin and the diidrostreptomicin, ehich proved to be comparatively more active on the L forms. PMID:614141

  7. Wound Healing Activity of Topical Application Forms Based on Ayurveda

    Hema Sharma Datta

    2011-01-01

    Full Text Available The traditional Indian medicine—Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary efficacy evaluation of the anti-aging activity we chose excision and incision wound healing animal models and studied the parameters including wound contraction, collagen content and skin breaking strength which in turn is indicative of the tissue cell regeneration capacity, collagenation capacity and mechanical strength of skin. The group treated with the formulations containing Yashada bhasma along with Shorea robusta resin and flax seed oil showed significantly better wound contraction (P < .01, higher collagen content (P < .05 and better skin breaking strength (P < .01 as compared to control group; thus proposing them to be effective prospective anti-aging formulations.

  8. Wound healing activity of topical application forms based on ayurveda.

    Datta, Hema Sharma; Mitra, Shankar Kumar; Patwardhan, Bhushan

    2011-01-01

    The traditional Indian medicine-Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary efficacy evaluation of the anti-aging activity we chose excision and incision wound healing animal models and studied the parameters including wound contraction, collagen content and skin breaking strength which in turn is indicative of the tissue cell regeneration capacity, collagenation capacity and mechanical strength of skin. The group treated with the formulations containing Yashada bhasma along with Shorea robusta resin and flax seed oil showed significantly better wound contraction (P skin breaking strength (P < .01) as compared to control group; thus proposing them to be effective prospective anti-aging formulations. PMID:19252191

  9. The Functional Unit of Neisseria meningitidis 3-Deoxy-ᴅ-Arabino-Heptulosonate 7-Phosphate Synthase Is Dimeric.

    Cross, Penelope J; Heyes, Logan C; Zhang, Shiwen; Nazmi, Ali Reza; Parker, Emily J

    2016-01-01

    Neisseria meningitidis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (NmeDAH7PS) adopts a homotetrameric structure consisting of an extensive and a less extensive interface. Perturbation of the less extensive interface through a single mutation of a salt bridge (Arg126-Glu27) formed at the tetramer interface of all chains resulted in a dimeric DAH7PS in solution, as determined by small angle X-ray scattering, analytical ultracentrifugation and analytical size-exclusion chromatography. The dimeric NmeDAH7PSR126S variant was shown to be catalytically active in the aldol-like condensation reaction between D-erythrose 4-phosphate and phosphoenolpyruvate, and allosterically inhibited by L-phenylalanine to the same extent as the wild-type enzyme. The dimeric NmeDAH7PSR126S variant exhibited a slight reduction in thermal stability by differential scanning calorimetry experiments and a slow loss of activity over time compared to the wild-type enzyme. Although NmeDAH7PSR126S crystallised as a tetramer, like the wild-type enzyme, structural asymmetry at the less extensive interface was observed consistent with its destabilisation. The tetrameric association enabled by this Arg126-Glu27 salt-bridge appears to contribute solely to the stability of the protein, ultimately revealing that the functional unit of NmeDAH7PS is dimeric. PMID:26828675

  10. The Functional Unit of Neisseria meningitidis 3-Deoxy-ᴅ-Arabino-Heptulosonate 7-Phosphate Synthase Is Dimeric.

    Penelope J Cross

    Full Text Available Neisseria meningitidis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (NmeDAH7PS adopts a homotetrameric structure consisting of an extensive and a less extensive interface. Perturbation of the less extensive interface through a single mutation of a salt bridge (Arg126-Glu27 formed at the tetramer interface of all chains resulted in a dimeric DAH7PS in solution, as determined by small angle X-ray scattering, analytical ultracentrifugation and analytical size-exclusion chromatography. The dimeric NmeDAH7PSR126S variant was shown to be catalytically active in the aldol-like condensation reaction between D-erythrose 4-phosphate and phosphoenolpyruvate, and allosterically inhibited by L-phenylalanine to the same extent as the wild-type enzyme. The dimeric NmeDAH7PSR126S variant exhibited a slight reduction in thermal stability by differential scanning calorimetry experiments and a slow loss of activity over time compared to the wild-type enzyme. Although NmeDAH7PSR126S crystallised as a tetramer, like the wild-type enzyme, structural asymmetry at the less extensive interface was observed consistent with its destabilisation. The tetrameric association enabled by this Arg126-Glu27 salt-bridge appears to contribute solely to the stability of the protein, ultimately revealing that the functional unit of NmeDAH7PS is dimeric.

