WorldWideScience

Sample records for active contour models

  1. An automatic heart wall contour extraction method on MR images using the Active Contour Model

    In this paper, we propose a new method of extracting heart wall contours using the Active Contour Model (snakes). We use an adaptive contrast enhancing method, which made it possible to extract both inner and outer contours of the left ventricule of the heart. Experimental results showed the efficiency of this method. (author)

  2. Physical Modeling Techniques in Active Contours for Image Segmentation

    Lu, Hongyu

    2009-01-01

    Physical modeling method, represented by simulation and visualization of the principles in physics, is introduced in the shape extraction of the active contours. The objectives of adopting this concept are to address the several major difficulties in the application of Active Contours. Primarily, a technique is developed to realize the topological changes of Parametric Active Contours (Snakes). The key strategy is to imitate the process of a balloon expanding and filling in a closed space with several objects. After removing the touched balloon surfaces, the objects can be identified by surrounded remaining balloon surfaces. A burned region swept by Snakes is utilized to trace the contour and to give a criterion for stopping the movement of Snake curve. When the Snakes terminates evolution totally, through ignoring this criterion, it can form a connected area by evolving the Snakes again and continuing the region burning. The contours extracted from the boundaries of the burned area can represent the child sn...

  3. Multiresolution active contour model applied on lung and colon images

    Dehmeshki, Jamshid; Siddique, Musib; Wong, Wing; Chis Ster, Irina

    2004-05-01

    This paper deploys a wavelet based scale-space approach to extract the boundary of the object of interest in medical CT images. The classical approach of the active contour models consists of starting with an initial contour, to deform it under the action of some forces attracting the contour towards the edges by means of a set of forces. The mathematical model involves in the minimisation of an objective function called energy functional, which depends on the geometry of the contour as well as of the image characteristics. Various strategies could be used for the formulation of the energy functional and its optimisation. In this study, a wavelet based scale-space approach has been adopted. The coarsest scale is able to enlarge the capture region surrounding an object and avoids the trapping of contour into weak edges. The finer scales are used to refine the contour as close as possible to the boundary of the object. An adaptive scale coefficient for the balloon energy has been introduced. Four levels of resolution have been applied in order to get reproducibility of the contour despite poor different initialisations. The scheme has been applied to segment the regions of interest in CT lung and colon images. The result has been shown to be accurate and reproducible for the cases containing fat, holes and other small high intensity objects inside lung nodules as well as colon polyps.

  4. Application of Active Contour Model in Tracking Sequential Nearshore Waves

    Yu-Hung HSIAO; Min-Chih HUANG

    2009-01-01

    In the present study,a generalized active contour model of gradient vector flow is combined with the video techniques of Argus system to delineate and track sequential nearshore wave crest profdes in the shoaling process,up to their breaking on the shorehne.Previous applications of active contour models to water wave problems are limited to controllable wave tank experiments.By contrast,our application in this study is in a nearshore field environment where oblique images obtained under natural and varying condition of ambient light are employed.Existing Argus techniques produce plane image data or time series data from a selected small subset of discrete pixels.By contrast,the active contour model produces line image data along continuous visible curves such as wave crest profdes.The combination of these two existing techniques,the active contour model and Argus methodologies,facilitates the estimates of the direction wave field and phase speeds within the whole area covered by camera.These estimates are useful for the purpose of inverse calculation of the water depth.Applications of the present techniques to Hsi-tzu bay where a beach restoration program is currently undertaken are illustrated.This extension of Argus video techniques provides new application of optical remote sensing to study the hydrodynamics and morphology of a nearshore environment.

  5. Active Contour Model for object segmentation: A Brief Review

    Snehal .V. Talikoti

    2016-01-01

    Full Text Available Active contour are computer generated curves that move within the images to find object boundaries. They are often used in computer vision and image analysis to identify and locate objects, and to describe their shape. Region based methods are used for finding an object in an image instead of its edges. Region based ACM that segments one or more image regions that are visually similar to an object of interest called prior or trained dataset. It contains the object to be segmented from an image. The prior and evolving region are described by probability density function (PDF of a photometric feature as shape. The proposed approach uses the probability density functions of the inhomogeneous regions as well as the shapes of the objects to be segmented.

  6. Active Contour Model Coupling with Higher Order Diffusion for Medical Image Segmentation

    Guodong Wang

    2014-01-01

    Full Text Available Active contour models are very popular in image segmentation. Different features such as mean gray and variance are selected for different purpose. But for image with intensity inhomogeneities, there are no features for segmentation using the active contour model. The images with intensity inhomogeneities often occurred in real world especially in medical images. To deal with the difficulties raised in image segmentation with intensity inhomogeneities, a new active contour model with higher-order diffusion method is proposed. With the addition of gradient and Laplace information, the active contour model can converge to the edge of the image even with the intensity inhomogeneities. Because of the introduction of Laplace information, the difference scheme becomes more difficult. To enhance the efficiency of the segmentation, the fast Split Bregman algorithm is designed for the segmentation implementation. The performance of our method is demonstrated through numerical experiments of some medical image segmentations with intensity inhomogeneities.

  7. GLOBAL THRESHOLD AND REGION-BASED ACTIVE CONTOUR MODEL FOR ACCURATE IMAGE SEGMENTATION

    Nuseiba M. Altarawneh; Suhuai Luo; Brian Regan; Changming Sun; Fucang Jia

    2014-01-01

    In this contribution, we develop a novel global threshold-based active contour model. This model deploys a new edge-stopping function to control the direction of the evolution and to stop the evolving contour at weak or blurred edges. An implementation of the model requires the use of selective binary and Gaussian filtering regularized level set (SBGFRLS) method. The method uses either a selective local or global segmentation property. It penalizes the level set function to force ...

  8. Modeling robot contour processes

    Whitney, D. E.; Edsall, A. C.

    Robot contour processes include those with contact force like car body grinding or deburring of complex castings, as well as those with little or no contact force like inspection. This paper describes ways of characterizing, identifying, and estimating contours and robot trajectories. Contour and robot are modeled as stochastic processes in order to emphasize that both successive robot cycles and successive industrial workpieces are similar but not exactly the same. The stochastic models can be used to identify the state of a workpiece or process, or to design a filter to estimate workpiece, shape and robot position from robot-based measurements.

  9. Template-Based Active Contours

    Mogali, Jayanth Krishna; Pediredla, Adithya Kumar; Seelamantula, Chandra Sekhar

    2013-01-01

    We develop a generalized active contour formalism for image segmentation based on shape templates. The shape template is subjected to a restricted affine transformation (RAT) in order to segment the object of interest. RAT allows for translation, rotation, and scaling, which give a total of five degrees of freedom. The proposed active contour comprises an inner and outer contour pair, which are closed and concentric. The active contour energy is a contrast function defined based on the intens...

  10. Fractional Differentiation-Based Active Contour Model Driven by Local Intensity Fitting Energy

    Ming Gu; Renfang Wang

    2016-01-01

    A novel active contour model is proposed for segmentation images with inhomogeneity. Firstly, fractional order filter is defined by eight convolution masks corresponding to the image orientation in the eight compass directions. Then, the fractional order differentiation image is obtained and applied to the level set method. Secondly, we defined a new energy functional based on local image information and fractional order differentiation image; the proposed model not only can describe the inpu...

  11. Fractional Differentiation-Based Active Contour Model Driven by Local Intensity Fitting Energy

    Ming Gu

    2016-01-01

    Full Text Available A novel active contour model is proposed for segmentation images with inhomogeneity. Firstly, fractional order filter is defined by eight convolution masks corresponding to the image orientation in the eight compass directions. Then, the fractional order differentiation image is obtained and applied to the level set method. Secondly, we defined a new energy functional based on local image information and fractional order differentiation image; the proposed model not only can describe the input image more accurately but also can deal with intensity inhomogeneity. Local fitting term can enhance the ability of the model to deal with intensity inhomogeneity. The defined penalty term is used to reduce the occurrence of false boundaries. Finally, in order to eliminate the time-consuming step of reinitialization and ensure stable evolution of level set function, the Gaussian filtering method is used. Experiments on synthetic and real images show that the proposed model is efficient for images with intensity inhomogeneity and flexible to initial contour.

  12. Efficient thermal image segmentation through integration of nonlinear enhancement with unsupervised active contour model

    Albalooshi, Fatema A.; Krieger, Evan; Sidike, Paheding; Asari, Vijayan K.

    2015-03-01

    Thermal images are exploited in many areas of pattern recognition applications. Infrared thermal image segmentation can be used for object detection by extracting regions of abnormal temperatures. However, the lack of texture and color information, low signal-to-noise ratio, and blurring effect of thermal images make segmenting infrared heat patterns a challenging task. Furthermore, many segmentation methods that are used in visible imagery may not be suitable for segmenting thermal imagery mainly due to their dissimilar intensity distributions. Thus, a new method is proposed to improve the performance of image segmentation in thermal imagery. The proposed scheme efficiently utilizes nonlinear intensity enhancement technique and Unsupervised Active Contour Models (UACM). The nonlinear intensity enhancement improves visual quality by combining dynamic range compression and contrast enhancement, while the UACM incorporates active contour evolutional function and neural networks. The algorithm is tested on segmenting different objects in thermal images and it is observed that the nonlinear enhancement has significantly improved the segmentation performance.

  13. Meaningful Object Segmentation From SAR Images via a Multiscale Nonlocal Active Contour Model

    Xia, Gui-Song; Liu, Gang; Yang, Wen; Zhang, Liangpei

    2016-03-01

    The segmentation of synthetic aperture radar (SAR) images is a longstanding yet challenging task, not only because of the presence of speckle, but also due to the variations of surface backscattering properties in the images. Tremendous investigations have been made to eliminate the speckle effects for the segmentation of SAR images, while few work devotes to dealing with the variations of backscattering coefficients in the images. In order to overcome both the two difficulties, this paper presents a novel SAR image segmentation method by exploiting a multi-scale active contour model based on the non-local processing principle. More precisely, we first formulize the SAR segmentation problem with an active contour model by integrating the non-local interactions between pairs of patches inside and outside the segmented regions. Secondly, a multi-scale strategy is proposed to speed up the non-local active contour segmentation procedure and to avoid falling into local minimum for achieving more accurate segmentation results. Experimental results on simulated and real SAR images demonstrate the efficiency and feasibility of the proposed method: it can not only achieve precise segmentations for images with heavy speckles and non-local intensity variations, but also can be used for SAR images from different types of sensors.

  14. Iterative weighted average diffusion as a novel external force in the active contour model

    Mirov, Ilya S.; Nakhmani, Arie

    2016-03-01

    The active contour model has good performance in boundary extraction for medical images; particularly, Gradient Vector Flow (GVF) active contour model shows good performance at concavity convergence and insensitivity to initialization, yet it is susceptible to edge leaking, deep and narrow concavities, and has some issues handling noisy images. This paper proposes a novel external force, called Iterative Weighted Average Diffusion (IWAD), which used in tandem with parametric active contours, provides superior performance in images with high values of concavity. The image gradient is first turned into an edge image, smoothed, and modified with enhanced corner detection, then the IWAD algorithm diffuses the force at a given pixel based on its 3x3 pixel neighborhood. A forgetting factor, φ, is employed to ensure that forces being spread away from the boundary of the image will attenuate. The experimental results show better behavior in high curvature regions, faster convergence, and less edge leaking than GVF when both are compared to expert manual segmentation of the images.

  15. Diffuse Objects Extraction in Coronal Holes Using Active Contour Means Model

    Hamid Reza Tajik

    2013-09-01

    Full Text Available This paper presents the application of active contour models (Snakes for the segmentation of diffuse objects from coronal holes on the sun imaging telescope by means of active contour. In this paper the partition is less important and the focus is on the extraction of diffuse objects, namely coronal holes in EIT (Extreme Ultraviolet Imaging Telescope images. Coronal holes are regions of low-density plasma on the sun that have magnetic fields that open freely into interplanetary space. The proposed method is based on level set evolution. Since an active contour is a dynamic spline that can be adjusted to fit onto the boundary of the object based on energy minimization, and this method independent of selective region which we want to extract, hence using this method improved the result of segmentation. In addition to extracting diffuse objects of coronal holes, a new work that has been done to improve results, is that speed algorithm by implementing two methods: Reinitialization and Narrow band which related to the level set method has been used. Received images from satellites have large size so this method is very effective on these images.

  16. An Active Contour for Range Image Segmentation

    Khaldi Amine; Merouani Hayet Farida

    2012-01-01

    In this paper a new classification of range image segmentation method is proposed according to the criterion of homogeneity which obeys the segmentation, then, a deformable model-type active contour “Snake” is applied to segment range images.

  17. Hyperspectral image segmentation using active contours

    Lee, Cheolha P.; Snyder, Wesley E.

    2004-08-01

    Multispectral or hyperspectral image processing has been studied as a possible approach to automatic target recognition (ATR). Hundreds of spectral bands may provide high data redundancy, compensating the low contrast in medium wavelength infrared (MWIR) and long wavelength infrared (LWIR) images. Thus, the combination of spectral (image intensity) and spatial (geometric feature) information analysis could produce a substantial improvement. Active contours provide segments with continuous boundaries, while edge detectors based on local filtering often provide discontinuous boundaries. The segmentation by active contours depends on geometric feature of the object as well as image intensity. However, the application of active contours to multispectral images has been limited to the cases of simply textured images with low number of frames. This paper presents a supervised active contour model, which is applicable to vector-valued images with non-homogeneous regions and high number of frames. In the training stage, histogram models of target classes are estimated from sample vector-pixels. In the test stage, contours are evolved based on two different metrics: the histogram models of the corresponding segments and the histogram models estimated from sample target vector-pixels. The proposed segmentation method integrates segmentation and model-based pattern matching using supervised segmentation and multi-phase active contour model, while traditional methods apply pattern matching only after the segmentation. The proposed algorithm is implemented with both synthetic and real multispectral images, and shows desirable segmentation and classification results even in images with non-homogeneous regions.

  18. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878

  19. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878

  20. Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours

    Ahmadi, Salman; Zoej, M. J. Valadan; Ebadi, Hamid; Moghaddam, Hamid Abrishami; Mohammadzadeh, Ali

    2010-06-01

    To present a new method for building boundary detection and extraction based on the active contour model, is the main objective of this research. Classical models of this type are associated with several shortcomings; they require extensive initialization, they are sensitive to noise, and adjustment issues often become problematic with complex images. In this research a new model of active contours has been proposed that is optimized for the automatic building extraction. This new active contour model, in comparison to the classical ones, can detect and extract the building boundaries more accurately, and is capable of avoiding detection of the boundaries of features in the neighborhood of buildings such as streets and trees. Finally, the detected building boundaries are generalized to obtain a regular shape for building boundaries. Tests with our proposed model demonstrate excellent accuracy in terms of building boundary extraction. However, due to the radiometric similarity between building roofs and the image background, our system fails to recognize a few buildings.

  1. Automatic corpus callosum segmentation using a deformable active Fourier contour model

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G.; Gerig, Guido; Cody Hazlett, Heather; Styner, Martin

    2012-03-01

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  2. Towards Stabilizing Parametric Active Contours

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor;

    2014-01-01

    Numerical instability often occurs in evolving of parametric active contours. This is mainly due to the undesired change of parametrization during evolution. In this paper, we propose a new tangential diffusion term to compensate this undesired change. As a result, the parametrization will converge...... verified the feasibility of the proposed tangential diffusion force....

  3. Active Contour Projection for Multimedia Applications

    Fan Yang

    2011-04-01

    Full Text Available Active contour methods can be used to segment a 3D mesh into parts by iteratively moving the contour to the mesh region that minimizes the contour energy. However, as the contour moves, it often does not lie on the mesh surface. To address this problem, existing methods use either vertex/edge projection or mesh parameterization to obtain the corresponding contour on the mesh surface. Although vertex/edge projection methods are simple, they may create unwanted loops along the projected contour due to irregular mesh connectivity or modeling noise. Extra operations, which are often complex, are needed to remove such loops. On the other hand, mesh parameterization suffers from distortion and out-of-range problems, which are not trivial to solve. In this paper, we propose a face projection method to address the above problems. Our experiments show that the proposed method produces much smoother, more consistent and accurate projected contours than existing methods. At the end of the paper, we also show some multimedia applications of our method.

  4. Target Region Location Based on Texture Analysis and Active Contour Model

    YANG Zhaoxuan; BAI Zhuofu; WU Jiapeng; CHEN Yang

    2009-01-01

    Traditional texture region location methods with Gabor features are often limited in the selection of Gabor filters and fail to deal with the target which contains both texture and non-texture parts.Thus,to solve this problem,a two-step new model was proposed.In the first step,the original features extracted by Gabor filters are applied to training a self-organizing map (SOM) neural network and a novel merging scheme is presented to achieve the clustering.A back propagation (BP) network is used as a classifier to locate the target region approximately.In the second step,Chan-Vese active contour model is applied to detecting the boundary of the target region accurately and morphological processing is used to create a connected domain whose convex hull can cover the target region.In the experiments,the proposed method is demonstrated accurate and robust in localizing target on texture database and practical barcode location system as well.

  5. An Active Contour for Range Image Segmentation

    Khaldi Amine

    2012-06-01

    Full Text Available In this paper a new classification of range image segmentation method is proposed according to the criterion of homogeneity which obeys the segmentation, then, a deformable model-type active contour “Snake” is applied to segment range images.

  6. An Active Contour for Range Image Segmentation

    Khaldi Amine

    2012-07-01

    Full Text Available In this paper a new classification of range image segmentation method is proposed according to the criterion of homogeneity which obeys the segmentation, then, a deformable model-type active contour “Snake” is applied to segment range images.

  7. Active Contour with A Tangential Component

    Wang, Junyan

    2012-01-01

    Conventional edge-based active contours often require the normal component of an edge indicator function on the optimal contours to approximate zero, while the tangential component can still be significant. In real images, the full gradients of the edge indicator function along the object boundaries are often small. Hence, the curve evolution of edge-based active contours can terminate early before converging to the object boundaries with a careless contour initialization. We propose a novel Geodesic Snakes (GeoSnakes) active contour that requires the full gradients of the edge indicator to vanish at the optimal solution. Besides, the conventional curve evolution approach for minimizing active contour energy cannot fully solve the Euler-Lagrange (EL) equation of our GeoSnakes active contour, causing a Pseudo Stationary Phenomenon (PSP). To address the PSP problem, we propose an auxiliary curve evolution equation, named the equilibrium flow (EF) equation. Based on the EF and the conventional curve evolution, w...

  8. An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation.

    Huang, Chencheng; Zeng, Li

    2015-01-01

    Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed for segmenting images with intensity inhomogeneity and estimating the bias field simultaneously. In the modified model, a clustering criterion energy function is defined by considering the difference between the measured image and estimated image in local region. By using this difference in local region, the modified method can obtain accurate segmentation results and an accurate estimation of the bias field. The energy function is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. The proposed model first appeared as a two-phase model and then extended to a multi-phase one. The experimental results demonstrate the advantages of our model in terms of accuracy and insensitivity to the location of the initial contours. In particular, our method has been applied to various synthetic and real images with desirable results. PMID:25837416

  9. Incorporating Prior Shape into Geometric Active Contours for Face Contour Detection

    HUANGFuzhen; SUJianbo; XIYugeng

    2004-01-01

    In this paper a new method that incorporates prior shape information into geometric active contours for face contour detection is proposed. As in general a human face can be treated as an ellipse with a little shape variation, the prior face shape is represented as an elliptical curve. By combining the prior face shape with the powerful geometric active model proposed by Chan and Vese, the improved geometric active model can retain all the advantage of the Chan-Vese model and can detect face contours in images with complex backgrounds accurately even if the image is noisy. Moreover, by implementing the new model in a variational level set framework, automatic topological changes of the model can be achieved naturally and the transformation parameters that map the face boundary to the prior shape can be roughly estimated simultaneously. The experimental results show our procedure to be eiTicient.

  10. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang [Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao, Zuowei, E-mail: liuhui@dlut.edu.cn [Second Affiliated Hospital, Dalian Medical University, Dalian 116027 (China); Zhang, Lina [Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian 116027 (China)

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  11. Automatic Detection of Adenocarcinoma using Active Contours

    NeelapalaAnilKumar

    2013-09-01

    Full Text Available CT scan is the one of the image representation for abdomen, where the tumour to be located and specified effectively with clarity, by the medical expert. This role can be hold by using one of the image processing techniques called segmentation. Image segmentation is the technique which isolates the image into different regions to simplify the image and identify the Tumour easily. Image segmentation has been extensively studied by various approaches. This work, focus on the one of the image segmentation technique with a new regularization term that yields an unsupervised segmentation model which identifies different Tumour locations in a given CT image. Active contours form a boundary around a particular part of the image based on an energy function. The energy function may include intensity values of pixels or gradient values. Chen-Vase method of active contour algorithm is adopted for image segmentation. The segmentation is done after properly masking of CT scan image. The cancer prone area is generalized prior to the masking of the image. Effected abdomen cancer can be identified for better analysis of medical experts using image processing MATLAB tools. This paper describes a new method to detect and extract the features in CT scan images, which shows good performance in detection of difficult features. And the developed technique makes use of major image processing methods and fundamentals to detect the cancer with minimum possible human interaction.

  12. Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM)

    Seow, P.; Win, M. T.; Wong, J. H. D.; Abdullah, N. A.; Ramli, N.

    2016-03-01

    Gliomas are tumours arising from the interstitial tissue of the brain which are heterogeneous, infiltrative and possess ill-defined borders. Tumour subregions (e.g. solid enhancing part, edema and necrosis) are often used for tumour characterisation. Tumour demarcation into substructures facilitates glioma staging and provides essential information. Manual segmentation had several drawbacks that include laborious, time consuming, subjected to intra and inter-rater variability and hindered by diversity in the appearance of tumour tissues. In this work, active contour model (ACM) was used to segment the solid enhancing subregion of the tumour. 2D brain image acquisition data using 3T MRI fast spoiled gradient echo sequence in post gadolinium of four histologically proven high-grade glioma patients were obtained. Preprocessing of the images which includes subtraction and skull stripping were performed and then followed by ACM segmentation. The results of the automatic segmentation method were compared against the manual delineation of the tumour by a trainee radiologist. Both results were further validated by an experienced neuroradiologist and a brief quantitative evaluations (pixel area and difference ratio) were performed. Preliminary results of the clinical data showed the potential of ACM model in the application of fast and large scale tumour segmentation in medical imaging.

  13. Incorporating patch subspace model in Mumford-Shah type active contours.

    Wang, Junyan; Chan, Kap Luk

    2013-11-01

    In this paper, we propose a unified energy minimization model for segmentation of non-smooth image structures, e.g., textures, based on Mumford-Shah functional and linear patch model. We consider that image patches of a non-smooth image structure can be modeled by a patch subspace, and image patches of different non-smooth image structures belong to different patch subspaces, which leads to a computational framework for segmentation of non-smooth image structures. Motivated by the Mumford-Shah model, we show that this segmentation framework is equivalent to minimizing a piecewise linear patch reconstruction energy. We also prove that the error of segmentation is bounded by the error of the linear patch reconstruction, meaning that improving the linear patch reconstruction for each region leads to reduction of the segmentation error. In addition, we derive an algorithm for the linear patch reconstruction with proven global optimality and linear rate of convergence. The segmentation in our method is achieved by minimizing a single energy functional without requiring predefined features. Hence, compared with the previous methods that require predefined texture features, our method can be more suitable for handling general textures in unsupervised segmentation. As a by-product, our method also produces a dictionary of optimized orthonormal descriptors for each segmented region. We mainly evaluate our method on the Brodatz textures. The experiments validate our theoretical claims and show the clear superior performance of our methods over other related methods for segmentation of the textures. PMID:23893721

  14. 基于区域显著性的活动轮廓分割模型%An Active Contour Model Based on Region Saliency for Image Segmentation

    白雪飞; 王文剑; 梁吉业

    2012-01-01

    Image segmentation refers to the process of partitioning an image into some no-overlapped meaningful regions, and it is vital for the higher-level image processing such as image analysis and understanding. During the past few decades, there has been substantial progress in the field of image segmentation and its application. Recently, segmentation algorithms based on active contours have been given wide attention by many internal and foreign researchers due to their variable forms, flexible structure and excellent performance. However, most available active contour models suffer from lacking adaptive initial contour and priori information of target region. In this paper, an active contour model for image segmentation based on visual saliency detection mechanism is proposed. Firstly, priori shape information of target objects in input images which is used to describe the initial curve adaptively is extracted with the visual saliency detection method in order to reduce the influence of initial contour position. Furthermore, the proposed active model can segment images adaptively and automatically, and the segmented results accord with the property of human visual perception. Experimental results demonstrate that the proposed model can achieve better segmentation results than some traditional active contour models. Meanwhile it requires less iteration and is much more computationally efficient.%提出一种新的活动轮廓分割模型,结合视觉显著性检测机制自动获取待分割图像中目标物体的先验形状信息,并自适应地构造初始轮廓,从而降低了初始轮廓位置对分割算法的影响.同时实现了活动轮廓模型对图像的自适应分割和自动分割,使得分割结果更符合人类视觉感知特性.实验结果表明,该模型有较好的分割效果,迭代次数少,且运行时间短.

  15. Multiple LREK active contours for knee meniscus ultrasound image segmentation.

    Faisal, Amir; Ng, Siew-Cheok; Goh, Siew-Li; George, John; Supriyanto, Eko; Lai, Khin W

    2015-10-01

    Quantification of knee meniscus degeneration and displacement in an ultrasound image requires simultaneous segmentation of femoral condyle, meniscus, and tibial plateau in order to determine the area and the position of the meniscus. In this paper, we present an active contour for image segmentation that uses scalable local regional information on expandable kernel (LREK). It includes using a strategy to adapt the size of a local window in order to avoid being confined locally in a homogeneous region during the segmentation process. We also provide a multiple active contours framework called multiple LREK (MLREK) to deal with multiple object segmentation without merging and overlapping between the neighboring contours in the shared boundaries of separate regions. We compare its performance to other existing active contour models and show an improvement offered by our model. We then investigate the choice of various parameters in the proposed framework in response to the segmentation outcome. Dice coefficient and Hausdorff distance measures over a set of real knee meniscus ultrasound images indicate a potential application of MLREK for assessment of knee meniscus degeneration and displacement. PMID:25910057

  16. Statistical modeling of violin bowing parameter contours

    Maestre G??mez, Esteban

    2009-01-01

    We present a framework for modeling right-hand gestures in bowed-string instrument playing, applied to violin. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing gesture parameter cues. We model the temporal contour of bow transversal velocity, bow pressing force, and bow-bridge distance as sequences of short segments, in particular B??ezier cubic curve segments. Considering different articulations, dynamics, and contexts, a number of n...

  17. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours

    Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presented approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a

  18. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours

    Fritscher, Karl D., E-mail: Karl.Fritscher@umit.at; Sharp, Gregory [Department for Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Peroni, Marta [Paul Scherrer Institut, Villigen 5232 (Switzerland); Zaffino, Paolo; Spadea, Maria Francesca [Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100 (Italy); Schubert, Rainer [Institute for Biomedical Image Analysis, Private University of Health Sciences, Medical Informatics and Technology, Hall in Tirol 6060 (Austria)

    2014-05-15

    Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presented approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a

  19. Region-based active contour with noise and shape priors

    Lecellier, François; Fadili, Jalal; Aubert, Gilles; Revenu, Marinette; Saloux, Eric

    2008-01-01

    In this paper, we propose to combine formally noise and shape priors in region-based active contours. On the one hand, we use the general framework of exponential family as a prior model for noise. On the other hand, translation and scale invariant Legendre moments are considered to incorporate the shape prior (e.g. fidelity to a reference shape). The combination of the two prior terms in the active contour functional yields the final evolution equation whose evolution speed is rigorously derived using shape derivative tools. Experimental results on both synthetic images and real life cardiac echography data clearly demonstrate the robustness to initialization and noise, flexibility and large potential applicability of our segmentation algorithm.

  20. Adaptive active contour model for weak boundary extraction%自适应分割弱边缘的活动轮廓模型

    戚世乐; 王美清

    2013-01-01

    An adaptive active contour model for weak boundary extraction was proposed to improve LI′s distance preser-ving level set method.Besides, the adaptive force was proved to be bi-directional.The mean gray value of the image was added in the coefficient of the proposed model, so that the adaptive force could shrink or expand adaptively accord-ing to the position of the evolution curve.The experimental results showed that the proposed method could overcome the problem of LI′s model, which was that the initial contour must be fully enclosed by or contained within the target ob-ject.It was robust with the position of the initial contour and noise, and could segment multi-target images.%改进LI的保持距离水平集方法,提出自适应分割弱边缘的活动轮廓模型,并证明自适应力的双向性。模型中自适应力的系数加入图像的灰度均值,根据演化曲线的位置自适应的收缩或扩张。结果表明,该方法克服了原LI模型初始轮廓必须完全包围或含在目标物体内的问题,可以任意设置初始轮廓大小及位置,能够分割多目标图像,具有较强的抗噪性。

  1. Application and histology-driven refinement of active contour models to functional region and nerve delineation: towards a digital brainstem atlas

    Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.

    2015-03-01

    This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models

  2. Extended Active Contour Algorithm Based on Color Variance

    Seung-tae LEE; Young-jun HAN; Hern-soo HAHN

    2010-01-01

    General active contour algorithm,which uses the intensity of the image,has been used to actively segment chjects.Because the cbjects have a similar intensity but different colors,it is difficult to segment any object from the others.Moreover,this algorithm can only be used in the simple environment since it is very sensitive to noise.In order to solve these problems.This paper proposes an extended active contour algarithm based on a color variance.In complex images,the color variance energy as the image energy is introduced into the general active contour algorithm.Experimental results show that the proposed active contour algorithm is very effective in various environments.

  3. Efficient Active Contour and K-Means Algorithms in Image Segmentation

    Rommelse, J.R.; H.X. Lin; Chan, T.F.

    2004-01-01

    In this paper we discuss a classic clustering algorithm that can be used to segment images and a recently developed active contour image segmentation model. We propose integrating aspects of the classic algorithm to improve the active contour model. For the resulting CVK and B-means segmentation algorithms we examine methods to decrease the size of the image domain. The CVK method has been implemented to run on parallel and distributed computers. By changing the order of updating the pixels, ...

  4. 3D motion recovery while zooming using active contours

    Martínez Marroquín, Elisa; Torras Genís, Carme

    2002-01-01

    This paper considers the problem of 3D motion recovery from a sequence of monocular images while zooming. Unlike the common trend based on point matches, the proposed method relies on the deformation of an active contour fitted to a reference object. We derive the relation between the contour deformation and the 3D motion components, assuming time-varying focal length and principal point. This relation allows us to present a method to extract the rotation matrix and the scaled translation alo...

  5. An Investigation of Implicit Active Contours for Scientific Image Segmentation

    Weeratunga, S K; Kamath, C

    2003-10-29

    The use of partial differential equations in image processing has become an active area of research in the last few years. In particular, active contours are being used for image segmentation, either explicitly as snakes, or implicitly through the level set approach. In this paper, we consider the use of the implicit active contour approach for segmenting scientific images of pollen grains obtained using a scanning electron microscope. Our goal is to better understand the pros and cons of these techniques and to compare them with the traditional approaches such as the Canny and SUSAN edge detectors. The preliminary results of our study show that the level set method is computationally expensive and requires the setting of several different parameters. However, it results in closed contours, which may be useful in separating objects from the background in an image.

  6. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model.

    Zarpalas, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  7. Adaptive RBF network with active contour coupling for multispectral MRI segmentation

    Valdes-Cristerna, Raquel; Medina, Veronica; Yanez-Suarez, Oscar

    2002-05-01

    A segmentation procedure using a radial basis function network (RBFN), coupled with an active contour (AC) model based on a cubic splines formulation is presented for the detection of the gray-white matter boundary in axial MMRI (T1, T2 and PD). A RBFN classifier has been previously introduced for MMRI segmentation, with good generalization at a rate of 10% misclassification over white and gray matter pixels on the validation set. The coupled RBFN and AC model system incorporates the posterior probability estimation map into the AC energy term as a restriction force. The RBFN output is also employed to provide an initial contour for the AC. Furthermore, an adaptation strategy for the network weights, guided by a feedback from the contour model adjustment at each iteration, is described. In order to compare the algorithm's performance, the segmentations using the adaptive, as well as the non-adaptive schemes were computed. It was observed that the major differences are located around deep circonvolutions, where the result of the adaptive process is superior than that obtained with the non-adaptive scheme, even in moderate noise conditions. In summary, the RBFN provides a good initial contour for the AC, the coupling of both processes keeps the final contour within the desired region and the adaptive strategy enhances the contour location.

  8. Multiple Active Contours Driven by Particle Swarm Optimization for Cardiac Medical Image Segmentation

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a novel image segmentation method based on multiple active contours driven by particle swarm optimization (MACPSO. The proposed method uses particle swarm optimization over a polar coordinate system to increase the energy-minimizing capability with respect to the traditional active contour model. In the first stage, to evaluate the robustness of the proposed method, a set of synthetic images containing objects with several concavities and Gaussian noise is presented. Subsequently, MACPSO is used to segment the human heart and the human left ventricle from datasets of sequential computed tomography and magnetic resonance images, respectively. Finally, to assess the performance of the medical image segmentations with respect to regions outlined by experts and by the graph cut method objectively and quantifiably, a set of distance and similarity metrics has been adopted. The experimental results demonstrate that MACPSO outperforms the traditional active contour model in terms of segmentation accuracy and stability.

  9. 基于混合能量活动轮廓模型的人脸分割方法∗%Face Segmentation Based on a Hybrid Energy Based Active Contour Model

    龚勋; 王国胤; 李天瑞; 李昕昕; 夏冉; 冯林

    2013-01-01

    Influenced by factors like facial features, accessories, facial outer contours are extracted by the traditional geometric active contour models and conatin depressions and result in fragmentation, etc. To address these problems, according to the characteristics of human face image, the study proposes a hybrid energy based geometric active contour model via combining the energies of contour outer tension force and skin color with the global energy. First an outwards tension force, computed by neighborhoods of contour points, is added to the contour. This force makes the curve insusceptible to the facial features and accessories, but move towards to the facial outer contour. As skin color is the major feature of a human face. Skin color energy is integrated to ensure a more robust algorithm. Finally, an improved skin tone detection model is proposed based on the single Gaussian function. It could generate initial position that are close to the real facial contour, laying a good foundation for contour evolution. The proposed method gives essentially accurate face segmentations on two public face databases. Take the manually segmentations as the ground truth, the proposed method compares favorably to both traditional global and local energy algorithms. Next a more challenging set containing 100 faces of life photos with variances in pose is introduced with illumination and backgrounds. Segmentation results have validated that the proposed method could extract outer facial contour steadily and accurately under such variances.%  由于受到面部五官、饰物等因素的影响,传统几何活动轮廓模型获取人脸外轮廓会产生凹陷、分片等现象。针对人脸图像的特点,将边缘外张力能量及肤色能量与全局能量结合,提出一种基于混合能量泛函的几何活动轮廓模型,有效地避免了这些问题。首先,根据演化曲线的邻域信息赋予边缘点向外的张力,使曲线能够克服面部特征及

  10. Contour-Based Surface Reconstruction using MPU Implicit Models.

    Braude, Ilya; Marker, Jeffrey; Museth, Ken; Nissanov, Jonathan; Breen, David

    2007-03-01

    This paper presents a technique for creating a smooth, closed surface from a set of 2D contours, which have been extracted from a 3D scan. The technique interprets the pixels that make up the contours as points in ℝ(3) and employs Multi-level Partition of Unity (MPU) implicit models to create a surface that approximately fits to the 3D points. Since MPU implicit models additionally require surface normal information at each point, an algorithm that estimates normals from the contour data is also described. Contour data frequently contains noise from the scanning and delineation process. MPU implicit models provide a superior approach to the problem of contour-based surface reconstruction, especially in the presence of noise, because they are based on adaptive implicit functions that locally approximate the points within a controllable error bound. We demonstrate the effectiveness of our technique with a number of example datasets, providing images and error statistics generated from our results. PMID:18496609

  11. Motion Geometric Active Contours: Tracking Nonrigid Objects in Clutter Background

    Cen Feng (岑峰); Qi Feihu

    2003-01-01

    MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.

  12. Blood Vessel Diameter Estimation System Using Active Contours

    Courtney, Jane; Tizon, Ana

    2011-01-01

    The study and analysis of blood vessel geometry has become the basis of medical applications related to early diagnosis and effective monitoring of therapies in vascular diseases. This paper presents a new method to trace the outline of blood vessels from imperfect images and extract useful information about their dimensions in an automated manner. The system consists of a segmentation procedure that uses two Active Contours to detect blood vessel boundaries and a novel approach to measure bl...

  13. 基于C-V主动轮廓模型的“陡峭”边界的微藻图像分割%Microalgae image with “steep” boundary segmentation based on C-V active contour model

    张丽梅; 张红; 罗钟铉; 董云影

    2013-01-01

    The images of some marine microalgae were segmented by a C-V active contour model of Chan and Vese whose improved model was described in this paper. When the curvature of the main boundaries of microalga images was changed greatly, namely the main boundaries were of " steep" , it is very difficult to obtain the boundary of the microalgae images by C-V active contour model directly. In the improved C-V active contour model, the rough initial boundaries were drawn through the man-machine interactive pattern at the zero level set, the symbolic function was introduced in the initial zero level set to define internal and external energy, and appropriate parameters were adjusted to execute the process of the evolution of the image boundary. The comparison between the two models for the typical marine microalga image boundaries revealed that for the microalga images with "steep" boundary it is difficult to obtain their boundaries or their boundaries slowly by C-V active contour model. The boundaries of the microalga images were quickly obtained as well as a lot of information of the boundaries when the improved C-V active contour model was used for the microalga image with "steep" boundary. The results showed die effectiveness of die improved C-V active contour model, indicating diat this provides a new skill for the segmentation of microalga images.%采用Chan和Vese的C-V主动轮廓模型以及本文中改进的C-V主动轮廓模型对几类典型的海洋微藻图像进行了分割.当微藻图像的主要边界曲率变化较大,即主边界“陡峭”时,直接使用C-V主动轮廓模型难以获得微藻图像的边界.在改进的C-V主动轮廓模型中,通过人机交互绘制粗略的初始边界,并将其设定为初始零水平集,将符号函数引入到初始水平集中定义内外能量,再通过适当的参数调整进行图像边界的演化.将采用两种模型算法获取典型的海洋微藻图像边界的过程进行对比可知,对于带“陡

  14. Liver segmentation with new supervised method to create initial curve for active contour.

    Zareei, Abouzar; Karimi, Abbas

    2016-08-01

    The liver performs a critical task in the human body; therefore, detecting liver diseases and preparing a robust plan for treating them are both crucial. Liver diseases kill nearly 25,000 Americans every year. A variety of image segmentation methods are available to determine the liver's position and to detect possible liver tumors. Among these is the Active Contour Model (ACM), a framework which has proven very sensitive to initial contour delineation and control parameters. In the proposed method based on image energy, we attempted to obtain an initial segmentation close to the liver's boundary, and then implemented an ACM to improve the initial segmentation. The ACM used in this work incorporates gradient vector flow (GVF) and balloon energy in order to overcome ACM limitations, such as local minima entrapment and initial contour dependency. Additionally, in order to adjust active contour control parameters, we applied a genetic algorithm to produce a proper parameter set close to the optimal solution. The pre-processing method has a better ability to segment the liver tissue during a short time with respect to other mentioned methods in this paper. The proposed method was performed using Sliver CT image datasets. The results show high accuracy, precision, sensitivity, specificity and low overlap error, MSD and runtime with few ACM iterations. PMID:27286186

  15. A statistics-based pitch contour model for Mandarin speech.

    Chen, Sin-Horng; Lai, Wen-Hsing; Wang, Yih-Ru

    2005-02-01

    A statistics-based syllable pitch contour model for Mandarin speech is proposed. This approach takes the mean and the shape of a syllable log-pitch contour as two basic modeling units and considers several affecting factors that contribute to their variations. The affecting factors include the speaker, prosodic state (which essentially represents the high-level linguistic components of F0 and will be explained more clearly in Sec. I), tone, and initial and final syllable classes. The parameters of the two modeling units were automatically estimated using the expectation-maximization (EM) algorithm. Experimental results showed that the root mean squared errors (RMSEs) obtained in the closed and open tests in the reconstructed pitch period were 0.362 and 0.373 ms, respectively. This model provides a way to separate the effects of several major factors. All of the inferred values of the affecting factors were in close agreement with our prior linguistic knowledge. It also gives a quantitative and more complete description of the coarticulation effect of neighboring tones rather than conventional qualitative descriptions of the tone sandhi rules. In addition, the model can provide useful cues to determine the prosodic phrase boundaries, including those occurring at intersyllable locations, with or without punctuation marks. PMID:15759710

  16. Automatic brain cropping enhancement using active contours initialized by a PCNN

    Swathanthira Kumar, Murali Murugavel; Sullivan, John M., Jr.

