WorldWideScience

Sample records for active catalytic sites

  1. Resolving the Structure of Active Sites on Platinum Catalytic Nanoparticles

    Chang, Lan Yun; Barnard, Amanda S.; Gontard, Lionel Cervera; Dunin-Borkowski, Rafal E.

    2010-01-01

    Accurate understanding of the structure of active sites is fundamentally important in predicting catalytic properties of heterogeneous nanocatalysts. We present an accurate determination of both experimental and theoretical atomic structures of surface monatomic steps on industrial platinum...... nanoparticles. This comparison reveals that the edges of nanoparticles can significantly alter the atomic positions of monatomic steps in their proximity, which can lead to substantial deviations in the catalytic properties compared with the extended surfaces....

  2. Resonant active sites in catalytic ammonia synthesis: A structural model

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  3. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  4. Study on the active sites of Cu-ZSM-5 in trichloroethylene catalytic combustion with air

    Cheng Hua Xu; Chuan Qi Liu; Yan Zhong; Xiu Zhou Yang; Jian Ying Liu; Ying Chun Yang; Zhi Xiang Ye

    2008-01-01

    The catalytic activity of Cu-ZSM-5 in trichloroethylene (TCE) combustion increases with the increasing skeletal Cu amount and however decreases with the increase of surface amorphous CuO,which is detected by infrared spectroscopy (IR) and diffuse reflectance ultraviolet-visible spectroscopy (DRS-UV-vis),therefore the skeletal Cu species are concluded to be the active sites for the TCE combustion.

  5. Structural and kinetic contributions of the oxyanion binding site to the catalytic activity of acylaminoacyl peptidase.

    Kiss, András L; Palló, Anna; Náray-Szabó, Gábor; Harmat, Veronika; Polgár, László

    2008-05-01

    It is widely accepted that the catalytic activity of serine proteases depends primarily on the Asp-His-Ser catalytic triad and other residues within the vicinity of this motif. Some of these residues form the oxyanion binding site that stabilizes the tetrahedral intermediate by hydrogen bonding to the negatively charged oxyanion. In acylaminoacyl peptidase from the thermophile Aeropyrum pernix, the main chain NH group of Gly369 is one of the hydrogen bond donors forming the oxyanion binding site. The side chain of His367, a conserved residue in acylaminoacyl peptidases across all species, fastens the loop holding Gly369. Determination of the crystal structure of the H367A mutant revealed that this loop, including Gly369, moves away considerably, accounting for the observed three orders of magnitude decrease in the specificity rate constant. For the wild-type enzyme ln(k(cat)/K(m)) vs. 1/T deviates from linearity indicating greater rate enhancement with increasing temperature for the dissociation of the enzyme-substrate complex compared with its decomposition to product. In contrast, the H367A variant provided a linear Arrhenius plot, and its reaction was associated with unfavourable entropy of activation. These results show that a residue relatively distant from the active site can significantly affect the catalytic activity of acylaminoacyl peptidase without changing the overall structure of the enzyme. PMID:18325786

  6. Catalytic combustion of methane on Co/MgO. Characterisation of active cobalt sites

    Ulla, M.A.; Spretz, R.; Lombardo, E. [Instituto de Investigaciones en Catalisis y Petroquimica, INCAPE (FIQ, UNL-CONICET), Santiago del Estero 2829, C.P. 3000, Santa Fe (Argentina); Daniell, W.; Knoezinger, H. [Department Chemie, Physikalische Chemie, Ludwig Maximilians Universitaet, Butenandtstr. 5-13, Haus E, D-81377 Muenchen (Germany)

    2001-02-01

    A series of Co/MgO catalysts with 3-12wt.% Co were prepared by impregnation and calcined at 1073K for 10h. The catalytic behaviour of these samples toward CH{sub 4} combustion was found to increase with cobalt loading, though a plateau was reached at ca. 9wt.% Co content. Bulk characterisation was carried out using XRD, TPR and Raman spectroscopy, and showed that the solids were made up of a CoO-MgO solid solution and a MgO phase. A detailed examination of their surfaces was achieved through FTIR spectroscopy of adsorbed CO probe molecules, which indicated that at low cobalt loadings only a small proportion of the Co going into the solid solution was present on exposed faces as either Co{sup 2+} oxo-species or pentacoordinated Co{sup 2+}. However, as the cobalt content of the samples increased, a larger amount was exposed on the surface. This effect levelled off at 9wt.% Co, after which the increase in exposed Co{sup 2+} sites was countered by the masking effect of islands of MgO. In addition, at high cobalt loadings (9 and 12wt.%) Co formed small clusters which showed bulk CoO-like behaviour. Consequently, the benefit of having surface Co{sup 2+} species was balanced by the clustering effect of these species and the presence of MgO islands, negating their contribution to the overall catalytic activity of the samples.

  7. A single active catalytic site is sufficient to promote transport in P-glycoprotein.

    Bársony, Orsolya; Szalóki, Gábor; Türk, Dóra; Tarapcsák, Szabolcs; Gutay-Tóth, Zsuzsanna; Bacsó, Zsolt; Holb, Imre J; Székvölgyi, Lóránt; Szabó, Gábor; Csanády, László; Szakács, Gergely; Goda, Katalin

    2016-01-01

    P-glycoprotein (Pgp) is an ABC transporter responsible for the ATP-dependent efflux of chemotherapeutic compounds from multidrug resistant cancer cells. Better understanding of the molecular mechanism of Pgp-mediated transport could promote rational drug design to circumvent multidrug resistance. By measuring drug binding affinity and reactivity to a conformation-sensitive antibody we show here that nucleotide binding drives Pgp from a high to a low substrate-affinity state and this switch coincides with the flip from the inward- to the outward-facing conformation. Furthermore, the outward-facing conformation survives ATP hydrolysis: the post-hydrolytic complex is stabilized by vanadate, and the slow recovery from this state requires two functional catalytic sites. The catalytically inactive double Walker A mutant is stabilized in a high substrate affinity inward-open conformation, but mutants with one intact catalytic center preserve their ability to hydrolyze ATP and to promote drug transport, suggesting that the two catalytic sites are randomly recruited for ATP hydrolysis. PMID:27117502

  8. Structural evidence for a programmed general base in the active site of a catalytic antibody

    Golinelli-Pimpaneau, Béatrice; Gonçalves, Olivier; Dintinger, Thierry; Blanchard, Dominique; Knossow, Marcel; Tellier, Charles

    2000-01-01

    The crystal structure of the complex of a catalytic antibody with its cationic hapten at 1.9-Å resolution demonstrates that the hapten amidinium group is stabilized through an ionic pair interaction with the carboxylate of a combining-site residue. The location of this carboxylate allows it to act as a general base in an allylic rearrangement. When compared with structures of other antibody complexes in which the positive moiety of the hapten is stabilized mostly by cation–π interactions, thi...

  9. Efficient Catalytic Ozonation over Reduced Graphene Oxide for p-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism.

    Wang, Yuxian; Xie, Yongbing; Sun, Hongqi; Xiao, Jiadong; Cao, Hongbin; Wang, Shaobin

    2016-04-20

    Nanocarbons have been demonstrated as promising environmentally benign catalysts for advanced oxidation processes (AOPs) upgrading metal-based materials. In this study, reduced graphene oxide (rGO) with a low level of structural defects was synthesized via a scalable method for catalytic ozonation of p-hydroxylbenzoic acid (PHBA). Metal-free rGO materials were found to exhibit a superior activity in activating ozone for catalytic oxidation of organic phenolics. The electron-rich carbonyl groups were identified as the active sites for the catalytic reaction. Electron spin resonance (ESR) and radical competition tests revealed that superoxide radical ((•)O2(-)) and singlet oxygen ((1)O2) were the reactive oxygen species (ROS) for PHBA degradation. The intermediates and the degradation pathways were illustrated from mass spectroscopy. It was interesting to observe that addition of NaCl could enhance both ozonation and catalytic ozonation efficiencies and make ·O2(-) as the dominant ROS. Stability of the catalysts was also evaluated by the successive tests. Loss of specific surface area and changes in the surface chemistry were suggested to be responsible for catalyst deactivation. PMID:27007603

  10. Catalytic activity of Au nanoparticles

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne;

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  11. Highly Dense Isolated Metal Atom Catalytic Sites

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei; Hu, Pingping; Chen, Jianmin; Liu, Xi; Tang, Xingfu

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  12. Active catalytic sites in the ammoxidation of propane and propene over V-Sb-O catalysts

    Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Lehrstuhl fuer Technische Chemie

    1998-12-31

    The ammoxidation of propane over VSb{sub y}O{sub x} catalysts (y=1, 2, 5) was investigated with respect to the role of different oxygen species in the selective and non selective reaction steps using transient experiments in the Temporal Analysis of Products (TAP) reactor. Only lattice oxygen is involved in the oxidation reactions. Using isotopic labelled oxygen it is shown that two different active sites exist on the surface. On site A, which can be reoxidized faster by gas phase oxygen compared to site B, mainly CO is formed. On site B CO{sub 2} and acrolein as well as NO and N{sub 2}O in the presence of ammonia in the feed gas are formed and reoxidation mainly occurs with bulk lattice oxygen. (orig.)

  13. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.

    Yang, G; Sandalova, T; Lohman, K; Lindqvist, Y; Rendina, A R

    1997-04-22

    Five active site residues, Thr11, Glu12, Lys15, Lys37, and Ser41, implicated by the protein crystal structure studies of Escherichia coli DTBS, were mutated to determine their function in catalysis and substrate binding. Nine mutant enzymes, T11V, E12A, E12D, K15Q, K37L, K37Q, K37R, S41A, and S41C, were overproduced in an E. coli strain lacking a functional endogenous DTBS gene and purified to homogeneity. Replacement of Thr11 with valine resulted in a 24,000-fold increase in the Km(ATP) with little or no change in the Kd(ATP), KM(DAPA) and DTBS k(cat), suggesting an essential role for this residue in the steady-state affinity for ATP. The two Glu12 mutants showed essentially wild-type DTBS activity (slightly elevated k(cat)'s). Unlike wild-type DTBS, E12A had the same apparent KM(DAPA) at subsaturating and saturating ATP concentrations, indicating a possible role for Glu12 in the binding synergy between DAPA and ATP. The mutations in Lys15 and Lys37 resulted in loss of catalytic activity (0.01% and cat) for K15Q and the Lys37 mutant enzymes, respectively) and higher KM's for both DAPA (40-fold and >100-fold higher than wild-type for the K15Q and Lys37 mutant enzymes, respectively) and ATP (1800-fold and >10-fold higher than wild-type for K15Q and the K37 mutant enzymes, respectively). These results strongly suggest that Lys15 and Lys37 are crucial to both catalysis and substrate binding. S41A and S41C had essentially the same k(cat) as wild-type and had moderate increases in the DAPA and ATP KM and Kd (ATP) values. Replacement of Ser41 with cysteine resulted in larger effects than replacement with alanine. These data suggest that the H-bond between N7 of DAPA and the Ser41 side chain is not very important for catalysis. The catalytic behavior of these mutant enzymes was also studied by pulse-chase experiments which produced results consistent with the steady-state kinetic analyses. X-ray crystallographic studies of four mutant enzymes, S41A, S41C, K37Q, and K37L

  14. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  15. Confirmation of Isolated Cu2+ Ions in SSZ-13 Zeolite as Active Sites in NH3-Selective Catalytic Reduction

    Deka, U.; Juhin, A.F.; Eilertsen, E.A.; Emerich, H.; Green, M.A.; Korhonen, S.T.; Weckhuysen, B.M.; Beale, A.M.

    2012-01-01

    NH3-Selective Catalytic Reduction (NH3-SCR) is a widely used technology for NOx reduction in the emission control systems of heavy duty diesel vehicles. Copper-based ion exchanged zeolites and in particular Cu-SSZ-13 (CHA framework) catalysts show both exceptional activity and hydrothermal stability

  16. Catalytic Water Co-Existing with a Product Peptide in the Active Site of HIV-1 Protease Revealed by X-Ray Structure Analysis

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-01-01

    Background It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not...

  17. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex.

    Fugmann, S D; Villey, I J; Ptaszek, L M; Schatz, D G

    2000-01-01

    During V(D)J recombination, the RAG1 and RAG2 proteins cooperate to catalyze a series of DNA bond breakage and strand transfer reactions. The structure, location, and number of active sites involved in RAG-mediated catalysis have as yet not been determined. Using protein secondary structure prediction algorithms, we have identified a region of RAG1 with possible structural similarities to the active site regions of transposases and retroviral integrases. Based on this information, we have identified two aspartic acid residues in RAG1 (D600 and D708) that function specifically in catalysis. The results support a model in which RAG1 contains a single, divalent metal ion binding active site structurally related to the active sites of transposases/integrases and responsible for all catalytic functions of the RAG protein complex. PMID:10678172

  18. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active-site formation and catalytic specificity.

    Itoh, Yuzuru; Bröcker, Markus J; Sekine, Shun-ichi; Söll, Dieter; Yokoyama, Shigeyuki

    2014-04-17

    The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNA(Sec)). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNA(Sec), formed by seryl-tRNA synthetase, to Sec-tRNA(Sec). SelA, a member of the fold-type-I pyridoxal 5'-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNA(Sec) revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNA(Sec). The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of "depentamerized" SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5'-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. PMID:24456689

  19. Catalytic DNA with phosphatase activity

    Chandrasekar, Jagadeeswaran; Silverman, Scott K.

    2013-01-01

    Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn2+-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase ac...

  20. Toward a catalytic site in DNA

    Jakobsen, Ulla; Rohr, Katja; Vogel, Stefan

    2007-01-01

    A number of functionalized polyaza crown ether building blocks have been incorporated into DNA-conjugates as catalytic Cu(2+) binding sites. The effect of the DNA-conjugate catalyst on the stereochemical outcome of a Cu(2+)-catalyzed Diels-Alder reaction will be presented....

  1. Altered sugar donor specificity and catalytic activity of pteridine glycosyltransferases by domain swapping or site-directed mutagenesis

    Hye-Lim Kim

    2013-01-01

    Full Text Available CY-007 and CY-049 pteridine glycosyltransferases (PGTs thatdiffer in sugar donor specificity to catalyze either glucose orxylose transfer to tetrahydrobiopterin were studied here touncover the structural determinants necessary for the specificity.The importance of the C-terminal domain and its residues 218and 258 that are different between the two PGTs was assessed viastructure-guided domain swapping or single and dual amino acidsubstitutions. Catalytic activity and selectivity were altered in allthe mutants (2 chimeric and 6 substitution to accept bothUDP-glucose and UDP-xylose. In addition, the wild typeactivities were improved 1.6-4.2 fold in 4 substitution mutantsand activity was observed towards another substrate UDP-Nacetylglucosaminein all the substitution mutants from CY-007PGT. The results strongly support essential role of the C-terminaldomain and the two residues for catalysis as well as sugar donorspecificity, bringing insight into the structural features of thePGTs. [BMB Reports 2013; 46(1: 37-40

  2. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism.

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y; Varnado, Brittany; Beutler, John A; Murelli, Ryan P; Le Grice, Stuart F J; Tang, Liang

    2015-12-15

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg(2+). A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg(2+) from Ca(2+). Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  3. SET7/9 catalytic mutants reveal the role of active site water molecules in lysine multiple methylation.

    Del Rizzo, Paul A; Couture, Jean-François; Dirk, Lynnette M A; Strunk, Bethany S; Roiko, Marijo S; Brunzelle, Joseph S; Houtz, Robert L; Trievel, Raymond C

    2010-10-01

    SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine ε-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine ε-amino group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated ε-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes. PMID:20675860

  4. SET7/9 Catalytic Mutants Reveal the Role of Active Site Water Molecules in Lysine Multiple Methylation*

    Del Rizzo, Paul A.; Couture, Jean-François; Dirk, Lynnette M. A.; Strunk, Bethany S.; Roiko, Marijo S.; Brunzelle, Joseph S.; Houtz, Robert L.; Trievel, Raymond C.

    2010-01-01

    SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine ϵ-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine ϵ-amino group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated ϵ-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes. PMID:20675860

  5. SET7/9 Catalytic Mutants Reveal the Role of Active Site Water Molecules in Lysine Multiple Methylation

    Del Rizzo, Paul A.; Couture, Jean-François; Dirk, Lynnette M.A.; Strunk, Bethany S.; Roiko, Marijo S.; Brunzelle, Joseph S.; Houtz, Robert L.; Trievel, Raymond C. (Michigan); (NWU); (Kentucky)

    2010-11-15

    SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine {epsilon}-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine {epsilon}-amino group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated {epsilon}-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes.

  6. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array.

    Shinkai-Ouchi, Fumiko; Koyama, Suguru; Ono, Yasuko; Hata, Shoji; Ojima, Koichi; Shindo, Mayumi; duVerle, David; Ueno, Mika; Kitamura, Fujiko; Doi, Naoko; Takigawa, Ichigaku; Mamitsuka, Hiroshi; Sorimachi, Hiroyuki

    2016-04-01

    Calpains are intracellular Ca(2+)-regulated cysteine proteases that are essential for various cellular functions. Mammalian conventional calpains (calpain-1 and calpain-2) modulate the structure and function of their substrates by limited proteolysis. Thus, it is critically important to determine the site(s) in proteins at which calpains cleave. However, the calpains' substrate specificity remains unclear, because the amino acid (aa) sequences around their cleavage sites are very diverse. To clarify calpains' substrate specificities, 84 20-mer oligopeptides, corresponding to P10-P10' of reported cleavage site sequences, were proteolyzed by calpains, and the catalytic efficiencies (kcat/Km) were globally determined by LC/MS. This analysis revealed 483 cleavage site sequences, including 360 novel ones. Thekcat/Kms for 119 sites ranged from 12.5-1,710 M(-1)s(-1) Although most sites were cleaved by both calpain-1 and -2 with a similarkcat/Km, sequence comparisons revealed distinct aa preferences at P9-P7/P2/P5'. The aa compositions of the novel sites were not statistically different from those of previously reported sites as a whole, suggesting calpains have a strict implicit rule for sequence specificity, and that the limited proteolysis of intact substrates is because of substrates' higher-order structures. Cleavage position frequencies indicated that longer sequences N-terminal to the cleavage site (P-sites) were preferred for proteolysis over C-terminal (P'-sites). Quantitative structure-activity relationship (QSAR) analyses using partial least-squares regression and >1,300 aa descriptors achievedkcat/Kmprediction withr= 0.834, and binary-QSAR modeling attained an 87.5% positive prediction value for 132 reported calpain cleavage sites independent of our model construction. These results outperformed previous calpain cleavage predictors, and revealed the importance of the P2, P3', and P4' sites, and P1-P2 cooperativity. Furthermore, using our binary-QSAR model

  7. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    Deka, U.; Lezcano-Gonzalez, I.; Weckhuysen, B.M.; Beale, A.M.

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic r

  8. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).

    Kröcher, Oliver; Brandenberger, Sandro

    2012-01-01

    Fe-ZSM-5 has been systematically investigated as catalyst for the selective catalytic reduction (SCR) of NO with NH(3), concentrating on the active sites, the deactivation mechanism during hydrothermal aging and the chemical possibilities to stabilize this type of SCR catalyst. Regarding the active SCR sites, it could be shown that monomeric species start to become active at the lowest temperatures (E(a,app) ≈ 36.3 ± 0.2 kJ/mol), followed by dimeric species at intermediate temperatures (E(a,app) ≈ 77 ± 16 kJ/mol) and oligomeric species at high temperatures. Experiments with Fe-ZSM-5 samples, in which the Brønsted acidity was specifically removed, proved that Brønsted acidity is not required for high SCR activity and that NH(3) can also be adsorbed on other acidic sites on the zeolite surface. The hydrothermal deactivation of Fe-ZSM-5 could be explained by the migration of active iron ions from the exchange sites. Parallel to the iron migration dealumination of the zeolite framework occurs, which has to be regarded as an independent process. The migration of iron can be reduced by the targeted reaction of the aluminum hydroxide groups in the lattice with trimethylaluminium followed by calcination. With respect to the application of iron zeolites in the SCR process in diesel vehicles, the most efficient stabilization method would be to switch from the ZSM-5 to the BEA structure type. The addition of NO(2) to the feed gas is another effective measure to increase the activity of even strongly deactivated iron zeolites tremendously. PMID:23211727

  9. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes.

    Cornelius Schneider

    Full Text Available Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.

  10. Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

    Yin, Jun; Shan, Shiyao; Yang, Lefu; Mott, Derrick; Malis, Oana; Petkov, Valeri; Cai, Fan; Ng, Mei; Luo, Jin; Chen, Bing H.; Engelhard, Mark H.; Zhong, Chuan-Jian

    2012-12-12

    Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitor the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.

  11. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity

    Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua

    2016-02-01

    The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations.

  12. Extra-Large-Pore Zeolites with UTL Topology: Control of the Catalytic Activity by Variation in the Nature of the Active Sites

    Shamzhy, Mariya; Shvets, O. V.; Opanasenko, Maksym; Kurfiřtová, Lenka; Kubička, D.; Čejka, Jiří

    2013-01-01

    Roč. 5, č. 7 (2013), s. 1891-1898. ISSN 1867-3880 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : acidity * active sites * Beckmann rearrangement Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.044, year: 2013

  13. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  14. Catalytic site interactions in yeast OMP synthase

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank; Willemoës, Martin; Grubmeyer, Charles; Winther, Jakob R.

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  15. Improved catalytic activity of laser generated bimetallic and trimetallic nanoparticles.

    Singh, Rina; Soni, R K

    2014-09-01

    We report synthesis of silver nanoparticles, bimetallic (Al2O3@Ag) nanoparticles and trimetallic (Al2O3@AgAu) nanoparticles by nanosecond pulse laser ablation (PLA) in deionized water. Two-step laser ablation methodologies were adopted for the synthesis of bi- and tri-metallic nanoparticles. In this method a silver or gold target was ablated in colloidal solution of γ-alumina nanoparticles prepared by PLA. The TEM image analysis of bimetallic and trimetallic particles reveals deposition of fine silver particles and Ag-Au alloy particles, respectively, on large alumina particles. The laser generated nanoparticles were tested for catalytic reduction of 4-nitrophenol to 4-aminophenol and showed excellent catalytic behaviour. The catalytic rate was greatly improved by incorporation of additional metal in silver nanoparticles. The catalytic efficiency of trimetallic Al2O3@AgAu for reduction of 4-nitrophenol to 4-aminophenol was remarkably enhanced and the catalytic reaction was completed in just 5 sec. Even at very low concentration, both Al2O3@Ag nanoparticles and Al2O3@AgAu nanoparticles showed improved rate of catalytic reduction than monometallic silver nanoparticles. Our results demonstrate that alumina particles in the solution not only provide the active sites for particle dispersion but also improve the catalytic activity. PMID:25924343

  16. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-07-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N‧-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs.

  17. Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets

    Jing, Hao; Large, Nicolas; Zhang, Qinfeng; Nordlander, Peter; Wang, Hui

    2015-03-01

    Noble metal nanoparticles have been of tremendous interest due to their intriguing size- and shape-dependent plasmonic and catalytic properties. Combining tunable plasmon resonances with superior catalytic activities on the same metallic nanoparticle, however, has long been challenging because nanoplasmonics and nanocatalysis typically require nanoparticles in two drastically different size regimes. Here, we demonstrate that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, we have controllably fabricated nanorice and nanodumbbell shaped particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high-index facets abundant on the particle surfaces. The nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time-resolved plasmon-enhanced spectroscopic measurements. Past affiliation: Rice University.