  11. Dimerization of mammalian kinesin-3 motors results in superprocessive motion.

    Soppina, Virupakshi; Norris, Stephen R; Dizaji, Aslan S; Kortus, Matt; Veatch, Sarah; Peckham, Michelle; Verhey, Kristen J

    2014-04-15

    The kinesin-3 family is one of the largest among the kinesin superfamily and its members play important roles in a wide range of cellular transport activities, yet the molecular mechanisms of kinesin-3 regulation and cargo transport are largely unknown. We performed a comprehensive analysis of mammalian kinesin-3 motors from three different subfamilies (KIF1, KIF13, and KIF16). Using Forster resonance energy transfer microscopy in live cells, we show for the first time to our knowledge that KIF16B motors undergo cargo-mediated dimerization. The molecular mechanisms that regulate the monomer-to-dimer transition center around the neck coil (NC) segment and its ability to undergo intramolecular interactions in the monomer state versus intermolecular interactions in the dimer state. Regulation of NC dimerization is unique to the kinesin-3 family and in the case of KIF13A and KIF13B requires the release of a proline-induced kink between the NC and subsequent coiled-coil 1 segments. We show that dimerization of kinesin-3 motors results in superprocessive motion, with average run lengths of ∼10 μm, and that this property is intrinsic to the dimeric kinesin-3 motor domain. This finding opens up studies on the mechanistic basis of motor processivity. Such high processivity has not been observed for any other motor protein and suggests that kinesin-3 motors are evolutionarily adapted to serve as the marathon runners of the cellular world. PMID:24706892

  12. Low-affinity platelet factor 4 1H NMR derived aggregate equilibria indicate a physiologic preference for monomers over dimers and tetramers

    Low-affinity platelet factor 4 (LA-PF4), unlike another related, sequentially homologous platelet specific protein, platelet factor 4 (PF4), is an active mitogenic and chemotactic agent. PF4 exhibits a high binding affinity for heparin, while LA-PF4 does not. Both PF4 and LA-PF4 can exist in dimer and tetramer aggregate states. Equilibrium constants for PF4 aggregation have recently been estimated from fractional populations derived from proton nuclear magnetic resonance (NMR) integrals assigned to resonances in monomer, dimer, and tetramer states. On a 500-MHzNMR time scale, relatively slow exchange among LA-PF4 aggregate species has also allowed Tyr 15 ring proton resonances to be assigned for monomer, dimer, and tetramer states in LA-PF4. As a function of pH and ionic strength, equilibrium association constants for LA-PF4 dimer (KD) and tetramer (KT) formation have been estimated from Tyr 15 ring proton resonance integrals. Analysis of the pH dependence of KD and KT suggests that electrostatic interactions probably among Glu/Asp and Lys/Arg side chains form the predominant force in the monomer-monomer binding process, i.e., KD, while like-charge repulsion due to proximal, intersubunit Glu/Asp residues decreases KT as the pH is raised. At pH 7 and low ionic strength, the dimer state is highly favored over the tetramer state. Elevating the solvent ionic strength at pH 7 destabilizes the dimer state. Under these more physiologic conditions, i.e., pH 7 and 0.1-0.2 M NaCl, LA-PF4 monomers are highly favored over dimers and tetramers. For PF4 under similar solvent conditions, tetramers predominate. Differences in biological activities between these homologous platelet-specific proteins may be the result, at least in part, of differing aggregation properties