    2009-02-01

    Active contours are a popular medical image segmentation strategy. However in practice, its accuracy is dependent on the initialization of the process. The PCNN (Pulse Coupled Neural Network) algorithm developed by Eckhorn to model the observed synchronization of neural assemblies in small mammals such as cats allows for segmenting regions of similar intensity but it lacks a convergence criterion. In this paper we report a novel PCNN based strategy to initialize the zero level contour for automatic brain cropping of T2 weighted MRI image volumes of Long-Evans rats. Individual 2D anatomy slices of the rat brain volume were processed by means of a PCNN and a surrogate image 'signature' was constructed for each slice. By employing a previously trained artificial neural network (ANN) an approximate PCNN iteration (binary mask) was selected. This mask was then used to initialize a region based active contour model to crop the brain region. We tested this hybrid algorithm on 30 rat brain (256*256*12) volumes and compared the results against manually cropped gold standard. The Dice and Jaccard similarity indices were used for numerical evaluation of the proposed hybrid model. The highly successful system yielded an average of 0.97 and 0.94 respectively.

  17. 引入局部信息的带钢缺陷图像凸优化活动轮廓分割模型%Convex Active Contour Segmentation Model of Strip Steel Defects Image Based on Local Information

    宋克臣; 颜云辉; 彭怡书; 董德威

    2012-01-01

    In order to solve problems existing in Chan-Vese model and local binary fitting (LBF) model, such as model sensitivity to the initial contour position and running slow in the segmentation of strip steel defect image, a novel model local information-based convex active contour (LICAC) is proposed. By converting non-convex optimization problem to a convex optimization problem via convex optimization technology , and applying the Split Bregman method for fast solution, the issues of the sensitivity to the initial contour position occurring in Chan-Vese model and LBF model are solved. With introduction of the local information, the new model is efficient in the segmentation of the strip surface defect image which is non-uniform gray. By using this model to segment single-target region strip defect image, four common defect categories, including weld, rust, holes and scratches are experimented, and experimental results show that the segmentation effect and operation time of the proposed model are better than the rest two kinds. In addition, this model can also be used to segment multi-target regions defect image, four common defect categories are experimented, including scratches, inclusion, pitting, and wrinkles, and experimental results have verified the validity of the model.%为解决Chan-Vese模型和局部二元拟合(Local binary fitting,LBF)模型在带钢缺陷图像分割时存在的对初始轮廓位置敏感、运行速度较慢等问题,提出引入局部信息的带钢缺陷图像凸优化活动轮廓分割模型(Local information convex active contour,LICAC).该模型利用凸优化技术将一个非凸的分割模型转变为凸优化问题,并采用Split Bregman方法对问题进行快速求解,从而解决Chan-Vese模型和LBF模型对初始轮廓位置敏感等问题.通过引入图像局部信息,该模型可以有效分割灰度不均匀的带钢表面缺陷图像.使用该模型分别对焊缝、黄斑、孔洞和划伤等4大类单个带钢缺陷

  18. 3D Filament Network Segmentation with Multiple Active Contours

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  19. Model Predictive Approach to Precision Contouring Control for Feed Drive Systems

    A. E. M.

    2010-01-01

    Full Text Available Problem statement: High precision machining requires high capability of multi-axis feed drive systems to follow specified contour accurately. Although each feed drive axis is controlled independently in many industrial applications such as X-Y tables and Computer Numerical Control (CNC machines, machining precision is evaluated by error components orthogonal to desired contour curve. Contouring controller design is required for precision machining, which should consider disturbance and dynamics variation such as friction, cutting force and workpiece mass change. Approach: This study applied model predictive design to contouring control systems. Model predictive control utilized an explicit process model and tracking error dynamics to predict the future behavior of a plant and hence it is effective for precision machining in machine tool feed drives. To improve the contouring performance, a new performance index was proposed in which error components orthogonal to the desired contour curve are more important than tracking errors with respect to each feed drive axis. Controller parameters were calculated in real time by solving an optimization problem. Results: The proposed controller was evaluated by computer simulation for circular and non-circular trajectories. Weighting factors of performance index terms were used as tuning factors of the proposed controller. Simulation results showed that a better contouring performance can be obtained by choosing of the weighting factors in performance index items appropriately. Conclusion/Recommendations: A model predictive contouring controller for biaxial feed drive systems was presented. Simulation results demonstrated that the proposed approach can significantly improve the contouring accuracy.

  20. Automatic Active Contour-Based Segmentation and Classification of Carotid Artery Ultrasound Images

    Chaudhry, Asmatullah; Hassan, Mehdi; Khan, Asifullah; Kim, Jin Young

    2013-01-01

    In this paper, we present automatic image segmentation and classification technique for carotid artery ultrasound images based on active contour approach. For early detection of the plaque in carotid artery to avoid serious brain strokes, active contour-based techniques have been applied successfully to segment out the carotid artery ultrasound images. Further, ultrasound images might be affected due to rotation, scaling, or translational factors during acquisition process. Keeping in view th...

  1. Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one-contour models

    The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise-constant ion density regions; and the regularization is accomplished with a tangential diffusion operator that models aspects of the diffusion operator in two dimensions. A complete linear stability analysis of a circular cloud shows that a single-mode excitation ''cascades downward'' in wavenumber as it grows in amplitude, a process that results from the symmetry-breaking electric field. Approximate formulas are derived for the amplitude growth and cascade-down phenomena and verified with precise numerical calculations. A simple rescaling shows that clouds with large lambda ( = cloud-ion density/ambient-ion density) evolve more slowly and appear more dissipative. The regularized contour-dynamical algorithm for computations in the nonlinear regime is validated against the linear analysis and truncation errors are assessed by using different spatial resolutions. Calculations in the nonlinear regime show the experimentally observed ''backside'' striations. Furthermore, at long times, a secondary structure arises on the sides of the primary striations. A comparison of simulations with different lambda shows that nonlinear effects arise sooner in normalized time (but longer in real time) if lambda is larger

  2. A Context-Sensitive Active Contour for 2D Corpus Callosum Segmentation

    Qing He

    2007-01-01

    Full Text Available We propose a new context-sensitive active contour for 2D corpus callosum segmentation. After a seed contour consisting of interconnected parts is being initialized by the user, each part will start to deform according to its own motion law derived from high-level prior knowledge, and is constantly aware of its own orientation and destination during the deformation process. Experimental results demonstrate the accuracy and robustness of our algorithm.

  3. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    Filiz Bunyak

    2007-08-01

    Full Text Available This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shapebased model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations.

  4. A 3-Step Algorithm Using Region-Based Active Contours for Video Objects Detection

    Stéphanie Jehan-Besson

    2002-06-01

    Full Text Available We propose a 3-step algorithm for the automatic detection of moving objects in video sequences using region-based active contours. First, we introduce a very full general framework for region-based active contours with a new Eulerian method to compute the evolution equation of the active contour from a criterion including both region-based and boundary-based terms. This framework can be easily adapted to various applications, thanks to the introduction of functions named descriptors of the different regions. With this new Eulerian method based on shape optimization principles, we can easily take into account the case of descriptors depending upon features globally attached to the regions. Second, we propose a 3-step algorithm for detection of moving objects, with a static or a mobile camera, using region-based active contours. The basic idea is to hierarchically associate temporal and spatial information. The active contour evolves with successively three sets of descriptors: a temporal one, and then two spatial ones. The third spatial descriptor takes advantage of the segmentation of the image in intensity homogeneous regions. User interaction is reduced to the choice of a few parameters at the beginning of the process. Some experimental results are supplied.

  5. Active Contour Driven by Local Region Statistics and Maximum A Posteriori Probability for Medical Image Segmentation

    Xiaoliang Jiang

    2014-01-01

    Full Text Available This paper presents a novel active contour model in a variational level set formulation for simultaneous segmentation and bias field estimation of medical images. An energy function is formulated based on improved Kullback-Leibler distance (KLD with likelihood ratio. According to the additive model of images with intensity inhomogeneity, we characterize the statistics of image intensities belonging to each different object in local regions as Gaussian distributions with different means and variances. Then, we use the Gaussian distribution with bias field as a local region descriptor in level set formulation for segmentation and bias field correction of the images with inhomogeneous intensities. Therefore, image segmentation and bias field estimation are simultaneously achieved by minimizing the level set formulation. Experimental results demonstrate desirable performance of the proposed method for different medical images with weak boundaries and noise.

  6. Modeling of contours in wavelet domain for generalized lifting image compression

    Rolon Garrido, Julio Cesar; Ortega, Antonio; Salembier Clairon, Philippe Jean

    2009-01-01

    This paper introduces the design of context-based models of contours in the wavelet domain, which are used to construct generalized lifting (GL) mappings for image compression. The GL context-based mapping may significantly reduce the signal energy and the resulting bitrate. Here, we propose a strategy to define a reduced set of structured models to design the GL. The models capture the contour structures and are contrast-invariant. Initial experimental results applying the strategy on ...

  7. Excursion and contour uncertainty regions for latent Gaussian models

    Bolin, David; Lindgren, Finn

    2012-01-01

    An interesting statistical problem is to find regions where some studied process exceeds a certain level. Estimating such regions so that the probability for exceeding the level in the entire set is equal to some predefined value is a difficult problem that occurs in several areas of applications ranging from brain imaging to astrophysics. In this work, a method for solving this problem, as well as the related problem of finding uncertainty regions for contour curves, for latent Gaussian mode...

  8. Visual Quality Enhancement in Multispectral Optoacoustic Tomography using Active Contour Segmentation Priors

    Mandal, Subhamoy; Razansky, Daniel

    2015-01-01

    Segmentation of biomedical images is essential for studying and characterizing anatomical structures, detection and evaluation of pathological tissues. Segmentation has been further shown to enhance the reconstruction performance in many tomographic imaging modalities by accounting for heterogeneities of the excitation field and tissue properties in the imaged region. This is particularly relevant in optoacoustic tomography, where discontinuities in the optical and acoustic tissue properties, if not properly accounted for, may result in deterioration of the imaging performance. Efficient segmentation of optoacoustic images is often hampered by the relatively low intrinsic contrast of large anatomical structures, which is further impaired by the limited angular coverage of some commonly employed tomographic imaging configurations. Herein, we analyze the performance of active contour models for boundary segmentation in cross-sectional optoacoustic tomography. The segmented mask is employed to construct a two co...

  9. AN IMPROVED SNAKE MODEL FOR REFINEMENT OF LIDAR-DERIVED BUILDING ROOF CONTOURS USING AERIAL IMAGES

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-01-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effect...

  10. Left Ventricle Segmentation in Magnetic Resonance Images with Modified Active Contour Method

    Maryam Aghai Amirkhizi

    2013-08-01

    Full Text Available Desired segmentation of the image is a pivotal problem in image processing. Segmenting the left ventricle (LV in magnetic resonance images (MRIs is essential for evaluation of cardiac function. For the segmentation of cardiac MRI several methods have been proposed and implemented. Each of them has advantages and restrictions. A modified region-based active contour model was applied for segmentation of LV chamber. A new semi-automatic algorithm was suggested calculating the appropriate Balloon force according to mean intensity of the region of interest for each image. The database is included of 2,039 MR images collected from 18 children under 18. The results were compared with previous literatures according to two standards: Dice Metric (DM and Point to Curve (P2C. The obtained segmentation results are better than previously reported values in several literatures. In this study different points were used in cardiac cycle and several slice levels and classified into three levels: Base, Mid. and Apex. The best results were obtained at end diastole (ED in comparison with end systole (ES, and on base slice than other slices, because of LV bigger size in ED phase and base slice. With segmentation of LV MRI based on novel active contour and application of the suggested algorithm for balloon force calculation, the mean improvement of DM compared to Grosgeorge et al. is 19.6% in ED and 49.5% in ES phase. The mean improvement of P2C compared with the same literature respectively for ED and ES phase is 43.8% and 39.6%.

  11. Depth map from the combination of matched points with active contours

    Martínez Marroquín, Elisa; Torras Genís, Carme

    2000-01-01

    This paper describes the analysis of an active contour fitted to a target in a sequence of images recorded by a freely moving uncalibrated camera. The motivating application is the visual guidance of a robot towards a target. Contour deformations are analysed to extract the scaled depth of the target, and to explore the feasibility of 3D egomotion recovery. The scaled depth is used to compute the time to contact, which provides a measure of distance to the target, and also to improve the comm...

  12. An Improved Snake Model for Refinement of Lidar-Derived Building Roof Contours Using Aerial Images

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-06-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  13. Comparison of segmentation using fast marching and geodesic active contours methods for bone

    Bilqis, A.; Widita, R.

    2016-03-01

    Image processing is important in diagnosing diseases or damages of human organs. One of the important stages of image processing is segmentation process. Segmentation is a separation process of the image into regions of certain similar characteristics. It is used to simplify the image to make an analysis easier. The case raised in this study is image segmentation of bones. Bone's image segmentation is a way to get bone dimensions, which is needed in order to make prosthesis that is used to treat broken or cracked bones. Segmentation methods chosen in this study are fast marching and geodesic active contours. This study uses ITK (Insight Segmentation and Registration Toolkit) software. The success of the segmentation was then determined by calculating its accuracy, sensitivity, and specificity. Based on the results, the Active Contours method has slightly higher accuracy and sensitivity values than the fast marching method. As for the value of specificity, fast marching has produced three image results that have higher specificity values compared to those of geodesic active contour's. The result also indicates that both methods have succeeded in performing bone's image segmentation. Overall, geodesic active contours method is quite better than fast marching in segmenting bone images.

  14. Simplical minisuperspace. III. Integration contours in a five-simplex model

    The no boundary proposal for the wave function of the universe is investigated in a minisuperspace model of pure gravity with cosmological constant. The model's four geometries consist of five four-simplices joined together to make the surface of a five-simplex from which one four-simplex face has been removed. The model is further simplified by symmetrically choosing all the interior edges of equal length and all the edges of the four-simplex boundary of equal length. The wave function is thus a function of a single boundary squared edge length and is specified by an integral over the single interior edge length. The analytic properties of the action in the space of complex edge lengths are exhibited, its classical extrema are calculated, and the possible contours of integration defining the wave function of the universe are discussed. A descending contour of constant imaginary action is proposed along which the integral defining the wave function is convergent and which predicts classical space-time in the late universe. This contour is the analog for the model of the conformally rotated contour appropriate to Euclidean sums over asymptotically flat space-times. The wave function is evaluated numerically for this contour both directly and by semiclassical methods

  15. Fairfax County Contours

    Federal Emergency Management Agency, Department of Homeland Security — This layer contains contours that were derived from the digital terrain model made up of irregularly spaced mass points and breaklines. The contours are 5 foot...

  16. Active Contours without Edges and Curvature Analysis for Endoscopic Image Classification

    B. V. Dhandra

    2007-06-01

    Full Text Available Endoscopic images do not contain sharp edges to segment using the traditional segmentation methods for obtaining edges. Therefore, the active contours or ‘snakes’ using level set method with the energy minimization algorithm is adopted here to segment these images. The results obtained from the above segmentation process will be number of segmented regions. The boundary of each region is considered as a curve for further processing. The curvature for each point of this curve is computed considering the support region of each point. The possible presence of abnormality is identified, when curvature of the contour segment between two zero crossings has the opposite curvature signs to those of such neighboring contour segments on the same edge contours. The Knearest neighbor classifier is used to classify the images as normal or abnormal. The experiment based on the proposed method is carried out on 50 normal and 50 abnormal endoscopic images and the results are encouraging.

  17. Active contour modes Crisp: new technique for segmentation of the lungs in CT images

    This paper proposes a new active contour model (ACM), called ACM Crisp, and evaluates the segmentation of lungs in computed tomography (CT) images. An ACM draws a curve around or within the object of interest. This curve changes its shape, when some energy acts on it and moves towards the edges of the object. This process is performed by successive iterations of minimization of a given energy, associated with the curve. The ACMs described in the literature have limitations when used for segmentations of CT lung images. The ACM Crisp model overcomes these limitations, since it proposes automatic initiation and new external energy based on rules and radiological pulmonary densities. The paper compares other ACMs with the proposed method, which is shown to be superior. In order to validate the algorithm a medical expert in the field of Pulmonology of the Walter Cantidio University Hospital from the Federal University of Ceara carried out a qualitative analysis. In these analyses 100 CT lung images were used. The segmentation efficiency was evaluated into 5 categories with the following results for the ACM Crisp: 73% excellent, without errors, 20% acceptable, with small errors, and 7% reasonable, with large errors, 0% poor, covering only a small part of the lung, and 0% very bad, making a totally incorrect segmentation. In conclusion the ACM Crisp is considered a useful algorithm to segment CT lung images, and with potential to integrate medical diagnosis systems. (author)

  18. F0 Contour Modeling for Arabic Text-to-Speech Synthesis Using Fujisaki Parameters and Neural Networks

    Zied Mnasri

    2011-02-01

    Full Text Available Speech synthesis quality depends on its naturalness and intelligibility. These abstract concepts are the concern of phonology. In terms of phonetics, they are transmitted by prosodic components, mainly the fundamental frequency (F0 contour. F0 contour modeling is performed either by setting rules or by investigating databases, with or without parameters and following a timely sequential path or a parallel and super-positional scheme. In this study, we opted to model the F0 contour for Arabic using the Fujisaki parameters to be trained by neural networks. Statistical evaluation was carried out to measure the predicted parameters accuracy and the synthesized F0 contour closeness to the natural one. Findings concerning the adoption of Fujisaki parameters to Arabic F0 contour modeling for text-to-speech synthesis were discussed. Keywords: F0 contour, Arabic TTS, Fujisaki parameters, neural networks, Phrase command, Accent command.

  19. Confidence contours for calibration of a theoretical transport model against a multitokamak database

    A systematic statistical model has been used to calibrate the turbulence saturation coefficients in a theory based tokamak transport model. Confidence contours are used to assess the accuracy of calibration. From the confidence contours, it is seen that the ballooning branch coefficient of this model is empirically more uncertain than that of the drift wave branch. Sensitivity studies show that the estimators obtained here are relatively insensitive to the level of prior knowledge assumed about the accuracy of theory and experiment, but the confidence regions shrink with increasing prior knowledge. The calibrated transport model is used to predict the profiles of electron density and of electron temperature and ion temperature in a large tokamak plasma. This demonstrates the potential utility of the calibrated transport model. (author). 24 refs, 15 figs, 2 tabs

  20. F0 Contour Modeling for Arabic Text-to-Speech Synthesis Using Fujisaki Parameters and Neural Networks

    Zied Mnasri, Fatouma Boukadida, Noureddine Ellouze

    2011-02-01

    Full Text Available Speech synthesis quality depends on its naturalness and intelligibility. Theseabstract concepts are the concern of phonology. In terms of phonetics, they aretransmitted by prosodic components, mainly the fundamental frequency (F0contour. F0 contour modeling is performed either by setting rules or byinvestigating databases, with or without parameters and following a timelysequential path or a parallel and super-positional scheme. In this study, we optedto model the F0 contour for Arabic using the Fujisaki parameters to be trained byneural networks. Statistical evaluation was carried out to measure the predictedparameters accuracy and the synthesized F0 contour closeness to the naturalone. Findings concerning the adoption of Fujisaki parameters to Arabic F0contour modeling for text-to-speech synthesis were discussed.

  1. Segmentation of the common carotid intima-media complex in ultrasound images using active contours.

    Petroudi, Styliani; Loizou, Christos; Pantziaris, Marios; Pattichis, Constantinos

    2012-11-01

    The segmentation of the intima-media complex (IMC) of the common carotid artery (CCA) wall is important for the evaluation of the intima media thickness (IMT) on B-mode ultrasound (US) images. The IMT is considered an important marker in the evaluation of the risk for the development of atherosclerosis. The fully automated segmentation algorithm presented in this article is based on active contours and active contours without edges and incorporates anatomical information to achieve accurate segmentation. The level set formulation by Chan and Vese using random initialization provides a segmentation of the CCA US images into different distinct regions, one of which corresponds to the carotid wall region below the lumen and includes the far wall IMC. The segmented regions are used to automatically achieve image normalization, which is followed by speckle removal. The resulting smoothed lumen-intima boundary combined with anatomical information provide an excellent initialization for parametric active contours that provide the final IMC segmentation. The algorithm is extensively evaluated on 100 different cases with ground truth (GT) segmentation available from two expert clinicians. The GT mean IMT value is 0.6679 mm +/ - 0.1350 mm and the corresponding automatically segmented (AS) mean IMT value is 0.6054 mm +/ - 0.1464 mm. The mean absolute difference between the GT IMT and the IMT evaluated from from the AS region is 0.095 mm +/ - 0.0615 mm. The polyline distance is 0.096 mm +/ - 0.034 mm while the Hausdorff distance is 0.176 mm +/ - 0.047 mm. The algorithm compares favorably to both automatic and semiautomatic methods presented in the literature. PMID:22922689

  2. Chromosome Segmentation and Investigations using Generalized Gradient Vector Flow Active Contours

    Albert Prabhu Britto

    2005-08-01

    Full Text Available We investigated Generalized Gradient Vector Flow Active Contours as a suitable boundary mapping technique for Chromosome spread images which have variability in shape and size, expecting to yield a robust segmentation scheme that can be used for segmentation of similar class of images based on optimal set of parameter values. It is found experimentally that a unique set of parameter values is required for boundary mapping each chromosome image. Characterization studies have established that each parameter has an optimal range of values within which good boundary mapping results can be obtained in similar class of images. Statistical testing validates the experimental results

  3. Digital elevation model production from scanned topographic contour maps via thin plate spline interpolation

    GIS (Geographical Information System) is one of the most striking innovation for mapping applications supplied by the developing computer and software technology to users. GIS is a very effective tool which can show visually combination of the geographical and non-geographical data by recording these to allow interpretations and analysis. DEM (Digital Elevation Model) is an inalienable component of the GIS. The existing TM (Topographic Map) can be used as the main data source for generating DEM by amanual digitizing or vectorization process for the contours polylines. The aim of this study is to examine the DEM accuracies, which were obtained by TMs, as depending on the number of sampling points and grid size. For these purposes, the contours of the several 1/1000 scaled scanned topographical maps were vectorized. The different DEMs of relevant area have been created by using several datasets with different numbers of sampling points. We focused on the DEM creation from contour lines using gridding with RBF (Radial Basis Function) interpolation techniques, namely TPS as the surface fitting model. The solution algorithm and a short review of the mathematical model of TPS (Thin Plate Spline) interpolation techniques are given. In the test study, results of the application and the obtained accuracies are drawn and discussed. The initial object of this research is to discuss the requirement of DEM in GIS, urban planning, surveying engineering and the other applications with high accuracy (a few deci meters). (author)

  4. Automatic Detection of the Ice Edge in SAR Imagery Using Curvelet Transform and Active Contour

    Jiange Liu

    2016-06-01

    Full Text Available A novel method based on the curvelet transform and active contour method to automatically detect the ice edge in Synthetic Aperture Radar (SAR imagery is proposed. The method utilizes the location of high curvelet coefficients to determine regions in the image likely to contain the ice edge. Using an ice edge from passive microwave sea ice concentration for initialization, these regions are then joined using the active contour method to obtain the final ice edge. The method is evaluated on four dual polarization SAR scenes of the Labrador sea. Through comparison of the ice edge with that from image analysis charts, it is demonstrated that the proposed method can detect the ice edge effectively in SAR images. This is particularly relevant when the marginal ice zone is diffuse or the ice is thin, and using the definition of ice edge from the passive microwave ice concentration would underestimate the ice edge location. It is expected that the method may be useful for operations in marginal ice zones, such as offshore drilling, where a high resolution estimate of the ice edge location is required. It could also be useful as a first guess for an ice analyst, or for the assimilation of SAR data.

  5. Automatic active contour-based segmentation and classification of carotid artery ultrasound images.

    Chaudhry, Asmatullah; Hassan, Mehdi; Khan, Asifullah; Kim, Jin Young

    2013-12-01

    In this paper, we present automatic image segmentation and classification technique for carotid artery ultrasound images based on active contour approach. For early detection of the plaque in carotid artery to avoid serious brain strokes, active contour-based techniques have been applied successfully to segment out the carotid artery ultrasound images. Further, ultrasound images might be affected due to rotation, scaling, or translational factors during acquisition process. Keeping in view these facts, image alignment is used as a preprocessing step to align the carotid artery ultrasound images. In our experimental study, we exploit intima-media thickness (IMT) measurement to detect the presence of plaque in the artery. Support vector machine (SVM) classification is employed using these segmented images to distinguish the normal and diseased artery images. IMT measurement is used to form the feature vector. Our proposed approach segments the carotid artery images in an automatic way and further classifies them using SVM. Experimental results show the learning capability of SVM classifier and validate the usefulness of our proposed approach. Further, the proposed approach needs minimum interaction from a user for an early detection of plaque in carotid artery. Regarding the usefulness of the proposed approach in healthcare, it can be effectively used in remote areas as a preliminary clinical step even in the absence of highly skilled radiologists. PMID:23417308

  6. CT liver volumetry using geodesic active contour segmentation with a level-set algorithm

    Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard

    2010-03-01

    Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(Fliver volumes.

  7. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  8. Non-Rigid Object Contour Tracking via a Novel Supervised Level Set Model.

    Sun, Xin; Yao, Hongxun; Zhang, Shengping; Li, Dong

    2015-11-01

    We present a novel approach to non-rigid objects contour tracking in this paper based on a supervised level set model (SLSM). In contrast to most existing trackers that use bounding box to specify the tracked target, the proposed method extracts the accurate contours of the target as tracking output, which achieves better description of the non-rigid objects while reduces background pollution to the target model. Moreover, conventional level set models only emphasize the regional intensity consistency and consider no priors. Differently, the curve evolution of the proposed SLSM is object-oriented and supervised by the specific knowledge of the targets we want to track. Therefore, the SLSM can ensure a more accurate convergence to the exact targets in tracking applications. In particular, we firstly construct the appearance model for the target in an online boosting manner due to its strong discriminative power between the object and the background. Then, the learnt target model is incorporated to model the probabilities of the level set contour by a Bayesian manner, leading the curve converge to the candidate region with maximum likelihood of being the target. Finally, the accurate target region qualifies the samples fed to the boosting procedure as well as the target model prepared for the next time step. We firstly describe the proposed mechanism of two-phase SLSM for single target tracking, then give its generalized multi-phase version for dealing with multi-target tracking cases. Positive decrease rate is used to adjust the learning pace over time, enabling tracking to continue under partial and total occlusion. Experimental results on a number of challenging sequences validate the effectiveness of the proposed method. PMID:26099142

  9. 基于混合主动轮廓模型和区域间差别最大化的细胞弱边界分割%HYBRID ACTIVE CONTOUR MODEL AND INTER-REGIONAL DIFFERENCE MAXIMIZATION BASED CELL WEAK BORDER SEGMENTATION

    赵明珠; 陈胜勇; 管秋

    2011-01-01

    Accurate segmentation is the key to image processing and analysis. However there are problems with microscopic cell images like target contour obscure or existing weak borders etc. Which usually produces unsatisfactory segmenting results. To tackle the problem,the paper proposes a hybrid active contour model and inter-regional difference maximization based cell weak border segmentation method. The method conforms to region maximization principle, taking local and global gray information as model's driving force, on the one hand ensures the detection of global dissimilarities, and on the other hand captures local differences. The models energy functional are composed of local and global fitting items by introducing a strategy weight parameter which makes use of graded information to explain how do local fitting items and global fitting items combine together to form hybrid fitting items. Experimental results indicate that the hybrid active contour model and inter-regional difference maximization based cell segmentation method can effectively capture weak borders and separate cell nucleus apart.%准确分割是图像处理与分析的关键.然而显微细胞图像的目标轮廓模糊、存在弱边界等问题,使得分割结果往往不尽人意.针对这一问题,提出基于混合主动轮廓模型和区域间差别最大化的细胞弱边界分割方法.该模型根据区域最大化的原则,并采用局部和全局灰度信息作模型的驱动力,在确保检测出全局差异的同时,捕捉到局部差异性.模型的能量泛函是由局部和全局拟合项组成的,并引入策略权重参数,这个参数利用梯度信息来解释局部拟合项和全局拟合项是如何组成混合拟合项的.实验结果表明,这种基于混合主动轮廓模型和区域间差别最大化的细胞分割方法能有效地捕获弱边界并分割出细胞核.

  10. Distributed Contour Trees

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  11. Analytical Study on Fundamental Frequency Contours of Thai Expressive Speech Using Fujisaki's Model

    Suphattharachai Chomphan

    2010-01-01

    Full Text Available Problem statement: In spontaneous speech communication, prosody is an important factor that must be taken into account, since the prosody effects on not only the naturalness but also the intelligibility of speech. Focusing on synthesis of Thai expressive speech, a number of systems has been developed for years. However, the expressive speech with various speaking styles has not been accomplished. To achieve the generation of expressive speech, we need to model the fundamental frequency (F0 contours accurately to preserve the speech prosody. Approach: Therefore this study proposes an analysis of model parameters for Thai speech prosody with three speaking styles and two genders which is a preliminary work for speech synthesis. Fujisaki's modeling; a powerful tool to model the F0 contour has been adopted, while the speaking styles of happiness, sadness and reading have been considered. Seven derived parameters from the Fujisaki's model are as follows. The first parameter is baseline frequency which is the lowest level of F0 contour. The second and third parameters are the numbers of phrase commands and tone commands which reflect the frequencies of surges of the utterance in global and local levels, respectively. The fourth and fifth parameters are phrase command and tone command durations which reflect the speed of speaking and the length of a syllable, respectively. The sixth and seventh parameters are amplitudes of phrase command and tone command which reflect the energy of the global speech and the energy of local syllable. Results: In the experiments, each speaking style includes 200 samples of one sentence with male and female speech. Therefore our speech database contains 1200 utterances in total. The results show that most of the proposed parameters can distinguish three kinds of speaking styles explicitly. Conclusion: From the finding, it is a strong evidence to further apply the successful parameters in the speech synthesis systems or

  12. B-Spline Active Contour with Handling of Topology Changes for Fast Video Segmentation

    Frederic Precioso

    2002-06-01

    Full Text Available This paper deals with video segmentation for MPEG-4 and MPEG-7 applications. Region-based active contour is a powerful technique for segmentation. However most of these methods are implemented using level sets. Although level-set methods provide accurate segmentation, they suffer from large computational cost. We propose to use a regular B-spline parametric method to provide a fast and accurate segmentation. Our B-spline interpolation is based on a fixed number of points 2j depending on the level of the desired details. Through this spatial multiresolution approach, the computational cost of the segmentation is reduced. We introduce a length penalty. This results in improving both smoothness and accuracy. Then we show some experiments on real-video sequences.

  13. Boosting Active Contours for Weld Pool Visual Tracking in Automatic Arc Welding

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor;

    2015-01-01

    Detecting the shape of the non-rigid molten metal during welding, so-called weld pool visual sensing, is one of the central tasks for automating arc welding processes. It is challenging due to the strong interference of the high-intensity arc light and spatters as well as the lack of robust...... approaches to detect and represent the shape of the nonrigid weld pool. We propose a solution using active contours including an prior for the weld pool boundary composition. Also, we apply Adaboost to select a small set of features that captures the relevant information. The proposed method is applied to...... weld pool tracking and the presented results verified its feasibility....

  14. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu [Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Reamer, Courtney B.; Mohler, Emile R. [Department of Medicine, Division of Cardiovascular Medicine, Section of Vascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  15. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging

  16. Spectral embedding based active contour (SEAC): application to breast lesion segmentation on DCE-MRI

    Agner, Shannon C.; Xu, Jun; Rosen, Mark; Karthigeyan, Sudha; Englander, Sarah; Madabhushi, Anant

    2011-03-01

    Spectral embedding (SE), a graph-based manifold learning method, has previously been shown to be useful in high dimensional data classification. In this work, we present a novel SE based active contour (SEAC) segmentation scheme and demonstrate its applications in lesion segmentation on breast dynamic contrast enhance magnetic resonance imaging (DCE-MRI). In this work, we employ SE on DCE-MRI on a per voxel basis to embed the high dimensional time series intensity vector into a reduced dimensional space, where the reduced embedding space is characterized by the principal eigenvectors. The orthogonal eigenvector-based data representation allows for computation of strong tensor gradients in the spectrally embedded space and also yields improved region statistics that serve as optimal stopping criteria for SEAC. We demonstrate both analytically and empirically that the tensor gradients in the spectrally embedded space are stronger than the corresponding gradients in the original grayscale intensity space. On a total of 50 breast DCE-MRI studies, SEAC yielded a mean absolute difference (MAD) of 3.2+/-2.1 pixels and mean Dice similarity coefficient (DSC) of 0.74+/-0.13 compared to manual ground truth segmentation. An active contour in conjunction with fuzzy c-means (FCM+AC), a commonly used segmentation method for breast DCE-MRI, produced a corresponding MAD of 7.2+/-7.4 pixels and mean DSC of 0.58+/-0.32. In conjunction with a set of 6 quantitative morphological features automatically extracted from the SEAC derived lesion boundary, a support vector machine (SVM) classifier yielded an area under the curve (AUC) of 0.73, for discriminating between 10 benign and 30 malignant lesions; the corresponding SVM classifier with the FCM+AC derived morphological features yielded an AUC of 0.65.

  17. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  18. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua, E-mail: huli@radonc.wustl.edu [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  19. Integrating multiscale polar active contours and region growing for microcalcifications segmentation in mammography

    Morphology of individual microcalcifications is an important clinical factor in microcalcification clusters diagnosis. Accurate segmentation remains a difficult task due to microcalcifications small size, low contrast, fuzzy nature and low distinguishability from surrounding tissue. A novel application of active rays (polar transformed active contours) on B-spline wavelet representation is employed, to provide initial estimates of microcalcification boundary. Then, a region growing method is used with pixel aggregation constrained by the microcalcification boundary estimates, to obtain the final microcalcification boundary. The method was tested on dataset of 49 microcalcification clusters (30 benign, 19 malignant), originating from the DDSM database. An observer study was conducted to evaluate segmentation accuracy of the proposed method, on a 5-point rating scale (from 5:excellent to 1:very poor). The average accuracy rating was 3.98±0.81 when multiscale active rays were combined to region growing and 2.93±0.92 when combined to linear polynomial fitting, while the difference in rating of segmentation accuracy was statistically significant (p < 0.05).

  20. Hand Gesture Contour Tracking Based on Skin Color Probability and State Estimation Model

    Qiu-yu Zhang

    2009-12-01

    Full Text Available Considering the deficiency of accurate hand gesture contour inaccessible and inefficiency in complex dynamic background in existing methods of hand gesture tracking, a two dimensional skin color probability forecast method is proposed. Based on this, a hand gesture segmentation method of multi-mode and a hand gesture tracking method of state estimation are extended. When hand gesture is segmented, to locate the accurate hand gesture position, this paper combines the Skin Color Probability distribution with the statistical motion information of image blocking. Then the hand region is initiated by the region growth method and the hand gesture segmentation is realized. When hand gesture is tracked, the pixel’s state model is built to estimate the state of pixels after watershed computation. Then the current blocking frame is adaptive threshold segmented and the hand gesture tracking is realized. Experiments show that this method has a strong anti-noise ability in complex background. In addition, it has a better application effect in segment and tracking the hand gesture contour accurately in a real-time way.

  1. Model Predictive Approach to Precision Contouring Control for Feed Drive Systems

    A. E. M.; N. Uchyiama,

    2010-01-01

    Problem statement: High precision machining requires high capability of multi-axis feed drive systems to follow specified contour accurately. Although each feed drive axis is controlled independently in many industrial applications such as X-Y tables and Computer Numerical Control (CNC) machines, machining precision is evaluated by error components orthogonal to desired contour curve. Contouring controller design is required for precision machining, which should consider disturbance and dynam...

  2. Automatic bootstrapping and tracking of object contours.

    Chiverton, John; Xie, Xianghua; Mirmehdi, Majid

    2012-03-01

    A new fully automatic object tracking and segmentation framework is proposed. The framework consists of a motion-based bootstrapping algorithm concurrent to a shape-based active contour. The shape-based active contour uses finite shape memory that is automatically and continuously built from both the bootstrap process and the active-contour object tracker. A scheme is proposed to ensure that the finite shape memory is continuously updated but forgets unnecessary information. Two new ways of automatically extracting shape information from image data given a region of interest are also proposed. Results demonstrate that the bootstrapping stage provides important motion and shape information to the object tracker. This information is found to be essential for good (fully automatic) initialization of the active contour. Further results also demonstrate convergence properties of the content of the finite shape memory and similar object tracking performance in comparison with an object tracker with unlimited shape memory. Tests with an active contour using a fixed-shape prior also demonstrate superior performance for the proposed bootstrapped finite-shape-memory framework and similar performance when compared with a recently proposed active contour that uses an alternative online learning model. PMID:21908256

  3. Assessment of carotid diameter and wall thickness in ultrasound images using active contours improved by a multiresolution technique

    Gutierrez, Marco A.; Pilon, Paulo E.; Lage, Silvia G.; Kopel, Liliane; Carvalho, Ricardo T.; Furuie, Sergio S.

    2002-04-01

    Carotid vessel ultrasound imaging is a reliable non-invasive technique to measure the arterial morphology. Vessel diameter, intima-media thickness (IMT) of the far wall and plaque presence can be reliably determined using B-mode ultrasound. In this paper we describe a semi-automatic approach to measure artery diameter and IMT based on an active contour technique improved by a multiresolution analysis. The operator selects a region-of-interest (ROI) in a series of carotid images obtained from B-mode ultrasound. This set of images is convolved with the corresponding partial derivatives of the Gaussian filter. The filter response is used to compute a 2D gradient magnitude image in order to refine the vessel's boundaries. Using an active contour technique the vessel's border is determined automatically. The near wall media-adventitia (NWMA), far wall media-adventitia (FWMA) and far wall lumen-intima (FWLI) borders are obtained by a least-square fitting of the active contours result. The distance between NWMA and FWLI (vessel diameter) and between FWLI and FWMA (far wall intima-media thickness) are obtained for all images and the mean value is computed during systole and diastole. The proposed method is a reliable and reproducible way of assessing the vessel diameter and far wall intima-media thickness of the carotid artery.