  18. Inhibition of CK2 Activity by TCDD via Binding to ATP-competitive Binding Site of Catalytic Subunit:Insight from Computational Studies

    XU Xian-jin; CANNISTRARO Salvatore; BIZZARRI Anna-rita; ZENG Yi; CHEN Wei-zu; WANG Cun-xin

    2013-01-01

    Alternative mechanisms of toxic effects induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD),instead of the binding to aryl hydrocarbon receptor(AhR),have been taken into consideration.It has been recently shown that TCDD reduces rapidly the activity of CK2(casein kinase Ⅱ) both in vivo and in vitro.It is found that TCDD has high molecular similarities to the known inhibitors of CK2 catalytic subunit(CK2α).This suggests that TCDD could also be an ATP-competitive inhibitor of CK2α.In this work,docking TCDD to CK2 was carried out based on the two structures of CK2α from maize and human,respectively.The binding free energies of the predicted CK2α-TCDD complexes estimated by the molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) method are from -85.1 kJ/mol to-114.3 kJ/mol for maize and are from-96.1 kJ/mol to-118.2 kJ/mol for human,which are comparable to those estimated for the known inhibitor and also ATP with CK2α.The energetic analysis also reveals that the van der Waals interaction is the dominant contribution to the binding free energy.These results are also useful for designing new drugs for a target of overexpressing CK2 in cancers.

  19. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  20. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity

    Highlights: → Unambiguous evidence is provided that methionine-58 serves as an in-frame alternative translation site for holocarboxylase synthetase (HLCS58). → Full-length HLCS and HLCS58 enter the nucleus, but HLCS58 is the predominant variant. → HLCS58 has biological activity as biotin protein ligase. -- Abstract: Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.

  1. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol. PMID:27041515

  2. Preparation and Catalytic Oxidation Activity on 2-mercaptoethanol of a Novel Catalytic Cellulose Fibres

    YAO Yu-yuan; LI Ying-jie; CHEN Wen-xing; Lü Wang-yang; Lü Su-fang; XU Min-hong; LIU Fan

    2007-01-01

    Cobalt tetra(N-carbonylacylic) aminophthalocyanine was supported on cellulose fibres by graft reaction to obtain a novel polymer catalyst, catalytic cellulose fibres (CCF),and the optimal supporting conditions were pH = 6, 80℃,t = 120 min. The catalytic oxidation activity of CCF towards oxidation of 2-mereaptoethanol (MEA) in aqueous solution was investigated. The experimental results demonstrated that CCF had good catalytic oxidation activity on MEA at room temperature, causing no secondary pollution and remaining efficient for the repetitive tests with no obvious decrease of catalytic activity.

  3. Thrombomodulin Binding Selects the Catalytically Active Form of Thrombin.

    Handley, Lindsey D; Treuheit, Nicholas A; Venkatesh, Varun J; Komives, Elizabeth A

    2015-11-01

    Human α-thrombin is a serine protease with dual functions. Thrombin acts as a procoagulant, cleaving fibrinogen to make the fibrin clot, but when bound to thrombomodulin (TM), it acts as an anticoagulant, cleaving protein C. A minimal TM fragment consisting of the fourth, fifth, and most of the sixth EGF-like domain (TM456m) that has been prepared has much improved solubility, thrombin binding capacity, and anticoagulant activity versus those of previous TM456 constructs. In this work, we compare backbone amide exchange of human α-thrombin in three states: apo, D-Phe-Pro-Arg-chloromethylketone (PPACK)-bound, and TM456m-bound. Beyond causing a decreased level of amide exchange at their binding sites, TM and PPACK both cause a decreased level of amide exchange in other regions including the γ-loop and the adjacent N-terminus of the heavy chain. The decreased level of amide exchange in the N-terminus of the heavy chain is consistent with the historic model of activation of serine proteases, which involves insertion of this region into the β-barrel promoting the correct conformation of the catalytic residues. Contrary to crystal structures of thrombin, hydrogen-deuterium exchange mass spectrometry results suggest that the conformation of apo-thrombin does not yet have the N-terminus of the heavy chain properly inserted for optimal catalytic activity, and that binding of TM allosterically promotes the catalytically active conformation. PMID:26468766

  4. Reforming of methane in tubes with a catalytic active wall

    The heterogeneous steam reforming process in tubes with catalytic active inner surface is studied. The purpose of this ivestigation is to find a method of predicting the reaction rate of the catalytic conversion of methane by steam. The dependency of the reaction rate upon the temperature, pressure, gas composition, Reynolds number, geometrical sizes of tubes and catalytic behaviour of the catalytic active inner wall of these tubes has been examined. It was found that the reaction rate mainly depends on the temperature. The reaction rate is limited by the catalytic behaviour and the heat resisting properties of the materials used. (author)

  5. Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production.

    Garrett, Benjamin R; Polen, Shane M; Click, Kevin A; He, Mingfu; Huang, Zhongjie; Hadad, Christopher M; Wu, Yiying

    2016-04-18

    Molybdenum sulfides represent state-of-the-art, non-platinum electrocatalysts for the hydrogen evolution reaction (HER). According to the Sabatier principle, the hydrogen binding strength to the edge active sites should be neither too strong nor too weak. Therefore, it is of interest to develop a molecular motif that mimics the catalytic sites structurally and possesses tunable electronic properties that influence the hydrogen binding strength. Furthermore, molecular mimics will be important for providing mechanistic insight toward the HER with molybdenum sulfide catalysts. In this work, a modular method to tune the catalytic properties of the S-S bond in MoO(S2)2L2 complexes is described. We studied the homogeneous electrocatalytic hydrogen production performance metrics of three catalysts with different bipyridine substitutions. By varying the electron-donating abilities, we present the first demonstration of using the ligand to tune the catalytic properties of the S-S bond in molecular MoS2 edge-site mimics. This work can shed light on the relationship between the structure and electrocatalytic activity of molecular MoS2 catalysts and thus is of broad importance from catalytic hydrogen production to biological enzyme functions. PMID:27022836

  6. Session 6: Active Sites for the Selective Catalytic Reduction of NO with NH{sub 3} or Isobutane over Fe-ZSM-5: A New View onto a Controversial Question

    Schwidder, M.; Klementiev, K.; GrUnert, W. [Bochum Ruhr Univ., Lab. of Industrial Chemistry (Germany); Matam, S.K.; Bentrup, U.; Bruckner, A. [Institute of Applied Chemistry Berlin-Adlershof (ACA), Berlin (Germany)

    2004-07-01

    In recent work, we have demonstrated that Fe-ZSM-5 catalysts prepared via CVD of FeCl{sub 3} contain iron species of a broad distribution of nuclearity, from monomeric species up to large oxide crystals. While this distribution is strongly affected by the nature of catalyst pretreatments, the resulting effects on the activity in HC-SCR are small. To elucidate the origin of this effect we have adopted a methodology that includes new spectroscopic techniques capable of differentiating coexisting iron species (UV-Vis, EPR), extends to new preparation routes with the goal of creating as much homogeneity in site structure as possible, and employs in-situ spectroscopic studies (IR, UV-Vis, EPR) to differentiate between catalytically relevant sites and spectators. Given the technological importance of NH{sub 3}-SCR and the likely role of NH{sub 3} as the actual reducing agent in HC-SCR we have included the NH{sub 3} reductant in our research. (authors)

  7. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site.

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey

    2016-04-11

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. PMID:26958828

  8. Catalytically active single-atom niobium in graphitic layers.

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J; Chisholm, Matthew F

    2013-01-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability. PMID:23715283

  9. Mechanism of light modulation: identification of potential redox-sensitive cysteines distal to catalytic site in light-activated chloroplast enzymes.

    Li, D.; Stevens, F J; Schiffer, M.; Anderson, L E

    1994-01-01

    Light-dependent reduction of target disulfides on certain chloroplast enzymes results in a change in activity. We have modeled the tertiary structure of four of these enzymes, namely NADP-linked glyceraldehyde-3-P dehydrogenase, NADP-linked malate dehydrogenase, sedoheptulose bisphosphatase, and fructose bisphosphatase. Models are based on x-ray crystal structures from non-plant species. Each of these enzymes consists of two domains connected by a hinge. Modeling suggests that oxidation of tw...

  10. Functional identification of catalytic metal ion binding sites within RNA.

    James L Hougland

    2005-09-01

    Full Text Available The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s. In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (MA, MB, and MC that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-SP phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for MC. Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis.

  11. An effective approach for modifying carbonaceous materials with niobium single sites to improve their catalytic properties.

    Bozzi, A S; Lavall, R L; Souza, T E; Pereira, M C; de Souza, P P; De Abreu, H A; De Oliveira, A; Ortega, P F R; Paniago, R; Oliveira, L C A

    2015-12-14

    In this paper we show a very simple route for the incorporation of catalytically active niobium species on the surface of carbon materials, such as graphene oxide, carbon nanotubes and activated carbon. Some existing methods of incorporating a transition metal on a support have involved co-precipitation or wet impregnation, to obtain the corresponding oxides. These methods, however, cause reduction in the specific area of the support and can also form large metal oxide particles with loss of metal exposure. Therefore, here we present a novel way to add catalytically active species on the surfaces of different types of carbon through the formation of interaction complexes between the metal precursor and the functional groups of the carbon matrix. Because of the excellent catalytic properties exhibited by the niobium species we choose the NH4[NbO(C2O4)2(H2O)2]·2H2O salt as the model precursor. The characterization by XPS reveals the presence of the niobium species indicated by the displacement of the peaks between 206-212 eV related to the oxalate species according to the spectrum from pure niobium oxalate. Images obtained by TEM and SEM show the typical morphologies of carbonaceous materials without the niobium oxide formation signal, which indicates the presence of niobium complexes as isolated sites on the carbon surfaces. This new class of materials exhibited excellent properties as catalysts for pollutant oxidation. The presence of Nb promotes the catalytic activation of H2O2 generating hydroxyl radicals in situ, which allows their use in the organic compound oxidation processes. Tests for DBT oxidation indicate that Nb significantly improves the removal of such pollutants in biphasic reactions with removal around 90% under the tested conditions. Theoretical calculations showed that the most favorable adsorption model is an ionic complex presenting a ΔG = -108.7 kcal mol(-1) for the whole adsorption process. PMID:26514577

  12. Heparin enhances the catalytic activity of des-ETW-thrombin.

    Goodwin, C A; Deadman, J J; Le Bonniec, B F; Elgendy, S; Kakkar, V V; Scully, M F

    1996-04-01

    The thrombin mutant, des-ETW-thrombin, lacking Glu(146), Thr(147), and Trp(148) within a unique insertion loop located at the extreme end of the primary specificity pocket, has been shown previously to exhibit reduced catalytic activity with respect to macromolecular and synthetic thrombin substrates and reduced or enhanced susceptibility to inhibition. Investigation of the hydrolysis of peptidyl p-nitroanilide substrates by des-ETW-thrombin showed increased activity in the presence of heparin and other sulphated glycosaminoglycans. No effect was observed upon the activity of wild-type thrombin. Heparin was found to decrease the K(m) for cleavage of four thrombin-specific substrates by des-ETW-thrombin by 3-4-fold. Similarly, pentosan polysulphate (PPS) decreased the K(m) with these substrates by 8-10-fold. Heparin also increased the rate of inhibition of des-ETW-thrombin by antithrombin III and D-phenylalanyl-prolyl-arginylchloromethane (PPACK). The inhibition of des-ETW-thrombin by a number of thrombin-specific peptide boronic acids also showed significant reduction in the final K(i) in the presence of heparin, due to reduction in the off-rate. A peptide analogue of a sequence of hirudin which binds thrombin tightly to exosite I (fibrinogen recognition site) potentiated the activity of des-ETW-thrombin against peptide p-nitroanilide substrates in a manner similar to heparin. The K(i) for the inhibition of des-ETW-thrombin by p-aminobenzamidine was decreased by these ligands from 9.7 mM to 7.5 mM, 5.1 mM, and 2.5 mM in the presence of heparin, hirudin peptide and PPS respectively, suggesting the increased catalytic activity is due to enhanced access to the primary specificity pocket. The positive influence of these ligands on des-ETW-thrombin was reversed in the presence of ATP or ADP; the latter has previously been shown to inhibit thrombin activity by blocking initial interaction with fibrinogen at exosite 1. Because the effect of heparin and PPS is similar to

  13. Allosteric-Site and Catalytic-Site Ligand Effects on PDE5 Functions are Associated with Distinct Changes in Physical Form of the Enzyme

    Corbin, Jackie D.; Zoraghi, Roya; Francis, Sharron H.

    2009-01-01

    Native phosphodiesterase-5 (PDE5) homodimer contains distinct non-catalytic cGMP allosteric sites and catalytic sites for cGMP hydrolysis. Purified recombinant PDE5 was activated by pre-incubation with cGMP. Relatively low concentrations of cGMP produced a Native PAGE gel-shift of PDE5 from a single band position (lower band) to a band with decreased mobility (upper band); higher concentrations of cGMP produced a band of intermediate mobility (middle band) in addition to the upper band. Two p...

  14. Networks of High Mutual Information Define the Structural Proximity of Catalytic Sites: Implications for Catalytic Residue Identification

    Buslje, Cristina Marino; Teppa, Elin; Di Doménico, Tomas;

    2010-01-01

    to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the proposed...... hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity...

  15. Synthetic Peptides as Structural Maquettes of Angiotensin-I Converting Enzyme Catalytic Sites

    Zinovia Spyranti

    2010-01-01

    Full Text Available The rational design of synthetic peptides is proposed as an efficient strategy for the structural investigation of crucial protein domains difficult to be produced. Only after half a century since the function of ACE was first reported, was its crystal structure solved. The main obstacle to be overcome for the determination of the high resolution structure was the crystallization of the highly hydrophobic transmembrane domain. Following our previous work, synthetic peptides and Zinc(II metal ions are used to build structural maquettes of the two Zn-catalytic active sites of the ACE somatic isoform. Structural investigations of the synthetic peptides, representing the two different somatic isoform active sites, through circular dichroism and NMR experiments are reported.

  16. Key residues at the riboflavin kinase catalytic site of the bifunctional riboflavin kinase/FMN adenylyltransferase from Corynebacterium ammoniagenes.

    Serrano, Ana; Frago, Susana; Herguedas, Beatriz; Martínez-Júlvez, Marta; Velázquez-Campoy, Adrián; Medina, Milagros

    2013-01-01

    Many known prokaryotic organisms depend on a single bifunctional enzyme, encoded by the RibC of RibF gene and named FAD synthetase (FADS), to convert Riboflavin (RF), first into FMN and then into FAD. The reaction occurs through the sequential action of two activities present on a single polypeptide chain where the N-terminus is responsible for the ATP:FMN adenylyltransferase (FMNAT) activity and the C-terminus for the ATP: riboflavin kinase (RFK) activity. Sequence and structural analysis suggest that T208, N210 and E268 at the C-terminus RFK module of Corynebacterium ammoniagenes FADS (CaFADS) might be key during RF phosphorylation. The effect of site-directed mutagenesis on the RFK activity, as well as on substrates and products binding, indicates that T208 and N210 provide the RFK active-site geometry for binding and catalysis, while E268 might be involved in the catalytic step as catalytic base. These data additionally suggest concerted conformational changes at the RFK module of CaFADS during its activity. Mutations at the RFK site also modulate the binding parameters at the FMNAT active site of CaFADS, altering the catalytic efficiency in the transformation of FMN into FAD. This observation supports the hypothesis that the hexameric assembly previously revealed by the crystal structure of CaFADS might play a functional role during catalysis. PMID:22892871

  17. Size-dependent catalytic activity of supported metal clusters

    Xu, Z.; Xiao, F.-S.; Purnell, S. K.; Alexeev, O.; Kawi, S.; Deutsch, S. E.; Gates, B. C.

    1994-11-01

    BECAUSE catalysis by metals is a surface phenomenon, many technological catalysts contain small (typically nanometre-sized) supported metal particles with a large fraction of the atoms exposed1. Many reactions, such as hydrocarbon hydrogenations, are structure-insensitive, proceeding at approximately the same rate on metal particles of various sizes provided that they are larger than about 1 nm and show bulk-like metallic behaviour1. But it is not known whether the catalytic properties of metal particles become size-dependent as the particles become so small that they are no longer metallic in character. Here we investigate the catalytic behaviour of precisely defined clusters of just four and six iridium atoms on solid supports. We find that the Ir4 and Ir6 clusters differ in catalytic activity both from each other and from metallic Ir particles. This raises the possibility of tailoring the catalytic behaviour of metal clusters by controlling the cluster size.

  18. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    Cristina Marino Buslje

    Full Text Available Identification of catalytic residues (CR is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI, and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls, combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  19. The active sites of supported silver particle catalysts in formaldehyde oxidation.

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Hu, Pingping; Du, Chengtian; Kong, Lingdong; Chen, Jianmin; Tang, Xingfu

    2016-08-01

    Surface silver atoms with upshifted d-orbitals are identified as the catalytically active sites in formaldehyde oxidation by correlating their activity with the number of surface silver atoms, and the degree of the d-orbital upshift governs the catalytic performance of the active sites. PMID:27406403

  20. Trends in the Catalytic CO Oxidation Activity of Nanoparticles

    Nørskov, Jens Kehlet; Falsig, Hanne; Larsen, Britt Hvolbæk;

    2008-01-01

    Going for gold: Density functional calculations show how gold nanoparticles are more active catalysts for CO oxidation than other metal nanoparticles. The high catalytic activity of nanosized gold clusters at low temperature is found to be related to the ability of low-coordinate metal atoms to a...

  1. Synthesis of silver nanoparticles: Effects of anionic ligands on formation and catalytic activity

    We report a facile method to synthesize water soluble Ag nanoparticles (NPs) using various anionic complexing ligands as reducing as well as stabilizing agents. The formation of the particles depends on the initial molar ratio of ligands to silver nitrate. Also, the alkaline condition of preparative solution is found to be necessary for the formation of Ag NPs. It has been important to mention here that the temperature of the reaction mixture plays an important factor on the rate of formation of the particles. The particles were characterized by UV–vis spectroscopy, transmission electron microscopy, dynamic light scattering and X-ray diffraction techniques. The formed particles were found to be stable for more than a month. Zeta potential measurements suggest that the negative potential created by the adsorbed complexing ligands contribute to the stability of the Ag NPs suspensions. The effect of the ligands on the formation, stability and catalytic activity of the Ag NPs was evaluated. The obtained Ag NPs exhibit a good catalytic activity toward reduction of o-nitroaniline. The results reveal that the presence of more coordination sites in the ligands affects the catalytic activity of the particles. - Highlights: • Formation of Ag nanoparticles using anionic ligands as reducing agents and stabilizers. • Number of –COOH groups in the ligands affect the formation of particles. • The formed nanoparticles show good catalytic activity. • Number of –COOH groups in the ligands affect the catalytic activity of the particles

  2. Preparation of Pt-Ru hydrophobic catalysts and catalytic activities for liquid phase catalytic exchange reaction

    Pt/C and Pt-Ru/C catalysts with different ratios of Pt to Ru were synthesized, using ethylene glycol as both the dispersant and reducing agent at 1-2 MPa by microwave-assisted method. The catalysts were characterized by XRD, TEM and XPS. The mean particle sizes of the Pt/C and Pt-Ru/C catalysts were 1.9-2.0 nm. Pt and Ru existed as Pt(0), Pt(II), Pt(IV), Ru(0) and Ru(IV) for Pt-Ru/C catalysts, respectively. The face-centered cubic structure of the active mental particles would be changed upon the addition of Ru gradually. Then polytetrafluoroethylene and carbon-supported Pt and Pt-Ru catalysts were supported on foamed nickel to obtain hydrophobic catalysts. The catalytic activity was increased for liquid phase catalytic exchange (LPCE) when uniform Pt based hydrophobic catalysts was mixed into appropriate Ru. Hydrogen isotope exchange reaction occurs between hydration layer(H2O)nH+(ads)(n≥2) and D atoms due to intact water molecules being on Pt surface for LPCE. Water molecules have a tendency to dissociate to OH(ads) and H(ads) on metal Ru surface, and there is the other reaction path for Pt-Ru binary catalysts, which is probably the main reason of the increase of the catalytic activity of the hydrophobic Pt-Ru catalyst. (authors)

  3. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    Agarwal, Pratul K [ORNL

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted that mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.

  4. Design parameters for measurements of local catalytic activity on surfaces

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann;

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...

  5. Synthesis, characterization and catalytic activity of chromium substituted cobalt ferrospinels

    Chromium substituted cobalt ferrospinels were prepared by soft citrate gel method. The synthesized material was characterized by various physico-chemical methods. All the samples showed a single-phase cubic structure. Lattice constant varies from 8.389 to 8.323 A. Transmission electron microscopic study indicated the nanostructure of the catalysts while homogenous grain distribution was presented by scanning electron microscopic studies. The catalytic activity of the samples was investigated towards acetylation of phenols. The presence of active centers on the surface of the material was confirmed through pyridine adsorption studies. The surface acidity of the catalyst is responsible for better catalytic performance. The material was found to serve as a promising catalyst for acylation and benzoylation of phenols under solvent free condition. These catalysts are ∼100% selective towards o-acylation of phenols, a promising reaction for perfumery intermediates. The catalysts were seen to be reusable without any further treatment. Catalytic activities of cobalt, chromium and iron oxides were also investigated for comparison. The cobalt ferrospinel was found to have better catalytic activity as compared to the Cr-substituted ferrospinels and the pure oxides. Cobalt ferrite catalyst offers high yields in a short reaction time under solvent-free conditions.

  6. Synthesis, characterization and catalytic activity of chromium substituted cobalt ferrospinels

    Hankare, P.P., E-mail: p_hankarep@rediffmail.com [Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416 004 (India); Sankpal, U.B., E-mail: sankpalumesh@gmail.com [Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416 004 (India); Patil, R.P. [Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416 004 (India); Lokhande, P.D. [Department of Chemistry, University of Pune, Pune, Maharashtra, 411 007 (India); Sasikala, R. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-02-15

    Chromium substituted cobalt ferrospinels were prepared by soft citrate gel method. The synthesized material was characterized by various physico-chemical methods. All the samples showed a single-phase cubic structure. Lattice constant varies from 8.389 to 8.323 A. Transmission electron microscopic study indicated the nanostructure of the catalysts while homogenous grain distribution was presented by scanning electron microscopic studies. The catalytic activity of the samples was investigated towards acetylation of phenols. The presence of active centers on the surface of the material was confirmed through pyridine adsorption studies. The surface acidity of the catalyst is responsible for better catalytic performance. The material was found to serve as a promising catalyst for acylation and benzoylation of phenols under solvent free condition. These catalysts are {approx}100% selective towards o-acylation of phenols, a promising reaction for perfumery intermediates. The catalysts were seen to be reusable without any further treatment. Catalytic activities of cobalt, chromium and iron oxides were also investigated for comparison. The cobalt ferrospinel was found to have better catalytic activity as compared to the Cr-substituted ferrospinels and the pure oxides. Cobalt ferrite catalyst offers high yields in a short reaction time under solvent-free conditions.

  7. Structural Characterization of the Catalytic Sites of Mononuclear Nonheme Fe Hydroxylases Using ²H-ESEEM.

    McCracken, John

    2015-01-01

    Aromatic amino acid hydroxylases are members of a larger group of enzymes that use a mononuclear nonheme Fe center to catalyze a variety of thermodynamically challenging reactions in which O2 is used in the oxidative transformation of substrates. The hydroxylase enzymes are catalytically active in the ferrous oxidation state and are high-spin. To render the catalytic site EPR-active, we have used nitric oxide (NO) as a surrogate for substrate O2 to form an S=3/2 paramagnetic center. While the continuous-wave (cw)-EPR spectra of NO-enzyme adducts are rather generic, they provide electron spin echo envelope modulation (ESEEM) data that are rich with structural information derived from ligand hyperfine couplings. This chapter will focus on (2)H-ESEEM spectroscopy, an approach that we have taken for assigning these spectra and harvesting the unique information on Fe(II) coordination chemistry that they provide. While these spectroscopic measurements are routine, an emphasis will be placed on the analysis of cw-EPR and (2)H-ESEEM data using an unconstrained nonlinear optimization approach. These analysis methods are based on simple custom "scripts" that run in the MATLAB environment and that use EasySpin, a public-domain EPR simulation package, as their calculation engine. The examples provided here use a strategy that can be adapted for the treatment of most EPR measurements. PMID:26478489

  8. Uniform Catalytic Site in Sn-beta Zeolite Determined using X-ray Absorption Fine Structure

    Bare,S.; Kelly, S.; Sinkler, W.; Low, J.; Modica, F.; Valencia, S.; Corma, A.; Nemeth, L.

