WorldWideScience

Sample records for activator upa overexpression

  1. CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer.

    Xie, C; Jiang, X H; Zhang, J T; Sun, T T; Dong, J D; Sanders, A J; Diao, R Y; Wang, Y; Fok, K L; Tsang, L L; Yu, M K; Zhang, X H; Chung, Y W; Ye, L; Zhao, M Y; Guo, J H; Xiao, Z J; Lan, H Y; Ng, C F; Lau, K M; Cai, Z M; Jiang, W G; Chan, H C

    2013-05-01

    Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is expressed in the epithelial cells of a wide range of organs/tissues from which most cancers are derived. Although accumulating reports have indicated the association of cancer incidence with genetic variations in CFTR gene, the exact role of CFTR in cancer development and the possible underlying mechanism have not been elucidated. Here, we report that CFTR expression is significantly decreased in both prostate cancer cell lines and human prostate cancer tissue samples. Overexpression of CFTR in prostate cancer cell lines suppresses tumor progression (cell growth, adhesion and migration), whereas knockdown of CFTR leads to enhanced malignancies both in vitro and in vivo. In addition, we demonstrate that CFTR knockdown-enhanced cell proliferation, cell invasion and migration are significantly reversed by antibodies against either urokinase plasminogen activator (uPA) or uPA receptor (uPAR), which are known to be involved in various malignant traits of cancer development. More interestingly, overexpression of CFTR suppresses uPA by upregulating the recently described tumor suppressor microRNA-193b (miR-193b), and overexpression of pre-miR-193b significantly reverses CFTR knockdown-enhanced malignant phenotype and abrogates elevated uPA activity in prostate cancer cell line. Finally, we show that CFTR gene transfer results in significant tumor repression in prostate cancer xenografts in vivo. Taken together, the present study has demonstrated a previously undefined tumor-suppressing role of CFTR and its involvement in regulation of miR-193b in prostate cancer development. PMID:22797075

  2. Plasminogen activator inhibitor-1 (PAI-1 and urokinase plasminogen activator (uPA in sputum of allergic asthma patients.

    Sebastian Zukowski

    2008-06-01

    Full Text Available Urokinase plasminogen activator (uPA and its inhibitor (PAI-1 have been associated with asthma. The aim of this study was to evaluate concentration of uPA and PAI-1 in induced sputum of house dust mite allergic asthmatics (HDM-AAs. The study was performed on 19 HDM-AAs and 8 healthy nonatopic controls (HCs. Concentration of uPA and PAI-1 was evaluated in induced sputum supernatants using ELISA method. In HDM-AAs the median sputum concentration of uPA (128 pg/ml; 95% CI 99 to 183 pg/ml and PAI-1 (4063 pg/ml; 95%CI 3319 to 4784 pg/ml were significantly greater than in HCs (17 pg/ml; 95%CI 12 to 32 pg/ml; p<0.001 and 626 pg/ml; 95%CI 357 to 961 pg/ml; p<0.001 for uPA and PAI-1 respectively. The sputum concentration of uPA correlated with sputum total cell count (r=0.781; p=0.0001 and with logarithmically transformed exhaled nitric oxide concentration (eNO (r=0.486; p=0.035 but not with FEV1 or bronchial reactivity to histamine. On the contrary, the sputum PAI-1 concentration correlated with FEV1 (r=-0,718; p=0.0005 and bronchial reactivity to histamine expressed as log(PC20 (r=-0.824; p<0.0001 but did not correlate with sputum total cell count or eNO. The results of this study support previous observations linking PAI-1 with airway remodeling and uPA with cellular inflammation. Moreover, the observed effect of uPA seems to be independent of its fibrynolytic activity.

  3. BioKnife, a uPA activity-dependent oncolytic Sendai virus, eliminates pleural spread of malignant mesothelioma via simultaneous stimulation of uPA expression.

    Morodomi, Yosuke; Yano, Tokujiro; Kinoh, Hiroaki; Harada, Yui; Saito, Satoru; Kyuragi, Ryoichi; Yoshida, Kumi; Onimaru, Mitsuho; Shoji, Fumihiro; Yoshida, Tsukihisa; Ito, Kensaku; Shikada, Yasunori; Maruyama, Riichiroh; Hasegawa, Mamoru; Maehara, Yoshihiko; Yonemitsu, Yoshikazu

    2012-04-01

    Malignant pleural mesothelioma (MPM) is highly intractable and readily spreads throughout the surface of the pleural cavity, and these cells have been shown to express urokinase-type plasminogen activator receptor (uPAR). We here examined the potential of our new and powerful recombinant Sendai virus (rSeV), which shows uPAR-specific cell-to-cell fusion activity (rSeV/dMFct14 (uPA2), named "BioKnife"), for tumor cell killing in two independent orthotopic xenograft models of human. Multicycle treatment using BioKnife resulted in the efficient rescue of these models, in association with tumor-specific fusion and apoptosis. Such an effect was also seen on both MSTO-211H and H226 cells in vitro; however, we confirmed that the latter expressed uPAR but not uPA. Of interest, infection with BioKnife strongly facilitated the uPA release from H226 cells, and this effect was completely abolished by use of either pyrrolidine dithiocarbamate (PDTC) or BioKnife expressing the C-terminus-deleted dominant negative inhibitor for retinoic acid-inducible gene-I (RIG-IC), indicating that BioKnife-dependent expression of uPA was mediated by the RIG-I/nuclear factor-κB (NF-κB) axis, detecting RNA viral genome replication. Therefore, these results suggest a proof of concept that the tumor cell-killing mechanism via BioKnife may have significant potential to treat patients with MPM that is characterized by frequent uPAR expression in a clinical setting. PMID:22314292

  4. BioKnife, a uPA Activity-dependent Oncolytic Sendai Virus, Eliminates Pleural Spread of Malignant Mesothelioma via Simultaneous Stimulation of uPA Expression

    Morodomi, Yosuke; Yano, Tokujiro; Kinoh, Hiroaki; Harada, Yui; Saito, Satoru; Kyuragi, Ryoichi; Yoshida, Kumi; Onimaru, Mitsuho; Shoji, Fumihiro; Yoshida, Tsukihisa; Ito, Kensaku; Shikada, Yasunori; Maruyama, Riichiroh; Hasegawa, Mamoru; Maehara, Yoshihiko

    2012-01-01

    Malignant pleural mesothelioma (MPM) is highly intractable and readily spreads throughout the surface of the pleural cavity, and these cells have been shown to express urokinase-type plasminogen activator receptor (uPAR). We here examined the potential of our new and powerful recombinant Sendai virus (rSeV), which shows uPAR-specific cell-to-cell fusion activity (rSeV/dMFct14 (uPA2), named “BioKnife”), for tumor cell killing in two independent orthotopic xenograft models of human. Multicycle ...

  5. Direct interaction of the kringle domain of urokinase-type plasminogen activator (uPA) and integrin alpha v beta 3 induces signal transduction and enhances plasminogen activation.

    Tarui, Takehiko; Akakura, Nobuaki; Majumdar, Mousumi; Andronicos, Nicholas; Takagi, Junichi; Mazar, Andrew P; Bdeir, Khalil; Kuo, Alice; Yarovoi, Serge V; Cines, Douglas B; Takada, Yoshikazu

    2006-03-01

    It has been questioned whether there are receptors for urokinase-type plasminogen activator (uPA) that facilitate plasminogen activation other than the high affinity uPA receptor (uPAR/CD87) since studies of uPAR knockout mice did not support a major role of uPAR in plasminogen activation. uPA also promotes cell adhesion, chemotaxis, and proliferation besides plasminogen activation. These uPA-induced signaling events are not mediated by uPAR, but mediated by unidentified, lower-affinity receptors for the uPA kringle. We found that uPA binds specifically to integrin alpha v beta 3 on CHO cells depleted of uPAR. The binding of uPA to alpha v beta 3 required the uPA kringle domain. The isolated uPA kringle domain binds specifically to purified, recombinant soluble, and cell surface alpha v beta 3, and other integrins (alpha 4 beta 1 and alpha 9 beta 1), and induced migration of CHO cells in an alpha v beta 3-dependent manner. The binding of the uPA kringle to alpha v beta 3 and uPA kringle-induced alpha v beta 3-dependent cell migration were blocked by homologous plasminogen kringles 1-3 or 1-4 (angiostatin), a known integrin antagonist. We studied whether the binding of uPA to integrin alpha v beta 3 through the kringle domain plays a role in plasminogen activation. On CHO cell depleted of uPAR, uPA enhanced plasminogen activation in a kringle and alpha v beta 3-dependent manner. Endothelial cells bound to and migrated on uPA and uPA kringle in an alpha v beta 3-dependent manner. These results suggest that uPA binding to integrins through the kringle domain plays an important role in both plasminogen activation and uPA-induced intracellular signaling. The uPA kringle-integrin interaction may represent a novel therapeutic target for cancer, inflammation, and vascular remodeling. PMID:16525582

  6. Direct interaction of the kringle domain of urokinase-type plasminogen activator (uPA) and integrin alpha v beta 3 induces signal transduction and enhances plasminogen activation

    Tarui, Takehiko; Akakura, Nobuaki; Majumdar, Mousumi; Andronicos, Nicholas; Takagi, Junichi; Mazar, Andrew P.; Bdeir, Khalil; Kuo, Alice; Yarovoi, Serge V.; Cines, Douglas B.; Takada, Yoshikazu

    2006-01-01

    It has been questioned whether there are receptors for urokinase-type plasminogen activator (uPA) that facilitate plasminogen activation other than the high affinity uPA receptor (uPAR/CD87) since studies of uPAR knockout mice did not support a major role of uPAR in plasminogen activation. uPA also promotes cell adhesion, chemotaxis, and proliferation besides plasminogen activation. These uPA-induced signaling events are not mediated by uPAR, but mediated by unidentified, lower-affinity recep...

  7. Urokinase plasminogen activator (uPA and plasminogen activator inhibitor type-1 (PAI-1 in breast cancer - correlation with traditional prognostic factors

    Lampelj Maja

    2015-12-01

    Full Text Available Background. Urokinase plasminogen activator (uPA and plasminogen activator inhibitor type-1 (PAI-1 play a key role in tumour invasion and metastasis. High levels of both proteolytic enzymes are associated with poor prognosis in breast cancer patients. The purpose of this study was to evaluate the correlation between traditional prognostic factors and uPA and PAI-1 expression in primary tumour of breast cancer patients.

  8. Concentrations of plasminogen activator inhibitor-1 (PAI-1 and urokinase plasminogen activator (uPA in induced sputum of asthma patients after allergen challenge.

    Marcin Moniuszko

    2011-04-01

    Full Text Available Urokinase plasminogen activator (uPA and its inhibitor (PAI-1 are involved in tiisue remodeling and repair processes associated with acute and chronic inflammation. The aim of the study was to evaluate the effect of allergen challenge on concentration of uPA and PAI-1 in induced sputum of house dust mite allergic asthmatics (HDM-AAs. Thirty HDM-AAs and ten healthy persons (HCswere recruited for the study. In 24 HDM-AAs bronchial challenge with Dermatophagoides pteronyssinus (Dp and in 6 HDM-AAs sham challenege with saline were performed. In HDM-AAs sputum was induced 24 hours before (T0 and 24 hours (T24 after the challenge. Concentration of uPA and PAI-1 in induced sputum were determined using immunoenzymatic assays. At T0 in HDM-AAs mean sputum uPA (151 Âą 96 pg/ml and PAI-1 (4341 Âą 1262 pg/ml concentrations were higher than in HC (18.8 Âą 6.7 pg/ml; p=0.0002 and 596 Âą 180 pg/ml; p<0.0001; for uPA and PAI-1 respectively. After allergen challenge further increase in sputum uPA (187 Âą 144 pg/ml; p=0.03 and PAI-1 (6252 Âą 2323 pg/ml; p<0.0001 concentrations were observed. Moreover, in Dp challenged, but not in saline challenged HDM-AAs the mean uPA/PAI-1 ratio decreased significantly at T24. No significant increase in the studied parameters were found in sham challenged patients. In HDM-AAs allergen exposure leads to activation of the plasmin system in the airways. Greater increase of the PAI-1 concentration than uPA concentration after allergen challenge may promote airway remodeling and play an important role in the development of bronchial hyperreactivity.

  9. Concentrations of plasminogen activator inhibitor-1 (PAI-1 and urokinase plasminogen activator (uPA in induced sputum of asthma patients after allergen challenge

    Krzysztof Kowal,

    2010-04-01

    Full Text Available Urokinase plasminogen activator (uPA and its inhibitor (PAI-1 are involved in tiisue remodeling and repairprocesses associated with acute and chronic inflammation. The aim of the study was to evaluate the effect of allergen challengeon concentration of uPA and PAI-1 in induced sputum of house dust mite allergic asthmatics (HDM-AAs. ThirtyHDM-AAs and ten healthy persons (HCswere recruited for the study. In 24 HDM-AAs bronchial challenge with Dermatophagoidespteronyssinus (Dp and in 6 HDM-AAs sham challenege with saline were performed. In HDM-AAs sputumwas induced 24 hours before (T0 and 24 hours (T24 after the challenge. Concentration of uPA and PAI-1 in induced sputumwere determined using immunoenzymatic assays. At T0 in HDM-AAs mean sputum uPA (151±96 pg/ml and PAI-1(4341±1262 pg/ml concentrations were higher than in HC (18.8±6.7 pg/ml; p=0.0002 and 596±180 pg/ml; p<0.0001; foruPA and PAI-1 respectively. After allergen challenge further increase in sputum uPA (187±144 pg/ml; p=0.03 and PAI-1(6252±2323 pg/ml; p<0.0001 concentrations were observed. Moreover, in Dp challenged, but not in saline challengedHDM-AAs the mean uPA/PAI-1 ratio decreased significantly at T24. No significant increase in the studied parameters werefound in sham challenged patients. In HDM-AAs allergen exposure leads to activation of the plasmin system in the airways.Greater increase of the PAI-1 concentration than uPA concentration after allergen challenge may promote airway remodelingand play an important role in the development of bronchial hyperreactivity.

  10. Progression of Osteosarcoma from a Non-Metastatic to a Metastatic Phenotype Is Causally Associated with Activation of an Autocrine and Paracrine uPA Axis.

    Liliana Endo-Munoz

    Full Text Available Pulmonary metastasis is the major untreatable complication of osteosarcoma (OS resulting in 10-20% long-term survival. The factors and pathways regulating these processes remain unclear, yet their identification is crucial in order to find new therapeutic targets. In this study we used a multi-omics approach to identify molecules in metastatic and non-metastatic OS cells that may contribute to OS metastasis, followed by validation in vitro and in vivo. We found elevated levels of the urokinase plasminogen activator (uPA and of the uPA receptor (uPAR exclusively in metastatic OS cells. uPA was secreted in soluble form and as part of the protein cargo of OS-secreted extracellular vesicles, including exosomes. In addition, in the tumour microenvironment, uPA was expressed and secreted by bone marrow cells (BMC, and OS- and BMC-derived uPA significantly and specifically stimulated migration of metastatic OS cells via uPA-dependent signaling pathways. Silencing of uPAR in metastatic OS cells abrogated the migratory response to uPA in vitro and decreased metastasis in vivo. Finally, a novel small-molecule inhibitor of uPA significantly (P = 0.0004 inhibited metastasis in an orthotopic mouse model of OS. Thus, we show for the first time that malignant conversion of OS cells to a metastatic phenotype is defined by activation of the uPA/uPAR axis in both an autocrine and paracrine fashion. Furthermore, metastasis is driven by changes in OS cells as well as in the microenvironment. Finally, our data show that pharmacological inhibition of the uPA/uPAR axis with a novel small-molecule inhibitor can prevent the emergence of metastatic foci.

