WorldWideScience

Sample records for activator upa overexpression

  1. CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer.

    Xie, C; Jiang, X H; Zhang, J T; Sun, T T; Dong, J D; Sanders, A J; Diao, R Y; Wang, Y; Fok, K L; Tsang, L L; Yu, M K; Zhang, X H; Chung, Y W; Ye, L; Zhao, M Y; Guo, J H; Xiao, Z J; Lan, H Y; Ng, C F; Lau, K M; Cai, Z M; Jiang, W G; Chan, H C

    2013-05-01

    Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is expressed in the epithelial cells of a wide range of organs/tissues from which most cancers are derived. Although accumulating reports have indicated the association of cancer incidence with genetic variations in CFTR gene, the exact role of CFTR in cancer development and the possible underlying mechanism have not been elucidated. Here, we report that CFTR expression is significantly decreased in both prostate cancer cell lines and human prostate cancer tissue samples. Overexpression of CFTR in prostate cancer cell lines suppresses tumor progression (cell growth, adhesion and migration), whereas knockdown of CFTR leads to enhanced malignancies both in vitro and in vivo. In addition, we demonstrate that CFTR knockdown-enhanced cell proliferation, cell invasion and migration are significantly reversed by antibodies against either urokinase plasminogen activator (uPA) or uPA receptor (uPAR), which are known to be involved in various malignant traits of cancer development. More interestingly, overexpression of CFTR suppresses uPA by upregulating the recently described tumor suppressor microRNA-193b (miR-193b), and overexpression of pre-miR-193b significantly reverses CFTR knockdown-enhanced malignant phenotype and abrogates elevated uPA activity in prostate cancer cell line. Finally, we show that CFTR gene transfer results in significant tumor repression in prostate cancer xenografts in vivo. Taken together, the present study has demonstrated a previously undefined tumor-suppressing role of CFTR and its involvement in regulation of miR-193b in prostate cancer development. PMID:22797075

  2. Plasminogen activator inhibitor-1 (PAI-1 and urokinase plasminogen activator (uPA in sputum of allergic asthma patients.

    Sebastian Zukowski

    2008-06-01

    Full Text Available Urokinase plasminogen activator (uPA and its inhibitor (PAI-1 have been associated with asthma. The aim of this study was to evaluate concentration of uPA and PAI-1 in induced sputum of house dust mite allergic asthmatics (HDM-AAs. The study was performed on 19 HDM-AAs and 8 healthy nonatopic controls (HCs. Concentration of uPA and PAI-1 was evaluated in induced sputum supernatants using ELISA method. In HDM-AAs the median sputum concentration of uPA (128 pg/ml; 95% CI 99 to 183 pg/ml and PAI-1 (4063 pg/ml; 95%CI 3319 to 4784 pg/ml were significantly greater than in HCs (17 pg/ml; 95%CI 12 to 32 pg/ml; p<0.001 and 626 pg/ml; 95%CI 357 to 961 pg/ml; p<0.001 for uPA and PAI-1 respectively. The sputum concentration of uPA correlated with sputum total cell count (r=0.781; p=0.0001 and with logarithmically transformed exhaled nitric oxide concentration (eNO (r=0.486; p=0.035 but not with FEV1 or bronchial reactivity to histamine. On the contrary, the sputum PAI-1 concentration correlated with FEV1 (r=-0,718; p=0.0005 and bronchial reactivity to histamine expressed as log(PC20 (r=-0.824; p<0.0001 but did not correlate with sputum total cell count or eNO. The results of this study support previous observations linking PAI-1 with airway remodeling and uPA with cellular inflammation. Moreover, the observed effect of uPA seems to be independent of its fibrynolytic activity.

  3. BioKnife, a uPA activity-dependent oncolytic Sendai virus, eliminates pleural spread of malignant mesothelioma via simultaneous stimulation of uPA expression.

    Morodomi, Yosuke; Yano, Tokujiro; Kinoh, Hiroaki; Harada, Yui; Saito, Satoru; Kyuragi, Ryoichi; Yoshida, Kumi; Onimaru, Mitsuho; Shoji, Fumihiro; Yoshida, Tsukihisa; Ito, Kensaku; Shikada, Yasunori; Maruyama, Riichiroh; Hasegawa, Mamoru; Maehara, Yoshihiko; Yonemitsu, Yoshikazu

    2012-04-01

    Malignant pleural mesothelioma (MPM) is highly intractable and readily spreads throughout the surface of the pleural cavity, and these cells have been shown to express urokinase-type plasminogen activator receptor (uPAR). We here examined the potential of our new and powerful recombinant Sendai virus (rSeV), which shows uPAR-specific cell-to-cell fusion activity (rSeV/dMFct14 (uPA2), named "BioKnife"), for tumor cell killing in two independent orthotopic xenograft models of human. Multicycle treatment using BioKnife resulted in the efficient rescue of these models, in association with tumor-specific fusion and apoptosis. Such an effect was also seen on both MSTO-211H and H226 cells in vitro; however, we confirmed that the latter expressed uPAR but not uPA. Of interest, infection with BioKnife strongly facilitated the uPA release from H226 cells, and this effect was completely abolished by use of either pyrrolidine dithiocarbamate (PDTC) or BioKnife expressing the C-terminus-deleted dominant negative inhibitor for retinoic acid-inducible gene-I (RIG-IC), indicating that BioKnife-dependent expression of uPA was mediated by the RIG-I/nuclear factor-κB (NF-κB) axis, detecting RNA viral genome replication. Therefore, these results suggest a proof of concept that the tumor cell-killing mechanism via BioKnife may have significant potential to treat patients with MPM that is characterized by frequent uPAR expression in a clinical setting. PMID:22314292

  4. BioKnife, a uPA Activity-dependent Oncolytic Sendai Virus, Eliminates Pleural Spread of Malignant Mesothelioma via Simultaneous Stimulation of uPA Expression

    Morodomi, Yosuke; Yano, Tokujiro; Kinoh, Hiroaki; Harada, Yui; Saito, Satoru; Kyuragi, Ryoichi; Yoshida, Kumi; Onimaru, Mitsuho; Shoji, Fumihiro; Yoshida, Tsukihisa; Ito, Kensaku; Shikada, Yasunori; Maruyama, Riichiroh; Hasegawa, Mamoru; Maehara, Yoshihiko

    2012-01-01

    Malignant pleural mesothelioma (MPM) is highly intractable and readily spreads throughout the surface of the pleural cavity, and these cells have been shown to express urokinase-type plasminogen activator receptor (uPAR). We here examined the potential of our new and powerful recombinant Sendai virus (rSeV), which shows uPAR-specific cell-to-cell fusion activity (rSeV/dMFct14 (uPA2), named “BioKnife”), for tumor cell killing in two independent orthotopic xenograft models of human. Multicycle ...

  5. Direct interaction of the kringle domain of urokinase-type plasminogen activator (uPA) and integrin alpha v beta 3 induces signal transduction and enhances plasminogen activation.

    Tarui, Takehiko; Akakura, Nobuaki; Majumdar, Mousumi; Andronicos, Nicholas; Takagi, Junichi; Mazar, Andrew P; Bdeir, Khalil; Kuo, Alice; Yarovoi, Serge V; Cines, Douglas B; Takada, Yoshikazu

    2006-03-01

    It has been questioned whether there are receptors for urokinase-type plasminogen activator (uPA) that facilitate plasminogen activation other than the high affinity uPA receptor (uPAR/CD87) since studies of uPAR knockout mice did not support a major role of uPAR in plasminogen activation. uPA also promotes cell adhesion, chemotaxis, and proliferation besides plasminogen activation. These uPA-induced signaling events are not mediated by uPAR, but mediated by unidentified, lower-affinity receptors for the uPA kringle. We found that uPA binds specifically to integrin alpha v beta 3 on CHO cells depleted of uPAR. The binding of uPA to alpha v beta 3 required the uPA kringle domain. The isolated uPA kringle domain binds specifically to purified, recombinant soluble, and cell surface alpha v beta 3, and other integrins (alpha 4 beta 1 and alpha 9 beta 1), and induced migration of CHO cells in an alpha v beta 3-dependent manner. The binding of the uPA kringle to alpha v beta 3 and uPA kringle-induced alpha v beta 3-dependent cell migration were blocked by homologous plasminogen kringles 1-3 or 1-4 (angiostatin), a known integrin antagonist. We studied whether the binding of uPA to integrin alpha v beta 3 through the kringle domain plays a role in plasminogen activation. On CHO cell depleted of uPAR, uPA enhanced plasminogen activation in a kringle and alpha v beta 3-dependent manner. Endothelial cells bound to and migrated on uPA and uPA kringle in an alpha v beta 3-dependent manner. These results suggest that uPA binding to integrins through the kringle domain plays an important role in both plasminogen activation and uPA-induced intracellular signaling. The uPA kringle-integrin interaction may represent a novel therapeutic target for cancer, inflammation, and vascular remodeling. PMID:16525582

  6. Direct interaction of the kringle domain of urokinase-type plasminogen activator (uPA) and integrin alpha v beta 3 induces signal transduction and enhances plasminogen activation

    Tarui, Takehiko; Akakura, Nobuaki; Majumdar, Mousumi; Andronicos, Nicholas; Takagi, Junichi; Mazar, Andrew P.; Bdeir, Khalil; Kuo, Alice; Yarovoi, Serge V.; Cines, Douglas B.; Takada, Yoshikazu

    2006-01-01

    It has been questioned whether there are receptors for urokinase-type plasminogen activator (uPA) that facilitate plasminogen activation other than the high affinity uPA receptor (uPAR/CD87) since studies of uPAR knockout mice did not support a major role of uPAR in plasminogen activation. uPA also promotes cell adhesion, chemotaxis, and proliferation besides plasminogen activation. These uPA-induced signaling events are not mediated by uPAR, but mediated by unidentified, lower-affinity recep...

  7. Urokinase plasminogen activator (uPA and plasminogen activator inhibitor type-1 (PAI-1 in breast cancer - correlation with traditional prognostic factors

    Lampelj Maja

    2015-12-01

    Full Text Available Background. Urokinase plasminogen activator (uPA and plasminogen activator inhibitor type-1 (PAI-1 play a key role in tumour invasion and metastasis. High levels of both proteolytic enzymes are associated with poor prognosis in breast cancer patients. The purpose of this study was to evaluate the correlation between traditional prognostic factors and uPA and PAI-1 expression in primary tumour of breast cancer patients.

  8. Concentrations of plasminogen activator inhibitor-1 (PAI-1 and urokinase plasminogen activator (uPA in induced sputum of asthma patients after allergen challenge.

    Marcin Moniuszko

    2011-04-01

    Full Text Available Urokinase plasminogen activator (uPA and its inhibitor (PAI-1 are involved in tiisue remodeling and repair processes associated with acute and chronic inflammation. The aim of the study was to evaluate the effect of allergen challenge on concentration of uPA and PAI-1 in induced sputum of house dust mite allergic asthmatics (HDM-AAs. Thirty HDM-AAs and ten healthy persons (HCswere recruited for the study. In 24 HDM-AAs bronchial challenge with Dermatophagoides pteronyssinus (Dp and in 6 HDM-AAs sham challenege with saline were performed. In HDM-AAs sputum was induced 24 hours before (T0 and 24 hours (T24 after the challenge. Concentration of uPA and PAI-1 in induced sputum were determined using immunoenzymatic assays. At T0 in HDM-AAs mean sputum uPA (151 Âą 96 pg/ml and PAI-1 (4341 Âą 1262 pg/ml concentrations were higher than in HC (18.8 Âą 6.7 pg/ml; p=0.0002 and 596 Âą 180 pg/ml; p<0.0001; for uPA and PAI-1 respectively. After allergen challenge further increase in sputum uPA (187 Âą 144 pg/ml; p=0.03 and PAI-1 (6252 Âą 2323 pg/ml; p<0.0001 concentrations were observed. Moreover, in Dp challenged, but not in saline challenged HDM-AAs the mean uPA/PAI-1 ratio decreased significantly at T24. No significant increase in the studied parameters were found in sham challenged patients. In HDM-AAs allergen exposure leads to activation of the plasmin system in the airways. Greater increase of the PAI-1 concentration than uPA concentration after allergen challenge may promote airway remodeling and play an important role in the development of bronchial hyperreactivity.

  9. Concentrations of plasminogen activator inhibitor-1 (PAI-1 and urokinase plasminogen activator (uPA in induced sputum of asthma patients after allergen challenge

    Krzysztof Kowal,

    2010-04-01

    Full Text Available Urokinase plasminogen activator (uPA and its inhibitor (PAI-1 are involved in tiisue remodeling and repairprocesses associated with acute and chronic inflammation. The aim of the study was to evaluate the effect of allergen challengeon concentration of uPA and PAI-1 in induced sputum of house dust mite allergic asthmatics (HDM-AAs. ThirtyHDM-AAs and ten healthy persons (HCswere recruited for the study. In 24 HDM-AAs bronchial challenge with Dermatophagoidespteronyssinus (Dp and in 6 HDM-AAs sham challenege with saline were performed. In HDM-AAs sputumwas induced 24 hours before (T0 and 24 hours (T24 after the challenge. Concentration of uPA and PAI-1 in induced sputumwere determined using immunoenzymatic assays. At T0 in HDM-AAs mean sputum uPA (151±96 pg/ml and PAI-1(4341±1262 pg/ml concentrations were higher than in HC (18.8±6.7 pg/ml; p=0.0002 and 596±180 pg/ml; p<0.0001; foruPA and PAI-1 respectively. After allergen challenge further increase in sputum uPA (187±144 pg/ml; p=0.03 and PAI-1(6252±2323 pg/ml; p<0.0001 concentrations were observed. Moreover, in Dp challenged, but not in saline challengedHDM-AAs the mean uPA/PAI-1 ratio decreased significantly at T24. No significant increase in the studied parameters werefound in sham challenged patients. In HDM-AAs allergen exposure leads to activation of the plasmin system in the airways.Greater increase of the PAI-1 concentration than uPA concentration after allergen challenge may promote airway remodelingand play an important role in the development of bronchial hyperreactivity.

  10. Progression of Osteosarcoma from a Non-Metastatic to a Metastatic Phenotype Is Causally Associated with Activation of an Autocrine and Paracrine uPA Axis.

    Liliana Endo-Munoz

    Full Text Available Pulmonary metastasis is the major untreatable complication of osteosarcoma (OS resulting in 10-20% long-term survival. The factors and pathways regulating these processes remain unclear, yet their identification is crucial in order to find new therapeutic targets. In this study we used a multi-omics approach to identify molecules in metastatic and non-metastatic OS cells that may contribute to OS metastasis, followed by validation in vitro and in vivo. We found elevated levels of the urokinase plasminogen activator (uPA and of the uPA receptor (uPAR exclusively in metastatic OS cells. uPA was secreted in soluble form and as part of the protein cargo of OS-secreted extracellular vesicles, including exosomes. In addition, in the tumour microenvironment, uPA was expressed and secreted by bone marrow cells (BMC, and OS- and BMC-derived uPA significantly and specifically stimulated migration of metastatic OS cells via uPA-dependent signaling pathways. Silencing of uPAR in metastatic OS cells abrogated the migratory response to uPA in vitro and decreased metastasis in vivo. Finally, a novel small-molecule inhibitor of uPA significantly (P = 0.0004 inhibited metastasis in an orthotopic mouse model of OS. Thus, we show for the first time that malignant conversion of OS cells to a metastatic phenotype is defined by activation of the uPA/uPAR axis in both an autocrine and paracrine fashion. Furthermore, metastasis is driven by changes in OS cells as well as in the microenvironment. Finally, our data show that pharmacological inhibition of the uPA/uPAR axis with a novel small-molecule inhibitor can prevent the emergence of metastatic foci.

  11. Progression of Osteosarcoma from a Non-Metastatic to a Metastatic Phenotype Is Causally Associated with Activation of an Autocrine and Paracrine uPA Axis.

    Endo-Munoz, Liliana; Cai, Na; Cumming, Andrew; Macklin, Rebecca; Merida de Long, Lilia; Topkas, Eleni; Mukhopadhyay, Pamela; Hill, Michelle; Saunders, Nicholas A

    2015-01-01

    Pulmonary metastasis is the major untreatable complication of osteosarcoma (OS) resulting in 10-20% long-term survival. The factors and pathways regulating these processes remain unclear, yet their identification is crucial in order to find new therapeutic targets. In this study we used a multi-omics approach to identify molecules in metastatic and non-metastatic OS cells that may contribute to OS metastasis, followed by validation in vitro and in vivo. We found elevated levels of the urokinase plasminogen activator (uPA) and of the uPA receptor (uPAR) exclusively in metastatic OS cells. uPA was secreted in soluble form and as part of the protein cargo of OS-secreted extracellular vesicles, including exosomes. In addition, in the tumour microenvironment, uPA was expressed and secreted by bone marrow cells (BMC), and OS- and BMC-derived uPA significantly and specifically stimulated migration of metastatic OS cells via uPA-dependent signaling pathways. Silencing of uPAR in metastatic OS cells abrogated the migratory response to uPA in vitro and decreased metastasis in vivo. Finally, a novel small-molecule inhibitor of uPA significantly (P = 0.0004) inhibited metastasis in an orthotopic mouse model of OS. Thus, we show for the first time that malignant conversion of OS cells to a metastatic phenotype is defined by activation of the uPA/uPAR axis in both an autocrine and paracrine fashion. Furthermore, metastasis is driven by changes in OS cells as well as in the microenvironment. Finally, our data show that pharmacological inhibition of the uPA/uPAR axis with a novel small-molecule inhibitor can prevent the emergence of metastatic foci. PMID:26317203

  12. uPA deficiency exacerbates muscular dystrophy in MDX mice

    Suelves, Mònica; Vidal, Berta; Serrano, Antonio L.; Tjwa, Marc; Roma, Josep; López-Alemany, Roser; Luttun, Aernout; de Lagrán, María Martínez; Díaz, Maria Àngels; Jardí, Mercè; Roig, Manuel; Dierssen, Mara; Dewerchin, Mieke; Carmeliet, Peter; Muñoz-Cánoves, Pura

    2007-01-01

    Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (...

  13. Combined mRNA expression levels of members of the urokinase plasminogen activator (uPA) system correlate with disease-associated survival of soft-tissue sarcoma patients

    Members of the urokinase-type plasminogen activator (uPA) system are up-regulated in various solid malignant tumors. High antigen levels of uPA, its inhibitor PAI-1 and its receptor uPAR have recently been shown to be associated with poor prognosis in soft-tissue sarcoma (STS) patients. However, the mRNA expression of uPA system components has not yet been comprehensively investigated in STS patients. The mRNA expression level of uPA, PAI-1, uPAR and an uPAR splice variant, uPAR-del4/5, was analyzed in tumor tissue from 78 STS patients by quantitative PCR. Elevated mRNA expression levels of PAI-1 and uPAR-del4/5 were significantly associated with clinical parameters such as histological subtype (P = 0.037 and P < 0.001, respectively) and higher tumor grade (P = 0.017 and P = 0.003, respectively). In addition, high uPAR-del4/5 mRNA values were significantly related to higher tumor stage of STS patients (P = 0.031). On the other hand, mRNA expression of uPA system components was not significantly associated with patients' survival. However, in STS patients with complete tumor resection (R0), high PAI-1 and uPAR-del4/5 mRNA levels were associated with a distinctly increased risk of tumor-related death (RR = 6.55, P = 0.054 and RR = 6.00, P = 0.088, respectively). Strikingly, R0 patients with both high PAI-1 and uPAR-del4/5 mRNA expression levels showed a significant, 19-fold increased risk of tumor-related death (P = 0.044) compared to the low expression group. Our results suggest that PAI-1 and uPAR-del4/5 mRNA levels may add prognostic information in STS patients with R0 status and distinguish a subgroup of R0 patients with low PAI-1 and/or low uPAR-del4/5 values who have a better outcome compared to patients with high marker levels

  14. A combination of desmopressin and docetaxel inhibit cell proliferation and invasion mediated by urokinase-type plasminogen activator (uPA) in human prostate cancer cells

    Sasaki, Hiroshi; Klotz, Laurence H. [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Sugar, Linda M. [Department of Pathology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Kiss, Alexander [Department of Research Design and Biostatistics, Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Venkateswaran, Vasundara, E-mail: vasundara.venkateswaran@sunnybrook.ca [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada)

    2015-08-28

    Background: This study was designed to assess the effectiveness of a combination treatment using both desmopressin and docetaxel in prostate cancer treatment. Desmopressin is a well-known synthetic analogue of the antidiuretic hormone vasopressin. It has recently been demonstrated to inhibit tumor progression and metastasis in in vivo models. Docetaxel is widely used for the treatment of castration resistant prostate cancer (CRPC) patients. However, durable responses have been uncommon to date. In this study, we investigated the anti-tumor effect of desmopressin in combination with docetaxel in vitro and in vivo. Methods: Two prostate cancer cells (PC3, LNCaP) were treated with different concentrations of desmopressin alone, docetaxel alone, and a combination of desmopressin and docetaxel. Cell proliferation was determined by MTS assay. The anti-invasive and anti-migration potential of desmopressin and in combination with docetaxel were examined by wound healing assay, migration chamber assay, and matrigel invasion assay. Results: The combination of desmopressin and docetaxel resulted in a significant inhibition of PC3 and LNCaP cell proliferation (p < 0.01). Additionally, cell migration and invasion were also inhibited by the combination when compared to that of either treatment alone in PC3 cells (p < 0.01). The anti-tumor effect of this combination treatment was associated with down-regulation of both urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP-2 and MMP-9) in PC3 cells. Conclusions: We are the first to elucidate the anti-tumor and anti-metastatic potential of desmopressin in combination with docetaxel in a prostate cancer model via the uPA-MMP pathway. Our finding could potentially contribute to the therapeutic profile of desmopressin and enhance the efficacy of docetaxel based treatment for CRPC. - Highlights: • Desmopressin inhibits cell proliferation in prostate cancer cells. • The expression of cyclin A and CDK2

  15. A combination of desmopressin and docetaxel inhibit cell proliferation and invasion mediated by urokinase-type plasminogen activator (uPA) in human prostate cancer cells

    Background: This study was designed to assess the effectiveness of a combination treatment using both desmopressin and docetaxel in prostate cancer treatment. Desmopressin is a well-known synthetic analogue of the antidiuretic hormone vasopressin. It has recently been demonstrated to inhibit tumor progression and metastasis in in vivo models. Docetaxel is widely used for the treatment of castration resistant prostate cancer (CRPC) patients. However, durable responses have been uncommon to date. In this study, we investigated the anti-tumor effect of desmopressin in combination with docetaxel in vitro and in vivo. Methods: Two prostate cancer cells (PC3, LNCaP) were treated with different concentrations of desmopressin alone, docetaxel alone, and a combination of desmopressin and docetaxel. Cell proliferation was determined by MTS assay. The anti-invasive and anti-migration potential of desmopressin and in combination with docetaxel were examined by wound healing assay, migration chamber assay, and matrigel invasion assay. Results: The combination of desmopressin and docetaxel resulted in a significant inhibition of PC3 and LNCaP cell proliferation (p < 0.01). Additionally, cell migration and invasion were also inhibited by the combination when compared to that of either treatment alone in PC3 cells (p < 0.01). The anti-tumor effect of this combination treatment was associated with down-regulation of both urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP-2 and MMP-9) in PC3 cells. Conclusions: We are the first to elucidate the anti-tumor and anti-metastatic potential of desmopressin in combination with docetaxel in a prostate cancer model via the uPA-MMP pathway. Our finding could potentially contribute to the therapeutic profile of desmopressin and enhance the efficacy of docetaxel based treatment for CRPC. - Highlights: • Desmopressin inhibits cell proliferation in prostate cancer cells. • The expression of cyclin A and CDK2

  16. Correlation between Expression of P38 MAPK-Signaling and uPA in Breast Cancer

    Yanchun Han; Luying Liu; Dongxia Yan; Guihua Wang

    2008-01-01

    OBJECTIVE To study the expression of phosphorylated p38 mitogen.Activated protein kinase(p-p38)and uPA and the correlation of their expression with breast cancer Clinic.patholodiCal characteristics,and to investigate the role of the p38MAPK-signaling pathway in regulating uPA expression in breast cancer cells.METHODS Immunohistochemistry(S-P)was used to test the expression of P-p38 and uPA in 60 specimens of breast cancer tissues.Western blots were adopted to detect expression of the p-p38 and uPA proteins in MDA-MB-231 and MCF-7 breast cancer cells.And uPA expression after treatment with SB203580,a specific inhibitor of p38 MAPK.RESULTS The positive rate of the P.P38 protein and uPA protein expression in the breast cancer tissues was 56.7% and 60.0%.Respectively.The expression of P.P38 was positively related to the expression of uPA(r=0.316,P0.05).The expression of p-p38 and uPA in MDA. MB-231 cells was higher than that in MCF.7 cells.SB203580 inhibited the p38 MAPK pathway and reduced uPA protein expression.CONCLUSI0N The p38 MAPK-signaling pathway promotes breast cancer malignant progression by up.Regulating uPA expression,and it may be an important process in breast cancer invasion and metastasis.

  17. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Highlights: ► Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. ► CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. ► GDNT inhibits expression of CDC20 in breast cancer cells. ► GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. ► GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  18. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  19. Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum

    Smirnov Vladimir N

    2002-10-01

    Full Text Available Abstract Background Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown. Results We show that in Hansenula polymorpha overexpression worsens uPA secretion and stimulates its intracellular aggregation. The absence of the Golgi modifications in accumulated uPA suggests that aggregation occurs within the endoplasmic reticulum. Deletion analysis has shown that the N-terminal domains were responsible for poor uPA secretion and propensity to aggregate. Mutation abolishing N-glycosylation decreased the efficiency of uPA secretion and increased its aggregation degree. Retention of uPA in the endoplasmic reticulum stimulates its aggregation. Conclusions The data obtained demonstrate that defect of uPA secretion in yeast is related to its retention in the endoplasmic reticulum. Accumulation of uPA within the endoplasmic reticulum disturbs its proper folding and leads to formation of high molecular weight aggregates.

  20. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA.

    Jiang, Jiahua; Jedinak, Andrej; Sliva, Daniel

    2011-11-18

    Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers. PMID:22033405

  1. Synthesis and in vivo preclinical evaluation of an 18F labeled uPA inhibitor as a potential PET imaging agent

    Introduction: The urokinase plasminogen activator (uPA) system is a proteolytic cascade involved in tumor invasion and metastasis. uPA and its inhibitor PAI-1 are described as biomarkers for breast cancer with the highest level of evidence. The present study describes the synthesis and first in vivo application of an activity based uPA PET probe. Methods: Based on the design of a small irreversible and selective uPA inhibitor we developed an 18F-labeled activity based probe for uPA imaging. Human uPA expressing MDA-MB-231-luc2-GFP cells were inoculated in the mammary fat pads of nude mice and treated with the probe once tumors reached a volume of 150 mm3. Scans were performed at 0.25, 0.75, 1.5, 4 and 6 h post injection. To evaluate tumor uptake in vivo and ex vivo data were gathered. Biodistribution data of the organs and tissues of interest were collected at all time points. Due to a relatively low tumor uptake, probe stability was further evaluated. Results: The uPA targeting PET tracer was produced in high purity and with good specific radioactivity. In vivo PET data showed a maximum tumor uptake of 2,51 ± 0,32 %ID/g at 4 h p.i. A significant correlation between in vivo and ex vivo tumor uptake calculation was found (R = 0.75; p < 0.01). Due to a high blood signal at all time points, probe stability was further examined revealing high plasma protein binding and low plasma stability. Conclusions: In vivo and ex vivo results clearly demonstrate that uPA expressing tumors can be detected with non-invasive PET imaging. Stability tests suggest that further optimization is needed to provide a better tumor-to-background contrast

  2. relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells

    Ricca, A; Biroccio, A; Trisciuoglio, D; M. Cippitelli; Zupi, G.; Bufalo, D Del

    2001-01-01

    We previously demonstrated that bcl-2 over-expression increases the malignant behaviour of the MCF7 ADR human breast cancer cell line and enhances nuclear factor-kappa B (NF-k B) transcriptional activity. Here, we investigated the direct effect of increased NF-k B activity on the tumorigenicity of MCF7 ADR cells by over-expressing the NF-k B subunit relA/p65. Surprisingly, our results demonstrated that over-expression of relA determines a considerable reduction of the tumorigenic ability in n...