    2005-01-01

    The Sn silicate zeolite, Sn-{beta}, has been shown to be an efficient, selective heterogeneous catalyst for Baeyer-Villiger oxidations. Using primarily a multishell fit to extended X-ray absorption fine structure (EXAFS) data, we show that the Sn does not randomly insert into the {beta}-zeolite structure but rather occupies identical, specific, crystallographic sites. These sites are the T5/T6 sites in the six-membered rings. Moreover, the Sn is substituted in pairs on opposite sides of these six-membered rings. We believe that it is the specific, uniform crystallographic location of the Sn in the crystal structure that leads to sites with uniform catalytic activity, and consequently to the high chemical selectivity demonstrated for this catalyst. This manifests itself in the almost enzyme-like selectivity of this catalyst in Baeyer-Villiger oxidations. This uniform site distribution of the Sn suggests that there is likely a symbiotic relationship between the structure-directing agent in the zeolite synthesis and the Sn heteroatoms during the framework formation.

  9. Pair interaction of catalytically active colloids: from assembly to escape

    Sharifi-Mood, Nima; Mozaffari, Ali; Córdova-Figueroa, Ubaldo M.

    2016-07-01

    The dynamics and pair trajectory of two self-propelled colloids are reported. The autonomous motions of the colloids are due to a catalytic chemical reaction taking place asymmetrically on their surfaces that generates a concentration gradient of interactive solutes around the particles and actuate particle propulsion. We consider two spherical particles with symmetric catalytic caps extending over the local polar angles $\\theta^1_{cap}$ and $\\theta^2_{cap}$ from the centers of active sectors in an otherwise quiescent fluid. A combined analytical-numerical technique was developed to solve the coupled mass transfer equation and the hydrodynamics in the Stokes flow regime. The ensuing pair trajectory of the colloids is controlled by the reacting coverages $\\theta^j_{cap}$ and their initial relative orientation with respect to each other. Our analysis indicates two possible scenarios for pair trajectories of catalytic self-propelled particles: either the particles approach, come into contact and assemble or they interact and move away from each other (escape). For arbitrary motions of the colloids, it is found that the direction of particle rotations is the key factor in determining the escape or assembly scenario. Based on the analysis, a phase diagram is sketched for the pair trajectory of the catalytically active particles as a function of active coverages and their initial relative orientations. We believe this study has important implications in elucidation of collective behaviors of auotophoretically self-propelled colloids.

  10. Structural Basis for the Catalytic Activity of Human SER/THR Protein Phosphatase-5

    Swingle, M. R.; Honkanen, R.; Ciszak, E.

    2004-01-01

    Serinekhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth. Here we report the 1.6 Angstrom resolution crystal structure of PP5 catalytic domain with metal and phosphate ions in the active site. The structure reveals a mechanism for PPS-mediated catalysis that requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1),-M(sub 2)-His(sup 427)-W(sup 2)-His(sup 304)-Asp(sup 274) catalytic motif, and provides a structural basis for the exceptional catalytic proficiency of protein phosphatases placing them among the most powerful catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of PP5 should aid development of specific inhibitors.

  11. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors

    Yu, Wenyu [Univ. of Toronto, ON (Canada); Chory, Emma J. [Dana-Farber Cancer Inst., Boston, MA (United States); Northeastern Univ., Boston, MA (United States); Wernimont, Amy K. [Univ. of Toronto, ON (Canada); Tempel, Wolfram [Univ. of Toronto, ON (Canada); Scopton, Alex [Univ. of Toronto, ON (Canada); Federation, Alexander [Dana-Farber Cancer Inst., Boston, MA (United States); Marineau, Jason J. [Dana-Farber Cancer Inst., Boston, MA (United States); Qi, Jun [Dana-Farber Cancer Inst., Boston, MA (United States); Barsyte-Lovejoy, Dalia [Univ. of Toronto, ON (Canada); Yi, Joanna [Dana-Farber Cancer Inst., Boston, MA (United States); Marcellus, Richard [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Iacob, Roxana E. [Northeastern Univ., Boston, MA (United States); Engen, John R. [Northeastern Univ., Boston, MA (United States); Griffin, Carly [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Aman, Ahmed [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Wienholds, Erno [Univ. of Toronto, ON (Canada); Li, Fengling [Univ. of Toronto, ON (Canada); Pineda, Javier [Dana-Farber Cancer Inst., Boston, MA (United States); Univ. of Notre Dame, IN (United States); Estiu, Guillermina [Univ. of Notre Dame, IN (United States); Shatseva, Tatiana [Univ. of Toronto, ON (Canada); Hajian, Taraneh [Univ. of Toronto, ON (Canada); Al-awar, Rima [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Dick, John E. [Univ. of Toronto, ON (Canada); Vedadi, Masoud [Univ. of Toronto, ON (Canada); Brown, Peter J. [Univ. of Toronto, ON (Canada); Arrowsmith, Cheryl H. [Univ. of Toronto, ON (Canada); Bradner, James E. [Dana-Farber Cancer Inst., Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Schapira, Matthieu [Univ. of Toronto, ON (Canada)

    2012-12-18

    Selective inhibition of protein methyltransferases is a promising new approach to drug discovery. An attractive strategy towards this goal is the development of compounds that selectively inhibit binding of the cofactor, S-adenosylmethionine, within specific protein methyltransferases. Here we report the three-dimensional structure of the protein methyltransferase DOT1L bound toEPZ004777, the first S-adenosylmethionine-competitive inhibitor of a protein methyltransferase with in vivo efficacy. This structure and those of four new analogues reveal remodelling of the catalytic site. EPZ004777 and a brominated analogue, SGC0946, inhibit DOT1L in vitro and selectively kill mixed lineage leukaemia cells, in which DOT1L is aberrantly localized via interaction with an oncogenic MLL fusion protein. These data provide important new insight into mechanisms of cell-active S-adenosylmethionine-competitive protein methyltransferase inhibitors, and establish a foundation for the further development of drug-like inhibitors of DOT1L for cancer therapy.

  12. Photo catalytic activity of titanium dioxide on phenol degradation

    Full text: The photo catalytic degradation performance of the TiO2 based heterogeneous photo catalyst was evaluated on the degradation of phenol contaminant found in the wastewater from resins industries. UV spectrophotometry analysis has shown that the wastewater consisted of both phenol and formaldehyde at 274 nm and 251 nm, respectively. However, phenol was selected as the targeted contaminant to study on the photo catalyst activity and degradability. TiO2 powder was coated onto ion exchange resin as support by using a thermal attachment procedure. The results showed that the efficiency of photodegradation activity increased for greater photo catalyst loading. However, above 6 g of catalyst, the degradation was then adversely affected. The photo catalytic kinetics of phenol degradation has followed first order reaction kinetic. The regeneration of the immobilized TiO2 has remained appreciable up to 3 cycles. (author)

  13. Expression and purification of correctly processed, active human TACE catalytic domain in Saccharomyces cerevisiae.

    Clarke, H R; Wolfson, M F; Rauch, C T; Castner, B J; Huang, C P; Gerhart, M J; Johnson, R S; Cerretti, D P; Paxton, R J; Price, V L; Black, R A

    1998-06-01

    Human tumor necrosis factor-alpha (TNF alpha) converting enzyme (TACE) releases soluble TNF alpha from cells. It is a member of the adamalysin family of metalloproteases. A truncated form of TACE cDNA was expressed in Saccharomyces cerevisiae and purified to homogeneity in order to study TACE structure and function. Recombinant TACE was expressed as a preproprotein including the pro- and catalytic (PROCAT) domains fused to the yeast alpha-factor leader. A C-terminal immunoreactive FLAG peptide was added for Western blot detection and anti-FLAG antibody column purification. We constructed two glycosylation mutant PROCAT TACE isoforms to facilitate purification. A PROCAT isoform, mutated to eliminate two N-linked glycosylation sites, was buffer exchanged and purified to homogeneity by ion exchange chromatography and an anti-FLAG antibody affinity step. N-terminal sequence analysis showed that the mutant preproprotein was processed in yeast at the furin protease cleavage site and yielded an active catalytic domain which has TNF alpha peptide-specific protease activity. Mass spectrometry of the purified catalytic domain showed that removal of both N-linked sites results in a homogeneous sized polypeptide lacking further posttranslational modifications. PMID:9631522

  14. Guiding catalytically active particles with chemically patterned surfaces

    Uspal, W E; Dietrich, S; Tasinkevych, M

    2016-01-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either "dock" at the chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governi...

  15. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2016-02-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.

  16. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  17. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.

    Park, Kyung-Won; Sung, Yung-Eun

    2005-07-21

    Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state. PMID:16852701

  18. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  19. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  20. Hydrophobic catalysts for liquid phase catalytic exchange: a review of preparation methods and influencing factors of catalytic activities

    Liquid phase catalytic exchange (LPCE) between liquid water and gaseous hydro- gen has been developed for various applications, such as tritium recovery, water upgrade and heavy-water production. Good wetproofing properties of the hydrophobic catalysts can make the reaction to proceed smoothly. In this article, the preparation methods of the hydrophobic catalysts and the factors affecting the catalytic activities are reviewed. In particular, progress on the hydrophobic Pt/C/inert carrier catalysts is introduced, including the selection of inert carrier and active metal carrier, and the preparation methods of carbon- supported Pt based catalysts. Basic research activities on controllable fabrication of hydro- phobic catalysts are discussed, including the LPCE reaction mechanism, and the relation between the microstructure of active metal and the catalytic activity, etc. Finally, questions remaining to be answered and future directions in the field of hydrophobic catalysts are discussed. (authors)

  1. Protein composition of catalytically active human telomerase from immortal cells

    Cohen, Scott B; Graham, Mark E; Lovrecz, George O;

    2007-01-01

    Telomerase is a ribonucleoprotein enzyme complex that adds 5'-TTAGGG-3' repeats onto the ends of human chromosomes, providing a telomere maintenance mechanism for approximately 90% of human cancers. We have purified human telomerase approximately 10(8)-fold, with the final elution dependent on the...... enzyme's ability to catalyze nucleotide addition onto a DNA oligonucleotide of telomeric sequence, thereby providing specificity for catalytically active telomerase. Mass spectrometric sequencing of the protein components and molecular size determination indicated an enzyme composition of two molecules...... each of telomerase reverse transcriptase, telomerase RNA, and dyskerin....

  2. DOE site performance assessment activities

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions

  3. Experimental and Mechanistic Understanding of Aldehyde Hydrogenation Using Au25 Nanoclusters with Lewis Acids: Unique Sites for Catalytic Reactions.

    Li, Gao; Abroshan, Hadi; Chen, Yuxiang; Jin, Rongchao; Kim, Hyung J

    2015-11-18

    The catalytic activity of Au25(SR)18 nanoclusters (R = C2H4Ph) for the aldehyde hydrogenation reaction in the presence of a base, e.g., ammonia or pyridine, and transition-metal ions M(z+), such as Cu(+), Cu(2+), Ni(2+) and Co(2+), as a Lewis acid is studied. The addition of a Lewis acid is found to significantly promote the catalytic activity of Au25(SR)18/CeO2 in the hydrogenation of benzaldehyde and a number of its derivatives. Matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry in conjunction with UV-vis spectroscopy confirm the generation of new species, Au25-n(SR)18-n (n = 1-4), in the presence of a Lewis acid. The pathways for the speciation of Au24(SR)17 from its parent Au25(SR)18 nanocluster as well as its structure are investigated via the density functional theory (DFT) method. The adsorption of M(z+) onto a thiolate ligand "-SR-" of Au25(SR)18, followed by a stepwise detachment of "-SR-" and a gold atom bonded to "-SR-" (thus an "Au-SR" unit) is found to be the most likely mechanism for the Au24(SR)17 generation. This in turn exposes the Au13-core of Au24(SR)17 to reactants, providing an active site for the catalytic hydrogenation. DFT calculations indicate that M(z+) is also capable of adsorbing onto the Au13-core surface, producing a possible active metal site of a different kind to catalyze the aldehyde hydrogenation reaction. This study suggests, for the first time, that species with an open metal site like adducts [nanoparticle-M]((z-1)+) or fragments Au25-n(SR)18-n function as the catalysts rather than the intact Au25(SR)18. PMID:26498698

  4. SITE-DIRECTED MUTAGENESIS OF PROPOSED ACTIVE-SITE RESIDUES OF PENICILLIN-BINDING PROTEIN-5 FROM ESCHERICHIA-COLI

    VANDERLINDEN, MPG; DEHAAN, L; DIDEBERG, O; KECK, W

    1994-01-01

    Alignment of the amino acid sequence of penicillin-binding protein 5 (PBP5) with the sequences of other members of the family of active-site-serine penicillin-interacting enzymes predicted the residues playing a role in the catalytic mechanism of PBP5. Apart from the active-site (Ser(44)), Lys(47),

  5. Copper on activated carbon for catalytic wet air oxidation

    Nora Dolores Martínez

    2009-03-01

    Full Text Available Textile industry is an important source of water contamination. Some of the organic contaminants cannot be eliminated by nature in a reasonable period. Heterogeneous catalytic wet air oxidation is one of the most effective methods to purify wastewater with organic contaminants. In this work, catalysts based on copper supported on activated carbon were synthesized. The activated carbons were obtained from industrial wastes (apricot core and grape stalk of San Juan, Argentina. These were impregnated with a copper salt and thermically treated in an inert atmosphere. Analysis of specific surface, pore volume, p zc, acidity, basicity and XRD patterns were made in order to characterize the catalysts. The catalytic activity was tested in the oxidation of methylene blue (MB and polyvinyl alcohol (PVA in aqueous phase with pure oxygen. Reaction tests were carried out in a Parr batch reactor at different temperatures, with a 0.2 MPa partial pressure of oxygen. The amount of unconverted organics was measured by spectrophotometry. Higher temperatures were necessary for the degradation of PVA compared to those for methylene blue.

  6. Support-induced Catalytic Activity of Gold Nanocluster

    Zhang, Chun; Yoon, Bokwon; Landman, Uzi

    2007-03-01

    The catalytic activity of gold nanoclusters supported on metal-oxide surfaces is a topic of active research efforts. Recently, a dimensionality crossover of gold clusters, adsorbed on a metal-supported thin film of MgO(100), has been predicted^1. We present here a first- principles study of the catalytic activity of a planer Au20 cluster on two- layer MgO(100) film supported by a Mo surface. Both Langmuir-Hinshelwood (LH) and Eley--Rideal (ER) mechanisms of CO oxidation are investigated. The barrier of the LH mechanism is found to be 0.15 eV. For the ER mechanism, the barrier depends on the direction of approach of the CO molecule to the preadsorbed oxygen molecule, varying between a vanishing barrier height and 0.2 eV. Charge transfer from the Mo surface to the cluster supported on the thin MgO(100) film plays a key role in the catalyzed CO oxidation process.

  7. Rate of chase-promoted hydrolysis of ATP in the high affinity catalytic site of beef heart mitochondrial ATPase

    Incubation of [γ-32P]ATP with a molar excess of the soluble, homogeneous ATPase from beef heart mitochondria (F1) results in binding of substrate primarily in a single, very high affinity catalytic site and in a slow rate of hydrolysis characteristic of single site catalysis. Subsequent addition of millimolar concentrations of nonradioactive ATP as a cold chase, sufficient to fill catalytic sites on the enzyme, results in an acceleration of hydrolysis of bound radioactive ATP of as much as 106-fold, that is to V/sub max/ rates. For this reason, it was proposed that the high affinity catalytic site is a normal catalytic site on the molecule. This paper shows, in experiments with a rapid mixing-chemical quench apparatus, that hydrolysis of ATP bound in the high affinity catalytic site is accelerated to V/sub max/ rates following addition of 5 μM ATP as a cold chase. Hydrolysis of bound ATP appears to precede that of the chase. The weight of the available evidence continues to support the original suggestion that the high affinity catalytic site of beef heart F1 is a normal catalytic site

  8. Probing substrate interactions in the active tunnel of a catalytically deficient cellobiohydrolase (Cel7)

    Westh, Peter; Colussi, Francieli; Sørensen, Trine Holst;

    2015-01-01

    Cellobiohydrolases (CBHs) break down cellulose sequentially by sliding along the crystal surface with a single cellulose strand threaded through the catalytic tunnel of the enzyme. This so-called processive mechanism relies on a complex pattern of enzyme-substrate interactions, which need to be...... sites in the catalytic tunnel, and using COS ligands with a degree of polymerization (DP) from 2 to 8, different regions of the tunnel could be probed. For COS ligands with DP of 2-3 the binding constants were around 105 M-1, and for longer ligands (DP 5-8) this value was about 107 M-1. Within each of......) decreased monotonously with both temperature and DP. Combined interpretation of these thermodynamic results and previously published structural data allowed assessment of an affinity profile along the length axis of the active tunnel...

  9. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine

    Liu, Yan

    2014-03-01

    Hierarchically porous SAPO-11 zeolite (H-SAPO-11) is rationally synthesized from a starting silicoaluminophosphate gel in the presence of polyhexamethylene biguanidine as a mesoscale template. The sample is well characterized by XRD, N2 sorption, SEM, TEM, NMR, XPS, NH3-TPD, and TG techniques. The results show that the sample obtained has good crystallinity, hierarchical porosity (mesopores at ca. 10nm and macropores at ca. 50-200nm), high BET surface area (226m2/g), large pore volume (0.25cm3/g), and abundant medium and strong acidic sites (0.36mmol/g). After loading Pt (0.5wt.%) on H-SAPO-11 by using wet impregnation method, catalytic hydroisomerization tests of n-dodecane show that the hierarchical Pt/SAPO-11 zeolite exhibits high conversion of n-dodecane and enhanced selectivity for branched products as well as reduced selectivity for cracking products, compared with conventional Pt/SAPO-11 zeolite. This phenomenon is reasonably attributed to the presence of hierarchical porosity, which is favorable for access of reactants on catalytically active sites. The improvement in catalytic performance in long-chain paraffin hydroisomerization over Pt/SAPO-11-based catalyst is of great importance for its industrial applications in the future. © 2013 Elsevier Inc.

  10. TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase

    Sologub, Marina; Litonin, Dmitry; Anikin, Michael; Mustaev, Arkady; Temiakov, Dmitry

    2009-01-01

    Transcription in human mitochondria is carried out by a single-subunit, T7-like RNA polymerase assisted by several auxiliary factors. We demonstrate that an essential initiation factor, TFB2, forms a network of interactions with DNA near the transcription start site and facilitates promoter melting but may not be essential for promoter recognition. Unexpectedly, catalytic autolabeling reveals that TFB2 interacts with the priming substrate, suggesting that TFB2 acts as a transient component of...

  11. Catalytic activity of nuclease P1: Experiment and theory

    Nuclease P1 from Penicillium citrinum is a zinc dependent glyco-enzyme that recognizes single stranded DNA and RNA as substrates and hydrolyzes the phosphate ester bond. Nuclease Pl seems to recognize particular conformations of the phosphodiester backbone and shows significant variation in the rate of hydrolytic activity depending upon which nucleosides are coupled by the phosphodiester bond. The efficiency of nuclease Pl in hydrolyzing the phosphodiester bonds of a substrate can be altered by modifications to one of the substrate bases induced by ionizing radiation or oxidative stress. Measurements have been made of the effect of several radiation induced lesions on the catalytic rate of nuclease Pl. A model of the structure of the enzyme has been constructed in order to better understand the binding and activity of this enzyme on various ssDNA substrates

  12. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity

    González Celedonio

    2010-02-01

    Full Text Available Abstract Background The Botrytis cinerea xylanase Xyn11A has been previously shown to be required for full virulence of this organism despite its poor contribution to the secreted xylanase activity and the low xylan content of B. cinerea hosts. Intriguingly, xylanases from other fungi have been shown to have the property, independent of the xylan degrading activity, to induce necrosis when applied to plant tissues, so we decided to test the hypothesis that secreted Xyn11A contributes to virulence by promoting the necrosis of the plant tissue surrounding the infection, therefore facilitating the growth of this necrotroph. Results We show here that Xyn11A has necrotizing activity on plants and that this capacity is conserved in site-directed mutants of the protein lacking the catalytic activity. Besides, Xyn11A contributes to the infection process with the necrotizing and not with the xylan hydrolyzing activity, as the catalytically-impaired Xyn11A variants were able to complement the lower virulence of the xyn11A mutant. The necrotizing activity was mapped to a 30-amino acids peptide in the protein surface, and this region was also shown to mediate binding to tobacco spheroplasts by itself. Conclusions The main contribution of the xylanase Xyn11A to the infection process of B. cinerea is to induce necrosis of the infected plant tissue. A conserved 30-amino acids region on the enzyme surface, away from the xylanase active site, is responsible for this effect and mediates binding to plant cells.

  13. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L. (Michigan)

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  14. Modeling the active site of [FeFe]-hydrogenase: Electro-catalytic hydrogen evolution from acetic acid catalysed by [Fe2(-L)(CO)6] and [Fe2(-L)(CO)5(PPh3)] (L=pyrazine-2, 3-dithiolate, quinoxaline-2, 3-dithiolate and pyrido[2,3-b] pyrazine-2, 3-dithiolate)

    Gummadi Durgaprasad; Samar K Das

    2015-02-01

    Compounds [Fe2{-pydt}(CO)6] (pydt = pyrazine-2,3-dithiolate) (1), [Fe2{-qdt}(CO)6] (qdt = quinoxaline-2,3-dithiolate) (2), [Fe2{-ppdt}CO)6] (ppdt = pyrido[2,3-b]pyrazine-2,3-dithiolate) (3), [Fe2{-pydt}(CO)5PPh3] (4), [Fe2{-qdt}(CO)5PPh3] (5) and [Fe2{-ppdt}(CO)5PPh3] (6) have been synthesized in order to model the active sites of `[FeFe]-hydrogenase’. Compounds 1–6 have been characterized by routine spectral studies and unambiguously by single crystal X-ray crystallography. Supramolecular chemistry of compounds 1–6 have been described in terms of intermolecular interactions, observed in their respective crystal structures. Electro-catalytic hydrogen evaluation studies (from acetic acid) have been performed using compounds 1–6 as electro-catalysts. The mechanistic aspects of relevant electro–catalytic proton reductions have been discussed in detail.

  15. The non-catalytic domains of Drosophila katanin regulate its abundance and microtubule-disassembly activity.

    Kyle D Grode

    Full Text Available Microtubule severing is a biochemical reaction that generates an internal break in a microtubule and regulation of microtubule severing is critical for cellular processes such as ciliogenesis, morphogenesis, and meiosis and mitosis. Katanin is a conserved heterodimeric ATPase that severs and disassembles microtubules, but the molecular determinants for regulation of microtubule severing by katanin remain poorly defined. Here we show that the non-catalytic domains of Drosophila katanin regulate its abundance and activity in living cells. Our data indicate that the microtubule-interacting and trafficking (MIT domain and adjacent linker region of the Drosophila katanin catalytic subunit Kat60 cooperate to regulate microtubule severing in two distinct ways. First, the MIT domain and linker region of Kat60 decrease its abundance by enhancing its proteasome-dependent degradation. The Drosophila katanin regulatory subunit Kat80, which is required to stabilize Kat60 in cells, conversely reduces the proteasome-dependent degradation of Kat60. Second, the MIT domain and linker region of Kat60 augment its microtubule-disassembly activity by enhancing its association with microtubules. On the basis of our data, we propose that the non-catalytic domains of Drosophila katanin serve as the principal sites of integration of regulatory inputs, thereby controlling its ability to sever and disassemble microtubules.