  11. Progression of Osteosarcoma from a Non-Metastatic to a Metastatic Phenotype Is Causally Associated with Activation of an Autocrine and Paracrine uPA Axis.

    Endo-Munoz, Liliana; Cai, Na; Cumming, Andrew; Macklin, Rebecca; Merida de Long, Lilia; Topkas, Eleni; Mukhopadhyay, Pamela; Hill, Michelle; Saunders, Nicholas A

    2015-01-01

    Pulmonary metastasis is the major untreatable complication of osteosarcoma (OS) resulting in 10-20% long-term survival. The factors and pathways regulating these processes remain unclear, yet their identification is crucial in order to find new therapeutic targets. In this study we used a multi-omics approach to identify molecules in metastatic and non-metastatic OS cells that may contribute to OS metastasis, followed by validation in vitro and in vivo. We found elevated levels of the urokinase plasminogen activator (uPA) and of the uPA receptor (uPAR) exclusively in metastatic OS cells. uPA was secreted in soluble form and as part of the protein cargo of OS-secreted extracellular vesicles, including exosomes. In addition, in the tumour microenvironment, uPA was expressed and secreted by bone marrow cells (BMC), and OS- and BMC-derived uPA significantly and specifically stimulated migration of metastatic OS cells via uPA-dependent signaling pathways. Silencing of uPAR in metastatic OS cells abrogated the migratory response to uPA in vitro and decreased metastasis in vivo. Finally, a novel small-molecule inhibitor of uPA significantly (P = 0.0004) inhibited metastasis in an orthotopic mouse model of OS. Thus, we show for the first time that malignant conversion of OS cells to a metastatic phenotype is defined by activation of the uPA/uPAR axis in both an autocrine and paracrine fashion. Furthermore, metastasis is driven by changes in OS cells as well as in the microenvironment. Finally, our data show that pharmacological inhibition of the uPA/uPAR axis with a novel small-molecule inhibitor can prevent the emergence of metastatic foci. PMID:26317203

  12. uPA deficiency exacerbates muscular dystrophy in MDX mice

    Suelves, Mònica; Vidal, Berta; Serrano, Antonio L.; Tjwa, Marc; Roma, Josep; López-Alemany, Roser; Luttun, Aernout; de Lagrán, María Martínez; Díaz, Maria Àngels; Jardí, Mercè; Roig, Manuel; Dierssen, Mara; Dewerchin, Mieke; Carmeliet, Peter; Muñoz-Cánoves, Pura

    2007-01-01

    Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (...

  13. Combined mRNA expression levels of members of the urokinase plasminogen activator (uPA) system correlate with disease-associated survival of soft-tissue sarcoma patients

    Members of the urokinase-type plasminogen activator (uPA) system are up-regulated in various solid malignant tumors. High antigen levels of uPA, its inhibitor PAI-1 and its receptor uPAR have recently been shown to be associated with poor prognosis in soft-tissue sarcoma (STS) patients. However, the mRNA expression of uPA system components has not yet been comprehensively investigated in STS patients. The mRNA expression level of uPA, PAI-1, uPAR and an uPAR splice variant, uPAR-del4/5, was analyzed in tumor tissue from 78 STS patients by quantitative PCR. Elevated mRNA expression levels of PAI-1 and uPAR-del4/5 were significantly associated with clinical parameters such as histological subtype (P = 0.037 and P < 0.001, respectively) and higher tumor grade (P = 0.017 and P = 0.003, respectively). In addition, high uPAR-del4/5 mRNA values were significantly related to higher tumor stage of STS patients (P = 0.031). On the other hand, mRNA expression of uPA system components was not significantly associated with patients' survival. However, in STS patients with complete tumor resection (R0), high PAI-1 and uPAR-del4/5 mRNA levels were associated with a distinctly increased risk of tumor-related death (RR = 6.55, P = 0.054 and RR = 6.00, P = 0.088, respectively). Strikingly, R0 patients with both high PAI-1 and uPAR-del4/5 mRNA expression levels showed a significant, 19-fold increased risk of tumor-related death (P = 0.044) compared to the low expression group. Our results suggest that PAI-1 and uPAR-del4/5 mRNA levels may add prognostic information in STS patients with R0 status and distinguish a subgroup of R0 patients with low PAI-1 and/or low uPAR-del4/5 values who have a better outcome compared to patients with high marker levels

  14. A combination of desmopressin and docetaxel inhibit cell proliferation and invasion mediated by urokinase-type plasminogen activator (uPA) in human prostate cancer cells

    Sasaki, Hiroshi; Klotz, Laurence H. [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Sugar, Linda M. [Department of Pathology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Kiss, Alexander [Department of Research Design and Biostatistics, Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Venkateswaran, Vasundara, E-mail: vasundara.venkateswaran@sunnybrook.ca [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada)

    2015-08-28

    Background: This study was designed to assess the effectiveness of a combination treatment using both desmopressin and docetaxel in prostate cancer treatment. Desmopressin is a well-known synthetic analogue of the antidiuretic hormone vasopressin. It has recently been demonstrated to inhibit tumor progression and metastasis in in vivo models. Docetaxel is widely used for the treatment of castration resistant prostate cancer (CRPC) patients. However, durable responses have been uncommon to date. In this study, we investigated the anti-tumor effect of desmopressin in combination with docetaxel in vitro and in vivo. Methods: Two prostate cancer cells (PC3, LNCaP) were treated with different concentrations of desmopressin alone, docetaxel alone, and a combination of desmopressin and docetaxel. Cell proliferation was determined by MTS assay. The anti-invasive and anti-migration potential of desmopressin and in combination with docetaxel were examined by wound healing assay, migration chamber assay, and matrigel invasion assay. Results: The combination of desmopressin and docetaxel resulted in a significant inhibition of PC3 and LNCaP cell proliferation (p < 0.01). Additionally, cell migration and invasion were also inhibited by the combination when compared to that of either treatment alone in PC3 cells (p < 0.01). The anti-tumor effect of this combination treatment was associated with down-regulation of both urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP-2 and MMP-9) in PC3 cells. Conclusions: We are the first to elucidate the anti-tumor and anti-metastatic potential of desmopressin in combination with docetaxel in a prostate cancer model via the uPA-MMP pathway. Our finding could potentially contribute to the therapeutic profile of desmopressin and enhance the efficacy of docetaxel based treatment for CRPC. - Highlights: • Desmopressin inhibits cell proliferation in prostate cancer cells. • The expression of cyclin A and CDK2

  15. A combination of desmopressin and docetaxel inhibit cell proliferation and invasion mediated by urokinase-type plasminogen activator (uPA) in human prostate cancer cells

    Background: This study was designed to assess the effectiveness of a combination treatment using both desmopressin and docetaxel in prostate cancer treatment. Desmopressin is a well-known synthetic analogue of the antidiuretic hormone vasopressin. It has recently been demonstrated to inhibit tumor progression and metastasis in in vivo models. Docetaxel is widely used for the treatment of castration resistant prostate cancer (CRPC) patients. However, durable responses have been uncommon to date. In this study, we investigated the anti-tumor effect of desmopressin in combination with docetaxel in vitro and in vivo. Methods: Two prostate cancer cells (PC3, LNCaP) were treated with different concentrations of desmopressin alone, docetaxel alone, and a combination of desmopressin and docetaxel. Cell proliferation was determined by MTS assay. The anti-invasive and anti-migration potential of desmopressin and in combination with docetaxel were examined by wound healing assay, migration chamber assay, and matrigel invasion assay. Results: The combination of desmopressin and docetaxel resulted in a significant inhibition of PC3 and LNCaP cell proliferation (p < 0.01). Additionally, cell migration and invasion were also inhibited by the combination when compared to that of either treatment alone in PC3 cells (p < 0.01). The anti-tumor effect of this combination treatment was associated with down-regulation of both urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP-2 and MMP-9) in PC3 cells. Conclusions: We are the first to elucidate the anti-tumor and anti-metastatic potential of desmopressin in combination with docetaxel in a prostate cancer model via the uPA-MMP pathway. Our finding could potentially contribute to the therapeutic profile of desmopressin and enhance the efficacy of docetaxel based treatment for CRPC. - Highlights: • Desmopressin inhibits cell proliferation in prostate cancer cells. • The expression of cyclin A and CDK2

  16. Correlation between Expression of P38 MAPK-Signaling and uPA in Breast Cancer

    Yanchun Han; Luying Liu; Dongxia Yan; Guihua Wang

    2008-01-01

    OBJECTIVE To study the expression of phosphorylated p38 mitogen.Activated protein kinase(p-p38)and uPA and the correlation of their expression with breast cancer Clinic.patholodiCal characteristics,and to investigate the role of the p38MAPK-signaling pathway in regulating uPA expression in breast cancer cells.METHODS Immunohistochemistry(S-P)was used to test the expression of P-p38 and uPA in 60 specimens of breast cancer tissues.Western blots were adopted to detect expression of the p-p38 and uPA proteins in MDA-MB-231 and MCF-7 breast cancer cells.And uPA expression after treatment with SB203580,a specific inhibitor of p38 MAPK.RESULTS The positive rate of the P.P38 protein and uPA protein expression in the breast cancer tissues was 56.7% and 60.0%.Respectively.The expression of P.P38 was positively related to the expression of uPA(r=0.316,P0.05).The expression of p-p38 and uPA in MDA. MB-231 cells was higher than that in MCF.7 cells.SB203580 inhibited the p38 MAPK pathway and reduced uPA protein expression.CONCLUSI0N The p38 MAPK-signaling pathway promotes breast cancer malignant progression by up.Regulating uPA expression,and it may be an important process in breast cancer invasion and metastasis.

  17. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Highlights: ► Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. ► CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. ► GDNT inhibits expression of CDC20 in breast cancer cells. ► GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. ► GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  18. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  19. Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum

    Smirnov Vladimir N

    2002-10-01

    Full Text Available Abstract Background Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown. Results We show that in Hansenula polymorpha overexpression worsens uPA secretion and stimulates its intracellular aggregation. The absence of the Golgi modifications in accumulated uPA suggests that aggregation occurs within the endoplasmic reticulum. Deletion analysis has shown that the N-terminal domains were responsible for poor uPA secretion and propensity to aggregate. Mutation abolishing N-glycosylation decreased the efficiency of uPA secretion and increased its aggregation degree. Retention of uPA in the endoplasmic reticulum stimulates its aggregation. Conclusions The data obtained demonstrate that defect of uPA secretion in yeast is related to its retention in the endoplasmic reticulum. Accumulation of uPA within the endoplasmic reticulum disturbs its proper folding and leads to formation of high molecular weight aggregates.

  20. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA.

    Jiang, Jiahua; Jedinak, Andrej; Sliva, Daniel

    2011-11-18

    Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers. PMID:22033405

  1. Synthesis and in vivo preclinical evaluation of an 18F labeled uPA inhibitor as a potential PET imaging agent

    Introduction: The urokinase plasminogen activator (uPA) system is a proteolytic cascade involved in tumor invasion and metastasis. uPA and its inhibitor PAI-1 are described as biomarkers for breast cancer with the highest level of evidence. The present study describes the synthesis and first in vivo application of an activity based uPA PET probe. Methods: Based on the design of a small irreversible and selective uPA inhibitor we developed an 18F-labeled activity based probe for uPA imaging. Human uPA expressing MDA-MB-231-luc2-GFP cells were inoculated in the mammary fat pads of nude mice and treated with the probe once tumors reached a volume of 150 mm3. Scans were performed at 0.25, 0.75, 1.5, 4 and 6 h post injection. To evaluate tumor uptake in vivo and ex vivo data were gathered. Biodistribution data of the organs and tissues of interest were collected at all time points. Due to a relatively low tumor uptake, probe stability was further evaluated. Results: The uPA targeting PET tracer was produced in high purity and with good specific radioactivity. In vivo PET data showed a maximum tumor uptake of 2,51 ± 0,32 %ID/g at 4 h p.i. A significant correlation between in vivo and ex vivo tumor uptake calculation was found (R = 0.75; p < 0.01). Due to a high blood signal at all time points, probe stability was further examined revealing high plasma protein binding and low plasma stability. Conclusions: In vivo and ex vivo results clearly demonstrate that uPA expressing tumors can be detected with non-invasive PET imaging. Stability tests suggest that further optimization is needed to provide a better tumor-to-background contrast

  2. relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells

    Ricca, A; Biroccio, A; Trisciuoglio, D; M. Cippitelli; Zupi, G.; Bufalo, D Del

    2001-01-01

    We previously demonstrated that bcl-2 over-expression increases the malignant behaviour of the MCF7 ADR human breast cancer cell line and enhances nuclear factor-kappa B (NF-k B) transcriptional activity. Here, we investigated the direct effect of increased NF-k B activity on the tumorigenicity of MCF7 ADR cells by over-expressing the NF-k B subunit relA/p65. Surprisingly, our results demonstrated that over-expression of relA determines a considerable reduction of the tumorigenic ability in n...

  3. relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells

    Ricca, A; Biroccio, A; Trisciuoglio, D; Cippitelli, M; Zupi, G; Bufalo, D Del

    2001-01-01

    We previously demonstrated that bcl-2 over-expression increases the malignant behaviour of the MCF7 ADR human breast cancer cell line and enhances nuclear factor-kappa B (NF-k B) transcriptional activity. Here, we investigated the direct effect of increased NF-k B activity on the tumorigenicity of MCF7 ADR cells by over-expressing the NF-k B subunit relA/p65. Surprisingly, our results demonstrated that over-expression of relA determines a considerable reduction of the tumorigenic ability in nude mice as indicated by the tumour take and the median time of tumour appearance. In vitro studies also evidenced a reduced cell proliferation and the activation of the apoptotic programme after relA over-expression. Apoptosis was associated with the production of reactive oxygen species, and the cleavage of the specific substrate Poly-ADP-ribose-polymerrase. Our data indicate that there is no general role for NF-k B in the regulation of apoptosis and tumorigenicity. In fact, even though inhibiting NF-k B activity has been reported to be lethal to tumour cells, our findings clearly suggest that an over-induction of nuclear NF-k B activity may produce the same effect. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747334

  4. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  5. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    Dong Zhongyun

    2008-06-01

    Full Text Available Abstract Background Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα-mediated signaling axis. Methods Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. Results We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Conclusion Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression.