  4. On ground states and Gibbs measures of Ising type models on a Cayley tree: A contour argument

    We consider the Ising model with competing J1 and J3 interactions with spin values ±1, on a Cayley tree of order 2 (with 3 neighbors). We study the structure of the ground states and verify the Peierls condition for the model. Our second result gives a description of Gibbs measures for ferromagnetic Ising model with J1 2 = 0, using a contour argument which we also develop in the paper. (author)

  5. Feed-forward active contour analysis for improved brachial artery reactivity testing.

    Pugliese, Daniel N; Sehgal, Chandra M; Sultan, Laith R; Reamer, Courtney B; Mohler, Emile R

    2016-08-01

    The object of this study was to utilize a novel feed-forward active contour (FFAC) algorithm to find a reproducible technique for analysis of brachial artery reactivity. Flow-mediated dilation (FMD) is an important marker of vascular endothelial function but has not been adopted for widespread clinical use given its technical limitations, including inter-observer variability and differences in technique across clinical sites. We developed a novel FFAC algorithm with the goal of validating a more reliable standard. Forty-six healthy volunteers underwent FMD measurement according to the standard technique. Ultrasound videos lasting 5-10 seconds each were obtained pre-cuff inflation and at minutes 1 through 5 post-cuff deflation in longitudinal and transverse views. Automated segmentation using the FFAC algorithm with initial boundary definition from three different observers was used to analyze the images to measure diameter/cross-sectional area over the cardiac cycle. The %FMD was calculated for average, minimum, and maximum diameters/areas. Using the FFAC algorithm, the population-specific coefficient of variation (CV) at end-diastole was 3.24% for transverse compared to 9.96% for longitudinal measurements; the subject-specific CV was 15.03% compared to 57.41%, respectively. For longitudinal measurements made via the conventional method, the population-specific CV was 4.77% and subject-specific CV was 117.79%. The intraclass correlation coefficient (ICC) for transverse measurements was 0.97 (95% CI: 0.95-0.98) compared to 0.90 (95% CI: 0.84-0.94) for longitudinal measurements with FFAC and 0.72 (95% CI: 0.51-0.84) for conventional measurements. In conclusion, transverse views using the novel FFAC method provide less inter-observer variability than traditional longitudinal views. Improved reproducibility may allow adoption of FMD testing in a clinical setting. The FFAC algorithm is a robust technique that should be evaluated further for its ability to replace the

  6. 基于Snake算法的气道内超声序列图像的边界提取%Edge Extraction of EBUS Sequential Images Based on Active Contour Model

    郝立巍; 程远雄; 汪天富; 陈思平

    2012-01-01

    Objective:An endobronchial ultrasound is a procedure to provide further information to diagnose or determine the stage of a lung tumor and allow doctors to view regions of your lungs that have traditionally required more invasive surgical procedures to evaluate. In this paper, a new Snake model is proposed to extract edges in Endobronchial Ultrasound (EBUS). Methods:As a dimensionless quantity, local phase is invariant to changes in image brightness and contrast. In the proposed method, local phase is introduced into Snake model as image energy component. Results:Empirical evaluations of the performance of our algorithm relative to other edge extraction method are presented. Experiment results shows that our method presents comparable performances compared to the methods. Conclusions: The proposed Snake method can effectively extract edges in EBUS sequential images.%目的:气道内超声能为肺部肿瘤提供更多的诊断信息,能让医生以对病人伤害很小的方式检视患者肺部,而无需采用传统的有创手术方式.本文提出了一种能用于气道内超声边界提取的新的Snake算法模型.方法:作为非方向性指标,局部相位具有图像的亮度及对比度无关性.本文拟在Snake模型中引入局部相位,以设计其新的图像能量公式.结果:本文所提出的算法与现有的超声边界提取算法进行了提取结果对比.实验结果表明本文所提出的算法优于现有的算法.结论:本文所提出的新算法能有效地对气道内超声图像提取边界.

  7. Crack modelling and detection in Timoshenko FGM beam under transverse vibration using frequency contour and response surface model with GA

    Banerjee, Amit; Panigrahi, Brajesh; Pohit, G.

    2016-04-01

    In the present work, dynamic response of cracked Timoshenko beam with functionally graded material properties are obtained by a numerical technique using Ritz approximation. In order to verify the applicability and performance of the formulation, comparisons of the present numerical method with three-dimensional FEM models are made. Crack is assumed to be transverse and open throughout the vibration cycle. Two different crack detection techniques have been proposed. Results obtained by the numerical technique are used in both of the crack detection techniques. In the first technique, the frequency contours with respect to crack location and size are plotted and the intersection of contours of different modes helps in the prediction of crack location and size. In the second technique, crack is modelled using response surface methodology (RSM). The sum of the squared errors between the numerical and RSM regression model natural frequencies is used as the objective function. This objective function is minimised using genetic algorithm optimisation technique. Both the crack detection techniques and the numerical analysis have shown good agreement with each other.

  8. Contour Completion Without Region Segmentation.

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2016-08-01

    Contour completion plays an important role in visual perception, where the goal is to group fragmented low-level edge elements into perceptually coherent and salient contours. Most existing methods for contour completion have focused on pixelwise detection accuracy. In contrast, fewer methods have addressed the global contour closure effect, despite psychological evidences for its importance. This paper proposes a purely contour-based higher order CRF model to achieve contour closure, through local connectedness approximation. This leads to a simplified problem structure, where our higher order inference problem can be transformed into an integer linear program and be solved efficiently. Compared with the methods based on the same bottom-up edge detector, our method achieves a superior contour grouping ability (measured by Rand index), a comparable precision-recall performance, and more visually pleasing results. Our results suggest that contour closure can be effectively achieved in contour domain, in contrast to a popular view that segmentation is essential for this purpose. PMID:27168599

  9. IDENTIFICATION OF TYPES AND MODELS OF AIRCRAFT USING ASC-ANALYSIS OF THEIR SILHOUETTES (CONTOURS (GENERALIZATION, ABSTRACTION, CLASSIFICATION AND IDENTIFICATION

    Lutsenko Y. V.

    2015-12-01

    Full Text Available The article discusses the application of automated system-cognitive analysis (ASC-analysis, its mathematical model which is system theory of information and its software tool, which is intellectual system called "Eidos" for solving problems related to identification of types and models of aircraft by their silhouettes on the ground, to be more precise, their external contours: 1 digitization of scanned images of aircraft and creation of their mathematical models; 2 formation of mathematical models of specific aircraft with the use of the information theory; 3 modeling of the generalized images of various aircraft types and models and their graphic visualization; 4 comparing an image of a particular plane with generalized images of various aircraft types and models, and quantifying the degree of similarities and differences between them, i.e., the identification of the type and model of airplane by its silhouette (contour on the ground; 5 quantification of the similarities and differences of the generalized images of the planes with each other, i.e., clusterconstructive analysis of generalized images of various aircraft types and models. The article gives a new approach to digitizing images of aircraft, based on the use of the polar coordinate system, the center of gravity of the image and its external contour. Before digitizing images, we may use their transformation, standardizing the position of the images, their sizes (resolution, distance and the angle of rotation (angle in three dimensions. Therefore, the results of digitization and ASC-analysis of the images can be invariant (independent relative to their position, dimensions and turns. The shape of the contour of a particular aircraft is considered as a noise information on the type and model of aircraft, including information about the true shape of the aircraft type and its model (clean signal and noise, which distort the real shape, due to noise influences, both of the means of

  10. Simplifying Massive Contour Maps

    Arge, Lars; Deleuran, Lasse Kosetski; Mølhave, Thomas; Revsbæk, Morten; Truelsen, Jakob

    2012-01-01

    We present a simple, efficient and practical algorithm for constructing and subsequently simplifying contour maps from massive high-resolution DEMs, under some practically realistic assumptions on the DEM and contours.......We present a simple, efficient and practical algorithm for constructing and subsequently simplifying contour maps from massive high-resolution DEMs, under some practically realistic assumptions on the DEM and contours....

  11. DETECTION OF PROTOZOA IN WASTEWATER USING ANN AND ACTIVE CONTOUR IN IMAGE PROCESSING

    Boztoprak, Halime; Özbay, Yüksel

    2013-01-01

    A new method is proposed to detect the location of protozoa using edge extractor and Artificial Neural Networks (ANN). In this method, pre-processing is applied to the activated sludge images. ANN is classified with seven parameters that contain general features of protozoa. The features are obtained from properties of each region after applying edge extractor. Morphological operations are applied to obtain protozoa as a whole. A system has been developed to decide the regions of protozoa usi...

  12. Ultrasound-Specific Segmentation via Decorrelation and Statistical Region-Based Active Contours

    Slabaugh, G. G.; Unal, G.B.; Tong Fang, .; Wels, M.

    2006-01-01

    Segmentation of ultrasound images is often a very challenging task due to speckle noise that contaminates the image. It is well known that speckle noise exhibits an asymmetric distribution as well as significant spatial correlation. Since these attributes can be difficult to model, many previous ultrasound segmentation methods oversimplify the problem by assuming that the noise is white and/or Gaussian, resulting in generic approaches that are actually more suitable to MR and X-ray segmentati...

  13. Myocardial Iron Loading Assessment by Automatic Left Ventricle Segmentation with Morphological Operations and Geodesic Active Contour on T2* images

    Luo, Yun-Gang; Ko, Jacky Kl; Shi, Lin; Guan, Yuefeng; Li, Linong; Qin, Jing; Heng, Pheng-Ann; Chu, Winnie Cw; Wang, Defeng

    2015-07-01

    Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm to segment aligned free induction decay sequential myocardium images based on morphological operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited (10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with a robust initialization. Segmented myocardium regions were divided into sectors for a region-based quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major patients. The proposed method benefited from abundant edge information of the free induction decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in myocardium segmentation and was clinically applicable to measure myocardium iron loading.

  14. Embedded Real-Time Architecture for Level-Set-Based Active Contours

    Dejnožková Eva

    2005-01-01

    Full Text Available Methods described by partial differential equations have gained a considerable interest because of undoubtful advantages such as an easy mathematical description of the underlying physics phenomena, subpixel precision, isotropy, or direct extension to higher dimensions. Though their implementation within the level set framework offers other interesting advantages, their vast industrial deployment on embedded systems is slowed down by their considerable computational effort. This paper exploits the high parallelization potential of the operators from the level set framework and proposes a scalable, asynchronous, multiprocessor platform suitable for system-on-chip solutions. We concentrate on obtaining real-time execution capabilities. The performance is evaluated on a continuous watershed and an object-tracking application based on a simple gradient-based attraction force driving the active countour. The proposed architecture can be realized on commercially available FPGAs. It is built around general-purpose processor cores, and can run code developed with usual tools.

  15. High Resolution Elevation Contours

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  16. Tagged Vector Contour (TVC)

    Kansas Data Access and Support Center — The Kansas Tagged Vector Contour (TVC) dataset consists of digitized contours from the 7.5 minute topographic quadrangle maps. Coverage for the state is incomplete....

  17. Ocean Sediment Thickness Contours

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  18. CONTOUR 7 Preview catalog

    Gelder, Hilde Van

    2015-01-01

    This is an online publication on the website of CONTOUR 7, including both the English and the Dutch versions of my catalog essay entitled Lessons from Moria / Lessen uit Moria. The weblink is: http://contour7.be/files/uploads/page/CONTOUR7_PREVIEW_FOOLING_UTOPIA_CATALOG.pdf.

  19. Human Lips-Contour Recognition and Tracing

    Md. Hasan Tareque

    2014-01-01

    Full Text Available Human-lip detection is an important criterion for many automated modern system in present day. Like computerized speech reading, face recognition etc. system can work more precisely if human-lip can detect accurately. There are many processes for detecting human-lip. In this paper an approach is developed so that the region of a human-lip can be detected, we called it lip contour. For this a region-based Active Contour Model (ACM is introduced with watershed segmentation. In this model we used global energy terms instead of local energy terms because, global energy gives better convergence rate for malicious environment. At the time of ACM initialization by using H8 based on Lyapunov stability theory, the system gives more accurate and stable result.

  20. Mathematical modelling deflected mode of flexible shells anchored along the contour

    V. N. Filatov

    2011-05-01

    Full Text Available Thin walled cold-formed steel structures became popular solution for low-rise buildings, mansards, walling of multistorey buildings. The modeling of perforated thin-walled cold-formed profile is rather difficult, especially for profiles with irregular shape apertures used in racking systems.The main aim of this work is creating the methods of finite element modeling such profiles.The result of work is a method of construction of profile with given section, aperture formation and construction of final calculation model. The software package SCAD Soft was used for modeling.

  1. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms

    Purpose: Computerized liver extraction from hepatic CT images is challenging because the liver often abuts other organs of a similar density. The purpose of this study was to develop a computer-aided measurement of liver volumes in hepatic CT. Methods: The authors developed a computerized liver extraction scheme based on geodesic active contour segmentation coupled with level-set contour evolution. First, an anisotropic diffusion filter was applied to portal-venous-phase CT images for noise reduction while preserving the liver structure, followed by a scale-specific gradient magnitude filter to enhance the liver boundaries. Then, a nonlinear grayscale converter enhanced the contrast of the liver parenchyma. By using the liver-parenchyma-enhanced image as a speed function, a fast-marching level-set algorithm generated an initial contour that roughly estimated the liver shape. A geodesic active contour segmentation algorithm coupled with level-set contour evolution refined the initial contour to define the liver boundaries more precisely. The liver volume was then calculated using these refined boundaries. Hepatic CT scans of 15 prospective liver donors were obtained under a liver transplant protocol with a multidetector CT system. The liver volumes extracted by the computerized scheme were compared to those traced manually by a radiologist, used as ''gold standard.''Results: The mean liver volume obtained with our scheme was 1504 cc, whereas the mean gold standard manual volume was 1457 cc, resulting in a mean absolute difference of 105 cc (7.2%). The computer-estimated liver volumetrics agreed excellently with the gold-standard manual volumetrics (intraclass correlation coefficient was 0.95) with no statistically significant difference (F=0.77; p(F≤f)=0.32). The average accuracy, sensitivity, specificity, and percent volume error were 98.4%, 91.1%, 99.1%, and 7.2%, respectively. Computerized CT liver volumetry would require substantially less completion time

  2. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms

    Suzuki, Kenji; Kohlbrenner, Ryan; Epstein, Mark L.; Obajuluwa, Ademola M.; Xu Jianwu; Hori, Masatoshi [Department of Radiology, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637 (United States)

    2010-05-15

    Purpose: Computerized liver extraction from hepatic CT images is challenging because the liver often abuts other organs of a similar density. The purpose of this study was to develop a computer-aided measurement of liver volumes in hepatic CT. Methods: The authors developed a computerized liver extraction scheme based on geodesic active contour segmentation coupled with level-set contour evolution. First, an anisotropic diffusion filter was applied to portal-venous-phase CT images for noise reduction while preserving the liver structure, followed by a scale-specific gradient magnitude filter to enhance the liver boundaries. Then, a nonlinear grayscale converter enhanced the contrast of the liver parenchyma. By using the liver-parenchyma-enhanced image as a speed function, a fast-marching level-set algorithm generated an initial contour that roughly estimated the liver shape. A geodesic active contour segmentation algorithm coupled with level-set contour evolution refined the initial contour to define the liver boundaries more precisely. The liver volume was then calculated using these refined boundaries. Hepatic CT scans of 15 prospective liver donors were obtained under a liver transplant protocol with a multidetector CT system. The liver volumes extracted by the computerized scheme were compared to those traced manually by a radiologist, used as ''gold standard.''Results: The mean liver volume obtained with our scheme was 1504 cc, whereas the mean gold standard manual volume was 1457 cc, resulting in a mean absolute difference of 105 cc (7.2%). The computer-estimated liver volumetrics agreed excellently with the gold-standard manual volumetrics (intraclass correlation coefficient was 0.95) with no statistically significant difference (F=0.77; p(F{<=}f)=0.32). The average accuracy, sensitivity, specificity, and percent volume error were 98.4%, 91.1%, 99.1%, and 7.2%, respectively. Computerized CT liver volumetry would require substantially less

  3. A Method for Extracting Suspected Parotid Lesions in CT Images using Feature-based Segmentation and Active Contours based on Stationary Wavelet Transform

    Wu, T. Y.; Lin, S. F.

    2013-10-01

    Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.

  4. Conveying Cappadocia. A new representation model for rock-cave architecture by contour lines and chromatic codes

    Fabio Colonnese

    2016-05-01

    Full Text Available Architectural heritage preservation is based on an in-depth, multi-layered and interdisciplinary knowledge of the cultural heritage sites, especially when they are a combination between natural and artificial, such as rupestrian (cave architecture often is. Survey and representation of rock-cut architecture is one of the most problematic issues for a number of problems concerning the geometrical complexity of the interior and exterior enveloping surfaces. Laserscanner is an appropriate tool concerning the registration of geometric and spatial properties of artificial caves in continuity with the external topography, but automatic representations are often unable to convey their hidden geometric and spatial relationships. In the context of a work methodology customized on the rupestrian habitat of Cappadocia (Turkey, the authors developed an original envisioning model in which an associate use of contour lines and chromatic codes transforms traditional orthogonal projections after the numeric model into drawings able to offer a synthesis and transmit the complex forms and relationships of rupestrian settlements.

  5. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  6. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow...

  7. The velocity snake: Deformable contour for tracking in spatio-velocity space

    Peterfreund, N.

    1997-06-01

    The author presents a new active contour model for boundary tracking and position prediction of nonrigid objects, which results from applying a velocity control to the class of elastodynamical contour models, known as snakes. The proposed control term minimizes an energy dissipation function which measures the difference between the contour velocity and the apparent velocity of the image. Treating the image video-sequence as continuous measurements along time, it is shown that the proposed control results in an unbiased tracking. This is in contrast to the original snake model which is proven to be biased due to the image (object) velocity, thus resulting in high sensitivity to image clutter. The motion estimation further allows for position prediction of nonrigid boundaries. Based on the proposed control approach, the author proposes a new class of real time tracking contours, varying from models with batch-mode control estimation to models with real time adaptive controllers.

  8. Radiation situation in zones of production activities of construction east and west walls enclosing contour new safe confinement and forecast of its changes in progress

    The main results of pre-project studies the radiation situation in the areas of works on the construction of the eastern and western walls enclosing contour NSC. Calculated predicted values of indicators of possible change of the radiation situation in the course of projected construction works. Predicted values were calculated taking into account the dynamics of the various factors determining them by means of mathematical modeling and expert analysis method. The information obtained is used in the design of appropriate measures for the radiation protection personnel builders and optimize their potential radiation dose

  9. Simulated potentiometric surface contours of prepumping conditions in layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 1 of the Death Valley regional ground-water flow...

  10. Simulated potentiometric surface contours of prepumping conditions in layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 16 of the Death Valley regional ground-water flow...

  11. Reconstruction of surfaces from planar contours through contour interpolation

    Sunderland, Kyle; Woo, Boyeong; Pinter, Csaba; Fichtinger, Gabor

    2015-03-01

    Segmented structures such as targets or organs at risk are typically stored as 2D contours contained on evenly spaced cross sectional images (slices). Contour interpolation algorithms are implemented in radiation oncology treatment planning software to turn 2D contours into a 3D surface, however the results differ between algorithms, causing discrepancies in analysis. Our goal was to create an accurate and consistent contour interpolation algorithm that can handle issues such as keyhole contours, rapid changes, and branching. This was primarily motivated by radiation therapy research using the open source SlicerRT extension for the 3D Slicer platform. The implemented algorithm triangulates the mesh by minimizing the length of edges spanning the contours with dynamic programming. The first step in the algorithm is removing keyholes from contours. Correspondence is then found between contour layers and branching patterns are determined. The final step is triangulating the contours and sealing the external contours. The algorithm was tested on contours segmented on computed tomography (CT) images. Some cases such as inner contours, rapid changes in contour size, and branching were handled well by the algorithm when encountered individually. There were some special cases in which the simultaneous occurrence of several of these problems in the same location could cause the algorithm to produce suboptimal mesh. An open source contour interpolation algorithm was implemented in SlicerRT for reconstructing surfaces from planar contours. The implemented algorithm was able to generate qualitatively good 3D mesh from the set of 2D contours for most tested structures.

  12. Open Contours Extraction of Rotational Surface Oriented to Layer Measurement

    亓利伟; 赵毅; 李明辉

    2003-01-01

    With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.

  13. The Application of Lateral Inhibition Model in Image's Contour Enhancement and Design of Its Electro-Model

    Hongwei Fu

    2009-12-01

    Full Text Available For overcoming the problems such as distortion and shift of object’s edge, easily losing the object detail information of methods in image edge detection, and satisfying higher demand for object detection in the modern war, a new image edge detection method was designed. LOG edge detection as a typical image processing method was introduced and the disadvantage of this model was analyzed firstly. Based on lateral inhibition theory, an acyclic lateral inhibition network model (ALINM based on biology vision information processing mechanism was designed. The feasibility of object detection by lateral inhibition model was analyzed, in order to express the advantage such as rapid calculation easily real time operation of ALINM, the calculation magnitude of circulation difference lateral inhibition model was analyzed. Besides the correctness of ALINM was confirmed with two input cells, its transfer function was deduced. An algorithm of image edge detection based on this model was established finally, lateral inhibition effect also was confirmed by one-dimension and two-dimension circuit model based ALINM. Simulative experiment with different parameters and physics experiment prove that acyclic lateral inhibition network model can be realized easily, it can preserve the farthest detail information of object and has faster calculation speed than LOG operator. ALINM and lateral inhibition theory provide a useful method based on biology vision for object detection under difficult imaging conditions.

  14. Contour Estimation by Array Processing Methods

    Bourennane Salah; Marot Julien

    2006-01-01

    This work is devoted to the estimation of rectilinear and distorted contours in images by high-resolution methods. In the case of rectilinear contours, it has been shown that it is possible to transpose this image processing problem to an array processing problem. The existing straight line characterization method called subspace-based line detection (SLIDE) leads to models with orientations and offsets of straight lines as the desired parameters. Firstly, a high-resolution method of array p...

  15. Intonation contour in synchronous speech

    Wang, Bei; Cummins, Fred

    2003-10-01

    Synchronous Speech (Syn-S), obtained by having pairs of speakers read a prepared text together, has been shown to result in interesting properties in the temporal domain, especially in the reduction of inter-speaker variability in supersegmental timing [F. Cummins, ARLO 3, 7-11 (2002)]. Here we investigate the effect of synchronization among speakers on the intonation contour, with a view to informing models of intonation. Six pairs of speakers (all females) read a short text (176 words) both synchronously and solo. Results show that (1) the pitch accent height above a declining baseline is reduced in Syn-S, compared with solo speech, while the pitch accent location is consistent across speakers in both conditions; (2) in contrast to previous findings on duration matching, there is an asymmetry between speakers, with one speaker exerting a stronger influence on the observed intonation contour than the other; (3) agreement on the boundaries of intonational phrases is greater in Syn-S and intonation contours are well matched from the first syllable of the phrase and throughout.

  16. Contours, 2006 Contour Lines, Published in 2006, Johnson County, Iowa.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset as of 2006. It is described as '2006 Contour Lines'. Data by this publisher are often provided in State Plane coordinate system; in a Lambert...

  17. Bathymetric Contours - Gulf of Mexico

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of a vector coverage of bathymetric contours with increasing resolution in coastal areas. Contours were derived from gridded National Ocean...

  18. Visualization of Uncertain Contour Trees

    Kraus, Martin

    2010-01-01

    Contour trees can represent the topology of large volume data sets in a relatively compact, discrete data structure. However, the resulting trees often contain many thousands of nodes; thus, many graph drawing techniques fail to produce satisfactory results. Therefore, several visualization methods...... were proposed recently for the visualization of contour trees. Unfortunately, none of these techniques is able to handle uncertain contour trees although any uncertainty of the volume data inevitably results in partially uncertain contour trees. In this work, we visualize uncertain contour trees by...... combining the contour trees of two morphologically filtered versions of a volume data set, which represent the range of uncertainty. These two contour trees are combined and visualized within a single image such that a range of potential contour trees is represented by the resulting visualization. Thus...

  19. SU-E-J-93: Development of Pre-Contoured Human Model Library in DICOM-RT Format for the Epidemiological Study of the Radiotherapy Patients

    Pyakuryal, A; Lee, C [National Cancer Institute, Rockville, MD (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States); Pelletier, C [East Carolina University, Greenville, NC (United States); Jung, J [East Carolina Univ, Greenville, NC (United States)

    2015-06-15

    Purpose: Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D beams-eye-view from the conventional simulator. To analyze the outcomes of such treatments for radiation late effects, 3D computational human models are often used in commercial treatment planning systems (TPSs). However, several underlying difficulties such as time-consuming manual delineation procedures of a large number of structures in the model have always limited its applications. Primary objective of this work was to develop a human model library for the epidemiological study by converting 3D-surface model organs to DICOM-RT format (DICOM-RT structure) using an in-house built software. We converted the ICRP reference human models to DICOM-RT models, which can be readily adopted for various dose calculations. Methods: MATLAB based code were utilized to convert the contour drawings extracted in text-format from the 3D graphic-tool, Rhinoceros into DICOM-RT structure format for 50 different organs of each model using a 16GB dual-core processor. The conversion periods were measured for each DICOM-RT models, and the reconstructed structure volumes were validated against the original 3D-surface models in the TPS. Ten reference hybrid whole-body models (8-pediatric and 2-adults) were automatically processed to create DICOM-RT computational human model library. Results: Mean contour conversion period was found to be 580 (N=2) and 394.5 (N=8) seconds for 50 organs in the adult and pediatric models respectively. A good agreement for large organs (NRMSD <1.0%) and small organs (NRMSD <7.7%) was also observed between the original volumes and corresponding DICOM-RT structure volumes of the organs. Conclusion: The ICRP reference human models were converted into DICOM-RT format to support the epidemiological study using a large cohort of conventional radiotherapy patients. Due to its DICOM-compatibility, the library may be implemented to many other different

  20. SU-E-J-93: Development of Pre-Contoured Human Model Library in DICOM-RT Format for the Epidemiological Study of the Radiotherapy Patients

    Purpose: Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D beams-eye-view from the conventional simulator. To analyze the outcomes of such treatments for radiation late effects, 3D computational human models are often used in commercial treatment planning systems (TPSs). However, several underlying difficulties such as time-consuming manual delineation procedures of a large number of structures in the model have always limited its applications. Primary objective of this work was to develop a human model library for the epidemiological study by converting 3D-surface model organs to DICOM-RT format (DICOM-RT structure) using an in-house built software. We converted the ICRP reference human models to DICOM-RT models, which can be readily adopted for various dose calculations. Methods: MATLAB based code were utilized to convert the contour drawings extracted in text-format from the 3D graphic-tool, Rhinoceros into DICOM-RT structure format for 50 different organs of each model using a 16GB dual-core processor. The conversion periods were measured for each DICOM-RT models, and the reconstructed structure volumes were validated against the original 3D-surface models in the TPS. Ten reference hybrid whole-body models (8-pediatric and 2-adults) were automatically processed to create DICOM-RT computational human model library. Results: Mean contour conversion period was found to be 580 (N=2) and 394.5 (N=8) seconds for 50 organs in the adult and pediatric models respectively. A good agreement for large organs (NRMSD <1.0%) and small organs (NRMSD <7.7%) was also observed between the original volumes and corresponding DICOM-RT structure volumes of the organs. Conclusion: The ICRP reference human models were converted into DICOM-RT format to support the epidemiological study using a large cohort of conventional radiotherapy patients. Due to its DICOM-compatibility, the library may be implemented to many other different

  1. 视频图像活动轮廓目标检测跟踪研究%Improved Active Contour Algorithm for Target Tracking and Positioning

    胡继强

    2012-01-01

    Study the problem of target tracking and positioning accuracy. The traditional algorithms are difficult to effectively meet the target, which usually occur in the image scaling, rotation and shearing, etc. The paper proposed a target tracking method based on active contour orientation detection algorithm. In this method, we selected the ap propriate sliding window, used inter-frame difference to determine the video object motion regions, and used morpho logical filter to eliminate residual noise. Then, according to the features that target in activity profile has a high gray value, an adaptive threshold was used to determine the center of the sliding window target. When the sliding window traverse through the whole image, we can get the target location results. The simulation results show that the improved algorithm can not only eliminate the revealed background in difference image to obtain precise contours of moving vid eo objects, but also carried out multi-target segmenting and tracking, and is of some practical value.%研究视频图像目标跟踪定位精确度问题.由于在图像中通常会发生缩放,造成图像目标模糊不清.传统的目标跟踪算法该类算法仅以目标发生平移运动为假设前提,图像质量差.为解决上述问题,提出了一种活动轮廓目标跟踪定位检测算法.首先选择合适的滑窗,采用减背景法来确定视频对象的运动区域,采用卡尔曼形态滤波来消除残余的噪声,然后针对目标在活动轮廓局部内具有较高灰度值的特征,通过自适应阈值来判别滑窗中心位置是否存在目标.当滑窗遍历整幅图像后,就可以得到目标的定位结果.仿真结果表明,改进算法不仅能够消除差分图像中的显露背景,从而得到运动视频对象精确的轮廓,并且可进行多目标的分割与跟踪,具有一定的实际应用价值.

  2. Segmentation of the common carotid artery walls based on a frequency implementation of active contours: segmentation of the common carotid artery walls.

    Bastida-Jumilla, M Consuelo; Menchón-Lara, Rosa M; Morales-Sánchez, Juan; Verdú-Monedero, Rafael; Larrey-Ruiz, Jorge; Sancho-Gómez, José Luis

    2013-02-01

    Atherosclerosis is one of the most extended cardiovascular diseases nowadays. Although it may be unnoticed during years, it also may suddenly trigger severe illnesses such as stroke, embolisms or ischemia. Therefore, an early detection of atherosclerosis can prevent adult population from suffering more serious pathologies. The intima-media thickness (IMT) of the common carotid artery (CCA) has been used as an early and reliable indicator of atherosclerosis for years. The IMT is manually computed from ultrasound images, a process that can be repeated as many times as necessary (over different ultrasound images of the same patient), but also prone to errors. With the aim to reduce the inter-observer variability and the subjectivity of the measurement, a fully automatic computer-based method based on ultrasound image processing and a frequency-domain implementation of active contours is proposed. The images used in this work were obtained with the same ultrasound scanner (Philips iU22 Ultrasound System) but with different spatial resolutions. The proposed solution does not extract only the IMT but also the CCA diameter, which is not as relevant as the IMT to predict future atherosclerosis evolution but it is a statistically interesting piece of information for the doctors to determine the cardiovascular risk. The results of the proposed method have been validated by doctors, and these results are visually and numerically satisfactory when considering the medical measurements as ground truth, with a maximum deviation of only 3.4 pixels (0.0248 mm) for IMT. PMID:22552539

  3. Connection Skeleton Extraction Based on Contour Connectedness

    CHEN Mang; LIU Yun-cai

    2008-01-01

    A stable skeleton is very important to some applications such as vehicle navigation, object represent and pattern recognition. The connection skeleton is just one that not only can be computed stably but also can figure the connectivity structure of contour. A new method named continuous connectivity detection and a new model named approximate regular polygon (ARP) were proposed for connection skeleton extraction. Both the method and the model were tested by the real maps of road network including flyovers, interchanges and other common object contours. Satisfactory results were obtained.

  4. Application of centerline detection and deformable contours algorithms to segmenting the carotid lumen

    Hachaj, Tomasz; Ogiela, Marek R.

    2014-03-01

    The main contribution of this article is to evaluate the utility of different state-of-the-art deformable contour models for segmenting carotid lumen walls from computed tomography angiography images. We have also proposed and tested a new tracking-based lumen segmentation method based on our evaluation results. The deformable contour algorithm (snake) is used to detect the outer wall of the vessel. We have examined four different snakes: with a balloon, distance, and a gradient vector flow force and the method of active contours without edges. The algorithms were evaluated on a set of 32 artery lumens-16 from the common carotid artery (CCA)-the internal carotid artery section and 16 from the CCA-the external carotid artery section-in order to find the optimum deformable contour model for this task. Later, we evaluated different values of energy terms in the method of active contours without edges, which turned out to be the best for our dataset, in order to find the optimal values for this particular segmentation task. The choice of particular weights in the energy term was evaluated statistically. The final Dice's coefficient at the level of 0.939±0.049 puts our algorithm among the best state-of-the-art methods for these solutions.

  5. Active Player Modelling

    Togelius, Julian; Shaker, Noor; Yannakakis, Georgios N.

    2013-01-01

    We argue for the use of active learning methods for player modelling. In active learning, the learning algorithm chooses where to sample the search space so as to optimise learning progress. We hypothesise that player modelling based on active learning could result in vastly more efficient learning, but will require big changes in how data is collected. Some example active player modelling scenarios are described. A particular form of active learning is also equivalent to an influential forma...

  6. From Inpainting to Active Contours

    Lauze, Francois Bernard; Nielsen, Mads

    2008-01-01

    Abstract   Background subtraction is an elementary method for detection of foreground objects and their segmentations. Obviously it requires an observation image as well as a background one. In this work we attempt to remove the last requirement by reconstructing the background from the observation...

  7. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer

  8. Using active contour models for feature extraction in camera-based seam tracking of arc welding

    Liu, Jinchao; Fan, Zhun; Olsen, Søren;

    2009-01-01

    the processes requires the extraction of characteristic parameters of the welding groove close to the molten pool, i.e. in an environment dominated by the very intense light emission from the welding arc. The typical industrial solution today is a laser-scanner containing a camera as well as a laser......In the recent decades much research has been performed in order to allow better control of arc welding processes, but the success has been limited, and the vast majority of the industrial structural welding work is therefore still being made manually. Closed-loop and nearly-closed-loop control of...... source illuminating the groove by a light curtain and thus allowing details of the groove geometry to be extracted by triangulation. This solution is relatively expensive and must act several centimetres ahead of the molten pool. In addition laser-scanners often show problems when dealing with shiny...

  9. Active contour modes Crisp: new technique for segmentation of the lungs in CT images; Modelo de contorno ativo Crisp: nova tecnica de segmentacao dos pulmoes em imagens de TC

    Reboucas Filho, Pedro Pedrosa; Cortez, Paulo Cesar [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Pneumologia

    2011-12-15

    This paper proposes a new active contour model (ACM), called ACM Crisp, and evaluates the segmentation of lungs in computed tomography (CT) images. An ACM draws a curve around or within the object of interest. This curve changes its shape, when some energy acts on it and moves towards the edges of the object. This process is performed by successive iterations of minimization of a given energy, associated with the curve. The ACMs described in the literature have limitations when used for segmentations of CT lung images. The ACM Crisp model overcomes these limitations, since it proposes automatic initiation and new external energy based on rules and radiological pulmonary densities. The paper compares other ACMs with the proposed method, which is shown to be superior. In order to validate the algorithm a medical expert in the field of Pulmonology of the Walter Cantidio University Hospital from the Federal University of Ceara carried out a qualitative analysis. In these analyses 100 CT lung images were used. The segmentation efficiency was evaluated into 5 categories with the following results for the ACM Crisp: 73% excellent, without errors, 20% acceptable, with small errors, and 7% reasonable, with large errors, 0% poor, covering only a small part of the lung, and 0% very bad, making a totally incorrect segmentation. In conclusion the ACM Crisp is considered a useful algorithm to segment CT lung images, and with potential to integrate medical diagnosis systems. (author)

  10. Detection of elliptical contours

    This dissertation describes the quantitation of myocardial perfusion defects in planar thallium-201 scintigrams. To be able to quantify the distribution of 201Tl in the myocardium as imaged by the scintigram, accurate delineation of the target object is a prerequisite. The distribution of the radionuclide within the contour of the left ventricle can be described by application of circumferential profiles. By comparing the computed circumferential profile with those of normal subjects, humans with no evidence of coronary artery disease, segments of the left ventricle with decreased bloodflow can be detected. In practice there is no real standard to compare with, and due to noise and biological variations, it is not always possible to make a definite decision regarding the presence of a defect in the distribution of the radionuclide. The value and limitations of the developed quantification procedure are discussed. Some future developments are suggested. 108 refs.; 57 figs.; 5 tabs

  11. Visualizing Contour Trees within Histograms

    Kraus, Martin

    2010-01-01

    Many of the topological features of the isosurfaces of a scalar volume field can be compactly represented by its contour tree. Unfortunately, the contour trees of most real-world volume data sets are too complex to be visualized by dot-and-line diagrams. Therefore, we propose a new visualization ...

  12. Contours - MO 2012 Greene County SE 1ft Contours (SHP)

    NSGIC GIS Inventory (aka Ramona) — 1ft contour file for the southeast portion of Greene County, Missouri. This file was created using the USGS corrected elevation data from the 2011 LiDAR flight. It...

  13. Contours - MO 2012 Greene County NW 1ft Contours (SHP)

    NSGIC GIS Inventory (aka Ramona) — 1ft contour file for the northwest portion of Greene County, Missouri. This file was created using the USGS corrected elevation data from the 2011 LiDAR flight. It...

  14. Contours - MO 2012 Greene County SW 1ft Contours (SHP)

    NSGIC GIS Inventory (aka Ramona) — 1ft contour file for the southwest portion of Greene County, Missouri. This file was created using the USGS corrected elevation data from the 2011 LiDAR flight. It...

  15. Contours - MO 2012 Greene County NE 1ft Contours (SHP)

    NSGIC GIS Inventory (aka Ramona) — 1ft contour file for the northeast portion of Greene County, Missouri. This file was created using the USGS corrected elevation data from the 2011 LiDAR flight. It...

  16. Contours - MO 2012 Greene County 5ft Contours (SHP)

    NSGIC GIS Inventory (aka Ramona) — 5ft cartographic contour file for Greene County, Missouri. This file was created using the elevation data from the 2011 LiDAR flight. It includes indexes for 10,...

  17. Tensor-SIFT based Earth Mover's Distance for Contour Tracking

    Li, Peihua

    2010-01-01

    Contour tracking in adverse environments is a challenging problem due to cluttered background, illumination variation, occlusion, and noise, among others. This paper presents a robust contour tracking method by contributing to some of the key issues involved, including (a) a region functional formulation and its optimization; (b) design of a robust and effective feature; and (c) development of an integrated tracking algorithm. First, we formulate a region functional based on robust Earth Mover's distance (EMD) with kernel density for distribution modeling, and propose a two-phase method for its optimization. In the first phase, letting the candidate contour be fixed, we express EMD as the transportation problem and solve it by the simplex algorithm. Next, using the theory of shape derivative, we make a perturbation analysis of the contour around the best solution to the transportation problem. This leads to a partial differential equation (PDE) that governs the contour evolution. Second, we design a novel and...

  18. Contours--Offshore Monterey, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents bathymetric contours for several seafloor maps of the Monterey Canyon and Vicinity map area, California. The raster data file is...

  19. Contours--Offshore Aptos, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Aptos map area, California. The vector data file is...

  20. Multivariate elliptically contoured autoregressive process

    Taras Bodnar; Arjun K. Gupta

    2014-01-01

    In this paper, we introduce a new class of elliptically contoured processes. The suggested process possesses both the generality of the conditional heteroscedastic autoregressive process and the elliptical symmetry of the elliptically contoured distributions. In the empirical study we find the link between the conditional time varying behavior of the covariance matrix of the returns and the time variability of the investor’s coefficient of risk aversion. Moreover, it is shown that the non-dia...

  1. Automatic liver contouring for radiotherapy treatment planning.

    Li, Dengwang; Liu, Li; Kapp, Daniel S; Xing, Lei

    2015-10-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  2. Automatic liver contouring for radiotherapy treatment planning

    Li, Dengwang; Liu, Li; Kapp, Daniel S.; Xing, Lei

    2015-09-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems. The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours. The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  3. A variational approach for object contour tracking

    Papadakis, Nicolas; Mémin, Etienne; Cao, Frederic

    2005-01-01

    International audience In this paper we describe a new framework for the tracking of closed curves described through implicit surface modeling. The approach proposed here enables a continuous tracking along an image sequence of deformable object contours. Such an approach is formalized through the minimization of a global spatio-temporal continuous cost functional stemming from a Bayesian Maximum a posteriori estimation of a Gaussian probability distribution. The resulting minimization seq...