  16. Radiation influencing of catalytic activity and reactivity of selected mixed oxides

    Two mixed oxides, viz. CuO-Bi2O3 and NiO-Bi2O3, of various compositions were studied with respect to their physico-chemical properties, catalytic activity, and chemical reactivity, using hydrogen peroxide decomposition and hydrogen reduction as the test reactions. Pre-irradiation of the CuO-Bi2O3 catalyst with 60Co gamma rays (0.5, 1.0, 1.5, or 3.0 MGy) and accelerated electrons (4 MeV) brought about changes in the mutual influence of the system components accompanied by formation of induced catalytic sites. The reduction rate decrease in the two side regions after electron irradiation and after gamma irradiation applying the extremely high dose of 3 MGy can be correlated with the increase in the concentration of the strongly bonded oxygen forms, giving rise to centres for donor hydrogen chemisorption. The NiO-Bi2O3 system seems to be less stable than the CuO-Bi2O3 system. Gamma irradiation (1 MGy) in water brought about decrease in the catalytic activity but no change in the mutual influence of the two components of the system. In the same conditions the reduction rate decreased appreciably, whereas pre-irradiation in air led to acceleration of the reduction process. This can be ascribed to a higher concentration of the stabilized charge defects, enhancing the reactivity of the interface. (author). 4 figs., 6 refs

  17. Size Effect of Gold Sol/γ-Alumina on the Catalytic Activities of CO Oxidation

    WANG Wei-Hua; GAO Geng-Yu

    2006-01-01

    The relationship between particle size and catalytic activity of gold nanoparticle catalysts with γ-Al2O3 as support has been investigated. The catalysts were prepared via the gold sol with different particle sizes by micelle method, and their structures were characterized by HRTEM and XRD, respectively. Furthermore, the catalytic activities were tested by CO oxidation. Experimental results showed that the catalytic activity became much weaker when gold particles were increased from 3.2 to 6.6 nm. Additionally, the particle size was also a key factor to govern catalytic activity with regard to gold supported on TiO2 prepared by the methods of deposition-precipitation.

  18. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  19. Orthogonal gene knock out and activation with a catalytically active Cas9 nuclease

    Dahlman, James E.; Abudayyeh, Omar O.; Joung, Julia; Gootenberg, Jonathan S.; Zhang, Feng; Konermann, Silvana

    2015-01-01

    We have developed a CRISPR-based method that uses catalytically active Cas9 and distinct sgRNA constructs to knock out and activate different genes in the same cell. These sgRNAs, with 14 15 bp target sequences and MS2 binding loops, can activate gene expression using an active Cas9 nuclease, without inducing DSBs. We use these ‘dead RNAs’ to perform orthogonal gene knockout and transcriptional activation in human cells.

  20. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles

    Vayssilov, Georgi N.; Lykhach, Yaroslava; Migani, Annapaola; Staudt, Thorsten; Petrova, Galina P.; Tsud, Nataliya; Skála, Tomáš; Bruix, Albert; Illas, Francesc; Prince, Kevin C.; MatolíN, VladimíR.; Neyman, Konstantin M.; Libuda, Jörg

    2011-04-01

    Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal-oxide interactions usually remain obscure. This study identifies two types of oxidative metal-oxide interaction on well-defined models of technologically important Pt-ceria catalysts: (1) electron transfer from the Pt nanoparticle to the support, and (2) oxygen transfer from ceria to Pt. The electron transfer is favourable on ceria supports, irrespective of their morphology. Remarkably, the oxygen transfer is shown to require the presence of nanostructured ceria in close contact with Pt and, thus, is inherently a nanoscale effect. Our findings enable us to detail the formation mechanism of the catalytically indispensable Pt-O species on ceria and to elucidate the extraordinary structure-activity dependence of ceria-based catalysts in general.

  1. Antibacterial and catalytic activities of green synthesized silver nanoparticles

    Bindhu, M. R.; Umadevi, M.

    2015-01-01

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  2. Synthesis, characterization and catalytic activity of CdO nanocrystals

    Singh, G., E-mail: gsingh4us@yahoo.com [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India); Kapoor, I.P.S.; Dubey, Reena; Srivastava, Pratibha [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India)

    2011-02-15

    In this paper, we report the synthesis of nanocrystalline cadmium oxide (CdO) and its characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Its catalytic activity was investigated on the thermal decomposition of 1,2,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), ammonium perchlorate (AP), hydroxyl terminated polybutadiene (HTPB) and composite solid propellants (CSPs) using thermogravimetric analysis (TG), simultaneous thermogravimerty and differential scanning calorimetry (TG-DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + CdO has also been investigated using model free (isoconversional) and model-fitting approaches which have been applied to data for isothermal TG decomposition. All these studies show enhancement in the rate of decomposition of AP, HTPB and CSPs but no effect on HMX. The burning rate of CSPs has also been found to be increased with CdO nanocrystals.

  3. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi, E-mail: rahiminasrabadi@gmail.com [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Khalilian-Shalamzari, Morteza [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh [Islamic Azad University, Varamin Pishva Branch, Varamin (Iran, Islamic Republic of); Omrani, Ismail [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Graphical abstract: NiWO{sub 4} nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: Black-Right-Pointing-Pointer NiWO{sub 4} spherical nanoparticles were synthesized via direct precipitation method. Black-Right-Pointing-Pointer Taguchi robust design was used for optimization of synthesis reaction parameters. Black-Right-Pointing-Pointer Composition and structural properties of NiWO{sub 4} nanoparticles were characterized. Black-Right-Pointing-Pointer EDAX, XRD, SEM, FT-IR, UV-vis and photoluminescence techniques were employed. Black-Right-Pointing-Pointer Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO{sub 4} nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO{sub 4} particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO{sub 4} were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV

  4. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Graphical abstract: NiWO4 nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: ► NiWO4 spherical nanoparticles were synthesized via direct precipitation method. ► Taguchi robust design was used for optimization of synthesis reaction parameters. ► Composition and structural properties of NiWO4 nanoparticles were characterized. ► EDAX, XRD, SEM, FT-IR, UV–vis and photoluminescence techniques were employed. ► Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV–vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  5. Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY

    Lu, Jing; Aydin, C.; Browning, Nigel D.; Gates, Bruce C.

    2012-06-11

    Gold, the most stable metallic element, attracted wide attention as a catalyst only after the discovery that gold nanoclusters on oxide supports are highly active and selective for reactions including numerous oxidation,[1–8] hydrogenation,[9–11] hydroamination,[12, 13] ring expansion,[14, 15] and coupling[16, 17] reactions. The catalytic properties of supported gold strongly dependent on the gold–support interactions and the size of the active species, which must be small—typically clusters with diameters of the order of 1 nm.[18–20] Frequent discoveries of new gold-catalyzed reactions are leading the science; understanding has been slow to emerge.[21] Major challenges are to identify the catalytically active species and to characterize gold–support interactions.

  6. Development of novel catalytically active polymer-metal-nanocomposites based on activated foams and textile fibers

    Domènech, Berta; Ziegler, Kharla K.; Carrillo, Fernando; Muñoz, Maria; Muraviev, Dimitri N.; Macanás, Jorge

    2013-05-01

    In this paper, we report the intermatrix synthesis of Ag nanoparticles in different polymeric matrices such as polyurethane foams and polyacrylonitrile or polyamide fibers. To apply this technique, the polymer must bear functional groups able to bind and retain the nanoparticle ion precursors while ions should diffuse through the matrix. Taking into account the nature of some of the chosen matrices, it was essential to try to activate the support material to obtain an acceptable value of ion exchange capacity. To evaluate the catalytic activity of the developed nanocomposites, a model catalytic reaction was carried out in batch experiments: the reduction of p-nitrophenol by sodium borohydride.

  7. A conserved mechanism of autoinhibition for the AMPK kinase domain: ATP-binding site and catalytic loop refolding as a means of regulation

    A 1.9 Å resolution crystal structure of the isolated kinase domain from the α2 subunit of human AMPK, the first from a multicellular organism, is presented. The AMP-activated protein kinase (AMPK) is a highly conserved trimeric protein complex that is responsible for energy homeostasis in eukaryotic cells. Here, a 1.9 Å resolution crystal structure of the isolated kinase domain from the α2 subunit of human AMPK, the first from a multicellular organism, is presented. This human form adopts a catalytically inactive state with distorted ATP-binding and substrate-binding sites. The ATP site is affected by changes in the base of the activation loop, which has moved into an inhibited DFG-out conformation. The substrate-binding site is disturbed by changes within the AMPKα2 catalytic loop that further distort the enzyme from a catalytically active form. Similar structural rearrangements have been observed in a yeast AMPK homologue in response to the binding of its auto-inhibitory domain; restructuring of the kinase catalytic loop is therefore a conserved feature of the AMPK protein family and is likely to represent an inhibitory mechanism that is utilized during function

  8. Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins

    The heavy chains of Acanthamoeba myosins, IA, IB and II, turkey gizzard myosin, and rabbit skeletal muscle myosin subfragment-1 were specifically labeled by radioactive ATP, ADP, and UTP, each of which is a substrate or product of myosin ATPase activity, when irradiated with uv light at 00C. With UTP, as much as 0.45 mol/mol of Acanthamoeba myosin IA heavy chain and 1 mol/mol of turkey gizzard myosin heavy chain was incorporated. Evidence that the ligands were associated with the catalytic site included the observations that reaction occurred only with nucleotides that are substrates or products of the ATPase activity; that the reaction was blocked by pyrophosphate which is an inhibitor of the ATPase activity; that ATP was bound as ADP; and that label was probably restricted to a single peptide following limited subtilisin proteolysis of labeled Acanthamoeba myosin IA heavy chain and extensive cleavage with CNBr and trypsin of labeled turkey gizzard myosin heavy chain

  9. α-Lytic protease can exist in two separately stable conformations with different His57 mobilities and catalytic activities

    Haddad, Kristin Coffman; Sudmeier, James L.; Bachovchin, Daniel A.; Bachovchin, William W.

    2005-01-01

    α-Lytic protease is a bacterial serine protease widely studied as a model system of enzyme catalysis. Here we report that lyophilization induces a structural change in the enzyme that is not reversed by redissolution in water. The structural change reduces the mobility of the active-site histidine residue and the catalytic activity of the enzyme. The application of mild pressure to solutions of the altered enzyme reverses the lyophilization-induced structural change and restores the mobility ...

  10. Bacillus pumilus Cyanide Dihydratase Mutants with Higher Catalytic Activity.

    Crum, Mary A; Sewell, B Trevor; Benedik, Michael J

    2016-01-01

    Cyanide degrading nitrilases are noted for their potential to detoxify industrial wastewater contaminated with cyanide. However, such application would benefit from an improvement to characteristics such as their catalytic activity and stability. Following error-prone PCR for random mutagenesis, several cyanide dihydratase mutants from Bacillus pumilus were isolated based on improved catalysis. Four point mutations, K93R, D172N, A202T, and E327K were characterized and their effects on kinetics, thermostability and pH tolerance were studied. K93R and D172N increased the enzyme's thermostability whereas E327K mutation had a less pronounced effect on stability. The D172N mutation also increased the affinity of the enzyme for its substrate at pH 7.7 but lowered its k cat. However, the A202T mutation, located in the dimerization or the A surface, destabilized the protein and abolished its activity. No significant effect on activity at alkaline pH was observed for any of the purified mutants. These mutations help confirm the model of CynD and are discussed in the context of the protein-protein interfaces leading to the protein quaternary structure. PMID:27570524

  11. Isolation of an Active Catalytic Core of Streptococcus downei MFe28 GTF-I Glucosyltransferase

    Monchois, Vincent; Arguello-Morales, Martha; Russell, Roy R. B.

    1999-01-01

    Truncated variants of GTF-I from Streptococcus downei MFe28 were purified by means of a histidine tag. Sequential deletions showed that the C-terminal domain was not directly involved in the catalytic process but was required for primer activation. A fully active catalytic core of only 100 kDa was isolated.

  12. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    Huang, Jianfeng

    2013-06-12

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized a novel Au-Pd bimetallic nanostructure (HIF-AuNR@AuPd) through site-specific epitaxial growth of Au-Pd alloy horns as catalytic sites at the ends of Au nanorods. Using high-resolution electron microscopy and tomography, we successfully reconstructed the complex three-dimensional morphology of HIF-AuNR@AuPd and identified that the horns are bound with high-index {11l} (0.25 < l < 0.43) facets. With an electron beam probe, we visualized the distribution of surface plasmon over the HIF-AuNR@AuPd nanorods, finding that strong longitudinal surface plasmon resonance concentrated at the rod ends. This unique crystal morphology led to the coupling of high catalytic activity with a strong SERS effect at the rod ends, making HIF-AuNR@AuPd an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. Using the hydrogenation of 4-nitrothiophenol as a model reaction, we demonstrated that its first-order reaction kinetics could be accurately determined from this platform. Moreover, we clearly identified the superior catalytic activity of the rod ends relative to that of the rod bodies, owing to the different SERS activities at the two positions. In comparison with other reported Au-Pd bimetallic nanostructures, HIF-AuNR@AuPd offered both higher catalytic activity and greater detection sensitivity. © 2013 American Chemical Society.

  13. Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy.

    Huang, Jianfeng; Zhu, Yihan; Lin, Ming; Wang, Qingxiao; Zhao, Lan; Yang, Yang; Yao, Ke Xin; Han, Yu

    2013-06-12

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized a novel Au-Pd bimetallic nanostructure (HIF-AuNR@AuPd) through site-specific epitaxial growth of Au-Pd alloy horns as catalytic sites at the ends of Au nanorods. Using high-resolution electron microscopy and tomography, we successfully reconstructed the complex three-dimensional morphology of HIF-AuNR@AuPd and identified that the horns are bound with high-index {11l} (0.25 facets. With an electron beam probe, we visualized the distribution of surface plasmon over the HIF-AuNR@AuPd nanorods, finding that strong longitudinal surface plasmon resonance concentrated at the rod ends. This unique crystal morphology led to the coupling of high catalytic activity with a strong SERS effect at the rod ends, making HIF-AuNR@AuPd an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. Using the hydrogenation of 4-nitrothiophenol as a model reaction, we demonstrated that its first-order reaction kinetics could be accurately determined from this platform. Moreover, we clearly identified the superior catalytic activity of the rod ends relative to that of the rod bodies, owing to the different SERS activities at the two positions. In comparison with other reported Au-Pd bimetallic nanostructures, HIF-AuNR@AuPd offered both higher catalytic activity and greater detection sensitivity. PMID:23675958

  14. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  15. Enhanced thermostability of mesophilic endoglucanase Z with a high catalytic activity at active temperatures.

    Kim, Su Jung; Joo, Ji Eun; Jeon, Sang Duck; Hyeon, Jeong Eun; Kim, Seung Wook; Um, Young Soon; Han, Sung Ok

    2016-05-01

    This is the first study for therrmostable mutants of mesophilic endoglucanase EngZ from Clostridium cellulovorans using by site-directed mutagenesis. K94R, S365P and their double mutant K94R/S365P had a wide range of active temperatures (30-60°C). In addition, the optimal temperature of K94R/S365P was increased by 7.5°C. K94R/S365P retained 78.3% relative activity at 70°C, while the wild type retained only 5.8%. Especially, K94R/S365P remained 45.1-fold higher activity than the wild type at 70°C. In addition, K94R/S365P was 3.1-fold higher activity than the wild type at 42.5°C, which is the optimal temperature of the wild type. K94R/S365P showed also stimulated in 2.5-fold lower concentration of CaCl2 and delayed aggregation temperature in the presence of CaCl2 compared to the wild type. In pH stability, K94R/S365P was not influenced, but the optimum pH was transferred from pH 7 to pH 6. In long-term hydrolysis, K94R/S365P reduced the newly released reducing sugar yields after 12h reaction; however, the yields consistently increased until 72h. Finally, the total reducing sugar of K94R/S365P was 5.0-fold higher than the wild type at 50°C, pH6. EngZ (K94R/S365P) can support information to develop thermostability of GH9 endoglucanase with a high catalytic efficiency as the potential industrial bioprocess candidate. PMID:26808019

  16. Catalytically active cobalt and copper complexes in polyelectrolyte multilayer films

    In this work an approach to obtain effective and easy reusable heterogeneous catalyst, LbL deposition of polyelectrolytes followed by covalently binding with cobalt (II) and copper (II) ions were described. Immobilization of metal complexes via covalent attachment to insoluble template is an attractive method to facilitate catalyst recovery, recycling. The reaction in the heterogeneous catalysis goes in the interface of catalyst and reaction solution and it is important to create a catalyst with large surface area. We have used polycations as polyethyleneimine (BPEI), quaternized poly(4- vynilpyridine) (QPVP) and polyanions as poly(acrylic acid) (PAA), poly(styrene sulphonate) sodium salt (PSS) and the electrostatic layer-by-layer assembly technique to make uniform thin film coating on SiO2 nanoparticles and glass slides with controllable thickness, roughness and mechanically durability. The stability of metals within multilayers in reaction condition were tested. We compared the amount of metal in PEMs of different polyelectrolytes. The stability constants of complex forming processes of the polymer-metal complexes in water and in alcohol were calculated by modified method of Bjerrum. Catalytic activity of immobilized catalysts was investigated for oxidation of toluene by molecular oxygen. Catalysts were separated from reaction mixture easily and had been used for this reaction five times without significant loss of activity. Key words: catalysis, layer-by-layer (LbL), polymer-metal complexes, oxidation, cobalt and copper immobilization

  17. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  18. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NOx) and ammonia (NH3) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO2 was observed at room temperature in the presence of NH3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO2 reduction with NH3 relative to nanocrystalline NaY

  19. Kinetics of catalytically activated aggregation—fragmentation process

    We propose a catalytically activated aggregation—fragmentation model of three species, in which two clusters of species A can coagulate into a larger one under the catalysis of B clusters; otherwise, one cluster of species A will fragment into two smaller clusters under the catalysis of C clusters. By means of mean-field rate equations, we derive the asymptotic solutions of the cluster-mass distributions ak(t) of species A, which is found to depend strongly on the competition between the catalyzed aggregation process and the catalyzed fragmentation process. When the catalyzed aggregation process dominates the system, the cluster-mass distribution ak(t) satisfies the conventional scaling form. When the catalyzed fragmentation process dominates the system, the scaling description of ak(t) breaks down completely and the monodisperse initial condition of species A would not be changed in the long-time limit. In the marginal case when the effects of catalyzed aggregation and catalyzed fragmentation counteract each other, ak(t) takes the modified scaling form and the system can eventually evolve to a steady state. (condensed matter: structural, mechanical, and thermal properties)

  20. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R.; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey (Case Western); (Colorado)

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  1. STUDIES ON THE CATALYTIC REACTION OF NITROGEN OXIDE ON METAL MODIFIED ACTIVATED CARBON FIBERS

    FU Ruowen; DU Xiuying; LIN Yuansheng; XU Hao; HU Yiongjun

    2003-01-01

    The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high catalytic activity for the reaction of NO/CO, while Pt/ACF.Pt/Cu/ACF and Co/Cu/ACF have very Iow catalytic activity in similar circumstance. Pd-modified ACF possesses high catalytic decomposition of NO at 300 ℃. Pd/CB and Pd/GAC present good catalytic decomposition ability for NO only at low flowrate. Pd/G, Pd/ZMS and Pd/A however, do not show any catalytic activity for NO decomposition even at 400 ℃. Catalytic temperature, NO flowrate and loading of metal components affect the decomposition rate of NO. The coexistence of Cu with Pd on Cu/Pd/ACF leads to crystalline of palladium to more unperfected so as to that increase the catalytic activity.

  2. Pt3Co concave nanocubes: synthesis, formation understanding, and enhanced catalytic activity toward hydrogenation of styrene.

    Wang, Chenyu; Lin, Cuikun; Zhang, Lihua; Quan, Zewei; Sun, Kai; Zhao, Bo; Wang, Feng; Porter, Nathan; Wang, Yuxuan; Fang, Jiye

    2014-02-01

    We report a facile synthesis route to prepare high-quality Pt3Co nanocubes with a concave structure, and further demonstrate that these concave Pt3Co nanocubes are terminated with high-index crystal facets. The success of this preparation is highly dependent on an appropriate nucleation process with a successively anisotropic overgrowth and a preservation of the resultant high-index planes by control binding of oleyl-amine/oleic acid with a fine-tuned composition. Using a hydrogenation of styrene as a model reaction, these Pt3Co concave nanocubes as a new class of nanocatalysts with more open structure and active atomic sites located on their high-index crystallographic planes exhibit an enhanced catalytic activity in comparison with low-indexed surface terminated Pt3Co nanocubes in similar size. PMID:24382713

  3. Evidence for Participation of Remote Residues in the Catalytic Activity of Co-type Nitrile Hydratase from Pseudomonas putida†

    Brodkin, Heather R.; Novak, Walter R. P.; Milne, Amy C.; D’Aquino, J. Alejandro; Karabacak, N. M.; Agar, Jeffrey N.; Payne, Mark S.; Petsko, Gregory A; Ondrechen, Mary Jo; Ringe, Dagmar

    2011-01-01

    Active sites may be regarded as layers of residues, whereby the residues that interact directly with substrate also interact with residues in a second shell, and these in turn interact with residues in a third shell. These residues in the second and third layers may have distinct roles in maintaining the essential chemical properties of the first-shell catalytic residues, particularly their spatial arrangement relative to the substrate binding pocket, and their electrostatic and dynamic prope...

  4. UNIVERSITY OF WISCONSIN - PHOTO ELECTRO CATALYTIC DEGRADATION AND REMOVAL OFORGANIC AND INORGANIC CONTAMINANTS IN GROUND WATERS: SITE DOC

    SITE DOC NRMRL-CIN-1338 Gallardo*, V. University of Wisconsin - Photo Electro Catalytic Degradation and Removal of Organic and Inorganic Contaminants in Ground Waters. 2001. EPA/540/R-01/502, http://www.epa.gov/ORD/SITE. 02/22/2001 Photocatalytic oxidation offers a means of...

  5. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  6. Quantitative study of catalytic activity and catalytic deactivation of Fe–Co/Al2O3 catalysts for multi-walled carbon nanotube synthesis by the CCVD process

    Pirard, Sophie; Heyen, Georges; Pirard, Jean-Paul

    2010-01-01

    The catalytic deactivation during multi-walled carbon nanotube (MWNT) synthesis by the CCVD process and the influence of hydrogen on it were quantified. Initial specific reaction rate, relative specific productivity and catalytic deactivation were studied. Carbon source was ethylene, and a bimetallic iron–cobalt catalyst supported on alumina was used. The catalytic deactivation was modeled by a decreasing hyperbolic law, reflecting the progressive accumulation of amorphous carbon on active si...

  7. Optical activity of catalytic elements of hetero-metallic nanostructures

    Antosiewicz, Tomasz J.; Apell, S. Peter; Wadell, Carl; Langhammer, Christoph

    2015-05-01

    Interaction of light with metals in the form of surface plasmons is used in a wide range of applications in which the scattering decay channel is important. The absorption channel is usually thought of as unwanted and detrimental to the efficiency of the device. This is true in many applications, however, recent studies have shown that maximization of the decay channel of surface plasmons has potentially significant uses. One of these is the creation of electron-hole pairs or hot electrons which can be used for e.g. catalysis. Here, we study the optical properties of hetero-metallic nanostructures that enhance light interaction with the catalytic elements of the nanostructures. A hybridized LSPR that matches the spectral characteristic of the light source is excited. This LSPR through coupling between the plasmonic elements maximizes light absorption in the catalytic part of the nanostructure. Numerically calculated visible light absorption in the catalytic nanoparticles is enhanced 12-fold for large catalytic disks and by more 30 for small nanoparticles on the order of 5 nm. In experiments we measure a sizable increase in the absorption cross section when small palladium nanoparticles are coupled to a large silver resonator. These observations suggest that heterometallic nanostructures can enhance catalytic reaction rates.