  6. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis. Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression

  7. Tetrahydrocurcumin inhibits HT1080 cell migration and invasion via downregulation of MMPs and uPA

    Supachai YODKEEREE; Spiridione GARBISA; Pomngarm LIMTRAKUL

    2008-01-01

    Aim: Tetrahydrocurcumin (THC) is an active metabolite of curcumin. It has been reported to have similar pharmacological activity to curcumin. The proteases that participate in extracellular matrix (ECM) degradation are involved in cancer cell metastasis. The present study investigates the effect of an ultimate metabolite of curcumin, THC, on the invasion and motility of highly-metastatic HT1080 human fibrosarcoma cells. Methods: The effect of THC on HTI080 cell invasion and migration was determined using Boyden chamber assay. Cell-adhesion assay was used for examining the binding of cells to ECM molecules. Zymography assay was used to analyze the effect of THC on matrix metalloproteinase (MMP)-2, MMP-9, and urokinase plasminogen activator (uPA) secretion from HT1080 cells. Tissue inhibitor of metalloproteinase (TIMP)-2 and membrane-type 1 matrix metalloproteinase (MT1-MMP) proteins levels were analyzed by Western blotting. Results: Treatment with THC reduced HT1080 cell invasion and migration in a dose-dependent manner. THC also decreased the cell adhesion to Matrigel and laminin-coated plates. Analysis by zymography demonstrated that treatment with THC reduced the levels of MMP-2, MMP-9, and uPA. THC also inhibited the levels of MT1-MMP and TIMP-2 proteins detected by Western blot analysis. Conclusion: Our findings revealed that THC reduced HT1080 cell invasion and migration. The inhibition of cancer cell invasion is associated with the downregulation of ECM degradation enzymes and the inhibition of cell adhesion to ECM proteins.

  8. Recombinant nematode anticoagulant protein c2 inhibits cell invasion by decreasing uPA expression in NSCLC cells.

    Tong, Yu; Yue, Jun; Mao, Meng; Liu, Qingqing; Zhou, Jing; Yang, Jiyun

    2015-04-01

    Nematode anticoagulant protein c2 (NAPc2) is an 85-residue polypeptide originally isolated from the hematophagous hookworm, Ancylostoma caninum. Several studies have shown that rNAPc2 inhibits the growth of primary and metastatic tumors in mice independently of its ability to initiate coagulation. We obtained bioactive recombinant rNAPc2 by splicing of the rNAPc2-intein-CBD fusion proteins expressed in E. coli ER2566. In the in vitro assay, rNAPc2 obviously inhibited the invasive ability of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Furthermore, rNAPc2 suppressed tumor growth in vivo by daily intraperitoneal injection of rNAPc2 in an NSCLC cell xenograft model of nude mice. Respectively, rNAPc2 downregulated the production of urokinase plasminogen activator (uPA) (P<0.05) and suppressed nuclear factor-κB (NF-κB) activity. We also identified that inhibition of NF-κB activity impaired cell invasion and reduced the uPA production in NSCLC cells. Meanwhile, NF-κB was found to directly bind to the uPA promoter in vitro. These results demonstrated that rNAPc2 inhibits cell invasion at least in part through the downregulation of the NF-κB-dependent metastasis-related gene expression in NSCLC. Our results also suggest that uPA, a known metastasis-promoting gene, is indirectly regulated by rNAPc2 through NF-κB activation. These results indicate that rNAPc2 may be a potent agent for the prevention of NSCLC progression. PMID:25672417

  9. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis

  10. Endothelin-1 activates phospholipase D and thymidine incorporation in fibroblasts overexpressing protein kinase C beta 1.

    Pai, J K; Dobek, E A; Bishop, W R

    1991-01-01

    Endothelins (ETs) are a family of extremely potent vasoconstrictor peptides. In addition, ET-1 acts as a potent mitogen and activates phospholipase C in smooth muscle cells and fibroblasts. We examined the effects of ET-1 on phosphatidylcholine (PC) metabolism and thymidine incorporation in control Rat-6 fibroblasts and in cells that overexpress protein kinase C beta 1 (PKC). PC pools were labeled with [3H]myristic acid, and formation of phosphatidylethanol (PEt), an unambiguous marker of pho...

  11. Overexpression of SOCS3 exhibits preclinical antitumor activity against malignant pleural mesothelioma.

    Iwahori, Kota; Serada, Satoshi; Fujimoto, Minoru; Nomura, Shintaro; Osaki, Tadashi; Lee, Chun Man; Mizuguchi, Hiroyuki; Takahashi, Tsuyoshi; Ripley, Barry; Okumura, Meinoshin; Kawase, Ichiro; Kishimoto, Tadamitsu; Naka, Tetsuji

    2011-08-15

    Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis for which an effective therapy remains to be established. Our study investigated the therapeutic potential of the suppressor of cytokine signaling 3 (SOCS3), an endogenous inhibitor of intracellular signaling pathways, for treatment of MPM. We infected MPM cells (H226, EHMES-1, MESO-1 and MESO-4) with an adenovirus-expressing SOCS3 (AdSOCS3) to examine the effect of SOCS3 overexpression on MPM cells. SOCS3 overexpression reduced MPM proliferation and induced apoptosis and partial G0/G1 arrest. SOCS3 also inhibited the proliferation of MPM cells via multiple signaling pathways including Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated kinase (ERK), focal adhesion kinase (FAK) and p53 pathways. Notably, AdSOCS3 treatment inhibited tumor growth in an MPM pleural xenograft model. These findings demonstrate that overexpression of SOCS3 has a potent antitumor effect against MPM both in vitro and in vivo and indicate the potential for clinical use of SOCS3 for MPM treatment. PMID:20949562

  12. FER tyrosine kinase (FER) overexpression mediates resistance to quinacrine through EGF-dependent activation of NF-κB

    Guo, Canhui; Stark, George R.

    2011-01-01

    Quinacrine, a drug with antimalarial and anticancer activities that inhibits NF-κB and activates p53, has progressed into phase II clinical trials in cancer. To further elucidate its mechanism of action and identify pathways of drug resistance, we used an unbiased method for validation-based insertional mutagenesis to isolate a quinacrine-resistant cell line in which an inserted CMV promoter drives overexpression of the FER tyrosine kinase (FER). Overexpression of FER from a cDNA confers quin...

  13. MSX2 overexpression inhibits gemcitabine-induced caspase-3 activity in pancreatic cancer cells

    Shin Hamada; Kennichi Satoh; Kenji Kimura; Atsushi Kanno; Atsushi Masamune; Tooru Shimosegawa

    2005-01-01

    AIM: To evaluate the effect of MSX2 on gemcitabineinduced caspase-3 activation in pancreatic cancer cell line Panc-1.METHODS: Using V5-tagged MSX2 expression vector,stable transfectant of MSX2 was generated from Panc-1cells (Px14 cells). Cell viability under gemcitabine administration was determined by MTT assay relative to control cell line (empty-vector transfected Panc-1 cells;P-3EV cells). Hoechst staining was used for the detection of apoptotic cell. Activation of caspase-3 was assessed using Western blotting analysis and direct measurement of caspase-3 specific activities.RESULTS: MSX2 overexpression in Panc-1 cells resulted in decreased gemcitabine-induced caspase-3 activation and increased cell viability under gemcitabine treatment in Px14 cells.CONCLUSION: MSX2 exerts repressive effects on gemcitabine-induced apoptotic pathway. This novel apoptosis-regulating function of MSX2 may provide a new therapeutic target for pancreatic cancer.

  14. E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression

    Fusco Alfredo

    2006-08-01

    Full Text Available Abstract The High Mobility Group protein HMGA2 is a nuclear architectural factor that plays a critical role in a wide range of biological processes including regulation of gene expression, embryogenesis and neoplastic transformation. Several studies are trying to identify the mechanisms by which HMGA2 protein is involved in each of these activities, and only recently some new significant insights are emerging from the study of transgenic and knock-out mice. Overexpression of HMGA2 gene leads to the onset of prolactin and GH-hormone induced pituitary adenomas in mice, suggesting a critical role of this protein in pituitary tumorigenesis. This was also confirmed in the human pathology by the finding that HMGA2 amplification and/or overexpression is present in human prolactinomas. This review focuses on recent data that explain the mechanism by which HMGA2 induces the development of pituitary adenomas in mice. This mechanism entails the activation of the E2F1 protein by the HMGA2-mediated displacement of HDAC1 from pRB protein.

  15. A novel epidermal growth factor receptor variant lacking multiple domains directly activates transcription and is overexpressed in tumors

    Piccione, EC; Lieu, TJ; Gentile, CF; Williams, TR; Connolly, AJ; Godwin, AK; Koong, AC; Wong, AJ

    2011-01-01

    The epidermal growth factor receptor (EGFR) is essential to multiple physiological and neoplastic processes via signaling by its tyrosine kinase domain and subsequent activation of transcription factors. EGFR overexpression and alteration, including point mutations and structural variants, contribute to oncogenesis in many tumor types. In this study, we identified an in-frame splice variant of the EGFR called mini-LEEK (mLEEK) that is more broadly expressed than the EGFR and is overexpressed ...

  16. Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells.

    Tesone, Amelia J; Rutkowski, Melanie R; Brencicova, Eva; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Stephen, Tom L; Allegrezza, Michael J; Payne, Kyle K; Nguyen, Jenny M; Wickramasinghe, Jayamanna; Tchou, Julia; Borowsky, Mark E; Rabinovich, Gabriel A; Kossenkov, Andrew V; Conejo-Garcia, Jose R

    2016-02-23

    Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression. PMID:26876172

  17. SATB1 OVEREXPRESSION DRIVES TUMOR-PROMOTING ACTIVITIES IN CANCER-ASSOCIATED DENDRITIC CELLS

    Tesone, Amelia J.; Rutkowski, Melanie R.; Brencicova, Eva; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Stephen, Tom L.; Allegrezza, Michael J.; Payne, Kyle K.; Nguyen, Jenny M.; Wickramasinghe, Jayamanna; Tchou, Julia; Borowsky, Mark E.; Rabinovich, Gabriel A.; Kossenkov, Andrew V.; Conejo-Garcia, Jose R.

    2016-01-01

    SUMMARY Special AT-rich sequence-binding protein-1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating MHC-II expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC-II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46+ inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression. PMID:26876172

  18. CARMA3 is overexpressed in colon cancer and regulates NF-κB activity and cyclin D1 expression

    Highlights: ► CARMA3 expression is elevated in colon cancers. ► CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. ► CARMA3 upregulates cyclinD1 through NF-κB activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.

  19. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    Barnathan, E S; Kuo, A; Karikó, K;

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...

  20. Optimized over-expression of [FeFe] hydrogenases with high specific activity in Clostridium acetobutylicum

    von Abendroth, Gregory; Stripp, Sven; Happe, Thomas [Ruhr-Universitaet Bochum, Lehrstuhl fuer Biochemie der Pflanzen, AG Photobiotechnologie, 44780 Bochum (Germany); Silakov, Alexey [Max-Planck-Institut fuer Bioanorganische Chemie, 45470 Muelheim an der Ruhr (Germany); Croux, Christian; Soucaille, Philippe; Girbal, Laurence [UMR5504, UMR792 Ingenierie des Systemes Biologiques et des Procedes, CNRS, INRA, INSA, 31400 Toulouse (France)

    2008-11-15

    It was previously shown that Clostridium acetobutylicum is capable to over-express various [FeFe] hydrogenases although the protein yield was low. In this study we report on doubling the yield of the clostridial hydrogenase by replacing the native gene hydA1{sub Ca} with a recombinant one via homologous recombination. The purified protein HydA1{sub Ca} shows an unexpected high specific activity (up to 2257 {mu}mol H{sub 2} min{sup -1} mg{sup -1}) for hydrogen evolution. Furthermore, the highly active green algal hydrogenase HydA1{sub Cr} from Chlamydomonas reinhardtii was heterologously expressed in C. acetobutylicum, and purified with increased yield (1 mg protein per liter of cells) and high activity (625 {mu}mol H{sub 2} min{sup -1} mg{sup -1}). EPR studies demonstrate intact H-clusters for homologously and heterologously expressed [FeFe] hydrogenases in the CO-inhibited oxidized redox state, and prove the high efficiency of the C. acetobutylicum expression system. (author)

  1. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine

    Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin

    2016-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration. PMID:27092498

  2. Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy

    Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François

    2016-01-01

    Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154

  3. Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator

    Kaczmarek, Jakub; Skottrup, Peter Durand

    2015-01-01

    pericellular proteolysis and remodeling of ECM. uPA and the receptor uPAR, are overexpressed in a number of malignant tumours and uPA/uPAR play major roles in adhesion, migration, invasion and metastasis of cancer cells. Elevated levels of uPA have been reported as a risk biomarker for disease relapse...

  4. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup [Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-799 (Korea, Republic of); Jang, Ho Hee, E-mail: hhjang@gachon.ac.kr [Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-799 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon (Korea, Republic of)

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.

  5. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation

  6. Bronchial hyperreactivity, increased endotoxin lethality and melanocytic tumorigenesis in transgenic mice overexpressing platelet-activating factor receptor.

    Ishii, S.; Nagase, T; Tashiro, F; Ikuta, K. (Koichi); Sato, S.; Waga, I.; Kume, K.; Miyazaki, J; Shimizu, T

    1997-01-01

    Although platelet-activating factor (PAF) has been shown to exert pleiotropic effects on isolated cells or tissues, controversy still exists as to whether it plays significant pathophysiological roles in vivo. To answer this question, we established transgenic mice over-expressing a guinea-pig PAF receptor (PAFR). The transgenic mice showed a bronchial hyperreactivity to methacholine and an increased mortality when exposed to bacterial endotoxin. An aberrant melanogenesis and proliferative ab...

  7. Enhanced tethered-flight duration and locomotor activity by overexpression of the human gene SOD1 in Drosophila motorneurons

    Agavni Petrosyan

    2015-03-01

    Full Text Available Mutation of the human gene superoxide dismutase (hSOD1 is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig’s disease. Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila‘s motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF as a function of age (5 to 50 days. Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking behavior in late life when flies had lost the ability to fly (age ≥ 60 d. hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life.

  8. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.