  3. relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells

    Ricca, A; Biroccio, A; Trisciuoglio, D; Cippitelli, M; Zupi, G; Bufalo, D Del

    2001-01-01

    We previously demonstrated that bcl-2 over-expression increases the malignant behaviour of the MCF7 ADR human breast cancer cell line and enhances nuclear factor-kappa B (NF-k B) transcriptional activity. Here, we investigated the direct effect of increased NF-k B activity on the tumorigenicity of MCF7 ADR cells by over-expressing the NF-k B subunit relA/p65. Surprisingly, our results demonstrated that over-expression of relA determines a considerable reduction of the tumorigenic ability in nude mice as indicated by the tumour take and the median time of tumour appearance. In vitro studies also evidenced a reduced cell proliferation and the activation of the apoptotic programme after relA over-expression. Apoptosis was associated with the production of reactive oxygen species, and the cleavage of the specific substrate Poly-ADP-ribose-polymerrase. Our data indicate that there is no general role for NF-k B in the regulation of apoptosis and tumorigenicity. In fact, even though inhibiting NF-k B activity has been reported to be lethal to tumour cells, our findings clearly suggest that an over-induction of nuclear NF-k B activity may produce the same effect. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747334

  4. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  5. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis. Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression

  6. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    Dong Zhongyun

    2008-06-01

    Full Text Available Abstract Background Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα-mediated signaling axis. Methods Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. Results We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Conclusion Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression.

  7. Tetrahydrocurcumin inhibits HT1080 cell migration and invasion via downregulation of MMPs and uPA

    Supachai YODKEEREE; Spiridione GARBISA; Pomngarm LIMTRAKUL

    2008-01-01

    Aim: Tetrahydrocurcumin (THC) is an active metabolite of curcumin. It has been reported to have similar pharmacological activity to curcumin. The proteases that participate in extracellular matrix (ECM) degradation are involved in cancer cell metastasis. The present study investigates the effect of an ultimate metabolite of curcumin, THC, on the invasion and motility of highly-metastatic HT1080 human fibrosarcoma cells. Methods: The effect of THC on HTI080 cell invasion and migration was determined using Boyden chamber assay. Cell-adhesion assay was used for examining the binding of cells to ECM molecules. Zymography assay was used to analyze the effect of THC on matrix metalloproteinase (MMP)-2, MMP-9, and urokinase plasminogen activator (uPA) secretion from HT1080 cells. Tissue inhibitor of metalloproteinase (TIMP)-2 and membrane-type 1 matrix metalloproteinase (MT1-MMP) proteins levels were analyzed by Western blotting. Results: Treatment with THC reduced HT1080 cell invasion and migration in a dose-dependent manner. THC also decreased the cell adhesion to Matrigel and laminin-coated plates. Analysis by zymography demonstrated that treatment with THC reduced the levels of MMP-2, MMP-9, and uPA. THC also inhibited the levels of MT1-MMP and TIMP-2 proteins detected by Western blot analysis. Conclusion: Our findings revealed that THC reduced HT1080 cell invasion and migration. The inhibition of cancer cell invasion is associated with the downregulation of ECM degradation enzymes and the inhibition of cell adhesion to ECM proteins.

  8. Recombinant nematode anticoagulant protein c2 inhibits cell invasion by decreasing uPA expression in NSCLC cells.

    Tong, Yu; Yue, Jun; Mao, Meng; Liu, Qingqing; Zhou, Jing; Yang, Jiyun

    2015-04-01

    Nematode anticoagulant protein c2 (NAPc2) is an 85-residue polypeptide originally isolated from the hematophagous hookworm, Ancylostoma caninum. Several studies have shown that rNAPc2 inhibits the growth of primary and metastatic tumors in mice independently of its ability to initiate coagulation. We obtained bioactive recombinant rNAPc2 by splicing of the rNAPc2-intein-CBD fusion proteins expressed in E. coli ER2566. In the in vitro assay, rNAPc2 obviously inhibited the invasive ability of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Furthermore, rNAPc2 suppressed tumor growth in vivo by daily intraperitoneal injection of rNAPc2 in an NSCLC cell xenograft model of nude mice. Respectively, rNAPc2 downregulated the production of urokinase plasminogen activator (uPA) (P<0.05) and suppressed nuclear factor-κB (NF-κB) activity. We also identified that inhibition of NF-κB activity impaired cell invasion and reduced the uPA production in NSCLC cells. Meanwhile, NF-κB was found to directly bind to the uPA promoter in vitro. These results demonstrated that rNAPc2 inhibits cell invasion at least in part through the downregulation of the NF-κB-dependent metastasis-related gene expression in NSCLC. Our results also suggest that uPA, a known metastasis-promoting gene, is indirectly regulated by rNAPc2 through NF-κB activation. These results indicate that rNAPc2 may be a potent agent for the prevention of NSCLC progression. PMID:25672417

  9. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis

  10. Endothelin-1 activates phospholipase D and thymidine incorporation in fibroblasts overexpressing protein kinase C beta 1.

    Pai, J K; Dobek, E A; Bishop, W R

    1991-01-01

    Endothelins (ETs) are a family of extremely potent vasoconstrictor peptides. In addition, ET-1 acts as a potent mitogen and activates phospholipase C in smooth muscle cells and fibroblasts. We examined the effects of ET-1 on phosphatidylcholine (PC) metabolism and thymidine incorporation in control Rat-6 fibroblasts and in cells that overexpress protein kinase C beta 1 (PKC). PC pools were labeled with [3H]myristic acid, and formation of phosphatidylethanol (PEt), an unambiguous marker of pho...

  11. Overexpression of SOCS3 exhibits preclinical antitumor activity against malignant pleural mesothelioma.

    Iwahori, Kota; Serada, Satoshi; Fujimoto, Minoru; Nomura, Shintaro; Osaki, Tadashi; Lee, Chun Man; Mizuguchi, Hiroyuki; Takahashi, Tsuyoshi; Ripley, Barry; Okumura, Meinoshin; Kawase, Ichiro; Kishimoto, Tadamitsu; Naka, Tetsuji

    2011-08-15

    Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis for which an effective therapy remains to be established. Our study investigated the therapeutic potential of the suppressor of cytokine signaling 3 (SOCS3), an endogenous inhibitor of intracellular signaling pathways, for treatment of MPM. We infected MPM cells (H226, EHMES-1, MESO-1 and MESO-4) with an adenovirus-expressing SOCS3 (AdSOCS3) to examine the effect of SOCS3 overexpression on MPM cells. SOCS3 overexpression reduced MPM proliferation and induced apoptosis and partial G0/G1 arrest. SOCS3 also inhibited the proliferation of MPM cells via multiple signaling pathways including Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated kinase (ERK), focal adhesion kinase (FAK) and p53 pathways. Notably, AdSOCS3 treatment inhibited tumor growth in an MPM pleural xenograft model. These findings demonstrate that overexpression of SOCS3 has a potent antitumor effect against MPM both in vitro and in vivo and indicate the potential for clinical use of SOCS3 for MPM treatment. PMID:20949562

  12. FER tyrosine kinase (FER) overexpression mediates resistance to quinacrine through EGF-dependent activation of NF-κB

    Guo, Canhui; Stark, George R.

    2011-01-01

    Quinacrine, a drug with antimalarial and anticancer activities that inhibits NF-κB and activates p53, has progressed into phase II clinical trials in cancer. To further elucidate its mechanism of action and identify pathways of drug resistance, we used an unbiased method for validation-based insertional mutagenesis to isolate a quinacrine-resistant cell line in which an inserted CMV promoter drives overexpression of the FER tyrosine kinase (FER). Overexpression of FER from a cDNA confers quin...

  13. MSX2 overexpression inhibits gemcitabine-induced caspase-3 activity in pancreatic cancer cells

    Shin Hamada; Kennichi Satoh; Kenji Kimura; Atsushi Kanno; Atsushi Masamune; Tooru Shimosegawa

    2005-01-01

    AIM: To evaluate the effect of MSX2 on gemcitabineinduced caspase-3 activation in pancreatic cancer cell line Panc-1.METHODS: Using V5-tagged MSX2 expression vector,stable transfectant of MSX2 was generated from Panc-1cells (Px14 cells). Cell viability under gemcitabine administration was determined by MTT assay relative to control cell line (empty-vector transfected Panc-1 cells;P-3EV cells). Hoechst staining was used for the detection of apoptotic cell. Activation of caspase-3 was assessed using Western blotting analysis and direct measurement of caspase-3 specific activities.RESULTS: MSX2 overexpression in Panc-1 cells resulted in decreased gemcitabine-induced caspase-3 activation and increased cell viability under gemcitabine treatment in Px14 cells.CONCLUSION: MSX2 exerts repressive effects on gemcitabine-induced apoptotic pathway. This novel apoptosis-regulating function of MSX2 may provide a new therapeutic target for pancreatic cancer.

  14. E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression

    Fusco Alfredo

    2006-08-01

    Full Text Available Abstract The High Mobility Group protein HMGA2 is a nuclear architectural factor that plays a critical role in a wide range of biological processes including regulation of gene expression, embryogenesis and neoplastic transformation. Several studies are trying to identify the mechanisms by which HMGA2 protein is involved in each of these activities, and only recently some new significant insights are emerging from the study of transgenic and knock-out mice. Overexpression of HMGA2 gene leads to the onset of prolactin and GH-hormone induced pituitary adenomas in mice, suggesting a critical role of this protein in pituitary tumorigenesis. This was also confirmed in the human pathology by the finding that HMGA2 amplification and/or overexpression is present in human prolactinomas. This review focuses on recent data that explain the mechanism by which HMGA2 induces the development of pituitary adenomas in mice. This mechanism entails the activation of the E2F1 protein by the HMGA2-mediated displacement of HDAC1 from pRB protein.

  15. A novel epidermal growth factor receptor variant lacking multiple domains directly activates transcription and is overexpressed in tumors

    Piccione, EC; Lieu, TJ; Gentile, CF; Williams, TR; Connolly, AJ; Godwin, AK; Koong, AC; Wong, AJ

    2011-01-01

    The epidermal growth factor receptor (EGFR) is essential to multiple physiological and neoplastic processes via signaling by its tyrosine kinase domain and subsequent activation of transcription factors. EGFR overexpression and alteration, including point mutations and structural variants, contribute to oncogenesis in many tumor types. In this study, we identified an in-frame splice variant of the EGFR called mini-LEEK (mLEEK) that is more broadly expressed than the EGFR and is overexpressed ...

  16. SATB1 OVEREXPRESSION DRIVES TUMOR-PROMOTING ACTIVITIES IN CANCER-ASSOCIATED DENDRITIC CELLS

    Tesone, Amelia J.; Rutkowski, Melanie R.; Brencicova, Eva; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Stephen, Tom L.; Allegrezza, Michael J.; Payne, Kyle K.; Nguyen, Jenny M.; Wickramasinghe, Jayamanna; Tchou, Julia; Borowsky, Mark E.; Rabinovich, Gabriel A.; Kossenkov, Andrew V.; Conejo-Garcia, Jose R.

    2016-01-01

    SUMMARY Special AT-rich sequence-binding protein-1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating MHC-II expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC-II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46+ inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression. PMID:26876172

  17. Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells.

    Tesone, Amelia J; Rutkowski, Melanie R; Brencicova, Eva; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Stephen, Tom L; Allegrezza, Michael J; Payne, Kyle K; Nguyen, Jenny M; Wickramasinghe, Jayamanna; Tchou, Julia; Borowsky, Mark E; Rabinovich, Gabriel A; Kossenkov, Andrew V; Conejo-Garcia, Jose R

    2016-02-23

    Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression. PMID:26876172

  18. CARMA3 is overexpressed in colon cancer and regulates NF-κB activity and cyclin D1 expression

    Highlights: ► CARMA3 expression is elevated in colon cancers. ► CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. ► CARMA3 upregulates cyclinD1 through NF-κB activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.

  19. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    Barnathan, E S; Kuo, A; Karikó, K;

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...

  20. Optimized over-expression of [FeFe] hydrogenases with high specific activity in Clostridium acetobutylicum

    von Abendroth, Gregory; Stripp, Sven; Happe, Thomas [Ruhr-Universitaet Bochum, Lehrstuhl fuer Biochemie der Pflanzen, AG Photobiotechnologie, 44780 Bochum (Germany); Silakov, Alexey [Max-Planck-Institut fuer Bioanorganische Chemie, 45470 Muelheim an der Ruhr (Germany); Croux, Christian; Soucaille, Philippe; Girbal, Laurence [UMR5504, UMR792 Ingenierie des Systemes Biologiques et des Procedes, CNRS, INRA, INSA, 31400 Toulouse (France)

    2008-11-15

    It was previously shown that Clostridium acetobutylicum is capable to over-express various [FeFe] hydrogenases although the protein yield was low. In this study we report on doubling the yield of the clostridial hydrogenase by replacing the native gene hydA1{sub Ca} with a recombinant one via homologous recombination. The purified protein HydA1{sub Ca} shows an unexpected high specific activity (up to 2257 {mu}mol H{sub 2} min{sup -1} mg{sup -1}) for hydrogen evolution. Furthermore, the highly active green algal hydrogenase HydA1{sub Cr} from Chlamydomonas reinhardtii was heterologously expressed in C. acetobutylicum, and purified with increased yield (1 mg protein per liter of cells) and high activity (625 {mu}mol H{sub 2} min{sup -1} mg{sup -1}). EPR studies demonstrate intact H-clusters for homologously and heterologously expressed [FeFe] hydrogenases in the CO-inhibited oxidized redox state, and prove the high efficiency of the C. acetobutylicum expression system. (author)

  1. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine

    Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin

    2016-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration. PMID:27092498

  2. Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy

    Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François

    2016-01-01

    Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154

  3. Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator

    Kaczmarek, Jakub; Skottrup, Peter Durand

    2015-01-01

    pericellular proteolysis and remodeling of ECM. uPA and the receptor uPAR, are overexpressed in a number of malignant tumours and uPA/uPAR play major roles in adhesion, migration, invasion and metastasis of cancer cells. Elevated levels of uPA have been reported as a risk biomarker for disease relapse...

  4. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup [Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-799 (Korea, Republic of); Jang, Ho Hee, E-mail: hhjang@gachon.ac.kr [Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-799 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon (Korea, Republic of)

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.

  5. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation

  6. Bronchial hyperreactivity, increased endotoxin lethality and melanocytic tumorigenesis in transgenic mice overexpressing platelet-activating factor receptor.

    Ishii, S.; Nagase, T; Tashiro, F; Ikuta, K. (Koichi); Sato, S.; Waga, I.; Kume, K.; Miyazaki, J; Shimizu, T

    1997-01-01

    Although platelet-activating factor (PAF) has been shown to exert pleiotropic effects on isolated cells or tissues, controversy still exists as to whether it plays significant pathophysiological roles in vivo. To answer this question, we established transgenic mice over-expressing a guinea-pig PAF receptor (PAFR). The transgenic mice showed a bronchial hyperreactivity to methacholine and an increased mortality when exposed to bacterial endotoxin. An aberrant melanogenesis and proliferative ab...

  7. Enhanced tethered-flight duration and locomotor activity by overexpression of the human gene SOD1 in Drosophila motorneurons

    Agavni Petrosyan

    2015-03-01

    Full Text Available Mutation of the human gene superoxide dismutase (hSOD1 is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig’s disease. Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila‘s motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF as a function of age (5 to 50 days. Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking behavior in late life when flies had lost the ability to fly (age ≥ 60 d. hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life.

  8. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.

    Yukihiro Saito

    Full Text Available Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (If flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN channels and attenuation of the inward rectifier K+ current (IK1 flowing through inward rectifier potassium (Kir channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs and induced cardiomyocytes that originally show poor IK1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs function as a biological pacemaker in vitro.The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of IK1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger If currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded

  9. In vivo overexpression of tumstatin domains by tumor cells inhibits their invasive properties in a mouse melanoma model

    Our previous studies demonstrated that a synthetic peptide encompassing residues 185-203 of the noncollagenous (NC1) domain of the α3 chain of type IV collagen, named tumstatin, inhibits in vitro melanoma cell proliferation and migration. In the present study, B16F1 melanoma cells were stably transfected to overexpress the complete tumstatin domain (Tum 1-232) or its C-terminal part, encompassing residues 185-203 (Tum 183-232). Tumstatin domain overexpression inhibited B16F1 in vitro cell proliferation, anchorage-independent growth, and invasive properties. For studying the in vivo effect of overexpression, representative clones were subcutaneously injected into the left side of C57BL6 mice. In vivo tumor growth was decreased by -60% and -56%, respectively, with B16F1 cells overexpressing Tum 1-232 or Tum 183-232 compared to control cells. This inhibitory effect was associated with a decrease of in vivo cyclin D1 expression. We also demonstrated that the overexpression of Tum 1-232 or Tum 183-232 induced an in vivo down-regulation of proteolytic cascades involving matrix metalloproteinases (MMPs), especially the production or activation of MMP-2, MMP-9, MMP-13, as well as MMP-14. The plasminogen activation system was also altered in tumors with a decrease of urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA) and a strong increase of plasminogen activator inhibitor-1 (PAI-1). Collectively, our results demonstrate that tumstatin or its C-terminal antitumor fragment, Tum 183-232, inhibits in vivo melanoma progression by triggering an intracellular transduction pathway, which involves a cyclic AMP (cAMP)-dependent mechanism

  10. Uniform {sup 15}N- and {sup 15}N/{sup 13}C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W. [Abbott Laboratories, Abbott Park, IL (United States)

    1994-12-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly {sup 15}N-and {sup 15}N/{sup 13}C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the {phi} angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

  11. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    Caiazza, Francesco

    2010-05-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapidly activate cPLA(2)alpha in MCF-7 breast cancer cells. Overexpression or gene amplification of HER2 is found in approximately 30% of breast cancer patients and correlates with a poor clinical outcome and resistance to endocrine therapy. This study reports the first evidence for a correlation between cPLA(2)alpha enzymatic activity and overexpression of the HER2 receptor. The activation of cPLA(2)alpha in response to E2 treatment was biphasic with the first phase dependent on trans-activation through the matrix metalloproteinase-dependent release of heparin-bound epidermal growth factor. EGFR\\/HER2 heterodimerization resulted in downstream signaling through the ERK1\\/2 cascade to promote cPLA(2)alpha phosphorylation at Ser505. There was a correlation between HER2 and cPLA(2)alpha expression in six breast cancer cell lines examined, and inhibition of HER2 activation or expression in the SKBR3 cell line using herceptin or HER2-specific small interfering RNA, respectively, resulted in decreased activation and expression of cPLA(2)alpha. Pharmacological blockade of cPLA(2)alpha using a specific antagonist suppressed the growth of both MCF-7 and SKBR3 cells by reducing E2-induced proliferation and by stimulating cellular apoptosis and necrosis. This study highlights cPLAalpha(2) as a potential target for therapeutic intervention in endocrine-dependent and endocrine-independent breast cancer.

  12. Chapter 4. Making Heroes: the Early days of OUN-UPA

    Marples, David R.

    2013-01-01

    Introduction This chapter examines interpretations of the topic of OUN-UPA as constituents in the process of constructing a national history in Ukraine, and in particular the changing interpretations of this organization in Ukraine. Several introductory premises need to be stated. First, as earlier, the goal is not to determine factual truth per se, but rather to analyze the prevailing narratives. Second, this chapter includes a sampling of newspapers of different political perspectives and r...

  13. Transgenic medaka that overexpress growth hormone have a skin color that does not indicate the activation or inhibition of somatolactin-α signal.

    Komine, Ritsuko; Nishimaki, Toshiyuki; Kimura, Tetsuaki; Oota, Hiroki; Naruse, Kiyoshi; Homma, Noriko; Fukamachi, Shoji

    2016-06-10

    Teleosts have two paralogous growth-hormone receptors (GHRs). In vitro studies demonstrated that both receptors bind to and transmit the signal of the growth hormone (GH). However, one of the GHRs (GHR1) was shown to bind more strongly to somatolactin-α (SLα), a fish-specific peptide hormone that is closely related to GH, and is, therefore, termed somatolactin receptor (SLR). In this study, we questioned whether the dual binding of GHR1/SLR causes a crosstalk (reciprocal activation or inhibition) between GH and SLα signals in vivo. For this purpose, we newly established a transgenic medaka that overexpresses GH (Actb-GH:GFP) and assessed its phenotype. The body weight of these transgenic medaka is about twice that of wild-type fish, showing that functional GH was successfully overexpressed in Actb-GH:GFP fish. The transgenic medaka, especially female fish, showed severe infertility, which was a common side effect in GH transgenesis. The skin color, which reflects the effects of SLα most conspicuously in medaka, was similar to that of neither the SLα-overexpressing nor the SLα-deficient medaka, indicating that GH overexpression does not enhance or suppress the SLα signal. We also verified that a transgenic medaka that overexpressed SLα grew and reproduced normally. Therefore, regardless of the in vitro binding relationships, the GH and SLα signals seem not to crosstalk significantly in vivo even when these hormones are overexpressed. PMID:26945627

  14. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis

    Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the

  15. Immunocytochemical Phenotyping of Disseminated Tumor Cells in Bone Marrow by uPA Receptor and CK18: Investigation of Sensitivity and Specificity of an Immunogold/Alkaline Phosphatase Double Staining Protocol

    Allgayer, Heike; Heiss, Markus Maria; Riesenberg, Rainer; Babic, Rudolf; Jauch, Karl Walter; Schildberg, Friedrich Wilhelm

    1997-01-01

    Phenotyping of cytokeratin (CK) 18-positive cells in bone marrow is gaining increasing importance for future prognostic screening of carcinoma patients. Urokinase-type plasminogen activator receptor (uPA-R) is one example of a potential aggressive marker for those cells. However, a valid and reliable double staining method is needed. Using monoclonal antibodies against uPA-R and CK18, we modified an immunogold/alkaline phosphatase double staining protocol. UPA-R/CK18-positive tumor cell contr...

  16. Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway.

    Mohammed M H Al-Gayyar

    Full Text Available Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotocin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75(NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75(NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75(NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways.

  17. Overexpression of hepatic plasminogen activator inhibitor type 1 mRNA in rabbits with fatty liver

    Jian-Gao Fan; Liang-Hua Chen; Zheng-Jie Xu; Min-De Zeng

    2001-01-01

    @@ INTRODUCTION Plasminogen activator inhibitor type 1 ( PAI-I ), an approximately Mr 50000 glycoprotein, is the major physiological inhibitor of plasminogen activators. It is not only the priming factor for atherosclerosis and coronary thrombosis[1-3] , but also participates in the genesis of chronic hepatitis and liver fibrosis[4-11] . However, there has been no available report yet about the research of hepatic PAl-1 gene expression in hyperlipidemia and fatty liver. The present study aimed to explore the change of hepatic PAl-1 mRNA and its plasma activity by means of animal model.

  18. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  19. Over-expression and characterization of active recombinant rat liver carnitine palmitoyltransferase II using baculovirus.

    Johnson, T M; Mann, W R; Dragland, C J; Anderson, R C; Nemecek, G M; Bell, P A

    1995-01-01

    The cDNA encoding rat liver carnitine palmitoyltransferase II (CPT-II) was heterologously expressed using a recombinant baculovirus/insect cell system. Unlike Escherichia coli, the baculovirus-infected insect cells expressed mostly soluble active recombinant CPT-II (rCPT-II). CPT activity from crude lysates of recombinant baculovirus-infected insect cells was maximal between 50 and 72 h post-infection, with a peak specific activity of 100-200 times that found in the mock- or wild-type-infected control lysates. Milligram quantities (up to 1.8 mg/l of culture) of active rCPT-II were chromatographically purified from large-scale cultures of insect cells infected with the recombinant baculovirus. The rCPT-II was found to be: (1) similar in size to the native rat liver enzyme (approximately 70 kDa) as judged by SDS/PAGE; (2) immunoreactive with a polyclonal serum raised against rat liver CPT-II; and (3) not glycosylated. Kinetic analysis of soluble rCPT-II revealed Km values for carnitine and palmitoyl-CoA of 950 +/- 27 microM and 34 +/- 5.6 microM respectively. Images Figure 1 Figure 2 Figure 4 PMID:7626037

  20. Common TNF-α, IL-1β, PAI-1, uPA, CD14 and TLR4 polymorphisms are not associated with disease severity or outcome from Gram negative sepsis

    Eugen-Olsen Jesper

    2007-09-01

    Full Text Available Abstract Background Several studies have investigated single nucleotide polymorphisms (SNPs in candidate genes associated with sepsis and septic shock with conflicting results. Only few studies have combined the analysis of multiple SNPs in the same population. Methods Clinical data and DNA from consecutive adult patients with culture proven Gram negative bacteremia admitted to a Danish hospital between 2000 and 2002. Analysis for commonly described SNPs of tumor necrosis-α, (TNF-α, interleukin-1β (IL-1β, plasminogen activator-1 (PAI-1, urokinase plasminogen activator (uPA, CD14 and toll-like receptor 4 (TLR4 was done. Results Of 319 adults, 74% had sepsis, 19% had severe sepsis and 7% were in septic shock. No correlation between severity or outcome of sepsis was observed for the analyzed SNPs of TNF-α, IL-1β, PAI-1, uPA, CD14 or TLR-4. In multivariate Cox proportional hazard regression analysis, increasing age, polymicrobial infection and haemoglobin levels were associated with in-hospital mortality. Conclusion We did not find any association between TNF-α, IL-1β, PAI-1, uPA, CD14 and TLR4 polymorphisms and outcome of Gram negative sepsis. Other host factors appear to be more important than the genotypes studied here in determining the severity and outcome of Gram negative sepsis.

  1. Expression and functional characterization of a recombinant targeted toxin with an uPA cleavable linker in Pichia pastoris.

    Zhu, Wen he; Sun, Miao nan; Wang, Yong sheng; Sun, De Jun; Zhang, Shao xuan

    2011-04-01

    A recombinant targeted toxin (Disintegrin-Conj-Mel) was developed that contained a disintegrin connected to cytotoxic melittin by a urokinase plasminogen activator (uPA)-cleavable linker. This recombinant targeted toxin was designed to target tumor cells expressing integrin αvβ3. The fusion gene was expressed under the control of the promoter AOX1 in Pichia pastoris. Electrophoresis by SDS-PAGE and Western blotting assays of culture broth from a methanol-induced expression strain, demonstrated that an approximately 13 kDa fusion protein was secreted into the culture medium. The molecular weight was that calculated from the predicted amino acid sequence. After optimizing the growth and expression conditions of the transformant strain, about 160 mg/L of the recombinant protein was achieved. The recombinant protein was purified to more than 95% purity by SP Sepharose ion exchange chromatography and Sephadex G-75 gel filtration chromatography. The hemolysis bioactivity test revealed that the fusion had no hemolytic activity or cytotoxicity against uPA non-expressing 293 cells, but exerted dose-dependent inhibition on uPA-expressing A549 cell proliferation. PMID:21144903

  2. EXPRESSION AND SIGNIFICANCE OF UROKINASE-TYPE PLASMINOGEN ACTIVATOR IN BREAST CANCER

    XIAO Jiping; ZHANG Guangde; XIA Wenhua; CHENG Deji

    1999-01-01

    Objective: To study the expression and clinical significance of urokinase-type plasminogen activator (uPA) in breast cancer. Methods: Applying streptavidin-biotin complex (SABC) immunohistochemical technique, expression of uPA was studied in 100 patients with primary breast cancer. Results: There were 55 patients with high uPA expression, and 45 with lower expression. There was significant correlation between uPA expression and TNM stage, lymph node status, and the tumor size. Neither age, menopausal status, nor ER status was significantly related with level of uPA expression. The patients with high expression of uPA had significantly shorter disease-free survival (DFS)and overall survival (OS) than did those with low expression of uPA. Univariate analysis showed that uPA as a prognostic factor was of similar magnitude to lymph node status and TNM stage, but stronger than that of ER status and tumor size. UPA was an independent prognostic factor affecting disease-free survival and overall survival. Conclusion: uPA appears to be a strong and independent biologic marker for predicting prognosis of breast cancer.