  4. Image Segmentation Using Parametric Contours With Free Endpoints

    Benninghoff, Heike; Garcke, Harald

    2016-04-01

    In this paper, we introduce a novel approach for active contours with free endpoints. A scheme is presented for image segmentation and restoration based on a discrete version of the Mumford-Shah functional where the contours can be both closed and open curves. Additional to a flow of the curves in normal direction, evolution laws for the tangential flow of the endpoints are derived. Using a parametric approach to describe the evolving contours together with an edge-preserving denoising, we obtain a fast method for image segmentation and restoration. The analytical and numerical schemes are presented followed by numerical experiments with artificial test images and with a real medical image.

  5. Development of a contour meter

    The dosimetric calculation in patients that receive radiotherapy treatment it requires the one knowledge of the geometry of some anatomical portions, which differs from a patient to another. Making reference to the specific case of mammary neoplasia, one of the measurements that is carried out on the patient is the acquisition of the contour of the breast, which is determined from a point marked on the breastbone until another point marked on the lateral of the thorax, below the armpit, with the patient located in the irradiation position. This measurement is carried out with the help of a mechanical contour meter that is a device conformed by a series of wires with a polymeric coating, which support on the breast of the patient and it reproduces its form. Then it is transported in the more careful possible form on a paper and the contour is traced with a tracer one. The geometric error associated to this procedure is of ±1 cm, which is sensitive of being reduced. The present work finds its motivation in the patient's radiological protection radiotherapy. The maximum error in dose allowed in radiotherapeutic treatments is 5%. It would be increase the precision and with it to optimize the treatment received by the patient, reducing the error in the acquisition process of the mammary contour. With this objective, a digital device is designed whose operation is based in the application of a spatial transformation on a picture of the mammary contour, which corrects the geometric distortion introduced in the process of the photographic acquisition. An algorithm that allows to obtain a front image (without distortion) of the plane of the contour was developed. A software tool especially developed carries out the processing of the digital images. The maximum geometric error detected in the validation process is 2 mm located on a small portion of the contour. (Author)

  6. 龈缘轮廓三维统计模型建模技术研究%Research on Modeling Technology of 3D Statistical Model for Gingival Contours

    吴婷; 廖文和; 戴宁

    2012-01-01

    为建立龈缘轮廓统计模型,提出了一种利用三角网格牙颌模型进行龈缘形态建模的方法.首先对牙颌模型进行离散曲率分析、最短路径搜索来探测龈缘特征线;根据特征线的微分特性进行单颗牙龈缘划分;然后通过B样条曲线拟合构建出每颗牙齿封闭光滑的龈缘轮廓线,并利用曲线的控制顶点作为龈缘训练形状向量;最后通过对形状训练集进行主成分分析来建立统计形状模型.实验结果表明该方法不仅能够自动而快速地提取出单颗牙齿龈缘轮廓,而且建立的统计模型能够正确而有效地捕获牙弓以及龈缘形态的重要变化特征.%A novel and automatic shape modeling methodology for gingivaL contours from dental triangle meshes was proposed to build a 3D statistical model. The gingival feature lines were first obtained from the 3D dental model through a discrete curvature analysis and shortest path searching algorithm. Based on the gingival line differential characteristics, the feature lines were partitioned to demarcate the gingival line of each individual tooth. Through B - spline curve approximation to form the closed and smooth gingival contour of each tooth, the shape vector for training the model was then achieved using the control points of the B-spline curves. Finally,the statistical shape model was constructed through principle component analysis on the training set of the gingival shape vector. Experimental results demonstrate that this method can detect the gingival contours automatically and fastly,and the statistical model can capture the important variations effectively in arch and gingival morphology.

  7. Contour Estimation by Array Processing Methods

    Bourennane Salah

    2006-01-01

    Full Text Available This work is devoted to the estimation of rectilinear and distorted contours in images by high-resolution methods. In the case of rectilinear contours, it has been shown that it is possible to transpose this image processing problem to an array processing problem. The existing straight line characterization method called subspace-based line detection (SLIDE leads to models with orientations and offsets of straight lines as the desired parameters. Firstly, a high-resolution method of array processing leads to the orientation of the lines. Secondly, their offset can be estimated by either the well-known method of extension of the Hough transform or another method, namely, the variable speed propagation scheme, that belongs to the array processing applications field. We associate it with the method called "modified forward-backward linear prediction" (MFBLP. The signal generation process devoted to straight lines retrieval is retained for the case of distorted contours estimation. This issue is handled for the first time thanks to an inverse problem formulation and a phase model determination. The proposed method is initialized by means of the SLIDE algorithm.

  8. Contour-Driven Atlas-Based Segmentation.

    Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina

    2015-12-01

    We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202

  9. Contour-based 3d motion recovery while zooming

    Martínez Marroquín, Elisa; Torras Genís, Carme

    2003-01-01

    This paper considers the problem of 3D motion recovery from a sequence of monocular images while zooming. Unlike the common trend based on point matches, the proposed method relies on the deformation of an active contour fitted to a reference object. We derive the relation between the contour deformation and the 3D motion components, assuming time-varying focal length and principal point. This relation allows us to present a method to extract the rotation matrix and the scaled translation alo...

  10. Shape reconstruction from apparent contours theory and algorithms

    Bellettini, Giovanni; Paolini, Maurizio

    2015-01-01

    Motivated by a variational model concerning the depth of the objects in a picture and the problem of hidden and illusory contours, this book investigates one of the central problems of computer vision: the topological and algorithmic reconstruction of a smooth three dimensional scene starting from the visible part of an apparent contour. The authors focus their attention on the manipulation of apparent contours using a finite set of elementary moves, which correspond to diffeomorphic deformations of three dimensional scenes. A large part of the book is devoted to the algorithmic part, with implementations, experiments, and computed examples. The book is intended also as a user's guide to the software code appcontour, written for the manipulation of apparent contours and their invariants. This book is addressed to theoretical and applied scientists working in the field of mathematical models of image segmentation.

  11. Multivariate elliptically contoured autoregressive process

    Taras Bodnar

    2014-05-01

    Full Text Available In this paper, we introduce a new class of elliptically contoured processes. The suggested process possesses both the generality of the conditional heteroscedastic autoregressive process and the elliptical symmetry of the elliptically contoured distributions. In the empirical study we find the link between the conditional time varying behavior of the covariance matrix of the returns and the time variability of the investor’s coefficient of risk aversion. Moreover, it is shown that the non-diagonal elements of the dispersion matrix are slowly varying in time.

  12. Topological Cacti: Visualizing Contour-based Statistics

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introduce a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.

  13. MAP Estimation of Chin and Cheek Contours in Video Sequences

    Kampmann Markus

    2004-01-01

    Full Text Available An algorithm for the estimation of chin and cheek contours in video sequences is proposed. This algorithm exploits a priori knowledge about shape and position of chin and cheek contours in images. Exploiting knowledge about the shape, a parametric 2D model representing chin and cheek contours is introduced. Exploiting knowledge about the position, a MAP estimator is developed taking into account the observed luminance gradient as well as a priori probabilities of chin and cheek contours positions. The proposed algorithm was tested with head and shoulder video sequences (image resolution CIF. In nearly 70% of all investigated video frames, a subjectively error free estimation could be achieved. The 2D estimate error is measured as on average between 2.4 and .

  14. Application Of Moire Contour Fringes To Study Nycticebus Coucany

    Ren-xiang, Zhang; Ming, Lu; Zu-yun, Lan; Wen-ji, Qu

    1984-12-01

    In this paper we have studied the moire contour fringes of the skull and femur knee joint of Nycticebus coucany and obtained the following results: 1. The skull's value K is very useful for comparative study with the different kinds of Primate. 2. The moire contour fringes of the tibia facies of knee joint is convex on one side while the other side is concave. 3. At the same condition the grade of the first moire contour fringe of connection on the femur knee joint between the two condyles and its angle β are smaller than Hylobates concolor leucongeuys. This study is significant, because: 1. The evolution of skull may be related with the increased value K. 2. The moire contour fringes of the Nycticebus coucany's tibia and femur knee joint have lower range of activity. 3. From the moire contour fringes of knee, the Nycticebus coucany and. Hylobates concolor leucongeuys are of one kind. But the moire contour Nycticebus of tibia is different form.

  15. Auto-propagation of contours for adaptive prostate radiation therapy

    Chao, Ming; Xie, Yaoqin; Xing, Lei

    2008-09-01

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future.

  16. Auto-propagation of contours for adaptive prostate radiation therapy.

    Chao, Ming; Xie, Yaoqin; Xing, Lei

    2008-09-01

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future. PMID:18677041

  17. Auto-propagation of contours for adaptive prostate radiation therapy

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future

  18. Body Contouring After Major Weight Loss

    ... Blog Plastic Surgery Statistics ASPS TV News Program History of Plastic Surgery For Medical Professionals ... Major Weight Loss Body Contouring After Major Weight Loss For Men and Women Body contouring following major weight loss improves the ...

  19. Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines.

    Chi Wan Lim

    Full Text Available We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial-temporal model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities.

  20. Splines, contours and SVD subroutines

    Portability of Fortran code is a major concern these days, since hardware and commercial software change faster than the codes themselves. Hence, using public domain, portable, mathematical subroutines is imperative. Here we present a collection of subroutines we have used in the past, and found to be particularly useful. They are: 2-dimensional splines, contour tracing of flux surface (based on 2-D spline), and singular Value Matrix Decomposition (for Chi-square minimization)

  1. Dependence of V2 illusory contour response on V1 cell properties and topographic organization.

    Cohen, Amelia; Buia, Calin; Tiesinga, Paul

    2014-06-01

    An illusory contour is an image that is perceived as a contour in the absence of typical contour characteristics, such as a change in luminance or chromaticity across the stimulus. In cats and primates, cells that respond to illusory contours are sparse in cortical area V1, but are found in greater numbers in cortical area V2. We propose a model capable of illusory contour detection that is based on a realistic topographic organization of V1 cells, which reproduces the responses of individual cell types measured experimentally. The model allows us to explain several experimentally observed properties of V2 cells including variability in orientation tuning and inducer spacing preference. As a practical application, the model can be used to estimate the relationship between the severity of a cortical injury in the primary visual cortex and the deterioration of V2 cell responses to real and illusory contours. PMID:24801874

  2. Grouping by proximity in haptic contour detection.

    Krista E Overvliet

    Full Text Available We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots, relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection.

  3. Neuronal oscillations form parietal/frontal networks during contour integration.

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites. PMID:25165437

  4. Theory on the molecular characteristic contour(Ⅰ)——A new approach to defining molecular characteristic contour

    赵东霞; 杨忠志

    1999-01-01

    Based on the classical turning point of electron movement in a molecule, a model for defining the molecular characteristic boundary contour is advanced. By using an accurate ab initio MELD program and an auxiliary program, some electron parameters in a molecule, such as the potential felt by an electron, have been evaluated. According to our model and definition, the molecular characteristic contour of the equilibrium geometry configuration is drawn and a vivid intuitive picture for describing the forming or breaking of a chemical bond is displayed.

  5. Expectations for Melodic Contours Transcend Pitch

    Graves, Jackson E.; Micheyl, Christophe; Oxenham, Andrew J.

    2014-01-01

    The question of what makes a good melody has interested composers, music theorists, and psychologists alike. Many of the observed principles of good “melodic continuation” involve melodic contour – the pattern of rising and falling pitch within a sequence. Previous work has shown that contour perception can extend beyond pitch to other auditory dimensions, such as brightness and loudness. Here, we show with two experiments that the generalization of contour perception to non-traditional dimen...

  6. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on

  7. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2–CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring

  8. NY_GOME_CONTOURS: New York Bight and Gulf of Maine bathymetric contours

    U.S. Geological Survey, Department of the Interior — This bathymetric shapefile contains 10 m contours for the continental shelf and 100 m beyond the 200 m shelf edge. The contours have been derived from the National...

  9. Contours of New Economic Theory

    Garry Jacobs

    2015-05-01

    Full Text Available The need for a paradigm change in economic thought has been well established, but the contours and fundamental characteristics of a new paradigm in economic theory are yet to be worked out. This article views this transition as an inevitable expression of the maturation of the social sciences into an integrated trans-disciplinary science of society founded on common underlying principles, premises and processes. It calls for evolution of human-centered, value-based economic theory whose objective is to maximize human economic security, welfare and well-being rather than economic growth. It emphasizes the determinative role of fundamental creative social processes expressing in all fields of human endeavor. It argues for extending the boundaries of economics to encompass the entire gamut of political, legal, social, psychological, intellectual, organizational and ecological factors that directly and indirectly contribute to economic security, welfare and well-being. The article concludes with a list of anticipated practical implications.

  10. Sodium Deoxycholate for Submental Contouring.

    Humphrey, S; Beleznay, K; Beleznay, J D A

    2016-09-01

    The chin and jaw line are integral parts of an individual's aesthetic profile, and the presence of submental fat detracts from this and can lead to displeasure with one's facial appearance. While liposuction and cosmetic surgery are regarded as the gold standard in treating submental fat, surgical intervention is not appealing to all patients and has potential surgical complications including longer recovery, and contour irregularities. Despite ample advances in aesthetic medicine to enhance the appearance of the face, very little is available in non-invasive options to reduce submental fat that has been supported by robust evidence. ATX-101, a proprietary formulation of deoxycholic acid that is synthetically derived, has been extensively explored in a vigorous clinical development program that has established the safety and efficacy of the injectable. It has recently received approval by regulatory authorities in Canada (Belkyra™) and the US (Kybella®) for the treatment of submental fat. PMID:27603325

  11. The Analysis of Contour Integrals

    JohnBryce Mcleod

    2008-03-01

    Full Text Available For any n, the contour integral y=coshn+1x∮C(cosh(zs/(sinhz-sinhxn+1dz,s2=-λ, is associated with differential equation d2y(x/dx2+(λ+n(n+1/cosh2xy(x=0. Explicit solutions for n=1 are obtained. For n=1, eigenvalues, eigenfunctions, spectral function, and eigenfunction expansions are explored. This differential equation which does have solution in terms of the trigonometric functions does not seem to have been explored and it is also one of the purposes of this paper to put it on record.

  12. A United Image Force for Deformable Models and Direct Transforming Geometric Active Contorus to Snakes by Level Sets

    Lu, Hongyu

    2012-01-01

    The image force in active contours plays a key role for shape recovery in medical image analysis. The image force constructed from the heat diffusion model can not indicate segment the image accurately through it exhibits a uniform distribution of force field around the object. The features of the image force based on electrostatic field model are opposite. Firstly, this study introduces a fusion scheme of these two image forces, which capable of extracting the object boundary with high precision and fast speed. Till now, there is no satisfied analysis of the relationship between Snakes and Geometric Active Contour. The second contribution of this study indicates that the GAC model can be deduced directly from Snakes models. It proves that the each term in GAC and Snakes is correspondent and has the same function. These two models are only expressed using different mathematics.

  13. 对数似然图像分割的快速主动轮廓跟踪算法%Fast active contour tracking algorithm based on log-likelihood image segmentation

    杨华; 陈善静; 曾凯; 张红

    2012-01-01

    针对跟踪目标尺度变化问题,提出了基于灰度对数似然图像分割的快速主动轮廓跟踪算法.改进的主动轮廓跟踪算法将根据以目标与背景的颜色差异而建立的对数似然图对图像进行阈值分割和数学形态学处理,再将Kalman滤波器结合到主动轮廓跟踪算法进行目标跟踪.改进的主动轮廓跟踪算法对目标分割准确,轮廓特征显著,跟踪效果稳定,算法能很好地适应跟踪目标尺度变化.通过Kalman滤波器对目标位置点的预测减少了主动轮廓跟踪算法收敛的迭代次数,使算法的运算效率提高了33%左右.%A fast active contour tracking(ACT) algorithm based on log-likelihood image segmentation has been proposed to solve the scale change problem in the process of target tracking. The algorithm adopts the log-likelihood image segmentation method, which segments images according to their log-likelihood images built based on the color difference between target and background, and the mathematical morphology method, and tracks the target with conventional ACT algorithm combined with Kalman filter. It tracks the target precisely with distinct contour features and stable tracking performance, and can well adapt to the target scale change. The Kalman filter adopted reduces the number of iterations for algorithm convergence through its forecast of the target position, and thus the fast ACT algorithm is about 33% more efficient than the conventional one.

  14. Contour Detection Operators Based on Surround Inhibition

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    2003-01-01

    We propose a biologically motivated computational step, called non-classical receptive field (non-CRF) inhibition, to improve contour detection in images of natural scenes. We augment a Gabor energy operator with non-CRF inhibition. The resulting contour operator responds strongly to isolated lines,

  15. RFP for the Comet Nuclei Tour (CONTOUR)

    Jørgensen, John Leif; Madsen, Peter Buch; Betto, Maurizio;

    1999-01-01

    This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program.......This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program....

  16. A biologically-inspired framework for contour detection using superpixel-based candidates and hierarchical visual cues.

    Sun, Xiao; Shang, Ke; Ming, Delie; Tian, Jinwen; Ma, Jiayi

    2015-01-01

    Contour detection has been extensively investigated as a fundamental problem in computer vision. In this study, a biologically-inspired candidate weighting framework is proposed for the challenging task of detecting meaningful contours. In contrast to previous models that detect contours from pixels, a modified superpixel generation processing is proposed to generate a contour candidate set and then weigh the candidates by extracting hierarchical visual cues. We extract the low-level visual local cues to weigh the contour intrinsic property and mid-level visual cues on the basis of Gestalt principles for weighting the contour grouping constraint. Experimental results tested on the BSDS benchmark show that the proposed framework exhibits promising performances to capture meaningful contours in complex scenes. PMID:26492252

  17. Specific activities and radioactive contour maps of natural and anthropogenic radionuclides in beach sand samples (Patong, Kamala, Kata, Karon and Nai Yang) after tsunami disaster in Phuket province, Thailand

    Specific activities of natural (40K, 226Ra and 232Th) and anthropogenic (137Cs) radionuclides in 155 beach sand samples collected from Patong, Kamala, Kata, Karon and Nai Yang beaches, which were affected by the 2004 tsunami disaster, in Phuket province, Thailand, have been studied and measured. Experimental results were obtained by using a high-purity germanium detector and gamma spectrometry analysis system. Gamma ray from radioactive standard sources Cesium-137 (137Cs), Cobalt-60 (60Co) and Barium-133 (133Ba) were used to calibrate the measurement system. KCl, two well-known (IAEA/RGU-1 and IAEA/RGTh-1) and IAEA/SL-2 reference materials obtained from the International Atomic Energy Agency were used to analyze and compute the 40K, 226Ra, 232Th and 137Cs specific activities in samples from five beaches. The measuring time of each sample is 10,800 s. It was found that the average specific activity of 40K in these areas (2459.14 ± 171.71 Bq/kg) was rather high. Furthermore, the results were also used to evaluate the absorbed dose rates in air (D), the radium equivalent (Raeq), the external hazard index (Hex) and the annual effective dose rate (AEDout) in all beach areas. Moreover, experimental results were compared with the Office of Atoms for Peace research data, Thailand as well as with global radioactivity measurements and evaluations. All of the calculated values (40K, 226Ra, 232Th and 137Cs) were also compared with the recommended values which were proposed by the Organization for Economic Cooperation and Development (Exposure to radiation from natural radioactivity in building materials, 1979) and United Nations Scientific Committee on the Effects of Atomic Radiation (Sources, effects and risk of ionizing radiation, 1988; Exposure from natural sources of radiation, 1993; Sources, effects and risk of ionizing radiation, 2000). The data can be also used to create the radioactive contour maps of the investigated area. (author)

  18. Event-Based Activity Modeling

    Bækgaard, Lars

    2004-01-01

    We present and discuss a modeling approach that supports event-based modeling of information and activity in information systems. Interacting human actors and IT-actors may carry out such activity. We use events to create meaningful relations between information structures and the related...

  19. Automatic Detection of Adenocarcinoma using Active Contours

    NeelapalaAnilKumar; M. SatyaAnuradha; Pilla Srinivas; Ravuri Daniel

    2013-01-01

    CT scan is the one of the image representation for abdomen, where the tumour to be located and specified effectively with clarity, by the medical expert. This role can be hold by using one of the image processing techniques called segmentation. Image segmentation is the technique which isolates the image into different regions to simplify the image and identify the Tumour easily. Image segmentation has been extensively studied by various approaches. This work, focus on the one of the image se...

  20. Contours, This Layer was derived from the USGS National Elevation Dataset (NED) based on 7.5 minute Digital Elevation Model (DEM) image files., Published in 1999, 1:24000 (1in=2000ft) scale, Atlanta Regional Commission.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 1999. It is described as 'This Layer was...

  1. Automatic Extraction of Femur Contours from Calibrated X-Ray Images using Statistical Information

    Xiao Dong

    2007-09-01

    Full Text Available Automatic identification and extraction of bone contours from x-ray images is an essential first step task for further medical image analysis. In this paper we propose a 3D statistical model based framework for the proximal femur contour extraction from calibrated x-ray images. The automatic initialization to align the 3D model with the x-ray images is solved by an Estimation of Bayesian Network Algorithm to fit a simplified multiple component geometrical model of the proximal femur to the x-ray data. Landmarks can be extracted from the geometrical model for the initialization of the 3D statistical model. The contour extraction is then accomplished by a joint registration and segmentation procedure. We iteratively updates the extracted bone contours and an instanced 3D model to fit the x-ray images. Taking the projected silhouettes of the instanced 3D model on the registered x-ray images as templates, bone contours can be extracted by a graphical model based Bayesian inference. The 3D model can then be updated by a non-rigid 2D/3D registration between the 3D statistical model and the extracted bone contours. Preliminary experiments on clinical data sets verified its validity.

  2. Transgressive Contours--Bolinas to Pescadero, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the transgressive contours for the Bolinas to Pescadero, California, region. The vector file is included in...

  3. Contours--Offshore Pigeon Point, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Pigeon Point map area, California. The vector data file is...

  4. Contours--Offshore of Ventura, California

    U.S. Geological Survey, Department of the Interior — This part of SIM 3254 presents data for the bathymetric contours for several seafloor maps (see sheets 1, 2, 3, 7, 10, SIM 3254) of the Offshore of Ventura map...

  5. Contours Offshore of Tomales Point, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Tomales Point map area, California. The vector data file...

  6. Contours--Offshore Coal Oil Point, California

    U.S. Geological Survey, Department of the Interior — This part of SIM 3302 presents bathymetric contours for several seafloor maps of Offshore Coal Oil Point, California (vector data file is included in...

  7. Contours--Offshore of Pacifica, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Pacifica map area, California. The vector data file is...

  8. Contours-Offshore of Bodega Head, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Bodega Head map area, California. The vector data file...

  9. Contours--Offshore of Bolinas, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Bolinas map area, California. The vector data file is...

  10. Contours--Offshore of San Francisco, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of San Francisco map area, California. The vector data file...

  11. Contours--Offshore of Santa Barbara, California

    U.S. Geological Survey, Department of the Interior — This part of SIM 3281 presents data for the bathymetric contours for several seafloor maps (see sheets 1, 2, 3, 7, 10, SIM 3281) of the Offshore of Santa Barbara...

  12. Contours, Published in 2006, Steuben County Government.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, was produced all or in part from LIDAR information as of 2006. Data by this publisher are often provided in State Plane coordinate system; in...

  13. Contours, Published in unknown, Sheboygan county.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset as of unknown. Data by this publisher are often provided in Sheboygan County Coordinate Grid coordinate system; in a Mercator projection; The...

  14. Contours--Offshore of Fort Ross, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Fort Ross map area, California. The vector data file is...

  15. Contours, Published in unknown, Douglas County.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, was produced all or in part from Other information as of unknown. Data by this publisher are often provided in Other (please list) coordinate...

  16. Contours--Offshore Refugio Beach, California

    U.S. Geological Survey, Department of the Interior — This part of SIM 3319 presents bathymetric contours for several seafloor maps of Offshore Refugio Beach, California (vector data file is included in...

  17. Contours--Offshore Santa Cruz, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Santa Cruz map area, California. The vector data file is...

  18. Contours--Monterey Canyon and Vicinity, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents bathymetric contours for several seafloor maps of the Monterey Canyon and Vicinity map area, California. The raster data file is...

  19. Water-table contours of Nevada

    U.S. Geological Survey, Department of the Interior — This data set consists of water-table contours for Nevada. These data were created as part of an effort to provide statewide information on water table and depth to...

  20. Modified Contour-Improved Perturbation Theory

    Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian

    2010-01-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard "contour improved" method based on a derivative expansion of the Adler function. The approach eliminates ambiguities coming from the existence of different integral expressions for the semihadronic tau decay ratio. Compared to the standard method, renormalization scale dependence is by more than a factor two weaker in modified contour improved p...

  1. Coronal loop detection and salient contour group extraction from solar images

    Durak, Nurcan

    2011-01-01

    This dissertation addresses two different problems: 1) coronal loop detection from solar images: and 2) salient contour group extraction from cluttered images. In the first part, we propose two different solutions to the coronal loop detection problem. The first solution is a block-based coronal loop mining method that detects coronal loops from solar images by dividing the solar image into fixed sized blocks, labeling the blocks as "Loop" or "Non-Loop", extracting features from the labeled blocks, and finally training classifiers to generate learning models that can classify new image blocks. The block-based approach achieves 64% accuracy in 10-fold cross validation experiments. To improve the accuracy and scalability, we propose a contour-based coronal loop detection method that extracts contours from cluttered regions, then labels the contours as "Loop" and "Non-Loop", and extracts geometric features from the labeled contours. The contour-based approach achieves 85% accuracy in 10-fold cross validation experiments, which is a 20% increase compared to the block-based approach. In the second part, we propose a method to extract semi-elliptical open curves from cluttered regions. Our method consists of the following steps: obtaining individual smooth contours along with their saliency measures; then starting from the most salient contour, searching for possible grouping options for each contour; and continuing the grouping until an optimum solution is reached. Our work involved the design and development of a complete system for coronal loop mining in solar images, which required the formulation of new Gestalt perceptual rules and a systematic methodology to select and combine them in a fully automated judicious manner using machine learning techniques that eliminate the need to manually set various weight and threshold values to define an effective cost function. After finding salient contour groups, we close the gaps within the contours in each group and perform

  2. Active control: Wind turbine model

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch...

  3. Windows and Facades Retrieval using Similarity on Graph of Contours

    Haugeard, Jean-Emmanuel; Philipp-Foliguet, Sylvie; Precioso, Frédéric

    2009-01-01

    International audience The development of street-level geoviewers become recently a very active and challenging research topic. In this context, the detection, representation and classification of windows can be beneficial for the identification of the respective facade. In this paper, a novel method for windows and facade retrieval is presented. This method, based on a similarity of graph of contours, introduces a new kernel on graph for inexact graph matching. We design a kernel similari...

  4. Specific Activities and Radioactive Contour Maps of Natural (238U, 232Th, 226Ra and 40K ) and Anthropogenic (137Cs) Radionuclides in Beach Sand Samples Collected from Nai Yang Beach of Phuket Province After Tsunai Disaster

    Full text: Specific activities of natural (238U, 232Th, 226Ra and 40K) and artificial anthropogenic (137Cs) radionuclides in 50 beach sand samples collected from Nai Yang beach in Phuket province which was effected from 2004 tsunami disaster, have been studied and measured. Experimental results were obtained by using a high-purity germanium (HPGe) detector and gamma spectrometry analysis system and also evaluated by using the standard reference materials IAEA/RGU-1, IAEA/RGTh-1, KCL and SL-2 which were obtained from Department of Physics, Faculty of Science, Prince of Songkhla University Hat Yai Campus. Experimental set-up and measurements were operated and carried out at Nuclear and Material Physics Laboratory in Department of Physics, Faculty of Science, Thaksin University Songkhla Campus. It was found that, the beach sand specific activity ranges from 862.50 to 3,356.35 Bq/kg for 40K, 3.51- 28.58 Bq/kg for 226Ra, 10.15 to 30.22 Bq/kg for 232Th and 0.00 to 2.39 Bq/kg for 137Cs with mean values of 1,843.03 ± 152.49 Bq/kg, 14.88 ± 3.30 Bq/kg, 19.19 ± 2.80 Bq/kg and 0.14 ± 0.11 Bq/kg, respectively. Furthermore, the results were also used to evaluate the absorbed dose rates in air (D), the radium equivalent (Raeq), the external hazard index (Hex) and the annual effective dose rate (AED) in all beach area. Moreover, experimental results were also compared to the Office of Atoms for Peace (OAP) research data, Thailand and global radioactivity measurements and evaluation, the recommended values which were proposed by the Organization for Economic Cooperation and Development (OECD, 1979) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 1988, 1993, 2000). Specific activities of natural and artificial anthropogenic radionuclides in all of Nai Yang beach sand samples could be also used to create the radioactive contour maps

  5. Study of detonation wave contours in EFP warhead

    Xu-dong Zu; Zheng-xiang Huang; Chuan-sheng Zhu; Qiang-qiang Xiao

    2016-01-01

    An analytical model for calculating the propagation time of shock wave in a wave shaper is presented in this study. The calculated results show that the contours of three typical detonation waves, such as conical detonation wave, spherical detonation wave, and planar detonation wave, can be formed in the main charge by changing the thickness of wave shaper. The results show that the planar detonation wave do better than the conical detonation and the spherical detonation wave in increasing...

  6. Fusing visual contour tracking with inertial sensing to recover robot egomotion

    Alenyà, Guillem; Martínez Marroquín, Elisa; Torras, Carme

    2003-01-01

    A method for estimating mobile robot egomotion is presented, which relies on tracking contours in real-time images acquired with an uncalibrated monocular video system. After fitting an active contour to an object in the image, 3D motion is derived from the affine deformations suffered by the contour in an image sequence. More than one object can be tracked at the same time yielding some different pose estimations. Then, improvements in pose determination are achieved by fusing all these diffe...

  7. Directed random polymers via nested contour integrals

    Borodin, Alexei; Bufetov, Alexey; Corwin, Ivan

    2016-05-01

    We study the partition function of two versions of the continuum directed polymer in 1 + 1 dimension. In the full-space version, the polymer starts at the origin and is free to move transversally in R, and in the half-space version, the polymer starts at the origin but is reflected at the origin and stays in R-. The partition functions solve the stochastic heat equation in full-space or half-space with mixed boundary condition at the origin; or equivalently the free energy satisfies the Kardar-Parisi-Zhang equation. We derive exact formulas for the Laplace transforms of the partition functions. In the full-space this is expressed as a Fredholm determinant while in the half-space this is expressed as a Fredholm Pfaffian. Taking long-time asymptotics we show that the limiting free energy fluctuations scale with exponent 1 / 3 and are given by the GUE and GSE Tracy-Widom distributions. These formulas come from summing divergent moment generating functions, hence are not mathematically justified. The primary purpose of this work is to present a mathematical perspective on the polymer replica method which is used to derive these results. In contrast to other replica method work, we do not appeal directly to the Bethe ansatz for the Lieb-Liniger model but rather utilize nested contour integral formulas for moments as well as their residue expansions.

  8. Variation in contour and cancer of stomach

    There were four types of stomach contour included eutonic, hypotonic, steerhorn, and cascade. The aim of this study is to clarify relationship between incidence of stomach cancer and contour variation of the stomach. Double- contrast upper gastrointestinal study was performed in 1,546 patients, who had dyspepsia or other gastrointestinal tract symptoms. The radiographs were classified into the four types including eutonic, hypotonic, steerhorn, and cascade according to stomach contour in relation to body build. We also reviewed pathologic reports on endoscopic biopsy or surgical specimen. We studied the presence of relationship between incidence of stomach cancer and variation of stomach contour. We also examined the incidence of gastritis and gastric ulcer to the stomach contour variation. Of total 1,546 patients, eutonic stomach were 438(28.3%), hypotonic 911(58.9%), steerhorn 102(6.5%) and cascade 95(6.2%). Stomach cancer was found in 139(31.7%) of 438 eutonic stomachs, in 135(14.8%) of 911 hypotonic, in 42(41.2%) of 102 steerhorn, and in 24(36.9%) of 95 cascade (P=0.001). In hypotonic stomach, the incidence of stomach cancer was lower compared to the other three types significantly (p<0.05). Gastritis or gastric ulcer was found in 146(33.3%) of eutonic stomach, in 293(32.1%) of hypotonic, in 36(35.2%) of steerhorn, and in 26(27.3%) of cascade (p=0.640). In conclusion, gastric contour variation seems to be a factor affecting development of stomach cancer. The patients with hypotonic stomach may have lower incidence of stomach cancer than that of the other types. There was no relationship between the contour and gastric ulcer

  9. Variation in contour and cancer of stomach

    Lee, Won Hong; Hwang, Seon Moon [Asan Medical Center, Asan (Korea, Republic of); Yoon, Kwon Ha [College of Medicine, Wonkwang Univ., Iksan (Korea, Republic of)

    1999-04-01

    There were four types of stomach contour included eutonic, hypotonic, steerhorn, and cascade. The aim of this study is to clarify relationship between incidence of stomach cancer and contour variation of the stomach. Double- contrast upper gastrointestinal study was performed in 1,546 patients, who had dyspepsia or other gastrointestinal tract symptoms. The radiographs were classified into the four types including eutonic, hypotonic, steerhorn, and cascade according to stomach contour in relation to body build. We also reviewed pathologic reports on endoscopic biopsy or surgical specimen. We studied the presence of relationship between incidence of stomach cancer and variation of stomach contour. We also examined the incidence of gastritis and gastric ulcer to the stomach contour variation. Of total 1,546 patients, eutonic stomach were 438(28.3%), hypotonic 911(58.9%), steerhorn 102(6.5%) and cascade 95(6.2%). Stomach cancer was found in 139(31.7%) of 438 eutonic stomachs, in 135(14.8%) of 911 hypotonic, in 42(41.2%) of 102 steerhorn, and in 24(36.9%) of 95 cascade (P=0.001). In hypotonic stomach, the incidence of stomach cancer was lower compared to the other three types significantly (p<0.05). Gastritis or gastric ulcer was found in 146(33.3%) of eutonic stomach, in 293(32.1%) of hypotonic, in 36(35.2%) of steerhorn, and in 26(27.3%) of cascade (p=0.640). In conclusion, gastric contour variation seems to be a factor affecting development of stomach cancer. The patients with hypotonic stomach may have lower incidence of stomach cancer than that of the other types. There was no relationship between the contour and gastric ulcer.

  10. Computational models of epileptiform activity.

    Wendling, Fabrice; Benquet, Pascal; Bartolomei, Fabrice; Jirsa, Viktor

    2016-02-15

    We reviewed computer models that have been developed to reproduce and explain epileptiform activity. Unlike other already-published reviews on computer models of epilepsy, the proposed overview starts from the various types of epileptiform activity encountered during both interictal and ictal periods. Computational models proposed so far in the context of partial and generalized epilepsies are classified according to the following taxonomy: neural mass, neural field, detailed network and formal mathematical models. Insights gained about interictal epileptic spikes and high-frequency oscillations, about fast oscillations at seizure onset, about seizure initiation and propagation, about spike-wave discharges and about status epilepticus are described. This review shows the richness and complementarity of the various modeling approaches as well as the fruitful contribution of the computational neuroscience community in the field of epilepsy research. It shows that models have progressively gained acceptance and are now considered as an efficient way of integrating structural, functional and pathophysiological data about neural systems into "coherent and interpretable views". The advantages, limitations and future of modeling approaches are discussed. Perspectives in epilepsy research and clinical epileptology indicate that very promising directions are foreseen, like model-guided experiments or model-guided therapeutic strategy, among others. PMID:25843066

  11. Prostate Contouring Variation: Can It Be Fixed?

    Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across sets of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.

  12. Development of a CONTOUR-METER

    Dose calculation in patients undergoing radiotherapy treatments requires the knowledge of their anatomical geometry.Making reference to the specific case of breast cancer, one of the measurement that are made on the patients is the acquisition of the breast's contour, determined in an axial plane from a point marked on the breastbone until another point marked on the thorax side under the armpit.This measurement is normally made with a mechanic contour-meter: a device formed by a series of plastic-covered wires designed to be applied on the patient's skin copying the breast contour after it deformation.The geometrical error associated with this procedure is ± 1 cm. The precision of the dose calculation could be increased acquiring a breast contour more accurate.This objective was achieved developing a method based on breast images from a digital camera.The algorithms to obtain an axial-plane image of the contour from digital photographs taken from arbitrary positions were developed.A geometric transformation is applied to the photograph to correct for perspective distortions, obtaining a frontal - undistorted image (axial-plane image).A software tool to make all the image processing was developed under MatLab.The maximum geometrical error detected during the validation of the process was 2 mm

  13. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    Chen, H; Tan, J; Kavanaugh, J; Dolly, S; Gay, H; Thorstad, W; Anastasio, M; Altman, M; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States)

    2014-06-15

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-time and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding

  14. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-time and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding

  15. A method for automatically constructing the initial contour of the common carotid artery

    Yara Omran; Kamil Riha

    2013-01-01

    In this article we propose a novel method to automatically set the initial contour that is used by the Active contours algorithm.The proposed method exploits the accumulative intensity profiles to locate the points on the arterial wall. The intensity profiles of sections that intersect the artery show distinguishable characterstics that make it possible to recognize them from the profiles of sections that do not intersect the artery walls. The proposed method is applied on ultrasound images o...

  16. Diffusion models and neural activity

    Ricciardi, L. M.; Lánský, Petr

    London : Nature publishing group, 2003 - (Nadel, L.), s. 968-972 ISBN 0-333-79261-0 R&D Projects: GA ČR GA309/02/0168 Institutional research plan: CEZ:AV0Z5011922 Keywords : Neuronal activity, Diffusion model Subject RIV: ED - Physiology

  17. Hierarchical modeling of active materials

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  18. Modified Contour-Improved Perturbation Theory

    Cvetic, Gorazd; Martinez, Cristian; Valenzuela, Cristian

    2010-01-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard "contour improved" method based on a derivative expansion of the Adler function. The approach eliminates ambiguities coming from the existence of different integral expressions for the semihadronic tau decay ratio. Compared to the standard method, renormalization scale dependence is by more than a factor two weaker in modified contour improved perturbation theory. The last term of the expansion is reduced, and renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2$%$ lower than the "contour improved" value. We find $\\alpha_s(M_Z^2)=0.1211\\pm 0.0010$.

  19. Tongue contour extraction from ultrasound images based on deep neural network

    Jaumard-Hakoun, Aurore; Xu, Kele; Roussel-Ragot, Pierre; Dreyfus, Gérard; Denby, Bruce

    2016-01-01

    Studying tongue motion during speech using ultrasound is a standard procedure, but automatic ultrasound image labelling remains a challenge, as standard tongue shape extraction methods typically require human intervention. This article presents a method based on deep neural networks to automatically extract tongue contour from ultrasound images on a speech dataset. We use a deep autoencoder trained to learn the relationship between an image and its related contour, so that the model is able t...