  13. Evidences of monomer, dimer and trimer of recombinant human cyclophilin A.

    Zhang, Xin-Chao; Wang, Wei-Dong; Wang, Jin-Song; Pan, Ji-Cheng; Zou, Guo-Lin

    2011-12-01

    Cyclophilin A (CyPA) is a cytosolic receptor of immunosuppressive drug cyclosporin A (CsA) which possesses peptidyl-prodyl cis/trans isomerase (PPIase) activity. The recombinant human CyPA (rhCyPA) gene has been expressed in E. coli M15. Purification was performed using salting-out, as well as Sephacryl S-100 and DEAE-Sepharose CL-6B column chromatography. The molecular weight is about 18 kDa, confirmed by SDS-PAGE and mass spectrum. The results of Native-PAGE and immunoblotting showed the existence of three bands, which agreed well with the gel filtration results. The molecular mass of the three bands determined via CTAB gel electrophoresis and SDS-PAGE (rhCyPA cross-linked with glutaraldehyde) was 18 kDa, 36 kDa and 54 kDa respectively. Further more, the native rhCyPA and the cross-linked rhCyPA had the similar chromatographic behavior in gel filtration. All of the evidences above suggest that rhCyPA exists in forms of monomer, dimer and trimer. Moreover, we observed that even at low protein concentrations CyPA largely occurs as a dimer in solution, and enzyme kinetic parameters showed that activity of dimer was much higher than monomer or trimer, which probably have some biological significances. PMID:21728990

  14. Dimer and String Formation during Low Temperature Silicon Deposition on Si(100)

    Smith, A. P.; Jonsson, Hannes

    1996-01-01

    We present theoretical results based on density functional theory and kinetic Monte Carlo simulations of silicon deposition and address observations made in recently reported low temperature scanning tunneling microscopy studies. A mechanism is presented which explains dimer formation on top of the...... substrate's dimer rows at 160 K and up to room temperature, while between-row dimers and longer strings of adatoms (''diluted dimer rows'') form at higher temperature. A crossover occurs at around room temperature between two different mechanisms for adatom diffusion in our model....

  15. The in vitro loose dimer structure and rearrangements of the HIV-2 leader RNA

    Purzycka, Katarzyna J.; Pachulska-Wieczorek, Katarzyna; Adamiak, Ryszard W.

    2011-01-01

    RNA dimerization is an essential step in the retroviral life cycle. Dimerization and encapsidation signals, closely linked in HIV-2, are located in the leader RNA region. The SL1 motif and nucleocapsid protein are considered important for both processes. In this study, we show the structure of the HIV-2 leader RNA (+1–560) captured as a loose dimer. Potential structural rearrangements within the leader RNA were studied. In the loose dimer form, the HIV-2 leader RNA strand exists in vitro as a...

  16. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro γ-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.

  17. UV laser multiphoton ionization--dissociation of phenylsilane and its homogeneous dimers

    Kosmidis, Constantine; Philis, John G.

    1998-01-01

    Homogeneous dimers of phenylsilane, formed in a rare-gas seeded supersonic expansion have been studied by laser resonant two-photon ionization combined with a time-of-flight mass spectrometer. The resonant intermediate states are the S1 (270 nm) and S2 (210 nm) ones. The ionization of phenylsilane monomer is inefficient at 210 nm whereas phenylsilane homo-dimers are resonantly ionized with high efficiency at this wavelength region. The wavelength dependence of the dimer at S1<-- S0 origin region implies the existence of at least two, almost isoenergetic, dimer conformers in the molecular beam. Photoionization of phenylsilane dimer induces chemical reactions within the dimer. The detected dissociation channels have to do with -SiH3 and -C6H6 loss and proton-transfer. Van der Waals fragmentation (evaporation of a neutral phenylsilane) is also taking place.