    Yukihiro Saito

    Full Text Available Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (If flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN channels and attenuation of the inward rectifier K+ current (IK1 flowing through inward rectifier potassium (Kir channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs and induced cardiomyocytes that originally show poor IK1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs function as a biological pacemaker in vitro.The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of IK1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger If currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded

  9. In vivo overexpression of tumstatin domains by tumor cells inhibits their invasive properties in a mouse melanoma model

    Our previous studies demonstrated that a synthetic peptide encompassing residues 185-203 of the noncollagenous (NC1) domain of the α3 chain of type IV collagen, named tumstatin, inhibits in vitro melanoma cell proliferation and migration. In the present study, B16F1 melanoma cells were stably transfected to overexpress the complete tumstatin domain (Tum 1-232) or its C-terminal part, encompassing residues 185-203 (Tum 183-232). Tumstatin domain overexpression inhibited B16F1 in vitro cell proliferation, anchorage-independent growth, and invasive properties. For studying the in vivo effect of overexpression, representative clones were subcutaneously injected into the left side of C57BL6 mice. In vivo tumor growth was decreased by -60% and -56%, respectively, with B16F1 cells overexpressing Tum 1-232 or Tum 183-232 compared to control cells. This inhibitory effect was associated with a decrease of in vivo cyclin D1 expression. We also demonstrated that the overexpression of Tum 1-232 or Tum 183-232 induced an in vivo down-regulation of proteolytic cascades involving matrix metalloproteinases (MMPs), especially the production or activation of MMP-2, MMP-9, MMP-13, as well as MMP-14. The plasminogen activation system was also altered in tumors with a decrease of urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA) and a strong increase of plasminogen activator inhibitor-1 (PAI-1). Collectively, our results demonstrate that tumstatin or its C-terminal antitumor fragment, Tum 183-232, inhibits in vivo melanoma progression by triggering an intracellular transduction pathway, which involves a cyclic AMP (cAMP)-dependent mechanism

  10. Uniform {sup 15}N- and {sup 15}N/{sup 13}C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W. [Abbott Laboratories, Abbott Park, IL (United States)

    1994-12-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly {sup 15}N-and {sup 15}N/{sup 13}C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the {phi} angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

  11. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    Caiazza, Francesco

    2010-05-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapidly activate cPLA(2)alpha in MCF-7 breast cancer cells. Overexpression or gene amplification of HER2 is found in approximately 30% of breast cancer patients and correlates with a poor clinical outcome and resistance to endocrine therapy. This study reports the first evidence for a correlation between cPLA(2)alpha enzymatic activity and overexpression of the HER2 receptor. The activation of cPLA(2)alpha in response to E2 treatment was biphasic with the first phase dependent on trans-activation through the matrix metalloproteinase-dependent release of heparin-bound epidermal growth factor. EGFR\\/HER2 heterodimerization resulted in downstream signaling through the ERK1\\/2 cascade to promote cPLA(2)alpha phosphorylation at Ser505. There was a correlation between HER2 and cPLA(2)alpha expression in six breast cancer cell lines examined, and inhibition of HER2 activation or expression in the SKBR3 cell line using herceptin or HER2-specific small interfering RNA, respectively, resulted in decreased activation and expression of cPLA(2)alpha. Pharmacological blockade of cPLA(2)alpha using a specific antagonist suppressed the growth of both MCF-7 and SKBR3 cells by reducing E2-induced proliferation and by stimulating cellular apoptosis and necrosis. This study highlights cPLAalpha(2) as a potential target for therapeutic intervention in endocrine-dependent and endocrine-independent breast cancer.

  12. Chapter 4. Making Heroes: the Early days of OUN-UPA

    Marples, David R.

    2013-01-01

    Introduction This chapter examines interpretations of the topic of OUN-UPA as constituents in the process of constructing a national history in Ukraine, and in particular the changing interpretations of this organization in Ukraine. Several introductory premises need to be stated. First, as earlier, the goal is not to determine factual truth per se, but rather to analyze the prevailing narratives. Second, this chapter includes a sampling of newspapers of different political perspectives and r...

  13. Transgenic medaka that overexpress growth hormone have a skin color that does not indicate the activation or inhibition of somatolactin-α signal.

    Komine, Ritsuko; Nishimaki, Toshiyuki; Kimura, Tetsuaki; Oota, Hiroki; Naruse, Kiyoshi; Homma, Noriko; Fukamachi, Shoji

    2016-06-10

    Teleosts have two paralogous growth-hormone receptors (GHRs). In vitro studies demonstrated that both receptors bind to and transmit the signal of the growth hormone (GH). However, one of the GHRs (GHR1) was shown to bind more strongly to somatolactin-α (SLα), a fish-specific peptide hormone that is closely related to GH, and is, therefore, termed somatolactin receptor (SLR). In this study, we questioned whether the dual binding of GHR1/SLR causes a crosstalk (reciprocal activation or inhibition) between GH and SLα signals in vivo. For this purpose, we newly established a transgenic medaka that overexpresses GH (Actb-GH:GFP) and assessed its phenotype. The body weight of these transgenic medaka is about twice that of wild-type fish, showing that functional GH was successfully overexpressed in Actb-GH:GFP fish. The transgenic medaka, especially female fish, showed severe infertility, which was a common side effect in GH transgenesis. The skin color, which reflects the effects of SLα most conspicuously in medaka, was similar to that of neither the SLα-overexpressing nor the SLα-deficient medaka, indicating that GH overexpression does not enhance or suppress the SLα signal. We also verified that a transgenic medaka that overexpressed SLα grew and reproduced normally. Therefore, regardless of the in vitro binding relationships, the GH and SLα signals seem not to crosstalk significantly in vivo even when these hormones are overexpressed. PMID:26945627

  14. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis

    Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the

  15. Immunocytochemical Phenotyping of Disseminated Tumor Cells in Bone Marrow by uPA Receptor and CK18: Investigation of Sensitivity and Specificity of an Immunogold/Alkaline Phosphatase Double Staining Protocol

    Allgayer, Heike; Heiss, Markus Maria; Riesenberg, Rainer; Babic, Rudolf; Jauch, Karl Walter; Schildberg, Friedrich Wilhelm

    1997-01-01

    Phenotyping of cytokeratin (CK) 18-positive cells in bone marrow is gaining increasing importance for future prognostic screening of carcinoma patients. Urokinase-type plasminogen activator receptor (uPA-R) is one example of a potential aggressive marker for those cells. However, a valid and reliable double staining method is needed. Using monoclonal antibodies against uPA-R and CK18, we modified an immunogold/alkaline phosphatase double staining protocol. UPA-R/CK18-positive tumor cell contr...

  16. Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway.

    Mohammed M H Al-Gayyar

    Full Text Available Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotocin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75(NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75(NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75(NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways.

  17. Overexpression of hepatic plasminogen activator inhibitor type 1 mRNA in rabbits with fatty liver

    Jian-Gao Fan; Liang-Hua Chen; Zheng-Jie Xu; Min-De Zeng

    2001-01-01

    @@ INTRODUCTION Plasminogen activator inhibitor type 1 ( PAI-I ), an approximately Mr 50000 glycoprotein, is the major physiological inhibitor of plasminogen activators. It is not only the priming factor for atherosclerosis and coronary thrombosis[1-3] , but also participates in the genesis of chronic hepatitis and liver fibrosis[4-11] . However, there has been no available report yet about the research of hepatic PAl-1 gene expression in hyperlipidemia and fatty liver. The present study aimed to explore the change of hepatic PAl-1 mRNA and its plasma activity by means of animal model.

  18. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  19. Common TNF-α, IL-1β, PAI-1, uPA, CD14 and TLR4 polymorphisms are not associated with disease severity or outcome from Gram negative sepsis

    Eugen-Olsen Jesper

    2007-09-01

    Full Text Available Abstract Background Several studies have investigated single nucleotide polymorphisms (SNPs in candidate genes associated with sepsis and septic shock with conflicting results. Only few studies have combined the analysis of multiple SNPs in the same population. Methods Clinical data and DNA from consecutive adult patients with culture proven Gram negative bacteremia admitted to a Danish hospital between 2000 and 2002. Analysis for commonly described SNPs of tumor necrosis-α, (TNF-α, interleukin-1β (IL-1β, plasminogen activator-1 (PAI-1, urokinase plasminogen activator (uPA, CD14 and toll-like receptor 4 (TLR4 was done. Results Of 319 adults, 74% had sepsis, 19% had severe sepsis and 7% were in septic shock. No correlation between severity or outcome of sepsis was observed for the analyzed SNPs of TNF-α, IL-1β, PAI-1, uPA, CD14 or TLR-4. In multivariate Cox proportional hazard regression analysis, increasing age, polymicrobial infection and haemoglobin levels were associated with in-hospital mortality. Conclusion We did not find any association between TNF-α, IL-1β, PAI-1, uPA, CD14 and TLR4 polymorphisms and outcome of Gram negative sepsis. Other host factors appear to be more important than the genotypes studied here in determining the severity and outcome of Gram negative sepsis.

  20. Expression and functional characterization of a recombinant targeted toxin with an uPA cleavable linker in Pichia pastoris.

    Zhu, Wen he; Sun, Miao nan; Wang, Yong sheng; Sun, De Jun; Zhang, Shao xuan

    2011-04-01

    A recombinant targeted toxin (Disintegrin-Conj-Mel) was developed that contained a disintegrin connected to cytotoxic melittin by a urokinase plasminogen activator (uPA)-cleavable linker. This recombinant targeted toxin was designed to target tumor cells expressing integrin αvβ3. The fusion gene was expressed under the control of the promoter AOX1 in Pichia pastoris. Electrophoresis by SDS-PAGE and Western blotting assays of culture broth from a methanol-induced expression strain, demonstrated that an approximately 13 kDa fusion protein was secreted into the culture medium. The molecular weight was that calculated from the predicted amino acid sequence. After optimizing the growth and expression conditions of the transformant strain, about 160 mg/L of the recombinant protein was achieved. The recombinant protein was purified to more than 95% purity by SP Sepharose ion exchange chromatography and Sephadex G-75 gel filtration chromatography. The hemolysis bioactivity test revealed that the fusion had no hemolytic activity or cytotoxicity against uPA non-expressing 293 cells, but exerted dose-dependent inhibition on uPA-expressing A549 cell proliferation. PMID:21144903

  1. Over-expression and characterization of active recombinant rat liver carnitine palmitoyltransferase II using baculovirus.

    Johnson, T M; Mann, W R; Dragland, C J; Anderson, R C; Nemecek, G M; Bell, P A

    1995-01-01

    The cDNA encoding rat liver carnitine palmitoyltransferase II (CPT-II) was heterologously expressed using a recombinant baculovirus/insect cell system. Unlike Escherichia coli, the baculovirus-infected insect cells expressed mostly soluble active recombinant CPT-II (rCPT-II). CPT activity from crude lysates of recombinant baculovirus-infected insect cells was maximal between 50 and 72 h post-infection, with a peak specific activity of 100-200 times that found in the mock- or wild-type-infected control lysates. Milligram quantities (up to 1.8 mg/l of culture) of active rCPT-II were chromatographically purified from large-scale cultures of insect cells infected with the recombinant baculovirus. The rCPT-II was found to be: (1) similar in size to the native rat liver enzyme (approximately 70 kDa) as judged by SDS/PAGE; (2) immunoreactive with a polyclonal serum raised against rat liver CPT-II; and (3) not glycosylated. Kinetic analysis of soluble rCPT-II revealed Km values for carnitine and palmitoyl-CoA of 950 +/- 27 microM and 34 +/- 5.6 microM respectively. Images Figure 1 Figure 2 Figure 4 PMID:7626037

  2. EXPRESSION AND SIGNIFICANCE OF UROKINASE-TYPE PLASMINOGEN ACTIVATOR IN BREAST CANCER

    XIAO Jiping; ZHANG Guangde; XIA Wenhua; CHENG Deji

    1999-01-01

    Objective: To study the expression and clinical significance of urokinase-type plasminogen activator (uPA) in breast cancer. Methods: Applying streptavidin-biotin complex (SABC) immunohistochemical technique, expression of uPA was studied in 100 patients with primary breast cancer. Results: There were 55 patients with high uPA expression, and 45 with lower expression. There was significant correlation between uPA expression and TNM stage, lymph node status, and the tumor size. Neither age, menopausal status, nor ER status was significantly related with level of uPA expression. The patients with high expression of uPA had significantly shorter disease-free survival (DFS)and overall survival (OS) than did those with low expression of uPA. Univariate analysis showed that uPA as a prognostic factor was of similar magnitude to lymph node status and TNM stage, but stronger than that of ER status and tumor size. UPA was an independent prognostic factor affecting disease-free survival and overall survival. Conclusion: uPA appears to be a strong and independent biologic marker for predicting prognosis of breast cancer.

  3. Velika župa Dubrava u 1943. godini do kapitulacije Italije

    Mirošević, Franko

    2015-01-01

    Ovaj prilog nastavak je članka »Velika župa Dubrava između Talijana, četnika i partizana u 1942. godini.« Opisuje prilike u navedenoj župi u 1943. godini, u kojoj se nastavljaju zbivanja iz 1942. Početkom 1943. partizani obnavljaju svoje borbene aktivnosti, četnici nastavljaju teror nad Hrvatima i Muslimanima uz talijansku benevolentnost. Sredinom 1943. u prostor Velike župe Dubrava dolazi novi vojno-politički subjekt, njemačka vojska, koja razoružava četnike i potiskuje dotadašnji utjecaj ta...

  4. Systemic overexpression of TNFα-converting enzyme does not lead to enhanced shedding activity in vivo.

    Masaki Yoda

    Full Text Available TNFα-converting enzyme (TACE/ADAM17 is a membrane-bound proteolytic enzyme with a diverse set of target molecules. Most importantly, TACE is indispensable for the release and activation of pro-TNFα and the ligands for epidermal growth factor receptor in vivo. Previous studies suggested that the overproduction of TACE is causally related to the pathogenesis of inflammatory diseases and cancers. To test this hypothesis, we generated a transgenic line in which the transcription of exogenous Tace is driven by a CAG promoter. The Tace-transgenic mice were viable and exhibited no overt defects, and the quantitative RT-PCR and Western blot analyses confirmed that the transgenically introduced Tace gene was highly expressed in all of the tissues examined. The Tace-transgenic mice were further crossed with Tace⁻/⁺ mice to abrogate the endogenous TACE expression, and the Tace-transgenic mice lacking endogenous Tace gene were also viable without any apparent defects. Furthermore, there was no difference in the serum TNFα levels after lipopolysaccharide injection between the transgenic mice and control littermates. These observations indicate that TACE activity is not necessarily dependent on transcriptional regulation and that excess TACE does not necessarily result in aberrant proteolytic activity in vivo.

  5. Overexpression of Soluble Recombinant Human Lysyl Oxidase by Using Solubility Tags: Effects on Activity and Solubility

    Smith, Madison A.; Gonzalez, Jesica; Hussain, Anjum; Oldfield, Rachel N.; Johnston, Kathryn A.; Lopez, Karlo M.