  3. Systemic overexpression of TNFα-converting enzyme does not lead to enhanced shedding activity in vivo.

    Masaki Yoda

    Full Text Available TNFα-converting enzyme (TACE/ADAM17 is a membrane-bound proteolytic enzyme with a diverse set of target molecules. Most importantly, TACE is indispensable for the release and activation of pro-TNFα and the ligands for epidermal growth factor receptor in vivo. Previous studies suggested that the overproduction of TACE is causally related to the pathogenesis of inflammatory diseases and cancers. To test this hypothesis, we generated a transgenic line in which the transcription of exogenous Tace is driven by a CAG promoter. The Tace-transgenic mice were viable and exhibited no overt defects, and the quantitative RT-PCR and Western blot analyses confirmed that the transgenically introduced Tace gene was highly expressed in all of the tissues examined. The Tace-transgenic mice were further crossed with Tace⁻/⁺ mice to abrogate the endogenous TACE expression, and the Tace-transgenic mice lacking endogenous Tace gene were also viable without any apparent defects. Furthermore, there was no difference in the serum TNFα levels after lipopolysaccharide injection between the transgenic mice and control littermates. These observations indicate that TACE activity is not necessarily dependent on transcriptional regulation and that excess TACE does not necessarily result in aberrant proteolytic activity in vivo.

  4. Velika župa Dubrava u 1943. godini do kapitulacije Italije

    Mirošević, Franko

    2015-01-01

    Ovaj prilog nastavak je članka »Velika župa Dubrava između Talijana, četnika i partizana u 1942. godini.« Opisuje prilike u navedenoj župi u 1943. godini, u kojoj se nastavljaju zbivanja iz 1942. Početkom 1943. partizani obnavljaju svoje borbene aktivnosti, četnici nastavljaju teror nad Hrvatima i Muslimanima uz talijansku benevolentnost. Sredinom 1943. u prostor Velike župe Dubrava dolazi novi vojno-politički subjekt, njemačka vojska, koja razoružava četnike i potiskuje dotadašnji utjecaj ta...

  5. Overexpression of Soluble Recombinant Human Lysyl Oxidase by Using Solubility Tags: Effects on Activity and Solubility

    Smith, Madison A.; Gonzalez, Jesica; Hussain, Anjum; Oldfield, Rachel N.; Johnston, Kathryn A.; Lopez, Karlo M.

    2016-01-01

    Lysyl oxidase is an important extracellular matrix enzyme that has not been fully characterized due to its low solubility. In order to circumvent the low solubility of this enzyme, three solubility tags (Nus-A, Thioredoxin (Trx), and Glutathione-S-Transferase (GST)) were engineered on the N-terminus of mature lysyl oxidase. Total enzyme yields were determined to be 1.5 mg for the Nus-A tagged enzyme (0.75 mg/L of media), 7.84 mg for the Trx tagged enzyme (3.92 mg/L of media), and 9.33 mg for the GST tagged enzyme (4.67 mg/L of media). Enzymatic activity was calculated to be 0.11 U/mg for the Nus-A tagged enzyme and 0.032 U/mg for the Trx tagged enzyme, and no enzymatic activity was detected for the GST tagged enzyme. All three solubility-tagged forms of the enzyme incorporated copper; however, the GST tagged enzyme appears to bind adventitious copper with greater affinity than the other two forms. The catalytic cofactor, lysyl tyrosyl quinone (LTQ), was determined to be 92% for the Nus-A and Trx tagged lysyl oxidase using the previously reported extinction coefficient of 15.4 mM−1 cm−1. No LTQ was detected for the GST tagged lysyl oxidase. Given these data, it appears that Nus-A is the most suitable tag for obtaining soluble and active recombinant lysyl oxidase from E. coli culture. PMID:26942005

  6. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  7. Compatibility Testing of Non-Metallic Materials for the Urine Processor Assembly (UPA) of International Space Station (ISS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    In the International Space Station (ISS), astronauts will convert urine into potable water with the Urine Processor Assembly (UPA). The urine is distilled, with the concentrated form containing about 15% brine solids, and the dilute form as a blend of pre-treated urine/wastewater. Eighteen candidate non-metallic materials for use with the UPA were tested in 2000 for compatibility with the concentrated and dilute urine solutions for continuous times of at least 30 days, and at conditions of 0.5 psia pressure and 100 F, to simulate the working UPA environment. A primary screening test for each material (virgin and conditioned) was dynamic mechanical analysis (DMA) in the stress relaxation mode, with the test data used to predict material performance for a 10-year use in space. Data showed that most of the candidate materials passed the compatibility testing, although a few significant changes in stress relaxation modulus were observed.

  8. Engagement of overexpressed Her2 with GEP100 induces autonomous invasive activities and provides a biomarker for metastases of lung adenocarcinoma.

    Toshi Menju

    Full Text Available Overexpression of Her2/ErbB2/Neu in cancer is often correlated with recurrent distant metastasis, although the mechanism still remains largely elusive. We have previously shown that EGFR, when tyrosine-phosphorylated, binds to GEP100/BRAG2 to activate Arf6, which induces cancer invasion and metastasis. We now show that overexpressed Her2 in lung adenocarcinoma cells also employs GEP100. Like EGFR-GEP100 binding, this association is primarily mediated by the pleckstrin homology (PH domain of GEP100 and Tyr1139/Tyr1196 of Her2. Tyr1139/Tyr1196 are autonomously phosphorylated, when Her2 is overexpressed. Accordingly, invasive activities mediated by the Her2-GEP100 pathway are not dependent on external factors. Blocking Her2-GEP100 binding, as well as its signaling pathway all inhibit cancer invasive activities. Moreover, our clinical study indicates that co-overexpression of Her2 with GEP100 in primary lung adenocarcinomas of patients is correlated with the presence of their node-metastasis with a statistical significance. Since the GEP100 PH domain interacts with both Her2 and EGFR, targeting this domain may provide novel cancer therapeutics.

  9. Leptin Overexpression in VTA Trans-activates the Hypothalamus whereas Prolonged Leptin Action in either Region Cross-Desensitizes

    Scarpace, P. J.; Matheny, M.; Kirichenko, N.V.; Gao, Y.X.; Tümer, N.; Zhang, Y.

    2012-01-01

    High-fat feeding or CNS leptin overexpression in chow-fed rats results in a region-specific cellular leptin resistance in medial basal hypothalamic regions and the ventral tegmental area (VTA). The present investigation examined the effects of targeted chronic leptin overexpression in the VTA as compared with the medial basal hypothalamus on long-term body weight homeostasis. The study also examined if this targeted intervention conserves regional leptin sensitivity or results in localized le...

  10. Overexpression of Scg5 increases enzymatic activity of PCSK2 and is inversely correlated with body weight in congenic mice

    Islas-Trejo Alma

    2008-04-01

    Full Text Available Abstract Background The identification of novel genes is critical to understanding the molecular basis of body weight. Towards this goal, we have identified secretogranin V (Scg5; also referred to as Sgne1, as a candidate gene for growth traits. Results Through a combination of DNA microarray analysis and quantitative PCR we identified a strong expression quantitative trait locus (eQTL regulating Scg5 expression in two mouse chromosome 2 congenic strains and three additional F2 intercrosses. More importantly, the eQTL was coincident with a body weight QTL in congenic mice and Scg5 expression was negatively correlated with body weight in two of the F2 intercrosses. Analysis of haplotype blocks and genomic sequencing of Scg5 in high (C3H/HeJ, DBA/2J, BALB/cByJ, CAST/EiJ and low (C57BL/6J expressing strains revealed mutations unique to C57BL/6J and possibly responsible for the difference in mRNA abundance. To evaluate the functional consequence of Scg5 overexpression we measured the pituitary levels of 7B2 protein and PCSK2 activity and found both to be increased. In spite of this increase, the level of pituitary α-MSH, a PCSK2 processing product, was unaltered. Conclusion Together, these data support a role for Scg5 in the modulation of body weight.

  11. Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer.

    Joshi, Suhasini; Cruz, Eric; Rachagani, Satyanarayana; Guha, Sushovan; Brand, Randall E; Ponnusamy, Moorthy P; Kumar, Sushil; Batra, Surinder K

    2016-08-01

    The majority of pancreatic cancer (PC) patients are clinically presented with obstructive jaundice with elevated levels of circulatory bilirubin and alkaline phosphatases. In the current study, we examined the implications of bile acids (BA), an important component of bile, on the pathophysiology of PC and investigated their mechanistic association in tumor-promoting functions. Integration of results from PC patient samples and autochthonous mouse models showed an elevated levels of BA (p < 0.05) in serum samples compared to healthy controls. Similarly, an elevated BA levels was observed in pancreatic juice derived from PC patients (p < 0.05) than non-pancreatic non-healthy (NPNH) controls, further establishing the clinical association of BA with the pathogenesis of PC. The tumor-promoting functions of BA were established by observed transcriptional upregulation of oncogenic MUC4 expression. Luciferase reporter assay revealed distal MUC4 promoter as the primary responsive site to BA. In silico analysis recognized two c-Jun binding sites at MUC4 distal promoter, which was biochemically established using ChIP assay. Interestingly, BA treatment led to an increased transcription and activation of c-Jun in a FAK-dependent manner. Additionally, BA receptor, namely FXR, which is also upregulated at transcriptional level in PC patient samples, was demonstrated as an upstream molecule in BA-mediated FAK activation, plausibly by regulating Src activation. Altogether, these results demonstrate that elevated levels of BA increase the tumorigenic potential of PC cells by inducing FXR/FAK/c-Jun axis to upregulate MUC4 expression, which is overexpressed in pancreatic tumors and is known to be associated with progression and metastasis of PC. PMID:27185392

  12. Peroxisome proliferator-activated receptor-gamma agonists suppress tissue factor overexpression in rat balloon injury model with paclitaxel infusion.

    Jun-Bean Park

    Full Text Available The role and underlying mechanisms of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ agonist, on myocardial infarction are poorly understood. We investigated the effects of this PPAR-γ agonist on the expression of tissue factor (TF, a primary molecule for thrombosis, and elucidated its underlying mechanisms. The PPAR-γ agonist inhibited TF expression in response to TNF-α in human umbilical vein endothelial cells, human monocytic leukemia cell line, and human umbilical arterial smooth muscle cells. The overexpression of TF was mediated by increased phosphorylation of mitogen-activated protein kinase (MAPK, which was blocked by the PPAR-γ agonist. The effective MAPK differed depending on each cell type. Luciferase and ChIP assays showed that transcription factor, activator protein-1 (AP-1, was a pivotal target of the PPAR-γ agonist to lower TF transcription. Intriguingly, two main drugs for drug-eluting stent, paclitaxel or rapamycin, significantly exaggerated thrombin-induced TF expression, which was also effectively blocked by the PPAR-γ agonist in all cell types. This PPAR-γ agonist did not impair TF pathway inhibitor (TFPI in three cell types. In rat balloon injury model (Sprague-Dawley rats, n = 10/group with continuous paclitaxel infusion, the PPAR-γ agonist attenuated TF expression by 70±5% (n = 4; P<0.0001 in injured vasculature. Taken together, rosiglitazone reduced TF expression in three critical cell types involved in vascular thrombus formation via MAPK and AP-1 inhibitions. Also, this PPAR-γ agonist reversed the paclitaxel-induced aggravation of TF expression, which suggests a possibility that the benefits might outweigh its risks in a group of patients with paclitaxel-eluting stent implanted.

  13. ERas protein is overexpressed and binds to the activated platelet-derived growth factor β receptor in bovine urothelial tumour cells associated with papillomavirus infection.

    Russo, Valeria; Roperto, Franco; Esposito, Iolanda; Ceccarelli, Dora Maria; Zizzo, Nicola; Leonardi, Leonardo; Capparelli, Rosanna; Borzacchiello, Giuseppe; Roperto, Sante

    2016-06-01

    Embryonic stem cell-expressed Ras (ERas) encodes a constitutively active form of guanosine triphosphatase (GTPase) that binds to and activates phosphatidylinositol 3 kinase (PI3K), which in turn phosphorylates and activates downstream targets such as Akt. The current study evaluated ERas regulation and expression in papillomavirus-associated urothelial tumours in cattle grazing on lands rich in bracken fern. ERas was found upregulated and overexpressed by PCR, real time PCR and Western blot. Furthermore, protein overexpression was also confirmed by immunohistochemistry. ERas was found to interact physically and colocalise with the activated platelet derived growth factor β receptor (PDGFβR) by coimmunoprecipitation and laser scanning confocal investigations. Phosphorylation of Akt, a downstream effector both of ERas and PDGFβR, appeared to be increased in urothelial tumour cells. Altogether, these data indicate that ERas/PDGFβR complex could play a role in the pathogenesis of bovine papillomavirus-associated bladder neoplasia. PMID:27256024

  14. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass

    Ros Joaquim

    2010-02-01

    Full Text Available Abstract Background Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.

  15. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation

    Ze-Yi Zheng

    2015-07-01

    Full Text Available Basal-like breast cancers (BLBCs are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  16. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass

    Ros Joaquim; Cabiscol Elisa; Pérez-Torrado Roberto; Gómez-Pastor Rocío; Matallana Emilia

    2010-01-01

    Abstract Background Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain mo...

  17. JNK suppression is essential for 17β-Estradiol inhibits prostaglandin E2-Induced uPA and MMP-9 expressions and cell migration in human LoVo colon cancer cells

    Chen Wei-Kung

    2011-08-01

    Full Text Available Abstract Background Epidemiological studies demonstrate that the incidence and mortality rates of colorectal cancer in women are lower than in men. However, it is unknown if 17β-estradiol treatment is sufficient to inhibit prostaglandin E2 (PGE2-induced cellular motility in human colon cancer cells. Methods We analyzed the protein expression of urokinase plasminogen activator (uPA, tissue plasminogen activator (tPA, matrix metallopeptidases (MMPs, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinases (TIMPs, and the cellular motility in PGE2-stimulated human LoVo cells. 17β-Estradiol and the inhibitors including LY294002 (Akt activation inhibitor, U0126 (ERK1/2 inhibitor, SB203580 (p38 MAPK inhibitor, SP600125 (JNK1/2 inhibitor, QNZ (NFκB inhibitor and ICI 182 780 were further used to explore the inhibitory effects of 17β-estradiol on PGE2-induced LoVo cell motility. Student's t-test was used to analyze the difference between the two groups. Results Upregulation of urokinase plasminogen activator (uPA, tissue plasminogen activator (tPA and matrix metallopeptidases (MMPs is reported to associate with the development of cancer cell mobility, metastasis, and subsequent malignant tumor. After administration of inhibitors including LY294002, U0126, SB203580, SP600125 or QNZ, we found that PGE2 treatment up-regulated uPA and MMP-9 expression via JNK1/2 signaling pathway, thus promoting cellular motility in human LoVo cancer cells. However, PGE2 treatment showed no effects on regulating expression of tPA, MMP-2, plasminogen activator inhibitor-1 (PAI-1, tissue inhibitor of metalloproteinase-1, -2, -3 and -4 (TIMP-1, -2, -3 and -4. We further observed that 17β-estradiol treatment inhibited PGE2-induced uPA, MMP-9 and cellular motility by suppressing activation of JNK1/2 in human LoVo cancer cells. Conclusions Collectively, these results suggest that 17β-estradiol treatment significantly inhibits PGE2-induced motility

  18. Expression of urokinase plasminogen activator, its receptor and type-1 inhibitor in malignant and benign prostate tissue

    Usher, Pernille Autzen; Thomsen, Ole Frøkjær; Iversen, Peter; Johnsen, Morten; Brünner, Nils; Høyer-Hansen, Gunilla; Andreasen, Peter; Danø, Keld; Nielsen, Boye Schnack

    2005-01-01

    The plasminogen activation (PA) cascade participates in degradation of extracellular matrix during cancer invasion. We have studied the expression of urokinase-type plasminogen activator (uPA) mRNA, uPA receptor (uPAR) mRNA and immunoreactivity, and type-1 plasminogen activator inhibitor (PAI-1) ...

  19. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor

    Ellis, V; Behrendt, N; Danø, K

    1991-01-01

    The specific cellular receptor for urokinase-type plasminogen activator (uPA) is found on a variety of cell types and has been postulated to play a central role in the mediation of pericellular proteolytic activity. We have studied the kinetics of plasminogen (Plg) activation catalyzed by uPA spe...

  20. Targeted overexpression of tumor necrosis factor-α increases cyclin-dependent kinase 5 activity and TRPV1-dependent Ca2+ influx in trigeminal neurons.

    Rozas, Pablo; Lazcano, Pablo; Piña, Ricardo; Cho, Andrew; Terse, Anita; Pertusa, Maria; Madrid, Rodolfo; Gonzalez-Billault, Christian; Kulkarni, Ashok B; Utreras, Elias

    2016-06-01

    We reported earlier that TNF-α, a proinflammatory cytokine implicated in many inflammatory disorders causing orofacial pain, increases the activity of Cdk5, a key kinase involved in brain development and function and recently found to be involved in pain signaling. To investigate a potential mechanism underlying inflammatory pain in trigeminal ganglia (TGs), we engineered a transgenic mouse model (TNF) that can conditionally overexpresses TNF-α upon genomic recombination by Cre recombinase. TNF mice were bred with Nav1.8-Cre mouse line that expresses the Cre recombinase in sensory neurons to obtain TNF-α:Nav1.8-Cre (TNF-α cTg) mice. Although TNF-α cTg mice appeared normal without any gross phenotype, they displayed a significant increase in TNF-α levels after activation of NFκB signaling in the TG. IL-6 and MCP-1 levels were also increased along with intense immunostaining for Iba1 and GFAP in TG, indicating the presence of infiltrating macrophages and the activation of satellite glial cells. TNF-α cTg mice displayed increased trigeminal Cdk5 activity, and this increase was associated with elevated levels of phospho-T407-TRPV1 and capsaicin-evocated Ca influx in cultured trigeminal neurons. Remarkably, this effect was prevented by roscovitine, an inhibitor of Cdk5, which suggests that TNF-α overexpression induced sensitization of the TRPV1 channel. Furthermore, TNF-α cTg mice displayed more aversive behavior to noxious thermal stimulation (45°C) of the face in an operant pain assessment device as compared with control mice. In summary, TNF-α overexpression in the sensory neurons of TNF-α cTg mice results in inflammatory sensitization and increased Cdk5 activity; therefore, this mouse model would be valuable for investigating the mechanism of TNF-α involved in orofacial pain. PMID:26894912

  1. Constitutive activation with overexpression of the mTORC2-phospholipase D1 pathway in uterine leiomyosarcoma and STUMP: morphoproteomic analysis with therapeutic implications.

    Dhingra, Sadhna; Rodriguez, Michelle E; Shen, Qi; Duan, Xuizhen; Stanton, Melissa L; Chen, Lei; Zhang, Rongzhen; Brown, Robert E

    2011-01-01

    The mammalian target of rapamycin (mTOR) is centrally involved in growth, survival and metabolism. In cancer, mTOR is frequently hyperactivated and is a clinically validated target for therapy and drug development. Biologically, mTOR acts as the catalytic subunit of two functionally distinct complexes, called mTOR complex 1 (mTORC1) which is predominantly cytoplasmic in subcellular localization and mTOR complex 2 (mTORC2) which is both cytoplasmic and nuclear. mTORC1 is sensitive to the selective inhibitor rapamycin. By contrast, mTORC2 is relatively resistant to rapamycin. Moreover, its putative downstream effector, Akt phosphorylated on serine 473 represents a signal transduction pathway for tumor survival. Phospholipase D (PLD) and its product, phosphatidic acid (PA) have been implicated as an activator of mTOR signaling, including the direct phosphorylative activation of p70S6K atthreonine 389. The latter promotes cell cycle progression. In this study, we investigated the activation status and subcellular localization of mTOR and the relative expression of PLD1, as well as their downstream effectors in a spectrum of uterine smooth muscle tumors using normal myometria as controls. The results show significant activation with overexpression of phosphorylated mTORC2 complex in uterine leiomyosarcoma (ULMS) and smooth muscle tumors of uncertain malignant potential (STUMP) as evidenced by nuclear localization of p-mTOR (Ser 2448) in ULMS>STUMP>uterine leiomyoma and normal myometria (p<0.05) and with overexpression of PLD1(p<0.05). Cor-relatively, there are overexpressions of nuclear p-Akt (Ser 473) and nuclear p-p70S6K (Thr 389) in ULMS and STUMP (p<0.05). The activation with overexpression of components of the mTORC2-PLD1 pathway in ULMS and to a lesser degree in STUMP provides insight into their tumorigenic mechanisms. Thus the development of therapies designed to target mTORC2 and PLD1 activity may be beneficial in treating ULMS. PMID:21326806

  2. Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras

    Laurent, Eunice; McCoy, James W.; Macina, Roberto A.; Liu, Wenhui; Cheng, Guangjie; Robine, Sylvie; Papkoff, Jackie; Lambeth, J. David

    2008-01-01

    The NADPH-oxidase 1 (Nox1) is a homolog of gp91phox, the catalytic subunit of the phagocyte superoxide-generating NADPH-oxidase. Nox1 is expressed in normal colon epithelial cells and in colon tumor cell lines, and overexpression in model cells has been implicated in stimulation of mitogenesis and angiogenesis and inhibition of apoptosis. This suggests that aberrant expression of Nox1 could contribute to the development of colorectal cancer. Herein, we examine the expression of Nox1 mRNA in 2...

  3. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    Behrendt, N; Rønne, E; Ploug, M;

    1990-01-01

    The receptor for human urokinase-type plasminogen activator (u-PA) was purified from phorbol 12-myristate 13-acetate-stimulated U937 cells by temperature-induced phase separation of detergent extracts, followed by affinity chromatography with immobilized diisopropyl fluorophosphate-treated u-PA. ...

  4. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in adult human sarcoma cell lines

    ROOMI, M. WAHEED; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; RATH, MATTHIAS

    2013-01-01

    Adult sarcomas are highly aggressive tumors that are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9 secretions that degrade the ECM and basement membrane, allowing cancer cells to spread to distal organs. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of u-PA and MMPs with cancer progression, metastasis and short...

  5. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in pediatric human sarcoma cell lines

    ROOMI, M. WAHEED; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; RATH, MATTHIAS

    2013-01-01

    Pediatric sarcomas are highly aggressive tumors that are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9 secretions that degrade the ECM and basement membrane, allowing cancer cells to spread to distal organs. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of u-PA and MMPs with cancer progression, metastasis and s...

  6. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory.

    Beccano-Kelly, Dayne A; Volta, Mattia; Munsie, Lise N; Paschall, Sarah A; Tatarnikov, Igor; Co, Kimberley; Chou, Patrick; Cao, Li-Ping; Bergeron, Sabrina; Mitchell, Emma; Han, Heather; Melrose, Heather L; Tapia, Lucia; Raymond, Lynn A; Farrer, Matthew J; Milnerwood, Austen J

    2015-03-01

    Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction. PMID:25343991

  7. Life Testing of the Vapor Compression Distillation Urine Processing Assembly (VCD/UPA) at the Marshall Space Flight Center

    Wieland, Paul O.

    1998-01-01

    Wastewater and urine generated on the International Space Station will be processed to recover pure water. The method selected is vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processing Assembly (UPA), accelerated life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAS, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have an operating life of approximately 4800 hours. Precise alignment of the flex-spline of the fluids pump is essential to avoid failure of the pump after about 400 hours of operation. Also, leakage around the seals of the drive shaft of the fluids pump and purge pump must be eliminated for continued good performance. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.

  8. The Anti-Cancer Potency and Mechanism of a Novel Tumor-Activated Fused Toxin, DLM

    Dejun Sun

    2015-02-01

    Full Text Available Melittin, which acts as a membrane-disrupting lytic peptide, is not only cytotoxic to tumors, but also vital to normal cells. Melittin had low toxicity when coupled with target peptides. Despite significant research development with the fused toxin, a new fused toxin is needed which has a cleavable linker such that the fused toxin can release melittin after protease cleavage on the tumor cell surface. We describe a novel fused toxin, composed of disintegrin, uPA (urokinase-type plasminogen activator-cleavable linker, and melittin. Disintegrin is a single strand peptide (73 aa isolated from Gloydius Ussuriensis venom. The RGD (Arg-Gly-Asp site of disintegrin dominates its interaction with integrins on the surface of the tumor cells. uPA is over-expressed and plays an important role in tumor cell invasiveness and metastatic progression. The DLM (disintegrin-linker-melittin linker is uPA-cleavable, enabling DLM to release melittin. We compared binding activity of our synthesized disintegrin with native disintegrin and report that DLM had less binding activity than the native form. uPA-cleavage was evaluated in vitro and the uPA-cleavable linker released melittin. Treating tumors expressing uPA with DLM enhanced tumor cell killing as well as reduced toxicity to erythrocytes and other non-cancerous normal cells. The mechanism behind DLM tumor cell killing was tested using a DNA ladder assay, fluorescent microscopy, flow cytometry, and transmission electron microscopy. Data revealed tumor cell necrosis as the mechanism of cell death, and the fused DLM toxin with an uPA-cleavable linker enhanced tumor selectivity and killing ability.

  9. Effect of ATP sulfurylase overexpression in bright yellow 2 tobacco cells: regulation of ATP sulfurylase and SO4(-2) transport activities

    To determine if the ATP sulfurylase reaction is a regulatory step for the SO4(2-)-assimilation pathway in plants, an Arabidopsis thaliana ATP sulfurylase cDNA, APS2, was fused to the 355 promoter of the cauliflower mosaic virus and introduced by Agrobacterium tumefaciens-mediated transformation into isolated Bright Yellow 2 tobacco (Nicotiana tabacum) cells. The ATP sulfurylase activity in transgenic cells was 8-fold that in control cells, and was correlated with the expression of a specific polypeptide revealed by western analysis using an anti-ATP sulfurylase antibody. The molecular mass of this polypeptide agreed with that for the overexpressed mature protein. ATP sulfurylase overexpression had no effect on [35S]SO4(2-) influx or ATP sulfurylase activity regulation by S availability, except that ATP sulfurylase activity variations in response to S starvation in transgenic cells were 8 times higher than in the wild type. There were also no differences in cell growth or sensitivity to SeO4(2-) (a toxic SO4(2-) analog) between transgenic and wild-type cells. We propose that in Bright Yellow 2 tobacco cells, the ATP sulfurylase derepression by S deficiency may involve a posttranscriptional mechanism, and that the ATP sulfurylase abundance is not limiting for cell metabolism

  10. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    Highlights: ► Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. ► Staurosporine mediates uPA activation during RGC differentiation in vitro. ► Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. ► Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that uPA plays a role in the staurosporine-mediated stimulation of RGC differentiation.

  11. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  12. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis.