  18. Adventures in Holographic Dimer Models

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Karch, Andreas; /Washington U., Seattle; Yaida, Sho; /Stanford U., Phys. Dept.

    2011-08-12

    We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.

  19. Biilliards, rhythms, collectives - Billiards at a Danish activity center as a culturally specific form of active ageing

    Lassen, Aske Juul

    2014-01-01

    Through an ethnographic study of older men playing billiards at an activity centre and a document study of how the concept of activity has changed during the last 60 years, this article argues that active ageing policies overlook that activities are culturally significant forms of practise situated...

  20. Designer interface peptide grafts target estrogen receptor alpha dimerization.

    Chakraborty, S; Asare, B K; Biswas, P K; Rajnarayanan, R V

    2016-09-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide "I-box" derived from ER residues 503-518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479-485), LQQQHQRLAQ (residues 497-506), and LSHIRHMSNK (residues 511-520) and reported the suitability of using LQQQHQRLAQ (ER 497-506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. PMID:27462021

  1. 78 FR 52824 - Proposed Information Collection (Bowel and Bladder Care Billing Form) Activity: Comment Request

    2013-08-26

    ... AFFAIRS Proposed Information Collection (Bowel and Bladder Care Billing Form) Activity: Comment Request... evaluate the Bowel and Bladder Care Billing Form used by caregivers of eligible Veterans to document time...@va.gov . Please refer to ``OMB Control No. 2900-NEW (Bowel and Bladder Care Billing Form)'' in...

  2. Dimeric Labdane Diterpenes: Synthesis and Antiproliferative Effects

    Guillermo Schmeda-Hirschmann

    2013-05-01

    Full Text Available Several diterpenes with the labdane skeleton show biological activity, including antiproliferative effects. Most of the research work on bioactive labdanes has been carried out on naturally occurring diterpenes and semisynthetic derivatives, but much less is known on the effects of diterpene dimers. The aim of the present work was to synthesize dimeric diterpenes from the labdane imbricatolic acid using esters, ethers and the triazole ring as linkers. Some 18 new derivatives were prepared and the compounds were evaluated for antiproliferative activity on human normal fibroblasts (MRC-5 and the following human tumor cell lines: AGS, SK-MES-1, J82 and HL-60. The diethers 8–10, differing in the number of CH2 units in the linker, presented better antiproliferative activity with a maximum effect for the derivative 9. The best antiproliferative effect against HL-60 cells was found for compounds 3 and 17, with IC50 values of 22.3 and 23.2 μM, lower than that found for the reference compound etoposide (2.23 μM. The compounds 9, 17 and 11 were the most active derivatives towards AGS cells with IC50 values of 17.8, 23.4 and 26.1 μM. A free carboxylic acid function seems relevant for the effect as several of the compounds showed less antiproliferative effect after methylation.

  3. In vitro activity of Rutaceae species against the trypomastigote form of Trypanosoma cruzi.

    Mafezoli, J; Vieira, P C; Fernandes, J B; da Silva, M F; de Albuquerque, S

    2000-11-01

    The activity of crude plant extracts of nine species of Rutaceae against the trypomastigote form of Trypanosoma cruzi was evaluated at 4 mg/ml. Thirty-two crude extracts were tested and eight of them showed significant activity (>80%). The most active extract was obtained from the stems of Pilocarpus spicatus (97.3%). Fractionation of the active crude extracts provided 25 fractions which were tested against the trypomastigote form of T. cruzi at 2 mg/ml. Of these six showed significant activity (>80%). The most active fractions (100%) were obtained from the leaves of Almeidea coerulea (butanol fraction) and Conchocarpus inopinatus (dichloromethane fraction). PMID:11025175

  4. Rotational Spectrum of Propargyl Alcohol Dimer

    Mani, Devendra; Arunan, E.