  20. Optimization of Doppler velocity echocardiographic measurements using an automatic contour detection method.

    Gaillard, E; Kadem, L; Pibarot, P; Durand, L-G

    2009-01-01

    Intra- and inter-observer variability in Doppler velocity echocardiographic measurements (DVEM) is a significant issue. Indeed, imprecisions of DVEM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunction. To minimize the variability and rapidity of DVEM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared to those obtained manually by an experienced echocardiographer on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients, 15 with aortic stenosis and 15 with mitral stenosis. We focused on three essential variables that are measured routinely by Doppler echocardiography in the clinical setting: the maximum velocity, the mean velocity and the velocity-time integral. Comparison between the two methods has shown a very good agreement (linear correlation coefficient R(2) = 0.99 between the automatically and the manually extracted variables). Moreover, the computation time was really short, about 5s. This new method applied to DVEM could, therefore, provide a useful tool to eliminate the intra- and inter-observer variabilities associated with DVEM and thereby to improve the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared to standard manual tracing method. From a practical point of view, the model developed can be easily implanted in a standard echocardiographic system. PMID:19965162

  1. Emphasis: an active management model

    The Institute of Nuclear Materials Management was founded and has grown on the basis of promoting professionalism in the nuclear industry. This paper is concerned with professional management of nuclear material. The paper introduces the reader to Emphasis, an active management model. The management model provides the framework to assist a manager in directing his available resources. Emphasis provides for establishing goals, identifying and selecting objectives, matching objectives to specific personnel, preparing and monitoring action plans, and evaluating results. The model stresses crisis prevention by systematically administering and controlling resources. A critical requirement for implementation of the model is the desire to manage, to be in charge of the situation. The nuclear industry does need managers - people who realize the sensitive nature of the industry, professionals who insist on improved performance

  2. Contour junctions underlie neural representations of scene categories in high-level human visual cortex.

    Choo, Heeyoung; Walther, Dirk B

    2016-07-15

    Humans efficiently grasp complex visual environments, making highly consistent judgments of entry-level category despite their high variability in visual appearance. How does the human brain arrive at the invariant neural representations underlying categorization of real-world environments? We here show that the neural representation of visual environments in scene-selective human visual cortex relies on statistics of contour junctions, which provide cues for the three-dimensional arrangement of surfaces in a scene. We manipulated line drawings of real-world environments such that statistics of contour orientations or junctions were disrupted. Manipulated and intact line drawings were presented to participants in an fMRI experiment. Scene categories were decoded from neural activity patterns in the parahippocampal place area (PPA), the occipital place area (OPA) and other visual brain regions. Disruption of junctions but not orientations led to a drastic decrease in decoding accuracy in the PPA and OPA, indicating the reliance of these areas on intact junction statistics. Accuracy of decoding from early visual cortex, on the other hand, was unaffected by either image manipulation. We further show that the correlation of error patterns between decoding from the scene-selective brain areas and behavioral experiments is contingent on intact contour junctions. Finally, a searchlight analysis exposes the reliance of visually active brain regions on different sets of contour properties. Statistics of contour length and curvature dominate neural representations of scene categories in early visual areas and contour junctions in high-level scene-selective brain regions. PMID:27118087

  3. The center of lateral iso-density contours for inclined cosmic air showers

    Montanus, J M C

    2015-01-01

    The lateral density of a cosmic air shower with a non-zero zenith angle is azimuthally asymmetric. The azimuthal asymmetry consist of a stretching of the iso-density contours to ellipses and to a shift of the center of the elliptic contours with respect to the core of the shower. The aim of the paper is to investigate the shift of the center of the elliptic iso-density contours for different zenith angles . On the basis of a model a qualitative equation is derived for the iso-density contours of inclined showers including the shift. to obtain a quantitative equation MC densities are investigated. The shift can be incorporated in an analytic expression of the azimuthal asymmetry of the lateral density as a function of the polar coordinates and parameterized by the zenith angle. Its predictions for asymmetric lateral densities are compared with densities obtained with MC simulations.

  4. A new approach of drawing airport noise contours on computer based on Surfer

    ZHANG Bang-jun; GUO Chun-yan; Di Guo-qing

    2004-01-01

    Noise contours are used to describe the extent of airport noise pollution and to plan land use around airports. The LwEcPN (weighted equivalent continuous perceive noise level) recommended by ICAO(International Civil Aviation Organization ) is adopted as airport noise rating parameter in this paper. With the help of various mathematical models in the software Surfer, noise contours can be drawn automatically by the completed program in Visual C++ Code. Corrections for thrust, velocity, atmospheric temperature, humidity and lateral ground attenuation are also considered in the new method, which can improve the efficiency of drawing contours. An example of its use for drawing noise contours of an airport in Zhejiang Province of China is proposed and the predictions and the measurements show agreements well.

  5. Contours--Offshore of San Gregorio, California

    U.S. Geological Survey, Department of the Interior — This part of SIM 3306 presents data for the bathymetric contours for several seafloor maps (see sheets 1, 2, 3, 7, 10, SIM 3306) of the Offshore of San Gregorio map...

  6. Maintaining Contour Trees of Dynamic Terrains

    Agarwal, Pankaj K.; Arge, Lars; Mølhave, Thomas; Revsbæk, Morten; Yang, Jungwoo

    We consider maintaining the contour tree T of a piecewise-linear triangulation M that is the graph of a time varying height function h:R2→R. We carefully describe the combinatorial change in T that happen as h varies over time and how these changes relate to topological changes in M. We present a...

  7. Expectations for melodic contours transcend pitch.

    Graves, Jackson E; Micheyl, Christophe; Oxenham, Andrew J

    2014-12-01

    The question of what makes a good melody has interested composers, music theorists, and psychologists alike. Many of the observed principles of good "melodic continuation" involve melodic contour-the pattern of rising and falling pitch within a sequence. Previous work has shown that contour perception can extend beyond pitch to other auditory dimensions, such as brightness and loudness. Here, we show that the generalization of contour perception to nontraditional dimensions also extends to melodic expectations. In the first experiment, subjective ratings for 3-tone sequences that vary in brightness or loudness conformed to the same general contour-based expectations as pitch sequences. In the second experiment, we modified the sequence of melody presentation such that melodies with the same beginning were blocked together. This change produced substantively different results, but the patterns of ratings remained similar across the 3 auditory dimensions. Taken together, these results suggest that (a) certain well-known principles of melodic expectation (such as the expectation for a reversal following a skip) are dependent on long-term context, and (b) these expectations are not unique to the dimension of pitch and may instead reflect more general principles of perceptual organization. PMID:25365571

  8. Conversion of contours to cartesian grids

    Mann, Jakob; Broe, Brian Riget

    A robust and efficient method of calculating a cartesian grid of heights or roughnesses from contour line maps is developed. The purpose of the grids is to serve as input for atmospheric flow solvers such as WAsP Engineering or EllipSys3D. The method builds on Delaunay triangulation constrained to...

  9. Contours--Offshore of Carpinteria, California

    U.S. Geological Survey, Department of the Interior — This part of SIM 3261 presents data for the bathymetric contours for several seafloor maps (see sheets 1, 2, 3, 5 [in figs. 1, 2, 3], 7, 10, SIM 3261) of the...

  10. Some Contour Integrals Involving Generalised Hypergeometric Function

    S. D. Bajpai

    1970-04-01

    Full Text Available Contour integral involving Fox's H-function and modified Bessel function of the first kind has been calculated. Some important properties and particular cases of H-function, which is a generalization of G-function, have been derived and discussed.

  11. Pressure contours on forming dies

    Ravn, Bjarne Gottlieb; Andersen, Claus Bo; Wanheim, Tarras

    2001-01-01

    In contemporary practice, tool desing and its optimisation is accomplished largely though the use of empirical knowledge and extensive experience. A considerable amount of trial and error is necessary in order to be able to set-up a tool for a reliable and reproducible process. One of the major a...... aims of cold-forging research, therefore, is to reduce this trial and error procedure. This can be achieved by means of the prysical model technique combined with the necessary calculations....

  12. Stokes-Leibenson problem for Hele-Shaw flow: a critical set in the space of contours

    Demidov, A. S.; Lohéac, J.-P.; Runge, V.

    2016-01-01

    The Stokes-Leibenson problem for Hele-Shaw flow is reformulated as a Cauchy problem of a nonlinear integro-differential equation with respect to functions a and b, linked by the Hilbert transform. The function a expresses the evolution of the coefficient longitudinal strain of the free boundary and b is the evolution of the tangent tilt of this contour. These functions directly reflect changes of geometric characteristics of the free boundary of higher order than the evolution of the contour point obtained by the classical Galin-Kochina equation. That is why we managed to uncover the reason of the absence of solutions in the sink-case if the initial contour is not analytic at at least one point, to prove existence and uniqueness theorems, and also to reveal a certain critical set in the space of contours. This set contains one attractive point in the source-case corresponding to a circular contour centered at the source-point. The main object of this work is the analysis of the discrete model of the problem. This model, called quasi-contour, is formulated in terms of functions corresponding to a and b of our integro-differential equation. This quasi-contour model provides numerical experiments which confirm the theoretical properties mentioned above, especially the existence of a critical subset of co-dimension 1 in space of quasi-contours. This subset contains one attractive point in the source-case corresponding to a regular quasi-contour centered at the source-point. The main contribution of our quasi-contour model concerns the sink-case: numerical experiments show that the above subset is attractive. Furthermore, this discrete model allows to extend previous results obtained by using complex analysis. We also provide numerical experiments linked to fingering effects.

  13. Subsidence Contours for South Louisiana; UTM 15N NAD83; LRA (2005); [subsidence_contours

    Louisiana Geographic Information Center — The GIS data shapefile represents average subsidence contour intervals (0.02 cm/year over 10,000 years) for Coastal LA derived from the following: Kulp, M.A., 2000,...

  14. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A [Duke University Medical Center, Durham, NC (United States); Ge, Y [University of North Carolina at Charlotte, Charlotte, NC (United States)

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  15. USGS Elevation Contours Overlay Map Service from The National Map

    U.S. Geological Survey, Department of the Interior — The USGS Elevation Contours service from The National Map (TNM) consists of contours generated for the conterminous United States from 1- and 1/3 arc-second...

  16. Contour identification with pitch and loudness cues using cochlear implants

    Luo, Xin; Masterson, Megan E.; Wu, Ching-Chih

    2013-01-01

    Different from speech, pitch and loudness cues may or may not co-vary in music. Cochlear implant (CI) users with poor pitch perception may use loudness contour cues more than normal-hearing (NH) listeners. Contour identification was tested in CI users and NH listeners; the five-note contours contained either pitch cues alone, loudness cues alone, or both. Results showed that NH listeners' contour identification was better with pitch cues than with loudness cues; CI users performed similarly w...

  17. The development of contour processing: evidence from physiology and psychophysics

    PeterGerhardstein; KellyDickerson

    2014-01-01

    Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuris...

  18. Control of Open Contour Formations of Autonomous Underwater Vehicles

    Uwe Zimmer; Shahab Kalantar

    2008-01-01

    In this paper, we propose a distributed elastic behaviour for a deformable chain-like formation of small autonomous underwater vehicles with the task of forming special shapes which have been explicitly defined or are defined by some iso-contour of an environmental concentration field. In the latter case, the formation has to move in such a way as to meet certain formation parameters as well as adapt to the iso-line. We base our controller on our previous models (for manually controlled end p...

  19. Control of Open Contour Formations of Autonomous Underwater Vehicles

    Uwe Zimmer

    2008-11-01

    Full Text Available In this paper, we propose a distributed elastic behaviour for a deformable chain-like formation of small autonomous underwater vehicles with the task of forming special shapes which have been explicitly defined or are defined by some iso-contour of an environmental concentration field. In the latter case, the formation has to move in such a way as to meet certain formation parameters as well as adapt to the iso-line. We base our controller on our previous models (for manually controlled end points using general curve evolution theory but will also propose appropriate motions for the end robots of an open chain.

  20. Contour tracking and corner detection in a logic programming environment

    Bell, Benjamin; Pau, L. F.

    1990-01-01

    has been very good in many more complex images, as it allows for feedback both ways between sensor input and symbolic models. More important is the parameter selection capability in a dynamic version where background properties change. The authors present examples of Prolog predicates for performing......The added functionality such as contour tracking and corner detection which logic programming lends to standard image operators is described. An environment for implementing low-level imaging operations with Prolog predicates is considered. Within this environment, higher-level image predicates...

  1. Sound wave contours around wind turbine arrays

    Noise pollution is an important factor in selecting suitable sites for wind turbines in order to realize 1000 MW of wind power as planned by the Dutch government for the year 2000. Therefore an accurate assessment of wind turbine noise is important. The amount of noise pollution from a wind turbine depends on the wind conditions. An existing standard method to assess wind turbine noise is supplemented and adjusted. In the first part of the investigation the method was developed and applied for a solitary sound source. In the second part attention is paid to the use of the method for wind turbine arrays. It appears that the adjusted method results in a shift of the contours of the permitted noise level. In general the contours are 15-25% closer to the wind farm, which means that the minimal permitted distance between houses and wind turbine arrays can be reduced. 14 figs., 1 tab., 4 appendices, 7 refs

  2. Contours, contour 50 ft, Published in 2009, 1:24000 (1in=2000ft) scale, Washington County.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as 'contour 50 ft'....

  3. Contours, 2 foot contours, Published in 2010, 1:1200 (1in=100ft) scale, Green Lake County, WI.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2010. It is described as '2 foot contours'....

  4. Contours, contours 5m tc, Published in 2009, 1:24000 (1in=2000ft) scale, Tooele County.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as 'contours 5m tc'....

  5. Contours, contours 100 ft, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'contours 100 ft'....

  6. Contours, Tagged Vector Contours obtained from DASC, Published in 2003, 1:24000 (1in=2000ft) scale, Reno County.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale as of 2003. It is described as 'Tagged Vector Contours obtained from DASC'. Data by this publisher...

  7. Contours, contours 500 ft, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'contours 500 ft'....

  8. Musical Pattern Design Using Contour Icons

    Cullen, Charlie; Coyle, Eugene

    2006-01-01

    This paper considers the use of Contour Icons in the design and implementation of musical patterns, for the purposes of detection and recognition. Research work had endeavoured to deliver musical patterns that were both distinct and memorable, and to this end a set of basic melodic shapes were introduced using a Sonification application called TrioSon that had been designed for the purpose. Existing work in the field (such as that concerning Earcon design) has considered the mechanisms by whi...

  9. Numerosity underestimation in sets with illusory contours.

    Kirjakovski, Atanas; Matsumoto, Eriko

    2016-05-01

    People underestimate the numerosity of collections in which a few dots are connected in pairs by task-irrelevant lines. Such configural processing suggests that visual numerosity depends on the perceived scene segments, rather than on the perceived total area occupied by a collection. However, a methodology that uses irrelevant line connections may also introduce unnecessary distraction and variety, or obscure the perception of task-relevant items, given the saliency of the lines. To avoid such potentially confounding variables, we conducted four experiments where the line-connected dots were replaced with collinear inducers of Kanizsa-type illusory contours. Our participants had to compare two simultaneously presented collections and choose the more numerous one. Displays comprised c-shaped inducers and disks (Experiment 1), c-shaped inducers only (Experiments 2 and 4), or closed inducers (Experiment 3). One display always showed a 12- (Experiments 1-3) or 48-item reference pattern (Experiment 4); the other was a test pattern with numerosity varying between 9 and 15 (Experiments 1-3) or 36-60 items (Experiment 4). By manipulating the number of illusory contours in the test patterns, the level of connectedness increased or decreased respectively. The fitted psychometric functions revealed an underestimation that increased with the number of illusory contours in Experiments 1 and 2, but was absent in Experiments 3 and 4, where illusory contours were more difficult to perceive or larger numerosities were used. Results corroborate claims that visual numerosity estimation depends on segmented inputs, but only within moderate numerical ranges. PMID:27038561

  10. Dynamic contour tonometry in asymmetric glaucoma patients

    Parchen MAR

    2012-04-01

    Full Text Available Emilio Rintaro Suzuki Jr1, Cibele Lima Belico Suzuki1, Danielle Carlier1, Daniele Penha1, Marta dos Anjos Rodrigues Parchen1, Wagner Duarte Batista1, Joao Agostini Netto21Glaucoma Service, 2Department of Ophthalmology, Santa Casa de Belo Horizonte, MG, BrazilBackground: The purpose of this study was to determine any difference in dynamic contour tonometry and ocular pulse amplitude in asymmetric glaucoma patients with the same applanation intraocular pressure.Methods: This is a prospective, observational study of 30 glaucoma patients and 11 controls from June 2007 to February 2008. Most of the glaucoma patients were on prostaglandin analog treatment.Results: Mean applanation intraocular pressure in the control group was 14.28 mmHg for the right eye and 14.10 mmHg for the left eye (P > 0.05. Corneal thickness was 519.10 µm for the right eye and 511.07 µm for the left eye (P > 0.05. Mean dynamic contour tonometry intraocular pressure was 17.28 mmHg for the right eye and 17.25 mmHg for the left eye (P > 0.05. Mean ocular pulse amplitude was 2.80 mmHg for the right eye and 2.92 mmHg for the left eye (P > 0.05.Conclusion: No differences in ocular pulse amplitude were found between the two groups and between the worst and the best eye. In spite of there being no difference in ocular pulse amplitude, dynamic contour tonometry intraocular pressure was 2.44 mmHg higher in the worst eye than in the best eye in the glaucoma patients, even with the same applanation intraocular pressure. Further studies are needed to confirm if this difference is related to glaucoma progression or a worst prognosis and whether it can be considered to be a new risk factor.Keywords: dynamic contour tonometry, central cornea thickness, assymetric glaucoma

  11. The hydrological impact of contour trenching in Vietnam

    Pramana, K. E. R.; Ertsen, M. W.; Uhlenbrook, S.; de Laat, P.; Nonner, J.

    2009-04-01

    At the foothill in the driest rural area in Vietnam, at Ninh Thuan province, poor farmers cultivate up-land crops during the wet season. The area is about 9 hectares of deforested land with a slope up to 8% and has a geology surface of crusted sands and gravels. Water is scarce during the dry season and runs off rapidly during the wet season. Hence, to provide sustainable water resources and support crop growth, a project started in 2007 aiming introducing contour trenching. The main purpose of contour trenching is to trap run off, increase soil moisture for vegetation growth and recharge the groundwater. In order to investigate the impact of the trenches, a field monitoring program was initiated measuring rainfall, soil moisture content, surface water levels and groundwater levels. Recorded annual rainfall reached 600 mm. The groundwater levels are relatively deep and constant at -8 and -10 meters. The soil moisture content ranged from 3% at the driest condition to 37% below the trench at ponding. Water levels in trenches differed from uphill to downhill with higher levels at the first trench uphill. After ponding, water in the trenches infiltrates within a period of days. In this contribution, available field measurements are analyzed in two ways. First, runoff is analyzed. Immediately after significant rainfall events, the observed ponding levels in the trenches with defined uphill runoff areas can be related to the rainfall. The results show reduction of runoff coefficients per trench in downhill direction. Second, the two dimension numerical saturated-unsaturated model Hydrus 2-D was used to simulate the soil moisture content measurements. Model results confirm that infiltration is a quick process in this area with its loamy sand soils. Based on these analyzes, potential of contour trenches for local water retention and groundwater recharge will be discussed.

  12. Semi-automated contour recognition using DICOMautomaton

    Clark, H.; Wu, J.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Thomas, S.

    2014-03-01

    Purpose: A system has been developed which recognizes and classifies Digital Imaging and Communication in Medicine contour data with minimal human intervention. It allows researchers to overcome obstacles which tax analysis and mining systems, including inconsistent naming conventions and differences in data age or resolution. Methods: Lexicographic and geometric analysis is used for recognition. Well-known lexicographic methods implemented include Levenshtein-Damerau, bag-of-characters, Double Metaphone, Soundex, and (word and character)-N-grams. Geometrical implementations include 3D Fourier Descriptors, probability spheres, boolean overlap, simple feature comparison (e.g. eccentricity, volume) and rule-based techniques. Both analyses implement custom, domain-specific modules (e.g. emphasis differentiating left/right organ variants). Contour labels from 60 head and neck patients are used for cross-validation. Results: Mixed-lexicographical methods show an effective improvement in more than 10% of recognition attempts compared with a pure Levenshtein-Damerau approach when withholding 70% of the lexicon. Domain-specific and geometrical techniques further boost performance. Conclusions: DICOMautomaton allows users to recognize contours semi-automatically. As usage increases and the lexicon is filled with additional structures, performance improves, increasing the overall utility of the system.

  13. Semi-automated contour recognition using DICOMautomaton

    Purpose: A system has been developed which recognizes and classifies Digital Imaging and Communication in Medicine contour data with minimal human intervention. It allows researchers to overcome obstacles which tax analysis and mining systems, including inconsistent naming conventions and differences in data age or resolution. Methods: Lexicographic and geometric analysis is used for recognition. Well-known lexicographic methods implemented include Levenshtein-Damerau, bag-of-characters, Double Metaphone, Soundex, and (word and character)-N-grams. Geometrical implementations include 3D Fourier Descriptors, probability spheres, boolean overlap, simple feature comparison (e.g. eccentricity, volume) and rule-based techniques. Both analyses implement custom, domain-specific modules (e.g. emphasis differentiating left/right organ variants). Contour labels from 60 head and neck patients are used for cross-validation. Results: Mixed-lexicographical methods show an effective improvement in more than 10% of recognition attempts compared with a pure Levenshtein-Damerau approach when withholding 70% of the lexicon. Domain-specific and geometrical techniques further boost performance. Conclusions: DICOMautomaton allows users to recognize contours semi-automatically. As usage increases and the lexicon is filled with additional structures, performance improves, increasing the overall utility of the system.

  14. Augmented active surface model for the recovery of small structures in CT.

    Bradshaw, Andrew Philip; Taubman, David S; Todd, Michael J; Magnussen, John S; Halmagyi, G Michael

    2013-11-01

    This paper devises an augmented active surface model for the recovery of small structures in a low resolution and high noise setting, where the role of regularization is especially important. The emphasis here is on evaluating performance using real clinical computed tomography (CT) data with comparisons made to an objective ground truth acquired using micro-CT. In this paper, we show that the application of conventional active contour methods to small objects leads to non-optimal results because of the inherent properties of the energy terms and their interactions with one another. We show that the blind use of a gradient magnitude based energy performs poorly at these object scales and that the point spread function (PSF) is a critical factor that needs to be accounted for. We propose a new model that augments the external energy with prior knowledge by incorporating the PSF and the assumption of reasonably constant underlying CT numbers. PMID:24048014

  15. New approach of decomposition of complex spectral contours based on particles swarm optimization

    The approach based on the stochastic algorithm of particle swarm optimization was used for mathematical treatment of spectral contours. It was shown that the method supposed allows one to separate complex model spectra and to determine parameters of spectral components. In the mathematical experiments a random fractal noise as a model of noise was applied

  16. Pin guidance of reconstruction plate contour: an expanded role of external fixation.

    Jaquet, Yves; Higgins, Kevin M; Enepekides, Danny J

    2011-09-01

    This article presents a modification of intraoperative external fixation for mandibular reconstruction with free tissue flaps. This technique is indicated when preregistration of the reconstruction plate is not possible due to transmandibular tumor extension. Once standard external fixation has been carried out and prior to segmental mandibulectomy, additional pins are fixed to the connecting rod that delineate the mandibular contour in three-dimensional (3D) space. Following mandibulectomy, these pins allow accurate contouring of the reconstruction plate and improved restoration of mandibular contour, projection, and dental occlusion. A step-by-step description of the technique using models and intraoperative photos is presented. This method of mandibular reconstruction is a simple and time-effective alternative to intraoperative computer navigation and 3D modeling in select cases of oral carcinoma where tumor infiltration of the outer mandibular cortex precludes prebending of the reconstruction plates. PMID:22024840

  17. Contour Propagation With Riemannian Elasticity Regularization

    Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.;

    2011-01-01

    Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... is investigated. Materials/Methods: Planning PET-CT scans plus 2 - 4 subsequent replanning CTs for five head-and-neck cancer patients were obtained. The Gross Tumor Volume (GTV) was manually delineated on the planning CT by an experienced clinician and manually propagated by pasting the set of contours from...

  18. Automatic segmentation of vertebral contours from CT images using fuzzy corners.

    Athertya, Jiyo S; Saravana Kumar, G

    2016-05-01

    Automatic segmentation of bone in computed tomography (CT) images is critical for the implementation of computer-assisted diagnosis which has increasing potential in the evaluation of various spine disorders. Of the many techniques available for delineating the region of interest (ROI), active contour methods (ACM) are well-established techniques that are used to segment medical images. The initialization for these methods is either through manual intervention or by applying a global threshold, thus making them semi-automatic in nature. The paper presents a methodology for automatic contour initialization in ACM and demonstrates the applicability of the method for medical image segmentation from spinal CT images. Initially, a set of feature markers from the image is extracted to construct an initial contour for the ACM. A fuzzified corner metric, based on image intensity, is proposed to identify the feature markers to be enclosed by the contour. A concave hull based on α shape, is constructed using these fuzzy corners to give the initial contour. The proposed method was evaluated against conventional feature detectors and other initialization methods. The results show the method׳s robust performance in the presence of simulated Gaussian noise levels. The method enables the ACM to efficiently converge to the ground truth segmentation. The reference standard for comparison was the annotated images from a radiologist, and the Dice coefficient and Hausdorff distance measures were used to evaluate the segmentation. PMID:27017068

  19. Finite Element Analysis of the Effect of Proximal Contour of Class II Composite Restorations on Stress Distribution

    Mohammad Javad Moghaddas

    2013-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of proximal contour of class II composite restorations placed with straight or contoured matrix band using composite resins with different modulus of elasticity on stress distribution by finite element method. Methods: In order to evaluate the stress distribution of class II composite restorations using finite element method, upper right first molar and second premolar were modeled. Proximal boxes were designed and restored with universal Z250 and packable P60 composite resins (3M ESPE using two matrix systems: flat Tofflemire matrix and precurved sectional matrix. Finally models were evaluated under loads of 200 and 400 Newton at 90 degrees angle and the results were graphically illustrated in the form of Von Misses stresses. Results: In general the stress obtained under 400 Newton load was significantly greater than the stress of models under 200 Newton load. Von Misses stress distribution pattern of two different Z250 and P60 composites were very similar in all modes of loading and proximal contour. In all analyzed models there was a significant difference between models restored with Tofflemire matrix with flat contour and models restored with sectional matrix with curved contour. This difference was greater in first molar than second premolar. Conclusion: Use of a contoured matrix band results in less stress in class II composite resin restorations.

  20. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.

    Tobias Brosch

    2015-10-01

    Full Text Available The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology. Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and

  1. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.

    Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R

    2015-10-01

    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies

  2. Memory for pure tone sequences without contour.

    Lefebvre, Christine; Jolicœur, Pierre

    2016-06-01

    We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26903419

  3. Two Cases of Lower Body Contouring with

    Hyun Ho Han

    2012-01-01

    Full Text Available Massive weight loss results in skin excess, leading to an unsatisfying body contour. Variousthigh lift procedures can correct flabby skin in the lower leg. We present a lower bodycontouring technique with a report on two patients. The procedure is determined by the bodycontour of the patient. As the skin excess in the thigh area tended to appear mostly on themedial side, a vertical medial thigh lift was considered. Moreover, for patients with a pear/guitar-shaped body contour, we added the spiral thigh lift for skin excess in the buttocks andthe lateral thigh area. The extent of tissue to excise was determined by pinching the patientin a standing position. The inferior skin flap was fixed to non-movable tissue, which was helpfulfor lifting the tissue and preventing the widening of the scar. After the operation, a drain waskept for 3 to 4 days. A compressive garment was used after removing the drain. There wereno complications. The patients were discharged 6 to 8 days after the operation. In conclusion,skin excess, especially in the lower body, can be corrected by a thigh lift combining severalprocedures, varying from person to person.

  4. Wound Image Analysis Using Contour Evolution

    K. Sundeep Kumar

    2014-05-01

    Full Text Available The aim of the algorithm described in this paper is to segment wound images from the normal and classify them according to the types of the wound. The segmentation of wounds extravagates color representation, which has been followed by an algorithm of grayscale segmentation based on the stack mathematical approach. Accurate classification of wounds and analyzing wound healing process is a critical task for patient care and health cost reduction at hospital. The tissue uniformity and flatness leads to a simplified approach but requires multispectral imaging for enhanced wound delineation. Contour Evolution method which uses multispectral imaging replaces more complex tools such as, SVM supervised classification, as no training step is required. In Contour Evolution, classification can be done by clustering color information, with differential quantization algorithm, the color centroids of small squares taken from segmented part of the wound image in (C1,C2 plane. Where C1, C2 are two chrominance components. Wound healing is identified by measuring the size of the wound through various means like contact and noncontact methods of wound. The wound tissues proportion is also estimated by a qualitative visual assessment based on the red-yellow-black code. Moreover, involving all the spectral response of the tissue and not only RGB components provides a higher discrimination for separating healed epithelial tissue from granulation tissue.

  5. Large bulk-yard 3D measurement based on videogrammetry and projected contour aiding

    Ou, Jianliang; Zhang, Xiaohu; Yuan, Yun; Zhu, Xianwei

    2011-07-01

    Fast and accurate 3D measurement of large stack-yard is important job in bulk load-and-unload and logistics management. Stack-yard holds its special characteristics as: complex and irregular shape, single surface texture and low material reflectivity, thus its 3D measurement is quite difficult to be realized by traditional non-contacting methods, such as LiDAR(LIght Detecting And Ranging) and photogrammetry. Light-section is good at the measurement of small bulk-flow but not suitable for large-scale bulk-yard yet. In the paper, an improved method based on stereo cameras and laser-line projector is proposed. The due theoretical model is composed from such three key points: corresponding point of contour edge matching in stereo imagery based on gradient and epipolar-line constraint, 3D point-set calculating for stereo imagery projected-contour edge with least square adjustment and forward intersection, then the projected 3D-contour reconstructed by RANSAC(RANdom SAmpling Consensus) and contour spatial features from 3D point-set of single contour edge. In this way, stack-yard surface can be scanned easily by the laser-line projector, and certain region's 3D shape can be reconstructed automatically by stereo cameras on an observing position. Experiment proved the proposed method is effective for bulk-yard 3D measurement in fast, automatic, reliable and accurate way.

  6. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan;

    2013-01-01

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences....... In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural...

  7. The center of lateral iso-density contours for inclined cosmic air showers

    Montanus, J. M. C.

    2016-02-01

    The horizontal lateral density of a cosmic air shower with a non-zero zenith angle is asymmetric. The asymmetry consist of a stretching of the iso-density contours to ellipses and to a shift of the center of the elliptic contours with respect to the core of the shower. The shift is caused by atmospheric attenuation. The modeling of the attenuation results in an equation for the shift as a function of zenith angle and the size of the iso-density contours. A more accurate equation is obtained by investigating the shift in lateral densities of simulated showers. It is shown how the shift can be incorporated in an elliptic lateral density function. A linear approximation for the shift allows for an analytical solution for the shifted elliptic density. Its predictions for the polar variations of the density are compared with data of simulated showers.

  8. Pose Estimation using a Hierarchical 3D Representation of Contours and Surfaces

    Buch, Anders Glent; Kraft, Dirk; Kämäräinen, Joni-Kristian; Krüger, Norbert

    We present a system for detecting the pose of rigid objects using texture and contour information. From a stereo image view of a scene, a sparse hierarchical scene representation is reconstructed using an early cognitive vision system. We define an object model in terms of a simple context descri...... variety of real-world objects rendered in a controlled virtual environment. Our experiments show the complementary role of 3D texture and contour information allowing for pose estimation with high robustness and accuracy....... descriptor of the contour and texture features to provide a sparse, yet descriptive object representation. Using our descriptors, we do a search in the correspondence space to perform outlier removal and compute the object pose. We perform an extensive evaluation of our approach with stereo images of a...

  9. The influence of rotationally symmetric casing contours on the rotor tip clearance flow; Beeinflussung von Rotorspaltstroemungen durch rotationssymmetrische Gehaeusekonturen

    Kroeger, Georg Philipp

    2010-07-01

    This thesis presents a method to reduce the tip clearance losses in compressor rotors by a wave-like casing contour. The approach is explained on the basis of a simple optimization example. The aerodynamic effects of the casing contour on the clearance flow and the clearance vortex are shown and discussed. A pressure potential is created by the interaction of the axial flow component with the wavy casing shape, which changes the formation and the development of the leakage vortex essentially. The theory of the rotationally symmetric casing contour is established and discussed with the help of a one dimensional incompressible Rankine vortex model. Further examples show the optimized casing contour for rotor blades with higher inflow Mach numbers and for a combined optimization of the casing shape and the blade tip airfoil section. Finally, the combined design approach is successfully applied to an entire Siemens compressor model. (orig.)

  10. Teaching tone and intonation with the Prosody Workstation using schematic versus veridical contours

    Allen, George D.; Eulenberg, John B.

    2001-05-01

    Prosodic features of speech (e.g., intonation and rhythm) are often challenging for adults to learn. Most computerized teaching tools, developed to help learners mimic model prosodic patterns, display lines representing the veridical (actual) acoustic fundamental frequency and intensity of the model speech. However, a veridical display may not be optimal for this task. Instead, stereotypical representations (e.g., simplified level or slanting lines) may help by reducing the amount of potentially distracting information. The Prosody Workstation (PW) permits the prosodic contours of both models and users' responses to be displayed using either veridical or stereotypical contours. Users are informed by both visual displays and scores representing the degree of match of their utterance to the model. American English-speaking undergraduates are being studied learning the tone contours and rhythm of Chinese and Hausa utterances ranging in length from two to six syllables. Data include (a) accuracy of mimicking of the models' prosodic contours, measured by the PW; (b) quality of tonal and rhythmic production, judged by native speaker listeners; and (c) learners' perceptions of the ease of the task, measured by a questionnaire at the end of each session.

  11. A new algorithm of brain volume contours segmentation

    吴建明; 施鹏飞

    2003-01-01

    This paper explores brain CT slices segmentation technique and some related problems, including contours segmentation algorithms, edge detector, algorithm evaluation and experimental results. This article describes a method for contour-based segmentation of anatomical structures in 3D medical data sets. With this method, the user manually traces one or more 2D contours of an anatomical structure of interest on parallel planes arbitrarily cutting the data set. The experimental results showes the segmentation based on 3D brain volume and 2D CT slices. The main creative contributions in this paper are: (1) contours segmentation algorithm; (2) edge detector; (3) algorithm evaluation.

  12. Contour plotting programs for printer and Calcomp plotter

    Contour plotting programs for plotting contour diagrams on printers or Calcomp plotters are described. The subroutines also exist in versions that are useful for the special application of finding minima and saddlepoints of nuclear potential energy surfaces generated by the subroutine PETR3 of another program package. For the general user, however, the most interesting aspect of the plotting package is probably the possibility of generating printer contour plots. The plotting of printer contour plots is a very fast and convenient way of displaying two-dimensional functions. 3 figures

  13. Contour identification with pitch and loudness cues using cochlear implants.

    Luo, Xin; Masterson, Megan E; Wu, Ching-Chih

    2014-01-01

    Different from speech, pitch and loudness cues may or may not co-vary in music. Cochlear implant (CI) users with poor pitch perception may use loudness contour cues more than normal-hearing (NH) listeners. Contour identification was tested in CI users and NH listeners; the five-note contours contained either pitch cues alone, loudness cues alone, or both. Results showed that NH listeners' contour identification was better with pitch cues than with loudness cues; CI users performed similarly with either cues. When pitch and loudness cues were co-varied, CI performance significantly improved, suggesting that CI users were able to integrate the two cues. PMID:24437857

  14. 一种基于二次变换运动预测的有损分割图轮廓编码%A Lossy Contour-Based Representation of Segmentation Maps Using Quadratic Transformations Motion Prediction

    2000-01-01

    In the context of object-oriented video coding, the encoding of segmentation maps defined by contour networks is particularly critical. In this paper, we present a lossy contour network encoding algorithm where both the rate distortion contour encoding based on maximum operator and the prediction error for the current frame based on quadratic motion model are combined into a optimal polygon contour network compression scheme. The bit rate for the contour network can be further reduced by about 20% in comparison with that in the optimal polygonal boundary encoding scheme using maximum operator in the rate distortion sense.

  15. Modeling Students' Units Coordinating Activity

    Boyce, Steven James

    2014-01-01

    Primarily via constructivist teaching experiment methodology, units coordination (Steffe, 1992) has emerged as a useful construct for modeling students' psychological constructions pertaining to several mathematical domains, including counting sequences, whole number multiplicative conceptions, and fractions schemes. I describe how consideration of units coordination as a Piagetian (1970b) structure is useful for modeling units coordination across contexts. In this study, I extend teaching ...

  16. Modeling Workflow Using UML Activity Diagram

    Wei Yinxing(韦银星); Zhang Shensheng

    2004-01-01

    An enterprise can improve its adaptability in the changing market by means of workflow technologies. In the build time, the main function of Workflow Management System (WFMS) is to model business process. Workflow model is an abstract representation of the real-world business process. The Unified Modeling Language (UML) activity diagram is an important visual process modeling language proposed by the Object Management Group (OMG). The novelty of this paper is representing workflow model by means of UML activity diagram. A translation from UML activity diagram to π-calculus is established. Using π-calculus, the deadlock property of workflow is analyzed.

  17. Automatic Contour Extraction from 2D Image

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  18. India-Pakistan: Contours of Relationship

    Devika Mittal

    2016-06-01

    Full Text Available Even after about 70 years of separation, India and Pakistan continue to live in the prison of the past. The rhetoric of partition is still alive in the memory of the people of both the countries. They have constructed fixed, unchanging and competing images for each other. While Pakistan became an Islamic Republic, India adopted secularism, thereby, negating the two-nation theory. The ‘differences’ along with memories of partition has made Indian and Pakistani to remain in permanent hostile situation. The leaders of the two countries try to settle their disputes but fails because of lack of support from their social and political institutions. Since its coming into power in 2014, the NDA government under the Indian Prime Minister, Mr. Narendra Modi has managed to engage the Pakistani establishment, despite many problems between the two countries. This article tries to highlight upon the contours of relationships post-2014.

  19. Contour gauges, canonical formalism and flux algebras

    A broad class of contour gauges is shown to be determined by admissible contractions of the geometrical region considered and a suitable equivalence class of curves is defined. In the special case of magnetostatics, the relevant electromagnetic potentials are directly related to the ponderomotive forces. Schwinger's method of extracting a gauge invariant factor from the fermion propagator could, it is argued, lead to incorrect results. Dirac brackets of both Maxwell and Yang-Mills theories are given for arbitrary admissible space-like paths. It is shown how to define a non-abelian flux and local charges which obey a local charge algebra. Fields associated with the charges differ from the electric fields of the theory by singular topological terms; to avoid this obstruction to the Gauss law it is necessary to exclude a single, gauge fixing curve from the region considered

  20. Cheap contouring of costly functions: the Pilot Approximation Trajectory algorithm

    The Pilot Approximation Trajectory (PAT) contour algorithm can find the contour of a function accurately when it is not practical to evaluate the function on a grid dense enough to use a standard contour algorithm, for instance, when evaluating the function involves conducting a physical experiment or a computationally intensive simulation. PAT relies on an inexpensive pilot approximation to the function, such as interpolating from a sparse grid of inexact values, or solving a partial differential equation (PDE) numerically using a coarse discretization. For each level of interest, the location and ‘trajectory’ of an approximate contour of this pilot function are used to decide where to evaluate the original function to find points on its contour. Those points are joined by line segments to form the PAT approximation of the contour of the original function. Approximating a contour numerically amounts to estimating a lower level set of the function, the set of points on which the function does not exceed the contour level. The area of the symmetric difference between the true lower level set and the estimated lower level set measures the accuracy of the contour. PAT measures its own accuracy by finding an upper confidence bound for this area. In examples, PAT can estimate a contour more accurately than standard algorithms, using far fewer function evaluations than standard algorithms require. We illustrate PAT by constructing a confidence set for viscosity and thermal conductivity of a flowing gas from simulated noisy temperature measurements, a problem in which each evaluation of the function to be contoured requires solving a different set of coupled nonlinear PDEs. (paper)

  1. THE CONTOUR METHOD: SIMPLE 2-D MAPPING OF RESIDUAL STRESSES

    M. PRIME; A. GONZALES

    2000-06-01

    We present an entirely new method for measuring residual stress that is extremely simple to apply yet more powerful than existing techniques. In this method, a part is carefully cut in two. The contour of the resulting new surface is measured to determine the displacements normal to the surface caused by the release of the residual stresses. Analytically, the opposite of these measured displacements are applied as boundary conditions to the surface in a finite element model. By Bueckner's superposition principle, this gives the original residual stresses normal to the plane of the cut. Unlike other relaxation methods for measuring residual stress, the measured data can be used to solve directly for the stresses without a tedious inversion technique. At the same time, an arbitrary two-dimensional variation in stresses can be determined. We demonstrate the method on a steel specimen with a known residual stress profile.