    2016-01-01

    Lysyl oxidase is an important extracellular matrix enzyme that has not been fully characterized due to its low solubility. In order to circumvent the low solubility of this enzyme, three solubility tags (Nus-A, Thioredoxin (Trx), and Glutathione-S-Transferase (GST)) were engineered on the N-terminus of mature lysyl oxidase. Total enzyme yields were determined to be 1.5 mg for the Nus-A tagged enzyme (0.75 mg/L of media), 7.84 mg for the Trx tagged enzyme (3.92 mg/L of media), and 9.33 mg for the GST tagged enzyme (4.67 mg/L of media). Enzymatic activity was calculated to be 0.11 U/mg for the Nus-A tagged enzyme and 0.032 U/mg for the Trx tagged enzyme, and no enzymatic activity was detected for the GST tagged enzyme. All three solubility-tagged forms of the enzyme incorporated copper; however, the GST tagged enzyme appears to bind adventitious copper with greater affinity than the other two forms. The catalytic cofactor, lysyl tyrosyl quinone (LTQ), was determined to be 92% for the Nus-A and Trx tagged lysyl oxidase using the previously reported extinction coefficient of 15.4 mM−1 cm−1. No LTQ was detected for the GST tagged lysyl oxidase. Given these data, it appears that Nus-A is the most suitable tag for obtaining soluble and active recombinant lysyl oxidase from E. coli culture. PMID:26942005

  6. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  7. Compatibility Testing of Non-Metallic Materials for the Urine Processor Assembly (UPA) of International Space Station (ISS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    In the International Space Station (ISS), astronauts will convert urine into potable water with the Urine Processor Assembly (UPA). The urine is distilled, with the concentrated form containing about 15% brine solids, and the dilute form as a blend of pre-treated urine/wastewater. Eighteen candidate non-metallic materials for use with the UPA were tested in 2000 for compatibility with the concentrated and dilute urine solutions for continuous times of at least 30 days, and at conditions of 0.5 psia pressure and 100 F, to simulate the working UPA environment. A primary screening test for each material (virgin and conditioned) was dynamic mechanical analysis (DMA) in the stress relaxation mode, with the test data used to predict material performance for a 10-year use in space. Data showed that most of the candidate materials passed the compatibility testing, although a few significant changes in stress relaxation modulus were observed.

  8. Engagement of overexpressed Her2 with GEP100 induces autonomous invasive activities and provides a biomarker for metastases of lung adenocarcinoma.

    Toshi Menju

    Full Text Available Overexpression of Her2/ErbB2/Neu in cancer is often correlated with recurrent distant metastasis, although the mechanism still remains largely elusive. We have previously shown that EGFR, when tyrosine-phosphorylated, binds to GEP100/BRAG2 to activate Arf6, which induces cancer invasion and metastasis. We now show that overexpressed Her2 in lung adenocarcinoma cells also employs GEP100. Like EGFR-GEP100 binding, this association is primarily mediated by the pleckstrin homology (PH domain of GEP100 and Tyr1139/Tyr1196 of Her2. Tyr1139/Tyr1196 are autonomously phosphorylated, when Her2 is overexpressed. Accordingly, invasive activities mediated by the Her2-GEP100 pathway are not dependent on external factors. Blocking Her2-GEP100 binding, as well as its signaling pathway all inhibit cancer invasive activities. Moreover, our clinical study indicates that co-overexpression of Her2 with GEP100 in primary lung adenocarcinomas of patients is correlated with the presence of their node-metastasis with a statistical significance. Since the GEP100 PH domain interacts with both Her2 and EGFR, targeting this domain may provide novel cancer therapeutics.

  9. Leptin Overexpression in VTA Trans-activates the Hypothalamus whereas Prolonged Leptin Action in either Region Cross-Desensitizes

    Scarpace, P. J.; Matheny, M.; Kirichenko, N.V.; Gao, Y.X.; Tümer, N.; Zhang, Y.

    2012-01-01

    High-fat feeding or CNS leptin overexpression in chow-fed rats results in a region-specific cellular leptin resistance in medial basal hypothalamic regions and the ventral tegmental area (VTA). The present investigation examined the effects of targeted chronic leptin overexpression in the VTA as compared with the medial basal hypothalamus on long-term body weight homeostasis. The study also examined if this targeted intervention conserves regional leptin sensitivity or results in localized le...

  10. Overexpression of Scg5 increases enzymatic activity of PCSK2 and is inversely correlated with body weight in congenic mice

    Islas-Trejo Alma

    2008-04-01

    Full Text Available Abstract Background The identification of novel genes is critical to understanding the molecular basis of body weight. Towards this goal, we have identified secretogranin V (Scg5; also referred to as Sgne1, as a candidate gene for growth traits. Results Through a combination of DNA microarray analysis and quantitative PCR we identified a strong expression quantitative trait locus (eQTL regulating Scg5 expression in two mouse chromosome 2 congenic strains and three additional F2 intercrosses. More importantly, the eQTL was coincident with a body weight QTL in congenic mice and Scg5 expression was negatively correlated with body weight in two of the F2 intercrosses. Analysis of haplotype blocks and genomic sequencing of Scg5 in high (C3H/HeJ, DBA/2J, BALB/cByJ, CAST/EiJ and low (C57BL/6J expressing strains revealed mutations unique to C57BL/6J and possibly responsible for the difference in mRNA abundance. To evaluate the functional consequence of Scg5 overexpression we measured the pituitary levels of 7B2 protein and PCSK2 activity and found both to be increased. In spite of this increase, the level of pituitary α-MSH, a PCSK2 processing product, was unaltered. Conclusion Together, these data support a role for Scg5 in the modulation of body weight.

  11. Peroxisome proliferator-activated receptor-gamma agonists suppress tissue factor overexpression in rat balloon injury model with paclitaxel infusion.

    Jun-Bean Park

    Full Text Available The role and underlying mechanisms of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ agonist, on myocardial infarction are poorly understood. We investigated the effects of this PPAR-γ agonist on the expression of tissue factor (TF, a primary molecule for thrombosis, and elucidated its underlying mechanisms. The PPAR-γ agonist inhibited TF expression in response to TNF-α in human umbilical vein endothelial cells, human monocytic leukemia cell line, and human umbilical arterial smooth muscle cells. The overexpression of TF was mediated by increased phosphorylation of mitogen-activated protein kinase (MAPK, which was blocked by the PPAR-γ agonist. The effective MAPK differed depending on each cell type. Luciferase and ChIP assays showed that transcription factor, activator protein-1 (AP-1, was a pivotal target of the PPAR-γ agonist to lower TF transcription. Intriguingly, two main drugs for drug-eluting stent, paclitaxel or rapamycin, significantly exaggerated thrombin-induced TF expression, which was also effectively blocked by the PPAR-γ agonist in all cell types. This PPAR-γ agonist did not impair TF pathway inhibitor (TFPI in three cell types. In rat balloon injury model (Sprague-Dawley rats, n = 10/group with continuous paclitaxel infusion, the PPAR-γ agonist attenuated TF expression by 70±5% (n = 4; P<0.0001 in injured vasculature. Taken together, rosiglitazone reduced TF expression in three critical cell types involved in vascular thrombus formation via MAPK and AP-1 inhibitions. Also, this PPAR-γ agonist reversed the paclitaxel-induced aggravation of TF expression, which suggests a possibility that the benefits might outweigh its risks in a group of patients with paclitaxel-eluting stent implanted.

  12. Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer.

    Joshi, Suhasini; Cruz, Eric; Rachagani, Satyanarayana; Guha, Sushovan; Brand, Randall E; Ponnusamy, Moorthy P; Kumar, Sushil; Batra, Surinder K

    2016-08-01

    The majority of pancreatic cancer (PC) patients are clinically presented with obstructive jaundice with elevated levels of circulatory bilirubin and alkaline phosphatases. In the current study, we examined the implications of bile acids (BA), an important component of bile, on the pathophysiology of PC and investigated their mechanistic association in tumor-promoting functions. Integration of results from PC patient samples and autochthonous mouse models showed an elevated levels of BA (p < 0.05) in serum samples compared to healthy controls. Similarly, an elevated BA levels was observed in pancreatic juice derived from PC patients (p < 0.05) than non-pancreatic non-healthy (NPNH) controls, further establishing the clinical association of BA with the pathogenesis of PC. The tumor-promoting functions of BA were established by observed transcriptional upregulation of oncogenic MUC4 expression. Luciferase reporter assay revealed distal MUC4 promoter as the primary responsive site to BA. In silico analysis recognized two c-Jun binding sites at MUC4 distal promoter, which was biochemically established using ChIP assay. Interestingly, BA treatment led to an increased transcription and activation of c-Jun in a FAK-dependent manner. Additionally, BA receptor, namely FXR, which is also upregulated at transcriptional level in PC patient samples, was demonstrated as an upstream molecule in BA-mediated FAK activation, plausibly by regulating Src activation. Altogether, these results demonstrate that elevated levels of BA increase the tumorigenic potential of PC cells by inducing FXR/FAK/c-Jun axis to upregulate MUC4 expression, which is overexpressed in pancreatic tumors and is known to be associated with progression and metastasis of PC. PMID:27185392

  13. ERas protein is overexpressed and binds to the activated platelet-derived growth factor β receptor in bovine urothelial tumour cells associated with papillomavirus infection.

    Russo, Valeria; Roperto, Franco; Esposito, Iolanda; Ceccarelli, Dora Maria; Zizzo, Nicola; Leonardi, Leonardo; Capparelli, Rosanna; Borzacchiello, Giuseppe; Roperto, Sante

    2016-06-01

    Embryonic stem cell-expressed Ras (ERas) encodes a constitutively active form of guanosine triphosphatase (GTPase) that binds to and activates phosphatidylinositol 3 kinase (PI3K), which in turn phosphorylates and activates downstream targets such as Akt. The current study evaluated ERas regulation and expression in papillomavirus-associated urothelial tumours in cattle grazing on lands rich in bracken fern. ERas was found upregulated and overexpressed by PCR, real time PCR and Western blot. Furthermore, protein overexpression was also confirmed by immunohistochemistry. ERas was found to interact physically and colocalise with the activated platelet derived growth factor β receptor (PDGFβR) by coimmunoprecipitation and laser scanning confocal investigations. Phosphorylation of Akt, a downstream effector both of ERas and PDGFβR, appeared to be increased in urothelial tumour cells. Altogether, these data indicate that ERas/PDGFβR complex could play a role in the pathogenesis of bovine papillomavirus-associated bladder neoplasia. PMID:27256024

  14. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass

    Ros Joaquim

    2010-02-01

    Full Text Available Abstract Background Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.

  15. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation

    Ze-Yi Zheng

    2015-07-01

    Full Text Available Basal-like breast cancers (BLBCs are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  16. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass

    Ros Joaquim; Cabiscol Elisa; Pérez-Torrado Roberto; Gómez-Pastor Rocío; Matallana Emilia

    2010-01-01

    Abstract Background Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain mo...

  17. JNK suppression is essential for 17β-Estradiol inhibits prostaglandin E2-Induced uPA and MMP-9 expressions and cell migration in human LoVo colon cancer cells

    Chen Wei-Kung

    2011-08-01

    Full Text Available Abstract Background Epidemiological studies demonstrate that the incidence and mortality rates of colorectal cancer in women are lower than in men. However, it is unknown if 17β-estradiol treatment is sufficient to inhibit prostaglandin E2 (PGE2-induced cellular motility in human colon cancer cells. Methods We analyzed the protein expression of urokinase plasminogen activator (uPA, tissue plasminogen activator (tPA, matrix metallopeptidases (MMPs, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinases (TIMPs, and the cellular motility in PGE2-stimulated human LoVo cells. 17β-Estradiol and the inhibitors including LY294002 (Akt activation inhibitor, U0126 (ERK1/2 inhibitor, SB203580 (p38 MAPK inhibitor, SP600125 (JNK1/2 inhibitor, QNZ (NFκB inhibitor and ICI 182 780 were further used to explore the inhibitory effects of 17β-estradiol on PGE2-induced LoVo cell motility. Student's t-test was used to analyze the difference between the two groups. Results Upregulation of urokinase plasminogen activator (uPA, tissue plasminogen activator (tPA and matrix metallopeptidases (MMPs is reported to associate with the development of cancer cell mobility, metastasis, and subsequent malignant tumor. After administration of inhibitors including LY294002, U0126, SB203580, SP600125 or QNZ, we found that PGE2 treatment up-regulated uPA and MMP-9 expression via JNK1/2 signaling pathway, thus promoting cellular motility in human LoVo cancer cells. However, PGE2 treatment showed no effects on regulating expression of tPA, MMP-2, plasminogen activator inhibitor-1 (PAI-1, tissue inhibitor of metalloproteinase-1, -2, -3 and -4 (TIMP-1, -2, -3 and -4. We further observed that 17β-estradiol treatment inhibited PGE2-induced uPA, MMP-9 and cellular motility by suppressing activation of JNK1/2 in human LoVo cancer cells. Conclusions Collectively, these results suggest that 17β-estradiol treatment significantly inhibits PGE2-induced motility

  18. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor

    Ellis, V; Behrendt, N; Danø, K

    1991-01-01

    The specific cellular receptor for urokinase-type plasminogen activator (uPA) is found on a variety of cell types and has been postulated to play a central role in the mediation of pericellular proteolytic activity. We have studied the kinetics of plasminogen (Plg) activation catalyzed by uPA spe...

  19. Expression of urokinase plasminogen activator, its receptor and type-1 inhibitor in malignant and benign prostate tissue

    Usher, Pernille Autzen; Thomsen, Ole Frøkjær; Iversen, Peter; Johnsen, Morten; Brünner, Nils; Høyer-Hansen, Gunilla; Andreasen, Peter; Danø, Keld; Nielsen, Boye Schnack

    2005-01-01

    The plasminogen activation (PA) cascade participates in degradation of extracellular matrix during cancer invasion. We have studied the expression of urokinase-type plasminogen activator (uPA) mRNA, uPA receptor (uPAR) mRNA and immunoreactivity, and type-1 plasminogen activator inhibitor (PAI-1) ...

  20. Targeted overexpression of tumor necrosis factor-α increases cyclin-dependent kinase 5 activity and TRPV1-dependent Ca2+ influx in trigeminal neurons.

    Rozas, Pablo; Lazcano, Pablo; Piña, Ricardo; Cho, Andrew; Terse, Anita; Pertusa, Maria; Madrid, Rodolfo; Gonzalez-Billault, Christian; Kulkarni, Ashok B; Utreras, Elias

    2016-06-01

    We reported earlier that TNF-α, a proinflammatory cytokine implicated in many inflammatory disorders causing orofacial pain, increases the activity of Cdk5, a key kinase involved in brain development and function and recently found to be involved in pain signaling. To investigate a potential mechanism underlying inflammatory pain in trigeminal ganglia (TGs), we engineered a transgenic mouse model (TNF) that can conditionally overexpresses TNF-α upon genomic recombination by Cre recombinase. TNF mice were bred with Nav1.8-Cre mouse line that expresses the Cre recombinase in sensory neurons to obtain TNF-α:Nav1.8-Cre (TNF-α cTg) mice. Although TNF-α cTg mice appeared normal without any gross phenotype, they displayed a significant increase in TNF-α levels after activation of NFκB signaling in the TG. IL-6 and MCP-1 levels were also increased along with intense immunostaining for Iba1 and GFAP in TG, indicating the presence of infiltrating macrophages and the activation of satellite glial cells. TNF-α cTg mice displayed increased trigeminal Cdk5 activity, and this increase was associated with elevated levels of phospho-T407-TRPV1 and capsaicin-evocated Ca influx in cultured trigeminal neurons. Remarkably, this effect was prevented by roscovitine, an inhibitor of Cdk5, which suggests that TNF-α overexpression induced sensitization of the TRPV1 channel. Furthermore, TNF-α cTg mice displayed more aversive behavior to noxious thermal stimulation (45°C) of the face in an operant pain assessment device as compared with control mice. In summary, TNF-α overexpression in the sensory neurons of TNF-α cTg mice results in inflammatory sensitization and increased Cdk5 activity; therefore, this mouse model would be valuable for investigating the mechanism of TNF-α involved in orofacial pain. PMID:26894912

  1. Constitutive activation with overexpression of the mTORC2-phospholipase D1 pathway in uterine leiomyosarcoma and STUMP: morphoproteomic analysis with therapeutic implications.