    2013-06-01

    Propargyl alcohol is a molecule of interest to astrophysics as well as combustion studies. Rotational-tunneling spectra of propargyl alcohol monomer is well known and shows that the molecule exists in gauche form. Recently we reported microwave spectra of Ar...propargyl alcohol complex. Propargyl alcochol exists in gauche form in the complex as well. In this study we have recorded pure rotational spectra of propargyl alcohol dimer between 4-13 GHz range.A total of 47 transitions, 24 a-type, 16 b-type and 7 c-type, have been observed and fitted with semi rigid rotor asymmetric top hamiltonian. The fitted rotational constants are: A = 2321.83323(47) MHz, B = 1150.47726(24) MHz and C = 1124.89000(20) MHz. The standard deviation for the fit is 2.5 kHz. The experimental rotational constants are very close to the structure predicted by ab-initio calculations in which two gauche-propargyl alcohol moieties are in three point contact stabilized by O-H...O, O-H...pi and C-H...pi interactions. Few transitions for duterated isotopologues of the dimer have also been observed and search for the remaining transitions is in progress. Details will be presented in the talk. E. Hirota,J. Mol. Spectrosc. 26 (1968) 335-350. J.C. Pearson, B.J. Drouin, J. Mol. Spectrosc. 234 (2005) 149-156. D. Mani, E. Arunan, ChemPhysChem 14 (2013) 754-763.

  5. Type B activity limits for air transport - (an examination of special form and non-special form limits)

    This paper examines the application of the ''Q system'' with respect to the maximum limits of activity permitted in Type B (Type B(U) or Type B(M)) packages when transported by air. In particular, estimation is made of the radiological consequences to determine if there is a difference depending on whether the material is in special form or not. An estimate is also made of the radiological consequences of an air accident involving low dispersible radioactive material (LDRM) in the reference Type B package

  6. Salt bridge residues between I-Ak dimer of dimers alpha-chains modulate antigen presentation.

    Yadati, S; Nydam, T; Demian, D; Wade, T K; Gabriel, J L; Barisas, B G; Wade, W F

    1999-03-15

    Class II dimers of dimers are predicted to have functional significance in antigen presentation. The putative contact amino acids of the I-Ak class II dimer of dimers have been identified by molecular modeling based on the DR1 crystal structure (Nydam et al., Int. Immunol. 10, 1237,1998). We have previously reported the role in antigen presentation of dimer of dimers contact amino acids located in the C-terminal domains of the alpha- and beta-chains of class II. Our calculations show that residues Ealpha89 and Ralpha145 in the alpha2-domain form an inter alpha-chain salt bridge between pairs of alphabeta-heterodimers. Other residues, Qalpha92 and Nalpha115, may be involved in close association in that part of the alpha-chain. We investigated the role of these amino acids on class II expression and antigen presentation. Class II composed of an Ealpha89K substituted alpha-chain paired with a wt beta-chain exhibited inhibited antigen presentation and expression of alpha-chain serologic epitopes. In contrast, mutation of Ralpha145E had less affect on antigen presentation and did not affect I-Ak serologic epitopes. Interchanging charges of the salt bridge residues by expressing both Ralpha145E and Ealpha89K on the same chain obviated the large negative effect of the Ealpha89K mutation on antigen presentation but not on the serologic epitopes. Our results are similar for those reported for mutation of DR3's inter-chain salt bridge with the exception that double mutants did not moderate the DR3 defect. Interestingly, the amino acids differences between I-A and DR change the location of the inter-chain salt bridges. In DR1 these residues are located at positions Ealpha88 and Kalpha111; in I-Ak these residues are located at position Ealpha89 and Ralpha145. Inter alpha-chain salt bridges are thus maintained in various class II molecules by amino acids located in different parts of the alpha2-domain. This conservation of structure suggests that considerable functional

  7. Genetic Predictors of Fibrin D-Dimer Levels in Healthy Adults

    Smith, N. L.; J.E. Huffman; Strachan, D. P.; Huang, J.; A. Dehghan; Trompet, S.; Lopez, L.M. (Lorna M.); Shin, S.-Y.; Baumert, J.; Vitart, V; Bis, J.C.; Wild, S.H.; Rumley, A; Yang, Q.; Uitterlinden, A G