  2. Field-Level Financial Assessment of Contour Prairie Strips for Enhancement of Environmental Quality

    Tyndall, John C.; Schulte, Lisa A.; Liebman, Matthew; Helmers, Matthew

    2013-09-01

    The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from 590 to 865 ha-1 year-1 (240-350 ac-1 year-1). Expressed in the context of "treatment area" (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as 59 to about 87 per treated hectare (24-35 ac-1). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between 7.79 and 11.46 mg-1, phosphorus retained costs between 6.97 and 10.25 kg-1, and nitrogen retained costs between 1.59 and 2.34 kg-1. Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.

  3. Modeling of active beam units with Modelica

    Maccarini, Alessandro; Hultmark, Göran; Vorre, Anders; Afshari, Alireza; Bergsøe, Niels Christian

    2015-01-01

    This paper proposes an active beam model suitable for building energy simulations with the programming language Modelica. The model encapsulates empirical equations derived by a novel active beam terminal unit that operates with low-temperature heating and high-temperature cooling systems...

  4. Discursive Positionings and Emotions in Modelling Activities

    Daher, Wajeeh

    2015-01-01

    Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their…

  5. Threat Modelling for Active Directory

    Chadwick, David W

    2004-01-01

    This paper analyses the security threats that can arise against an Active Directory server when it is included in a Web application. The approach is based on the STRIDE classification methodology. The paper also provides outline descriptions of countermeasures that can be deployed to protect against the different threats and vulnerabilities identified here.

  6. Students’ mathematical learning in modelling activities

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    involved. We argue that progress in students’ conceptual learning needs to be conceptualised separately from that of progress in their modelling competency. Findings are that modelling activities open a window to the students’ images of the mathematical concepts involved; that modelling activities can......Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  7. A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study

    A dynamic multi-leaf collimator (DMLC) can be used to track a moving target during radiotherapy. One of the major benefits for DMLC tumor tracking is that, in addition to the compensation for tumor translational motion, DMLC can also change the aperture shape to conform to a deforming tumor projection in the beam's eye view. This paper presents a method that can track a deforming lung tumor in fluoroscopic video using active shape models (ASM) (Cootes et al 1995 Comput. Vis. Image Underst. 61 38-59). The method was evaluated by comparing tracking results against tumor projection contours manually edited by an expert observer. The evaluation shows the feasibility of using this method for precise tracking of lung tumors with deformation, which is important for DMLC-based real-time tumor tracking

  8. Modelling Typical Online Language Learning Activity

    Montoro, Carlos; Hampel, Regine; Stickler, Ursula

    2014-01-01

    This article presents the methods and results of a four-year-long research project focusing on the language learning activity of individual learners using online tasks conducted at the University of Guanajuato (Mexico) in 2009-2013. An activity-theoretical model (Blin, 2010; Engeström, 1987) of the typical language learning activity was used to…

  9. Evaluating a Model of Youth Physical Activity

    Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary

    2010-01-01

    Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…

  10. Automatic programming of grinding robot restoration of contours

    Are Willersrud

    1995-07-01

    Full Text Available A new programming method has been developed for grinding robots. Instead of using the conventional jog-and-teach method, the workpiece contour is automatically tracked by the robot. During the tracking, the robot position is stored in the robot control system every 8th millisecond. After filtering and reducing this contour data, a robot program is automatically generated.

  11. Residual stress measurement of EB-welded plates with contour method. Part 2: FEM analysis of contour profiles

    Romppanen, A.-J.; Immonen, E. [Process Flow Oy, Turku (Finland)

    2013-12-15

    The residual stresses formed as a result of Electronic Beam welding (EB-welding) in copper are investigated by Posiva. In the present study, residual stresses of EB-welded copper plates were studied with contour method. In the method eleven copper plates (X436 - X440 and X453 - X458) were cut in half with wire electric discharge machining (EDM) after which the deformation due to stress relaxation was measured with coordinate measurement system. The measured data was then used as boundary displacement data for the FEM analyses, in which the corresponding residual stresses were calculated. Before giving the corresponding displacement boundary conditions to the FE models, the deformation data was processed and smoothed appropriately. The residual stress levels of the copper plates were found to be around 40 - 55 MPa at maximum. This corresponds to other reported residual stress measurements and current state of knowledge with this material in Posiva. (orig.)

  12. Target Contour Recovering for Tracking People in Complex Environments

    Jianhua Zhang

    2012-01-01

    Full Text Available Recovering people contours from partial occlusion is a challenging problem in a visual tracking system. Partial occlusions would bring about unreasonable contour changes of the target object. In this paper, a novel method is presented to detect partial occlusion on people contours and recover occluded portions. Unlike other occlusion detection methods, the proposed method is only based on contours, which makes itself more flexible to be extended for further applications. Experiments with synthetic images demonstrate the accuracy of the method for detecting partial occlusions, and experiments on real-world video sequence are also carried out to prove that the method is also good enough to be used to recover target contours.

  13. Active Learning for Player Modeling

    Shaker, Noor; Abou-Zleikha, Mohamed; Shaker, Mohammad

    2015-01-01

    the full dataset) is necessary for the construction of accu- rate models that are as accurate as those constructed from the full dataset. This indicates the potential of the method and its benefits in cases when obtaining the data is expensive or time, storage or effort consuming. The results also...... indicate that the method can be used online during the content generation process where the mod- els can improve and better content can be presented as the game is being played....

  14. The activity model of legal psychologist

    N.V. Bogdanovich,; V.A. Chernushevich

    2014-01-01

    We propose an activity model of legal psychologist work. As a basis for the construction of the system of legal psychologist activity, we use trajectory of teenager living in the legal field. As the main activities within their respective specializations, we highlighted prevention, maintenance and rehabilitation. We define the main activities necessary for the development within the FGOSIII specialization 050407 “Pedagogy and Psychology of deviant behavior”: general and pathopsychologic diagn...

  15. Modelling activity transport behavior in PWR plant

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  16. Computational Models for Analysis of Illicit Activities

    Nizamani, Sarwat

    devise policies to minimize them. These activities include cybercrimes, terrorist attacks or violent actions in response to certain world issues. Beside such activities, there are several other related activities worth analyzing, for which computational models have been presented in this thesis....... These models include a model for analyzing evolution of terrorist networks; a text classification model for detecting suspicious text and identification of suspected authors of anonymous emails; and a semantic analysis model for news reports, which may help analyze the illicit activities in certain area...... with location and temporal information. For the network evolution, the hierarchical agglomerative clustering approach has been applied to terrorist networks as case studies. The networks' evolutions show that how individual actors who are initially isolated from each other are converted in small groups, which...

  17. Activity transport models for PWR primary circuits

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR's. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.)

  18. Mouse Ability to Perceive Subjective Contours.

    Okuyama-Uchimura, Fumi; Komai, Shoji

    2016-03-01

    In contrast to the previously held notion that mice have a weak visual system, it is now generally accepted that mice can perceive rather complicated figures in various contexts such as in cognitive experiments and in social settings. Here, we show that mice could even be capable of perceiving a visual illusion--subjective contours. This illusion requires the visual system to compensate for a lack of visual information in compressed 2D images on the retina. In this experiment, we trained mice to respond appropriately to a rectangle-shaped rewarded figure of specific orientation in a two-choice visual discrimination task with a touchscreen monitor. In Transfer Test 1, mice could discriminate illusory rectangle-shaped figures significantly as compared with a figure, which did not induce illusory figures. In Transfer Test 2, the choice rate of targets decreased with imperfect illusory figures, which produced weak perception of rotated or deficient inducers. Moreover, in Transfer Test 3, mice could not discriminate the low-resolution illusory figure, which also induced weak perception. These results demonstrated the possibility that mice might be useful for investigating fundamental properties of the neural visual system. PMID:26562875

  19. Uniqueness of two-loop master contours

    Caron-Huot, Simon

    2012-01-01

    Generalized-unitarity calculations of two-loop amplitudes are performed by expanding the amplitude in a basis of master integrals and then determining the coefficients by taking a number of generalized cuts. In this paper, we present a complete classification of the solutions to the maximal cut of integrals with the double-box topology. The ideas presented here are expected to be relevant for all two-loop topologies as well. We find that these maximal-cut solutions are naturally associated with Riemann surfaces whose topology is determined by the number of states at the vertices of the double-box graph. In the case of four massless external momenta we find that, once the geometry of these Riemann surfaces is properly understood, there are uniquely defined master contours producing the coefficients of the double-box integrals in the basis decomposition of the two-loop amplitude. This is in perfect analogy with the situation in one-loop generalized unitarity. In addition, we point out that the chiral integrals ...

  20. Discourse-level contours in Nehiyawewin

    Muehlbauer, Jeff; Cook, Clare

    2005-04-01

    This study describes declination and discourse-sized intonation contours in Nehiyawewin, an Algonquian language whose pitch and intonation systems have not been previously studied. The study draws on 270 min of recordings of two female Nehiyaw elders telling their life stories to another Nehiyawewin native speaker. Data is analyzed by using Praat's default algorithm to generate f0 curves for each breath group. Preliminary results indicate: (1) When breath-group internal pitch peaks are considered, an obvious downward trend of f0 occurred in fewer than half the breath groups analyzed (about 40% or 37/90). This raises questions about the role of classical declination in natural discourse [Umeda, Journal of Phonetics 10 (1982)]. (2) When we abstract away from declination within a breath group by computing mean f0 and mean pitch peak for each breath group and tracking trends for these means, larger patterns seem to emerge; breath groups can be grouped into larger units based on raising and lowering trends. These units have a mean peak range of 150 Hz with a 30 Hz change from one breath group to the next and correspond to a domain of around five clauses (about 3-4 breath groups, about 45 syllables).

  1. Discursive positionings and emotions in modelling activities

    Daher, Wajeeh

    2015-11-01

    Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their participation in the modelling activity changed as the activity proceeded. Overall, it can be said that three of the four group members acted as insiders, while the fourth acted as an outsider, and only, towards the end of the group's work on the activity, he acted as an insider. Moreover, the research findings point at four factors that affected the group members' positionings and emotions during the modelling activity: the member's characteristics, the member's history of learning experiences, the activity characteristics and the modelling phases. Furthermore, the different positionings of the group members in the different modelling phases were accompanied by different emotions experienced by them, where being an insider and a collaborator resulted in positive emotions, while being an outsider resulted in negative emotions.

  2. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    ZARPALAS, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on to...

  3. Material properties from contours: New insights on object perception.

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. PMID:26072333

  4. The contour method: a new approach in experimental mechanics

    Prime, Michael B [Los Alamos National Laboratory

    2009-01-01

    The recently developed contour method can measure complex residual-stress maps in situations where other measurement methods cannot. This talk first describes the principle of the contour method. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contour of the resulting new surface, which will not be flat if residual stresses are relaxed by the cutting, is then measured. Finally, a conceptually simple finite element analysis determines the original residual stresses from the measured contour. Next, this talk gives several examples of applications. The method is validated by comparing with neutron diffraction measurements in an indented steel disk and in a friction stir weld between dissimilar aluminum alloys. Several applications are shown that demonstrate the power of the contour method: large aluminum forgings, railroad rails, and welds. Finally, this talk discusses why the contour method is significant departure from conventional experimental mechanics. Other relaxation method, for example hole-drilling, can only measure a 1-D profile of residual stresses, and yet they require a complicated inverse calculation to determine the stresses from the strain data. The contour method gives a 2-D stress map over a full cross-section, yet a direct calculation is all that is needed to reduce the data. The reason for these advantages lies in a subtle but fundamental departure from conventional experimental mechanics. Applying new technology to old methods like will not give similar advances, but the new approach also introduces new errors.

  5. Three-dimensional Quantitative Structure-activity Relationship Models of HIV-1 Integrase Inhibitors of DKAs

    ZHANG Mei-Qing; ZHAO Wen-Na; LU Shao-Yong

    2012-01-01

    As one of the three viral encoded enzymes of HIV-1 infection, HIV-1 integrase has become an attractive drug target for the treatment. Diketoacid compounds (DKAs) are one kind of potent and selective inhibitors of HIV-1 IN. In the present work, two three-dimensional QSAR techniques (CoMFA and CoMSIA) were employed to correlate the molecular structure with the activity of inhibiting the strand transfer for 147 DKAs. The all-oritation search (AOS) and all-placement search (APS) were used to optimize the CoMFA model. The diketo and keto-enol tautomers of DKAs were also used to establish the CoMFA models. The results indicated that the enol was the dominant conformation in the HIV-1 IN and DKAs complexes. It can provide a new method and reference to identify the bioactive conformation of drugs by using QSAR analysis. The best CoMSIA model, with five fields combined, implied that the hydrophobic field is very important as well as the steric and electrostatic fields. All models indicated favorable internal validation. A comparative analysis with the three models demonstrated that the CoMFA model seems to be more predictive. The contour maps could afford steric, electrostatic, hydrophobic and H-bond information about the interaction of ligand-receptor complex visually. The models would give some useful guidelines for designing novel and potent HIV-1 integrase inhibitors.

  6. Solving Stochastic Inverse Problems using Sigma-Algebras on Contour Maps

    Butler, Troy; Estep, Don; Tavener, Simon; Wildey, Timothy; Dawson, Clint; Graham, Lindley

    2014-01-01

    We compute approximate solutions to inverse problems for determining parameters in differential equation models with stochastic data on output quantities. The formulation of the problem and modeling framework define a solution as a probability measure on the parameter domain for a given $\\sigma-$algebra. In the case where the number of output quantities is less than the number of parameters, the inverse of the map from parameters to data defines a type of generalized contour map. The approxim...

  7. Learning models of activities involving interacting objects

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.; Zilles, Sandra

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were...

  8. Learning models of activities involving interacting objects

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.;

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were...

  9. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  10. Modelling the Active Hearing Process in Mosquitoes

    Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan

    2011-11-01

    A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.

  11. A geometric deformable model for echocardiographic image segmentation

    Hang, X.; Greenberg, N. L.; Thomas, J. D.

    2002-01-01

    Gradient vector flow (GVF), an elegant external force for parametric deformable models, can capture object boundaries from both sides. A new geometric deformable model is proposed that combines GVF and the geodesic active contour model. The level set method is used as the numerical method of this model. The model is applied for echocardiographic image segmentation.

  12. Active Gel Model of Amoeboid Cell Motility

    Callan-Jones, A C

    2013-01-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-susbstrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  13. Modeling of Activated Sludge Floc Characteristics

    Ibrahim H. Mustafa

    2009-01-01

    Full Text Available Problem Statement: The activated sludge system needs to improve the operational performance and to achieve more effective control. To realize this, a better quantitative understanding of the biofloc characteristics is required. The objectives of this study were to: (i Study the biofloc characteristics from kinetics-mass transfer interaction point of view by quantification of the weight of the aerobic portion of the activated sludge floc to the total floc weight. (ii Study the effect of bulk concentrations of oxygen and nitrates, power input and substrates diffusivity on the portion aerobic portion of the floc. Approach: An appropriate mathematical model based on heterogeneous modeling is developed for activated sludge flocs. The model was taking into account three growth processes: Carbon oxidation, nitrification and de-nitrification in terms of four components: substrate, nitrate, ammonia, and oxygen. The model accounts for the internal and external mass transfer limitations and relates the external mass transfer resistance with power input. The floc model equations were two- point boundary value differential equations. Therefore a central finite difference method is employed. Results: The percentage aerobic portion increased with increasing with oxygen bulk concentrations and power input and decreases when the bulk concentration of ammonia and substrate increases. Both will compete to consume the internal oxygen by autotrophic and heterotrophic bacteria through aerobic growth processes. The biofloc activity through the profiles was either totally active or partially active. The totally active biofloc is either totally aerobic or aerobic and anoxic together. Conclusions: The heterogeneous floc model was able to describe the biofloc characteristics and reflects the real phenomena existing in the activated sludge processes.

  14. Transgressive Contours--Pigeon Point to South Monterey Bay, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the transgressive contours for the Pigeon Point to South Monterey Bay, California, region. The vector file is included in...

  15. Transgressive Contours--Salt Point to Drakes Bay, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the transgressive contours for the Salt Point to Drakes Bay, California, region. The vector file is included in...

  16. Contours--Offshore of Salt Point Map Area, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Salt Point map area, California. The vector data file is...

  17. Contours Offshore of Point Reyes Map Map Area, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Point Reyes map area, California. The vector data file...

  18. Contours--Offshore of Half Moon Bay, California

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Half Moon map area, California. The vector data file is...

  19. Bathymetric Contours for Prairie Rose Lake, Shelby County, Iowa

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Prairie Rose Lake in Shelby Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of...

  20. Bathymetric Contours for Littlefield Lake, Audubon County, Iowa

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Littlefield Lake in Audubon Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of...

  1. Bathymetric Contours for Lake Darling, Washington County, Iowa

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Lake Darling in Washington Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of Lake...

  2. Bathymetric Contours for Upper Gar Lake, Dickinson County, Iowa

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Upper Gar Lake in Dickinson Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of Upper...

  3. Bathymetric Contours for Nine Eagles Lake, Decatur County, Iowa

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Nine Eagles Lake in Decatur Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of Nine...

  4. Bathymetric Contours for Lake Minnewashta, Dickinson County, Iowa

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Lake Minnewashta in Dickinson Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of Lake...

  5. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping. At the end…

  6. Rotation axes analysis of deformed magnesium based on rotation contour contrast in a scanning electron microscope

    A crystallographic orientation contrast in the form of cross-shaped and intersecting contours was observed in a backscattered electron (BSE) micrograph of deformed magnesium (Mg) grains in a cold field emission scanning electron microscope (CFE-SEM). This contrast was identified as rotation contour contrast (RCC). A model is presented to link the RCC in the BSE micrograph to the channeling contrast in the corresponding channeling pattern. Based on this model, the appearance of the cross-shaped RCC in the BSE micrograph was attributed to the rotation of the crystal about two rotation axes and the RCC was related to a two dimensional angular scan of the corresponding channeling pattern. This model was experimentally validated using the selected area channeling pattern (SACP) technique. The crystallographic directions of the rotation axes were identified using the electron backscatter diffraction (EBSD) technique. - Highlights: • The rotation contour contrast (RCC) was studied in scanning electron microscope (SEM). • The RCC model was developed to link the backscattered electron contrast to the channeling contrast. • The RCC model was validated using the selected area channeling pattern (SACP). • The rotation axes were identified using the electron backscatter diffraction (EBSD)

  7. Contour tracking and corner detection in a logic programming environment

    Bell, Benjamin; Pau, L. F.

    1990-01-01

    The added functionality such as contour tracking and corner detection which logic programming lends to standard image operators is described. An environment for implementing low-level imaging operations with Prolog predicates is considered. Within this environment, higher-level image predicates (contour tracking and corner detection) are constructed. The emphasis is not on building better corner detectors, but on presenting ways of using the unification and backtracking features of logic prog...

  8. Contour tracking control for the REMUS autonomous underwater vehicle

    Van Reet, Alan R.

    2005-01-01

    In the interest of enhancing the capabilities of autonomous underwater vehicles US Naval Operations, controlling vehicle position to follow depth contours presents exciting potential for navigation. Use of a contour tracking control algorithm in lieu of preprogrammed waypoint navigation offers distinct advantages within new challenges. The difficult nature of this problem lies in the non-trivial connection between the necessary corrective action and the feedback error used in traditional co...

  9. Melodic Contour Identification Reflects the Cognitive Threshold of Aging

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older ad...

  10. A fast contour descriptor algorithm for supernova imageclassification

    Aragon, Cecilia R.; Aragon, David Bradburn

    2006-07-16

    We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.

  11. The Development of Contour Processing: Evidence from Physiology and Psychophysics

    PeterGerhardstein

    2014-07-01

    Full Text Available Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space.

  12. Activity of a social dynamics model

    Reia, Sandro M.; Neves, Ubiraci P. C.

    2015-10-01

    Axelrod's model was proposed to study interactions between agents and the formation of cultural domains. It presents a transition from a monocultural to a multicultural steady state which has been studied in the literature by evaluation of the relative size of the largest cluster. In this article, we propose new measurements based on the concept of activity per agent to study the Axelrod's model on the square lattice. We show that the variance of system activity can be used to indicate the critical points of the transition. Furthermore the frequency distribution of the system activity is able to show a coexistence of phases typical of a first order phase transition. Finally, we verify a power law dependence between cluster activity and cluster size for multicultural steady state configurations at the critical point.

  13. Contours - CONTOURS_24K_USGS_ADRIAN: Elevation Contours from 7.5-Minute Topographic Quadrangle Maps, Grouped into the 30' x 1째 Adrian Quadrangle, Indiana, Michigan, and Ohio (United States Geological Survey, 1:24,000, Line Shapefile)

    NSGIC GIS Inventory (aka Ramona) — CONTOURS_24K_USGS_ADRIAN is a shapefile containing elevation contours produced at a scale of 1:24,000, grouped into a 30' x 1째 quadrangle block. Elevation values...

  14. An approach to predicting bowing control parameter contours in violin performance

    Maestre E.; Ramirez R.

    2010-01-01

    We present a machine learning approach to modeling bowing control parameter contours in violin performance. Using accurate sensing techniques we obtain relevant timbre-related bowing control parameters such as bow transversal velocity, bow pressing force, and bow-bridge distance of each performed note. Each performed note is represented by a curve parameter vector and a number of note classes are defined. The principal components of the data represented by the set of curve p...

  15. Elevation Contour Analysis and Water body Extraction for Finding Water Scarcity Locations using DEM

    Kodge, B. G.; P.S Hiremath

    2014-01-01

    The presents study was aimed to create new methods for extraction and analysis of land elevation contour lines, automatic extraction of water bodies (river basins and lakes), from the digital elevation models (DEM) of a test area. And extraction of villages which are fell under critical water scarcity regions for agriculture and drinking water with respect to their elevation data and available natural water resources.

  16. Automatic contour-based road network design for optimized wind farm micrositing

    Gu, H.; Wang, J.; Lin, Q; Gong, Q

    2015-01-01

    © 2014 IEEE. Constructing the access roads between wind turbines requires a significant cost when a wind farm is built in hills or mountains. An optimized design of road network can substantially reduce construction costs and increase investment returns. In this paper, we consider a challenging problem of the road network design for a wind farm with complex topography. An automatic contour-based model is developed for road network design, and is incorporated into the optimization of wind farm...

  17. Loudness Perception in the Domestic Cat: Reaction Time Estimates of Equal Loudness Contours and Recruitment Effects

    May, Bradford J.; Little, Nicole; Saylor, Stephanie

    2009-01-01

    The domestic cat is the primary physiological model of loudness coding and recruitment. At present, there are no published descriptions of loudness perception in this species. This study used a reaction time task to characterize loudness perception in six behaviorally trained cats. The psychophysical approach was based on the assumption that sounds of equal loudness elicit responses of equal latency. The resulting equal latency contours reproduced well-known features of human equal loudness c...

  18. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    Jacques Demongeot; Yannick Fouquet; Muhammad Tayyab; Nicolas Vuillerme

    2009-01-01

    BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological co...

  19. Changes of contour of the spine caused by load carrying.

    Vacheron, J J; Poumarat, G; Chandezon, R; Vanneuville, G

    1999-01-01

    The development of new leisure activities such as walking has spread the use of the backpack as a means of carrying loads. The aim of this work was to present a way of defining the movements imposed on the trunk by this type of load carrying. A 20 kg load situated at the thoracic level (T9) of the trunk, was placed in a backpack (2.5 kg). The 12 subjects were average mountain guides of Auvergne region, intermediate level and complete beginners. External markers were glued to the projecting contours of the spinous processes of the C7, T7, T12, L3 and S1 vertebrae, the shin and the external occipital tuberosity (EOT). Using a Vicon 140 3-D system we measured the effective mobility of the different spinal segments in the sagittal plane during one step. For every subject, we noticed a significant decrease of the effective inter-segmental mobility (EISM) between S1-L3-T12 (p next level between L3-T12-T7 (p < .05). An increase of the EISM between T7-C7-EOT was noted (p < .05). We supposed that strength loss of the back muscles and/or angular oscillations of the trunk could be a common cause of symptoms during backpacking. The subjects using this type of load carrying have to adopt an adequate position of the lumbar, dorsal and cervical vertebrae. PMID:10399210

  20. Cell survival and iso-effect contours in irradiated tissues

    Cell population kinetic parameters derived from radiobiological experiments and analysis of clinical data can be used to compute cellular surviving fractions in irradiated tumours and normal tissues. A three-component model of cellular radiation lethality, capable of simulating irreparable lethal events, reversible or sublethal effects and tissue repopulation processes, has proved adequate for clinical purposes. On this basis, computer programs have been developed for generating iso-effect (iso-survival) functions for various fractionation intervals in several tissues and tumours; for determining surviving fractions, equivalent single doses, and probabilities of response with specified fractionation schemes; and for optimizing treatment by identifying the procedure giving the highest probability of uncomplicated cure for a given tumour type growing in a specified location. If the relevant parameters for each of the tissues traversed by the beam, the physical dose absorbed at each point of interest, and the size, number and sequence of fractional doses reaching that point are known, then a series of computations of cellular surviving fractions can be made and used to draw iso-effect contours as a supplement to the physical isodose distribution in the same region. Procedures for both physical and biological optimization of the whole treatment plan are suggested. (author)

  1. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  2. Mathematical model of radon activity measurements

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2015-07-01

    Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)

  3. Mathematical model of radon activity measurements

    Present work describes a mathematical model that quantifies the time dependent amount of 222Rn and 220Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of 222Rn and 220Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since 220Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to 222Rn, only. Furthermore, the model also addresses the activity of 220Rn and 222Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)

  4. CT urography: segmentation of urinary bladder using CLASS with local contour refinement

    We are developing a computerized system for bladder segmentation on CT urography (CTU), as a critical component for computer-aided detection of bladder cancer. The presence of regions filled with intravenous contrast and without contrast presents a challenge for bladder segmentation. Previously, we proposed a conjoint level set analysis and segmentation system (CLASS). In case the bladder is partially filled with contrast, CLASS segments the non-contrast (NC) region and the contrast-filled (C) region separately and automatically conjoins the NC and C region contours; however, inaccuracies in the NC and C region contours may cause the conjoint contour to exclude portions of the bladder. To alleviate this problem, we implemented a local contour refinement (LCR) method that exploits model-guided refinement (MGR) and energy-driven wavefront propagation (EDWP). MGR propagates the C region contours if the level set propagation in the C region stops prematurely due to substantial non-uniformity of the contrast. EDWP with regularized energies further propagates the conjoint contours to the correct bladder boundary. EDWP uses changes in energies, smoothness criteria of the contour, and previous slice contour to determine when to stop the propagation, following decision rules derived from training. A data set of 173 cases was collected for this study: 81 cases in the training set (42 lesions, 21 wall thickenings, 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, 13 normal bladders). For all cases, 3D hand segmented contours were obtained as reference standard and used for the evaluation of the computerized segmentation accuracy. For CLASS with LCR, the average volume intersection ratio, average volume error, absolute average volume error, average minimum distance and Jaccard index were 84.2 ± 11.4%, 8.2 ± 17.4%, 13.0 ± 14.1%, 3.5 ± 1.9 mm, 78.8 ± 11.6%, respectively, for the training set and 78.0 ± 14.7%, 16.4 ± 16.9%, 18.2 ± 15

  5. Contours, 10ft contours of Lowndes County, GA, Published in 1999, 1:7200 (1in=600ft) scale, Southern Georgia Regional Commission.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:7200 (1in=600ft) scale as of 1999. It is described as '10ft contours of Lowndes County, GA'. Data by this publisher are often...

  6. Contours, 2 foot contours for the entire MCCOG MPA area., Published in 2003, 1:600 (1in=50ft) scale, Madison County Council of Governments.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2003. It is described as '2 foot contours for...

  7. Contours, Two-foot contours for Morgan County, Georgia, Published in 2006, 1:12000 (1in=1000ft) scale, Northeast Georgia Regional Commission.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from LIDAR information as of 2006. It is described as 'Two-foot contours...

  8. Contours, 10' Contours - computer generated from USGS DEM, Published in 2009, 1:24000 (1in=2000ft) scale, Marathon County.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as '10' Contours -...

  9. Contours, Two-foot contours for Oconee County, Georgia, Published in 2006, 1:12000 (1in=1000ft) scale, Northeast Georgia Regional Commission.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from LIDAR information as of 2006. It is described as 'Two-foot contours...

  10. Contour Cluster Shape Analysis for Building Damage Detection from Post-earthquake Airborne LiDAR

    HE Meizhang

    2015-04-01

    Full Text Available Detection of the damaged building is the obligatory step prior to evaluate earthquake casualty and economic losses. It's very difficult to detect damaged buildings accurately based on the assumption that intact roofs appear in laser data as large planar segments whereas collapsed roofs are characterized by many small segments. This paper presents a contour cluster shape similarity analysis algorithm for reliable building damage detection from the post-earthquake airborne LiDAR point cloud. First we evaluate the entropies of shape similarities between all the combinations of two contour lines within a building cluster, which quantitatively describe the shape diversity. Then the maximum entropy model is employed to divide all the clusters into intact and damaged classes. The tests on the LiDAR data at El Mayor-Cucapah earthquake rupture prove the accuracy and reliability of the proposed method.

  11. Infants' perception of subjective contours from apparent motion.

    Yamaguchi, Masami K; Kanazawa, So; Okamura, Hiromi

    2008-01-01

    We examined infants' perception of subjective contours in Subjective-Contour-from-Apparent-Motion (SCAM) stimuli [e.g., Cicerone, C. M., Hoffman, D. D., Gowdy, P. D., & Kim, J. S. (1995). The perception of color from motion. Perception & Psychophysics, 57, 761-777] using the preferential looking technique. The SCAM stimulus is composed of random dots which are assigned two different colors. Circular region assigned one color moved apparently, keeping all dots' location unchanged. In the SCAM stimulus, adults can perceive subjective color spreading and subjective contours in apparent motion (http://c-faculty.chuo-u.ac.jp/ approximately ymasa/okamura/ibd_demo.html). In the present study, we conducted two experiments by using this type of SCAM stimulus. A total of thirty-six 3-8-month-olds participated. In experiment 1, we presented two stimuli to the infants side by side: a SCAM stimulus consisting of different luminance, and a non-SCAM stimulus consisting of isoluminance dots. The results indicated that the 5-8-month-olds showed preference for the SCAM stimuli. In experiments 2 and 3, we confirmed that the infants' preference for the SCAM stimulus was not generated by the local difference and local change made by luminance of dots but by the subjective contours. These results suggest that 5-8-month-olds were able to perceive subjective contours in the SCAM stimuli. PMID:17727955

  12. OPTIMIZATION METHOD ON IMPELLER MERIDIONAL CONTOUR AND 3D BLADE

    2007-01-01

    An optimization method for 3D blade and meridional contour of centrifugal or mixed-flow impeller based on the 3D viscous computational fluid dynamics (CFD) analysis is proposed. The blade is indirectly parameterized using the angular momentum and calculated by inverse design method. The design variables are separated into two categories: the meridional contour design variables and the blade design variables. Firstly, only the blade is optimized using genetic algorithm with the meridional contour remained constant. The artificial neural network (ANN) techniques with the training sample data schemed according to design of experiment theory are adopted to construct the response relation between the blade design variables and the impeller performance. Then, based on the ANN approximated relation between the meridional contour design variables and impeller performance, the meridional contour is optimized. Fewer design variables and less calculation effort is required in this method that may be widely used in the optimization of three-dimension impellers. An optimized impeller in a mixed-flow pump, where the head and the efficiency are enhanced by 12.9% and 4.5% respectively, confirms the validity of this newly proposed method.

  13. Application and evaluation of universal kriging for optimal contouring of groundwater levels

    B V N P Kambhammettu; Praveena Allena; James P King

    2011-06-01

    This paper deals with the application of universal kriging to interpolate water table elevations from their measurements at random locations. Geographic information system tools were used to generate the continuous surface of water table elevations for the Carlsbad area alluvial aquifer located to the southeast of New Mexico, USA.Water table elevations in the 38 monitoring wells that are common to 1996 and 2003 irrigation years follows normal distribution. A generalized MATLAB^® code was developed to generate omni-directional and directional semi-variograms (at 22.5° intervals). Low-order polynomials were used to model the trend as the water table profile exhibits a south-east gradient. Different theoretical semivariogram models were tried to select the base semi-variogram for performing geostatistical interpolation. The contour maps of water table elevations exhibit significant decrease in the water table from 1996 to 2003. Statistical analysis performed on the estimated contours revealed that the decrease in water table is between 0.6 and 4.5 m at 90% confidence. The estimation variance contours show that the error in estimation was more than 8m2 in the west and south-west portions of the aquifer due to the absence of monitoring wells.

  14. Application and evaluation of universal kriging for optimal contouring of groundwater levels

    Kambhammettu, B. V. N. P.; Allena, Praveena; King, James P.

    2011-06-01

    This paper deals with the application of universal kriging to interpolate water table elevations from their measurements at random locations. Geographic information system tools were used to generate the continuous surface of water table elevations for the Carlsbad area alluvial aquifer located to the southeast of New Mexico, USA. Water table elevations in the 38 monitoring wells that are common to 1996 and 2003 irrigation years follows normal distribution. A generalized MATLAB® code was developed to generate omni-directional and directional semi-variograms (at 22.5° intervals). Low-order polynomials were used to model the trend as the water table profile exhibits a south-east gradient. Different theoretical semi-variogram models were tried to select the base semi-variogram for performing geostatistical interpolation. The contour maps of water table elevations exhibit significant decrease in the water table from 1996 to 2003. Statistical analysis performed on the estimated contours revealed that the decrease in water table is between 0.6 and 4.5 m at 90% confidence. The estimation variance contours show that the error in estimation was more than 8 m2 in the west and south-west portions of the aquifer due to the absence of monitoring wells.

  15. Phase Transitions in Model Active Systems

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  16. Modelling prehistoric terrain Models using LiDAR-data: a geomorphological approach

    Höfler, Veit; Wessollek, Christine; Karrasch, Pierre

    2015-10-01

    Terrain surfaces conserve human activities in terms of textures and structures. With reference to archaeological questions, the geological archive is investigated by means of models regarding anthropogenic traces. In doing so, the high-resolution digital terrain model is of inestimable value for the decoding of the archive. The evaluation of these terrain models and the reconstruction of historical surfaces is still a challenging issue. Due to the data collection by means of LiDAR systems (light detection and ranging) and despite their subsequent pre-processing and filtering, recently anthropogenic artefacts are still present in the digital terrain model. Analysis have shown that elements, such as contour lines and channels, can well be extracted from a high-resolution digital terrain model. This way, channels in settlement areas show a clear anthropogenic character. This fact can also be observed for contour lines. Some contour lines representing a possibly natural ground surface and avoid anthropogenic artefacts. Comparable to channels, noticeable patterns of contour lines become visible in areas with anthropogenic artefacts. The presented workflow uses functionalities of ArcGIS and the programming language R.1 The method starts with the extraction of contour lines from the digital terrain model. Through macroscopic analyses based on geomorphological expert knowledge, contour lines are selected representing the natural geomorphological character of the surface. In a first step, points are determined along each contour line in regular intervals. This points and the corresponding height information which is taken from an original digital terrain model is saved as a point cloud. Using the programme library gstat, a variographic analysis and the use of a Kriging-procedure based on this follow.2-4 The result is a digital terrain model filtered considering geomorphological expert knowledge showing no human degradation in terms of artefacts, preserving the landscape

  17. Coherent Photon Scattering and Direct Imaging of the Iso-frequency Contours in Large-area Photonic Crystal Slabs

    Regan, Emma C; Zhen, Bo; Kaminer, Ido; Hsu, Chia Wei; Shen, Yichen; Joannopoulos, John D; Soljacic, Marin

    2015-01-01

    While the absorption of light can be enhanced using optical resonances in a photonic crystal slab, the characteristics of resonance-enhanced scattering are much less studied. Here, we present an analytical model of resonance-enhanced photon scattering from generic fabrication errors and surface roughness, which agrees well with our experimental results. This phenomenon provides a new method to measure the photonic band structure and to directly map the iso-frequency contours of large-area photonic crystal slabs. Additionally, the iso-frequency contours provide information about the characteristics of the disorder and serve as a feedback tool to improve fabrication processes.

  18. The characterization of the hole-contour and plume ejection in the laser drilling with various inclination angles

    Yao, Kuan-Chung; Lin, Jehnming

    2013-06-01

    The contours of the drilling-hole for the laser drilling at various inclination angles were investigated in this study. A simple model was proposed to estimate the drilling-hole shape and it was verified with experiments in pulsed laser drilling process. The contour dimensions of the drilling hole are significantly affected by laser power and inclination angle, and there is a good agreement between the simulation and measurement. Furthermore the laser induced plume on the graphite substrate heated by a Nd-YAG pulsed laser at various inclination angles was visualized experimentally. It can be found that the plume ejection is mainly normal to the substrate surface without the shielding gas.

  19. Performance comparisons of contour-based corner detectors.

    Awrangjeb, Mohammad; Lu, Guojun; Fraser, Clive S

    2012-09-01

    Corner detectors have many applications in computer vision and image identification and retrieval. Contour-based corner detectors directly or indirectly estimate a significance measure (e.g., curvature) on the points of a planar curve, and select the curvature extrema points as corners. While an extensive number of contour-based corner detectors have been proposed over the last four decades, there is no comparative study of recently proposed detectors. This paper is an attempt to fill this gap. The general framework of contour-based corner detection is presented, and two major issues-curve smoothing and curvature estimation, which have major impacts on the corner detection performance, are discussed. A number of promising detectors are compared using both automatic and manual evaluation systems on two large datasets. It is observed that while the detectors using indirect curvature estimation techniques are more robust, the detectors using direct curvature estimation techniques are faster. PMID:22645267

  20. Scattering Suppression and Absorption Enhancement in Contour Nanoantennas

    Onal, E Doruk

    2015-01-01

    The expanding application spectrum of plasmonic nanoantennas demand versatile design approaches to tailor the antenna properties for specific requirements. The design efforts primarily concentrate on shifting the operation wavelength or enhancing the local fields by manipulating the size and shape of the nanoantenna. Here, we propose a design path to control the absorption and scattering characteristics of a dipole nanoantenna by introducing a hollow region inside the nanostructure. The resulting contour geometry can significantly suppress the scattering of the dipole nanoantenna and enhance its absorption simultaneously. Both the dipole and the contour dipole nanoantenna couple to equivalent amount of the incident radiation. The dipole nanoantenna scatters 84% of the coupled power (absorbs the remaining 16%) whereas the contour dipole structure scatters only 28% of the coupled power (absorbs the remaining 72%). This constitutes the transformation from scatter to absorber nanoantenna. The scattering of a cont...