    Dhingra, Sadhna; Rodriguez, Michelle E; Shen, Qi; Duan, Xuizhen; Stanton, Melissa L; Chen, Lei; Zhang, Rongzhen; Brown, Robert E

    2011-01-01

    The mammalian target of rapamycin (mTOR) is centrally involved in growth, survival and metabolism. In cancer, mTOR is frequently hyperactivated and is a clinically validated target for therapy and drug development. Biologically, mTOR acts as the catalytic subunit of two functionally distinct complexes, called mTOR complex 1 (mTORC1) which is predominantly cytoplasmic in subcellular localization and mTOR complex 2 (mTORC2) which is both cytoplasmic and nuclear. mTORC1 is sensitive to the selective inhibitor rapamycin. By contrast, mTORC2 is relatively resistant to rapamycin. Moreover, its putative downstream effector, Akt phosphorylated on serine 473 represents a signal transduction pathway for tumor survival. Phospholipase D (PLD) and its product, phosphatidic acid (PA) have been implicated as an activator of mTOR signaling, including the direct phosphorylative activation of p70S6K atthreonine 389. The latter promotes cell cycle progression. In this study, we investigated the activation status and subcellular localization of mTOR and the relative expression of PLD1, as well as their downstream effectors in a spectrum of uterine smooth muscle tumors using normal myometria as controls. The results show significant activation with overexpression of phosphorylated mTORC2 complex in uterine leiomyosarcoma (ULMS) and smooth muscle tumors of uncertain malignant potential (STUMP) as evidenced by nuclear localization of p-mTOR (Ser 2448) in ULMS>STUMP>uterine leiomyoma and normal myometria (p<0.05) and with overexpression of PLD1(p<0.05). Cor-relatively, there are overexpressions of nuclear p-Akt (Ser 473) and nuclear p-p70S6K (Thr 389) in ULMS and STUMP (p<0.05). The activation with overexpression of components of the mTORC2-PLD1 pathway in ULMS and to a lesser degree in STUMP provides insight into their tumorigenic mechanisms. Thus the development of therapies designed to target mTORC2 and PLD1 activity may be beneficial in treating ULMS. PMID:21326806

  2. Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras

    Laurent, Eunice; McCoy, James W.; Macina, Roberto A.; Liu, Wenhui; Cheng, Guangjie; Robine, Sylvie; Papkoff, Jackie; Lambeth, J. David

    2008-01-01

    The NADPH-oxidase 1 (Nox1) is a homolog of gp91phox, the catalytic subunit of the phagocyte superoxide-generating NADPH-oxidase. Nox1 is expressed in normal colon epithelial cells and in colon tumor cell lines, and overexpression in model cells has been implicated in stimulation of mitogenesis and angiogenesis and inhibition of apoptosis. This suggests that aberrant expression of Nox1 could contribute to the development of colorectal cancer. Herein, we examine the expression of Nox1 mRNA in 2...

  3. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    Behrendt, N; Rønne, E; Ploug, M;

    1990-01-01

    The receptor for human urokinase-type plasminogen activator (u-PA) was purified from phorbol 12-myristate 13-acetate-stimulated U937 cells by temperature-induced phase separation of detergent extracts, followed by affinity chromatography with immobilized diisopropyl fluorophosphate-treated u-PA. ...

  4. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in adult human sarcoma cell lines

    ROOMI, M. WAHEED; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; RATH, MATTHIAS

    2013-01-01

    Adult sarcomas are highly aggressive tumors that are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9 secretions that degrade the ECM and basement membrane, allowing cancer cells to spread to distal organs. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of u-PA and MMPs with cancer progression, metastasis and short...

  5. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in pediatric human sarcoma cell lines

    ROOMI, M. WAHEED; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; RATH, MATTHIAS

    2013-01-01

    Pediatric sarcomas are highly aggressive tumors that are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9 secretions that degrade the ECM and basement membrane, allowing cancer cells to spread to distal organs. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of u-PA and MMPs with cancer progression, metastasis and s...

  6. Life Testing of the Vapor Compression Distillation Urine Processing Assembly (VCD/UPA) at the Marshall Space Flight Center

    Wieland, Paul O.

    1998-01-01

    Wastewater and urine generated on the International Space Station will be processed to recover pure water. The method selected is vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processing Assembly (UPA), accelerated life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAS, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have an operating life of approximately 4800 hours. Precise alignment of the flex-spline of the fluids pump is essential to avoid failure of the pump after about 400 hours of operation. Also, leakage around the seals of the drive shaft of the fluids pump and purge pump must be eliminated for continued good performance. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.

  7. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory.

    Beccano-Kelly, Dayne A; Volta, Mattia; Munsie, Lise N; Paschall, Sarah A; Tatarnikov, Igor; Co, Kimberley; Chou, Patrick; Cao, Li-Ping; Bergeron, Sabrina; Mitchell, Emma; Han, Heather; Melrose, Heather L; Tapia, Lucia; Raymond, Lynn A; Farrer, Matthew J; Milnerwood, Austen J

    2015-03-01

    Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction. PMID:25343991

  8. The Anti-Cancer Potency and Mechanism of a Novel Tumor-Activated Fused Toxin, DLM

    Dejun Sun

    2015-02-01

    Full Text Available Melittin, which acts as a membrane-disrupting lytic peptide, is not only cytotoxic to tumors, but also vital to normal cells. Melittin had low toxicity when coupled with target peptides. Despite significant research development with the fused toxin, a new fused toxin is needed which has a cleavable linker such that the fused toxin can release melittin after protease cleavage on the tumor cell surface. We describe a novel fused toxin, composed of disintegrin, uPA (urokinase-type plasminogen activator-cleavable linker, and melittin. Disintegrin is a single strand peptide (73 aa isolated from Gloydius Ussuriensis venom. The RGD (Arg-Gly-Asp site of disintegrin dominates its interaction with integrins on the surface of the tumor cells. uPA is over-expressed and plays an important role in tumor cell invasiveness and metastatic progression. The DLM (disintegrin-linker-melittin linker is uPA-cleavable, enabling DLM to release melittin. We compared binding activity of our synthesized disintegrin with native disintegrin and report that DLM had less binding activity than the native form. uPA-cleavage was evaluated in vitro and the uPA-cleavable linker released melittin. Treating tumors expressing uPA with DLM enhanced tumor cell killing as well as reduced toxicity to erythrocytes and other non-cancerous normal cells. The mechanism behind DLM tumor cell killing was tested using a DNA ladder assay, fluorescent microscopy, flow cytometry, and transmission electron microscopy. Data revealed tumor cell necrosis as the mechanism of cell death, and the fused DLM toxin with an uPA-cleavable linker enhanced tumor selectivity and killing ability.

  9. Effect of ATP sulfurylase overexpression in bright yellow 2 tobacco cells: regulation of ATP sulfurylase and SO4(-2) transport activities

    To determine if the ATP sulfurylase reaction is a regulatory step for the SO4(2-)-assimilation pathway in plants, an Arabidopsis thaliana ATP sulfurylase cDNA, APS2, was fused to the 355 promoter of the cauliflower mosaic virus and introduced by Agrobacterium tumefaciens-mediated transformation into isolated Bright Yellow 2 tobacco (Nicotiana tabacum) cells. The ATP sulfurylase activity in transgenic cells was 8-fold that in control cells, and was correlated with the expression of a specific polypeptide revealed by western analysis using an anti-ATP sulfurylase antibody. The molecular mass of this polypeptide agreed with that for the overexpressed mature protein. ATP sulfurylase overexpression had no effect on [35S]SO4(2-) influx or ATP sulfurylase activity regulation by S availability, except that ATP sulfurylase activity variations in response to S starvation in transgenic cells were 8 times higher than in the wild type. There were also no differences in cell growth or sensitivity to SeO4(2-) (a toxic SO4(2-) analog) between transgenic and wild-type cells. We propose that in Bright Yellow 2 tobacco cells, the ATP sulfurylase derepression by S deficiency may involve a posttranscriptional mechanism, and that the ATP sulfurylase abundance is not limiting for cell metabolism

  10. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    Highlights: ► Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. ► Staurosporine mediates uPA activation during RGC differentiation in vitro. ► Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. ► Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that uPA plays a role in the staurosporine-mediated stimulation of RGC differentiation.

  11. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  12. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis.

    Aharoni, Asaph; Dixit, Shital; Jetter, Reinhard; Thoenes, Eveline; van Arkel, Gert; Pereira, Andy

    2004-09-01

    The interface between plants and the environment plays a dual role as a protective barrier as well as a medium for the exchange of gases, water, and nutrients. The primary aerial plant surfaces are covered by a cuticle, acting as the essential permeability barrier toward the atmosphere. It is a heterogeneous layer composed mainly of lipids, namely cutin and intracuticular wax with epicuticular waxes deposited on the surface. We identified an Arabidopsis thaliana activation tag gain-of-function mutant shine (shn) that displayed a brilliant, shiny green leaf surface with increased cuticular wax compared with the leaves of wild-type plants. The gene responsible for the phenotype encodes one member of a clade of three proteins of undisclosed function, belonging to the plant-specific family of AP2/EREBP transcription factors. Overexpression of all three SHN clade genes conferred a phenotype similar to that of the original shn mutant. Biochemically, such plants were altered in wax composition (very long fatty acid derivatives). Total cuticular wax levels were increased sixfold in shn compared with the wild type, mainly because of a ninefold increase in alkanes that comprised approximately half of the total waxes in the mutant. Chlorophyll leaching assays and fresh weight loss experiments indicated that overexpression of the SHN genes increased cuticle permeability, probably because of changes in its ultrastructure. Likewise, SHN gene overexpression altered leaf and petal epidermal cell structure, trichome number, and branching as well as the stomatal index. Interestingly, SHN overexpressors displayed significant drought tolerance and recovery, probably related to the reduced stomatal density. Expression analysis using promoter-beta-glucuronidase fusions of the SHN genes provides evidence for the role of the SHN clade in plant protective layers, such as those formed during abscission, dehiscence, wounding, tissue strengthening, and the cuticle. We propose that these

  13. Overexpression of the human ZNF300 gene enhances growth and metastasis of cancer cells through activating NF-kB pathway

    Wang, Tao; Wang, Xian-guo; Xu, Jun-hua; Wu, Xiang-Peng; Qiu, Hong-ling; Yi, Hong; Li, Wen-Xin

    2012-01-01

    Abstract Zinc finger proteins (ZNF) play important roles in various physiological processes. Here we report that ZNF300, a novel zinc finger protein, identified specifically in humans, promotes tumour development by modulating the NF-κB pathway. Inflammatory factors were found to induce ZNF300 expression in HeLa cell line, and ZNF300 expression further enhanced NF-κB signalling by activating TRAF2 and physically interacting with IKKβ. Furthermore, ZNF300 overexpression increased ERK1/2 phosphorylation and the expression of c-myc, IL-6, and IL-8 but decreased the expression of p21waf-1 and p27Kip1; whose down-regulation led to the opposite effect. Most importantly, ZNF300 overexpression stimulated cancer cell proliferation in vitro and significantly enhanced tumour development and metastasis in mouse xenograft model, while knocking down ZNF300 led to the opposite effects. We have identified a novel function for ZNF300 in tumour development that may uniquely link inflammation and NF-κB to tumourigenesis in humans but not in mice. PMID:21777376

  14. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.)

    Seong-Kon Lee; Beom-Gi Kim; Taek-Ryoun Kwon; Mi-Jeong Jeong; Sang-Ryeol Park; Jung-Won Lee; Myung-Ok Byun; Hawk-Bin Kwon; Benjamin F Matthews; Choo-Bong Hong; Soo-Chul Park

    2011-03-01

    Mitogen-activated protein kinases (MAPK) signalling cascades are activated by extracellular stimuli such as environmental stresses and pathogens in higher eukaryotic plants. To know more about MAPK signalling in plants, a MAPK cDNA clone, OsMAPK33, was isolated from rice. The gene is mainly induced by drought stress. In phylogenetic analysis, OsMAPK33 (Os02g0148100) showed approximately 47–93% identity at the amino acid level with other plant MAPKs. It was found to exhibit organ-specific expression with relatively higher expression in leaves as compared with roots or stems, and to exist as a single copy in the rice genome. To investigate the biological functions of OsMAPK33 in rice MAPK signalling, transgenic rice plants that either overexpressed or suppressed OsMAPK33 were made. Under dehydration conditions, the suppressed lines showed lower osmotic potential compared with that of wild-type plants, suggesting a role of OsMAPK33 in osmotic homeostasis. Nonetheless, the suppressed lines did not display any significant difference in drought tolerance compared with their wild-type plants. With increased salinity, there was still no difference in salt tolerance between OsMAPK33-suppressed lines and their wild-type plants. However, the overexpressing lines showed greater reduction in biomass accumulation and higher sodium uptake into cells, resulting in a lower K+/Na+ ratio inside the cell than that in the wild-type plants and OsMAPK33-suppressed lines. These results suggest that OsMAPK33 could play a negative role in salt tolerance through unfavourable ion homeostasis. Gene expression profiling of OsMAPK33 transgenic lines through rice DNA chip analysis showed that OsMAPK33 altered expression of genes involved in ion transport. Further characterization of downstream components will elucidate various biological functions of this novel rice MAPK.

  15. Delayed activation of caspase-independent apoptosis during heart failure in transgenic mice overexpressing caspase inhibitor CrmA

    Bae, Soochan; Siu, Parco M.; Choudhury, Sangita; Ke, Qingen; Choi, Jun H.; Koh, Young Y.; Kang, Peter M.

    2010-01-01

    Although caspase activation is generally thought to be necessary to induce apoptosis, recent evidence suggests that apoptosis can be activated in the setting of caspase inhibition. In this study, we tested the hypothesis that caspase-independent apoptotic pathways contribute to the development of heart failure in the absence of caspase activation. Acute cardiomyopathy was induced using a single dose of doxorubicin (Dox, 20 mg/kg) injected into male wild-type (WT) and transgenic (Tg) mice with...