    Aharoni, Asaph; Dixit, Shital; Jetter, Reinhard; Thoenes, Eveline; van Arkel, Gert; Pereira, Andy

    2004-09-01

    The interface between plants and the environment plays a dual role as a protective barrier as well as a medium for the exchange of gases, water, and nutrients. The primary aerial plant surfaces are covered by a cuticle, acting as the essential permeability barrier toward the atmosphere. It is a heterogeneous layer composed mainly of lipids, namely cutin and intracuticular wax with epicuticular waxes deposited on the surface. We identified an Arabidopsis thaliana activation tag gain-of-function mutant shine (shn) that displayed a brilliant, shiny green leaf surface with increased cuticular wax compared with the leaves of wild-type plants. The gene responsible for the phenotype encodes one member of a clade of three proteins of undisclosed function, belonging to the plant-specific family of AP2/EREBP transcription factors. Overexpression of all three SHN clade genes conferred a phenotype similar to that of the original shn mutant. Biochemically, such plants were altered in wax composition (very long fatty acid derivatives). Total cuticular wax levels were increased sixfold in shn compared with the wild type, mainly because of a ninefold increase in alkanes that comprised approximately half of the total waxes in the mutant. Chlorophyll leaching assays and fresh weight loss experiments indicated that overexpression of the SHN genes increased cuticle permeability, probably because of changes in its ultrastructure. Likewise, SHN gene overexpression altered leaf and petal epidermal cell structure, trichome number, and branching as well as the stomatal index. Interestingly, SHN overexpressors displayed significant drought tolerance and recovery, probably related to the reduced stomatal density. Expression analysis using promoter-beta-glucuronidase fusions of the SHN genes provides evidence for the role of the SHN clade in plant protective layers, such as those formed during abscission, dehiscence, wounding, tissue strengthening, and the cuticle. We propose that these

  13. Overexpression of the human ZNF300 gene enhances growth and metastasis of cancer cells through activating NF-kB pathway

    Wang, Tao; Wang, Xian-guo; Xu, Jun-hua; Wu, Xiang-Peng; Qiu, Hong-ling; Yi, Hong; Li, Wen-Xin

    2012-01-01

    Abstract Zinc finger proteins (ZNF) play important roles in various physiological processes. Here we report that ZNF300, a novel zinc finger protein, identified specifically in humans, promotes tumour development by modulating the NF-κB pathway. Inflammatory factors were found to induce ZNF300 expression in HeLa cell line, and ZNF300 expression further enhanced NF-κB signalling by activating TRAF2 and physically interacting with IKKβ. Furthermore, ZNF300 overexpression increased ERK1/2 phosphorylation and the expression of c-myc, IL-6, and IL-8 but decreased the expression of p21waf-1 and p27Kip1; whose down-regulation led to the opposite effect. Most importantly, ZNF300 overexpression stimulated cancer cell proliferation in vitro and significantly enhanced tumour development and metastasis in mouse xenograft model, while knocking down ZNF300 led to the opposite effects. We have identified a novel function for ZNF300 in tumour development that may uniquely link inflammation and NF-κB to tumourigenesis in humans but not in mice. PMID:21777376

  14. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.)

    Seong-Kon Lee; Beom-Gi Kim; Taek-Ryoun Kwon; Mi-Jeong Jeong; Sang-Ryeol Park; Jung-Won Lee; Myung-Ok Byun; Hawk-Bin Kwon; Benjamin F Matthews; Choo-Bong Hong; Soo-Chul Park

    2011-03-01

    Mitogen-activated protein kinases (MAPK) signalling cascades are activated by extracellular stimuli such as environmental stresses and pathogens in higher eukaryotic plants. To know more about MAPK signalling in plants, a MAPK cDNA clone, OsMAPK33, was isolated from rice. The gene is mainly induced by drought stress. In phylogenetic analysis, OsMAPK33 (Os02g0148100) showed approximately 47–93% identity at the amino acid level with other plant MAPKs. It was found to exhibit organ-specific expression with relatively higher expression in leaves as compared with roots or stems, and to exist as a single copy in the rice genome. To investigate the biological functions of OsMAPK33 in rice MAPK signalling, transgenic rice plants that either overexpressed or suppressed OsMAPK33 were made. Under dehydration conditions, the suppressed lines showed lower osmotic potential compared with that of wild-type plants, suggesting a role of OsMAPK33 in osmotic homeostasis. Nonetheless, the suppressed lines did not display any significant difference in drought tolerance compared with their wild-type plants. With increased salinity, there was still no difference in salt tolerance between OsMAPK33-suppressed lines and their wild-type plants. However, the overexpressing lines showed greater reduction in biomass accumulation and higher sodium uptake into cells, resulting in a lower K+/Na+ ratio inside the cell than that in the wild-type plants and OsMAPK33-suppressed lines. These results suggest that OsMAPK33 could play a negative role in salt tolerance through unfavourable ion homeostasis. Gene expression profiling of OsMAPK33 transgenic lines through rice DNA chip analysis showed that OsMAPK33 altered expression of genes involved in ion transport. Further characterization of downstream components will elucidate various biological functions of this novel rice MAPK.

  15. Delayed activation of caspase-independent apoptosis during heart failure in transgenic mice overexpressing caspase inhibitor CrmA

    Bae, Soochan; Siu, Parco M.; Choudhury, Sangita; Ke, Qingen; Choi, Jun H.; Koh, Young Y.; Kang, Peter M.

    2010-01-01

    Although caspase activation is generally thought to be necessary to induce apoptosis, recent evidence suggests that apoptosis can be activated in the setting of caspase inhibition. In this study, we tested the hypothesis that caspase-independent apoptotic pathways contribute to the development of heart failure in the absence of caspase activation. Acute cardiomyopathy was induced using a single dose of doxorubicin (Dox, 20 mg/kg) injected into male wild-type (WT) and transgenic (Tg) mice with...

  16. The complex between urokinase (uPA) and its type-1 inhibitor (PAI-1) in pulmonary adenocarcinoma: Relation to prognosis

    Pappot, Helle; Pedersen, Anders N; Brünner, Nils; Christensen, Ib Jarle

    2006-01-01

    In a lung cancer population comprising tumor tissue from 99 pulmonary adenocarcinoma patients, the relationship between tumor tissue level of the complex formed of urokinase (uPA) and its type-1 inhibitor (PAI-1) and survival was studied. The study included patient material previously investigated...... patients with low PAI-1 and high uPA-PAI-1 complex (HR = 3.06, p = 0.01). This is the first investigation of the prognostic impact of uPA-PAI-1 complex in a tumor type other than breast cancer, showing low levels of uPA-PAI-1 complex in combination with high levels of PAI-1 to be associated with poor...... for the prognostic impact of PAI-1 on survival. Standard clinical parameters were available and the patients had a median survival time of 25 months. An ELISA established to measure preformed uPA-PAI-1 complexes was applied to the tumor extracts and previously measured data on uPA and PAI-1 levels...

  17. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area

    Mariya Vasileva

    2013-12-01

    Full Text Available Synapsins are synaptic vesicle (SV proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the synaptic vesicle-pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa – known to sustain repetitive transmission in glutamatergic terminals – was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Thus, at the calyx of Held, synapsin Ia may not substitute for the synapsin IIa-function reported for hippocampal synapses. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs.

  18. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity.

    Park, Sung-Chul; Kim, Yun-Hee; Kim, Sun Ha; Jeong, Yu Jeong; Kim, Cha Young; Lee, Joon Seol; Bae, Ji-Yeong; Ahn, Mi-Jeong; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-04-01

    The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity. PMID:25220246

  19. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Wang, Ke [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Pei, Hao [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Huang, Biao; Yang, Run-Lin [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Wu, Hang-Yuan [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Zhu, Xue; Zhu, Lan [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China)

    2012-08-17

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  20. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions

  1. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose.

    Yang, Fang; Yang, Xiaofeng; Li, Zhe; Du, Chenyu; Wang, Jufang; Li, Shuang

    2015-11-01

    Thermoanaerobacterium aotearoense P8G3#4 produced β-glucosidase (BGL) intracellularly when grown in liquid culture on cellobiose. The gene bgl, encoding β-glucosidase, was cloned and sequenced. Analysis revealed that the bgl contained an open reading frame of 1314 bp encoding a protein of 446 amino acid residues, and the product belonged to the glycoside hydrolase family 1 with the canonical glycoside hydrolase family 1 (GH1) (β/α)8 TIM barrel fold. Expression of pET-bgl together with a chaperone gene cloned in vector pGro7 in Escherichia coli dramatically enhanced the crude enzyme activity to a specific activity of 256.3 U/mg wet cells, which resulted in a 9.2-fold increase of that obtained from the expression without any chaperones. The purified BGL exhibited relatively high thermostability and pH stability with its highest activity at 60 °C and pH 6.0. In addition, the activities of BGL were remarkably stimulated by the addition of 5 mM Na(+) or K(+). The enzyme showed strong ability to hydrolyze cellobiose with a K m and V max of 25.45 mM and 740.5 U/mg, respectively. The BGL was activated by glucose at concentration varying from 50 to 250 mM and tolerant to glucose inhibition with a K i of 800 mM glucose. The supplement of the purified BGL to the sugarcane bagasse hydrolysis mixture containing a commercial cellulase resulted in about 20 % enhancement of the released reducing sugars. These properties of the purified BGL should have important practical implication in its potential applications for better industrial production of glucose or bioethanol started from lignocellulosic biomass. PMID:25957152

  2. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker

    Yukihiro Saito; Kazufumi Nakamura; Masashi Yoshida; Hiroki Sugiyama; Tohru Ohe; Junko Kurokawa; Tetsushi Furukawa; Makoto Takano; Satoshi Nagase; Hiroshi Morita; Kusano, Kengo F.; Hiroshi Ito

    2015-01-01

    Background Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (I f) flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and attenuation of the inward rectifier K+ current (I K1) flowing through inward rectifier potassium (Kir) channels are essential for generation of a biological pacemaker. Therefor...

  3. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    Barnathan, E S; Kuo, A; Karikó, K; Rosenfeld, L; Murray, S C; Behrendt, N; Rønne, E; Weiner, D; Henkin, J; Cines, D B

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...... endothelial cell cDNA library using the polymerase chain reaction (PCR) and oligonucleotide primers corresponding to the DNA sequence of the receptor cloned from transformed human fibroblasts (Roldan et al, EMBO J 9:467, 1990). The size of the cDNA (approximately 1,054 base pairs, bp) and the presence of a...

  4. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    Caiazza, Francesco; Harvey, Brian J; Thomas, Warren

    2010-01-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapid...

  5. Overexpression of an endo-1,4-β-glucanase V gene (EGV) from Trichoderma reesei leads to the accumulation of cellulase activity in transgenic rice.

    Li, X Y; Liu, F; Hu, Y F; Xia, M; Cheng, B J; Zhu, S W; Ma, Q

    2015-01-01

    The ectopic expression of cellulase in biomass can reduce the cost of biofuel conversion. This trait modification technique is highly beneficial for biofuel production. In this study, we isolated an endo-1,4-beta-glucanase gene (EGV) from Trichoderma reesei and inserted this gene downstream of a fragment encoding the signal peptide Apo-SP in a modified pCAMBIA1301 vector to obtain an Apo-SP and AsRed fusion protein. Transient expression of this fusion protein in onion epidermal cells showed that the Apo-SP signal was localized to the plastids. EGV transgenic rice plants that did not carry screening marker genes were obtained through overexpression of the pDTB double T-DNA vector. Western blotting showed that EGV was expressed in the dry straw of T0 generation transgenic rice plants and in fresh leaves of the T1 generation. More importantly, our results also showed that the peptide product of EGV in the transgenic plants folded correctly and was capable of digesting the cellulase substrate CMC. Additionally, cellulase activity remained stable in the straw that had been dried at room temperature for three months. This study presents an important technical approach for the development of transgenic rice straw that has stable cellulase activity and can be used for biofuel conversion. PMID:26782396

  6. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression.

    Subrata Chowdhury

    Full Text Available We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1, which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents to active cortisol (corticosterone in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.

  7. The amino-terminal domain of human signal transducers and activators of transcription 1: Overexpression, purification and characterization

    Arati Prabhu; Evans Coutinho; Sudha Srivastava

    2005-12-01

    The dual functional signal transducers and activators of transcription (STAT) proteins are latent cytoplasmic transcription factors that play crucial roles in host defense. Animals that lack these proteins are highly susceptible to microbial and viral infections and chemically induced primary tumours. We have over expressed the aminoterminal domain of human STAT1 (hSTAT1) in Escherichia coli and purified it by affinity chromatography and gel filtration chromatography. The entire process has been monitored by gel electrophoresis. The pure protein has been characterized by mass spectrometry and 2-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. Our results indicate that the N-terminus of hSTAT1 exists as a dimer in solution.

  8. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1

    Schmitt, Manfred; Harbeck, Nadia; Brünner, Nils;

    2011-01-01

    conducted in early breast cancer to demonstrate the prognostic and predictive value for this malignancy. As a result of these investigations, uPA and PAI-1 have reached the highest level of clinical evidence, level of evidence 1. This article sheds light on the current status of major clinical Phase II and...

  9. Photosynthetic activity and protein overexpression found in Cr(III)-tolerant cells of the green algae Dictyosphaerium chlorelloides.

    Pereira, M; Bartolomé, C M; Sánchez-Fortún, S

    2014-08-01

    Chromium is an important constituent in effluents obtained from chromium plating industries. Due to the highly toxic nature of Cr(VI), attention has been shifted to less hazardous Cr(III) electroplating processes. This study evaluated aquatic toxicity of Cr(III)-containing laboratory samples representative of effluents from chromium electroplating industries, on the photosynthetic activity exhibited by both Cr(III)-sensitive (Dc1M(wt)) and tolerant (Dc1M(Cr(III)R30)) Dictyosphaerium chlorelloides strains. Additionally, selected de novo-determined peptide sequences, obtained from Dc1M(Cr(III)R30), have been analyzed to evidence the possible Cr(III) toxic mechanism involved in the resistance of these cells to high Cr(III) levels in aquatic environments. Dc1M(Cr(III)R30) strain exhibited a gross photosynthetic balance of about five times lower than that exhibited by Dc1M(wt) strain, demonstrating that Dc1M(Cr(III)R30) has a photosynthetic yield significantly lower than Dc1M(wt). SDS-PAGE of Dc1M(Cr(III)R30) samples showed the presence of at least two protein bands (23.05 and 153.46 KDa, respectively) absent in wild-type strain samples. Although it has achieved a low coincidence between the lower molecular weight band and a GTPase identified from genome of the green alga Chlamydomonas reinhardtii, none of de novo peptide sequences obtained showed a significant MS-BLAST score, so that further studies will be required. PMID:24556547

  10. Urokinase plasminogen activator and plasminogen activator inhibitor type-1 in nonsmall-cell lung cancer: relation to prognosis and angiogenesis

    Offersen, Birgitte Vrou; Pfeiffer, Per; Andreasen, Peter;

    2007-01-01

    BACKGROUND: Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) have previously been suggested as prognostic markers in nonsmall-cell lung carcinomas (NSCLC). We investigate whether uPA and PAI-1 are prognostic markers in NSCLC and whether they are related to...... sandwich ELISA method. RESULTS: Both uPA and PAI-1 were independent of classical histopathological parameters as well as of microvessel density and vascular pattern. Using death within the first 5 years as endpoint, neither of the factors were prognostic markers in univariate analysis, however......, significantly higher levels of uPA and PAI-1 were seen in tumours with an angiogenic vascular pattern. In multivariate analysis, high disease stage (P<0.0001), adenocarcinoma (P=0.007), old age (P=0.02), and presence of an angiogenic pattern (P=0.05) were identified as independent markers of death within 5...

  11. The complex between urokinase (uPA) and its type-1 inhibitor (PAI-1) in pulmonary adenocarcinoma

    Pappot, Helle; Pedersen, Anders N.; Brünner, Nils;

    2006-01-01

    In a lung cancer population comprising tumor tissue from 99 pulmonary adenocarcinoma patients, the relationship between tumor tissue level of the complex formed of urokinase (uPA) and its type-1 inhibitor (PAI-1) and survival was studied. The study included patient material previously investigated...... patients with low PAI-1 and high uPA-PAI-1 complex (HR = 3.06, p = 0.01). This is the first investigation of the prognostic impact of uPA-PAI-1 complex in a tumor type other than breast cancer, showing low levels of uPA-PAI-1 complex in combination with high levels of PAI-1 to be associated with poor...

  12. Overexpression of Elafin in Ovarian Carcinoma Is Driven by Genomic Gains and Activation of the Nuclear Factor κB Pathway and Is Associated with Poor Overall Survival

    Adam Clauss

    2010-02-01

    Full Text Available Ovarian cancer is a leading cause of cancer mortality in women. The aim of this study was to elucidate whether whey acidic protein (WAP genes on chromosome 20q13.12, a region frequently amplified in this cancer, are expressed in serous carcinoma, the most common form of the disease. Herein, we report that a trio of WAP genes (HE4, SLPI, and Elafin is overexpressed and secreted by serous ovarian carcinomas. To our knowledge, this is the first report linking Elafin to ovarian cancer. Fluorescence in situ hybridization analysis of primary tumors demonstrates genomic gains of the Elafin locus in a majority of cases. In addition, a combination of peptidomimetics, RNA interference, and chromatin immunoprecipitation experiments shows that Elafin expression can be transcriptionally upregulated by inflammatory cytokines through activation of the nuclear factor κB pathway. Importantly, using a clinically annotated tissue microarray composed of late-stage, high-grade serous ovarian carcinomas, we show that Elafin expression correlates with poor overall survival. These results, combined with our observation that Elafin is secreted by ovarian tumors and is minimally expressed in normal tissues, suggest that Elafin may serve as a determinant of poor survival in this disease.

  13. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion.

    Tangmansakulchai, Kulvadee; Abubakar, Zuroida; Kitiyanant, Narisorn; Suwanjang, Wilasinee; Leepiyasakulchai, Chaniya; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-09-01

    Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage. PMID:27453331

  14. Role of Urokinase-type Plasminogen Activator in the Precontact Sperm-egg Communication and Fertility of Mice in vitro

    2005-01-01

    Objective To explore the role of urokinase-type plasminogen activator(uPA) in precontact sperm-egg communication and fertility of mice in vitro.Methods Firstly, sperm chemotaxis (SC) induced by uPA was assayed by measuring the sperm densities in capillaries with a descending gradient or no gradient of uPA respectively. Secondly, the role of uPAR that exists in sperm plasma membrane in SC was studied by examining the change of sperm density in capillary after incubating spermatozoa with anti-uPAR antibody. Thirdly, SC induced by eggs, which had been treated with uPA, PAI-1 and anti-uPAR beforehand respectively, was assayed to study the role of uPA in PSEC. Lastly, the fertilization capability of spermatozoa treated with uPA was examined by counting the number of fertilized eggs.Results 1)The density of spermatozoa that migrated down the gradient of uPA into the capillary was significantly lower than that into the capillary containing no-gradient uPA. 2) When uPAR of spermatozoa was inhibited by anti-uPAR antibody, the density of spermatozoa that migrated into the capillary with ascending gradient of uPA decreased correspondingly. 3) The density of spermatozoa attracted by eggs, which were treated with uPA beforehand, increased significantly than that of attracted by non-treated eggs. On the contrary, the sperm density decreased correspondingly when the egg was treated with PAI-1. 4) The number of fertilized eggs increased significantly after the spermatozoa used here was treated with uPA beforehand.Conclusion uPA could induce SC of mice sperm in vitro through the uPAR on its membrane, enhance the capability of egg inducing SC, and promote spermatozoa to fertilize eggs. Thus, uPA may act as an attractant in PSEC, increase the chance encounter of spermatozoa and eggs, therefore, enhance the fertility success correspondingly.This study, in some degree, provides an evidence that uPA may be used as a new medicine and diagnostic reagent for male infertility.

  15. Improvement of glucose uptake rate and production of target chemicals by overexpressing hexose transporters and transcriptional activator Gcr1 in Saccharomyces cerevisiae.

    Kim, Daehee; Song, Ji-Yoon; Hahn, Ji-Sook

    2015-12-01

    Metabolic engineering to increase the glucose uptake rate might be beneficial to improve microbial production of various fuels and chemicals. In this study, we enhanced the glucose uptake rate in Saccharomyces cerevisiae by overexpressing hexose transporters (HXTs). Among the 5 tested HXTs (Hxt1, Hxt2, Hxt3, Hxt4, and Hxt7), overexpression of high-affinity transporter Hxt7 was the most effective in increasing the glucose uptake rate, followed by moderate-affinity transporters Hxt2 and Hxt4. Deletion of STD1 and MTH1, encoding corepressors of HXT genes, exerted differential effects on the glucose uptake rate, depending on the culture conditions. In addition, improved cell growth and glucose uptake rates could be achieved by overexpression of GCR1, which led to increased transcription levels of HXT1 and ribosomal protein genes. All genetic modifications enhancing the glucose uptake rate also increased the ethanol production rate in wild-type S. cerevisiae. Furthermore, the growth-promoting effect of GCR1 overexpression was successfully applied to lactic acid production in an engineered lactic acid-producing strain, resulting in a significant improvement of productivity and titers of lactic acid production under acidic fermentation conditions. PMID:26431967

  16. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression. Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion

  17. Targeting tumor cell invasion and dissemination in vivo by an aptamer that inhibits urokinase-type plasminogen activator through a novel multifunctional mechanism

    Botkjaer, Kenneth A; Deryugina, Elena I; Dupont, Daniel Miotto;

    2012-01-01

    Data accumulated over the latest two decades have established that the serine protease urokinase-type plasminogen activator (uPA) is a potential therapeutic target in cancer. When designing inhibitors of the proteolytic activity of serine proteases, obtaining sufficient specificity is problematic......, because the topology of the proteases' active sites are highly similar. In an effort to generate highly specific uPA inhibitors with new inhibitory modalities, we isolated uPA-binding RNA aptamers by screening a library of 35 nucleotides long 2'-fluoro-pyrimidine RNA molecules using a version of human pro......-uPA lacking the epidermal growth factor-like and kringle domains as bait. One pro-uPA-binding aptamer sequence, referred to as upanap-126, proved to be highly specific for human uPA. Upanap-126 delayed the proteolytic conversion of human pro-uPA to active uPA, but did not inhibit plasminogen activation...

  18. Urokinase-type plasminogen activator receptor as a predictor of poor outcome in patients with systemic inflammatory response syndrome

    Wu, Xiao-Ling; Long, Ding; Yu, Li; Yang, Jun-hui; Zhang, Yuan-chao; Geng, Feng

    2013-01-01

    BACKGROUND: Urokinase-type plasminogen activator (uPA) and urokinase-type plasminogen activator receptor (uPAR) are known as important factors, which mediate a variety of functions in terms of vascular homeostasis, inflammation and tissue repair. However, their role in systemic inflammatory response syndrome (SIRS) has been less well studied. This study aimed to test the hypothesis that the abnormalities of fibrinolysis and degradation of extracellular matrix mediated by uPA and uPAR are dire...

  19. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in human lung cancer and mesothelioma cell lines

    ROOMI, M. WAHEED; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; RATH, MATTHIAS

    2013-01-01

    Lung cancer, the most prevalent cancer worldwide and malignant mesothelioma are highly aggressive tumors that are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9 secretion. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of u-PA and MMPs with cancer progression, metastasis and shortened patient survival. MMP activi...

  20. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes

    Moirangthem, Anuradha; Bondhopadhyay, Banashree; Mukherjee, Mala; Bandyopadhyay, Arghya; Mukherjee, Narendranath; Konar, Karabi; Bhattacharya, Shubham; Basu, Anupam

    2016-01-01

    In cancer progression, proteolytic enzymes like serine proteases and metalloproteinases degrade the basement membrane enabling the tumor cells to invade the adjacent tissues. Thus, invasion and metastasis are augmented by these enzymes. Simultaneous silencing of uPA and MMP9 in breast cancer cells decreased the wound healing, migratory, invasive and adhesive capacity of the cells. After simultaneous down regulation, cells were seen to be arrested in the cell cycle. There was a remarkable increase in the expression of cell to cell adhesion molecule E–cadherin, and decrease in Vimentin and Snail expression. In addition, there was a significant decrease in the expression of the stem cell marker Oct-4. In the breast tumor samples it has been observed that, tumors, expressing higher level of uPA and MMP9, express less amount of E–cadherin. It has also been observed that few tumors also show, Vimentin positive in the ductal epithelial area. Thus, our model can help for checking the aggressive tumor invasion by blocking of uPA and MMP9. Our present observations also give the concept of the presence of aggressive epithelial cells with mesenchymal nature in the tumor micro-environment, altering the expression of EMT genes. PMID:26906973

  1. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes.

    Moirangthem, Anuradha; Bondhopadhyay, Banashree; Mukherjee, Mala; Bandyopadhyay, Arghya; Mukherjee, Narendranath; Konar, Karabi; Bhattacharya, Shubham; Basu, Anupam

    2016-01-01

    In cancer progression, proteolytic enzymes like serine proteases and metalloproteinases degrade the basement membrane enabling the tumor cells to invade the adjacent tissues. Thus, invasion and metastasis are augmented by these enzymes. Simultaneous silencing of uPA and MMP9 in breast cancer cells decreased the wound healing, migratory, invasive and adhesive capacity of the cells. After simultaneous down regulation, cells were seen to be arrested in the cell cycle. There was a remarkable increase in the expression of cell to cell adhesion molecule E-cadherin, and decrease in Vimentin and Snail expression. In addition, there was a significant decrease in the expression of the stem cell marker Oct-4. In the breast tumor samples it has been observed that, tumors, expressing higher level of uPA and MMP9, express less amount of E-cadherin. It has also been observed that few tumors also show, Vimentin positive in the ductal epithelial area. Thus, our model can help for checking the aggressive tumor invasion by blocking of uPA and MMP9. Our present observations also give the concept of the presence of aggressive epithelial cells with mesenchymal nature in the tumor micro-environment, altering the expression of EMT genes. PMID:26906973

  2. Life Testing of the Vapor Compression Distillation/Urine Processing Assembly (VCD/UPA) at the Marshall Space Flight Center (1993 to 1997)

    Wieland, P.; Hutchens, C.; Long, D.; Salyer, B.

    1998-01-01

    Wastewater and urine generated on the International Space Station will be processed to recover pure water using vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processor Assembly (UPA), life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPA'S, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have operating lives of approximately 4,800 hours, equivalent to 3.9 years of operation on ISS for a crew of three at an average processing rate of 1.76 kg/h (3.97 lb/h). Precise alignment of the flex-splines of the fluids and purge pump motor drives is essential to avoid premature failure after about 400 hours of operation. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.

  3. Urokinase-type Plasminogen Activator-like Proteases in Teleosts Lack Genuine Receptor-binding Epidermal Growth Factor-like Domains*

    Bager, René; Kristensen, Thomas K.; Jensen, Jan K.; Szczur, Agnieszka; Christensen, Anni; Andersen, Lisbeth M.; Johansen, Jesper S.; Larsen, Niels; Baatrup, Erik; Huang, Mingdong; Ploug, Michael; Andreasen, Peter A.