  1. An Enhanced Active contour based Segmentation for Fingerprint Extraction

    S.Uma maheswari

    2012-09-01

    Full Text Available Fingerprint Segmentation is one of the critical and important steps in Automatic Fingerprint Recognition System (AFIS. It is a process that separates the fingerprint image into two regions, theforeground and background. The foreground region will have the fingerprint region containing features for recognition and the background region is the unwanted region which can be excluded from further process. In this paper some of the frequently used existing methods are analyzed and implemented. Then all these methods are combined in a sequential manner to propose an enhanced segmentation method. Finally the proposed method is evaluated and compared with the existing algorithm. Experimental results proved that the efficiency of the proposed method is higher than those of the previously described methods.

  2. Digital Elevation Model (DEM), DEM created from LIDAR data collected in the spring of 2009 as part of an MPO aerial/contour collection., Published in 2009, 1:600 (1in=50ft) scale, City of Bismarck.

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2009. It is described as...

  3. SU-E-T-561: Monte Carlo-Based Organ Dose Reconstruction Using Pre-Contoured Human Model for Hodgkins Lymphoma Patients Treated by Cobalt-60 External Beam Therapy

    Jung, J; Pelletier, C [East Carolina University, Greenville, NC (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States); Kim, J [University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Pyakuryal, A; Lee, C [National Cancer Institute, Rockville, MD (United States)

    2015-06-15

    Purpose: Organ doses for the Hodgkin’s lymphoma patients treated with cobalt-60 radiation were estimated using an anthropomorphic model and Monte Carlo modeling. Methods: A cobalt-60 treatment unit modeled in the BEAMnrc Monte Carlo code was used to produce phase space data. The Monte Carlo simulation was verified with percent depth dose measurement in water at various field sizes. Radiation transport through the lung blocks were modeled by adjusting the weights of phase space data. We imported a precontoured adult female hybrid model and generated a treatment plan. The adjusted phase space data and the human model were imported to the XVMC Monte Carlo code for dose calculation. The organ mean doses were estimated and dose volume histograms were plotted. Results: The percent depth dose agreement between measurement and calculation in water phantom was within 2% for all field sizes. The mean organ doses of heart, left breast, right breast, and spleen for the selected case were 44.3, 24.1, 14.6 and 3.4 Gy, respectively with the midline prescription dose of 40.0 Gy. Conclusion: Organ doses were estimated for the patient group whose threedimensional images are not available. This development may open the door to more accurate dose reconstruction and estimates of uncertainties in secondary cancer risk for Hodgkin’s lymphoma patients. This work was partially supported by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.

  4. SU-E-T-561: Monte Carlo-Based Organ Dose Reconstruction Using Pre-Contoured Human Model for Hodgkins Lymphoma Patients Treated by Cobalt-60 External Beam Therapy

    Purpose: Organ doses for the Hodgkin’s lymphoma patients treated with cobalt-60 radiation were estimated using an anthropomorphic model and Monte Carlo modeling. Methods: A cobalt-60 treatment unit modeled in the BEAMnrc Monte Carlo code was used to produce phase space data. The Monte Carlo simulation was verified with percent depth dose measurement in water at various field sizes. Radiation transport through the lung blocks were modeled by adjusting the weights of phase space data. We imported a precontoured adult female hybrid model and generated a treatment plan. The adjusted phase space data and the human model were imported to the XVMC Monte Carlo code for dose calculation. The organ mean doses were estimated and dose volume histograms were plotted. Results: The percent depth dose agreement between measurement and calculation in water phantom was within 2% for all field sizes. The mean organ doses of heart, left breast, right breast, and spleen for the selected case were 44.3, 24.1, 14.6 and 3.4 Gy, respectively with the midline prescription dose of 40.0 Gy. Conclusion: Organ doses were estimated for the patient group whose threedimensional images are not available. This development may open the door to more accurate dose reconstruction and estimates of uncertainties in secondary cancer risk for Hodgkin’s lymphoma patients. This work was partially supported by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics

  5. A method for automatically constructing the initial contour of the common carotid artery

    Yara Omran

    2013-10-01

    Full Text Available In this article we propose a novel method to automatically set the initial contour that is used by the Active contours algorithm.The proposed method exploits the accumulative intensity profiles to locate the points on the arterial wall. The intensity profiles of sections that intersect the artery show distinguishable characterstics that make it possible to recognize them from the profiles of sections that do not intersect the artery walls. The proposed method is applied on ultrasound images of the transverse section of the common carotid artery, but it can be extended to be used on the images of the longitudinal section. The intensity profiles are classified using Support vector machine algorithm, and the results of different kernels are compared. The extracted features used for the classification are basically statistical features of the intensity profiles. The echogenicity of the arterial lumen, and gives the profiles that intersect the artery a special shape that helps recognizing these profiles from other general profiles.The outlining of the arterial walls may seem a classic task in image processing. However, most of the methods used to outline the artery start from a manual, or semi-automatic, initial contour.The proposed method is highly appreciated in automating the entire process of automatic artery detection and segmentation.

  6. Complications following body contouring surgery after massive weight loss

    Hasanbegovic, Emir; Sørensen, Jens Ahm

    2014-01-01

    Bariatric surgery is a way to achieve lasting weight loss in the obese. Body contouring surgery seeks to alleviate some of the discomfort caused by the excessive loose skin following massive weight loss. Higher complication rates are described in this type of surgery when done post-bariatric. The...... purpose of this article is to compare complication rates of body contouring surgery when performed on patients with weight loss due to bariatric surgery compared to patients who lost weight due to dietary changes and/or exercise....

  7. Automatic extraction of left ventricular contours from MRI images

    In the MRI cardiac function analysis, left ventricular volume curves and diagnostic parameters are obtained by extracting the left ventricular cavities as regions of interest (ROI) from the MR cine images. The ROI extractions had to be done by manual operations, so the examination efficiency and data analysis reproducibility were poor in diagnoses on site. In this paper, we outline an automatic extraction method for the left ventricular contours from MR cine images to improve cardiac function diagnosis. With this method, the operator needs to manually indicate only 3 points on the 1st image, and can then get all the contours from the total sequence of images automatically. (author)

  8. Modelling of activity transport in PHWR

    The modelling of mass and activity transport in PHWR is of importance in predicting the build up of radiation field in and around the Primary Heat Transport system which will consequently help in planning the Dilute Chemical Decontamination and man rem budgeting. Modeling also helps in understanding the different parameters controlling the transport behaviour. Some of the important parameters include coolant chemistry like pH, physical parameters like temperature, the nature of the corrosion film and hence the effect of passivation techniques. VVER code for activity transport uses six nodes for the primary system and is essentially devised for stainless steel system. In the present work though based on this model, major modifications have been incorporated to suit the PHWR conditions. In the code, the PHT system of PHWR is suitably divided into 14 nodes, 5 in-core and 9 out of core nodes based on material and heat transfer properties. This paper describes the mechanisms involved in the various processes like generation of corrosion products, their release as well as their transport into the primary coolant, the activation of inactive corrosion product nuclides and the build up of radiation field due to 60Co around the PHT system. (author)

  9. Modeling of an Active Tablet Coating Process.

    Toschkoff, Gregor; Just, Sarah; Knop, Klaus; Kleinebudde, Peter; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes G

    2015-12-01

    Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level. PMID:26344941

  10. Understanding physiological and degenerative natural vision mechanisms to define contrast and contour operators.

    Jacques Demongeot

    Full Text Available BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS: We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery.

  11. Isoline retrieval: An optimal sounding method for validation of advected contours

    Mills, Peter

    2012-01-01

    The study of chaotic mixing is important for its potential to improve our understanding of fluid systems. Contour advection simulations provide a good model of the phenomenon by tracking the evolution of one or more contours or isolines of a trace substance to a high level of precision. The most accurate method of validating an advected contour is to divide the tracer concentration into discrete ranges and perform a maximum likelihood classification, a method that we term, "isoline retrieval." Conditional probabilities generated as a result provide excellent error characterization. In this study, a water vapour isoline of 0.001 mass-mixing-ratio is advected over five days in the upper troposphere and compared with high-resolution AMSU (Advanced Microwave Sounding Unit) satellite retrievals. The goal is to find the same fine-scale, chaotic mixing in the isoline retrievals as seen in the advection simulations. Some of the filaments generated by the simulations show up in the conditional probabilities as areas o...

  12. On a Quantum Model of Brain Activities

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  13. Active Appearance Model Based Hand Gesture Recognition

    2005-01-01

    This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM). For this work, the proposed algorithm is conposed of constructing AAMs and fitting the models to the interest region. In training stage, according to the manual labeled feature points, the relative AAM is constructed and the corresponding average feature is obtained. In recognition stage, the interesting hand gesture region is firstly segmented by skin and movement cues.Secondly, the models are fitted to the image that includes the hand gesture, and the relative features are extracted.Thirdly, the classification is done by comparing the extracted features and average features. 30 different gestures of Chinese sign language are applied for testing the effectiveness of the method. The Experimental results are given indicating good performance of the algorithm.

  14. MODEL OF ACTIVITY OF THE ENTERPRISE AS MODEL OF ACTIVITY OF THE HUMAN: SEARCH ANALYSIS

    Ruslan Flerovich Vildanov; Aidar Sultangalievich Puryaev

    2014-01-01

    Actualized demand of manufactury company's efficiency from the point of quality charachteristics. Reveal unbreakable connection of man and organisation, on example of the comparative analysis of man's and manufacture company's activities. Studing models of company's and men's activities in order to reveal similarity. In order of their implementation to the economics assumes opportunity of using scientific methods, which use for studying functions, vital activities and behavior of the men.

  15. Development of a generic activities model of command and control

    Stanton, NA; Baber, C; Walker, GH; Houghton, RJ; McMaster, R.; Stewart, R; Harris, D.; Jenkins, DP; Young, MS; Salmon, PM

    2008-01-01

    This paper reports on five different models of command and control. Four different models are reviewed: a process model, a contextual control model, a decision ladder model and a functional model. Further to this, command and control activities are analysed in three distinct domains: armed forces, emergency services and civilian services. From this analysis, taxonomies of command and control activities are developed that give rise to an activities model of command and control. This model w...

  16. Modelling of Activated Sludge Wastewater Treatment

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  17. Ground-water-level contours for Carson Valley, Nevada

    U.S. Geological Survey, Department of the Interior — This data set contains the ground-water-level contours derived from ground-water monitoring sites in Carson Valley, west-central Nevada. The data set is part of a...

  18. Design of a Vibrotactile Vest for Contour Perception

    Juan Wu

    2012-11-01

    Full Text Available A vibrotactile array is a promising human computer interface which could display graphical information to users in a tactile form. This paper presents the design and testing of an image contour display system with a vibrotactile array. The tactile image display system is attached to the back of the user. It converts visual graphics into 2D tactile images and allows subjects to feel the contours of objects through vibration stimulus. The system consists of a USB camera, 48 (6×8 vibrating motors and an embedded control system. The image is captured by the camera and the 2D contour is extracted and transformed into vibrotactile stimuli using a temporal‐spatial dynamic coding method. Preliminary experiments were carried out and the optimal parameters of the vibrating time and duration were explored. To evaluate the feasibility and robustness of this vibration mode, letters were also tactilely displayed and the recognition rate about the alphabet letter display was investigated. It was shown that under the condition of no pre‐training for the subjects, the recognition rate was 82%. Such a recognition rate is higher than that of the scanning mode (47.5% and the improved handwriting mode (76.8%. The results indicated that the proposed method was efficient in conveying the contour information to the visually impaired by means of vibrations.

  19. Pulse contour-derived cardiac output in hemodialysis patients

    Cordtz, Joakim; Ladefoged, Soeren D

    2010-01-01

    Reliable methods for cardiac output determination are essential for studying the pathophysiology of intradialytic hypotension. Use of the current gold standard, the Transonic monitor, requires an arteriovenous fistula. We wished to verify the accuracy of a method based on finger pulse contour...

  20. Topology Optimization - Improved Checker-Board Filtering With Sharp Contours

    Pedersen, Christian Gejl; Lund, Jeppe Jessen; Damkilde, Lars; A. Kristensen, Anders Schmidt

    In topology optimization it is mandatory to use a filtering technique in order to prevent checker-boarder solutions. The paper examines a new filtering principle and demonstrates an improved sharpness in the contours. This was not realized in the original proposal of the filter. Furthermore the...

  1. A phantom study of tumor contouring on PET imaging

    Objective: To explore an algorithm to define the threshold value for tumor contouring on 18F-fluorodeoxyglucose (FDG) PET imaging. Methods: A National Electrical Manufacturing Association (NEMA)NU 2 1994 PET phantom with 5 spheres of different diameters were filled with 18F-FDG. Seven different sphere-to-background ratios were obtained and the phantom was scanned by Discovery LS 4. For each sphere-to-background ratio, the maximum standardized uptake value (SUVmax) of each sphere, the SUV of the border of each sphere (SUVborder), the mean SUV of a 1 cm region of background (SUVbg) and the diameter (D) of each sphere were measured. SPSS 13.0 software was used for curve fitting and regression analysis to obtain the threshold algorithm. The calculated thresholds were applied to delineate 29 pathologically confirmed lung cancer lesions on PET images and the obtained volumes were compared with the volumes contoured on CT images in lung window. Results: The algorithm for defining contour threshold is TH% = 33.1% + 46.8% SUVbg/SUVmax + 13.9%/D (r = 0.994) by phantom studies. For 29 lung cancer lesions, the average gross tumor volumes (GTV) delineated on PET and CT are (7.36±1.62) ml and (8.31±2.05) ml, respectively (t = -1.26, P>0.05). Conclusion: The proposed threshold algorithm for tumor contouring on PET image could provide comparable GTV with CT. (authors)

  2. Principles of Contour Information: Reply to Lim and Leek (2012)

    Singh, Manish; Feldman, Jacob

    2012-01-01

    Lim and Leek (2012) presented a formalization of information along object contours, which they argued was an alternative to the approach taken in our article (Feldman & Singh, 2005). Here, we summarize the 2 approaches, showing that--notwithstanding Lim and Leek's (2012) critical rhetoric--their approach is substantially identical to ours, except…

  3. Spectra of PT-symmetric Hamiltonians on tobogganic contours

    Bíla, Hynek

    2009-01-01

    Roč. 73, č. 2 (2009), s. 307-314. ISSN 0304-4289. [8th Conference on Non-Hermitian Hamiltonians in Quantum Physics. Mumbai, 13.01.2009-16.01.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : Quantum toboggans * PT symmetry * complex integration contours Subject RIV: BE - Theoretical Physics Impact factor: 0.349, year: 2009

  4. Temperature Contours and Ghost-Surfaces for Chaotic Magnetic Fields

    Steady state solutions for anisotropic heat transport in a chaotic magnetic field are determined numerically and compared to a set of 'ghost-surfaces', surfaces constructed via an action-gradient flow between the minimax and minimizing periodic orbits. The ghost-surfaces are in remarkable agreement with the temperature contours.

  5. Luminance contours can gate afterimage colors and 'real' colors

    Anstis, S.; Vergeer, M.L.T.; Lier, R.J. van

    2012-01-01

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The c

  6. Contour detection based on nonclassical receptive field inhibition

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    2003-01-01

    We propose a biologically motivated computational step, called nonclassical receptive field (non-CRF) inhibition, more generally surround inhibition or suppression, to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the prim

  7. Modeling Aspects Of Activated Sludge Processes Part I: Process Modeling Of Activated Sludge Facilitation And Sedimentation

    Process modeling of activated sludge flocculation and sedimentation reviews consider the activated sludge floc characteristics such as: morphology viable and non-viable cell ratio density and water content, bio flocculation and its kinetics were studied considering the characteristics of bio flocculation and explaining theory of Divalent Cation Bridging which describes the major role of cations in bio flocculation. Activated sludge flocculation process modeling was studied considering mass transfer limitations from Clifft and Andrew, 1981, Benefild and Molz 1983 passing Henze 1987, until Tyagi 1996 and G. Ibrahim et aI. 2002. Models of aggregation and breakage of flocs were studied by Spicer and Pratsinis 1996,and Biggs 2002 Size distribution of floes influences mass transfer and biomass separation in the activated sludge process. Therefore, it is of primary importance to establish the role of specific process operation factors, such as sludge loading dynamic sludge age and dissolved oxygen, on this distribution with special emphasis on the formation of primary particles

  8. A method of dealing polygon's self-intersection contour in SLA

    GAO Yong-qiang; MO Jian-hua; HUANG Shu-huai

    2007-01-01

    The contour of the slices of SLA parts is composed of a great deal of small lines. When offsetting the contour to compensate for the radius of laser spot, many self-intersection contours come into being, which decrease the precision of formed parts. A new lemma to judge the local self-intersection contour and the global self-intersection contour separately is put forward, according to which self-intersection contour can be removed reliably. Meanwhile, a new beam offsetting algorithm for SLA parts is described, which brings about good results in the practical manufacturing process.

  9. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    Singh, Chandan; Saini, Jaswinder Singh

    2016-07-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  10. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    Singh, Chandan; Saini, Jaswinder Singh

    2016-05-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  11. Standardization of surgical techniques used in facial bone contouring.

    Lee, Tae Sung

    2015-12-01

    Since the introduction of facial bone contouring surgery for cosmetic purposes, various surgical methods have been used to improve the aesthetics of facial contours. In general, by standardizing the surgical techniques, it is possible to decrease complication rates and achieve more predictable surgical outcomes, thereby increasing patient satisfaction. The technical strategies used by the author to standardize facial bone contouring procedures are introduced here. The author uses various pre-manufactured surgical tools and hardware for facial bone contouring. During a reduction malarplasty or genioplasty procedure, double-bladed reciprocating saws and pre-bent titanium plates customized for the zygomatic body, arch and chin are used. Various guarded oscillating saws are used for mandibular angloplasty. The use of double-bladed saws and pre-bent plates to perform reduction malarplasty reduces the chances of post-operative asymmetry or under- or overcorrection of the zygoma contours due to technical faults. Inferior alveolar nerve injury and post-operative jawline asymmetry or irregularity can be reduced by using a guarded saw during mandibular angloplasty. For genioplasty, final placement of the chin in accordance with preoperative quantitative analysis can be easily performed with pre-bent plates, and a double-bladed saw allows more procedural accuracy during osteotomies. Efforts by the surgeon to avoid unintentional faults are key to achieving satisfactory results and reducing the incidence of complications. The surgical techniques described in this study in conjunction with various in-house surgical tools and modified hardware can be used to standardize techniques to achieve aesthetically gratifying outcomes. PMID:26346781

  12. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: MODELING

    Brînduşa-Antonela SBÎRCEA

    2011-01-01

    Full Text Available By using active and participatory methods it is hoped that pupils will not only come to a deeper understanding of the issues involved, but also that their motivation will be heightened. Pupil involvement in their learning is essential. Moreover, by using a variety of teaching techniques, we can help students make sense of the world in different ways, increasing the likelihood that they will develop a conceptual understanding. The teacher must be a good facilitator, monitoring and supporting group dynamics. Modeling is an instructional strategy in which the teacher demonstrates a new concept or approach to learning and pupils learn by observing. In the teaching of biology the didactic materials are fundamental tools in the teaching-learning process. Reading about scientific concepts or having a teacher explain them is not enough. Research has shown that modeling can be used across disciplines and in all grade and ability level classrooms. Using this type of instruction, teachers encourage learning.

  13. An adaptive multi-feature segmentation model for infrared image

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  14. Evaluating the Impact of a Canadian National Anatomy and Radiology Contouring Boot Camp for Radiation Oncology Residents

    Jaswal, Jasbir [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); D' Souza, Leah; Johnson, Marjorie [Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Canada); Tay, KengYeow [Department of Diagnostic Radiology, London Health Sciences, London, Ontario (Canada); Fung, Kevin; Nichols, Anthony [Department of Otolaryngology, Head & Neck Surgery, Victoria Hospital, London, Ontario (Canada); Landis, Mark [Department of Diagnostic Radiology, London Health Sciences, London, Ontario (Canada); Leung, Eric [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Kassam, Zahra [Department of Diagnostic Radiology, St. Joseph' s Health Care London, London, Ontario (Canada); Willmore, Katherine [Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Canada); D' Souza, David; Sexton, Tracy [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Palma, David A., E-mail: david.palma@lhsc.on.ca [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada)

    2015-03-15

    Background: Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course (“boot camp”) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods: The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results: Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp

  15. Evaluating the Impact of a Canadian National Anatomy and Radiology Contouring Boot Camp for Radiation Oncology Residents

    Background: Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course (“boot camp”) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods: The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results: Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp

  16. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fused using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need

  17. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  18. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors

    Jonghoon Seo

    2016-03-01

    Full Text Available Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  19. Glass Durability Modeling, Activated Complex Theory (ACT)

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al+3 and Fe+3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe+3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al+3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe+3 rich and some Al+3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple atomic

  20. Models of the stochastic activity of neurones

    Holden, Arun Vivian

    1976-01-01

    These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the fin...

  1. Theory and modeling of active brazing.

    van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.

    2013-09-01

    Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.

  2. Computer-assisted delineation of lung tumor regions in treatment planning CT images with PET/CT image sets based on an optimum contour selection method

    To assist radiation oncologists in the delineation of tumor regions during treatment planning for lung cancer, we have proposed an automated contouring algorithm based on an optimum contour selection (OCS) method for treatment planning computed tomography (CT) images with positron emission tomography (PET)/CT images. The basic concept of the OCS is to select a global optimum object contour based on multiple active delineations with a level set method around tumors. First, the PET images were registered to the planning CT images by using affine transformation matrices. The initial gross tumor volume (GTV) of each lung tumor was identified by thresholding the PET image at a certain standardized uptake value, and then each initial GTV location was corrected in the region of interest of the planning CT image. Finally, the contours of final GTV regions were determined in the planning CT images by using the OCS. The proposed method was evaluated by testing six cases with a Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs contoured by radiation oncologists and the proposed method. The average three-dimensional DSC for the six cases was 0.78 by the proposed method, but only 0.34 by a conventional method based on a simple level set method. The proposed method may be helpful for treatment planners in contouring the GTV regions. (author)

  3. Computer modeling for neutron activation analysis methods

    Full text: The INP AS RU develops databases for the neutron-activation analysis - ND INAA [1] and ELEMENT [2]. Based on these databases, the automated complex is under construction aimed at modeling of methods for natural and technogenic materials analysis. It is well known, that there is a variety of analysis objects with wide spectra, different composition and concentration of elements, which makes it impossible to develop universal methods applicable for every analytical research. The modelling is based on algorithm, that counts the period of time in which the sample was irradiated in nuclear reactor, providing the sample's total absorption and activity analytical peaks areas with given errors. The analytical complex was tested for low-elemental analysis (determination of Fe and Zn in vegetation samples, and Cu, Ag and Au - in technological objects). At present, the complex is applied for multielemental analysis of sediment samples. In this work, modern achievements in the analytical chemistry (measurement facilities, high-resolution detectors, IAEA and IUPAC databases) and information technology applications (Java software, database management systems (DBMS), internet technologies) are applied. Reference: 1. Tillaev T., Umaraliev A., Gurvich L.G., Yuldasheva K., Kadirova J. Specialized database for instrumental neutron activation analysis - ND INAA 1.0, The 3-rd Eurasian Conference Nuclear Science and its applications, 2004, pp.270-271.; 2. Gurvich L.G., Tillaev T., Umaraliev A. The Information-analytical database on the element contents of natural objects. The 4-th International Conference Modern problems of Nuclear Physics, Samarkand, 2003, p.337. (authors)

  4. Active State Model for Autonomous Systems

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  5. Accounting Information Consolidation in the Contours of Tourism and Recreational Cluster Competitive Potential Reflexive Management Development Консолидация учетной информации в рефлексивном управлении развитием конкурентоспособного потенциала туристично-рекреационного кластера

    Pilipenko Andrey. A.; Stjepcevic Jelena

    2012-01-01

    Relevance of clusters management development contours formation is proved. The level of potential disclosure offered regarded as instruments of cluster development. As the basis of the strategic process at the selected cluster activation integrative trends and consistently using accounting and reflexive control models. The contours of reflexive management are defined in the components of the business model of the tourism cluster and subject of attractiveness factors.Доказана уместность формир...

  6. Calf Contouring with Endoscopic Fascial Release, Calf Implant, and Structural Fat Grafting

    Ercan Karacaoglu, MD

    2013-08-01

    Conclusions: A novel endoscopic approach for lower leg contouring is discussed. Endoscopic fasciotomy technique with calf implant and structural fat grafting for improved lower leg aesthetics is a simple, effective, reliable, and predictable technique for calf contouring.

  7. U.S. Atlantic East Coast bathymetry contours (EGLORIA_CNT)

    U.S. Geological Survey, Department of the Interior — The bathymetric contours, which comprise this GIS data layer, contains contours for the U.S. Atlantic East Coast. The dataset was created for use with the USGS...

  8. Comparison of activity coefficient models for electrolyte systems

    Lin, Yi; ten Kate, Antoon; Mooijer, Miranda;

    2010-01-01

    Three activity coefficient models for electrolyte solutions were evaluated and compared. The activity coefficient models are: The electrolyte NRTL model (ElecNRTL) by Aspentech, the mixed solvent electrolyte model (MSE) by OLI Systems Inc., and the Extended UNIQUAC model from the Technical Univer...

  9. Modeling active memory: Experiment, theory and simulation

    Amit, Daniel J.

    2001-06-01

    Neuro-physiological experiments on cognitively performing primates are described to argue that strong evidence exists for localized, non-ergodic (stimulus specific) attractor dynamics in the cortex. The specific phenomena are delay activity distributions-enhanced spike-rate distributions resulting from training, which we associate with working memory. The anatomy of the relevant cortex region and the physiological characteristics of the participating elements (neural cells) are reviewed to provide a substrate for modeling the observed phenomena. Modeling is based on the properties of the integrate-and-fire neural element in presence of an input current of Gaussian distribution. Theory of stochastic processes provides an expression for the spike emission rate as a function of the mean and the variance of the current distribution. Mean-field theory is then based on the assumption that spike emission processes in different neurons in the network are independent, and hence the input current to a neuron is Gaussian. Consequently, the dynamics of the interacting network is reduced to the computation of the mean and the variance of the current received by a cell of a given population in terms of the constitutive parameters of the network and the emission rates of the neurons in the different populations. Within this logic we analyze the stationary states of an unstructured network, corresponding to spontaneous activity, and show that it can be stable only if locally the net input current of a neuron is inhibitory. This is then tested against simulations and it is found that agreement is excellent down to great detail. A confirmation of the independence hypothesis. On top of stable spontaneous activity, keeping all parameters fixed, training is described by (Hebbian) modification of synapses between neurons responsive to a stimulus and other neurons in the module-synapses are potentiated between two excited neurons and depressed between an excited and a quiescent neuron

  10. Eyeglasses lens contour extraction from facial images using an efficient shape description.

    Borza, Diana; Darabant, Adrian Sergiu; Danescu, Radu

    2013-01-01

    This paper presents a system that automatically extracts the position of the eyeglasses and the accurate shape and size of the frame lenses in facial images. The novelty brought by this paper consists in three key contributions. The first one is an original model for representing the shape of the eyeglasses lens, using Fourier descriptors. The second one is a method for generating the search space starting from a finite, relatively small number of representative lens shapes based on Fourier morphing. Finally, we propose an accurate lens contour extraction algorithm using a multi-stage Monte Carlo sampling technique. Multiple experiments demonstrate the effectiveness of our approach. PMID:24152926

  11. Eyeglasses Lens Contour Extraction from Facial Images Using an Efficient Shape Description

    Diana Borza

    2013-10-01

    Full Text Available This paper presents a system that automatically extracts the position of the eyeglasses and the accurate shape and size of the frame lenses in facial images. The novelty brought by this paper consists in three key contributions. The first one is an original model for representing the shape of the eyeglasses lens, using Fourier descriptors. The second one is a method for generating the search space starting from a finite, relatively small number of representative lens shapes based on Fourier morphing. Finally, we propose an accurate lens contour extraction algorithm using a multi-stage Monte Carlo sampling technique. Multiple experiments demonstrate the effectiveness of our approach.

  12. TU-C-17A-04: BEST IN PHYSICS (THERAPY) - A Supervised Framework for Automatic Contour Assessment for Radiotherapy Planning of Head- Neck Cancer

    Purpose: Precise contour delineation of tumor targets and critical structures from CT simulations is essential for accurate radiotherapy (RT) treatment planning. However, manual and automatic delineation processes can be error prone due to limitations in imaging techniques and individual anatomic variability. Tedious and laborious manual verification is hence needed. This study develops a general framework for automatically assessing RT contours for head-neck cancer patients using geometric attribute distribution models (GADMs). Methods: Geometric attributes (centroid and volume) were computed from physician-approved RT contours of 29 head-neck patients. Considering anatomical correlation between neighboring structures, the GADM for each attribute was trained to characterize intra- and interpatient structure variations using principal component analysis. Each trained GADM was scalable and deformable, but constrained by the principal attribute variations of the training contours. A new hierarchical model adaptation algorithm was utilized to assess the RT contour correctness for a given patient. Receiver operating characteristic (ROC) curves were employed to evaluate and tune system parameters for the training models. Results: Experiments utilizing training and non-training data sets with simulated contouring errors were conducted to validate the framework performance. Promising assessment results of contour normality/abnormality for the training contour-based data were achieved with excellent accuracy (0.99), precision (0.99), recall (0.83), and F-score (0.97), while corresponding values of 0.84, 0.96, 0.83, and 0.9 were achieved for the non-training data. Furthermore, the areas under the ROC curves were above 0.9, validating the accuracy of this test. Conclusion: The proposed framework can reliably identify contour normality/abnormality based upon intra- and inter-structure constraints derived from clinically-approved contours. It also allows physicians to

  13. The Effect of Contouring Variability on Dosimetric Parameters for Brain Metastases Treated With Stereotactic Radiosurgery

    Purpose: To quantify the effect of contouring variation on stereotactic radiosurgery plan quality metrics for brain metastases. Methods and Materials: Fourteen metastases, each contoured by 8 physicians, formed the basis of this study. A template-based dynamic conformal 5-arc dose distribution was developed for each of the 112 contours, and each dose distribution was applied to the 7 other contours in each patient set. Radiation Therapy Oncology Group (RTOG) plan quality metrics and the Paddick conformity index were calculated for each of the 896 combinations of dose distributions and contours. Results: The ratio of largest to smallest contour volume for each metastasis varied from 1.25 to 4.47, with a median value of 1.68 (n=8). The median absolute difference in RTOG conformity index between the value for the reference contour and the values for the alternative contours was 0.35. The variation of the range of conformity index for all contours for a given tumor varied with the tumor size. Conclusions: The high degree of interobserver contouring variation strongly suggests that peer review or consultation should be adopted to standardize tumor volume prescription. Observer confidence was not reflected in contouring consistency. The impact of contouring variability on plan quality metrics, used as criteria for clinical trial protocol compliance, was such that the category of compliance was robust to interobserver effects only 70% of the time

  14. The Effect of Contouring Variability on Dosimetric Parameters for Brain Metastases Treated With Stereotactic Radiosurgery

    Stanley, Julia, E-mail: Julia.Stanley@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta (Canada); Dunscombe, Peter [Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta (Canada); Lau, Harold [Department of Radiation Oncology, Tom Baker Cancer Center, Calgary, Alberta (Canada); Burns, Paul [Department of Neuroradiology, University of Calgary, Calgary, Alberta (Canada); Lim, Gerald; Liu, Hong-Wei; Nordal, Robert [Department of Radiation Oncology, Tom Baker Cancer Center, Calgary, Alberta (Canada); Starreveld, Yves [Department of Neuroradiology, University of Calgary, Calgary, Alberta (Canada); Valev, Boris; Voroney, Jon-Paul [Department of Radiation Oncology, Tom Baker Cancer Center, Calgary, Alberta (Canada); Spencer, David P. [Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta (Canada)

    2013-12-01

    Purpose: To quantify the effect of contouring variation on stereotactic radiosurgery plan quality metrics for brain metastases. Methods and Materials: Fourteen metastases, each contoured by 8 physicians, formed the basis of this study. A template-based dynamic conformal 5-arc dose distribution was developed for each of the 112 contours, and each dose distribution was applied to the 7 other contours in each patient set. Radiation Therapy Oncology Group (RTOG) plan quality metrics and the Paddick conformity index were calculated for each of the 896 combinations of dose distributions and contours. Results: The ratio of largest to smallest contour volume for each metastasis varied from 1.25 to 4.47, with a median value of 1.68 (n=8). The median absolute difference in RTOG conformity index between the value for the reference contour and the values for the alternative contours was 0.35. The variation of the range of conformity index for all contours for a given tumor varied with the tumor size. Conclusions: The high degree of interobserver contouring variation strongly suggests that peer review or consultation should be adopted to standardize tumor volume prescription. Observer confidence was not reflected in contouring consistency. The impact of contouring variability on plan quality metrics, used as criteria for clinical trial protocol compliance, was such that the category of compliance was robust to interobserver effects only 70% of the time.

  15. Radiographic changes in cardiac contours following heart transplantation

    Chest radiographs of 46 patients who had undergone heart transplantation were reviewed with special attention to abnormalities of the cardiac contours. MR imaging in 3 such patients revealed 3 types of double right cardiac contours: the recipient right atrium combined with the donor right atrium; the donor right atrium combined with the recipient left atrium; and a cardiac fat pad combined with the right atrium. A prominent main pulmonary artery was shown by MR imaging to result from leftward displacement of the main pulmonary artery caused by clockwise rotation and transverse position of the transplanted heart. Recognition of these unique radiographic appearances is of value in assessing transplanted hearts and in avoiding misdiagnosis. (orig.)

  16. Computation of Contour Integrals on ${\\cal M}_{0,n}$

    Cachazo, Freddy

    2015-01-01

    Contour integrals of rational functions over ${\\cal M}_{0,n}$, the moduli space of $n$-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on ${\\cal M}_{0,n}$. The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen's theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory.

  17. Computation of contour integrals on M_{0,n}

    Cachazo, Freddy; Gomez, Humberto

    2016-04-01

    Contour integrals of rational functions over M_{0,n} , the moduli space of n-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on M_{0,n} . The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen's theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory.

  18. Polygonal Approximation of Contour Shapes Using Corner Detectors

    Hermilo Sánchez‐Cruz; Ernesto Bribiesca

    2009-01-01

    A great amount of corner detectors that appear in literature are based on using the Freeman chain code of eight directions,which is used to represent contour shapes. We propose a new method for corner detection based on a three‐symbol chain coderepresentation, which requires lower storage memory and an easy way to obtain shape corners. We compare it with fiveexisting methods, which are well known in the literature, giving our method a better performance. Furthermore, in order toreconstruct th...

  19. Analysis of the marketing communications and strategy of Contours fitness

    Merta, Jonáš

    2012-01-01

    The thesis analyzes marketing communication of Contours fitness by using theoretical background. The aim of the thesis is theoretical description and analysis of communication tools. Based on situational analysis the thesis evaluates the effectivness of communication mix and suggest measures to its optimalization. The outcome of the thesis is theoretical description of communication mix of the company, newly established communication objectives and analysis of communication tools with emphasi...

  20. The role of non-CRF inhibition in contour detection

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A; Skala

    2003-01-01

    We propose a biologically motivated computational step, called non-classical receptive field (non-CRF) inhibition, to improve the performance of contour detectors. Non-CRF inhibition is exhibited by 80% of the orientation selective neurons in the primary visual cortex of macaque monkeys and has been demonstrated to influence the visual perception of man as well. We introduce an image processing operator, the bar cell operator, which consists of a Gabor energy operator augmented with non-CRF i...

  1. Principles of Contour Information: Reply to Lim and Leek (2012)

    Singh, Manish; Feldman, Jacob

    2012-01-01

    Lim and Leek (2012) presented a formalization of information along object contours, which they argued was an alternative to the approach taken in our article (Feldman & Singh, 2005). Here, we summarize the 2 approaches, showing that—notwithstanding Lim and Leek's (2012) critical rhetoric—their approach is substantially identical to ours, except for the technical details of the formalism. Following the logic of our article point by point, Lim and Leek (a) defined probabilistic expectations abo...

  2. Contours et limites de la comptabilité nationale

    Cassiers, Isabelle

    1998-01-01

    La comptabilité nationale est un instrument qui repose sur nombre de choix et de conventions comptables si bien que la représentation de la vie économique et sociale qu'elle propose demeure partielle. Ces limites sont souvent oubliées dans les interprétations des données économiques. Retour sur les contours exacts du système de comptabilité nationale.

  3. Performance Evaluation of Autonomous Contour Following Algorithms for Industrial Robot

    Prabuwono, Anton Satria; Said, Samsi; Burhanuddin; Sulaiman, Riza

    2010-01-01

    In this study, the performance evaluations of autonomous contour following task with three different algorithms have been performed for Adept SCARA robot. A prototype of smart tool integrated with sensor has been designed. It can be attached and reattached into robot gripper and interfaced through I/O pins of Adept robot controller for automated robot teaching operation. The algorithms developed were tested on a semicircle object of 40 millimeter radius. The semicircle object was selected bec...

  4. Exporting Contours to DICOM-RT Structure Set

    Gorthi S; Bach C.M.; Thiran J.P.

    2009-01-01

    This paper presents an ITK implementation for exportingthe contours of the automated segmentation results toDICOM-RT Structure Set format. The âeurooeradiotherapystructure setâeuro (RTSTRUCT) object of the DICOM standard isused for the transfer of patient structures and relateddata, between the devices found within and outside theradiotherapy department. It mainly contains theinformation of regions of interest (ROIs) and points ofinterest (E.g. dose reference points). In many cases,rath...

  5. Average energy efficiency contours for single carrier AWGN MAC

    Akbari A; Imran M.A.; Hoshyar R.; Tafazolli R.

    2011-01-01

    Energy efficiency has become increasingly important in wireless communications, with significant environmental and financial benefits. This paper studies the achievable capacity region of a single carrier uplink channel consisting of two transmitters and a single receiver, and uses average energy efficiency contours to find the optimal rate pair based on four different targets: Maximum energy efficiency, a trade-off between maximum energy efficiency and rate fairness, achieving energy efficie...

  6. Impact of contour hedgerows on maize yields in the Philippines

    Shively, Gerald E.

    1998-01-01

    Metadata only record This paper investigates the impact of contour hedgerows on maize yields. The author applies and agricultural production function to assess data from upland Philippine maize farms and hedgerows of double rows of the nitrogen-fixing species Desmodium rensonii and Flemengia macrophylla. Although the findings show a positive long term impact on maize yields, the short term impact of hedgerows is negative; they reduce land available for cultivation and decrease productivity...

  7. Development of optical surface contouring technique using laser

    Laser contouring system capable of measuring relief profiles using a line-shaped laser beam with anisotropic magnification optics composed with two cylindrical lenses was developed. The anisotropic magnification optical system allows it to obtain higher resolution in the relief profile measurements. The image processing and 3-D display software are developed to reconstruct 3-D shape. The power supply of laser diode with adaptive current control circuit is designed. (author). 4 refs., 5 tabs., 33 figs

  8. A model of dispenser cathode activity

    Lamartine, B. C.; Eyink, K. G.; Czarnecki, J. V.; Lampert, W. V.; Haas, T. W.