  8. 3-Nitropropionic Acid is a Suicide Inhibitor of Mitochondrial Respiration that, Upon Oxidation by Complex II, Forms a Covalent Adduct With a Catalytic Base Arginine in the Active Site of the Enzyme

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 (angstrom) resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation

  9. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  10. The effect of catalyst preparation on catalytic activity

    Schwarz, J.A.

    1992-01-01

    Three intrinsically connected phenomena occur during adsorption/impregnation of aqueous electrolytes onto oxide carriers. They are: pH-dependent development of surface carriers on the oxide; pH-dependent aqueous speciation of catalytic precursors; surface adsorption by complexation and coordination. Modeling of these processes yields basic thermodynamic properties of the adsorbed phase, which could provide useful information of the catalytic properties of the metal, support, and reveal metal-support interactions, thus contributing to design criteria for supported-metal catalysts. The spectrum of catalytic systems that can be studied using the above approach is greatly extended when both pure and composite oxide carriers are considered. This presentation will focus on three metal/support systems, each of which provides results of both practical and fundamental importance.

  11. Activities of human RRP6 and structure of the human RRP6 catalytic domain

    Januszyk, Kurt; Liu, Quansheng; Lima, Christopher D. (SKI)

    2011-08-29

    The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, Rrp6 may play a more prominent role in processing, as it has been demonstrated to be inhibited by stable RNA secondary structure in vitro and because the null allele in budding yeast leads to the buildup of specific structured RNA substrates. Human RRP6, otherwise known as PM/SCL-100 or EXOSC10, shares sequence similarity to budding yeast Rrp6 and is proposed to catalyze 3'-to-5' exoribonuclease activity on a variety of nuclear transcripts including ribosomal RNA subunits, RNA that has been poly-adenylated by TRAMP, as well as other nuclear RNA transcripts destined for processing and/or destruction. To characterize human RRP6, we expressed the full-length enzyme as well as truncation mutants that retain catalytic activity, compared their activities to analogous constructs for Saccharomyces cerevisiae Rrp6, and determined the X-ray structure of a human construct containing the exoribonuclease and HRDC domains that retains catalytic activity. Structural data show that the human active site is more exposed when compared to the yeast structure, and biochemical data suggest that this feature may play a role in the ability of human RRP6 to productively engage and degrade structured RNA substrates more effectively than the analogous budding yeast enzyme.

  12. DEVELOPMENT OF HIGH ACTIVITY, CATALYTIC SYSTEMS FOR NOx REDUCTION

    Unknown

    2001-12-01

    This project was directed at an investigation of catalytic NO{sub x} reduction on carbonaceous supports at low temperatures. The experimental work was conducted primarily in a packed bed reactor/gas flow system that was constructed for this work. The analytical techniques employed were mass spectrometry, NO{sub x} chemiluminescence, and gas chromatography. The experimental plan was focused on steady-state reactivity experiments, followed by temperature programmed desorption (TPD) of surface intermediates, and also selected temperature-programmed reaction (TPR) experiments. Both uncatalyzed and catalyzed (potassium-promoted) phenolic resin char, were investigated as well as the catalytic effect of additional CO in the gas phase.

  13. Active sites for NO reduction over Fe-ZSM-5 catalysts.

    Schwidder, M; Santhosh Kumar, M; Brückner, A; Grünert, W

    2005-02-14

    A study of Fe-ZSM-5 catalysts with variable amounts of isolated, oligomeric and heavily aggregated Fe3+ oxo sites (as evidenced by UV-Vis and EPR spectroscopic data) and their catalytic properties in the selective catalytic reduction of NO by isobutane or by NH3 is presented, which allows development of a unified concept of the active Fe sites in these reactions, according to which isolated Fe sites catalyse both SCR reactions while oligomeric sites, though also involved in the selective reduction path, limit the catalyst performance by causing the total oxidation of the reductant. PMID:15685345

  14. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  15. Active Site Engineering in Electrocatalysis

    Verdaguer Casadevall, Arnau; Stephens, Ifan; Chorkendorff, Ib

    The overall goal of this thesis has been to design better catalysts for electrochemical reactions through a fundamental understanding of the materials at atomic scale. This has been achieved by combining electrochemical measurements with a variety of characterization techniques, often in ultra high...... under reaction conditions, which is ultimately controlled by the crystal structure of the underlying alloy.• Oxygen reduction to hydrogen peroxide has been investigated on single site catalysts, mainly alloys of noble metals with Hg. This resulted in a very special structure with isolated atoms of Pt or......, inexistent in other forms of Cu. The presence of strong CO binding sites correlates well with electrochemical activity, which paves the way for the rational development of even better electrocatalysts....

  16. Encapsulating Metal Clusters and Acid Sites within Small Voids: Synthetic Strategies and Catalytic Consequences

    Goel, Sarika

    active sites. We have demonstrated the selectivity of the encapsulation processes by combining transmission electron microscopy and chemisorptive titrations with rigorous catalytic assessments of the ability of these materials to catalyze reactions of small molecules, which can access the intracrystalline voids, but not of larger molecules that cannot access the metal clusters within such voids. The selective confinement of clusters also prevented their contact with sulfur compounds (e.g., thiophene and H2S), thus allowing reactions to occur at conditions that otherwise render unconfined clusters unreactive. We have also developed synthetic protocols and guiding principles, inspired by mechanistic considerations, for the synthesis of zeolites via interzeolite transformations without the use of organic structure-directing agents (OSDA). More specifically, we have synthesized high-silica MFI (ZSM-5), CHA (chabazite), STF (SSZ-35) and MTW (ZSM-12) zeolites from FAU (faujasite) or BEA (beta) parent materials. Structures with lower framework densities (FAU or BEA) were successfully transformed into thermodynamically-favored, more stable structures with higher framework densities (MFI, CHA, STF, and MTW); to date, target materials with higher Si/Al ratios (Si/Al >10) have not been synthesized via interzeolite transformations without the aid of the OSDA species used to discover these zeolite structures and deemed essential up until now for their successful synthesis. Overcoming kinetic hurdles in such transformations required either the presence of common composite building units (CBU) between parent and target structures or, in their absence, the introduction of small amount of seeds of the daughter structures. The NaOH/SiO2 ratio, H2O/SiO2 ratio and Al content in reagents are used to enforce synchronization between the swelling and local restructuring within parent zeolite domains with the spalling of fragments or building units from seeds of the target structure. The

  17. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    Ren, Jian-Ching; Rebrin, Igor [Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033 (United States); Klichko, Vladimir; Orr, William C. [Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275 (United States); Sohal, Rajindar S., E-mail: sohal@usc.edu [Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033 (United States)

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  18. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    Research highlights: → Cytochrome c oxidase loses catalytic activity during the aging process. → Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. → Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H2O2 generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  19. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena;

    2012-01-01

    Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio-supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols. In ...

  20. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  1. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  2. Physicochemical properties and catalytic activity of metal tetraphenyl porphins in the oxidation of alkylaromatic hydrocarbons

    Kobotaeva, N. S.; Skorokhodova, T. S.; Kokova, D. A.

    2013-06-01

    We consider the effect of complexing metal in a tetraphenylporphin molecule on its catalytic activity in oxidizing alkylaromatic hydrocarbons by molecular oxygen. The catalytic activity of metal porphyrins (Co, Cu, Zn, Mn, and In TPP) is found to depend on their oxidation potentials and the distribution of electron density in the molecule. The electron-donating compound imidazole is shown to affect the oxidation rate.

  3. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon

    Graphical abstract: - Highlights: • Ni2P catalyst is tested in dehydrogenation of isobutane for the first time. • The effects of Cs promoter on catalytic performance of Ni2P/AC were investigated. • Cs-Ni2P/AC exhibits high activity and selectivity for isobutane dehydrogenation. - Abstract: In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Ni-C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength

  4. Key Feature of the Catalytic Cycle of TNF-α Converting Enzyme Involves Communication Between Distal Protein Sites and the Enzyme Catalytic Core

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal-protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design

  5. Catalytic activities of a cocaine hydrolase engineered from human butyrylcholinesterase against (+)- and (−)-cocaine

    Xue, Liu; Hou, Shurong; Wenchao YANG; Fang, Lei; Zheng, Fang; Zhan, Chang-Guo

    2012-01-01

    It can be argued that an ideal anti-cocaine medication would be one that accelerates cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. hydrolysis catalyzed by butyrylcholinesterase (BChE) in plasma. However, wild-type BChE has a low catalytic efficiency against naturally occurring (−)cocaine. Interestingly, wild-type BChE has a much higher catalytic activity against unnatural (+)cocaine. According to available ...

  6. Enhancement in the Catalytic Activity of Pd/USY in the Heck Reaction Induced by H2 Bubbling

    Miki Niwa

    2010-12-01

    Full Text Available Pd was loaded on ultra stable Y (USY zeolites prepared by steaming NH4-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H2 bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc2. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H2O gave the highest activity (TOF = 61,000 h−1, which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OHstrong generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  7. Toward efficient nanoporous catalysts: controlling site-isolation and concentration of grafted catalytic sites on nanoporous materials with solvents and colorimetric elucidation of their site-isolation.

    Sharma, Krishna K; Anan, Abhishek; Buckley, Robert P; Ouellette, Wayne; Asefa, Tewodros

    2008-01-01

    We report that the polarity and dielectric constants of solvents used for grafting organosilanes on mesoporous materials strongly affect the concentration of grafted organic groups, the degree of their site-isolation, and the catalytic properties of the resulting materials. Polar and nonpolar organosilanes as well as polar-protic, dipolar-aprotic, and nonpolar solvents were investigated. Polar-protic solvents, which have high dielectric constants, resulted in smaller concentrations ( approximately 1-2 mmol/g) of polar organic groups such as 3-aminopropyl groups, higher surface area materials, site-isolated organic groups, and more efficient catalytic properties toward the Henry reaction of p-hydroxybenzaldehyde with nitromethane. On the other hand, dipolar-aprotic and nonpolar solvents resulted in larger concentrations ( approximately 2-3 mmol/g) of grafted polar functional groups, lower-to-higher surface area materials, more densely populated catalytic groups, and poor-to-efficient catalytic properties toward the Henry reaction. Both the polar-protic and dipolar-aprotic solvents resulted in significantly lower concentration of grafted groups for nonpolar organosilanes such as (3-mercaptopropyl)trimethoxysilane compared to corresponding grafting of the polar amino-organosilanes. The relationship between the solvent properties and the percentage and degree of site-isolation of the grafted functional groups was attributed to differences in solvation of the organosilanes and silanols in various solvents and possible hydrogen-bonding between the organsilanes and the solvents. The degree of site-isolation of the amine groups, which affect the material's catalytic properties, was elucidated by a new colorimetric method involving probing of the absorption maxima (lambdamax) on the d-d electronic spectrum of Cu2+ complexes with the amine-functionalized materials and the colors of the samples. The absorption lambdamax and the colors of the materials were found to be

  8. Directed evolution of Tau class glutathione transferases reveals a site that regulates catalytic efficiency and masks co-operativity.

    Axarli, Irine; Muleta, Abdi W; Vlachakis, Dimitrios; Kossida, Sophia; Kotzia, Georgia; Maltezos, Anastasios; Dhavala, Prathusha; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2016-03-01

    A library of Tau class GSTs (glutathione transferases) was constructed by DNA shuffling using the DNA encoding the Glycine max GSTs GmGSTU2-2, GmGSTU4-4 and GmGSTU10-10. The parental GSTs are >88% identical at the sequence level; however, their specificity varies towards different substrates. The DNA library contained chimaeric structures of alternated segments of the parental sequences and point mutations. Chimaeric GST sequences were expressed in Escherichia coli and their enzymatic activities towards CDNB (1-chloro-2,4-dinitrobenzene) and the herbicide fluorodifen (4-nitrophenyl α,α,α-trifluoro-2-nitro-p-tolyl ether) were determined. A chimaeric clone (Sh14) with enhanced CDNB- and fluorodifen-detoxifying activities, and unusual co-operative kinetics towards CDNB and fluorodifen, but not towards GSH, was identified. The structure of Sh14 was determined at 1.75 Å (1 Å=0.1 nm) resolution in complex with S-(p-nitrobenzyl)-glutathione. Analysis of the Sh14 structure showed that a W114C point mutation is responsible for the altered kinetic properties. This was confirmed by the kinetic properties of the Sh14 C114W mutant. It is suggested that the replacement of the bulky tryptophan residue by a smaller amino acid (cysteine) results in conformational changes of the active-site cavity, leading to enhanced catalytic activity of Sh14. Moreover, the structural changes allow the strengthening of the two salt bridges between Glu(66) and Lys(104) at the dimer interface that triggers an allosteric effect and the communication between the hydrophobic sites. PMID:26637269

  9. Identification of electrostatic interaction sites between the regulatory and catalytic subunits of cyclic AMP-dependent protein kinase.

    Gibson, R M; Ji-Buechler, Y; Taylor, S S

    1997-09-01

    Two classes of molecules inhibit the catalytic subunit (C) of the cyclic AMP-dependent protein kinase (cAPK), the heat-stable protein kinase inhibitors (PKIs) and the regulatory (R) subunits. Basic sites on C, previously identified as important for R/C interaction in yeast TPK1 and corresponding to Lys213, Lys217, and Lys189 in murine C alpha, were replaced with either Ala or Thr and characterized for their kinetic properties and ability to interact with RI and PKI. rC(K213A) and rC(K217A) were both defective in forming holoenzyme with RI but were inhibited readily with PKI. This contrasts with rC(R133A), which is defective in binding PKI but not RI (Wen & Taylor, 1994). Thus, the C-subunit employs two distinct electrostatic surfaces to achieve high-affinity binding with these two types of inhibitory molecules even though all inhibitors share a common consensus site that occupies the active site cleft. Unlike TPK1, mutation of Lys189 had no effect. The mutant C subunits that were defective in binding RI, rC(K213A) and rC(K217A), were then paired with three RI mutants, rRI(D140A), rRI(E143A), and rRI(D258A), shown previously to be defective in recognition of C. Although the mutations at Asp140 and Asp258 in RI were additive with respect to the C mutations. rC(K213A) and rRI(E143A) were compensatory, thus identifying a specific electrostatic interaction site between RI and C. The results are discussed in terms of the RI and C crystal structures and the sequence homology between the yeast and mammalian enzymes. PMID:9300482

  10. Role of active sites in the reaction of methanol to olefin over modified ZSM-5 zeolite

    ZSM-5 zeolites were modified with metals Mg, K, Ca, Ba and La by an incipient impregnation and characterized by X-ray diffraction, N/sub 2/ adsorption and temperature - programmed desorption of NH/sub 3/ and CO/sub 2/. The obtained samples were investigated for their selectivity and catalytic stability in the methanol-to-olefin (MTO) reaction. The catalytic performance was influenced by the properties of active sites on the catalyst, which was indicated by the changes of the light olefin selectivity and catalytic stability in the methanol conversion. Correlating the reaction evaluation with the catalyst characterization, it can be seen that the catalyst with too strong basic sites shows an inferior catalytic performance. In addition, steam treatment further increased the catalytic performance, especially for Ca modified ZSM-5. It may be concluded that basic sites must suitably match with acidic sites for a special ZSM-5 in the methanol conversion and the formed active sites were relative with the modification metal based on the obtained results. (author)

  11. Photothermally enhanced catalytic activity of partially aggregated gold nanoparticles

    Kim, Jun-Hyun, E-mail: jkim5@ilstu.edu; Lavin, Brian W.; Boote, Brett W.; Pham, Julie A. [Illinois State University, Department of Chemistry (United States)

    2012-07-15

    This report describes the catalytic reduction of 4-nitrophenol (4-NP) using gold nanoparticles (GNPs) in aqueous solution upon exposure to a solar-simulated light. As monodispersed GNPs possess a strong but narrow absorption band in the visible areas, anisotropic/partially aggregated GNPs are designed to have a strong and wide absorption band across visible to near-infrared wavelengths of light. Given their strong and broad absorption properties, these partially aggregated GNPs exhibited slightly superior photothermally induced heating of the reaction medium (i.e., water) when compared to the monodispersed GNPs upon exposure to a solar-simulated light. Subsequently, the catalytic reduction of 4-NP to 4-aminophenol was examined in the presence of various GNPs with and without the irradiation of light. While the monodispersed GNPs exhibited a moderate increase in the reaction rates of 4-NP with the light irradiation, the partially aggregated GNPs afforded the notable enhancement of the reaction rate, presumably due to their higher photon-to-heat conversion efficiency.

  12. Photothermally enhanced catalytic activity of partially aggregated gold nanoparticles

    This report describes the catalytic reduction of 4-nitrophenol (4-NP) using gold nanoparticles (GNPs) in aqueous solution upon exposure to a solar-simulated light. As monodispersed GNPs possess a strong but narrow absorption band in the visible areas, anisotropic/partially aggregated GNPs are designed to have a strong and wide absorption band across visible to near-infrared wavelengths of light. Given their strong and broad absorption properties, these partially aggregated GNPs exhibited slightly superior photothermally induced heating of the reaction medium (i.e., water) when compared to the monodispersed GNPs upon exposure to a solar-simulated light. Subsequently, the catalytic reduction of 4-NP to 4-aminophenol was examined in the presence of various GNPs with and without the irradiation of light. While the monodispersed GNPs exhibited a moderate increase in the reaction rates of 4-NP with the light irradiation, the partially aggregated GNPs afforded the notable enhancement of the reaction rate, presumably due to their higher photon-to-heat conversion efficiency.

  13. Structural models of vanadate-dependent haloperoxidases, their reactivity, immobilization on polymer support and catalytic activities

    Mannar R Maurya

    2011-03-01

    The design of structural and functional models of enzymes vanadate-dependent haloperoxidases (VHPO) and the isolation and/or generation of species having {VO(H2O)}, {VO2}, {VO(OH)} and {VO(O2)} cores, proposed as intermediate(s) during catalytic action, in solution have been studied. Catalytic potential of these complexes have been tested for oxo-transfer as well as oxidative bromination and sulfide oxidation reactions. Some of the oxidovanadium(IV) and dioxidovanadium(V) complexes have been immobilized on polymer support in order to improve their recycle ability during catalytic activities and turn over number. The formulations of the polymer-anchored complexes are based on the respective neat complexes and conclusions drawn from the various characterization studies. These catalysts have successfully been used for all catalytic reactions mentioned above. These catalysts are stable and recyclable.

  14. Distribution of active centers by catalytic activity in diene polymerization with lanthanide systems

    In the ion coordination polymerization of dienes catalyzed by lanthanides systems NdCl3 · TBP-triisobutylaluminium, the kinetic-activity distribution of active sites were determined using the molecular mass distribution curves obtained by the Tikhonov regularization method. The polymodal pattern of distributions suggests the presence of several types of active centers, which change their kinetic activity during polymerization

  15. POISONING OF ACTIVE SITES ON ZIEGLER-NATTA CATALYST FOR PROPYLENE POLYMERIZATION

    Kitti Tangjituabun; Sang Yull Kim; Yuichi Hiraoka; Toshiaki Taniike; Minoru Terano; Bunjerd Jongsomjit; Piyasan Praserthdam

    2008-01-01

    The effects of poisoning materials on catalytic activity and isospecificity of the supported Ziegler-Natta catalyst were investigated.A minor amount of simple structure of Lewis base,i.e.,methanol,acetone,ethyl acetate,was introduced into the catalyst slurry for partial poisoning catalytic active centers.It was found that the variations in deactivation power were in the order of methanol>acetone>ethyl acetate.The kinetic investigation via stopped-flow polymerization showed that poisoning compounds caused a decrease in activity through the reduction of the number of active sites whereas no effect on the degree of isotacticity was observed.

  16. Catalytic activity of cerium-doped Ru/Al2O3 during ozonation of dimethyl phthalate

    Yunrui ZHOU; Wanpeng ZHU; Xun CHEN

    2008-01-01

    In this paper, factors influencing the mineraliza-tion of dimethyl phthalate (DMP) during catalytic ozona-tion with a cerium-doped Ru/Al2O3 catalyst were studied. The catalytic contribution was calculated through the results of a companrison experiment. It showed that doping cerium significantly enhanced catalytic activity. The total organic carbon (TOC) removal over the doped catalyst at 100 rain reached 75.1%, 61.3% using Ru/Al2O3 catalyst and only 14.0% using ozone alone. Catalytic activity reached the maximum when 0.2% of ruthenium and 1.0% of cerium'were simultaneously loaded onto Al2O3 support. Results of experiments on oxidation by ozone alone, adsorption of the catalyst, Ce ion's and heterogeneous catalytic ozonation confirmed that the contribution of het-erogeneous catalytic ozonation was about 50%, which showed the obvious effect of Ru-Ce/Al2O3 on catalytic activity.

  17. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale

    Shan, Shiyao; Petkov, Valeri; Prasai, Binay; Wu, Jinfang; Joseph, Pharrah; Skeete, Zakiya; Kim, Eunjoo; Mott, Derrick; Malis, Oana; Luo, Jin; Zhong, Chuan-Jian

    2015-11-01

    The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo phase

  18. Use of Solvatochromism to Assay Preferential Solvation of a Prototypic Catalytic Site

    Schwenzer, Birgit; Cosimbescu, Lelia; Glezakou, Vassiliki Alexandra; Karkamkar, Abhijeet J.; Wang, Zheming; Weber, Robert S.

    2015-04-01

    The composition of the reaction medium near photoactive catalytic sites can be inferred from the solvatochromism of the absorption and emission spectra of the wetted sites, which depend on the polarizability of the fluid. In brief, solvatochromism measures the interaction of the dipole moments of the ground and excited states with the electric field imposed by the solvent shell: a field, which does not relax on the time scale of the absorption or emission events. As a first step in establishing the utility of the technique for inorganic catalysts that operate in complex reaction media, such as encountered in the upgrading of biogenic fuels, we have measured the solvatochromism of a common, structural feature of metal oxide catalysts. In toluene, cyclohexene, chloroform and tetrahydrofuran, POSS-ligated oxometalates exhibit strong ligand-to-metal charge-transfer bands in their UV-visible absorption and emission spectra. The magnitudes of the solvatochromic effects agreed well with the calculated changes in dipole moments that accompany the electronic transitions. From the solvatochromism of the chromophores dissolved in toluene-chloroform mixtures we inferred an unexpectedly strong, preferential solvation of the chromophore even when all three components (oxometalate and the two solvents) were highly miscible. This research was supported in part by the Laboratory Directed Research & Development program at Pacific Northwest National Laboratory. PNNL is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830. A portion of the research was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL.