    2012-01-01

    Plasminogen activation catalyzed by urokinase-type plasminogen activator (uPA) plays an important role in normal and pathological tissue remodeling processes. Since its discovery in the mid-1980s, the cell membrane-anchored urokinase-type plasminogen activator receptor (uPAR) has been believed to be central to the functions of uPA, as uPA-catalyzed plasminogen activation activity appeared to be confined to cell surfaces through the binding of uPA to uPAR. However, a functional uPAR has so far only been identified in mammals. We have now cloned, recombinantly produced, and characterized two zebrafish proteases, zfuPA-a and zfuPA-b, which by several criteria are the fish orthologs of mammalian uPA. Thus, both proteases catalyze the activation of fish plasminogen efficiently and both proteases are inhibited rapidly by plasminogen activator inhibitor-1 (PAI-1). But zfuPA-a differs from mammalian uPA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding activity could be found in fish white blood cells or fish cell lines. We therefore propose that the current consensus of uPA-catalyzed plasminogen activation taking place on cell surfaces, derived from observations with mammals, is too narrow. Fish uPAs appear incapable of receptor binding in the manner known from mammals and uPA-catalyzed plasminogen activation in fish may occur mainly in solution. Studies with nonmammalian vertebrate species are needed to obtain a comprehensive understanding of the mechanism of plasminogen activation. PMID:22733817

  4. RNA Interference of Interferon Regulatory Factor-1 Gene Expression in THP-1 Cell Line Leads to Toll-Like Receptor-4 Overexpression/Activation As Well As Up-modulation of Annexin-II

    Christos I. Maratheftis

    2007-12-01

    Full Text Available Interferon regulatory factor-1 (IRF-1 is a candidate transcription factor for the regulation of the Toll-like receptor-4 (TLR-4 gene. Using a small interfering RNAbased (siRNA process to silence IRF-1 gene expression in the leukemic monocytic cell line THP-1, we investigated whether such a modulation would alter TLR-4 expression and activation status in these cells. The siIRF-1 cells expressed elevated levels of TLR-4 mRNA and protein compared to controls by 90% and 77%, respectively. ICAM.1 protein expression and apoptosis levels were increased by 8.35- and 4.25-fold, respectively. The siIRF-1 cells overexpressed Bax mRNA compared to controls. Proteomic analysis revealed upmodulation of the Annexin-II protein in siIRF-1 THP-1 cells. Myelodysplastic syndrome (MDS patients with an absence of full-length IRF-1 mRNA also overexpressed Annexin-II. It is plausible that this overexpression may lead to the activation of TLR-4 contributing to the increased apoptosis characterizing MDS.

  5. High expression of focal adhesion kinase (p125FAK) in node-negative breast cancer is related to overexpression of HER-2/neu and activated Akt kinase but does not predict outcome

    Focal adhesion kinase (FAK) regulates multiple cellular processes including growth, differentiation, adhesion, motility and apoptosis. In breast carcinoma, FAK overexpression has been linked to cancer progression but the prognostic relevance remains unknown. In particular, with regard to lymph node-negative breast cancer it is important to identify high-risk patients who would benefit from further adjuvant therapy. We analyzed 162 node-negative breast cancer cases to determine the prognostic relevance of FAK expression, and we investigated the relationship of FAK with major associated signaling pathways (HER2, Src, Akt and extracellular regulated kinases) by immunohistochemistry and western blot analysis. Elevated FAK expression did not predict patient outcome, in contrast to tumor grading (P = 0.005), Akt activation (P = 0.0383) and estrogen receptor status (P = 0.0033). Significant positive correlations were observed between elevated FAK expression and HER2 overexpression (P = 0.001), as well as phospho-Src Tyr-215 (P = 0.021) and phospho-Akt (P < 0.001), but not with phospho-ERK1/2 (P = 0.108). Western blot analysis showed a significant correlation of FAK Tyr-861 activation and HER2 overexpression (P = 0.01). Immunohistochemical detection of FAK expression is of no prognostic significance in node-negative breast cancer but provides evidence that HER2 is involved in tumor malignancy and metastatic ability of breast cancer through a novel signaling pathway participating FAK and Src

  6. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera

    Xu, Yi; Burgess, Patrick; Zhang, Xunzhong; Huang, Bingru

    2016-01-01

    Drought stress limits root growth and inhibits cytokinin (CK) production. Increases in CK production through overexpression of isopentenyltransferase (ipt) alleviate drought damages to promote root growth. The objective of this study was to investigate whether CK-regulated root growth was involved in the alteration of reactive oxygen species (ROS) production and ROS scavenging capacity under drought stress. Wild-type (WT) creeping bentgrass (Agrostis stolonifera L. ‘Penncross’) and a transgen...

  7. Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway.

    Wang, Wenjuan; Zou, Liping; Zhou, Danmei; Zhou, Zhongwen; Tang, Feng; Xu, Zude; Liu, Xiuping

    2016-09-01

    Multidrug resistant (MDR) cancer cells overexpressing P-glycoprotein (P-gp) exhibit enhanced invasive/metastatic ability as compared with the sensitive cells. We aimed to clarify the mechanism underlying this observation and found that during the development of drug resistance to adriamycin in MCF7 cells, the elevated expression of UCH-L1 coincides with the up-regulation of MDR1, CD147, MMP2, and MMP9 as well as increased cellular migration/invasion. Overexpression of UCH-L1 in MCF7 cells up-regulated MDR1, CD147, MMP2, and MMP9, which conferred MDR and promoted migration/invasion. On the other hand, silencing of UCH-L1 in MCF7/Adr cells led to the opposite effect. Immunohistochemistry in 203 breast cancer samples revealed that UCH-L1 expression is positively correlated with P-gp, CD147, MMP2, and MMP9 expression and standard tumor spread indicators. Kaplan-Meier survival analysis indicated a correlation between UCH-L1 expression and shorter recurrent and survival times. Moreover, UCH-L1-overexpressing clones treated with U0126 (an Erk1/2-specific inhibitor) significantly decreased the expression of MDR1, CD147, MMP2, and MMP9. These data indicate that UCH-L1 may assume a dual role, because it had intrinsic stimulatory effects on tumor migration/invasion and increased MDR. © 2015 Wiley Periodicals, Inc. PMID:26293643

  8. Radiation-Induced Hypomethylation Triggers Urokinase Plasminogen Activator Transcription in Meningioma Cells

    Kiran Kumar Velpula

    2013-02-01

    Full Text Available Our previous studies have shown the role of radiation-induced urokinase plasminogen activator (uPA expression in the progression of meningioma. In the present study, we investigated whether modulation of DNA methylation profiles could regulate uPA expression. Initially, radiation treatment was found to induce hypomethylation in meningioma cells with a decrease in DNA (cytosine-5-methyltransferase 1 (DNMT1 and methyl-CpG binding domain protein (MBD expression. However, oxidative damage by H2O2 or pretreatment of irradiated cells with N-acetyl cysteine (NAC did not show any influence on these proteins, thereby indicating a radiation-specific change in the methylation patterns among meningioma cells. Further, we identified that hypomethylation is coupled to an increase in uPA expression in these cells. Azacytidine treatment induced a dose-dependent surge of uPA expression, whereas pre-treatment with sodium butyrate inhibited radiation-induced uPA expression, which complemented our prior results. Methylation-specific polymerase chain reaction on bisulfite-treated genomic DNA revealed a diminished methylation of uPA promoter in irradiated cells. Transfection with small hairpin RNA (shRNA-expressing plasmids targeting CpG islands of the uPA promoter showed a marked decline in uPA expression with subsequent decrease in invasion and proliferation of meningioma cells. Further, radiation treatment was found to recruit SP1 transcription factor, which was abrogated by shRNA treatment. Analysis on signaling events demonstrated the activation of MAP kinase kinase (MEK-extracellular signal-regulated kinase (ERK in radiation-treated cells, while U0126 (MEK/ERK inhibitor blocked hypomethylation, recruitment of SP1, and uPA expression. In agreement with our in vitro data, low DNMT1 levels and high uPA were found in intracranial tumors treated with radiation compared to untreated tumors. In conclusion, our data suggest that radiation-mediated hypomethylation

  9. Localization of urokinase-type plasminogen activator in stromal cells in adenocarcinomas of the colon in humans.

    Grøndahl-Hansen, J.; Ralfkiaer, E; Kirkeby, L. T.; P. Kristensen; Lund, L. R.; Danø, K

    1991-01-01

    Human colon adenocarcinomas and adjacent normal colon tissues were stained immunohistochemically with three different monoclonal antibodies and one preparation of polyclonal antibodies against each of the two plasminogen activators, uPA (urokinase type) and tPA (tissue type). The staining patterns seen with the respective sets of antibodies were identical. In all of 10 cases, staining for uPA in the normal colon tissue was confined to scattered fibroblastlike cells in the lamina propria. Othe...

  10. Plasminogen Activator System and Breast Cancer: Potential Role in Therapy Decision Making and Precision Medicine.

    Gouri, Adel; Dekaken, Aoulia; El Bairi, Khalid; Aissaoui, Arifa; Laabed, Nihad; Chefrour, Mohamed; Ciccolini, Joseph; Milano, Gérard; Benharkat, Sadek

    2016-01-01

    Shifting from the historical TNM paradigm to the determination of molecular and genetic subtypes of tumors has been a major improvement to better picture cancerous diseases. The sharper the picture is, the better will be the possibility to develop subsequent strategies, thus achieving higher efficacy and prolonged survival eventually. Recent studies suggest that urokinase-type plasminogen activator (uPA), uPA Receptor (uPAR), and plasmino-gen activator inhibitor-1 (PAI-1) may play a critical role in cancer invasion and metastasis. Consistent with their role in cancer dissemination, high levels of uPA, PAI-1, and uPAR in multiple cancer types correlate with dismal prognosis. In this respect, upfront determination of uPA and PAI-1 as invasion markers has further opened up the possibilities for individualized therapy of breast cancer. Indeed, uPA and PAI-1 could help to classify patients on their risk for metastatic spreading and subsequent relapse, thus helping clinicians in their decision-making process to propose, or not propose, adjuvant therapy. This review covers the implications for cancer diagnosis, prognosis, and therapy of uPA and PAI-1, and therefore how they could be major actors in the development of a precision medicine in breast cancer. PMID:27578963

  11. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo. PMID:26573275

  12. Activity and expression of urokinase-type plasminogen activator and matrix metalloproteinases in human colorectal cancer

    Matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-type plasminogen activator (uPA) are involved in colorectal cancer invasion and metastasis. There is still debate whether the activity of MMP-2 and MMP-9 differs between tumors located in the colon and rectum. We designed this study to determine any differences in the expression of MMP-2, MMP-9 and uPA system between colon and rectal cancer tissues. Cancer tissue samples were obtained from colon carcinoma (n = 12) and rectal carcinomas (n = 10). MMP-2 and MMP-9 levels were examined using gelatin zymography and Western blotting; their endogenous inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), were assessed by Western blotting. uPA, uPAR and PAI-1 were examined using enzyme-linked immunosorbent assay (ELISA). The activity of uPA was assessed by casein-plasminogen zymography. In both colon and rectal tumors, MMP-2, MMP-9 and TIMP-1 protein levels were higher than in corresponding paired normal mucosa, while TIMP-2 level in tumors was significantly lower than in normal mucosa. The enzyme activities or protein levels of MMP-2, MMP-9 and their endogenous inhibitors did not reach a statistically significant difference between colon and rectal cancer compared with their normal mucosa. In rectal tumors, there was an increased activity of uPA compared with the activity in colon tumors (P = 0.0266), however urokinase-type plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1) showed no significant difference between colon and rectal cancer tissues. These findings suggest that uPA may be expressed differentially in colon and rectal cancers, however, the activities or protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, PAI-1 and uPAR are not affected by tumor location in the colon or the rectum

  13. Urokinase-type plasminogen activator-like proteases in teleosts lack genuine receptor-binding epidermal growth factor-like domains

    Bager, René; Kristensen, Thomas K.; Jensen, Jan; Szczur, Agnieszka; Christensen, Anni; Andersen, Lisbeth; Johansen, Jesper Sanderhoff; Larsen, Niels; Baatrup, Erik; Huang, Mingdong; Ploug, Michael; Andreasen, Peter A.

    2012-01-01

    zebrafish proteases, zfuPA-a and zfuPA-b, which by several criteria are the fish orthologs of mammalian uPA. Thus, both proteases catalyze the activation of fish plasminogen efficiently and both proteases are inhibited rapidly by plasminogen activator inhibitor-1 (PAI-1). But zfuPA-a differs from mammalian...... uPA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding...

  14. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    Kim, Yeoun-Hee [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Chang, Yongmin [Department of Molecular Medicine, Kyungpook National University College of Medicine, Kyungpook National University, 200 Dongduk-Ro Jung-Gu, Daegu 700-714 (Korea, Republic of); Jung, Jae-Chang, E-mail: jcjung@knu.ac.kr [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. Black-Right-Pointing-Pointer Staurosporine mediates uPA activation during RGC differentiation in vitro. Black-Right-Pointing-Pointer Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. Black-Right-Pointing-Pointer Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that

  15. Construction of a single lentiviral vector containing tetracycline-inducible Alb-uPA for transduction of uPA expression in murine hepatocytes.

    Jiasi Bai

    Full Text Available The SCID-beige/Alb-uPA mouse model is currently the best small animal model available for viral hepatitis infection studies [1]. But the construction procedure is often costly and time-consuming due to logistic and technical difficulties. Thus, the widespread application of these chimeric mice has been hampered [2]. In order to optimize the procedure, we constructed a single lentiviral vector containing modified tetracycline-regulated system to control Alb-uPA gene expression in the cultured hepatocytes. The modified albumin promoter controlled by tetracycline (Tet-dependent transactivator rtTA2S-M2 was integrated into a lentiviral vector. The full-length uPA cDNA was inserted into another lentiviral vector containing PTight, a modified Tet-responsive promoter. Two vectors were then digested by specific enzymes and ligated by DNA ligase 4. The ligated DNA fragment was inserted into a modified pLKO.1 cloning vector and the final lentiviral vector was then successfully constructed. H2.35 cell, Lewis lung carcinoma, primary kidney, primary hepatic interstitial and CT26 cells were infected with recombinant lentivirus at selected MOI. The expression of uPA induced by DOX was detectable only in the infected H2.35 cells, which was confirmed by real-time PCR and Western blot analysis. Moreover, DOX induced uPA expression on the infected H2.35 cells in a dose-dependent manner. The constructed single lentiviral vector has many biological advantages, including that the interested gene expression under "Tet-on/off" system is controlled by DOX in a dose-depending fashion only in murine liver cells, which provides an advantage for simplifying generation of conditional transgenic animals.

  16. Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system.

    Barroso-Chinea, Pedro; Cruz-Muros, Ignacio; Afonso-Oramas, Domingo; Castro-Hernández, Javier; Salas-Hernández, Josmar; Chtarto, Abdelwahed; Luis-Ravelo, Diego; Humbert-Claude, Marie; Tenenbaum, Liliane; González-Hernández, Tomás

    2016-04-01

    The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis. PMID:26777664

  17. Overexpression of Shati/Nat8l, an N-acetyltransferase, in the nucleus accumbens attenuates the response to methamphetamine via activation of group II mGluRs in mice.

    Miyamoto, Yoshiaki; Ishikawa, Yudai; Iegaki, Noriyuki; Sumi, Kazuyuki; Fu, Kequan; Sato, Keiji; Furukawa-Hibi, Yoko; Muramatsu, Shin-Ichi; Nabeshima, Toshitaka; Uno, Kyosuke; Nitta, Atsumi

    2014-08-01

    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens (NAc) of mice with methamphetamine (METH) treatment. Previously we reported that suppression of Shati/Nat8l enhanced METH-induced behavioral alterations via dopaminergic neuronal regulation. However, the physiological mechanisms of Shati/Nat8l on the dopaminergic system in the brain are unclear. In this study, we injected adeno-associated virus (AAV) vector containing Shati/Nat8l into the NAc or dorsal striatum (dS) of mice, to increase Shati/Nat8l expression. Overexpression of Shati/Nat8l in the NAc, but not in the dS, attenuated METH-induced hyperlocomotion, locomotor sensitization, and conditioned place preference in mice. Moreover, the Shati/Nat8l overexpression in the NAc attenuated the elevation of extracellular dopamine levels induced by METH in in vivo microdialysis experiments. These behavioral and neurochemical alterations due to Shati/Nat8l overexpression in the NAc were inhibited by treatment with selective group II metabotropic glutamate receptor type 2 and 3 (mGluR2/3) antagonist LY341495. In the AAV vector-injected NAc, the tissue contents of both N-acetylaspartate and N-acetylaspartylglutamate (NAAG), endogenous mGluR3 agonist, were elevated. The injection of peptidase inhibitor of NAAG or the perfusion of NAAG itself reduced the basal levels of extracellular dopamine in the NAc of naive mice. These results indicate that Shati/Nat8l in the NAc, but not in the dS, plays an important suppressive role in the behavioral responses to METH by controlling the dopaminergic system via activation of group II mGluRs. PMID:24559655

  18. Increased regucalcin gene expression extends survival in breast cancer patients: Overexpression of regucalcin suppresses the proliferation and metastatic bone activity in MDA-MB-231 human breast cancer cells in vitro.

    Yamaguchi, Masayoshi; Osuka, Satoru; Weitzmann, M Neale; Shoji, Mamoru; Murata, Tomiyasu

    2016-08-01

    Human breast cancer is highly metastatic to bone and drives bone turnover. Breast cancer metastases cause osteolytic lesions and skeletal damage that leads to bone fractures. Regucalcin, which plays a pivotal role as an inhibitor of signal transduction and transcription activity, has been suggested to act as a suppressor of human cancer. In the present study, we compared the clinical outcome between 44 breast cancer patients with higher regucalcin expression and 43 patients with lower regucalcin expression. Prolonged relapse-free survival was identified in the patients with increased regucalcin gene expression. We further demonstrated that overexpression of full length, but not alternatively spliced variants of regucalcin, induces G1 and G2/M phase cell cycle arrest, suppressing the proliferation of MDA-MB-231 cells, a commonly used in vitro model of human breast cancer that metastasize to bone causing osteolytic lesions. Overexpression of regucalcin was found to suppress multiple signaling pathways including Akt, MAP kinase and SAPK/JNK, and NF-κB p65 and β-catenin along with increased p53, a tumor suppressor, and decreased K-ras, c-fos and c-jun. Moreover, we found that co-culture of regucalcin-overexpressing MDA-MB-231 cells with mouse bone marrow cells prevented enhanced osteoclastogenesis and suppressed mineralization in mouse bone marrow cells in vitro. Taken together, the present study suggests that regucalcin may have important anticancer properties in human breast cancer patients. Mechanistically, these effects are likely mediated through suppression of multiple signaling pathways, upregulation of p53 and downregulation of oncogenes leading to anti-proliferative effects and reduced metastases to bone, a phenotype associated with poor clinical outcome. PMID:27221776

  19. Overexpression of lysine-specific demethylase 1 promotes androgen-independent transition of human prostate cancer LNCaP cells through activation of the AR signaling pathway and suppression of the p53 signaling pathway.

    Li, Xuechao; Li, Tao; Chen, Dehong; Zhang, Peng; Song, Yarong; Zhu, Hongxue; Xiao, Yajun; Xing, Yifei

    2016-01-01

    Lysine-specific demethylase 1 (LSD1) is the first defined histone demethylase, and was found to be closely correlated with the development and progression of various types of cancers, including prostate cancer (PCa). Previous research suggests that LSD1 is closely related with cell proliferation, angiogenesis, migration and invasion in PCa. However, it remains to be elucidated whether LSD1 is correlated with androgen-independent (AI) transition of PCa under androgen-ablated conditions. The present study aimed to investigate the correlation of LSD1 expression with AI transition of human androgen-dependent PCa LNCaP cells. Our data showed that LSD1 was overexpressed in human PCa specimens and in AI PCa LNCaP-AI cells, which were established through a three-month continuous culture of LNCaP cells in androgen-deprived medium. Under androgen-deprived conditions, LNCaP-AI cells grew perfectly with less apoptosis and G0/G1 cell cycle arrest. Overexpression of LSD1 protected the LNCaP cells from androgen deprivation-induced apoptosis and G0/G1 arrest, while knockdown of LSD1 drove LNCaP-AI cells into a higher rate of apoptosis and G0/G1 arrest. Furthermore, LSD1 was found to regulate the androgen receptor (AR) and p53 signaling pathways via demethylation, subsequently influencing apoptosis and cell cycle progression. These findings revealed that overexpression of LSD1 promoted AI transition of PCa LNCaP cells under androgen-ablated conditions via activation of the AR signaling pathway and suppression of the p53 signaling pathway. PMID:26534764

  20. Increased expression of urokinase plasminogen activator and its cognate receptor in human seminomas

    The urokinase plasminogen activating system (uPAS) is implicated in neoplastic progression and high tissue levels of uPAS components correlate with a poor prognosis in different human cancers. Despite that, relative few studies are available on the expression and function of the uPAS components in human seminomas. In the present study we characterized the expression of the urokinase plasminogen activator (uPA), its cognate receptor (uPAR) and the uPA inhibitors PAI-1 and PAI-2 in normal human testis and seminomas. The expression of the above genes was evaluated by means of quantitative RT-PCR, western blot, zymographic analysis and immunohistochemistry. Quantitative RT-PCR analysis of 14 seminomas demonstrated that uPA and uPAR mRNAs were, with respect to control tissues, increased in tumor tissues by 3.80 ± 0.74 (p < 0.01) and 6.25 ± 1.18 (p < 0.01) fold, respectively. On the other hand, PAI-1 mRNA level was unchanged (1.02 ± 0.24 fold), while that of PAI-2 was significantly reduced to 0.34 ± 0.18 (p < 0.01) fold. Western blot experiments performed with protein extracts of three seminomas and normal tissues from the same patients showed that uPA protein levels were low or undetectable in normal tissues and induced in tumor tissues. On the same samples, zymographic analysis demonstrated increased uPA activity in tumor tissue extracts. Western blot experiments showed that also the uPAR protein was increased in tumor tissues by 1.83 ± 0.15 fold (p < 0.01). The increased expression of uPA and uPAR was further confirmed by immunohistochemical staining performed in 10 seminomas and autologous uninvolved peritumoral tissues. Finally, variation in the mRNA level of PAI-1 significantly correlated with tumor size. We demonstrated the increased expression of uPA and uPAR in human seminomas with respect to normal testis tissues, which may be relevant in testicular cancer progression

  1. Tissue plasminogen activator and urokinase plasminogen activator in human epileptogenic pathologies

    A.M. Iyer; E. Zurolo; K. Boer; J.C. Baayen; F. Giangaspero; A. Arcella; G.C. Di Gennaro; V. Esposito; W.G.M. Spliet; P.C. van Rijen; D. Troost; J.A. Gorter; E. Aronica

    2010-01-01

    A growing body of evidence demonstrates the involvement of plasminogen activators (PAs) in a number of physiologic and pathologic events in the CNS. Induction of both tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) has been observed in different experimental models of ep

  2. Does Council Tax Valuation Band (CTVB correlate with Under-Privileged Area 8 (UPA8 score and could it be a better 'Jarman Index'?

    Taylor Gordon

    2001-11-01

    Full Text Available Abstract Background Widespread scepticism persists on the use of the Under-Privileged Area (UPA8 score of Jarman in distributing supplementary resources to so-attributed 'deprived' UK general practices. The search for better 'needs' markers continues. Having already shown that Council Tax Valuation Band (CTVB is a predictor of UK GP workload, we compare, here, CTVB of residence of a random sample of patients with their respective 'Jarman' scores. Methods Correlation coefficient is calculated between (i the CTVB of residence of a randomised sample of patients from an English general practice and (ii the UPA8 scores of the relevant enumeration districts in which they live. Results There is a highly significant correlation between the two measures despite modest study size of 478 patients (85% response. Conclusions The proposal that CTVB is a marker of deprivation and of clinical demand should be examined in more detail: it correlates with 'Jarman', which is already used in NHS resource allocation. But unlike 'Jarman', CTVB is simple, objective, and free of the problems of Census data. CTVB, being household-based, can be aggregated at will.

  3. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis

    MASATAKE KAI; CHIKARA KAITO; HIROSHI FUKAMACHI; TAKAYASU HIGO; EIJI TA-KAYAMA; HIROSHI HARA; YOSHIKAZU OHYA; KAZUEI IGARASHI; KOICHIRO SHIOKAWA

    2003-01-01

    In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animalside blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4- and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16- and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8- to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continueddevelopment of the injected embryos. These results indicate that cells overexpressed with SAMDC undergoapoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection.We assume that apoptosis is executed in Xenopus early gastrulae as a "fail-safe" mechanism to eliminatephysiologically-severely damaged cells to save the rest of the embryo.

  4. Camptothecin induces urokinase-type plasminogen activator gene-expression in human RC-K8 malignant lymphoma and H69 small cell lung cancer cells.

    Shibakura M

    2002-10-01

    Full Text Available We previously reported that anthracyclines, which could generate reactive oxygen species (ROS, could induce the urokinase-type plasminogen activator (uPA gene expression in human RC-K8 malignant lymphoma cells and in H69 small cell lung cancer (SCLC cells. In screening other uPA-inducible anti-cancer agents, we found that camptothecin (CPT and its derivative, SN38, could induce uPA in RC-K8 and H69 cells. CPT and SN38, which are also used for the treatment of lymphoma and SCLC, significantly increased the uPA accumulation in the conditioned media of both cells in a dose-dependent manner. The maximum induction of uPA mRNA levels was observed 24 h after stimulation. Pretreatment with pyrrolidine dithiocarbamate (PDTC, an anti-oxidant, inhibited the CPT-induced uPA mRNA expression. Thus, CPT induces uPA through gene expression, and, therefore, CPT may influence the tumor-cell biology by up-regulating the uPA/plasmin system.

  5. Phorbol ester induces the biosynthesis of glycosylated and nonglycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells

    Genton, C.; Kruithof, E.K.; Schleuning, W.D.

    1987-03-01

    The tumor-promoting phorbol ester PMA induces changes in the histiocytic human lymphoma cell line U-937 akin to cellular differentiation and concomitantly stimulates the biosynthesis of plasminogen activator inhibitor 2 (PAI 2) and of urokinase-type plasminogen activator (u-PA). PAI 2 is found in a nonglycosylated intracellular and a glycosylated secreted form. The former appears to be identical to PAI 2 previously purified from placental extracts and large-scale U-937 cell cultures. The sixfold increase of PAI 2 antigen measured 24 h after PMA treatment in cell extracts and conditioned media is accompanied by an equal increase of active PAI 2 mRNA, whereas the 6 to 13-fold increase of u-PA antigen in the same samples is associated with only a 1.5-fold mRNA increase. The increase of PAI 2, but not of u-PA, biosynthesis requires transcription. A 50-fold molar excess of PAI 2 over u-PA is found in both extracts and conditioned media of PMA-treated cells. PAI 2 represents at least 0.3% of total de novo synthesized protein 24 h after induction with PMA. Thus, PAI 2, but not u-PA, is an abundant product of this precursor analogue of the mononuclear phagocyte lineage, and might represent a new marker for monocyte/macrophage differentiation.

  6. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth; Brunner, Nils; Danø, Keld; Johnsen, M.

    2003-01-01

    The plasminogen activator inhibitor-1 (PAI-1) blocks the activation of plasmin(ogen), an extracellular protease vital to cancer invasion. PAI-1 is like the corresponding plasminogen activator uPA (urokinase-type plasminogen activator) consistently expressed in human breast cancer. Paradoxically......, high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model of...... metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth and...

  7. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells

  8. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  9. A facile method to prepare large quantities of active caspase-3 overexpressed by auto-induction in the C41(DE3) strain.