    1985-12-01

    A semiquantitative model of dispenser cathode activity based on recent work on the co-adsorption of Ba and O onto W surfaces is presented. The co-adsorption studies have determined the shape of a three-dimensional surface of work function as a function of θO and θBa, the surface coverages of O and Ba, respectively. Compositions of a variety of pedigreed dispenser cathodes were fitted to this surface and their composition changes during lifetime were modeled. Changes of surface composition with temperature and of workfunction, φ, with temperature were also found to fit these curves. The concept of a patchy surface implied by the co-adsorption measurements was used to explain earlier results on the shape of the X-ray excited Ba MNN Auger feature. Finally, SIMS measurements under UHV conditions was found to provide an extremely sensitive measurement of surface composition in the region of surface coverages of interest in the study of cathode phenomena. Extensions of this work to other types of cathodes such as M-types, and rhenium substrate cathodes is also discussed.

  9. On progress of nuclear activation model calculations

    Progress of work on improved methods of nuclear model calculations for nuclear activation data carried out at IFIN-HH in 2003-2004 is reported. In order to provide accurate predictions of further interest for the European Activation File (EAF-2005), no use of normalization or free parameters are involved. Model calculations carried out by using the computer codes EMPIRE-II and STAPRE-H have been validated by analysis of activation cross sections of all W and Ta stable isotopes and compared with the corresponding predictions obtained with the code TALYS. The accurate description of these reaction cross sections is obtained by using a consistent local parameter set, being fully due to the start of proton pre-equilibrium contribution due to the partial wave l = 7ℎ at incident energies of ∼ 14 MeV. This feature makes possible a faster increase of the STAPRE-H results for the (n,p) reaction cross sections just around this energy, while at 20 MeV they are in between the EMPIRE-II and TALYS predictions. It is thus pointed out the need for additional experimental data in the energy range above 15 MeV, similar to previous measurements at, e.g., JRC/IRMM. It is also shown that enlargement actions already in due course may have lower effectiveness concerning the preservation and development of knowledge and capabilities at Romanian R and D institutes as well as their integration into existing EC/JRC programmes and EU networks. While from the beginning EC asked CEEC to improve their R and D infrastructure to better benefit from the enlargement process, no real step forward has been done in this respect in Romania. The present conditions at IFIN-HH well below the limits making possible a real work have made thus not possible a further co-operation with JRC/IRMM, where we found previously the best opportunities for a sound common work, simply because no study completion may be done now in Bucharest. (author)

  10. Visual search of illusory contours: an attempt of automatization

    Gvozdenović Vasilije

    2008-01-01

    Full Text Available Laboratory of Experimental Psychology, University of Belgrade Recent research, which was mostly focused on assessing the types of visual search of illusory contours, showed that visual search is dependent on factors like target configuration and task type. Some experimental research supports the theory of parallel search while other research supports the theory of serial search of illusory contours. The inconsistency is most likely due to the fact that various types of illusory contour configurations were used in set creation. Up to this point, our research indicated that the serial search is used in most cases. Some exceptions of search type have been proven in some modification of task type but nevertheless the search profile remained serial. In this article, we are reporting on two visual search experiments. The first experiment was an investigation of a specific feature of a Kanisza type illusory triangle, orientation. The validity of the profile defined in the first experiment was tested in our second experiment with an attempt to automatize the visual search by the multiplication of the initial experimental trials. Our results confirmed that, regardless of the number of experimental trials, the visual search profile remains serial.

  11. Time contour expression of limited range phenomena on stack chart; Jugo chart jo deno kyokuchi gensho jikan contour

    Kametani, T.

    1997-05-27

    Time contour expression of limited range phenomena on stack chart is examined for further improvement on the result of the ultimate interpretation in the seismic reflection survey. The policy is made clear from the beginning that local phenomena are to be discussed, and data prior CMP stacking is interpreted in detail. For this purpose, it is effective to make use of the time contour expression in the midpoint-offset plane simultaneously with the CMP and COP panels. For the review of data prior to CMP stacking, it is convenient to use the CMP (CDP) stacking chart in which the data is arranged methodically. In this chart, all the channels which are crude data prior to stacking are plotted on midpoint-offset coordinates, which plane is called the MOD (Midpoint Offset Domain) panel. Various panels can be chosen unrestrictedly, and their mutual relations can be easily grasped. When data points are given a time axis, they can be expressed in a time contour. Studies are conducted about the underground structure, multiple reflection paths divided by it, and characteristics of detour reflection attributable to faults. 4 refs., 9 figs.

  12. A review of methods of analysis in contouring studies for radiation oncology

    Full text: Inter-observer variability in anatomical contouring is the biggest contributor to uncertainty in radiation treatment planning. Contouring studies are frequently performed to investigate the differences between multiple contours on common datasets. There is, however, no widely accepted method for contour comparisons. The purpose of this study is to review the literature on contouring studies in the context of radiation oncology, with particular consideration of the contouring comparison methods they employ. A literature search, not limited by date, was conducted using Medline and Google Scholar with key words; contour, variation, delineation, inter/intra observer, uncertainty and trial dummy-run. This review includes a description of the contouring processes and contour comparison metrics used. The use of different processes and metrics according to tumour site and other factors were also investigated with limitations described. A total of 69 relevant studies were identified. The most common tumour sites were prostate (26), lung (10), head and neck cancers (8) and breast (7).The most common metric of comparison was volume used 59 times, followed by dimension and shape used 36 times, and centre of volume used 19 times. Of all 69 publications, 67 used a combination of metrics and two used only one metric for comparison. No clear relationships between tumour site or any other factors that may in Auence the contouring process and the metrics used to compare contours were observed from the literature. Further studies are needed to assess the advantages and disadvantages of each metric in various situations.

  13. Toward a model of neuropsychological activity.

    Ardila, A; Galeano, L M; Rosselli, M

    1998-12-01

    The main purpose of this research was to establish the intercorrelations existing among different psychological and neuropsychological test scores in a normal and homogeneous population. A second purpose was to attempt further step in the component analysis of cognitive activity measured by means of neuropsychological tests. A comprehensive neuropsychological test battery was assembled and individually administered to a 300-subject sample, aged 17-25 year-old. All of them were right-handed male university students. The battery included some basic neuropsychological tests directed to assess language, calculation abilities, spatial cognition, praxic abilities, memory, perceptual abilities, and executive functions. In addition, the Wechsler Adult Intelligence Scale was administered. Forty-one different scores were calculated. Correlations among the different test scores were analyzed. It was found that some of the tests presented a quite complex intecorrelation system, whereas other tests presented few or no significant correlations. Mathematical ability tests and orthography knowledge represented the best predictors of Full Scale IQ. A factor analysis with varimax rotation disclosed five factors (verbal, visuoperceptual, executive function, fine movements, and memory) accounting for 63.6% of the total variance. Implications of these results for a neuropsychological model about brain organization of cognition were analyzed. PMID:9951709

  14. A Contour-Guided Deformable Image Registration Algorithm for Adaptive Radiotherapy

    Gu, Xuejun; Wang, Jing; Yordy, John; Mell, Loren; Jia, Xun; Jiang, Steve B

    2013-01-01

    In adaptive radiotherapy, deformable image registration is often conducted between the planning CT and treatment CT (or cone beam CT) to generate a deformation vector field (DVF) for dose accumulation and contour propagation. The auto propagated contours on the treatment CT may contain relatively large errors, especially in low contrast regions. A clinician inspection and editing of the propagated contours are frequently needed. The edited contours are able to meet the clinical requirement for adaptive therapy; however, the DVF is still inaccurate and inconsistent with the edited contours. The purpose of this work is to develop a contour-guided deformable image registration (CG-DIR) algorithm to improve the accuracy and consistency of the DVF for adaptive radiotherapy. Incorporation of the edited contours into the registration algorithm is realized by regularizing the objective function of the original demons algorithm with a term of intensity matching between the delineated structures set pairs. The CG-DIR a...

  15. The precision of visual memory for a complex contour shape measured by a freehand drawing task.

    Osugi, Takayuki; Takeda, Yuji

    2013-03-01

    Contour information is an important source for object perception and memory. Three experiments examined the precision of visual short-term memory for complex contour shapes. All used a new procedure that assessed recall memory for holistic information in complex contour shapes: Participants studied, then reproduced (without cues), a contoured shape by freehand drawing. In Experiment 1 memory precision was measured by comparing Fourier descriptors for studied and reproduced contours. Results indicated survival of lower (holistic) frequency information (i.e., ⩽5cycles/perimeter) and loss of higher (detail) frequency information. Secondary tasks placed demands on either verbal memory (Experiment 2) or visual spatial memory (Experiment 3). Neither secondary task interfered with recall of complex contour shapes, suggesting that the memory system maintaining holistic shape information was independent of both the verbal memory system and the visual spatial memory subsystem of visual short-term memory. The nature of memory for complex contour shape is discussed. PMID:23296198

  16. Nontangent, Developed Contour Bulkheads for a Wing-Body Single Stage Launch Vehicle

    Wu, K. Chauncey; Lepsch, Roger A., Jr.

    1999-01-01

    Dry weights for a SSTO vehicle which incorporates nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.41 4 aspect ratio ellipsoidal bulkheads, Weights, volumes and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weight of a vehicle which incorporates the optimized bulkheads is predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle s three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of 4365 Ib (2.2 percent) from the 200,679 Ib baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. During the vehicle- level analysis, modified bulkhead designs are first analyzed, then incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 Ib, a 2.6 percent reduction from the baseline value. These results suggest that nontangent, developed contour bulkheads may provide substantial weight savings for SSTO vehicles.

  17. Loudness perception in the domestic cat: reaction time estimates of equal loudness contours and recruitment effects.

    May, Bradford J; Little, Nicole; Saylor, Stephanie

    2009-06-01

    The domestic cat is the primary physiological model of loudness coding and recruitment. At present, there are no published descriptions of loudness perception in this species. This study used a reaction time task to characterize loudness perception in six behaviorally trained cats. The psychophysical approach was based on the assumption that sounds of equal loudness elicit responses of equal latency. The resulting equal latency contours reproduced well-known features of human equal loudness contours. At the completion of normal baseline measures, the cats were exposed to intense sound to investigate the behavioral correlates of loudness recruitment, the abnormally rapid growth of loudness that is commonly associated with hearing loss. Observed recruitment effects were similar in magnitude to those that have been reported in hearing-impaired humans. Linear hearing aid amplification is known to improve speech intelligibility but also exacerbate recruitment in impaired listeners. The effects of speech spectra and amplification on recruitment were explored by measuring the growth of loudness for natural and amplified vowels before and after sound exposure. Vowels produced more recruitment than tones, and the effect was exacerbated by the selective amplification of formant structure. These findings support the adequacy of the domestic cat as a model system for future investigations of the auditory processes that underlie loudness perception, recruitment, and hearing aid design. PMID:19198944

  18. A word by any other intonation: fMRI evidence for implicit memory traces for pitch contours of spoken words in adult brains.

    Michael Inspector

    Full Text Available OBJECTIVES: Intonation may serve as a cue for facilitated recognition and processing of spoken words and it has been suggested that the pitch contour of spoken words is implicitly remembered. Thus, using the repetition suppression (RS effect of BOLD-fMRI signals, we tested whether the same spoken words are differentially processed in language and auditory brain areas depending on whether or not they retain an arbitrary intonation pattern. EXPERIMENTAL DESIGN: Words were presented repeatedly in three blocks for passive and active listening tasks. There were three prosodic conditions in each of which a different set of words was used and specific task-irrelevant intonation changes were applied: (i All words presented in a set flat monotonous pitch contour (ii Each word had an arbitrary pitch contour that was set throughout the three repetitions. (iii Each word had a different arbitrary pitch contour in each of its repetition. PRINCIPAL FINDINGS: The repeated presentations of words with a set pitch contour, resulted in robust behavioral priming effects as well as in significant RS of the BOLD signals in primary auditory cortex (BA 41, temporal areas (BA 21 22 bilaterally and in Broca's area. However, changing the intonation of the same words on each successive repetition resulted in reduced behavioral priming and the abolition of RS effects. CONCLUSIONS: Intonation patterns are retained in memory even when the intonation is task-irrelevant. Implicit memory traces for the pitch contour of spoken words were reflected in facilitated neuronal processing in auditory and language associated areas. Thus, the results lend support for the notion that prosody and specifically pitch contour is strongly associated with the memory representation of spoken words.

  19. The fatigue life of contoured cobalt chrome posterior spinal fusion rods.

    Nguyen, T-Q; Buckley, J M; Ames, C; Deviren, V

    2011-02-01

    Intraoperative contouring of posterior rods in lumbar arthrodesis constructs introduces stress concentrations that can substantially reduce fatigue life. The sensitivity of titanium (Ti) and stainless steel (SS) to intraoperative contouring has been established in the literature; however, notch sensitivity has yet to be quantified for cobalt chrome (CoCr), which is now being advocated for use in posterior arthrodesis constructs. The goal of this study is to evaluate the sensitivity of CoCr rods to intraoperative contouring for posterior lumbar screwrod arthrodesis constructs. In this paper lumbar bilateral vertebrectomy models are constructed based on ASTM F1717-01 with curved rods (26-30 degrees total curvature) and poly-axial pedicle screws. Three types of constructs are assembled: first, 5.5 mm SS rods with SS screws (6.5 x 35 mm), second, 6.0 mm Ti rods with Ti screws (7.5 x 35 mm), and third, 6.0 mm CoCr rods with Ti screws (7.5 x 35 mm). All specimens are tested at 4 Hz in dynamic axial compression-bending with a load ratio of ten and maximum load levels of 250, 400, and 700 N until run-out at 2 000 000 cycles. Results are presented that show that the fatigue life of CoCr constructs tend to be greater than Ti constructs at all levels. At the 400 N maximum loading, CoCr lasts an average of 350 000 cycles longer than the Ti constructs. The CoCr constructs are able to sustain the 250 N load until run-out at 2 000 000 cycles but they fail at high load levels (maximum 700 N). The CoCr constructs fail at the neck of the Ti screw at high loads whereas Ti screws fail at the notch induced by contouring. Since CoCr is compatible with magnetic resonance imaging and has high static strength characteristics, the results of this study suggest that it may be an appropriate substitute for Ti. PMID:21428153

  20. Probabilistic Models of Analysis of Loan Activity of Internet Banking

    Kondrateva Irina G.; Ostapenko Irina N.

    2012-01-01

    In article the main advantages of electronic banking in comparison with traditional, methods of the analysis of credit activity are considered. The special role is taken to the probabilistic method of analysis of credit activity in the Internet-bank. Modeling of activity of bank on the basis of probabilistic models of credit operations.

  1. Activated sludge model No. 2d, ASM2d

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  2. A Hierarchical Deep Temporal Model for Group Activity Recognition

    Ibrahim, Moustafa; Muralidharan, Srikanth; Deng, Zhiwei; Vahdat, Arash; Mori, Greg

    2015-01-01

    In group activity recognition, the temporal dynamics of the whole activity can be inferred based on the dynamics of the individual people representing the activity. We build a deep model to capture these dynamics based on LSTM (long-short term memory) models. To make use of these ob- servations, we present a 2-stage deep temporal model for the group activity recognition problem. In our model, a LSTM model is designed to represent action dynamics of in- dividual people in a sequence and anothe...

  3. ACTIVITY ANALYSIS WITH HIDDEN MARKOV MODEL FOR AMBIENT ASSISTED LIVING

    Dietmar Bruckner

    2012-06-01

    Full Text Available In an Ambient Assisted Living (AAL project the activities of the user will be analyzed. The raw data is from a motion detector. Through data processing the huge amount of dynamic raw data was translated to state data. With hidden Markov model, forward algorithm to analyze these state data the daily activity model of the user was built. Thirdly by comparing the model with observed activity sequences, and finding out the similarities between them, defined the best adapt routine in the model. Furthermore an activity routine net was built and used to compare with the hidden Markov model.

  4. Effectiveness of Human Atrial Natriuretic Peptide Supplementation in Pulmonary Edema Patients Using the Pulse Contour Cardiac Output System

    Sakamoto, Yuichiro; Mashiko, Kunihiro; Saito, Nobuyuki; Matsumoto, Hisashi; Hara, Yoshiaki; Kutsukata, Noriyoshi; Yokota, Hiroyuki

    2010-01-01

    Purpose Atrial natriuretic peptide (ANP) has a variety of pharmacologic effects, including natriuresis, diuresis, vasodilatation, and suppression of the renin-angiotensin system. A recent study showed that ANP infusion improved hypoxemia and pulmonary hypertension in a lung injury model. On the other hand, the pulse contour cardiac output (PiCCO™) system (Pulsion Medical Systems, Munich, Germany) allows monitoring of the intravascular volume status and may be used to guide volume therapy in s...

  5. Melodic Contour Identification Reflects the Cognitive Threshold of Aging

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older adult groups participated in the CIT given in three listening conditions (i.e., focused, selective, and alternating). Behavioral data (accuracy and response times) and hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). Our findings showed cognitive declines in the older adult group but with a subtle difference from the younger adult group. The accuracy of the melodic CITs given in the target-like distraction task (CIT2) was significantly lower than that in the environmental noise (CIT1) condition in the older adult group, indicating that CIT2 may be a benchmark test for age-specific cognitive decline. The fNIRS findings also agreed with this interpretation, revealing significant increases in oxygenated hemoglobin (oxyHb) concentration in the younger (p < 0.05 for Δpre - on task; p < 0.01 for Δon – post task) rather than the older adult group (n.s for Δpre - on task; n.s for Δon – post task). We further concluded that the oxyHb difference was present in the brain regions near the right dorsolateral prefrontal cortex. Taken together, these findings suggest that CIT2 (i.e., the melodic contour task in the target-like distraction) is an optimized task that could indicate the degree and type of age-related cognitive decline. PMID:27378907

  6. Camera motion estimation by tracking contour deformation: Precision analysis

    Alenyà, Guillem; Torras, Carme

    2010-01-01

    An algorithm to estimate camera motion from the progressive deformation of a tracked contour in the acquired video stream has been previously proposed. It relies on the fact that two views of a plane are related by an affinity, whose 6 parameters can be used to derive the 6 degrees-of-freedom of camera motion between the two views. In this paper we evaluate the accuracy of the algorithm. Monte Carlo simulations show that translations parallel to the image plane and rotations about the optical...

  7. Laser Welding Of Contoured Thin-Wall Housings

    Spiegel, Lyle B.; Oleksiak, Carl E.

    1991-01-01

    Superalloy parts joined with less distortion. Carbon dioxide laser beam directed by optics in numerically controlled robot arm welds shell-type turbopump housings having complicated shapes. 5-kW laser, following single programmed three-dimensional pass, produces high-quality, full-penetration weld pass in age-hardenable nickel superalloy. Operator easily programs robot by using teaching pendant to track weld joint and keeps laser focused on workpiece while following contour of shell. Shells welded in rapid succession, with minimal change in setup for each.

  8. Contour optimization of a planar broadband dipole using genetic algorithms

    Vasylenko, Dmytro O.; Dubrovka, Fedor F.; Edenhofer, Peter

    2007-01-01

    The application of genetic algorithm (GA) optimization to the design and analysis for planar broadband dipoles of bow-tie type is presented. Primary attention is given to the analysis of the radiating contour profile of the bow-tie antenna. The planar dipole antenna is proposed for UWB communications in the frequency range 3.1-10.6 GHz. A printed design of the proposed antenna is defined for return loss < -10 dB and antenna gain > 2 dB over the whole frequency range.

  9. Tracking the critical offshore conditions leading to marine inundation via active learning of full-process based models

    Rohmer, Jeremy; Idier, Deborah; Bulteau, Thomas; Paris, François

    2016-04-01

    From a risk management perspective, it can be of high interest to identify the critical set of offshore conditions that lead to inundation on key assets for the studied territory (e.g., assembly points, evacuation routes, hospitals, etc.). This inverse approach of risk assessment (Idier et al., NHESS, 2013) can be of primary importance either for the estimation of the coastal flood hazard return period or for constraining the early warning networks based on hydro-meteorological forecast or observations. However, full-process based models for coastal flooding simulation have very large computational time cost (typically of several hours), which often limits the analysis to a few scenarios. Recently, it has been shown that meta-modelling approaches can efficiently handle this difficulty (e.g., Rohmer & Idier, NHESS, 2012). Yet, the full-process based models are expected to present strong non-linearities (non-regularities) or shocks (discontinuities), i.e. dynamics controlled by thresholds. For instance, in case of coastal defense, the dynamics is characterized first by a linear behavior of the waterline position (increase with increasing offshore conditions), as long as there is no overtopping, and then by a very strong increase (as soon as the offshore conditions are energetic enough to lead to wave overtopping, and then overflow). Such behavior might make the training phase of the meta-model very tedious. In the present study, we propose to explore the feasibility of active learning techniques, aka semi-supervised machine learning, to track the set of critical conditions with a reduced number of long-running simulations. The basic idea relies on identifying the simulation scenarios which should both reduce the meta-model error and improve the prediction of the critical contour of interest. To overcome the afore-described difficulty related to non-regularity, we rely on Support Vector Machines, which have shown very high performance for structural reliability

  10. Building planning action models using activity recognition

    Ortiz Laguna, Javier

    2014-01-01

    Activity recognition is receiving a special attention because it can be used in many areas. This field of artificial intelligence has been widely investigated lately for tasks such as following the behavior of people with some kind of cognitive impairment. For instance, elderly people with dementia. The recognition of the activities that these people carry on permits to offer assistance in case they need it while they are performing the activities. Currently, there are many systems capable of...

  11. Finite element models applied in active structural acoustic control

    Oude Nijhuis, Marco H.H.; de Boer; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controller design. The reduced structural model is combined with an acoustic model which uses the radiation mode concept. For a test case consisting of a rectangular plate with one piezo patch the model re...

  12. Optimal pricing decision model based on activity-based costing

    王福胜; 常庆芳

    2003-01-01

    In order to find out the applicability of the optimal pricing decision model based on conventional costbehavior model after activity-based costing has given strong shock to the conventional cost behavior model andits assumptions, detailed analyses have been made using the activity-based cost behavior and cost-volume-profitanalysis model, and it is concluded from these analyses that the theory behind the construction of optimal pri-cing decision model is still tenable under activity-based costing, but the conventional optimal pricing decisionmodel must be modified as appropriate to the activity-based costing based cost behavior model and cost-volume-profit analysis model, and an optimal pricing decision model is really a product pricing decision model construc-ted by following the economic principle of maximizing profit.

  13. Characterization of microstructures using contour tree connectivity for fluid flow analysis.

    Aydogan, Dogu Baran; Hyttinen, Jari

    2014-06-01

    Quantifying the connectivity of material microstructures is important for a wide range of applications from filters to biomaterials. Currently, the most used measure of connectivity is the Euler number, which is a topological invariant. Topology alone, however, is not sufficient for most practical purposes. In this study, we use our recently introduced connectivity measure, called the contour tree connectivity (CTC), to study microstructures for flow analysis. CTC is a new structural connectivity measure that is based on contour trees and algebraic graph theory. To test CTC, we generated a dataset composed of 120 samples and six different types of artificial microstructures. We compared CTC against the Euler parameter (EP), the parameter for connected pairs, the nominal opening dimension (dnom) and the permeabilities estimated using direct pore scale modelling. The results show that dnom is highly correlated with permeability (R2=0.91), but cannot separate the structural differences. The groups are best classified with feature combinations that include CTC. CTC provides new information with a different connectivity interpretation that can be used to analyse and design materials with complex microstructures. PMID:24671931

  14. Petri Nets Hierarchical Modelling Framework of Active Products' Community

    Zouinkhi, Ahmed; Bajic, Eddy; Rondeau, Eric; Abdelkrim, Mohamed Naceur

    2010-01-01

    In this work, we define the concept of an active security management in a distributed system, with Hierarchical Petri nets modelling of active product's behaviour. The target application is dedicated to security management of hazardous products but the concept is extensible to other application areas. We proposed an active product's behaviour model represented by hierarchical coloured Petri nets. This hierarchy includes sub-models where each one allows displaying the evolution of every state ...

  15. A NOVEL FAST MOVING OBJECT CONTOUR TRACKING ALGORITHM

    An Guocheng; Yang Hao; Wu Zhenyang

    2009-01-01

    If a somewhat fast moving object exists in a complicated tracking environment, snake's nodes may fall into the inaccurate local minima. We propose a mean shift snake algorithm to solve this problem. However, if the object goes beyond the limits of mean shift snake module operation in successive sequences, mean shift snake's nodes may also fall into the local minima in their moving to the new object position. This paper presents a motion compensation strategy by using particle filter; therefore a new Particle Filter Mean Shift Snake (PFMSS) algorithm is proposed which combines particle filter with mean shift snake to fulfill the estimation of the fast moving object contour. Firstly, the fast moving object is tracked by particle filter to create a coarse position which is used to initialize the mean shift algorithm. Secondly, the whole relevant motion information is used to compensate the snake's node positions. Finally, snake algorithm is used to extract the exact object contour and the useful information of the object is fed back. Some real world sequences are tested and the results show that the novel tracking method have a good performance with high accuracy in solving the fast moving problems in cluttered background.

  16. Melodic Contour Identification Reflects the Cognitive Threshold of Aging.

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older adult groups participated in the CIT given in three listening conditions (i.e., focused, selective, and alternating). Behavioral data (accuracy and response times) and hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). Our findings showed cognitive declines in the older adult group but with a subtle difference from the younger adult group. The accuracy of the melodic CITs given in the target-like distraction task (CIT2) was significantly lower than that in the environmental noise (CIT1) condition in the older adult group, indicating that CIT2 may be a benchmark test for age-specific cognitive decline. The fNIRS findings also agreed with this interpretation, revealing significant increases in oxygenated hemoglobin (oxyHb) concentration in the younger (p like distraction) is an optimized task that could indicate the degree and type of age-related cognitive decline. PMID:27378907

  17. Contoured-gap coaxial guns for imploding plasma liner experiments

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  18. Lateral lower face and neck contouring following burn injury.

    Sadrollah Motamed

    2015-04-01

    Full Text Available The neck is normally a concave and highly mobile structure. Facial and cervical skin is prone to burn scar contracture because of its thin nature. The goal of treatment is to reconstruct this region to achieve a good aesthetic outcome and also normal neck and chin mobilization. This study was conducted to compare the effect of one row of suture and three rows of suture in critical points of the neck to recreate cervicomandibular angle for better contouring of the neck. A cross-sectional study was performed from July 2006 until August 2010. A total of 65 patients underwent lower lateral face and neck burn scar contracture reconstruction. The mean age of participants was 25.5 years old. After designing a local flap, in 31 patients we applied one row of suture. In 34 patients, we used three rows of suture on each side of the neck incorporation with  the recipient bed and the flap dermis or capsule to recreate a natural lower lateral face and neck contour (P<0.001. The standard deviation in hospitalization was 7 ± 2 days for group A and 6 ± 1 days for group B. In a two years follow-up, no blunting of cervicomandibular angle occurred and three rows of suture were superior according to present findings.

  19. RESEARCH OF BASIFACIAL CONTOURING SCULPTURE BY MANDIBULAR ANGLE OSTECTOMY

    FANG Jian-lin; DAI Chuan-chang; ZHU Guo-xian; ZHANG Ying; JIN Yu-qing; WANG Wei; QI Chuan-liang

    2006-01-01

    Objective Mandibular angle ostectomy is usually applied to the facial contouring sculpture.We evaluated the various techniques in order to enhance the precision and avoid unnecessary damage. Methods Before operation the area and quantity resected bone were designed according to facial measurement, mandible pantomography and orthophoria and lateral localized radiograph of skull. The Incises of mandibular angle ostectomy included intraoral, retroauricular or intraoral associated with retroauricular. Howerer, the sagittal resection of mandible outer table was necessary in all intraoral incise. Results Single mandibular angle ostectomy was not satisfactory for the patients having mandible hypertrophy with over-width basifacial contouring. Mandibular angle ostectomy combined with the sagittal resection of outer table of mandibular angle were required. Good symmetry and ap pearance were gained in 206 cases. One case had facial paralysis. Two patients occured mandibular fracture during the operation. Three cases complicated angled deformity at mandible body. Conclusion Reduction mandibuloplasty should be selected depends on varied types of mandibular angle hypertrophy before operation.

  20. Some effects of intonation contour on sentence intelligibility

    Hillenbrand, James M.

    2003-10-01

    This experiment was designed to measure the effects of pitch movement on sentence intelligibility. A source-filter synthesizer was used to generate three synthetic versions of 60 sentences drawn from the TIMIT multi-talker speech database: (1) an original pitch (OP) condition in which the fundamental frequency (F0) contour matched that of the original utterance, (2) a monotone pitch (MP) condition in which F0 was held constant at the median value measured from the original utterance, and (3) an inverted pitch (IP) condition in which the F0 contour was reflected around the median F0 value (i.e., pitch rises were changed to pitch drops, and vice versa). Results from 30 listeners showed a small but statistically reliable drop in intelligibility from the OP condition to either the MP or IP condition, with no difference between the MP and IP conditions. A second group of 22 listeners was tested on the same task, but with overall sentence intelligibility reduced by running all signals through a 2-kHz low-pass filter. As with the unfiltered signals, intelligibility was reduced for the MP and IP conditions relative to OP; however, the decrements in intelligibility were somewhat larger for the filtered signals, and inverting pitch caused a larger intelligibility decrement than flattening pitch.

  1. Analysis of trabecular bone microstructure using contour tree connectivity.

    Aydogan, Dogu Baran; Moritz, Niko; Aro, Hannu T; Hyttinen, Jari

    2013-01-01

    Millions of people worldwide suffer from fragility fractures, which cause significant morbidity, financial costs and even mortality. The gold standard to quantify structural properties of trabecular bone is based on the morphometric parameters obtained from microCT images of clinical bone biopsy specimens. The currently used image processing approaches are not able to fully explain the variation in bone strength. In this study, we introduce the contour tree connectivity (CTC) as a novel morphometric parameter to study trabecular bone quality. With CTC, we calculate a new connectivity measure for trabecular bone by using contour tree representation of binary images and algebraic graph theory. To test our approach, we use trabecular bone biopsies obtained from 55 female patients. We study the correlation of CTC with biomechanical test results as well as other morphometric parameters obtained from microCT. The results based on our dataset show that CTC is the 3rd best predictive feature of ultimate bone strength after bone volume fraction and degree of anisotropy. PMID:24579169

  2. Contouring of the gluteal region in women: enhancement and augmentation.

    Ali, Ahmed

    2011-09-01

    Techniques for improving the appearance of the gluteal region are important elements in body contouring. In all cultures and communities, this aspect of the physique holds a special place among the elements comprising the ideals of physical beauty. Recent studies described the aesthetics of the gluteal region in terms of shape, volume, and projection. Accumulation of fat at the supragluteal, lower paralumbar, infragluteal, and/or trochanteric areas often disturbs the natural shape of the buttocks. The problem is accentuated by the lack of lateral projection. This study was designed to find a method for contouring of the gluteal region. This method is based on the enhancement of the shape by liposculpture of the areas around the buttocks, and lipoinjection to achieve the volume and projection. Between July 2008 and December 2009, the study included 40 female patients complaining of disfigurement of the gluteal region. With 1 year follow-up period, 36 patients showed high satisfaction with the results. Pre- and postoperative perimeters of the gluteal regions showed good improvement in proportion and projection. The study concluded that liposuction of the areas around the buttocks could enhance the shape of the gluteal region. Lipoinjection could add a balanced shape, size, and projection. A pleasing gluteal appearance could be achieved by the combination of enhancement and augmentation. PMID:21587056

  3. Wanted: Active Role Models for Today's Kids

    ... be active," says Handles Franklin, one of the stars of the world-famous Harlem Globetrotters. "Something so ... More "Reducing Childhood Obesity" Articles Healthy Weight, Healthy Child / Get Involved How Parents and Kids Can Get ...

  4. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    О. Davydova

    2013-01-01

    In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namel...

  5. Finite element models applied in active structural acoustic control

    Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll

  6. Modeling in school mathematics: generating active learning environments

    Sakonidis, Haralambos

    2003-01-01

    Models and the modeling process are at the heart of mathematics. The paper discusses the importance of developing pupils’ modeling abilities and skills in the context of school mathematics and focuses in particular on the content, structure and the educational exploitation of a set of activities constructed to serve this purpose in a computational modeling environment.

  7. Theoretical and practical aspects of modelling activated sludge processes

    Meijer, S.C.F.

    2004-01-01

    This thesis describes the full-scale validation and calibration of a integrated metabolic activated sludge model for biological phosphorus removal. In chapters 1 and 2 the metabolic model is described, in chapters 3 to 6 the model is tested and in chapters 7 and 8 the model is put into practice. Cha

  8. Ups and Downs in Auditory Development: Preschoolers' Sensitivity to Pitch Contour and Timbre.

    Creel, Sarah C

    2016-03-01

    Much research has explored developing sound representations in language, but less work addresses developing representations of other sound patterns. This study examined preschool children's musical representations using two different tasks: discrimination and sound-picture association. Melodic contour--a musically relevant property--and instrumental timbre, which is (arguably) less musically relevant, were tested. In Experiment 1, children failed to associate cartoon characters to melodies with maximally different pitch contours, with no advantage for melody preexposure. Experiment 2 also used different-contour melodies and found good discrimination, whereas association was at chance. Experiment 3 replicated Experiment 2, but with a large timbre change instead of a contour change. Here, discrimination and association were both excellent. Preschool-aged children may have stronger or more durable representations of timbre than contour, particularly in more difficult tasks. Reasons for weaker association of contour than timbre information are discussed, along with implications for auditory development. PMID:25846115

  9. Contours, The index contours at an interval of 10 feet and index contour annotation for the City of Baltimore, MD., Published in 2009, 1:2400 (1in=200ft) scale, City of Baltimore.

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of 2009. It is described as 'The index...

  10. Radar Monitoring: Modelling of Undeclared Activities

    A feasibility study in the framework of the German Support Programme investigates the applicability of the 3D radar method for the monitoring of a geological repository. The aim of technical solution is the detection and localization of clandestine underground mining activities. The radar system should form a kind of protective shield around a repository to detect and localize possible activities in an early stage and in a sufficient distance. To date radar monitoring in the context of geotechnical engineering is restricted to few applications, mainly in form of repetitive linear measurements. Repetitive surveys out of boreholes or drifts are conducted with disadvantages concerning safeguards requirements as high maintenance and positioning inaccuracies. In this study a static radar system is selected to omit these disadvantages. A monitoring system consisting of an array of static radar probes could probably be realized as a highly accurate, durable and low-maintenance automatic early warning system. In the past decade DMT has developed an unique 3D borehole radar used for the exploration in salt mines, at cavern sites and in limestone quarries. The knowledge of DMT can be used for a further development of a direction sensitive radar monitoring system. With the additional information of the direction, possible activities in the mine could not only be detected but also localized in 3D space. The detectability of different possible clandestine mining activities is investigated by simulations of radar wave propagation. The simulations involve the influence of baseline conditions and known activities to the data. The detectability of mining activities is analyzed by comparing different geometries of the activities, different layouts of the radar probes and accounts for different probe parameters. (author)

  11. Post-Bariatric Surgery Satisfaction and Body-Contouring Consideration after Massive Weight Loss

    Saleh M Aldaqal; Ahmad M Makhdoum; Ali M Turki; Awan, Basim A; Osama A Samargandi; Hytham Jamjom

    2013-01-01

    Background: Following a bariatric surgery and massive weight-loss, the outcome is usually sullied by consequences on the body′s contour and redundant skin. Aims: We aimed to record the frequency of contour irregularities and quantify patients′ satisfaction with appearance and anticipations from body contouring surgery. Materials and Methods: The ethical committee at King Abdulaziz University Hospital approved the study, and patients were consented. A cross-sectional study targeting the post-b...

  12. A novel three-dimensional smile analysis based on dynamic evaluation of facial curve contour

    Yi Lin; Han Lin; Qiuping Lin; Jinxin Zhang; Ping Zhu; Yao Lu; Zhi Zhao; Jiahong Lv; Mln Kyeong Lee; Yue Xu

    2016-01-01

    The influence of three-dimensional facial contour and dynamic evaluation decoding on factors of smile esthetics is essential for facial beauty improvement. However, the kinematic features of the facial smile contour and the contribution from the soft tissue and underlying skeleton are uncharted. Here, the cheekbone-maxilla contour and nasolabial fold were combined into a “smile contour” delineating the overall facial topography emerges prominently in smiling. We screened out the stable and un...

  13. Atmospheric transmittance model for photosynthetically active radiation

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  14. Active illumination and appearance model for face alignment

    Kahraman, Fatih; Gokmen, M.; Darkner, Sune;

    2010-01-01

    , integrating face identity and illumination models in order to reach acceptable and stable face recognition rates. For this purpose, Active Appearance Model (A AM) and illumination model of faces are combined in order to obtain an illumination invariant face localization. The proposed method is an integrated...... sufficient. There is no need to build complex models for illumination. As a result, this paper has presented a simple and efficient method for face modeling and face alignment in order to increase the performance of face localization by means of the proposed illumination invariant AIA method for face...... alignment, such as the Active Appearance Models, invariant to changes in, illumination. From the experimental results, we showed that the proposed AIA model provides higher accuracy than classical Active Appearance Model for face alignment in a point-to-point error sense....

  15. Ferromagnetic interaction model of activity level in workplace communication

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  16. Development of thermodynamics cognitive model of project activities

    Савєльєва, Оксана Степанівна; Становська, Іраїда Іванівна; Торопенко, Алла Володимірівна; Березовська, Катерина Ігорівна; Хеблов, Ісмаіл

    2016-01-01

    Application of thermodynamic relations for decision support project activities. For this analysis of multiple elements of project activity, highlighted thermodynamic analogues transfer and their parameters and criteria made to adapt the set potentials and flows to modeling the type of thermodynamic functions and criteria proposed thermodynamic cognitive models transfer material and financial resources among elements of project activity based on analytical criterion equations thermal processes...

  17. Developing Technological Problem Solving Activities Based on a Functional Model

    Yu-Shan Chang

    2008-01-01

    This paper aimed to develop technological problem solving activities from a functional model. After discussing technological problem solving activities in junior high school technology textbooks, the main findings were: (1)A linear model of technological problem solving often served as the basis for those activities; (2)Less use of scaffolding was made to support student learning; (3)Less creative thinking skills were taught; (4)The importance of redesign was not emphasized; (5)The class disc...

  18. Cognitive model of the power unit operator activity

    Basic notions making it possible to study and simulate the peculiarities of man-operator activity, in particular his way of thiking, are considered. Special attention is paid to cognitive models based on concept of decisive role of knowledge (its acquisition, storage and application) in the man mental processes and activity. The models are based on three basic notions, which are the professional world image, activity strategy and spontaneous decisions

  19. Managing CSCL Activity through networking models

    Luis Casillas

    2014-04-01

    Full Text Available This study aims at managing activity carried out in Computer-Supported Collaborative Learning (CSCL environments. We apply an approach that gathers and manages the knowledge underlying huge data structures, resulting from collaborative interaction among participants and stored as activity logs. Our method comprises a variety of important issues and aspects, such as: deep understanding of collaboration among participants in workgroups, definition of an ontology for providing meaning to isolated data manifestations, discovering of knowledge structures built in huge amounts of data stored in log files, and development of high-semantic indicators to describe diverse primitive collaborative acts, and binding these indicators to formal descriptions defined in the collaboration ontology; besides our method includes gathering collaboration indicators from web forums using natural language processing (NLP techniques.

  20. A Model of Venture Capitalist Investment Activity

    Tyebjee, Tyzoon T; Bruno, Albert V

    1984-01-01

    The paper describes the activities of venture capitalists as an orderly process involving five sequential steps. These are (1) Deal Origination: The processes by which deals enter into consideration as investment prospects, (2) Deal Screening: A delineation of key policy variables which delimit investment prospects to a manageable few for in-depth evaluation, (3) Deal Evaluation: The assessment of perceived risk and expected return on the basis of a weighting of several characteristics of the...