  16. The complex between urokinase (uPA) and its type-1 inhibitor (PAI-1) in pulmonary adenocarcinoma: Relation to prognosis

    Pappot, Helle; Pedersen, Anders N; Brünner, Nils; Christensen, Ib Jarle

    2006-01-01

    In a lung cancer population comprising tumor tissue from 99 pulmonary adenocarcinoma patients, the relationship between tumor tissue level of the complex formed of urokinase (uPA) and its type-1 inhibitor (PAI-1) and survival was studied. The study included patient material previously investigated...... patients with low PAI-1 and high uPA-PAI-1 complex (HR = 3.06, p = 0.01). This is the first investigation of the prognostic impact of uPA-PAI-1 complex in a tumor type other than breast cancer, showing low levels of uPA-PAI-1 complex in combination with high levels of PAI-1 to be associated with poor...... for the prognostic impact of PAI-1 on survival. Standard clinical parameters were available and the patients had a median survival time of 25 months. An ELISA established to measure preformed uPA-PAI-1 complexes was applied to the tumor extracts and previously measured data on uPA and PAI-1 levels...

  17. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area

    Mariya Vasileva

    2013-12-01

    Full Text Available Synapsins are synaptic vesicle (SV proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the synaptic vesicle-pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa – known to sustain repetitive transmission in glutamatergic terminals – was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Thus, at the calyx of Held, synapsin Ia may not substitute for the synapsin IIa-function reported for hippocampal synapses. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs.

  18. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity.

    Park, Sung-Chul; Kim, Yun-Hee; Kim, Sun Ha; Jeong, Yu Jeong; Kim, Cha Young; Lee, Joon Seol; Bae, Ji-Yeong; Ahn, Mi-Jeong; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-04-01

    The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity. PMID:25220246

  19. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions

  20. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Wang, Ke [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Pei, Hao [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Huang, Biao; Yang, Run-Lin [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Wu, Hang-Yuan [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Zhu, Xue; Zhu, Lan [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China)

    2012-08-17

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  1. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose.

    Yang, Fang; Yang, Xiaofeng; Li, Zhe; Du, Chenyu; Wang, Jufang; Li, Shuang

    2015-11-01

    Thermoanaerobacterium aotearoense P8G3#4 produced β-glucosidase (BGL) intracellularly when grown in liquid culture on cellobiose. The gene bgl, encoding β-glucosidase, was cloned and sequenced. Analysis revealed that the bgl contained an open reading frame of 1314 bp encoding a protein of 446 amino acid residues, and the product belonged to the glycoside hydrolase family 1 with the canonical glycoside hydrolase family 1 (GH1) (β/α)8 TIM barrel fold. Expression of pET-bgl together with a chaperone gene cloned in vector pGro7 in Escherichia coli dramatically enhanced the crude enzyme activity to a specific activity of 256.3 U/mg wet cells, which resulted in a 9.2-fold increase of that obtained from the expression without any chaperones. The purified BGL exhibited relatively high thermostability and pH stability with its highest activity at 60 °C and pH 6.0. In addition, the activities of BGL were remarkably stimulated by the addition of 5 mM Na(+) or K(+). The enzyme showed strong ability to hydrolyze cellobiose with a K m and V max of 25.45 mM and 740.5 U/mg, respectively. The BGL was activated by glucose at concentration varying from 50 to 250 mM and tolerant to glucose inhibition with a K i of 800 mM glucose. The supplement of the purified BGL to the sugarcane bagasse hydrolysis mixture containing a commercial cellulase resulted in about 20 % enhancement of the released reducing sugars. These properties of the purified BGL should have important practical implication in its potential applications for better industrial production of glucose or bioethanol started from lignocellulosic biomass. PMID:25957152

  2. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker

    Yukihiro Saito; Kazufumi Nakamura; Masashi Yoshida; Hiroki Sugiyama; Tohru Ohe; Junko Kurokawa; Tetsushi Furukawa; Makoto Takano; Satoshi Nagase; Hiroshi Morita; Kusano, Kengo F.; Hiroshi Ito

    2015-01-01

    Background Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (I f) flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and attenuation of the inward rectifier K+ current (I K1) flowing through inward rectifier potassium (Kir) channels are essential for generation of a biological pacemaker. Therefor...

  3. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    Barnathan, E S; Kuo, A; Karikó, K; Rosenfeld, L; Murray, S C; Behrendt, N; Rønne, E; Weiner, D; Henkin, J; Cines, D B

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...... endothelial cell cDNA library using the polymerase chain reaction (PCR) and oligonucleotide primers corresponding to the DNA sequence of the receptor cloned from transformed human fibroblasts (Roldan et al, EMBO J 9:467, 1990). The size of the cDNA (approximately 1,054 base pairs, bp) and the presence of a...

  4. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    Caiazza, Francesco; Harvey, Brian J; Thomas, Warren

    2010-01-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapid...

  5. Overexpression of an endo-1,4-β-glucanase V gene (EGV) from Trichoderma reesei leads to the accumulation of cellulase activity in transgenic rice.

    Li, X Y; Liu, F; Hu, Y F; Xia, M; Cheng, B J; Zhu, S W; Ma, Q

    2015-01-01

    The ectopic expression of cellulase in biomass can reduce the cost of biofuel conversion. This trait modification technique is highly beneficial for biofuel production. In this study, we isolated an endo-1,4-beta-glucanase gene (EGV) from Trichoderma reesei and inserted this gene downstream of a fragment encoding the signal peptide Apo-SP in a modified pCAMBIA1301 vector to obtain an Apo-SP and AsRed fusion protein. Transient expression of this fusion protein in onion epidermal cells showed that the Apo-SP signal was localized to the plastids. EGV transgenic rice plants that did not carry screening marker genes were obtained through overexpression of the pDTB double T-DNA vector. Western blotting showed that EGV was expressed in the dry straw of T0 generation transgenic rice plants and in fresh leaves of the T1 generation. More importantly, our results also showed that the peptide product of EGV in the transgenic plants folded correctly and was capable of digesting the cellulase substrate CMC. Additionally, cellulase activity remained stable in the straw that had been dried at room temperature for three months. This study presents an important technical approach for the development of transgenic rice straw that has stable cellulase activity and can be used for biofuel conversion. PMID:26782396

  6. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression.

    Subrata Chowdhury

    Full Text Available We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1, which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents to active cortisol (corticosterone in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.

  7. The amino-terminal domain of human signal transducers and activators of transcription 1: Overexpression, purification and characterization

    Arati Prabhu; Evans Coutinho; Sudha Srivastava

    2005-12-01

    The dual functional signal transducers and activators of transcription (STAT) proteins are latent cytoplasmic transcription factors that play crucial roles in host defense. Animals that lack these proteins are highly susceptible to microbial and viral infections and chemically induced primary tumours. We have over expressed the aminoterminal domain of human STAT1 (hSTAT1) in Escherichia coli and purified it by affinity chromatography and gel filtration chromatography. The entire process has been monitored by gel electrophoresis. The pure protein has been characterized by mass spectrometry and 2-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. Our results indicate that the N-terminus of hSTAT1 exists as a dimer in solution.

  8. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1

    Schmitt, Manfred; Harbeck, Nadia; Brünner, Nils;

    2011-01-01

    conducted in early breast cancer to demonstrate the prognostic and predictive value for this malignancy. As a result of these investigations, uPA and PAI-1 have reached the highest level of clinical evidence, level of evidence 1. This article sheds light on the current status of major clinical Phase II and...

  9. Urokinase plasminogen activator and plasminogen activator inhibitor type-1 in nonsmall-cell lung cancer: relation to prognosis and angiogenesis

    Offersen, Birgitte Vrou; Pfeiffer, Per; Andreasen, Peter;

    2007-01-01

    BACKGROUND: Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) have previously been suggested as prognostic markers in nonsmall-cell lung carcinomas (NSCLC). We investigate whether uPA and PAI-1 are prognostic markers in NSCLC and whether they are related to...... sandwich ELISA method. RESULTS: Both uPA and PAI-1 were independent of classical histopathological parameters as well as of microvessel density and vascular pattern. Using death within the first 5 years as endpoint, neither of the factors were prognostic markers in univariate analysis, however......, significantly higher levels of uPA and PAI-1 were seen in tumours with an angiogenic vascular pattern. In multivariate analysis, high disease stage (P<0.0001), adenocarcinoma (P=0.007), old age (P=0.02), and presence of an angiogenic pattern (P=0.05) were identified as independent markers of death within 5...

  10. Photosynthetic activity and protein overexpression found in Cr(III)-tolerant cells of the green algae Dictyosphaerium chlorelloides.

    Pereira, M; Bartolomé, C M; Sánchez-Fortún, S

    2014-08-01

    Chromium is an important constituent in effluents obtained from chromium plating industries. Due to the highly toxic nature of Cr(VI), attention has been shifted to less hazardous Cr(III) electroplating processes. This study evaluated aquatic toxicity of Cr(III)-containing laboratory samples representative of effluents from chromium electroplating industries, on the photosynthetic activity exhibited by both Cr(III)-sensitive (Dc1M(wt)) and tolerant (Dc1M(Cr(III)R30)) Dictyosphaerium chlorelloides strains. Additionally, selected de novo-determined peptide sequences, obtained from Dc1M(Cr(III)R30), have been analyzed to evidence the possible Cr(III) toxic mechanism involved in the resistance of these cells to high Cr(III) levels in aquatic environments. Dc1M(Cr(III)R30) strain exhibited a gross photosynthetic balance of about five times lower than that exhibited by Dc1M(wt) strain, demonstrating that Dc1M(Cr(III)R30) has a photosynthetic yield significantly lower than Dc1M(wt). SDS-PAGE of Dc1M(Cr(III)R30) samples showed the presence of at least two protein bands (23.05 and 153.46 KDa, respectively) absent in wild-type strain samples. Although it has achieved a low coincidence between the lower molecular weight band and a GTPase identified from genome of the green alga Chlamydomonas reinhardtii, none of de novo peptide sequences obtained showed a significant MS-BLAST score, so that further studies will be required. PMID:24556547

  11. The complex between urokinase (uPA) and its type-1 inhibitor (PAI-1) in pulmonary adenocarcinoma

    Pappot, Helle; Pedersen, Anders N.; Brünner, Nils;

    2006-01-01

    In a lung cancer population comprising tumor tissue from 99 pulmonary adenocarcinoma patients, the relationship between tumor tissue level of the complex formed of urokinase (uPA) and its type-1 inhibitor (PAI-1) and survival was studied. The study included patient material previously investigated...... patients with low PAI-1 and high uPA-PAI-1 complex (HR = 3.06, p = 0.01). This is the first investigation of the prognostic impact of uPA-PAI-1 complex in a tumor type other than breast cancer, showing low levels of uPA-PAI-1 complex in combination with high levels of PAI-1 to be associated with poor...

  12. Overexpression of Elafin in Ovarian Carcinoma Is Driven by Genomic Gains and Activation of the Nuclear Factor κB Pathway and Is Associated with Poor Overall Survival

    Adam Clauss

    2010-02-01

    Full Text Available Ovarian cancer is a leading cause of cancer mortality in women. The aim of this study was to elucidate whether whey acidic protein (WAP genes on chromosome 20q13.12, a region frequently amplified in this cancer, are expressed in serous carcinoma, the most common form of the disease. Herein, we report that a trio of WAP genes (HE4, SLPI, and Elafin is overexpressed and secreted by serous ovarian carcinomas. To our knowledge, this is the first report linking Elafin to ovarian cancer. Fluorescence in situ hybridization analysis of primary tumors demonstrates genomic gains of the Elafin locus in a majority of cases. In addition, a combination of peptidomimetics, RNA interference, and chromatin immunoprecipitation experiments shows that Elafin expression can be transcriptionally upregulated by inflammatory cytokines through activation of the nuclear factor κB pathway. Importantly, using a clinically annotated tissue microarray composed of late-stage, high-grade serous ovarian carcinomas, we show that Elafin expression correlates with poor overall survival. These results, combined with our observation that Elafin is secreted by ovarian tumors and is minimally expressed in normal tissues, suggest that Elafin may serve as a determinant of poor survival in this disease.

  13. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion.

    Tangmansakulchai, Kulvadee; Abubakar, Zuroida; Kitiyanant, Narisorn; Suwanjang, Wilasinee; Leepiyasakulchai, Chaniya; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-09-01

    Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage. PMID:27453331

  14. Role of Urokinase-type Plasminogen Activator in the Precontact Sperm-egg Communication and Fertility of Mice in vitro

    2005-01-01

    Objective To explore the role of urokinase-type plasminogen activator(uPA) in precontact sperm-egg communication and fertility of mice in vitro.Methods Firstly, sperm chemotaxis (SC) induced by uPA was assayed by measuring the sperm densities in capillaries with a descending gradient or no gradient of uPA respectively. Secondly, the role of uPAR that exists in sperm plasma membrane in SC was studied by examining the change of sperm density in capillary after incubating spermatozoa with anti-uPAR antibody. Thirdly, SC induced by eggs, which had been treated with uPA, PAI-1 and anti-uPAR beforehand respectively, was assayed to study the role of uPA in PSEC. Lastly, the fertilization capability of spermatozoa treated with uPA was examined by counting the number of fertilized eggs.Results 1)The density of spermatozoa that migrated down the gradient of uPA into the capillary was significantly lower than that into the capillary containing no-gradient uPA. 2) When uPAR of spermatozoa was inhibited by anti-uPAR antibody, the density of spermatozoa that migrated into the capillary with ascending gradient of uPA decreased correspondingly. 3) The density of spermatozoa attracted by eggs, which were treated with uPA beforehand, increased significantly than that of attracted by non-treated eggs. On the contrary, the sperm density decreased correspondingly when the egg was treated with PAI-1. 4) The number of fertilized eggs increased significantly after the spermatozoa used here was treated with uPA beforehand.Conclusion uPA could induce SC of mice sperm in vitro through the uPAR on its membrane, enhance the capability of egg inducing SC, and promote spermatozoa to fertilize eggs. Thus, uPA may act as an attractant in PSEC, increase the chance encounter of spermatozoa and eggs, therefore, enhance the fertility success correspondingly.This study, in some degree, provides an evidence that uPA may be used as a new medicine and diagnostic reagent for male infertility.

  15. Improvement of glucose uptake rate and production of target chemicals by overexpressing hexose transporters and transcriptional activator Gcr1 in Saccharomyces cerevisiae.