    Hwang, Dohyeon; Kim, Sang Ah; Yang, Eun Gyeong; Song, Hyun Kyu; Chung, Hak Suk

    2016-10-01

    Since human Caspase-3, a member of the cysteine protease family, plays important roles not only in the apoptosis pathway as an executioner protein, but also in neurological disorders as a critical factor, biomedical researchers have been interested in the development of modulators of caspase-3 activity. Such studies require large quantities of purified active caspase-3. So far, purification of soluble caspase-3 from full-length human caspase-3 in Escherichia coli (E. coli) yields only several mg from a liter of culture media. Therefore, a number of alternative strategies to purify active caspase-3 have been described in the literature, including refolding and protein engineering. In this study, we systematically study the effects of host E. coli strains and growth conditions on purifications of active caspase-3 from full-length human caspase-3. Using a combination of conditions that include use of the C41(DE3) strain, low-temperature expression, and auto-induction that induces caspase-3 expression depending on metabolic state of the individual host cell, we are able to obtain 14-17 mg caspase-3 per liter of culture, an amount that is about 7 times larger than published results. This optimized expression and purification method for caspase-3 can be easily scaled up to facilitate the demand for active enzyme. PMID:27320415

  10. Mesothelin confers pancreatic cancer cell resistance to TNF-α-induced apoptosis through Akt/PI3K/NF-κB activation and IL-6/Mcl-1 overexpression

    Li Min

    2011-08-01

    Full Text Available Abstract Background Previous studies showed that mesothelin (MSLN plays important roles in survival of pancreatic cancer (PC cells under anchorage dependent/independent conditions as well as resistance to chemotherapy. The recent success of intratumorally-injected adeno-encoded, chemo/radiation-inducible-promoter driven hTNF-α, (TNFerade + gemcitabine in pre-clinical models of PC have renewed interest in use of TNF-α as a therapeutic component. To help find additional factors which might affect the therapy, we examined the resistance of MSLN-overexpressing pancreatic cancer cell lines to TNF-α-induced growth inhibition/apoptosis. Methods Stable MSLN overexpressing MIA PaCa-2 cells (MIA-MSLN, stable MSLN-silenced AsPC-1 cells (AsPC-shMSLN and other pancreatic cells (MIA-PaCa2, Panc 28, Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 were used. NF-κB activation was examined by western blots and luciferase reporter assay. TNF-α induced growth inhibition/apoptosis was measured by MTT, TUNEL assay and caspase activation. IL-6 was measured using luminex based assay. Results Compared to low endogenous MSLN-expressing MIA PaCa-2 and Panc 28 cells, high endogenous MSLN-expressing Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 cells were resistant to TNF-α induced growth inhibition. Stable MSLN overexpressing MIA-PaCa2 cells (MIA-MSLN were resistant to TNF-α-induced apoptosis while stable MSLN-silenced AsPC1 cells (AsPC-shMSLN were sensitive. Interestingly, TNF-α-treated MIA-MSLN cells showed increased cell cycle progression and cyclin A induction, both of which were reversed by caspase inhibition. We further found that MIA-MSLN cells showed increased expression of anti-apoptotic Bcl-XL and Mcl-1; deactivated (p-Ser75 BAD, and activated (p-Ser70 Bcl-2. Constitutively activated NF-κB and Akt were evident in MIA-MSLN cells that could be suppressed by MSLN siRNA with a resultant increase in sensitivity of TNF-α induced apoptosis

  11. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies

    Bøtkjær, Kenneth Alrø; Fogh, Sarah; Bekes, Erin C;

    2011-01-01

    Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types...... to harbour the epitopes for three conformation-specific monoclonal antibodies, two with a preference for the zymogen form pro-uPA, and one with a preference for active uPA. All three antibodies were shown to have overlapping epitopes, with three common residues being crucial for all three antibodies...

  12. Development of high-specific-activity 68Ga-labeled DOTA-rhenium-cyclized α-MSH peptide analog to target MC1 receptors overexpressed by melanoma tumors

    Introduction: A previous report on 68Ga-1,4,7,10-tetraazacyclodedecane-N,N',N'',N'''-tetraacetic acid (DOTA)-Re(Arg11)CCMSH was shown to indicate the imaging agent's potency for early detection of metastatic melanoma. However, the main limiting factor to developing high-specific-activity 68Ga-DOTA-Re(Arg11)CCMSH is the short half-life of 68Ga, which precludes further purification of the agent. To circumvent this problem, we incorporated the microwave technique to rapidly radiolabel the peptide with 68Ga, thereby allowing enough time to include high-performance liquid chromatography (HPLC) purification in the overall procedure. Methods: DOTA-Re(Arg11)CCMSH was radiolabeled with 68Ga in 68Ga-DOTA-Re(Arg11)CCMSH was then administered on B16/F1 murine melanoma-bearing C57 mice to study its biodistribution and positron emission tomography (PET) imaging capability. Results: The production of high-specific-activity 68Ga-DOTA-Re(Arg11)CCMSH resulted in an improved tumor uptake [6.93±1.11%ID/g at 30 min postinjection (p.i.) and 6.27±1.60%ID/g at 1 h p.i.] and tumor retention (5.85±1.32%ID/g at 4 h p.i.). Receptor-mediated tumor uptake was verified by blocking studies. Furthermore, high-resolution PET images of the tumor were obtained, owing to high tumor-to-nontarget organ ratios at an early time point (i.e., at 1 h biodistribution: tumor/blood, 14.3; tumor/muscle, 89.6; tumor/skin, 12.3) and fast clearance of the labeled peptide from kidney and other healthy tissues. Conclusion: High-specific-activity 68Ga-DOTA-Re(Arg11)CCMSH may have a potential role in the early diagnosis of metastasized melanoma.

  13. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

    Yi Wang

    Full Text Available Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.

  14. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

    Wang, Yi; Ye, Xiangsheng; Ding, Guangda; Xu, Fangsen

    2013-01-01

    Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1) seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals. PMID:23573285

  15. Cytokinins in the bryophyte Physcomitrella patens: Analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins

    von Schwartzenberg, K.; Nunez, M.F.; Blaschke, H.; Dobrev, Petre; Novák, Ondřej; Motyka, Václav; Strnad, Miroslav

    2007-01-01

    Roč. 145, č. 3 (2007), s. 786-800. ISSN 0032-0889 R&D Projects: GA ČR GA522/06/0703; GA AV ČR IAA600380701 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : ARABIDOPSIS-THALIANA * OXIDASE ACTIVITY * ATP/ADP ISOPENTENYLTRANSFERASES Subject RIV: ED - Physiology Impact factor: 6.367, year: 2007

  16. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    Søderman, Andreas; Thomsen, Morten S; Hansen, Henrik H;

    2008-01-01

    Recent studies have demonstrated that amyloid-beta1-42 (Abeta1-42) binds to the nicotinergic alpha7 acetylcholine receptor (alpha7 nAChR) and that the application of Abeta1-42 to cells inhibits the function of the alpha7 nAChR. The in vivo consequences of the pharmacological activation of the alp...... that clinical trials testing alpha7 nAChR agonists should be related to the content of Abeta peptides in the patient's nervous system....... systemic administration of the alpha7 nAChR agonist SSR180711 (10 mg/kg) result in a significant increase in Fos protein levels in the shell of nucleus accumbens in wild-type mice, but has no effect in the transgene mice. There were fewer cell bodies expressing Fos in the prefrontal cortex of transgene...

  17. Gene expression of fibrinolytic factors urokinase plasminogen activator and plasminogen activator inhibitor-1 in rabbit temporo-mandibular joint cartilage with disc displacement

    ZHAN Jing; GU Zhi-yuan; WU Li-qun; ZHANG Yin-kai; HU Ji-an

    2005-01-01

    Background The urokinase plasminogen activator system is believed to play an important role in degradation of the extracellular matrix associated with cartilage and bone destruction; however its precise roles in temporomandibular disorders have not yet been clarified. The aims of this study were to investigate the gene expression of fibrinolytic factors urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in the articular cartilage of rabbit temporomandibular joint (TMJ) with disc displacement (DD) and to probe the relationship between fibrinolytic activity and cartilage remodeling. Methods Disc displacement of right joints was performed in 36 of 78 rabbits under investigation. The animals were sacrificed at 4 days and 1, 2, 4, 8 and 12 weeks after surgery, respectively. The right joints of these animals were harvested and processed for the examination of mRNA expression of uPA and PAI-1 in articular cartilage using in situ hybridization techniques. Results The expression of uPA and PAI-1 was co-expressed weakly in the chondrocytes from transitive zone to hypertrophic zone and mineralized zone, while no hybridizing signals were shown in proliferative zone and superficial zone in control rabbits. The most striking was the up-regulation of uPA and PAI-1 mRNA in 4-day rabbits postoperatively at the onset of cartilage degeneration. The strongest hybridizing signals for uPA and PAI-1 were seen in 2-week rabbits postoperatively. After 2 weeks, the expression of uPA and PAI-1 began to decrease and reached nearly normal level at 12 weeks. Conclusions The expression of the uPA/PAI-1 system coincides with the pathological changes in condylar cartilage after DD. The uPA/PAI-1 system may be one of the essential mediators in articular cartilage remodeling.

  18. Activation of p21CIP1/WAF1 gene expression and inhibition of cell proliferation by overexpression of hepatocyte nuclear factor-4α

    The F9 murine embryonal carcinoma cell line provides an attractive system for studying epithelial differentiation and antiproliferative processes. We have recently established F9 cells expressing doxycycline-inducible hepatocyte nuclear factor (HNF)-4α and shown that HNF-4α triggers the gene expression of tight-junction molecules, occludin, claudin-6, and claudin-7, as well as formation of functional tight junctions and polarized epithelial morphology (Exp. Cell Res. 286, [2003] 288). Since these events were very similar to those induced by retinoids, we investigated whether HNF-4α, like retinoid receptors, was involved in the control of cell proliferation. We herein show that HNF-4α up-regulates expression of the p21 gene, but not the p15, p16, p18, p19, or p27 gene, in a p53-independent manner, and inhibits cell growth in F9 cells. Similar results were observed in rat lung endothelial cells, in which expression of HNF-4α is conditionally induced by doxycycline. Furthermore, we demonstrate, by reporter assay, that HNF-4α significantly elevates the transcriptional activity of the p21 promoter. Since, HNF-4α is expressed not only in the liver but also in organs containing epithelial cells, such as kidney, intestine, pancreas, and stomach, it might also play critical roles in the regulation of epithelial morphogenesis and proliferation in these organs

  19. Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/β-catenin signaling

    Hepatocellular carcinoma (HCC) is the most common cancer in the world especially in East Asia and Africa. Advanced stage, metastasis and frequent relapse are responsible for the poor prognosis of HCC. However, the precise mechanisms underlying HCC remained unclear. So it is urgent to identify the pathological processes and relevant molecules of HCC. TRIM37 is an E3 ligase and has been observed deregulated expression in various tumors. Recent studies of TRIM37 have implicated that TRIM37 played critical roles in cell proliferation and other processes. In the present study, we demonstrated that TRIM37 expression was notably up-regulated in HCC samples and was associated with advanced stage and tumor volume, which all indicating the poor outcomes. We also found that TRIM37 could serve as an independent prognostic factor of HCC. During the course of in vitro and in vivo work, we showed that TRIM37 promoted HCC cells migration and metastasis by inducing EMT. Furthermore, we revealed that the effect of TRIM37 mediated EMT in HCC cells was achieved by the activation of Wnt/β-catenin signaling. These finding may provide insight into the understanding of TRIM37 as a novel critical factor of HCC and a candidate target for HCC treatment. - Highlights: • Highly expression of TRIM37 is found in HCC samples compared with nontumorous samples. • TRIM37 expression is correlated with advanced HCC stages and could be an independent prognostic factor. • TRIM37 promotes cell proliferation and metastasis. • We report an E3 ligase TRIM37 affects Wnt/β-catenin signaling

  20. Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/β-catenin signaling

    Jiang, Jianxin; Yu, Chao; Chen, Meiyuan; Tian, She; Sun, Chengyi, E-mail: chenyisun11@163.com

    2015-09-04

    Hepatocellular carcinoma (HCC) is the most common cancer in the world especially in East Asia and Africa. Advanced stage, metastasis and frequent relapse are responsible for the poor prognosis of HCC. However, the precise mechanisms underlying HCC remained unclear. So it is urgent to identify the pathological processes and relevant molecules of HCC. TRIM37 is an E3 ligase and has been observed deregulated expression in various tumors. Recent studies of TRIM37 have implicated that TRIM37 played critical roles in cell proliferation and other processes. In the present study, we demonstrated that TRIM37 expression was notably up-regulated in HCC samples and was associated with advanced stage and tumor volume, which all indicating the poor outcomes. We also found that TRIM37 could serve as an independent prognostic factor of HCC. During the course of in vitro and in vivo work, we showed that TRIM37 promoted HCC cells migration and metastasis by inducing EMT. Furthermore, we revealed that the effect of TRIM37 mediated EMT in HCC cells was achieved by the activation of Wnt/β-catenin signaling. These finding may provide insight into the understanding of TRIM37 as a novel critical factor of HCC and a candidate target for HCC treatment. - Highlights: • Highly expression of TRIM37 is found in HCC samples compared with nontumorous samples. • TRIM37 expression is correlated with advanced HCC stages and could be an independent prognostic factor. • TRIM37 promotes cell proliferation and metastasis. • We report an E3 ligase TRIM37 affects Wnt/β-catenin signaling.

  1. The pro-urokinase plasminogen-activation system in the presence of serpin-type inhibitors and the urokinase receptor

    Behrendt, Niels; List, Karin; Andreasen, Peter A; Danø, Keld

    The reciprocal pro-enzyme activation system of plasmin, urokinase-type plasminogen activator (uPA) and their respective zymogens is a potent mechanism in the generation of extracellular proteolytic activity. Plasminogen activator inhibitor type 1 (PAI-1) acts as a negative regulator. This system ...

  2. Overexpression of Activation-Induced Cytidine Deaminase in MTX- and Age-Related Epstein-Barr Virus-Associated B-Cell Lymphoproliferative Disorders of the Head and Neck

    Kentaro Kikuchi

    2015-01-01

    Full Text Available Recent research has shown that activation-induced cytidine deaminase (AID triggers somatic hypermutation and recombination, in turn contributing to lymphomagenesis. Such aberrant AID expression is seen in B-cell leukemia/lymphomas, including Burkitt lymphoma which is associated with c-myc translocation. Moreover, Epstein-Barr virus (EBV latent membrane protein-1 (LMP-1 increases genomic instability through early growth transcription response-1 (Egr-1 mediated upregulation of AID in B-cell lymphoma. However, few clinicopathological studies have focused on AID expression in lymphoproliferative disorders (LPDs. Therefore, we conducted an immunohistochemical study to investigate the relationship between AID and LMP-1 expression in LPDs (MTX-/Age-related EBV-associated, including diffuse large B-cell lymphomas (DLBCLs. More intense AID expression was detected in LPDs (89.5% than in DLBCLs (20.0%, and the expression of LMP-1 and EBER was more intense in LPDs (68.4% and 94.7% than in DLBCLs (10.0% and 20.0%. Furthermore, stronger Egr-1 expression was found in MTX/Age-EBV-LPDs (83.3% than in DLBCLs (30.0%. AID expression was significantly constitutively overexpressed in LPDs as compared with DLBCLs. These results suggest that increased AID expression in LPDs may be one of the processes involved in lymphomagenesis, thereby further increasing the survival of genetically destabilized B-cells. AID expression may be a useful indicator for differentiation between LPDs and DLBCLs.

  3. Redes de atenção às urgências e emergências: pré-avaliação das Unidades de Pronto Atendimento (UPAs em uma região metropolitana do Brasil Urgent and emergency care networks: a pre-evaluation of the First Aid Units (UPAs in a metropolitan region of Brazil

    Greciane Soares da Silva

    2012-12-01

    Full Text Available OBJETIVOS: um estudo avaliativo, exploratório das UPAs na região metropolitana do Recife, no ano de 2011. MÉTODOS: considerou-se a descrição da intervenção, o delineamento do modelo lógico, o envolvimento dos interessados e a construção de perguntas avaliativas. Realizou-se abordagem de três fases interativas, utilizando, para sua operacionalização, a análise documental, entrevistas e Conferência de Consenso. O modelo lógico elaborado subsidiou a construção de matriz com critérios e indicadores, que foi submetida a um comitê de informantes-chave para obtenção do consenso. RESULTADOS: a matriz de critérios e indicadores resultante do consenso é composta de três níveis de análise (assistência à saúde, integração interistitucional e gestão com 41 critérios e 74 indicadores avaliativos. Com base no modelo lógico, na Conferência de Consenso, na matriz de critérios/indicadores e nas considerações sistematizadas dos inte-ressados, foram elaboradas 14 perguntas avaliativas. CONCLUSÕES: as UPAs encontram-se adequadas à rea-lização de avaliações, pois se verificou que os elementos identificados no modelo lógico são condizentes com as condições que a intervenção possui para alcançar suas metas e objetivos.OBJECTIVES: an exploratory evaluative study of the UPAs in a metropolitan region of Brazil in 2011. METHODS: the intervention was described, the logical model outlined, along with the involvement of stakeholders, and evaluation questions drawn up. The three interactive phases approach was carried out using document analysis, interviews and consensus conferencing. The logical model was based on building up a matrix of criteria and indicators that was submitted to a committee of key informants with a view to obtaining consensus. RESULTS: the matrix of criteria and indicators resulting from the consensus comprises three levels of analysis (health care, inter-institutional interaction and management with 41

  4. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... domain is directly involved in the molecular contact with uPA. The receptor binds uPA as well as its proenzyme, pro-uPA, in such a manner that the activation cascade can occur directly on the cell surface. Furthermore, the activation rates are enhanced relative to the situation in solution, probably due...

  5. Overexpression, Purification, Characterization, and Pathogenicity of Vibrio harveyi Hemolysin VHH

    Zhong, Yingbin; Zhang, Xiao-Hua; Chen, Jixiang; Chi, Zhenghao; Sun, Boguang; Li, Yun; Austin, Brian

    2006-01-01

    Vibrio harveyi VHH hemolysin is a putative pathogenicity factor in fish. In this study, the hemolysin gene vhhA was overexpressed in Escherichia coli, and the purified VHH was characterized with regard to pH and temperature profiles, phospholipase activity, cytotoxicity, pathogenicity to flounder, and the signal peptide. PMID:16988279

  6. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma.

    Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2016-09-01

    SND1 is a multifunctional protein participating, among others, in gene transcription and mRNA metabolism. SND1 is overexpressed in cancer cells and promotes viability and tumourigenicity of hepatocellular carcinoma cells. This study shows that cholesterol synthesis is increased in SND1-overexpressing hepatoma cells. Neither newly synthesised nor extracellularly supplied cholesterol are able to suppress this increase; however, inhibition of cholesterol esterification reverted the activated state of sterol-regulatory element-binding protein 2 (SREBP2) and cholesterogenesis. These results highlight SND1 as a potential regulator of cellular cholesterol distribution and homeostasis in hepatoma cells, and support the rationale for the therapeutic use of molecules that influence cholesterol management when SND1 is overexpressed. PMID:27238764

  7. Mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3) overexpression is an early event in esophageal tumorigenesis and is a predictor of poor disease prognosis

    Mitogen-activated protein kinase kinase kinase3 (MAP3K3/MEKK3) was identified to be differentially expressed in esophageal squamous cell carcinoma (ESCC) using cDNA microarrays by our laboratory. Here in we determined the clinical significance of MEKK3 in ESCC. Immunohistochemical analysis of MEKK3 expression was carried out in archived tissue sections from 93 ESCCs, 47 histologically normal and 61 dysplastic esophageal tissues and correlated with clinicopathological parameters and disease prognosis over up to 7.5 years for ESCC patients. MEKK3 expression was significantly increased in esophageal dysplasia and ESCC in comparison with normal mucosa (ptrend < 0.001). Kaplan Meier survival analysis showed significantly reduced median disease free survival median DFS = 10 months in patients with MEKK3 positive ESCCs compared to patients with no immunopositivity (median DFS = 19 months, p = 0.04). ESCC patients with MEKK3 positive and lymph node positive tumors had median DFS = 9 months, as compared to median DFS = 21 months in patients who did not show the alterations (p = 0.01). In multivariate Cox regression analysis, combination of MEKK3 overexpression and node positivity [p = 0.015, hazard ratio (HR) = 2.082, 95% CI = 1.154 - 3.756] emerged as important predictor of reduced disease free survival and poor prognosticator for ESCC patients. Alterations in MEKK3 expression occur in early stages of development of ESCC and are sustained during disease progression; MEKK3 in combination with lymph node positivity has the potential to serve as adverse prognosticator in ESCC

  8. Revolutionizing membrane protein overexpression in bacteria

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickström, David; Slotboom, Dirk Jan; De Gier, Jan‐Willem

    2010-01-01

    Summary The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory, especially for eukaryotic membrane proteins. This has initiated a revolution of membrane protein overexpression in bacteria. Recent studies have shown that it is feasible to (i) engineer or ...

  9. NUCKS overexpression in breast cancer

    Kittas Christos

    2009-08-01

    Full Text Available Abstract Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR, real-time PCR (qRT-PCR and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS. It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non

  10. Revolutionizing membrane protein overexpression in bacteria

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickstrom, David; Slotboom, Dirk Jan; de Gier, Jan-Willem; Wickström, David

    2010-01-01

    The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory, e

  11. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib

    Younes, Mohamad; Wu, Zherui; Dupouy, Sandra; Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-01-01

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 wa...

  12. Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy.

    Dong, Wen-Qian; Chao, Min; Lu, Qing-Hua; Chai, Wei-Li; Zhang, Wei; Chen, Xue-Ying; Liang, Er-Shun; Wang, Ling-Bo; Tian, Hong-Liang; Chen, Yu-Guo; Zhang, Ming-Xiang

    2016-01-01

    Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions including proliferation, apoptosis, tumor suppression, transcription, and mitochondrial protein folding. However, its function in diabetic cardiomyopathy (DCM) is still unclear. In vivo, type 2 diabetic rat model was induced by using a high-fat diet and low-dose streptozotocin. Overexpression of the PHB protein in the model rats was achieved by injecting lentivirus carrying PHB cDNA via the jugular vein. Characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, fibrosis and apoptosis. PHB overexpression ameliorated the disease. Cardiofibroblasts (CFs) and H9c2 cardiomyoblasts were used in vitro to investigate the mechanism of PHB in altered function. In CFs treated with HG, PHB overexpression decreased expression of collagen, matrix metalloproteinase activity, and proliferation. In H9c2 cardiomyoblasts, PHB overexpression inhibited apoptosis induced by HG. Furthermore, the increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was significantly decreased and the inhibited phosphorylation of Akt was restored in DCM. Therefore, PHB may be a new therapeutic target for human DCM. PMID:26623724

  13. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Vinciane Régnier

    Full Text Available BACKGROUND: The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  14. Vldlr overexpression causes hyperactivity in rats

    Iwata Keiko

    2012-10-01

    Full Text Available Abstract Background Reelin regulates neuronal positioning in cortical brain structures and neuronal migration via binding to the lipoprotein receptors Vldlr and Lrp8. Reeler mutant mice display severe brain morphological defects and behavioral abnormalities. Several reports have implicated reelin signaling in the etiology of neurodevelopmental and psychiatric disorders, including autism, schizophrenia, bipolar disorder, and depression. Moreover, it has been reported that VLDLR mRNA levels are increased in the post-mortem brain of autistic patients. Methods We generated transgenic (Tg rats overexpressing Vldlr, and examined their histological and behavioral features. Results Spontaneous locomotor activity was significantly increased in Tg rats, without detectable changes in brain histology. Additionally, Tg rats tended to show performance deficits in the radial maze task, suggesting that their spatial working memory was slightly impaired. Thus, Vldlr levels may be involved in determining locomotor activity and memory function. Conclusions Unlike reeler mice, patients with neurodevelopmental or psychiatric disorders do not show striking neuroanatomical aberrations. Therefore, it is notable, from a clinical point of view, that we observed behavioral phenotypes in Vldlr-Tg rats in the absence of neuroanatomical abnormalities.

  15. Ionizing radiation enhances therapeutic activity of mda-7/IL-24: overcoming radiation- and mda-7/IL-24-resistance in prostate cancer cells overexpressing the antiapoptotic proteins bcl-xL or bcl-2.

    Su, Z-Z; Lebedeva, I V; Sarkar, D; Emdad, L; Gupta, P; Kitada, S; Dent, P; Reed, J C; Fisher, P B

    2006-04-13

    Subtraction hybridization applied to terminally differentiating human melanoma cells identified mda-7/IL-24, a cytokine belonging to the IL-10 gene superfamily. Adenoviral-mediated delivery of mda-7/IL-24 (Ad.mda-7) provokes apoptosis selectively in a wide spectrum of cancers in vitro in cell culture, in vivo in human tumor xenograft animal models and in patients with advanced carcinomas and melanomas. In human prostate cancer cells, a role for mitochondrial dysfunction and induction of reactive oxygen species in the apoptotic process has been established. Ectopic overexpression of bcl-xL and bcl-2 prevents these changes including apoptosis induction in prostate tumor cells by Ad.mda-7. We now document that this resistance to apoptosis can be reversed by treating bcl-2 family overexpressing prostate tumor cells with ionizing radiation in combination with Ad.mda-7 or purified GST-MDA-7 protein. Additionally, radiation augments apoptosis induction by mda-7/IL-24 in parental and neomycin-resistant prostate tumor cells. Radiosensitization to mda-7/IL-24 is dependent on JNK signaling, as treatment with the JNK 1/2/3 inhibitor SP600125 abolishes this effect. Considering that elevated expression of bcl-xL and bcl-2 are frequent events in prostate cancer development and progression, the present studies support the use of ionizing radiation in combination with mda-7/IL-24 as a means of augmenting the therapeutic benefit of this gene in prostate cancer, particularly in the context of tumors displaying resistance to radiation therapy owing to bcl-2 family member overexpression. PMID:16331261

  16. Overexpression of protein disulfide isomerase in Aspergillus.

    El-Adawi, H; Khanh, N Q; Gassen, H

    2000-10-01

    One of the major problems with the production of biotechnologically valuable proteins has been the purification of the product. For Escherichia coli and Saccharomyces cerevisiae, there are several techniques for the purification of intracellular proteins, but these are time consuming and often result in poor yields. Purification can be considerably facilitated, if the product is secreted from the host cell. In the work presented, we have constructed an expression vector (pSGNH2) for the secretion of protein disulfide isomerase (PDI; EC 5.3.4.1) from Aspergillus niger, in which the retention signal His-Asp-Glu-Leu (H-D-E-L) was modified to Ala-Leu-Glu-Gln (A-L-E-Q) via the polymerase chain reaction (PCR) method. The PDI gene was placed under the control of the A. oryzae alpha-amylase promoter. This expression vector was transformed into A. niger NRRL3, resulting in PDI secretion into the medium. The catalytic activity of overexpressed PDI from A. niger was indistinguishable from that of PDI isolated from bovine liver. With further strain improvement and optimization of culture conditions, it could be possible to raise the PDI production to the bioprocessing scale. PMID:10977899

  17. Inhibition of urokinase plasminogen activator “uPA” activity alters ethanol consumption and conditioned place preference in mice

    Al Maamari E

    2014-09-01

    Full Text Available Elyazia Al Maamari,* Mouza Al Ameri, Shamma Al Mansouri, Amine Bahi*Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates*These authors contributed equally to this workAbstract: Urokinase plasminogen activator, uPA, is a serine protease implicated in addiction to drugs of abuse. Using its specific inhibitor, B428, we and others have characterized the role of uPA in the rewarding properties of psychostimulants, including cocaine and amphetamine, but none have examined the role of uPA in ethanol use disorders. Therefore, in the current study, we extended our observations to the role of uPA in ethanol consumption and ethanol-induced conditioned place preference. The general aim of the present series of experiments was to investigate the effects of the administration of the B428 on voluntary alcohol intake and ethanol conditioned reward. A two-bottle choice, unlimited-access paradigm was used to compare ethanol intake between vehicle- and 3, 10, and 30 mg/kg B428-administered mice. For this purpose, the mice were presented with an ethanol solution (2.5%–20% and water, at each concentration for 4 days, and their consumption was measured daily. Consumption of saccharin and quinine solutions was also measured. Systemic administration of B428 dose-dependently decreased ethanol intake and preference. Additionally, B428 mice did not differ from vehicle mice in their intake of graded solutions of tastants, suggesting that the uPA inhibition did not alter taste function. Also, ethanol metabolism was not affected following B428 injection. More importantly, 1.5 g/kg ethanol-induced conditioned place preference acquisition was blocked following B428 administration. Taken together, our results are the first to implicate uPA inhibition in the regulation of ethanol consumption and preference, and suggest that uPA may be considered as a possible therapeutic drug target for alcoholism and

  18. Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases

    Illemann, Martin; Bird, Nigel; Majeed, Ali;

    2009-01-01

    Metastatic growth and invasion by colon cancer cells in the liver requires the ability of the cancer cells to interact with the new tissue environment. Plasmin(ogen) is activated on cell surfaces by urokinase-type PA (uPA), and is regulated by uPAR and plasminogen activator inhibitor-1 (PAI-1......). To compare the expression patterns of uPA, uPAR and PAI-1 in colon cancer with that in their liver metastases, we analysed matched samples from 14 patients. In all 14 primary colon cancers, we found upregulation of uPAR, uPA mRNA and PAI-1 in primarily stromal cells at the invasive front. In 5 of the 14......, whereas 8 of the remaining 9 showed direct contact between the cancer cells and the liver parenchyma. We conclude that there are 2 distinct patterns of expression of uPAR, uPA and PAI-1 in colon cancer liver metastases and that these correlate closely with 2 morphological growth patterns. These findings...