  19. Greatly Enhancing Catalytic Activity of Graphene by Doping the Underlying Metal Substrate.

    Guo, Na; Xi, Yongjie; Liu, Shuanglong; Zhang, Chun

    2015-01-01

    Graphene-based solid-state catalysis represents a new direction in applications of graphene and has attracted a lot of interests recently. However, the difficulty in fine control and large-scale production of previously proposed graphene catalysts greatly limits their industrial applications. Here we present a novel way to enhance the catalytic activity of graphene, which is highly efficient yet easy to fabricate and control. By first-principles calculations, we show that when the underlying metal substrate is doped with impurities, the catalytic activity of the supported graphene can be drastically enhanced. Graphene supported on a Fe/Ni(111) surface is chosen as a model catalyst, and the chemical reaction of CO oxidation is used to probe the catalytic activity of graphene. When the underlying Fe/Ni(111) substrate is impurity free, the graphene is catalytically inactive. When a Zn atom is doped into the substrate, the catalytic activity of the supported graphene is greatly enhanced, and the reaction barrier of the catalyzed CO oxidation is reduced to less than 0.5 eV. Intriguing reaction mechanism of catalyzed CO oxidation is revealed. These studies suggest a new class of graphene-based catalysts and pave the way for future applications of graphene in solid-state catalysis. PMID:26156332

  20. Effects of Particle Size on the Gas Sensitivity and Catalytic Activity of In2O3

    Zhang, Xiaoshui; Gu, Ruiqin; Zhao, Jinling; Jin, Guixin; Zhao, Mengke; Xue, Yongliang

    2015-10-01

    Nanosized In2O3 powders with different particle sizes were prepared by the microemulsion synthetic method. The effects of particle size on the gas-sensing and catalytic properties of the as-prepared In2O3 were investigated. Reductions in particle size to nanometer levels improved the sensitivity and catalytic activity of In2O3 to i-C4H10 and C2H5OH. The sensitivity of nanosized In2O3 (<42 nm) sensors to i-C4H10, H2 and C2H5OH was 2-4 times higher than that of chemically precipitated In2O3 (130 nm) sensor. A nearly linear relationship was observed between the catalytic activity and specific surface area of In2O3 for the oxidation of i-C4H10 and C2H5OH at 275 °C. The relationship between gas sensitivity and catalytic activity was further discussed. The results of this work reveal that catalytic activity plays a key role in enhancing the sensitivity of gas-sensing materials.

  1. In situ spectroscopy of catalytically active surfaces: FTIR and EXAFS studies of CO oxidation on Pd and Au nanoparticles

    This thesis was aiming at a comprehensive investigation of the reaction mechanism of CO oxidation, applying in situ Fourier Transform Infrared (FTIR) Spectroscopy and X- Ray Absorption Spectroscopy (XAS) under reaction conditions to different industrial-grade noble metal catalysts. For alumina supported palladium nanoparticles (∼2 and 5 nm) variable oxidative pre-treatments were utilized to identify and characterize palladium (sub)oxide species in different oxidation states. In situ EXAFS and in situ FTIR spectroscopy clearly demonstrated that such substoichiometric palladiumoxides PdOx (x<1) were also present during the CO oxidation reaction. Although they may contribute to activity, the highest catalytic activity was assigned to metallic palladium. The relatively high activity of the substoichiometric palladiumoxides (as compared to fully oxidized palladium(II)oxide) was attributed to their reducibility under technically relevant conditions by CO. The study of CO oxidation on Pd/Al2O3 indicated a coexistence of metallic Pd and PdOx under reaction conditions, with metallic palladium being essential for the activation of CO and molecular O2. Under specific reaction conditions this resulted in oscillatory behavior. The mechanism of CO oxidation on titania supported gold nanoparticles (∼4 nm) was also investigated. In situ FTIR spectroscopy identified metallic gold as CO adsorption site, whereas the oxygen adsorption site was located on the titania support. Adsorption experiments with isotopically labelled 13C18O demonstrated the involvement of hydroxyl groups of the titania support in the catalytic reaction. This explained the increase in catalytic activity upon addition of small amounts of water: water dissociates on titania producing an increased number of terminal OH groups on the catalyst surface. The results suggest a 'phase boundary-mechanism' of CO oxidation on Au/TiO2, with the reaction taking place at the oxide/metal interface. (author)

  2. Investigation of the Cu-Zr-Y oxides activity in the carbon black catalytic oxidation by differential thermal analysis and temperature programmed reduction

    Different copper/zirconium-yttrium catalysts have been tested in carbon black oxidation reaction. Supported mainly on differential thermal analysis and temperature programmed reduction, two different mechanisms have been proposed to explain the catalytic results. In the absence of copper, it has been shown that Zr3+ ions and associated anionic vacancies are responsible to the catalytic enhancement observed in the mixed oxides, oxygen species being activated on these sites. Among mixed zirconia-yttria solids, ZrO2-5 mol%Y2O3 is the most active catalyst. Copper impregnation on these oxides leads to the formation of different copper species. Small particles of CuO in low interaction with the support, induce a catalytic improvement due to the highest reducibility of these species. Moreover, in order to be more efficient, CuO species should have some interactions with the support, since impregnated samples are more active than the simple mechanical mixtures

  3. Active sites in char gasification: Final technical report

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  4. Surface chemistry and catalytic activity of Ni/Al2O3 irradiated with high-energy electron beam

    The radiation effects induced effects by electron beam (EB) treatment on the catalytic activity of Ni/γ-Al2O3 were studied for the carbon dioxide reforming of methane with different EB energy and absorbed radiation dose. Transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to determine the change in structure and surface states of Ni/γ-Al2O3 catalyst before and after the EB treatment. Higher energy EB treatment is useful for increasing the proportion of the active sites (such as Ni0 and NiAl2O4-phase) on the surface. The increase of Ni/Al-ratio indicates that the Ni dispersion on the surface increased with the EB-treatment, resulting in an increase of the active sites, which leads to improving the catalytic activity. XPS measurement also showed a decrease of the surface carbon with EB dose. The maximum 20% increase in the conversion of CO2/CH4-mixture into CO/H2 gas was observed for the catalyst treated with 2 MeV energy and 600 kGy dose of EB relative to untreated

  5. Iridium ultrasmall nanoparticles, worm-like chain nanowires, and porous nanodendrites: One-pot solvothermal synthesis and catalytic CO oxidation activity

    Zhang, Tao; Li, Shuai-Chen; Zhu, Wei; Ke, Jun; Yu, Jing-Wen; Zhang, Zhi-Ping; Dai, Lin-Xiu; Gu, Jun; Zhang, Ya-Wen

    2016-06-01

    We report a facile one-pot solvothermal synthesis of monodisperse iridium (Ir) ultrasmall (1.5-2.5 nm in diameter) nanoparticles (NPs), worm-like chain nanowires (NWs), and porous nanodendrites (NDs), for which CO oxidation reaction has been employed as a probe reaction to investigate the effects of nanoparticle size and surface-capping organics on the catalytic activities. Time-dependent experiments revealed that an oriented attachment mechanism induced by the strong adsorption of halide anions (Br- and I-) on specific facet of Ir nanoclusters or by decreasing the reduction rate of Ir precursors with changing their concentrations during the synthesis was responsible for the formation of Ir NWs and NDs. Annealing tests indicated that an O2-H2 atmosphere treatment turned out to be an effective measure to clean up the surface-capping organics of Ir NPs supported on commercial SiO2. Catalytic CO oxidation reaction illustrated that a significant improvement in the catalytic activity of CO oxidation reaction was achieved together with the changing of activation energies after such atmosphere treatment for the supported catalysts of the ultrasmall Ir NPs. It is noteworthy that this enhancement in catalytic activity could be ascribed to the changes in the surface status (including populations of Ir species in metallic and oxidized states, removal of surface capping organics, the variety of active sites, and total effective active site number) for the supported nanocatalysts during the atmosphere treatment.

  6. Coordination environment of the active-site metal ion of liver alcohol dehydrogenase.

    Makinen, M W; Yim, M B

    1981-01-01

    The coordination environment of the catalytically active metal ion of horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) has been investigated by electron paramagnetic resonance (EPR) methods with use of the active-site-specific Co2+-reconstituted enzyme. The EPR absorption spectrum of the metal-substituted enzyme is characteristic of a rhombically distorted environment. The spectrum of the enzyme--NAD+ complex shows approximate axial symmetry of the metal ion site, i...

  7. Adenylate kinase from Streptococcus pneumoniae is essential for growth through its catalytic activity

    Trung Thanh Thach

    2014-01-01

    Full Text Available Streptococcus pneumoniae (pneumococcus infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S. pneumoniae (SpAdK serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A. Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo.

  8. Iridium-decorated multiwall carbon nanotubes and its catalytic activity with Shell 405 in hydrazine decomposition

    Prasad, V.; Vasanthkumar, M. S., E-mail: vasanth.physics@gmail.com [Indian Institute of Science, Department of Physics (India)

    2015-10-15

    Iridium-functionalized multiwalled carbon nanotubes (Ir-MWNT) are the future catalyst support material for hydrazine fuel decomposition. The present work demonstrates decoration of iridium particle on iron-encapsulated multiwalled carbon nanotubes (MWNT) by wet impregnation method in the absence of any stabilizer. Electron microscopy studies reveal the coated iridium particle size in the range of 5–10 nm. Elemental analysis by energy dispersive X-ray diffraction confirms 21 wt% of Ir coated over MWNT. X-ray photoelectron spectroscopy (XPS) shows 4f{sub 5/2} and 4f{sub 7/2} lines of iridium and confirms the metallic nature. The catalytic activity of Ir-MWNT/Shell 405 combination is performed in 1 N hydrazine micro-thrusters. The thruster performance shows increase in chamber pressure and decrease in chamber temperature when compared to Shell 405 alone. This enhanced performance is due to high thermal conducting nature of MWNTs and the presence of Ir active sites over MWNTs.

  9. Iridium-decorated multiwall carbon nanotubes and its catalytic activity with Shell 405 in hydrazine decomposition

    Iridium-functionalized multiwalled carbon nanotubes (Ir-MWNT) are the future catalyst support material for hydrazine fuel decomposition. The present work demonstrates decoration of iridium particle on iron-encapsulated multiwalled carbon nanotubes (MWNT) by wet impregnation method in the absence of any stabilizer. Electron microscopy studies reveal the coated iridium particle size in the range of 5–10 nm. Elemental analysis by energy dispersive X-ray diffraction confirms 21 wt% of Ir coated over MWNT. X-ray photoelectron spectroscopy (XPS) shows 4f5/2 and 4f7/2 lines of iridium and confirms the metallic nature. The catalytic activity of Ir-MWNT/Shell 405 combination is performed in 1 N hydrazine micro-thrusters. The thruster performance shows increase in chamber pressure and decrease in chamber temperature when compared to Shell 405 alone. This enhanced performance is due to high thermal conducting nature of MWNTs and the presence of Ir active sites over MWNTs

  10. Influence of Al content on textural properties and catalytic activity of hierarchical porous aluminosilicate materials

    Ling Xu; Limei Duan; Zongrui Liu; Jingqi Guan; Qiubin Kan

    2013-12-01

    A series of hierarchical porous aluminosilicate materials were prepared using hydrothermal treatment of the composite formed by polystyrene colloidal spheres and aluminosilicate gel. Influence of Al content on the textural properties, acidic properties and catalytic activity of the hierarchical porous aluminosilicate materials was studied. The results showed that textural and acidic properties of the hierarchical porous aluminosilicate materials were strongly related to Al content. As Al content is increased (Si/Al = 25), the hierarchical porous catalysts exhibited higher catalytic activity and major product selectivity for alkylation of phenol with tert-butanol than the catalysts with a lower Al content (Si/Al = 50).

  11. Hematite concave nanocubes and their superior catalytic activity for low temperature CO oxidation

    Liang, Hanfeng; Jiang, Xinde; Qi, Zhengbing; Chen, Wei; Wu, Zhengtao; Xu, Binbin; Wang, Zhoucheng; Mi, Jinxiao; Li, Qingbiao

    2014-06-01

    Hematite (α-Fe2O3) concave nanocubes bound by high-index {134&cmb.macr;4} and {123&cmb.macr;8} facets were synthesized and their catalytic activity for CO oxidation were also investigated.Hematite (α-Fe2O3) concave nanocubes bound by high-index {134&cmb.macr;4} and {123&cmb.macr;8} facets were synthesized and their catalytic activity for CO oxidation were also investigated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00552j

  12. A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity

    Cifuentes, Daniel; Xue, Huiling; Taylor, David W.; Patnode, Heather; Mishima, Yuichiro; Cheloufi, Sihem; Ma, Enbo; Mane, Shrikant; Hannon, Gregory J.; Lawson, Nathan D.; Wolfe, Scot A.; Giraldez, Antonio J.

    2010-01-01

    Dicer is a central enzyme in microRNA (miRNA) processing. We identified a Dicer-independent miRNA biogenesis pathway that uses Argonaute2 (Ago2) slicer catalytic activity. In contrast to other miRNAs, miR-451 levels were refractory to dicer loss of function but were reduced in MZago2 (maternal-zygotic) mutants. We found that pre-miR-451 processing requires Ago2 catalytic activity in vivo. MZago2 mutants showed delayed erythropoiesis that could be rescued by wild-type Ago2 or miR-451-duplex bu...

  13. A Model of Irregular Impurity at the Surface of Nanoparticle and Catalytic Activity

    I.V.Blinova; V.V.Gusarov; I.Yu.Popov

    2012-01-01

    A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.

  14. Functional properties of the two redox-active sites in yeast protein disulphide isomerase in vitro and in vivo

    Westphal, V; Darby, N J; Winther, Jakob R.

    1999-01-01

    Protein folding catalysed by protein disulphide isomerase (PDI) has been studied both in vivo and in vitro using different assays. PDI contains a CGHC active site in each of its two catalytic domains (a and a'). The relative importance of each active site in PDI from Saccharomyces cerevisiae (y...

  15. Catalytic decomposition of low level ozone with gold nanoparticles supported on activated carbon

    Pengyi ZHANG; Bo ZHANG; Rui SHI

    2009-01-01

    Highly dispersed gold nanoparticles were supported on coal-based activated carbon (AC) by a sol immobilization method and were used to investigate their catalytic activity for low-level ozone decomposition at ambient temperature. Nitrogen adsorption-desorption,scanning electron microscope (SEM), and X-ray photo-electron spectroscopy (XPS) were used to characterize the catalysts before and after ozone decomposition. The results showed that the supported gold nanoparticles prepared with microwave heating were much smaller and more uniformly dispersed on the activated carbon than those prepared with traditional conduction heating, exhibiting higher catalytic activity for ozone decomposition. The pH values of gold precursor solution significantly influenced the catalytic activity of supported gold for ozone decomposition, and the best pH value was 8. In the case of space velocity of 120000 h-1, inlet ozone concentration of 50mg/m3, and relative humidity of 45%, the Au/AC catalyst maintained the ozone removal ratio at 90.7% after 2500 min. After being used for ozone decomposition, the surface carbon of the catalyst was partly oxidized and the oxygen content increased accordingly, while its specific surface area and pore volume only decreased a little.Ozone was mainly catalytically decomposed by the gold nanoparticles supported on the activated carbon.

  16. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol

    This paper presents an original approach to the removal of phenol in synthetic wastewater by catalytic wet peroxide oxidation with copper binding activated carbon (CuAC) catalysts. The characteristics and oxidation performance of CuAC in the wet hydrogen peroxide catalytic oxidation of phenol were studied in a batch reactor at 80 deg. C. Complete conversion of the oxidant, hydrogen peroxide, was observed with CuAC catalyst in 20 min oxidation, and a highly efficient phenol removal and chemical oxygen demand (COD) abatement were achieved in the first 30 min. The good oxidation performance of CuAC catalyst was contributed to the activity enhancement of copper oxide, which was binding in the carbon matrix. It can be concluded that the efficiency of oxidation dominated by the residual H2O2 in this study. An over 90% COD removal was achieved by using the multiple-step addition in this catalytic oxidation.

  17. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  18. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.

    Alvarez-Merino, M A; Ribeiro, M F; Silva, J M; Carrasco-Marín, F; Maldonado-Hódar, F J

    2004-09-01

    We have used activated carbon (AC) prepared from almond shells as a support for tungsten oxide to develop a series of WOx/AC catalysts for the catalytic combustion of toluene. We conducted the reaction between 300 and 350 degrees C, using a flow of 500 ppm of toluene in air and space velocity (GHSV) in the range 4000-7000 h(-1). Results show that AC used as a support is an appropriate material for removing toluene from dilute streams. By decreasing the GHSV and increasing the reaction temperature AC becomes a specific catalyst for the total toluene oxidation (SCO2 = 100%), but in less favorable conditions CO appears as reaction product and toluene-derivative compounds are retained inside the pores. WOx/AC catalysts are more selective to CO2 than AC due to the strong acidity of this oxide; this behavior improves with increased metal loading and reaction temperature and contact time. The catalytic performance depends on the nonstoichiometric tungsten oxide obtained during the pretreatment. In comparison with other supports the WOx/AC catalysts present, at low reaction temperatures, higher activity and selectivity than WO, supported on SiO2, TiO2, Al2O3, or Y zeolite. This is due to the hydrophobic character of the AC surface which prevents the adsorption of water produced from toluene combustion thus avoiding the deactivation of the active centers. However, the use of WOx/AC system is always restricted by its gasification temperature (around 400 degrees C), which limits the ability to increase the conversion values by increasing reaction temperatures. PMID:15461177

  19. Sulphate-activated phosphorylase b: the pH-dependence of catalytic activity.

    Zographos, S E; Oikonomakos, N G; Dixon, H B; Griffin, W G; Johnson, L N; Leonidas, D D

    1995-09-01

    The pH-dependence of sulphate-activated phosphorylase b has been studied in the direction of glycogen synthesis. The bell-shaped curve of the pH-dependence of the catalytic constant for the AMP-activated enzyme showed pK values of 6.1 and 7.3, but the curve for the enzyme activated by 0.9 M ammonium sulphate showed a drop of activity on the acid side at much higher pH values. Its bell was centred at pH 7.8 but it was too narrow to be characterized by only two pK values. The narrowness of the curve could be explained by positive co-operativity, but not its unusually steep acid side. We suggest that the fall on the acid side is due to more than one hydronation (addition of H+). The points can be fitted by a curve with two de-activating hydronations and a de-activating dehydronation having identical titration pK values of 7.5, and hence molecular values of 7.0, 7.5 and 8.0. If both 0.9 M ammonium sulphate and 5 mM AMP are added, the bell is as broad as with AMP alone, but is somewhat raised in pH optimum. The results are discussed in the light of new structural data from crystallographic studies on binary complexes of the enzyme. PMID:7654195

  20. Ligninolytic Peroxidase-Like Activity of a Synthetic Metalloporphine Immobilized onto Mercapto-Grafted Crosslinked PVA Inspired by the Active Site of Cytochrome P450

    Paolo ZUCCA; Antonio RESCIGNO; Enrico SANJUST

    2011-01-01

    A synthetic metalloporphine was immobilized onto a PVA-based and mercapto-grafted solid support,emulating the active site of cytochrome P450.Its ligninolytic peroxidase-like catalytic activity was studied.The coordinated mercapto ligand significantly affected the catalytic features of the catalyst because the oxidation of lignin-model compounds was very slow by comparison with imidazole- and pyridine-coordinated immobilized metalloporphines.Conversely,the catalyst efficiently bleached several industrial dyes and thus demonstrated promising activity for this application.Based on this altered substrate specificity the oxygen-donor catalytic route seems to be more favorable than a single electron oxidation pathway.

  1. Crystal Structure of Liganded Rat Peroxisomal Multifunctional Enzyme Type 1: A FLEXIBLE MOLECULE WITH TWO INTERCONNECTED ACTIVE SITES*

    Kasaragod, Prasad; Venkatesan, Rajaram; Kiema, Tiila R.; Hiltunen, J. Kalervo; Wierenga, Rik K.

    2010-01-01

    The crystal structure of the full-length rat peroxisomal multifunctional enzyme, type 1 (rpMFE1), has been determined at 2.8 Å resolution. This enzyme has three catalytic activities and two active sites. The N-terminal part has the crotonase fold, which builds the active site for the Δ3,Δ2-enoyl-CoA isomerase and the Δ2-enoyl-CoA hydratase-1 catalytic activities, and the C-terminal part has the (3S)-hydroxyacyl-CoA dehydrogenase fold and makes the (3S)-hydroxyacyl-CoA dehydrogenase active sit...

  2. Catalytic deactivation of methane steam reforming catalysts. I. Activation

    Agnelli, M.E.; Demicheli, M.C.; Ponzi, E.N.

    1987-08-01

    An alumina-supported catalyst was studied both in its original state and after activation and sintering. Chemical composition and textural properties were determined, and crystalline compounds were identified. Active-phase and support transformations occurring during activation were determined by differential thermoanalysis (DTA), temperature-programmed reduction (TPR), and X-ray diffraction. The catalyst activated by means of various procedures was characterized by measuring crystallite size.

  3. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes.

    Siekmann, Lothar; Bonora, Roberto; Burtis, Carl A; Ceriotti, Ferruccio; Clerc-Renaud, Pascale; Férard, Georges; Ferrero, Carlo A; Forest, Jean-Claude; Franck, Paul F H; Gella, F Javier; Hoelzel, Wieland; Jørgensen, Poul Jørgen; Kanno, Takashi; Kessner, Art; Klauke, Rainer; Kristiansen, Nina; Lessinger, Jean-Marc; Linsinger, Thomas P J; Misaki, Hideo; Mueller, Mathias M; Panteghini, Mauro; Pauwels, Jean; Schiele, Françoise; Schimmel, Heinz G; Vialle, Arlette; Weidemann, Gerhard; Schumann, Gerhard

    2002-06-01

    This paper is the first in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and with the certification of reference preparations. Other parts deal with: Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic fication of Four Reference Materials for the Determination of Enzymatic Activity of y-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C. A document describing the determination of preliminary reference values is also in preparation. PMID:12211661

  4. Effects of Detergents on Catalytic Activity of Human Endometase/Matrilysin-2, a Putative Cancer Biomarker†

    Park, Hyun I.; Lee, Seakwoo; Ullah, Asad; Cao, Qiang; Sang, Qing-Xiang Amy

    2009-01-01

    Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration-dependent exhibiting a bell-shaped curve with its maximum activity near the c...

  5. Studies relevant to the catalytic activation of carbon monoxide

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  6. CATALYTIC ACTIVITIES OF RARE-EARTH CALIXARENE COMPLEXES IN POLYMER SYNTHESES

    Zhi-quan Shen

    2005-01-01

    The studies of our group on the catalytic activities of rare earth calixarene complexes in polymer syntheses are reviewed. Rare earth calixarene complexes are effect catalysts for the polymerizations of butadiene, isoprene, ethylene,styrene, propylene oxide, styrene oxide, trimethylene carbonate and 2,2-dimethyl-trimethylene carbonate.

  7. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  8. Effect of Support on the Catalytic Activity of Fe-Mo Catalysts in Thiophene Hydrodesulphurization

    Kraleva, E. U.; Spojakina, A. A.; Jirátová, Květa; Kociánová, Jana; Petrov, L.

    2003. s. B3.113. [European Catalysis Forum EuropaCat - VI. 31.08.2003-04.09.2003, Innsbruck] Institutional research plan: CEZ:AV0Z4072921 Keywords : catalytic activity * hydrodesulphurization Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  9. Synthesis of concave gold nanocuboids with high-index facets and their enhanced catalytic activity.

    Li, Lidong; Peng, Yi; Yue, Yonghai; Hu, Ye; Liang, Xiu; Yin, Penggang; Guo, Lin

    2015-07-25

    Novel concave gold nanocuboids bounded by 24 high-index {611} facets are synthesized using the seed-mediated growth method via an overgrowth mechanism. The as-synthesized products demonstrated greatly enhanced catalytic activity for the electro-oxidation of glucose and the reduction of 4-nitrothiophenol (4-NTP) under a laser. PMID:26097908

  10. A reconstruction strategy to synthesize mesoporous SAPO molecular sieve single crystals with high MTO catalytic activity.