    2011-01-01

    Background-Fibrin fragment D-dimer, one of several peptides produced when crosslinked fibrin is degraded by plasmin, is the most widely used clinical marker of activated blood coagulation. To identity genetic loci influencing D-dimer levels, we performed the first large-scale, genome-wide association search. Methods and Results-A genome-wide investigation of the genomic correlates of plasma D-dimer levels was conducted among 21 052 European-ancestry adults. Plasma levels of D-dimer were measu...

  8. Synthetic Covalently Linked Dimeric Form of H2 Relaxin Retains Native RXFP1 Activity and Has Improved In Vitro Serum Stability

    Nair, Vinojini B.; Bathgate, Ross A. D.; Frances Separovic; Samuel, Chrishan S.; Mohammed Akhter Hossain; John D Wade

    2015-01-01

    Human (H2) relaxin is a two-chain peptide member of the insulin superfamily and possesses potent pleiotropic roles including regulation of connective tissue remodeling and systemic and renal vasodilation. These effects are mediated through interaction with its cognate G-protein-coupled receptor, RXFP1. H2 relaxin recently passed Phase III clinical trials for the treatment of congestive heart failure. However, its in vivo half-life is short due to its susceptibility to proteolytic degradation ...

  9. IR/UV and UV/UV double-resonance study of guaiacol and eugenol dimers

    Longarte, Asier; Redondo, Carolina; Fernández, José A.; Castaño, Fernando

    2005-04-01

    Guaiacol (2-methoxyphenol) and eugenol (4-allyl-2-methoxyphenol) molecules are biologically active phenol derivatives with an intramolecular -OH⋯OCH3 hydrogen bond (H bond). Pulsed supersonic expansions of mixtures of either of the two molecules with He yield weakly bound homodimers as well as other higher-order complexes. A number of complementary and powerful laser spectroscopic techniques, including UV-UV and IR-UV double resonances, have been employed to interrogate the species formed in the expansion in order to get information on their structures and spectroscopic properties. The interpretation of the spectra of eugenol dimer is complex and required a previous investigation on a similar but simpler molecule both to gain insight into the possible structures and support the conclusions. Guaiacol (2-methoxyphenol) has been used for that purpose. The combination of the broad laser study combined with ab initio calculations at the Becke 3 Lee-Yang-Parr/6-31+G(d) level has provided the isomer structures, the potential-energy wells, and shed light on the inter- and intramolecular interactions involved. Guaiacol homodimer has been shown to have a single isomer whereas eugenol dimer has at least two. The comparison between the computed geometries of the dimers, their respective energies, and the vibrational normal modes permits the identification of the spectra.

  10. Formation of nitric oxide dimers on MgO-supported gold particles

    Fuente, Silvia A.; Fortunato, Leandro F.; Domancich, Nicolás; Castellani, Norberto J.; Ferullo, Ricardo M.

    2012-12-01

    We present density functional theory (DFT) calculations on the formation of nitric oxide dimers (N2O2) on Au atoms, dimers and trimers adsorbed on regular O2 - sites and neutral oxygen vacancies (Fs sites) of the MgO(100) surface. The study of the N2O2 species is of great interest since it has been detected in the NO reduction reaction as an intermediate towards the formation of N2O. We found that the coupling of a NO molecule with a previously adsorbed one on Au/MgO is energetically favorable on Au1 and Au3, but unfavorable on Au2. The stability of N2O2 is in direct relation with the amount of charge taken from the support. Furthermore, one of the N―O bonds can be activated as a result of the attraction between the negatively charged NO dimer and the ionic oxide surface. In fact, for Au1 anchored on the Fs site a barrierless reaction occurs between N2O2 and a third NO molecule, forming adsorbed N2O and NO2.