  19. A 55,000-60,000 Mr receptor protein for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification

    Nielsen, L S; Kellerman, G M; Behrendt, N;

    1988-01-01

    The iodinated Mr approximately equal to 15,000 amino-terminal fragment (ATF) of the urokinase-type plasminogen activator (u-PA) molecule bound specifically to the cell surface of all of seven cultured human tumor cell lines studied. Cross-linking of iodinated ATF to the cell surface using a bifun...

  20. Large-Scale Overexpression and Purification of ADARs from Saccharomyces cerevisiae for Biophysical and Biochemical Studies

    Macbeth, Mark R.; Bass, Brenda L.

    2007-01-01

    Many biochemical and biophysical analyses of enzymes require quantities of protein that are difficult to obtain from expression in an endogenous system. To further complicate matters, native adenosine deaminases that act on RNA (ADARs) are expressed at very low levels, and overexpression of active protein has been unsuccessful in common bacterial systems. Here we describe the plasmid construction, expression, and purification procedures for ADARs overexpressed in the yeast Saccharomyces cerev...

  1. Effects of ADH2 Overexpression in Saccharomyces bayanus during Alcoholic Fermentation▿

    Maestre, Oscar; García-Martínez, Teresa; Peinado, Rafael A.; Mauricio, Juan C.

    2007-01-01

    The effect of overexpression of the gene ADH2 on metabolic and biological activity in Saccharomyces bayanus V5 during alcoholic fermentation has been evaluated. This gene is known to encode alcohol dehydrogenase II (ADH II). During the biological aging of sherry wines, where yeasts have to grow on ethanol owing to the absence of glucose, this isoenzyme plays a prominent role by converting the ethanol into acetaldehyde and producing NADH in the process. Overexpression of the gene ADH2 during a...

  2. Effects of p53 overexpression on neoplastic cell pro-liferation and apoptosis in thymic carcinoma

    2000-01-01

    To investigate p53 overexpression and its correlation with neoplastic cell proliferation and apoptosis in 20 thymic carcinomas. Methods: 20 surgical samples of thymic carcinoma were collected randomly during the past 15 years in the Guangzhou area. Immunohistochemical staining was performed using LSAB method with anti-p53 monoclonal antibody (DO-7) and proliferating cell nuclear antigen (clone PC 10) as primary antibodies. The p53 index was indicated by the number of p53 positive cells among 100 carcinoma cells. More than 25 percentage of p53 positive cells found in tissue sections was recognized as p53 overexpression. Carcinoma cell proliferation activity was assayed by PCNA index (PI), and apoptosis degree was evaluated by TUNEL (TdT-mediated dUTP-X nick end labeling) index (TI) using Boehringer Mannheim In Situ Death Detection Kit. Results: P53 positive cells could be found in vast majority of thymic carcinomas (19/20) and the overexpression rate reached 35% (7/20). The median PI (40%) of 7 cases with p53 overexpression was higher than that (31%) of 13 cases without p53 overexpression, but there was no statistical significance that existed between these two data (P>0.05). The median TI (0.5/HPF) of 7 p53 overexpression cases was much lower than that (4.5/HPF) of 13 non-overexpression cases, and there was a significant difference statistically (P<0.05). Conclusion: p53 expression was a frequent finding in thymic carcinoma cells, and the p53 overexpression which might represent p53 inactivation or gene mutation was often involved in thymic carcino-genesis. The median PCNA index of p53 overexpression group was higher than that of non-overexpression group though there existed no statistical difference. This indicates that the inhibiting function of p53 on cell proliferation seemed lost in p53 overexpressed thymic carcinomas. It is worthy to be specially mentioned that the inducing function of p53 on cell apoptosis was markedly lost in p53 overexpressed thymic

  3. Cytokines in cerebrospinal fluid of neurosyphilis patients: Identification of Urokinase plasminogen activator using antibody microarrays.

    Lu, Ping; Zheng, Dao-Cheng; Fang, Chang; Huang, Jin-Mei; Ke, Wu-Jian; Wang, Liu-Yuan; Zeng, Wei-Ying; Zheng, He-Ping; Yang, Bin

    2016-04-15

    Little is known regarding protein responses to syphilis infection in cerebrospinal fluid (CSF) of patients presenting with neurosyphilis. Protein and antibody arrays offer a new opportunity to gain insights into global protein expression profiles in these patients. Here we obtained CSF samples from 46 syphilis patients, 25 of which diagnosed as having central nervous system involvement based on clinical and laboratory findings. The CSF samples were then analyzed using a RayBioH L-Series 507 Antibody Array system designed to simultaneously analyze 507 specific cytokines. The results indicated that 41 molecules showed higher levels in patients with neurosyphilis in comparison with patients without neural involvement. For validation by single target ELISA, we selected five of them (MIP-1a, I-TAC/CXCL11, Urokinase plasminogen activator [uPA], and Oncostatin M) because they have previously been found to be involved in central nervous system (CNS) disorders. The ELISA tests confirmed that uPA levels were significantly higher in the CSF of neurosyphilis patients (109.1±7.88pg/ml) versus patients without CNS involvement (63.86±4.53pg/ml, p<0.0001). There was also a clear correlation between CSF uPA levels and CSF protein levels (p=0.0128) as well as CSF-VDRL titers (p=0.0074) used to diagnose neurosyphilis. No significant difference between the two groups of patients, however, was found in uPA levels in the serum, suggesting specific activation of the inflammatory system in the CNS but not the periphery in neurosyphilis patients. We conclude that measurements of uPA levels in CSF may be an additional parameter for diagnosing neurosyphilis. PMID:27049560

  4. Overexpression of Fatty-Acid-β-Oxidation-Related Genes Extends the Lifespan of Drosophila melanogaster

    Shin-Hae Lee

    2012-01-01

    Full Text Available A better understanding of the aging process is necessary to ensure that the healthcare needs of an aging population are met. With the trend toward increased human life expectancies, identification of candidate genes affecting the regulation of lifespan and its relationship to environmental factors is essential. Through misexpression screening of EP mutant lines, we previously isolated several genes extending lifespan when ubiquitously overexpressed, including the two genes encoding the fatty-acid-binding protein and dodecenoyl-CoA delta-isomerase involved in fatty-acid β-oxidation, which is the main energy resource pathway in eukaryotic cells. In this study, we analyzed flies overexpressing the two main components of fatty-acid β-oxidation, and found that overexpression of fatty-acid-β-oxidation-related genes extended the Drosophila lifespan. Furthermore, we found that the ability of dietary restriction to extend lifespan was reduced by the overexpression of fatty-acid-β-oxidation-related genes. Moreover, the overexpression of fatty-acid-β-oxidation-related genes enhanced stress tolerance to oxidative and starvation stresses and activated the dFOXO signal, indicating translocation to the nucleus and transcriptional activation of the dFOXO target genes. Overall, the results of this study suggest that overexpression of fatty-acid-β-oxidation-related genes extends lifespan in a dietary-restriction-related manner, and that the mechanism of this process may be related to FOXO activation.

  5. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling

  6. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    Xu, Hanwen [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208 (United States); Pirisi, Lucia [Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Creek, Kim E., E-mail: creekk@sccp.sc.edu [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208 (United States)

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.

  7. EFFECTS OF p53 OVEREXPRESSION ON NEOPLASTIC CELL MITOSIS AND APOPTOSIS IN NASOPHARYNGEAL CARCINOMA

    2001-01-01

    To investigate the p53 overexpression and its correlation withneoplastic cell mitosis and apoptosis in 43 nasopharyngeal carcinomas (NPCs). Methods: Forty-three pretreated NPC biopsy samples were randomly collected in the year 1997 for this study. p53 overexpression was detected by LSAB immunohistochemistry using DO-7 primary antibody. Mitotic figures were counted on H&E stained slides, and apoptotic cells on TUNEL-stained slides by use of in-situ cell death detection kit. Both of mitotic and apoptotic cells were quantitated by cell numbers per one high power field (5′ 40) averagely in terms of mitotic index (MI) and TUNEL index (TI), respectively. To compare the mean MIs of two groups categorized by different percentages of positive p53 positive cells found in NPC specimens was taken for the purpose of designating the criterion of p53 overexpression. And then, the correlation of p53 overexpression with MI and TI was made by statistical analysis. Results: Because statistically significant difference appeared at the criterion of 20%, the p53 overexpression of NPC was defined as≥20% of positive cells found. The p53 overexpression thus could be detected in 37 out of 43 NPCs, reaching 86.05% (37/43). The mean MI (1.87± 1.78/HPF) of 37 NPCs with p53 overexpression was significantly higher than that (0.76± 0.63/HPF) of 6 NPCs without p53 overexpression, the P value being <0.05. However, there was no statistical difference between the mean TI (24.50± 26.66HPF) of 37 NPCs with p53 overexpression and TI (23.17± 25.30/HPF) of 6 NPCs without p53 overexpression. Conclusions: p53 overexpression of NPC could be designated by ≥20% of positive neoplastic cells found in pretreated NPC specimens, and the rate of which reached 86.05% (37/43). The overexpressed p53 could enhance cell proliferative activity in pretreated NPCs represented by increasing of MI, but showed no effect on neoplastic cell apoptosis.

  8. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    Karhumaa Kaisa

    2011-07-01

    gave a substantial improvement in isobutanol production for the reference strain, but not for the ILV2 ILV3 ILV5 overexpression strain. This result implies that other constraints besides the enzyme activities for the supply of 2-ketoisovalerate may become bottlenecks for isobutanol production after ILV2, ILV3, and ILV5 have been overexpressed, which most probably includes the valine inhibition to Ilv2.

  9. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Wen-Hui [Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001 (China); Yan, Ba-Yi; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Yang, Wu-Lin, E-mail: wulinyoung@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research - A*STAR (Singapore)

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  10. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5

  11. Kif14 overexpression accelerates murine retinoblastoma development.

    O'Hare, Michael; Shadmand, Mehdi; Sulaiman, Rania S; Sishtla, Kamakshi; Sakisaka, Toshiaki; Corson, Timothy W

    2016-10-15

    The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo. PMID:27270502

  12. Retraction: "Down-regulation of uPA and uPAR by 3,3'-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells" by Ahmad et al.

    2016-08-01

    The above article, published online on August 19, 2009 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the third author and the corresponding author that found Figure 5C to be inappropriately re-used and re-labeled. REFERENCE Ahmad A, Kong D, Wang Z, Sarkar SH, Banerjee S, Sarkar FH. 2009. Down-regulation of uPA and uPAR by 3,3'-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. J Cell Biochem 108:916-925; doi: 10.1002/jcb.22323. PMID:27301886

  13. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway.

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. PMID:27003260

  14. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  15. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  16. Effect of all-trans retinoic acid on procoagulant and fibrinolytic activities of cultured blast cells from patients with acute promyelocytic leukemia.

    De Stefano, V; Teofili, L; Sica, S; Mastrangelo, S; Di Mario, A; Rutella, S; Salutari, P; Rumi, C; d'Onofrio, G; Leone, G

    1995-11-01

    The mechanisms underlying acute promyelocytic leukemia (APL) coagulopathy and its reversal by administration of all-trans retinoic acid (ATRA) have been investigated. Bone marrow promyelocytic blasts from nine patients with APL were cultured with or without ATRA 1 mumol/L. Cultured blasts (days 0, 3, 6, and 9) were washed, resuspended in phosphate buffer, lysed by freezing and thawing, and then assayed for procoagulant activity (PCA), elastase activity, tissue factor (TF) antigen, tissue-type plasminogen activator (t-PA) antigen and urokinase-type plasminogen activator (u-PA) antigen. PCA was determined by a recalcification assay. Elastase was measured by an amidolytic assay (S-2484). TF, t-PA, and u-PA antigens were measured by an enzyme-linked immunosorbent assay (ELISA). Malignant promyelocytes isolated from the patients had increased levels of PCA and TF as compared with the control polymorphonucleates, and low levels of elastase, t-PA, and u-PA; the patient blast PCA level was significantly related to the degree of hypofibrinogenemia. In this system, blast PCA depended on the tissue factor and was significantly correlated to the TF antigen values. In the cultures without ATRA, PCA, TF, and u-PA progressively increased, whereas elastase and t-PA levels remained essentially unchanged. In the presence of ATRA, all parameters (except u-PA) decreased during the culture time. Thus, a major role of the promyelocytic blast cell PCA in the pathogenesis of M3-related coagulopathy is suggested; the ATRA effect on coagulopathy seems mainly mediated by a downregulation of the PCA. PMID:7579461

  17. Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway.

    Kawiak, Anna; Zawacka-Pankau, Joanna; Lojkowska, Ewa

    2012-04-27

    Breast cancer is the leading cause of death-related cancers in women. Approximately 30% of breast cancers overexpress the Her2 oncogene, which is associated with a poor prognosis and increased resistance to chemotherapy. Plumbagin (1), a constituent of species in the plant genera Drosera and Plumbago, displays antineoplastic activity toward various cancers. The present study was aimed at determining the anticancer potential of 1 toward Her2-overexpressing breast cancer cells and defining the mode of cell death induced in these cells. The results showed that 1 exhibited high antiproliferative activity toward the Her2-overexpressing cell lines SKBR3 and BT474. The antiproliferative activity of 1 was associated with apoptosis-mediated cell death, as revealed by caspase activation and an increase in the sub-G1 fraction of the cell cycle. Compound 1 increased the levels of the proapoptotic Bcl-2 family of proteins and decreased the level of the antiapoptotic Bcl-2 protein in SKBR3 and BT474 cells. Thus, these findings indicate that 1 induces apoptosis in Her2-overexpressing breast cancers through the mitochondrial-mediated pathway and suggest its potential for further investigation for the treatment of Her2-overexpressing breast cancer. PMID:22512718

  18. Phorbol ester induces the biosynthesis of glycosylated and nonglycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells

    1987-01-01

    The tumor-promoting phorbol ester PMA induces changes in the histiocytic human lymphoma cell line U-937 akin to cellular differentiation (Ralph, P., N. Williams, M. A. S. Moore, and P. B. Litcofsky, 1982, Cell. Immunol., 71:215-223) and concomitantly stimulates the biosynthesis of plasminogen activator inhibitor 2 (PAI 2) and of urokinase-type plasminogen activator (u-PA). PAI 2 is found in a nonglycosylated intracellular and a glycosylated secreted form. The former appears to be identical to...

  19. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes.

    Li, Chun Yao; Leopold, Alex L; Sander, Guy W; Shanks, Jacqueline V; Zhao, Le; Gibson, Susan I

    2015-01-01

    Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression. PMID:26483828

  20. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes

    Chun Yao eLi

    2015-10-01

    Full Text Available Terpenoid indole alkaloid (TIA biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Towards this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a fine-tune regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression.

  1. Bicyclic Peptide Inhibitor of Urokinase-Type Plasminogen Activator

    Roodbeen, Renée; Paaske, Berit; Jiang, Longguang;

    2013-01-01

    The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptidebased inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase-type plasminogen activator (uPA), based on the established...... monocyclic peptide, upain-2. It was successfully converted to a bicyclic peptide, without loss of inhibitory properties. The aim was to produce a peptide cyclised by an amide bond with an additional stabilising across-the-ring covalent bond. We expected this bicyclic peptide to exhibit a lower entropic...... burden upon binding. Two bicyclic peptides were synthesised with affinities similar to that of upain-2, and their binding energetics were evaluated by isothermal titration calorimetry. Indeed, compared to upain-2, the bicyclic peptides showed reduced loss of entropy upon binding to uPA. We also...

  2. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA) and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1). In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS) and Breast Cancer specific Survival (BCS) were significantly shorter in patients expressing high levels of PAI-1 mRNA (p < 0.0001; p < 0.0001; respectively). In Cox multivariate analysis, the level of PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR) = 10.12; p = 0.0002) and for BCS (HR = 13.17; p = 0.0003). Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41) nor with BCS (p = 0.19). In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer

  3. The effects of over-expressing Tip60 on cellular DNA damage repair and cell cycle progression

    To investigate the effects of Tip60 on DNA damage repair, cell cycle and the related mechanism as well, the proliferative activity, DNA double strand break (DSB) repair competency and cell cycle arrest were analyzed in stable Tip60-overexpression U2OS cells established by transfecting with exogenous Tip60 gene. It was found that the overexpression of Tip60 inhibited the proliferative activity but increased the DNA damage repair competency. The radiation-induced G2/M arrest was prolonged in Tip60 over-expressed U2OS cells, which was associated with a decreasing level of cell cycle checkpoint protein Cyclin B/CDC2 complex. (authors)

  4. Overexpressed TP73 induces apoptosis in medulloblastoma

    Perlaky Laszlo; Adesina Adekunle M; Rajan Jessen A; Skapura Darlene G; Lin Linda L; De Bortoli Massimiliano; Castellino Robert C; Irwin Meredith S; Kim John YH

    2007-01-01

    Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic ...

  5. Hand1 overexpression inhibits medulloblastoma metastasis.

    Asuthkar, Swapna; Guda, Maheedhara R; Martin, Sarah E; Antony, Reuben; Fernandez, Karen; Lin, Julian; Tsung, Andrew J; Velpula, Kiran K

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. PMID:27297109

  6. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  7. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Cook-Moreau, Jeanne [Université de Limoges, FR 3503 GEIST, UMR CNRS 7276 “Contrôle de la réponse immune B et lymphoproliférations”, Faculté de Médecine, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Beneytout, Jean-Louis [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Liagre, Bertrand, E-mail: bertrand.liagre@unilim.fr [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France)

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.

  8. Overexpression of the Gene Encoding GTP:Mannose-1-Phosphate Guanyltransferase, mpg1, Increases Cellular GDP-Mannose Levels and Protein Mannosylation in Trichoderma reesei

    Zakrzewska, Anna; Palamarczyk, Grazyna; Krotkiewski, Hubert; Zdebska, Ewa; Saloheimo, Markku; Penttilä, Merja; Kruszewska, Joanna S.

    2003-01-01

    To elucidate the regulation and limiting factors in the glycosylation of secreted proteins, the mpg1 and dpm1 genes from Trichoderma reesei (Hypocrea jecorina) encoding GTP:α-d-mannose-1-phosphate guanyltransferase and dolichyl phosphate mannose synthase (DPMS), respectively, were overexpressed in T. reesei. No significant increases were observed in DPMS activity or protein secretion in dpm1-overexpressing transformants, whereas overexpression of mpg1 led to a twofold increase in GDP-mannose ...

  9. Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis

    Osteopontin (OPN) is a secreted phosphoprotein often overexpressed at high levels in the blood and primary tumors of breast cancer patients. OPN contains two integrin-binding sites and a thrombin cleavage domain located in close proximity to each other. To study the role of the thrombin cleavage site of OPN, MDA-MB-468 human breast cancer cells were stably transfected with either wildtype OPN (468-OPN), mutant OPN lacking the thrombin cleavage domain (468-ΔTC) or an empty vector (468-CON) and assessed for in vitro and in vivo functional differences in malignant/metastatic behavior. All three cell lines were found to equivalently express thrombin, tissue factor, CD44, αvβ5 integrin and β1 integrin. Relative to 468-OPN and 468-CON cells, 468-ΔTC cells expressing OPN with a deleted thrombin cleavage domain demonstrated decreased cell adhesion (p < 0.001), decreased mRNA expression of MCAM, maspin and TRAIL (p < 0.01), and increased uPA expression and activity (p < 0.01) in vitro. Furthermore, injection of 468-ΔTC cells into the mammary fat pad of nude mice resulted in decreased primary tumor latency time (p < 0.01) and increased primary tumor growth and lymph node metastatic burden (p < 0.001) compared to 468-OPN and 468-CON cells. The results presented here suggest that expression of thrombin-uncleavable OPN imparts an early tumor formation advantage as well as a metastatic advantage for breast cancer cells, possibly due to increased proteolytic activity and decreased adhesion and apoptosis. Clarification of the mechanisms responsible for these observations and the translation of this knowledge into the clinic could ultimately provide new therapeutic opportunities for combating breast cancer

  10. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    Chuang, Jian-Ying [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Hung, Jan-Jong, E-mail: petehung@mail.ncku.edu.tw [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2011-04-15

    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  11. SNEV overexpression extends the life span of human endothelial cells

    In a recent screening for genes downregulated in replicatively senescent human umbilical vein endothelial cells (HUVECs), we have isolated the novel protein SNEV. Since then SNEV has proven as a multifaceted protein playing a role in pre-mRNA splicing, DNA repair, and the ubiquitin/proteosome system. Here, we report that SNEV mRNA decreases in various cell types during replicative senescence, and that it is increased in various immortalized cell lines, as well as in breast tumors, where SNEV transcript levels also correlate with the survival of breast cancer patients. Since these mRNA profiles suggested a role of SNEV in the regulation of cell proliferation, the effect of its overexpression was tested. Thereby, a significant extension of the cellular life span was observed, which was not caused by altered telomerase activity or telomere dynamics but rather by enhanced stress resistance. When SNEV overexpressing cells were treated with bleomycin or bleomycin combined with BSO, inducing DNA damage as well as reactive oxygen species, a significantly lower fraction of apoptotic cells was found in comparison to vector control cells. These data suggest that high levels of SNEV might extend the cellular life span by increasing the resistance to stress or by improving the DNA repair capacity of the cells

  12. Overexpressed TP73 induces apoptosis in medulloblastoma

    Perlaky Laszlo

    2007-07-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and

  13. Short-form RON overexpression augments benzyl isothiocyanate-induced apoptosis in human breast cancer cells.

    Sehrawat, Anuradha; Singh, Shivendra V

    2016-05-01

    Chemoprevention of breast cancer is feasible with the use of non-toxic phytochemicals from edible and medicinal plants. Benzyl isothiocyanate (BITC) is one such plant compound that prevents mammary cancer development in a transgenic mouse model in association with tumor cell apoptosis. Prior studies from our laboratory have demonstrated a role for reactive oxygen species (ROS)-dependent Bax activation through the intermediary of c-Jun N-terminal kinases in BITC-induced apoptosis in human breast cancer cells. The present study demonstrates that truncated Recepteur d'Origine Nantais (sfRON) is a novel regulator of BITC-induced apoptosis in breast cancer cells. Overexpression of sfRON in MCF-7 and MDA-MB-361 cells resulted in augmentation of BITC-induced apoptosis when the apoptotic fraction was normalized against vehicle control for each cell type (untransfected and sfRON overexpressing cells). ROS generation and G2 /M phase cell cycle arrest resulting from BITC treatment were significantly attenuated in sfRON overexpressing cells after normalization with vehicle control for each cell type. Increased BITC-induced apoptosis by sfRON overexpression was independent of c-Jun N-terminal kinase or p38 mitogen-activated protein kinase hyperphosphorylation. On the other hand, activation of Bax and Bak following BITC exposure was markedly more pronounced in sfRON overexpressing cells than in controls. sfRON overexpression also augmented apoptosis induction by structurally diverse cancer chemopreventive phytochemicals including withaferin A, phenethyl isothiocyanate, and D,L-sulforaphane. In conclusion, the present study provides novel mechanistic insights into the role of sfRON in apoptosis regulation by BITC and other electrophilic phytochemicals. © 2015 Wiley Periodicals, Inc. PMID:25857724

  14. Nucleophosmin is overexpressed in thyroid tumors

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed in tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.

  15. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression

    Haredy, Ahmad M.; Nishizawa, Akitoshi; Honda, Kohsuke; Ohya, Tomoshi; Ohtake, Hisao; Omasa, Takeshi

    2013-01-01

    To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host c...

  16. Overexpressed Genes/ESTs and Characterization of Distinct Amplicons on 17823 in Breast Cancer Cells

    Ayse E. Erson

    2001-01-01

    Full Text Available 17823 is a frequent site of gene amplification in breast cancer. Several lines of evidence suggest the presence of multiple amplicons on 17823. To characterize distinct amplicons on 17823 and localize putative oncogenes, we screened genes and expressed sequence tags (ESTs in existing physical and radiation hybrid maps for amplification and overexpression in breast cancer cell lines by semiquantitative duplex PCR, semiquantitative duplex RT-PCR, Southern blot, Northern blot analyses. We identified two distinct amplicons on 17823, one including TBX2 and another proximal region including RPS6KB1 (PS6K and MUL. In addition to these previously reported overexpressed genes, we also identified amplification and overexpression of additional uncharacterized genes and ESTs, some of which suggest potential oncogenic activity. In conclusion, we have further defined two distinct regions of gene amplification and overexpression on 17823 with identification of new potential oncogene candidates. Based on the amplification and overexpression patterns of known and as of yet unrecognized genes on 17823, it is likely that some of these genes mapping to the discrete amplicons function as oncogenes and contribute to tumor progression in breast cancer cells.

  17. Dictyostelium discoideum: a model for testing novel inhibitors of urokinase-type plasminogen activator

    Thompson, Elinor

    2013-01-01

    The social amoeba Dictyostelium discoideum is a useful non-animal eukaryote for testing novel compounds and dissecting cell regulatory molecular networks. We used this model organism to investigate the effect of a series of arylboronic acids and pinacol esters on development, chemotaxis and viability. These compounds were studied in parallel by collaborators for serine protease and urokinase-type plasminogen activator (uPA) inhibition, both in vitro and in vivo. In those biochemical assays, t...

  18. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger

    Meijer, Susan Lisette; Otero, José Manuel; Olivares Hernandez, Roberto;

    2009-01-01

    In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards...

  19. Genetic transformation of sweet orange to overexpress a CsPR-8 gene aiming for Candidatus Liberibacter asiaticus resistance

    MOURÃO FILHO F.A.A.; Stipp, L. C.L.; Beltrame, A. B.; Boscariol-Camargo, R. L.; Harakava, R.; B.M.J. Mendes

    2014-01-01

    A strategy to produce HLB-resistant citrus using genetic engineering is the overexpression of genes identified in the citrus genome. Plants respond to pathogen attacks by producing several pathogenesis-related (PR) proteins. Therefore, individual PR overexpression in transgenic plants can lead to an increased resistance. In this study, we have chosen to use one PR-8 isoform cloned from Citrus sinensis (CsPR-8). The PR-8 is an endochitinase that also has lysozyme activity, to be potentially us...

  20. Mer receptor tyrosine kinase is frequently overexpressed in human non-small cell lung cancer, confirming resistance to erlotinib

    Xie, Shengzhi; Li, Yongwu; Li, Xiaoyan; WANG, LINXIONG; Yang, Na; Wang, Yadi; Wei, Huafeng

    2015-01-01

    Mer is a receptor tyrosine kinase (RTK) with oncogenic properties that is often overexpressed or activated in various malignancies. Using both immunohistochemistry and microarray analyses, we demonstrated that Mer was overexpressed in both tumoral and stromal compartments of about 70% of non-small cell lung cancer (NSCLC) samples relative to surrounding normal lung tissue. This was validated in freshly harvested NSCLC samples; however, no associations were found between Mer expression and pat...