    Wang, Chan; Yang, Miao; Li, Mingrun; Xu, Shutao; Yang, Yue; Tian, Peng; Liu, Zhongmin

    2016-05-11

    Mesoporous SAPO-34 single crystals with tunable porosity and Si content have been fast synthesized within 4 hours by a reconstruction strategy, which show excellent hydrothermal stability and MTO catalytic activity. This new strategy is further proven to be applicable to prepare other mesoporous SAPO molecular sieve single crystals. PMID:27101359

  11. Investigation of the red mud catalytic activity in carbon monoxide reaction decomposition

    Кириченко, Алексей Геннадьевич; Колесник, Дмитрий Николаевич

    2011-01-01

    The process of iron carburization using СО-contaning gas as a catalyst red mud is investigated. Determined the catalytic activity of red mud in the decomposition reaction of CO. The effect of red mud addition to iron ore materials to improve their recoverability and carburization

  12. Synthesis and catalytic activity of histidine-based NHC ruthenium complexes

    Monney, Angèle; Venkatachalam, Galmari; Albrecht, Martin

    2011-01-01

    Main-chain C,N-protected histidine has been successfully alkylated at both side-chain nitrogens. The corresponding histidinium salt was metallated with ruthenium(II) by a transmetalation procedure, thus providing histidine-derived NHC ruthenium complexes. These bio-inspired comsxsxsplexes show appreciable activity in the catalytic transfer hydrogenation of ketones. peer-reviewed

  13. Influence of Partial Neutralization on Catalytic Activity of Ion Exchange Resin

    Holub, Ladislav; Hanková, Libuše; Jeřábek, Karel

    Praha, 2004. PO8. [International Conference on Polymer s and Organic Chemistry POC'04 /11./. 18.07.2004-23.07.2004, Praha] R&D Projects: GA ČR GA104/02/1104 Institutional research plan: CEZ:AV0Z4072921 Keywords : catalytic activity * exchange resin Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Comparison of three microbial hosts for the expression of an active catalytic scFv.

    Robin, Sylvain; Petrov, Kliment; Dintinger, Thierry; Kujumdzieva, Anna; Tellier, Charles; Dion, Michel

    2003-01-01

    Antibodies represent an interesting protein framework on which catalytic functions can be grafted. In previous studies, we have reported the characterization of the catalytic antibody 4B2 obtained on the basis of the "bait and switch" strategy which catalyzes two different chemical reactions: the allylic isomerization of beta,gamma-unsaturated ketones and the Kemp elimination. We have cloned the antibody 4B2 and expressed it as a single-chain Fv (scFv) fragment in different expression systems, Escherichia coli and two yeasts species, in order to elicit the most suitable system to study its catalytic activity. The scFv4B2 was secreted as an active form in the culture medium of Pichia pastoris and Kluyveromyces lactis, which led respectively to 4 and 1.3mg/l after purification. In E. coli, different strategies were investigated to increase the cytoplasmic soluble fraction, which resulted, in all cases, in the expression of a low amount of functional antibodies. By contrast, substantial amount of scFv4B2 could be purified when it was expressed as inclusion bodies (12mg/l) and submitted to an in vitro refolding process. Its catalytic activity was measured and proved to be comparable to that of the whole IgG. However, the instability of the scFv4B2 in solution prevented from an exhaustive characterization of its activity and stabilization of this protein appears to be essential before designing strategies to improve its catalytic activity. PMID:12531284

  15. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells.

    Mini Balakrishnan

    Full Text Available HIV-1 integrase (IN is the target for two classes of antiretrovirals: i the integrase strand-transfer inhibitors (INSTIs and ii the non-catalytic site integrase inhibitors (NCINIs. NCINIs bind at the IN dimer interface and are thought to interfere primarily with viral DNA (vDNA integration in the target cell by blocking IN-vDNA assembly as well as the IN-LEDGF/p75 interaction. Herein we show that treatment of virus-producing cells, but not of mature virions or target cells, drives NCINI antiviral potency. NCINIs target an essential late-stage event in HIV replication that is insensitive to LEDGF levels in the producer cells. Virus particles produced in the presence of NCINIs displayed normal Gag-Pol processing and endogenous reverse transcriptase activity, but were defective at initiating vDNA synthesis following entry into the target cell. NCINI-resistant virus carrying a T174I mutation in the IN dimer interface was less sensitive to the compound-induced late-stage effects, including the reverse transcription block. Wild-type, but not T174I virus, produced in the presence of NCINIs exhibited striking defects in core morphology and an increased level of IN oligomers that was not observed upon treatment of mature cell-free particles. Collectively, these results reveal that NCINIs act through a novel mechanism that is unrelated to the previously observed inhibition of IN activity or IN-LEDGF interaction, and instead involves the disruption of an IN function during HIV-1 core maturation and assembly.

  16. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells.

    Balakrishnan, Mini; Yant, Stephen R; Tsai, Luong; O'Sullivan, Christopher; Bam, Rujuta A; Tsai, Angela; Niedziela-Majka, Anita; Stray, Kirsten M; Sakowicz, Roman; Cihlar, Tomas

    2013-01-01

    HIV-1 integrase (IN) is the target for two classes of antiretrovirals: i) the integrase strand-transfer inhibitors (INSTIs) and ii) the non-catalytic site integrase inhibitors (NCINIs). NCINIs bind at the IN dimer interface and are thought to interfere primarily with viral DNA (vDNA) integration in the target cell by blocking IN-vDNA assembly as well as the IN-LEDGF/p75 interaction. Herein we show that treatment of virus-producing cells, but not of mature virions or target cells, drives NCINI antiviral potency. NCINIs target an essential late-stage event in HIV replication that is insensitive to LEDGF levels in the producer cells. Virus particles produced in the presence of NCINIs displayed normal Gag-Pol processing and endogenous reverse transcriptase activity, but were defective at initiating vDNA synthesis following entry into the target cell. NCINI-resistant virus carrying a T174I mutation in the IN dimer interface was less sensitive to the compound-induced late-stage effects, including the reverse transcription block. Wild-type, but not T174I virus, produced in the presence of NCINIs exhibited striking defects in core morphology and an increased level of IN oligomers that was not observed upon treatment of mature cell-free particles. Collectively, these results reveal that NCINIs act through a novel mechanism that is unrelated to the previously observed inhibition of IN activity or IN-LEDGF interaction, and instead involves the disruption of an IN function during HIV-1 core maturation and assembly. PMID:24040198

  17. Catalytic sites for 3' and 5' incision of Escherichia coli nucleotide excision repair are both located in UvrC.

    Verhoeven, E E; van Kesteren, M; Moolenaar, G F; Visse, R; Goosen, N

    2000-02-18

    Nucleotide excision repair in Escherichia coli is a multistep process in which DNA damage is removed by incision of the DNA on both sides of the damage, followed by removal of the oligonucleotide containing the lesion. The two incision reactions take place in a complex of damaged DNA with UvrB and UvrC. It has been shown (Lin, J. -J., and Sancar, A. (1992) J. Biol. Chem. 267, 17688-17692) that the catalytic site for incision on the 5' side of the damage is located in the UvrC protein. Here we show that the catalytic site for incision on the 3' side is in this protein as well, because substitution R42A abolishes 3' incision, whereas formation of the UvrBC-DNA complex and the 5' incision reaction are unaffected. Arg(42) is part of a region that is homologous to the catalytic domain of the homing endonuclease I-TevI. We propose that the UvrC protein consists of two functional parts, with the N-terminal half for the 3' incision reaction and the C-terminal half containing all the determinants for the 5' incision reaction. PMID:10671556

  18. Two-dimensional structure Au nanosheets are super active for the catalytic reduction of 4-nitrophenol.

    Zhang, Yan; Cui, Zhimin; Li, Lidong; Guo, Lin; Yang, Shihe

    2015-06-14

    Two-dimensional structure Au nanosheets with a polygon morphology and controlled thicknesses of ∼15 nm, ∼35 nm, and ∼50 nm were successfully synthesized by a one-step solution reduction method. Scanning and transmission electron microscopy (SEM and TEM), selected area electron diffraction (SEAD) analyses, and X-ray diffraction (XRD) were used to thoroughly study the structure and the formation mechanism of the nanosheets. The catalytic activity of the Au nanosheets was investigated for the reduction of 4-nitrophenol (4-NP) by UV-visible absorption spectroscopy. Against all expectation, the Au nanosheets with such a big lateral (more than 1 μm) size exhibited superior catalytic activity on the selective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4. On the other hand, the catalytic activity does closely depend on the thickness of the nanosheets; that is, it decreases with increasing thickness. The reaction can be completed in less than 1 min when catalyzed by Au nanosheets about 15 nm thick. The 100% conversion efficiency was further demonstrated after two catalytic cycles with the thinnest Au nanosheets. PMID:25971868

  19. A computational analysis of the structural determinants of APOBEC3's catalytic activity and vulnerability to HIV-1 Vif

    Shandilya, M.D. Shivender; Bohn, Markus-Frederik; Schiffer, Celia A.

    2016-01-01

    APOBEC3s (A3) are Zn2+ dependent cytidine deaminases with diverse biological functions and implications for cancer and immunity. Four of the seven human A3s restrict HIV by 'hypermutating' the reverse-transcribed viral genomic DNA. HIV Virion Infectivity Factor (Vif) counters this restriction by targeting A3s to proteasomal degradation. However, there is no apparent correlation between catalytic activity, Vif binding, and sequence similarity between A3 domains. Our comparative structural analysis reveals features required for binding Vif and features influencing polynucleotide deaminase activity in A3 proteins. All Vif-binding A3s share a negatively charged surface region that includes residues previously implicated in binding the highly-positively charged Vif. Additionally, catalytically active A3s share a positively charged groove near the Zn2+ coordinating active site, which may accommodate the negatively charged polynucleotide substrate. Our findings suggest surface electrostatics, as well as the spatial extent of substrate accommodating region, are critical determinants of substrate and Vif binding across A3 proteins with implications for anti-retroviral and anti-cancer therapeutic design. PMID:25461536

  20. Role of the NC-loop in catalytic activity and stability in lipase from Fervidobacterium changbaicum.

    Binchun Li

    Full Text Available Flexible NC-loops between the catalytic domain and the cap domain of the α/β hydrolase fold enzymes show remarkable diversity in length, sequence, and configuration. Recent investigations have suggested that the NC-loop might be involved in catalysis and substrate recognition in many enzymes from the α/β hydrolase fold superfamily. To foster a deep understanding of its role in catalysis, stability, and divergent evolution, we here systemically investigated the function of the NC-loop (residues 131-151 in a lipase (FClip1 from thermophilic bacterium Fervidobacterium changbaicum by loop deletion, alanine-scanning mutagenesis and site-directed mutagenesis. We found that the upper part of the NC-loop (residues 131-138 was of great importance to enzyme catalysis. Single substitutions in this region could fine-tune the activity of FClip1 as much as 41-fold, and any deletions from this region rendered the enzyme completely inactive. The lower part of the NC-loop (residues 139-151 was capable of enduring extensive deletions without loss of activity. The shortened mutants in this region were found to show both improved activity and increased stability simultaneously. We therefore speculated that the NC-loop, especially the lower part, would be a perfect target for enzyme engineering to optimize the enzymatic properties, and might present a hot zone for the divergent evolution of α/β hydrolases. Our findings may provide an opportunity for better understanding of the mechanism of divergent evolution in the α/β hydrolase fold superfamily, and may also guide the design of novel biocatalysts for industrial applications.

  1. Biochemical characterization of mutants in the active site residues of the β-galactosidase enzyme of Bacillus circulans ATCC 31382

    Bultema, Jelle B; Bas J.H. Kuipers; Lubbert Dijkhuizen

    2014-01-01

    The Bacillus circulans ATCC 31382 β-galactosidase (BgaD) is a retaining-type glycosidase of glycoside hydrolase family 2 (GH2). Its commercial enzyme preparation, Biolacta N5, is used for commercial-scale production of galacto-oligosaccharides (GOS). The BgaD active site and catalytic amino acid residues have not been studied. Using bioinformatic routines we identified two putative catalytic glutamates and two highly conserved active site histidines. The site-directed mutants E447N, E532Q, an...

  2. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium

    Sayed M. Badawy

    2015-07-01

    Full Text Available Copper/Copper oxide (Cu/Cu2O nanoparticles were synthesized by modified chemical reduction method in an aqueous medium using hydrazine as reducing agent and copper sulfate pentahydrate as precursor. The Cu/Cu2O nanoparticles were characterized by X-ray Diffraction (XRD, Energy Dispersive X-ray Fluorescence (EDXRF, Scanning Electron Microscope (SEM, and Transmission Electron Microscope (TEM. The analysis revealed the pattern of face-centered cubic (fcc crystal structure of copper Cu metal and cubic cuprites structure for Cu2O. The SEM result showed monodispersed and agglomerated particles with two micron sizes of about 180 nm and 800 nm, respectively. The TEM result showed few single crystal particles of face-centered cubic structures with average particle size about 11-14 nm. The catalytic activity of Cu/Cu2O nanoparticles for the decomposition of hydrogen peroxide was investigated and compared with manganese oxide MnO2. The results showed that the second-order equation provides the best correlation for the catalytic decomposition of H2O2 on Cu/Cu2O. The catalytic activity of hydrogen peroxide by Cu/Cu2O is less than the catalytic activity of MnO2 due to the presence of copper metal Cu with cuprous oxide Cu2O. © 2015 BCREC UNDIP. All rights reservedReceived: 6th January 2015; Revised: 14th March 2015; Accepted: 15th March 2015How to Cite: Badawy, S.M., El-Khashab, R.A., Nayl, A.A. (2015. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 169-174. (doi:10.9767/bcrec.10.2.7984.169-174 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7984.169-174  

  3. Catalytic activity of baker's yeast in a mediatorless microbial fuel cell.

    Sayed, Enas Taha; Tsujiguchi, Takuya; Nakagawa, Nobuyoshi

    2012-08-01

    The catalytic activity of baker's yeast, Saccharomyces cerevisiae, as a biocatalyst was investigated in a mediatorless microbial fuel cell. The yeast cells that adhered on the anode surface were the active biocatalyst for glucose oxidation in a mediatorless biofuel cell, suggesting that the electron transfer took place through the surface confined species. The species in the anolyte solution including the dispersed yeast cells did not take a part in the electron transfer and thus in the power generation. PMID:22357359

  4. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bul...

  5. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts.

    Marberger, Adrian; Ferri, Davide; Elsener, Martin; Kröcher, Oliver

    2016-09-19

    The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3 ) on vanadium-based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time-resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta-titania (V2 O5 -WO3 -TiO2 ), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono-oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3 . We were also able to verify the formation of the nitrosamide (NH2 NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance. PMID:27553251

  6. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  7. Effect of chemical composition of isomorphous metavanadates on their catalytic activity toward carbon combustion

    Metal vanadates of K, Rb, and Cs and their solid solutions were prepared by reaction between carbonates and vanadium(V) oxide, characterized by X-ray diffraction and tested as catalysts for carbon combustion. These vanadates are all orthorhombic but show different lattice parameters depending on the ionic radius of alkali metals. A complete solubility in the solid state was found to exist for the systems KVO3-RbVO3 and RbVO3-CsVO3, while only terminal solid solutions were found in the KVO3-CsVO3 system. The lattice parameters (mainly b0) of the orthorhombic cell increased with the increase of the ionic radius of the alkali metal. This increase was found to be closely linked to the substitution of a larger metal for a smaller one when a complete solubility occurs. The catalytic activity, investigated by temperature programmed oxidation (TPO) experiments, improves progressively along with the introduction of a more electropositive and larger alkaline metal in the vanadate crystal structure. The catalytic performance, however, does not seem to be dependent on the crystal structure because, due to polymorphic transformations, not all these vanadates keep the orthorhombic structure in the temperature range suitable for the catalytic carbon combustion (350--600 C). The catalytic activity of these vanadates towards carbon combustion thus seems to be strictly related to their chemical composition only

  8. An ultra-low Pd loading nanocatalyst with efficient catalytic activity

    Jin, Yunxia; Xi, Jiangbo; Zhang, Zheye; Xiao, Junwu; Xiao, Fei; Qian, Lihua; Wang, Shuai

    2015-03-01

    An ultra-low Pd loading nanocatalyst is synthesized by a convenient solution route of photochemical reduction and aqueous chemical growth. The modification of nanocatalyst structures is investigated through changing morphologies of Pd nanoclusters on the surface of ZnO nanorods. A significant enhancement in photocatalytic properties has been achieved by decorating a trace amount of Pd clusters (0.05 at%) on the surface of ZnO nanorods. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is applied to demonstrate multiple catalytic activities in the Pd-ZnO hybrid nanocatalyst, which also provides a better understanding of the relationship between the unique nanoconfigured structure and catalytic performance.An ultra-low Pd loading nanocatalyst is synthesized by a convenient solution route of photochemical reduction and aqueous chemical growth. The modification of nanocatalyst structures is investigated through changing morphologies of Pd nanoclusters on the surface of ZnO nanorods. A significant enhancement in photocatalytic properties has been achieved by decorating a trace amount of Pd clusters (0.05 at%) on the surface of ZnO nanorods. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is applied to demonstrate multiple catalytic activities in the Pd-ZnO hybrid nanocatalyst, which also provides a better understanding of the relationship between the unique nanoconfigured structure and catalytic performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00599j

  9. Synthesis and catalytic activity of tetraphenylporphyrinate chloride of uranium (4)

    A new complex, uranium (4), tetraphenyl porphyrinate chloride, that is an active catalyst of cholesterine oxidation is synthesized by tetraphenyl porphyrine interaction with UCl4 solution in pyridine, the yield being 20%. The composition melting point is above 400 deg, Rf 0.5 (silufol; chloroform-ethanol 1:1), UV spectrum in benzene (λmax, nm(εx103)):425(180), 540(8)

  10. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  11. Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes

    Mashentseva, Anastassiya; Borgekov, Daryn; Kislitsin, Sergey; Zdorovets, Maxim; Migunova, Anastassiya

    2015-12-01

    Irradiated by heavy ions nanoporous polyethylene terephthalate track-etched membranes (PET TeMs) after +15Kr84 ions bombardment (1.75 MeV/nucl with the ion fluency of 1 × 109 cm-2) and sequential etching was applied in this research as a template for development of composites with catalytically enriched properties. A highly ordered silver and gold nanotubes arrays were embedded in 100 nm pores of PET TeMs via electroless deposition technique at 4 °C during 1 h. All "as-prepared" composites were examined for catalytic activity using reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride as a common reaction to test metallic nanostructures catalysts. The effect of temperature on the catalytic activity was investigated in range of 292-313 K and activation energy were calculated. Kapp of Ag/PET composites linearly increase with an increase of the temperature thus normal Arrhenius behavior have been seen and the activation energy was calculated to be 42.13 kJ/mol. Au/PET composites exhibit not only more powerful catalytic activity but also non-linear dependence of rate constant from temperature. Kapp increased with increasing temperature throughout the 292-308 K temperature range; the reaction had an activation energy 65.32 kJ/mol. In range 311-313 K rate constant dramatically decreased and the apparent activation energy at this temperature rang was -91.44 kJ/mol due some structural changes, i.e. agglomeration of Au nanoparticles on the surface of composite.

  12. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian;

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  13. Stability and phase transfer of catalytically active platinum nanoparticle suspensions

    In this work, we present a robust synthesis protocol for platinum nanoparticles that yields a monomodal dispersion of particles that are approximately 100 nm in diameter. We determine that these particles are actually agglomerates of much smaller particles, creating a “raspberry” morphology. We demonstrate that these agglomerates are stable at room temperature for at least 8 weeks by dynamic light scattering. Furthermore, we demonstrate consistent electrocatalytic activity for methanol oxidation. Finally, we quantitatively explore the relationship between dispersion solvent and particle agglomeration; specifically, particles are found to agglomerate abruptly as solvent polarity decreases

  14. Small-Pore Molecular Sieves SAPO-34 with Chabazite Structure: Theoretical Study of Silicon Incorporation and Interrelated Catalytic Activity

    Wang, Hong; Lewis, James; Liu, Zhongmin

    2011-03-01

    The catalytic conversion of methonal to olefin (MTO) has attracted attention both in industrial and academic fields. Strong evidence shows that small-pore molecular sieves with certain amount silicon incorporated (SAPO) present promising high catalytic activity in MTO conversion. Using DFT, we study the structural and electronic properties of chabazite SAPO-34. Although there are extensively experimental results show that silicon incorporation does not change the overall structure as the original AlPO structure, local structural changes are still created by silicon substitution, which probably accounted for the high catalytic activity. It is noted that the catalytic activity of SAPO-34 presents increasing trend along with the silicon incorporation amount increasing and maintain a flat peak even with more silicon incorporated. Hence, there is an optimal silicon incorporation amount which possibly yields the highest catalytic MTO conversion.

  15. Study of the catalytic activity of pure or cerium-containing thoria in the catalytic oxidation of carbon monoxide (1963)

    We have undertaken research into the oxidation of carbon monoxide on pure thoria prepared by the decomposition of thorium nitrate, and on the same oxide containing small amounts of cerium. The results we have obtained, both as concerns the chemisorption of the various gases as well as the conductivity of the absorbent and the kinetics of the oxidation itself, appear to be quite coherent. The following steps occur: 1) The carbon monoxide is adsorbed on a clean catalyst surface, the oxygen remaining un-adsorbed. 2) The oxygen is adsorbed on a previously adsorbed carbon, monoxide layer, and reacts to give carbon dioxide (no role being played by the lattice oxygen). This behaviour is usual for a p-type semiconductor. We have in fact confirmed that semi-conductivity is of this type, and the gas-solid interactions can be written: (1) CO(g) ↔ CO+(a) + e- (2) CO+ 1/2 O2(g) + 2 e- → CO-2(a) (3) CO-2(a) ↔ CO2(g) + e- The kinetic equation obtained by supposing that step (2) is the slowest, makes it possible to deduce correctly the experimental results which can be expressed as: dp / dt = k (P0.3CO x P0.5O2) / (1+ k' x PCO2) The influence of the addition of small amounts of cerium can also be explained logically by this process; there is in fact both a decrease in the conductivity and an increase in the catalytic activity, this being characteristic, according to VOLKENSTEIN [52] of an n-type rate-determining reaction occurring on a p-type semi-conductor. We believe that these first results could be advantageously complemented by a study of thoria prepared by other means and doped differently. (author)

  16. Characterization of Reuse Activities at Contaminated Sites

    Angela Vitulli; Charlotte Dougherty; Kimberly Bosworth

    2004-01-01

    Given the increased focus on reuse activity within EPA and state site cleanup programs, policy makers would benefit from looking across programs to better understand the extent and nature of reuse; examine site characteristics that influence reuse; leverage lessons learned; and coordinate reuse activities, data collection, and information management. This research paper begins to examine these issues. It reports the results of a preliminary review and analysis of available EPA and state progr...

  17. Fingerprinting differential active site constraints of ATPases

    Hacker, Stephan M.; Hardt, Norman; Buntru, Alexander; Pagliarini, Dana; Möckel, Martin; Mayer, Thomas U; Scheffner, Martin; Hauck, Christof R.; Marx, Andreas

    2013-01-01

    The free energy provided by adenosine triphosphate (ATP) hydrolysis is central to many cellular processes and, therefore, the number of enzymes utilizing ATP as a substrate is almost innumerable. Modified analogues of ATP are a valuable means to understand the biological function of ATPases. Although these enzymes have evolved towards binding to ATP, large differences in active site architectures were found. In order to systematically access the specific active site constraints of different A...

  18. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer

  19. High Catalytic Activity and Chemoselectivity of Sub-nanometric Pd Clusters on Porous Nanorods of CeO2 for Hydrogenation of Nitroarenes.