  1. Enhancing Indigo Production by Over-Expression of the Styrene Monooxygenase in Pseudomonas putida.

    Cheng, Lei; Yin, Sheng; Chen, Min; Sun, Baoguo; Hao, Shuai; Wang, Chengtao

    2016-08-01

    As an important traditional blue dye, indigo has been used in food and textile industry for centuries, which can be produced via the styrene oxygenation pathway in Pseudomonas putida. Hence, the styrene monooxygenase gene styAB and oxide isomerase gene styC are over-expressed in P. putida to investigate their roles in indigo biosynthesis. RT-qPCR analysis indicated that transcriptions of styA and styB were increased by 2500- and 750-folds in the styAB over-expressed strain B4-01, compared with the wild-type strain B4, consequently significantly enhancing the indole monooxygenase activity. Transcription of styC was also increased by 100-folds in the styC over-expressed strain B4-02. Besides, styAB over-expression slightly up-regulated the transcription of styC in B4-01, while styC over-expression hardly exerted an effect on the transcriptional levels of styA and styB and indole monooxygenase activity in B4-02. Furthermore, shaking flask experiments showed that indigo production in B4-01 reached 52.13 mg L(-1) after 24 h, which was sevenfold higher than that in B4. But no obvious increase in indigo yield was observed in B4-02. Over-expression of styAB significantly enhanced the indigo production, revealing that the monooxygenase STYAB rather than oxide isomerase STYC probably acted as the key rate-limiting enzyme in the indigo biosynthesis pathway in P. putida. This work provided a new strategy for enhancing indigo production in Pseudomonas. PMID:27154464

  2. Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity

    Hill Peter A

    2005-02-01

    Full Text Available Abstract Background Breast cancer cells frequently metastasize to the skeleton and induce extensive bone destruction. Cancer cells produce proteinases, including matrix metalloproteinases (MMPs and the plasminogen activator system (PAS which promote invasion of extracellular matrices, but whether these proteinases degrade bone matrix is unclear. To characterize the role that breast cancer cell proteinases play in bone degradation we compared the effects of three human breast cancer cell lines, MDA-MB-231, ZR-75-1 and MCF-7 with those of a normal breast epithelial cell line, HME. The cell lines were cultured atop radiolabelled matrices of either mineralized or non-mineralized bone or type I collagen, the principal organic constituent of bone. Results The 3 breast cancer cell lines all produced significant degradation of the 3 collagenous extracellular matrices (ECMs whilst the normal breast cell line was without effect. Breast cancer cells displayed an absolute requirement for serum to dissolve collagen. Degradation of collagen was abolished in plasminogen-depleted serum and could be restored by the addition of exogenous plasminogen. Localization of plasmin activity to the cell surface was critical for the degradation process as aprotinin, but not α2 antiplasmin, prevented collagen dissolution. During ECM degradation breast cancer cell lines expressed urokinase-type plasminogen activator (u-PA and uPA receptor, and MMPs-1, -3, -9,-13, and -14. The normal breast epithelial cell line expressed low levels of MMPs-1, and -3, uPA and uPA receptor. Inhibitors of both the PAS (aprotinin and PA inhibitor-1 and MMPs (CT1166 and tisue inhibitor of metalloproteinase blocked collagen degradation, demonstrating the requirement of both plasminogen activation and MMP activity for degradation. The activation of MMP-13 in human breast cancer cells was prevented by plasminogen activator inhibitor-1 but not by tissue inhibitor of metalloproteinase-1, suggesting

  3. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041), increased lymph node metastasis (P = 0.001), less differentiation (P = 0.005), increased recurrence (P = 0.038) and shorter survival (P = 0.004) of the patients. In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC

  4. Anti-metastatic activities of Antrodia camphorata against human breast cancer cells mediated through suppression of the MAPK signaling pathway.

    Yang, Hsin-Ling; Kuo, Yueh-Hsiung; Tsai, Ching-Tsan; Huang, Yi-Ting; Chen, Ssu-Ching; Chang, Hsueh-Wei; Lin, Elong; Lin, Wen-Hsin; Hseu, You-Cheng

    2011-01-01

    The fermented culture broth of Antrodia camphorata (A. camphorata) has been shown to promote cell cycle arrest and apoptosis of human estrogen-nonresponsive MDA-MB-231 cells. Herein, we demonstrate that non-cytotoxic concentrations (20-80 μg/mL) of A. camphorata markedly inhibited the invasion/migration of highly metastatic MDA-MB-231 cells as shown by an in vitro transwell and a wound-healing repair assay. The results of a gelatin zymography assay showed that A. camphorata suppressed the activity of matrix metalloproteinase (MMP)-9 and urokinase plasminogen activator (uPA). Western blot results demonstrated that treatment with A. camphorata decreased the expression of MMP-9, MMP-2, uPA, uPA receptor (uPAR) and vascular endothelial growth factor (VEGF); while the expression of the endogenous inhibitors of these proteins, i.e., tissue inhibitors of MMP (TIMP-1 and TIMP-2), and plasminogen activator inhibitor (PAI)-1, increased. Further investigation revealed that A. camphorata suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. camphorata treatment also led to a dose-dependent inhibition on NF-κB binding and activation. This is the first report confirming the anti-metastatic activity of this potentially beneficial mushroom against human breast cancer. PMID:21056076

  5. Practicas de cuidado que poseen las adolescentes gestantes que asisten al curso de preparación para la maternidad y paternidad “un proyecto de vida” en la UPA 10 abastos de la localidad 8ª DE Kennedy durante el periodo de agosto a noviembre del 2009 / Care practices that have the pregnant teenagers who attended the course of preparation for maternity and paternity "one life project" in the UPA 10 abastos of the Kennedy locality 8th during the period of august to november 2009

    Beltrán Granados, Laura Alejandra; Díaz Córdoba , Ingrid Carolina; Lizcano Ortega , Mabel Rocío

    2009-01-01

    Con el objetivo de identificar las Prácticas de Cuidado que poseen las Adolescentes Gestantes que asistieron al Curso de Preparación para la Maternidad y Paternidad “Un Proyecto de Vida” en la UPA 10 Abastos de la localidad 8ª de Kennedy durante el periodo de Agosto a Noviembre de 2009, se desarrolló un estudio descriptivo de corte transversal, en una muestra de 23 Adolescentes Gestantes (menores de 20 años), implementando el instrumento “Prácticas de cuidado que realizan consigo mismas y con...

  6. Elevated levels of plasminogen activators in the pathogenesis of delayed radiation damage in rat cervical spinal cord in vivo

    The pathophysiology of the cellular basis of radiation-induced demyelination and white-matter necrosis of the central nervous system (CNS) is poorly understood. Preliminary data suggest that tissue damage is partly mediated through changes in the proteolytic enzymes. In this study, we irradiated rat cervical spinal cords with single doses of 24 Gy of 18 MV photons or 20 MeV electrons and measured the levels of plasminogen activators at days 2, 7, 30, 60, 90, 120, 130 and 145 after irradiation, using appropriate controls at each time. Fibrin zymography revealed fibrinolytic bands representing molecular weights of 68,000 and 48,000 in controls and irradiated samples; these bands increased significantly at days 120, 130 and 145 after irradiation. Inhibition of these enzymatic bands with specific antibodies against tissue-type plasminogen activator (tPA) and amiloride, an inhibitor for urokinase plasminogen activator (uPA), confirmed that these bands were tPA and uPA. Enzymatic levels quantified by densitometry showed a twofold elevation in the levels of tPA and more than a tenfold increase in uPA after 120 days' irradiation. Activity of uPA was increased threefold by day 2 and increased steadily with time compared to nonirradiated control samples. Enzyme-linked immunosorbent assay (ELISA) also showed a threefold increase in the tPA content in the extracts of irradiated rat cervical spinal cords at days 120, 130 and 145. This study adds additional information to the proposed role of plasminogen activators in the pathogenic pathways of radiation damage in the CNS. 38 refs., 6 figs

  7. MUC1 gene overexpressed in breast cancer: structure and transcriptional activity of the MUC1 promoter and role of estrogen receptor alpha (ERα in regulation of the MUC1 gene expression

    Wreschner Daniel H

    2006-11-01

    Full Text Available Abstract Background The MUC1 gene encodes a mucin glycoprotein(s which is basally expressed in most epithelial cells. In breast adenocarcinoma and a variety of epithelial tumors its transcription is dramatically upregulated. Of particular relevance to breast cancer, steroid hormones also stimulate the expression of the MUC1 gene. The MUC1 gene directs expression of several protein isoforms, which participate in many crucial cell processes. Although the MUC1 gene plays a critical role in cell physiology and pathology, little is known about its promoter organization and transcriptional regulation. The goal of this study was to provide insight into the structure and transcriptional activity of the MUC1 promoter. Results Using TRANSFAC and TSSG soft-ware programs the transcription factor binding sites of the MUC1 promoter were analyzed and a map of transcription cis-elements was constructed. The effect of different MUC1 promoter regions on MUC1 gene expression was monitored. Different regions of the MUC1 promoter were analyzed for their ability to control expression of specific MUC1 isoforms. Differences in the expression of human MUC1 gene transfected into mouse cells (heterologous artificial system compared to human cells (homologous natural system were observed. The role of estrogen on MUC1 isoform expression in human breast cancer cells, MCF-7 and T47D, was also analyzed. It was shown for the first time that synthesis of MUC1/SEC is dependent on estrogen whereas expression of MUC1/TM did not demonstrate such dependence. Moreover, the estrogen receptor alpha, ERα, could bind in vitro estrogen responsive cis-elements, EREs, that are present in the MUC1 promoter. The potential roles of different regions of the MUC1 promoter and ER in regulation of MUC1 gene expression are discussed. Conclusion Analysis of the structure and transcriptional activity of the MUC1 promoter performed in this study helps to better understand the mechanisms controlling

  8. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice

    Cui, Li-Li; Lu, Yu-sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense. PMID:27540387

  9. Effects of urokinase-type plasminogen activator in the acquisition, expression and reinstatement of cocaine-induced conditioned-place preference

    Bahi, Amine; Kusnecov, Alexander W; Dreyer, Jean-Luc

    2008-01-01

    Cocaine and many other psychostimulants strongly induce urokinase-type plasminogen activator (uPA) expression in the mesolimbic dopaminergic pathway, which plays a major role in drug-mediated behavioral plasticity [Bahi A, Boyer F, Gumy C, Kafri T, Dreyer JL. In vivo gene delivery of urokinase-type plasminogen activator with regulatable lentivirus induces behavioral changes in chronic cocaine administration. Eur J Neurosci 2004;20:3473–88; Bahi A, Boyer F, Kafri T, Dreyer JL. Silencing urokin...

  10. The Effect of cdk- 5 Overexpression and Overactivation on Tau Hyperphosphorylation in Cultured N2a Cells

    CHEN Juan; LI Hong-lian; FENG You-mei; WANG Jian-zhi

    2005-01-01

    Neurofibrillary tangles (NFTs) are one of the neuropathological hallmarks of Alzheimer' s disease (AD) and abnormally hyperphosphorylated tau is the major protein of NFTs. It was reported that cyclin-dependent kinase5 (Cdk-5) could phosphorylate tau at most AD-related epitopes in vivo. In this study, we investigated the effect of cdk-5 overexpression on tau hyperphosphorylation in neuroblastoma N2a cells. We demonstrated that overexpression of cdk-5 which resulted in a 3.5-fold Cdk5 activation in the transfected cells induced a dramatic increase in phosphorylation of tau at several phosphorylation sites. Overexpression of cdk-5 led to a reduced staining with antibody Tau-1 and an enhanced staining with antibody PHF-1, suggesting hy perphosphorylation of tau at Ser199/202 and Ser396/404 sites. It implies that in vitro overexpression of cdk-5 leads to Cdk5 overactivation and tau hyperphosphorylation may be the underline mechanism.

  11. The effect of anti-human plasminogen monoclonal antibodies on Glu-plasminogen activation by plasminogen activators

    M. Akrami

    2006-07-01

    Full Text Available Background: Human plasminogen is a plasma glycoprotein synthesized mainly in the liver. Conversion of plasminogen to plasmin by plasminogen activators is a key event in the fibrinolytic system. In this study, we investigated the effects of two anti-human plasminogen monoclonal antibodies, A1D12 and MC2B8 on Glu-plasminogen activation in presence of u-PA, t-PA and streptokinase. Methods: Producing of Hybridoma antibodies was performed by fusion of spleen cells from BALB/C mice immunized with Glu-plasminogen and NS1 myeloma cells. Antibody binding to Human Glu-plasminogen was assessed using an ELISA assay. Activation of plasminogen was determined by measuring plasmin generation using the chromogenic substrate S-2251 and the effect of monoclonal antibodies, A1D12 and MC2B8 on plasminogen activation in solution was then evaluated. Initial rates and kinetic parameters of plasminogen activation in the presence of monoclonal antibodies were calculated. The effect of the monoclonal antibody MC2B8 on the rate of plasmin hydrolysis was measured. The effect of F(ab'2 fragment of A1D12 on u-PA catalyzed-plasminogen activation also compared with the effect of the whole antibody in this reaction. Results: ELISA assay showed that the antibodies reacted well with antigens. A1D12 increased the maximum velocity (Vmax of plasminogen activation by each of the three plasminogen activators and MC2B8 decreased it. In all activation reactions, the KM value of plasminogen activation did not significantly change in the presence of antibody A1D12 whereas antibody MC2B8 increased the KM value of plasminogen activation by u-PA, fibrin monomer dependent t-PA and streptokinase. Monoclonal antibody MC2B8 had no significant effect on plasmin hydrolysis rate of synthetic substrate S-2251. Activation rate of plasminogen by u-PA in the lower concentration of F (ab2 fragment of A1D12 was identical to activation in the presence of the whole antibody. Conclusion: The binding of

  12. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.

    Ding, Jun; Holzwarth, Garrett; Bradford, C Samuel; Cooley, Ben; Yoshinaga, Allen S; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H; Bakalinsky, Alan T

    2015-10-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671

  13. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  14. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl2, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 ± 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K M value for FMN of 1.5 ± 0.3 μM. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast

  15. Overexpression of Mitochondrial Sirtuins Alters Glycolysis and Mitochondrial Function in HEK293 Cells

    Barbi de Moura, Michelle; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S.

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak. PMID:25165814

  16. Focal adhesion kinase overexpression and its impact on human osteosarcoma

    Chen, Yong; Yang, Aizhen; Chen, Hui; Zhang, Jian; Wu, Sujia; Shi, Xin; Wang, Chen; Sun, Xiaoliang

    2015-01-01

    Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. siRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis. PMID:26393679

  17. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression

    Duckworth, C; Zhang, L; Carroll, S L; Ethier, S P; Cheung, H W

    2016-01-01

    We previously found that the scaffold adapter GRB2-associated binding protein 2 (GAB2) is amplified and overexpressed in a subset of primary high-grade serous ovarian cancers and cell lines. Ovarian cancer cells overexpressing GAB2 are dependent on GAB2 for activation of the phosphatidylinositol 3-kinase (PI3K) pathway and are sensitive to PI3K inhibition. In this study, we show an important role of GAB2 overexpression in promoting tumor angiogenesis by upregulating expression of multiple chemokines. Specifically, we found that suppression of GAB2 by inducible small hairpin RNA in ovarian cancer cells inhibited tumor cell proliferation, angiogenesis and peritoneal tumor growth in immunodeficient mice. Overexpression of GAB2 upregulated the secretion of several chemokines from ovarian cancer cells, including CXCL1, CXCL2 and CXCL8. The secreted chemokines not only signal through endothelial CXCR2 receptor in a paracrine manner to promote endothelial tube formation, but also act as autocrine growth factors for GAB2-induced transformation of fallopian tube secretory epithelial cells and clonogenic growth of ovarian cancer cells overexpressing GAB2. Pharmacological inhibition of inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ), but not PI3K, mechanistic target of rapamycin (mTOR) or mitogen-activated protein kinase (MEK), could effectively suppress GAB2-induced chemokine expression. Inhibition of IKKβ augmented the efficacy of PI3K/mTOR inhibition in suppressing clonogenic growth of ovarian cancer cells with GAB2 overexpression. Taken together, these findings suggest that overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating expression of CXCL1, CXCL2 and CXCL8 that is IKKβ-dependent. Co-targeting IKKβ and PI3K pathways downstream of GAB2 might be a promising therapeutic strategy for ovarian cancer that overexpresses GAB2. PMID:26657155

  18. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases

    Yu-Hung eYeh

    2015-05-01

    Full Text Available Upon recognition of microbe-associated molecular patterns (MAMPs such as the bacterial flagellin (or the derived peptide flg22 by pattern-recognition receptors (PRRs such as the FLAGELLIN SENSING2 (FLS2, plants activate the pattern-triggered immunity (PTI response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2 is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs possess two copies of the C-X8-C-X2-C (DUF26 motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6 and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1 was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6 and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity.

  19. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  20. Ras1CA overexpression in the posterior silk gland improves silk yield

    Li Ma; Hanfu Xu; Jinqi Zhu; Sanyuan Ma; Yan Liu; Rong-Jing Jiang; Qingyou Xia; Sheng Li

    2011-01-01

    Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm,Bombyx mori,but has reached a plateau during the last decades. For the first time,we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1CA oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%,while increasing food consumption by only 20%. Ras activation by Ras1CA overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins,up-regulated fibroin mRNA levels,increased total DNA content,and stimulated endoreplication. Moreover,Rasl activation increased cell and nuclei sizes,enriched subcellular organelles related to protein synthesis,and stimulated ribosome biogenesis for mRNA translation. We conclude that Rasl activation increases cell size and protein synthesis in the posterior silk gland,leading to silk yield improvement.

  1. Frequent Nek1 overexpression in human gliomas.

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-08-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients' poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. PMID:27251576

  2. AMPKα1 overexpression alleviates the hepatocyte model of nonalcoholic fatty liver disease via inactivating p38MAPK pathway.

    Zhang, Hong-Ai; Yang, Xiao-Yan; Xiao, Yan-Feng

    2016-05-27

    Nonalcoholic fatty liver disease (NAFLD) has a wide spectrum of liver damage with a worldwide prevalence of almost 20%. AMP-activated protein kinase α1 (AMPKα1) is an energy sensor that plays a key role in regulating lipid metabolism of the liver. This study explores the role of AMPKα1 overexpression in a steatotic hepatocyte model. The results displayed that the AMPKα1 overexpression suppressed lipid accumulation in the cytoplasm, decreased triglyceride levels, maintained the survival of steatotic hepatocyte model with decreased cell apoptosis and increased survival rate. Besides, AMPKα1 overexpression promoted the expression of lipid catabolism-related genes, reduced the level of anabolism-related genes, alleviated the inflammatory response by reducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines. Moreover, AMPKα1 overexpression could inhibit the activation of p38 mitogen-activated protein kinase (p38MAPK). Finally, Anisomycin, a frequently-used activator of p38MAPK, reversed the inhibitory effect of pc-AMPKα1 on the expression of p-p38MAPK, suggesting that AMPKα1 overexpression alleviates inflammatory response through the inactivation of p38MAPK. These results indicated that AMPKα1 may serve as a novel target for treatment of NAFLD. PMID:27109475

  3. Urokinase-targeted recombinant bacterial protein toxins-a rationally designed and engineered anticancer agent for cancer therapy

    Yizhen LIU; Shi-Yan LI

    2009-01-01

    Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

  4. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model

    c-Jun/AP-1 has been linked to invasive properties of aggressive breast cancer. Recently, it has been reported that overexpression of c-Jun in breast cancer cell line MCF-7 resulted in increased AP-1 activity, motility and invasiveness of the cells in vitro and tumor formation in nude mice. However, the role of c-Jun in metastasis of human breast cancer in vivo is currently unknown. To further investigate the direct involvement of c-Jun in tumorigenesis and metastasis, in the present study, the effects of c-Jun overexpression were studied in both in vitro and in nude mice. Ectopic overexpression of c-Jun promoted the growth of MCF-7 cells and resulted in a significant increase in the percentage of cells in S phase and increased motility and invasiveness. Introduction of c-Jun gene alone into weakly invasive MCF-7 cells resulted in the transfected cells capable of metastasizing to the nude mouse liver following tail vein injection. The present study confirms that overexpression of c-Jun contributes to a more invasive phenotype in MCF-7 cells. It indicates an interesting relationship between c-Jun expression and increased property of adhesion, migration and in vivo liver metastasis of MCF-7/c-Jun cells. The results provide further evidence that c-Jun is involved in the metastasis of breast cancer. The finding also opens an opportunity for development of anti-c-Jun strategies in breast cancer therapy

  5. Overexpression and topology of bacterial oligosaccharyltransferase PglB

    Li, Lei [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Woodward, Robert [Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Ding, Yan; Liu, Xian-wei [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Yi, Wen; Bhatt, Veer S. [Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Chen, Min [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Zhang, Lian-wen [College of Pharmacy, Nankai University, Tianjin 300071 (China); Wang, Peng George, E-mail: wang.892@osu.edu [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States)

    2010-04-16

    Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, PglB, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous PglB proteins. PglB was overexpressed in Escherichia coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified PglB was verified using a chemically synthesized sugar donor: N-acetylgalactosamine-diphospho-undecaprenyl (GalNAc-PP-Und) and a synthesized peptide acceptor. The result confirms that PglB is solely responsible for the oligosaccharyltransferase activity and complements the finding that PglB exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of PglB using the PhoA/LacZ fusion method. The topological model shows that PglB possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common N{sub cyt}-C{sub peri} topology with 11 transmembrane segments for the STT3 family proteins.

  6. HSP25 overexpression attenuates oxidative stress-induced apoptosis: role of ERK1/2 signaling and manganase superoxide dismutase

    Full text: HSP25 has been shown to induce resistance to radiation and oxidative stress. However, its exact mechanisms remain unclear. In the present study, high concentration of H 2 O 2 was found to induce DNA fragmentation in L929 mouse fibroblast cells, and HSP25 overexpression attenuated this phenomenon. To elucidate the mechanisms of H 2 O 2 mediated cell death, ERK1/2, p38-MAPK and JNK1/2 phosphorylation by H2O2were examined. ERK1/2 and JNK1/2 were activated by H2O2and ERK1/2 activation was inhibited in HSP25 overexpressed cells, while JNK1/2 was indifferent. Inhibition of ERK1/2 activation by treatment with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced cell death, while HSP25 overexpressed cells was not affected at all. Moreover, inhibition of JNK1/2 by dominant-negative JNK1 or JNK2, or MKK4 or MKK7 transfection did not affect H2O2-mediated cell death in control cells. Dominant negative Ras or Raf transfection inhibited H2O2-mediated ERK1/2 activation and cell death in control cells. On the contrary, HSP25 overexpressed cells did not show any differences. Upstream pathways of H2O2-mediated ERK1/2 activation and cell death were both tyrosine kinase (PDGF and receptor and Src) and PKC and, while these kinases did not respond by H2O2treatment in HSP25 overexpressed cells. Since HSP25 overexpression increased manganese superoxide dismutase (MnSOD) gene expression and enzyme activity, involvement of MnSOD in HSP25 mediated attenuation of H2O2-mediated ERK1/2 activation and cell death was examined. Blockage of MnSOD with antisense oligonucleotides prevented DNA fragmentation and returned the ERK1/2 activation to the control level. Indeed, when MnSOD was overexpressed in L929 cells, similar phenomenon to HSP25 overexpressed cells to reduce DNA fragmentation and ERK1/2 activation was observed. From the above results, we suggested for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated downregulation of ERK1/2

  7. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    Li, Fangyi [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Dong, Lei, E-mail: dlleidong@126.com [Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Street, Shahekou District, Dalian 116001 (China); Xing, Rong [Department of Pathology and Pathophysiology, Dalian Medical University, No. 9 Lvshunnan Road, Lvshunkou District, Dalian 116044 (China); Wang, Li; Luan, Fengming; Yao, Chenhui [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Ji, Xuening [Department of Oncology, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China); Bai, Lizhi, E-mail: dllizhibai@126.com [Department of Emergency, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China)

    2014-02-07

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.

  8. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1.

    Wang, Juan; Wu, Yaning; Gong, Yanfen; Yu, Shaowen; Liu, Gang

    2015-09-01

    The xylanase regulator 1 protein in Myceliophthora thermophila ATCC42464 (MtXyr1) is 60 % homologous with that of Trichoderma reesei. However, MtXyr1's regulatory role on cellulolytic and xylanolytic genes in M. thermophila is unknown. Herein, MtXyr1 was overexpressed under the control of the MtPpdc (pyruvate decarboxylase) promoter. Compared with the wild type, the extracellular xylanase activities of the transformant cultured in non-inducing and inducing media for 120 h were 25.19- and 9.04-fold higher, respectively. The Mtxyr1 mRNA level was 300-fold higher than in the wild type in corncob-containing medium. However, the filter paper activity and endoglucanase activities were unchanged in corncob-containing medium and glucose-containing medium. The different zymograms between the transformant and the wild type were analyzed and identified by mass spectrometry as three xylanases of the glycoside hydrolase (GH) family 11. Thus, overexpression of xyr1 resulted in enhanced xylanase activity in M. thermophila. Xylanase production could be improved by overexpressing Mtxyr1 in M. thermophila. PMID:26173497

  9. Expression and activation of proteases in co-cultures.

    Paduch, Roman; Kandefer-Szerszeń, Martyna

    2011-01-01

    The present study concerned the expression and activation of metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and the urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) system in co-cultures of human colon carcinoma cell spheroids (HT29, LS180, SW948) with human normal colon epithelium (CCD 841 CoTr), myofibroblasts (CCD-18Co) and endothelial cells (HUVEC). Additionally, the influence of monensin on the production and function of the proteases was tested. Tumor cells expressed small amounts of MMP-2, MMP-9 and uPA. Normal cells generally produced proportionally higher concentrations of these proteases (especially MMP-2, compared with significantly smaller yields of MMP-9 and significantly lower amounts of uPAR than tumors. In co-cultures of tumor spheroids with normal cell monolayers, the concentration of the proteases was equal to the sum of the enzymes produced in monocultures of both types of cells. The highest activity of uPA, measured as the reduction of the chromogenic substrate (S-2444), was detected in supernatants and lysates of endothelial cells. Interestingly, in normal cells, the higher expression of proteases, mainly uPA, measured as the level of protein concentration, was closely linked with their lower activity and inversely, in tumor cells, the low level of the expression of the enzymes correlated with their high enzymatic activity. In zymography analysis, mainly pro-MMPs were detected both in culture supernatants and cell lysates. The highest amounts of active forms of the MMPs were detected in tumor spheroids co-cultured with endothelial cells. Monensin inhibited MMPs and uPA secretion but significantly increased uPAR release, mainly from normal cells. In conclusion, during direct interactions of tumor cells with normal cells, MMPs and the uPA/uPAR system play an important role in the degradation of ECM and tumor development, but as we found, there is a reverse relationship between the concentration and the

  10. Over-expressed CmbT multidrug resistance transporter improves the fitness of Lactococcus lactis

    Filipić Brankica

    2013-01-01

    Full Text Available The influence of the over-expression of CmbT multidrug resistance transporter on the growth rate of Lactococcus lactis NZ9000 was studied. L. lactis is a lactic acid bacteria (LAB widely used as a starter culture in dairy industry. Recently characterized CmbT MDR transporter in L. lactis confers resistance to a wide variety of toxic compounds as well as to some clinically relevant antibiotics. In this study, the cmbT gene was over-expressed in the strain L. lactis NZ9000 in the presence of nisin inducer. Over-expression of the cmbT gene in L. lactis NZ9000 was followed by RT-PCR. The obtained results showed that the cmbT gene was successfully over-expressed by addition of sub-inhibitory amounts of nisin. Growth curves of L. lactis NZ9000/pCT50 over-expressing the cmbT gene and L. lactis NZ9000 control strain were followed in the rich medium as well as in the chemically defined medium in the presence solely of methionine (0.084 mM or mix of methionine and cysteine (8.4 mM and 8.2 mM, respectively. Resulting doubling times revealed that L. lactis NZ9000/pCT50 had higher growth rate comparing to the control strain. This could be a consequence of the CmbT efflux activity, which improves the fitness of the host bacterium through the elimination of toxic compounds from the cell.