    Zhang, Sai; Chang, Chun-Ran; Huang, Zheng-Qing; Li, Jing; Wu, Zhemin; Ma, Yuanyuan; Zhang, Zhiyun; Wang, Yong; Qu, Yongquan

    2016-03-01

    Sub-nanometric Pd clusters on porous nanorods of CeO2 (PN-CeO2) with a high Pd dispersion of 73.6% exhibit the highest catalytic activity and best chemoselectivity for hydrogenation of nitroarenes to date. For hydrogenation of 4-nitrophenol, the catalysts yield a TOF of ∼44059 h(-1) and a chemoselectivity to 4-aminophenol of >99.9%. The superior catalytic performance can be attributed to a cooperative effect between the highly dispersed sub-nanometric Pd clusters for hydrogen activation and unique surface sites of PN-CeO2 with a high concentration of oxygen vacancy for an energetically and geometrically preferential adsorption of nitroarenes via nitro group. The high concentration of surface defects of PN-CeO2 and large Pd dispersion contribute to the enhanced catalytic activity for the hydrogenation reactions. The high chemoselectivity is mainly governed by the high Pd dispersion on the support. The catalysts also deliver high catalytic activity and selectivity for nitroaromatics with various reducible substituents into the corresponding aminoarenes. PMID:26828123

  20. Identification of electrostatic interaction sites between the regulatory and catalytic subunits of cyclic AMP-dependent protein kinase.

    Gibson, R.M.; Ji-Buechler, Y.; Taylor, S S

    1997-01-01

    Two classes of molecules inhibit the catalytic subunit (C) of the cyclic AMP-dependent protein kinase (cAPK), the heat-stable protein kinase inhibitors (PKIs) and the regulatory (R) subunits. Basic sites on C, previously identified as important for R/C interaction in yeast TPK1 and corresponding to Lys213, Lys217, and Lys189 in murine C alpha, were replaced with either Ala or Thr and characterized for their kinetic properties and ability to interact with RI and PKI. rC(K213A) and rC(K217A) we...

  1. Effects of the ratio of Cu/Co and metal precursors on the catalytic activity over Cu-Co/Al2O3 prepared using the polyol process

    Cu-Co bimetallic catalysts were prepared using a simple polyol process. The effects of various metal precursors (nitrate, acetate, and chloride) and Cu/Co ratios on the activities of the catalysts were evaluated for toluene oxidation and NO reduction. The results indicated that the use of the metal precursor Cu-Co acetate in preparing the bimetallic catalysts resulted in good metal dispersion and high catalytic activity. When the atomic Cu/Co ratio was 0.21 in the Al2O3-supported catalyst, the dispersion of active sites was promoted by the Cu, and the catalytic activity was stable over the reaction time. CuO and Cu0 species and large particle sizes (20 nm) formed when the Co loading weight in the catalyst increased, and conversion decreased. When the reaction temperature was 300 deg. C, NO and toluene were able to be simultaneously removed with high conversion rates (83% and 98%)

  2. Domain function dissection and catalytic properties of Listeria monocytogenes p60 protein with bacteriolytic activity.

    Yu, Minfeng; Zuo, Jinrong; Gu, Hao; Guo, Minliang; Yin, Yuelan

    2015-12-01

    The major extracellular protein p60 of Listeria monocytogenes (Lm-p60) is an autolysin that can hydrolyze the peptidoglycan of bacterial cell wall and has been shown to be required for L. monocytogenes virulence. The predicted three-dimensional structure of Lm-p60 showed that Lm-p60 could be split into two independent structural domains at the amino acid residue 270. Conserved motif analysis showed that V30, D207, S395, and H444 are the key amino acid residues of the corresponding motifs. However, not only the actual functions of these two domains but also the catalytic properties of Lm-p60 are unclear. We try to express recombinant Lm-p60 and identify the functions of two domains by residue substitution (V30A, D207A, S395A, and H444A) and peptide truncation. The C-terminal domain was identified as catalytic element and N-terminal domain as substrate recognition and binding element. Either N-terminal domain truncation or C-terminal domain truncation presents corresponding biological activity. The catalytic activity of Lm-p60 with a malfunctioned substrate-binding domain was decreased, while the substrate binding was not affected by a mulfunctioned catalytic domain. With turbidimetric method, we determined the optimal conditions for the bacteriolytic activity of Lm-p60 against Micrococcus lysodeikficus. The assay for the effect of Lm-p60 on the bacteriolytic activity of lysozyme revealed that the combined use of Lm-p60 protein with lysozyme showed a strong synergistic effect on the bacteriolytic activity. PMID:26363556

  3. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  4. Mapping the active site of vaccinia virus RNA triphosphatase

    The RNA triphosphatase component of vaccinia virus mRNA capping enzyme (the product of the viral D1 gene) belongs to a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, Chlorella virus, and baculoviruses. The family is defined by two glutamate-containing motifs (A and C) that form the metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight-stranded β barrel (the so-called ''triphosphate tunnel''). Here we queried whether vaccinia virus capping enzyme is a member of the tunnel subfamily, via mutational mapping of amino acids required for vaccinia triphosphatase activity. We identified four new essential side chains in vaccinia D1 via alanine scanning and illuminated structure-activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight a constellation of six acidic and three basic amino acids that likely compose the vaccinia triphosphatase active site (Glu37, Glu39, Arg77, Lys107, Glu126, Asp159, Lys161, Glu192, and Glu194). These nine essential residues are conserved in all vertebrate and invertebrate poxvirus RNA capping enzymes. We discerned no pattern of clustering of the catalytic residues of the poxvirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). We infer that the poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Their unique active site, which is completely different from that of the host cell's capping enzyme, recommends the poxvirus RNA triphosphatase as a molecular target for antipoxviral drug discovery

  5. A structural basis for the activity of retro-Diels–Alder catalytic antibodies: Evidence for a catalytic aromatic residue

    Hugot, Marina; Bensel, Nicolas; Vogel, Monique; Reymond, Martine T.; Stadler, Beda; Reymond, Jean-Louis; Baumann, Ulrich

    2002-01-01

    The nitroxyl synthase catalytic antibodies 10F11, 9D9, and 27C5 catalyze the release of nitroxyl from a bicyclic pro-drug by accelerating a retro-Diels–Alder reaction. The Fabs (antigen-binding fragments) of these three catalytic antibodies were cloned and sequenced. Fab 9D9 was crystallized in the apo-form and in complex with one transition state analogue of the reaction. Crystal structures of Fab 10F11 in complex with ligands mimicking substrate, transition state, and product have been dete...

  6. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    Yu Zhang

    Full Text Available Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL from Geobacillus kaustophilus HTA426 (GkaP exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  7. Catalytic Activity of Iridium Dioxide With Different Morphologies for Oxygen Reduction Reaction

    WANG Guangjin; HUANG Fei; XU Tian; YU Yi; CHENG Feng; ZHANG Yue; PAN Mu

    2015-01-01

    Iridium dioxide with different morphologies (nanorod and nanogranular) is successfully prepared by a modiifed sol-gel and Adams methods. The catalytic activity of both samples for oxygen reduction reaction is investigated in an alkaline solution. The electrochemical results show that the catalytic activity of the nanogranular IrO2 sample is superior to that of the nanorod sample due to its higher onset potential for oxygen reduction reaction and higher electrode current density in low potential region. The results of Koutecky-Levich analysis indicate that the oxygen reduction reaction catalyzed by both samples is a mixture transfer pathway. It is dominated by four electron transfer pathway for both samples in high overpotential area, while it is controlled by two electron transfer process for both samples in low overpotential area.

  8. Peroxidase-like catalytic activity of Ag3PO4 nanocrystals prepared by a colloidal route.

    Yuanjun Liu

    Full Text Available Nearly monodispersed Ag3PO4 nanocrystals with size of 10 nm were prepared through a colloidal chemical route. It was proven that the synthesized Ag3PO4 nanoparticles have intrinsic peroxidase-like catalytic activity. They can quickly catalyze oxidation of the peroxidase substrate 3, 3, 5, 5-tetramethylbenzidine (TMB in the presence of H2O2, producing a blue color. The catalysis reaction follows Michaelis-Menten kinetics. The calculated kinetic parameters indicate a high catalytic activity and the strong affinity of Ag3PO4 nanocrystals to the substrate (TMB. These results suggest the potential applications of Ag3PO4 nanocrystals in fields such as biotechnology, environmental chemistry, and medicine.

  9. Predicting the activation energy of catalytic dissociation of the heteroatomic AB bond

    Two analytical formalisms, adiabatic and diabatic ones, were developed for the description of catalytic dissociation of heteroatomic bond AB interacting with a metal surface in the adsorption processes. In the adiabatic formalism, the transition state was localized on a four-dimensional potential energy surface in classical approximation. This approach generalizes the previous three-dimensional model for dissociative adsorption of homonuclear molecules X2 on metals surfaces, and it was used for studying the effect of non-parallel orientation to a surface of O2 molecules in the adsorption precursor state. The second formalism takes into account a possible quantum character of vibrations along the chemical bond AB. The calculation of the activation energy in this approach is performed by the density matrix method. This approach is applied for studying catalytic dissociation of CO molecule on a Ni(1 1 1) surface. The calculated apparent activation energy for this reaction is compared with published data for this system

  10. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams

    Aswathy Aromal, S.; Dinesh Babu, K. V.; Philip, Daizy

    2012-10-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. The present work reports a new green method for the synthesis of gold nanoparticles. Four different ayurvedic arishtams are used for the reduction of Au3+ to Au nanoparticles. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 23 nm could be obtained. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from bright circular spots in the SAED pattern and peaks in the XRD pattern. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4. The synthesized nanoparticles are found to exhibit size dependent catalytic property, the smaller nanoparticles showing faster activity.

  11. Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis.

    Liu, Ying; Yan, Zhihui; Lu, Xiaoyun; Xiao, Dongguang; Jiang, Huifeng

    2016-01-01

    Protein rational design has become more and more popular for protein engineering with the advantage of biological big-data. In this study, we described a method of rational design that is able to identify desired mutants by analyzing the coevolution of protein sequence. We employed this approach to evolve an archaeal isopentenyl phosphate kinase that can convert dimethylallyl alcohol (DMA) into precursor of isoprenoids. By designing 9 point mutations, we improved the catalytic activities of IPK about 8-fold in vitro. After introducing the optimal mutant of IPK into engineered E. coli strain for β-carotenoids production, we found that β-carotenoids production exhibited 97% increase over the starting strain. The process of enzyme optimization presented here could be used to improve the catalytic activities of other enzymes. PMID:27052337

  12. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  13. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate.

    Sunil Sekhar, Anandakumari Chandrasekharan; Vinod, Chathakudath Prabhakaran

    2016-01-01

    Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 10³ for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to -NO₂ group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies. PMID:27213321

  14. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  15. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  16. Establishing efficient cobalt based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst

    Nurlaela, Ela

    2015-08-05

    In a photocatalytic suspension system with a powder semiconductor, the interface between the photocatalyst semiconductor and catalyst should be constructed to minimize resistance for charge transfer of excited carriers. This study demonstrates an in-depth understanding of pretreatment effects on the photocatalytic O2 evolution reaction (OER) activity of visible-light-responsive Ta3N5 decorated with CoOx nanoparticles. The CoOx/Ta3N5 sample was synthesized by impregnation followed by sequential heat treat-ments under NH3 flow and air flow at various temperatures. Various characterization techniques, including X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spec-troscopy (XPS), were used to clarify the state and role of cobalt. No improvement in photocatalytic activity for OER over the bare Ta3N5 was observed for the as-impregnated CoOx/Ta3N5, likely because of insufficient contact between CoOx and Ta3N5. When the sample was treated in NH3 at high temperature, a substantial improvement in the photocatalytic activity was observed. After NH3 treatment at 700 °C, the Co0-CoOx core-shell agglomerated cobalt structure was identified by XAS and STEM. No metallic cobalt species was evident after the photocatalytic OER, indicating that the metallic cobalt itself is not essential for the reaction. Accordingly, mild oxidation (200 °C) of the NH3-treated CoOx/Ta3N5 sample enhanced photocatalytic OER activity. Oxidation at higher temperatures drastically eliminated the photocatalytic activity, most likely because of unfavorable Ta3N5 oxidation. These results suggest that the intimate contact between cobalt species and Ta3N5 facilitated at high temperature is beneficial to enhancing hole transport and that the cobalt oxide provides electrocatalytic sites for OER.

  17. Magnesium-Dependent Active-Site Conformational Selection in the Diels-Alderase Ribozyme

    Berezniak, Tomasz [University of Heidelberg; Zahran, Mai [ORNL; Imhof, Petra [University of Heidelberg; Jaeschke, Andres [Free University of Berlin; Smith, Jeremy C [ORNL

    2010-10-01

    The Diels-Alderase ribozyme, an in vitro-evolved ribonucleic acid enzyme, accelerates the formation of carbon-carbon bonds between an anthracene diene and a maleimide dienophile in a [4 + 2] cycloaddition, a reaction with broad application in organic chemistry. Here, the Diels-Alderase ribozyme is examined via molecular dynamics (MD) simulations in both crystalline and aqueous solution environments. The simulations indicate that the catalytic pocket is highly dynamic. At low Mg(2+) ion concentrations, inactive states with the catalytic pocket closed dominate. Stabilization of the enzymatically active, open state of the catalytic pocket requires a high concentration of Mg(2+) ions (e.g., 54 mM), with cations binding to specific phosphate sites on the backbone of the residues bridging the opposite strands of the pocket. The free energy profile for pocket opening at high Mg(2+) cation concentration exhibits a double minimum, with a barrier to opening of approximately 5.5 kJ/mol and the closed state approximately 3 kJ/mol lower than the open state. Selection of the open state on substrate binding leads to the catalytic activity of the ribozyme. The simulation results explain structurally the experimental observation that full catalytic activity depends on the Mg(2+) ion concentration

  18. The role of the catalysts with highly dispersed and isolated active sites in the selective oxidation of light hydrocarbons

    WANG Hongxuan; ZHAO Zhen

    2005-01-01

    This review summarizes the role of catalysts with highly dispersed and isolated active sites (active sites: supported atoms f≤0.5 % ) in the selective oxidation of light hydrocarbons, such as methane, ethane and propane, into oxygenatesand the epoxidation of olefins. The plausible structures of the highly dispersed and isolated active species, as well as their effects on the catalytic performances are discussed. The special physico-chemical properties and the functional mechanism of the catalysts with highly dispersed and isolated active sites, as well as the preparation, characterization of the catalysts with highly dispersed and isolated active sites and their applications in other types of reactions of lower hydrocarbons are summarized.

  19. Orange II removal by catalytic wet peroxide oxidation using activated carbon xerogels

    Pinho, Maria; Silva, Adrián; Fathy, Nady; Attia, Amina; Gomes, Helder; Faria, Joaquim

    2013-01-01

    Orange II is a synthetic dye widely employed in the textile industry and responsible for serious environrnentaI cancerns. Dyes like this urge the development af new technologies for the treatment af wastewaters generated in this industrial activity. Those include catalytic wet peroxide oxidation (CWPO), which is an advanced oxidation process (AOP) based on the generation of hydroxyl radicais (I-lO·) from hydrogen peroxide with tlle aid ofa suitable catalysl [I].

  20. Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity

    Murthy, S. N. Prasanna; Iismaa, Siiri; Begg, Gillian; Freymann, Douglas M.; Graham, Robert M.; Lorand, Laszlo

    2002-01-01

    Transglutaminase 2 (TG2) is a distinctive member of the family of Ca2+-dependent enzymes recognized mostly by their abilities to catalyze the posttranslational crosslinking of proteins. TG2 uniquely binds and hydrolyzes GTP; binding GTP inhibits its crosslinking activity but allows it to function in signal transduction (hence the Gh designation). The core domain of TG2 (residues 139–471, rat) comprises the papain-like catalytic triad and the GTP-binding domain (residues 159–173) and contains ...

  1. Catalytic layer for oxygen activation on ionic solid electrolytes at high temperature

    Serra Alfaro, José Manuel; Vert Belenguer, Vicente Bernard; Escolástico Rozalén, Sonia

    2008-01-01

    The present invention relates to a catalytic porous layer for oxygen activation which may be utilised in solid oxide fuel cells (SOFCs) and in dense ceramic membranes for oxygen separation at high temperature. Said porous layer is principally formed by a mixed electron and oxygen ion conductive material possessing a structure selected from among structures of the simple perovskite or double perovskite type or structures related to perovskite, that is to say: structures of the Ruddlesden-Poppe...

  2. Synthesis and catalytic activities of porphyrin-based PCP pincer complexes.

    Fujimoto, Keisuke; Yoneda, Tomoki; Yorimitsu, Hideki; Osuka, Atsuhiro

    2013-01-01

    2,18-Bis(diphenylphosphino)porphyrins undergo peripheral cyclometalation with group 10 transition-metal salts to afford the corresponding porphyrin-based PCP pincer complexes. The porphyrinic plane and the PCP-pincer unit are apparently coplanar, with small strain. The catalytic activities of the porphyrin-based pincer complexes at the periphery were investigated in the allylation of benzaldehyde with allylstannane and in the 1,4-reduction of chalcone to discover the electronic interplay betw...

  3. Influenza C virus esterase: analysis of catalytic site, inhibition, and possible function

    The active site serine of the acetylesterase of influenza C virus was localized to amino acid 71 of the hemagglutinin-esterase protein by affinity labeling with 3H-labeled diisopropylfluorophosphate. This serine and the adjacent amino acids (Phe-Gly-Asp-Ser) are part of a consensus sequence motif found in serine hydrolases. Since comparative analysis failed to reveal esterase sequence similarities with other serine hydrolases, the authors suggest that this viral enzyme is a serine hydrolase constituting a new family of serine esterases. Furthermore, they found that the influenza C virus esterase was inhibited by isocoumarin derivatives, with 3,4-dichloroisocoumarin being the most potent inhibitor. Addition of this compound prevented elution of influenza C virus from erythrocytes and inhibited virus infectivity, possibly through inhibition of virus entry into cells

  4. A simple red-ox titrimetric method for the evaluation of photo-catalytic activity of titania based catalysts

    Y S Satpute; S A Borkar; S R Dharwadkar

    2003-12-01

    A simple red-ox titrimetry method has been developed for rapid evaluation of the photo catalytic activity of TiO2 based photo-catalysts. The analytical procedure employs monitoring the kinetics of a simple one electron transfer reduction reaction of conversion of Ce4+ to Ce3+ in dilute aqueous solution in presence of sunlight. The photo-catalytic activity of TiO2 synthesized by two different routes was evaluated by the above technique. The effect of surface area, crystallite size and polymorphic contents on the photo-catalytic activity of TiO2 was also studied employing this method.

  5. Briefly Bound to Activate: Transient Binding of a Second Catalytic Magnesium Activates the Structure and Dynamics of CDK2 Kinase for Catalysis

    Bao, Zhao Qin; Jacobsen, Douglas M.; Young, Matthew A. (Michigan-Med)

    2014-10-02

    We have determined high-resolution crystal structures of a CDK2/Cyclin A transition state complex bound to ADP, substrate peptide, and MgF{sub 3}{sup -}. Compared to previous structures of active CDK2, the catalytic subunit of the kinase adopts a more closed conformation around the active site and now allows observation of a second Mg{sup 2+} ion in the active site. Coupled with a strong [Mg{sup 2+}] effect on in vitro kinase activity, the structures suggest that the transient binding of the second Mg{sup 2+} ion is necessary to achieve maximum rate enhancement of the chemical reaction, and Mg{sup 2+} concentration could represent an important regulator of CDK2 activity in vivo. Molecular dynamics simulations illustrate how the simultaneous binding of substrate peptide, ATP, and two Mg{sup 2+} ions is able to induce a more rigid and closed organization of the active site that functions to orient the phosphates, stabilize the buildup of negative charge, and shield the subsequently activated {gamma}-phosphate from solvent.

  6. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B; Morreale, Bryan D; Gellman, Andrew J

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  7. Supercritical CO{sub 2} mediated synthesis and catalytic activity of graphene/Pd nanocomposites

    Tang, Lulu [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Nguyen, Van Hoa [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang (Viet Nam); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of)

    2015-11-15

    Highlights: • RGO/Pd composite was efficiently prepared via a facile method in supercritical CO{sub 2}. • Graphene sheets were coated uniformly with Pd nanoparticles with a size of ∼8 nm. • Composites exhibited excellent catalytic activity in the Suzuki reaction even after 10 cycles. - Abstract: Graphene sheets were decorated with palladium nanoparticles using a facile and efficient method in supercritical CO{sub 2}. The nanoparticles were formed on the graphene sheets by the simple hydrogen reduction of palladium(II) hexafluoroacetylacetonate precursor in supercritical CO{sub 2}. The product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Highly dispersed nanoparticles with various sizes and shapes adhered well to the graphene sheets. The composites showed high catalytic activities for the Suzuki reaction under aqueous and aerobic conditions within 5 min. The effects of the different Pd precursor loadings on the catalytic activities of the composites were also examined.

  8. Effect of the synthetic method on the catalytic activity of alumina: Epoxidation of cyclohexene

    Graphical abstract: Temperature influence on percent conversion and selectivity in the epoxidation of cyclohexene using commercial alumina as a catalyst. - Highlights: • Aluminum oxide was synthesized using Pechini method. • The alumina obtained showed a mix of boehmite and γ-alumina phases. • We research an economically feasible method to obtain alumina for use as a catalyst. • Alumina obtained by Pechini showed high percent conversion and/or selectivity. • The best results were 78% conversion and 78% selectivity to epoxidation reactions. - Abstract: Al2O3 was prepared from different inorganic precursors via the Pechini method and compared with Al2O3 prepared by the sol–gel method. Structural characterization of these materials was carried out by FTIR, X-ray diffraction (XRD), N2 adsorption at −196 °C and transmission electron microscopy (TEM). The solids were tested in the epoxidation of cyclohexene and a difference in their catalytic activities was observed. The characterization results indicate that the samples prepared by Pechini have a mixture of γ-alumina and boehmite, a condition favoring catalytic activity, whereas the sol–gel sample is less crystalline due to higher boehmite content. These results indicate that both the nature of the precursor and the method of synthesis strongly affect the catalytic activity of Al2O3

  9. Biosynthesis of selenosubtilisin: A novel way to target selenium into the active site of subtilisin

    LI Jing; LIU XiaoMan; JI YueTong; QI ZhenHui; GE Yan; XU JiaYun; LIU JunQiu; LUO GuiMin; SHEN JiaCong

    2008-01-01

    Glutathione peroxidase (GPx,EC1.11.1.9),an important anti-oxidative selenoenzyme,can catalyze the reduction of harmful hydroperoxides with concomitant glutathione,thereby protecting cells and other biological issues against oxidative damage.It captures considerable interest in redesign of its function for either the mechanism study or the pharmacological development as an antioxidant.In order to de-velop a general strategy for specifically targeting and operating selenium in active sites of enzymes,the catalytically essential residue selenocysteine (Sec) was first successfully bioincorporated into the catalytic center of subtilisin by using an auxotrophic expression system.The studies of the catalytic activity and the steady-state kinetics demonstrated that selenosubtilisin is an excellent GPx-like bio-catalyst.In comparison with the chemically modified method,biosynthesis exhibits obvious advan-tages:Sec could be site-directly incorporated into active sites of enzymes to overcome the non-speci-ficity generated by chemical modification.This study provides an important strategy for specifically targeting and operating selenium in the active site of an enzyme.

  10. Catalytic activity of CuOn-La2O3/γ-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater

    In order to develop a catalyst with high activity and stability for microwave assisted ClO2 catalytic oxidation, we prepared CuOn-La2O3/γ-Al2O3 by impregnation-deposition method, and determined its properties using BET, XRF, XPS and chemical analysis techniques. The test results show that, better thermal ability of γ-Al2O3 and high loading of Cu in the catalyst can be achieved by adding La2O3. The microwave assisted ClO2 catalytic oxidation process with CuOn-La2O3/γ-Al2O3 used as catalyst was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 100 mg/L phenol, and 91.66% of phenol and 50.35% of total organic carbon (TOC) can be removed under the optimum process conditions. Compared with no catalyst process, CuOn-La2O3/γ-Al2O3 can effectively degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. The comparison of phenol removal efficiency in the different process indicates that microwave irradiation and catalyst work together to oxidize phenol effectively. It can therefore be concluded from results and discussion that CuOn-La2O3/γ-Al2O3 is a suitable catalyst in microwave assisted ClO2 catalytic oxidation process