    Kim, Daehee; Song, Ji-Yoon; Hahn, Ji-Sook

    2015-12-01

    Metabolic engineering to increase the glucose uptake rate might be beneficial to improve microbial production of various fuels and chemicals. In this study, we enhanced the glucose uptake rate in Saccharomyces cerevisiae by overexpressing hexose transporters (HXTs). Among the 5 tested HXTs (Hxt1, Hxt2, Hxt3, Hxt4, and Hxt7), overexpression of high-affinity transporter Hxt7 was the most effective in increasing the glucose uptake rate, followed by moderate-affinity transporters Hxt2 and Hxt4. Deletion of STD1 and MTH1, encoding corepressors of HXT genes, exerted differential effects on the glucose uptake rate, depending on the culture conditions. In addition, improved cell growth and glucose uptake rates could be achieved by overexpression of GCR1, which led to increased transcription levels of HXT1 and ribosomal protein genes. All genetic modifications enhancing the glucose uptake rate also increased the ethanol production rate in wild-type S. cerevisiae. Furthermore, the growth-promoting effect of GCR1 overexpression was successfully applied to lactic acid production in an engineered lactic acid-producing strain, resulting in a significant improvement of productivity and titers of lactic acid production under acidic fermentation conditions. PMID:26431967

  16. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression. Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion

  17. Targeting tumor cell invasion and dissemination in vivo by an aptamer that inhibits urokinase-type plasminogen activator through a novel multifunctional mechanism

    Botkjaer, Kenneth A; Deryugina, Elena I; Dupont, Daniel Miotto;

    2012-01-01

    Data accumulated over the latest two decades have established that the serine protease urokinase-type plasminogen activator (uPA) is a potential therapeutic target in cancer. When designing inhibitors of the proteolytic activity of serine proteases, obtaining sufficient specificity is problematic......, because the topology of the proteases' active sites are highly similar. In an effort to generate highly specific uPA inhibitors with new inhibitory modalities, we isolated uPA-binding RNA aptamers by screening a library of 35 nucleotides long 2'-fluoro-pyrimidine RNA molecules using a version of human pro......-uPA lacking the epidermal growth factor-like and kringle domains as bait. One pro-uPA-binding aptamer sequence, referred to as upanap-126, proved to be highly specific for human uPA. Upanap-126 delayed the proteolytic conversion of human pro-uPA to active uPA, but did not inhibit plasminogen activation...

  18. Urokinase-type plasminogen activator receptor as a predictor of poor outcome in patients with systemic inflammatory response syndrome

    Wu, Xiao-Ling; Long, Ding; Yu, Li; Yang, Jun-hui; Zhang, Yuan-chao; Geng, Feng

    2013-01-01

    BACKGROUND: Urokinase-type plasminogen activator (uPA) and urokinase-type plasminogen activator receptor (uPAR) are known as important factors, which mediate a variety of functions in terms of vascular homeostasis, inflammation and tissue repair. However, their role in systemic inflammatory response syndrome (SIRS) has been less well studied. This study aimed to test the hypothesis that the abnormalities of fibrinolysis and degradation of extracellular matrix mediated by uPA and uPAR are dire...

  19. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in human lung cancer and mesothelioma cell lines

    ROOMI, M. WAHEED; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; RATH, MATTHIAS

    2013-01-01

    Lung cancer, the most prevalent cancer worldwide and malignant mesothelioma are highly aggressive tumors that are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9 secretion. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of u-PA and MMPs with cancer progression, metastasis and shortened patient survival. MMP activi...

  20. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes

    Moirangthem, Anuradha; Bondhopadhyay, Banashree; Mukherjee, Mala; Bandyopadhyay, Arghya; Mukherjee, Narendranath; Konar, Karabi; Bhattacharya, Shubham; Basu, Anupam

    2016-01-01

    In cancer progression, proteolytic enzymes like serine proteases and metalloproteinases degrade the basement membrane enabling the tumor cells to invade the adjacent tissues. Thus, invasion and metastasis are augmented by these enzymes. Simultaneous silencing of uPA and MMP9 in breast cancer cells decreased the wound healing, migratory, invasive and adhesive capacity of the cells. After simultaneous down regulation, cells were seen to be arrested in the cell cycle. There was a remarkable increase in the expression of cell to cell adhesion molecule E–cadherin, and decrease in Vimentin and Snail expression. In addition, there was a significant decrease in the expression of the stem cell marker Oct-4. In the breast tumor samples it has been observed that, tumors, expressing higher level of uPA and MMP9, express less amount of E–cadherin. It has also been observed that few tumors also show, Vimentin positive in the ductal epithelial area. Thus, our model can help for checking the aggressive tumor invasion by blocking of uPA and MMP9. Our present observations also give the concept of the presence of aggressive epithelial cells with mesenchymal nature in the tumor micro-environment, altering the expression of EMT genes. PMID:26906973

  1. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes.

    Moirangthem, Anuradha; Bondhopadhyay, Banashree; Mukherjee, Mala; Bandyopadhyay, Arghya; Mukherjee, Narendranath; Konar, Karabi; Bhattacharya, Shubham; Basu, Anupam

    2016-01-01

    In cancer progression, proteolytic enzymes like serine proteases and metalloproteinases degrade the basement membrane enabling the tumor cells to invade the adjacent tissues. Thus, invasion and metastasis are augmented by these enzymes. Simultaneous silencing of uPA and MMP9 in breast cancer cells decreased the wound healing, migratory, invasive and adhesive capacity of the cells. After simultaneous down regulation, cells were seen to be arrested in the cell cycle. There was a remarkable increase in the expression of cell to cell adhesion molecule E-cadherin, and decrease in Vimentin and Snail expression. In addition, there was a significant decrease in the expression of the stem cell marker Oct-4. In the breast tumor samples it has been observed that, tumors, expressing higher level of uPA and MMP9, express less amount of E-cadherin. It has also been observed that few tumors also show, Vimentin positive in the ductal epithelial area. Thus, our model can help for checking the aggressive tumor invasion by blocking of uPA and MMP9. Our present observations also give the concept of the presence of aggressive epithelial cells with mesenchymal nature in the tumor micro-environment, altering the expression of EMT genes. PMID:26906973

  2. Life Testing of the Vapor Compression Distillation/Urine Processing Assembly (VCD/UPA) at the Marshall Space Flight Center (1993 to 1997)

    Wieland, P.; Hutchens, C.; Long, D.; Salyer, B.

    1998-01-01

    Wastewater and urine generated on the International Space Station will be processed to recover pure water using vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processor Assembly (UPA), life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPA'S, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have operating lives of approximately 4,800 hours, equivalent to 3.9 years of operation on ISS for a crew of three at an average processing rate of 1.76 kg/h (3.97 lb/h). Precise alignment of the flex-splines of the fluids and purge pump motor drives is essential to avoid premature failure after about 400 hours of operation. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.

  3. Urokinase-type Plasminogen Activator-like Proteases in Teleosts Lack Genuine Receptor-binding Epidermal Growth Factor-like Domains*

    Bager, René; Kristensen, Thomas K.; Jensen, Jan K.; Szczur, Agnieszka; Christensen, Anni; Andersen, Lisbeth M.; Johansen, Jesper S.; Larsen, Niels; Baatrup, Erik; Huang, Mingdong; Ploug, Michael; Andreasen, Peter A.

    2012-01-01

    Plasminogen activation catalyzed by urokinase-type plasminogen activator (uPA) plays an important role in normal and pathological tissue remodeling processes. Since its discovery in the mid-1980s, the cell membrane-anchored urokinase-type plasminogen activator receptor (uPAR) has been believed to be central to the functions of uPA, as uPA-catalyzed plasminogen activation activity appeared to be confined to cell surfaces through the binding of uPA to uPAR. However, a functional uPAR has so far only been identified in mammals. We have now cloned, recombinantly produced, and characterized two zebrafish proteases, zfuPA-a and zfuPA-b, which by several criteria are the fish orthologs of mammalian uPA. Thus, both proteases catalyze the activation of fish plasminogen efficiently and both proteases are inhibited rapidly by plasminogen activator inhibitor-1 (PAI-1). But zfuPA-a differs from mammalian uPA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding activity could be found in fish white blood cells or fish cell lines. We therefore propose that the current consensus of uPA-catalyzed plasminogen activation taking place on cell surfaces, derived from observations with mammals, is too narrow. Fish uPAs appear incapable of receptor binding in the manner known from mammals and uPA-catalyzed plasminogen activation in fish may occur mainly in solution. Studies with nonmammalian vertebrate species are needed to obtain a comprehensive understanding of the mechanism of plasminogen activation. PMID:22733817

  4. RNA Interference of Interferon Regulatory Factor-1 Gene Expression in THP-1 Cell Line Leads to Toll-Like Receptor-4 Overexpression/Activation As Well As Up-modulation of Annexin-II

    Christos I. Maratheftis

    2007-12-01

    Full Text Available Interferon regulatory factor-1 (IRF-1 is a candidate transcription factor for the regulation of the Toll-like receptor-4 (TLR-4 gene. Using a small interfering RNAbased (siRNA process to silence IRF-1 gene expression in the leukemic monocytic cell line THP-1, we investigated whether such a modulation would alter TLR-4 expression and activation status in these cells. The siIRF-1 cells expressed elevated levels of TLR-4 mRNA and protein compared to controls by 90% and 77%, respectively. ICAM.1 protein expression and apoptosis levels were increased by 8.35- and 4.25-fold, respectively. The siIRF-1 cells overexpressed Bax mRNA compared to controls. Proteomic analysis revealed upmodulation of the Annexin-II protein in siIRF-1 THP-1 cells. Myelodysplastic syndrome (MDS patients with an absence of full-length IRF-1 mRNA also overexpressed Annexin-II. It is plausible that this overexpression may lead to the activation of TLR-4 contributing to the increased apoptosis characterizing MDS.

  5. High expression of focal adhesion kinase (p125FAK) in node-negative breast cancer is related to overexpression of HER-2/neu and activated Akt kinase but does not predict outcome

    Focal adhesion kinase (FAK) regulates multiple cellular processes including growth, differentiation, adhesion, motility and apoptosis. In breast carcinoma, FAK overexpression has been linked to cancer progression but the prognostic relevance remains unknown. In particular, with regard to lymph node-negative breast cancer it is important to identify high-risk patients who would benefit from further adjuvant therapy. We analyzed 162 node-negative breast cancer cases to determine the prognostic relevance of FAK expression, and we investigated the relationship of FAK with major associated signaling pathways (HER2, Src, Akt and extracellular regulated kinases) by immunohistochemistry and western blot analysis. Elevated FAK expression did not predict patient outcome, in contrast to tumor grading (P = 0.005), Akt activation (P = 0.0383) and estrogen receptor status (P = 0.0033). Significant positive correlations were observed between elevated FAK expression and HER2 overexpression (P = 0.001), as well as phospho-Src Tyr-215 (P = 0.021) and phospho-Akt (P < 0.001), but not with phospho-ERK1/2 (P = 0.108). Western blot analysis showed a significant correlation of FAK Tyr-861 activation and HER2 overexpression (P = 0.01). Immunohistochemical detection of FAK expression is of no prognostic significance in node-negative breast cancer but provides evidence that HER2 is involved in tumor malignancy and metastatic ability of breast cancer through a novel signaling pathway participating FAK and Src

  6. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera

    Xu, Yi; Burgess, Patrick; Zhang, Xunzhong; Huang, Bingru

    2016-01-01

    Drought stress limits root growth and inhibits cytokinin (CK) production. Increases in CK production through overexpression of isopentenyltransferase (ipt) alleviate drought damages to promote root growth. The objective of this study was to investigate whether CK-regulated root growth was involved in the alteration of reactive oxygen species (ROS) production and ROS scavenging capacity under drought stress. Wild-type (WT) creeping bentgrass (Agrostis stolonifera L. ‘Penncross’) and a transgen...

  7. Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway.

    Wang, Wenjuan; Zou, Liping; Zhou, Danmei; Zhou, Zhongwen; Tang, Feng; Xu, Zude; Liu, Xiuping

    2016-09-01

    Multidrug resistant (MDR) cancer cells overexpressing P-glycoprotein (P-gp) exhibit enhanced invasive/metastatic ability as compared with the sensitive cells. We aimed to clarify the mechanism underlying this observation and found that during the development of drug resistance to adriamycin in MCF7 cells, the elevated expression of UCH-L1 coincides with the up-regulation of MDR1, CD147, MMP2, and MMP9 as well as increased cellular migration/invasion. Overexpression of UCH-L1 in MCF7 cells up-regulated MDR1, CD147, MMP2, and MMP9, which conferred MDR and promoted migration/invasion. On the other hand, silencing of UCH-L1 in MCF7/Adr cells led to the opposite effect. Immunohistochemistry in 203 breast cancer samples revealed that UCH-L1 expression is positively correlated with P-gp, CD147, MMP2, and MMP9 expression and standard tumor spread indicators. Kaplan-Meier survival analysis indicated a correlation between UCH-L1 expression and shorter recurrent and survival times. Moreover, UCH-L1-overexpressing clones treated with U0126 (an Erk1/2-specific inhibitor) significantly decreased the expression of MDR1, CD147, MMP2, and MMP9. These data indicate that UCH-L1 may assume a dual role, because it had intrinsic stimulatory effects on tumor migration/invasion and increased MDR. © 2015 Wiley Periodicals, Inc. PMID:26293643

  8. Radiation-Induced Hypomethylation Triggers Urokinase Plasminogen Activator Transcription in Meningioma Cells

    Kiran Kumar Velpula

    2013-02-01

    Full Text Available Our previous studies have shown the role of radiation-induced urokinase plasminogen activator (uPA expression in the progression of meningioma. In the present study, we investigated whether modulation of DNA methylation profiles could regulate uPA expression. Initially, radiation treatment was found to induce hypomethylation in meningioma cells with a decrease in DNA (cytosine-5-methyltransferase 1 (DNMT1 and methyl-CpG binding domain protein (MBD expression. However, oxidative damage by H2O2 or pretreatment of irradiated cells with N-acetyl cysteine (NAC did not show any influence on these proteins, thereby indicating a radiation-specific change in the methylation patterns among meningioma cells. Further, we identified that hypomethylation is coupled to an increase in uPA expression in these cells. Azacytidine treatment induced a dose-dependent surge of uPA expression, whereas pre-treatment with sodium butyrate inhibited radiation-induced uPA expression, which complemented our prior results. Methylation-specific polymerase chain reaction on bisulfite-treated genomic DNA revealed a diminished methylation of uPA promoter in irradiated cells. Transfection with small hairpin RNA (shRNA-expressing plasmids targeting CpG islands of the uPA promoter showed a marked decline in uPA expression with subsequent decrease in invasion and proliferation of meningioma cells. Further, radiation treatment was found to recruit SP1 transcription factor, which was abrogated by shRNA treatment. Analysis on signaling events demonstrated the activation of MAP kinase kinase (MEK-extracellular signal-regulated kinase (ERK in radiation-treated cells, while U0126 (MEK/ERK inhibitor blocked hypomethylation, recruitment of SP1, and uPA expression. In agreement with our in vitro data, low DNMT1 levels and high uPA were found in intracranial tumors treated with radiation compared to untreated tumors. In conclusion, our data suggest that radiation-mediated hypomethylation

  9. Localization of urokinase-type plasminogen activator in stromal cells in adenocarcinomas of the colon in humans.

    Grøndahl-Hansen, J.; Ralfkiaer, E; Kirkeby, L. T.; P. Kristensen; Lund, L. R.; Danø, K

    1991-01-01

    Human colon adenocarcinomas and adjacent normal colon tissues were stained immunohistochemically with three different monoclonal antibodies and one preparation of polyclonal antibodies against each of the two plasminogen activators, uPA (urokinase type) and tPA (tissue type). The staining patterns seen with the respective sets of antibodies were identical. In all of 10 cases, staining for uPA in the normal colon tissue was confined to scattered fibroblastlike cells in the lamina propria. Othe...

  10. Plasminogen Activator System and Breast Cancer: Potential Role in Therapy Decision Making and Precision Medicine.

    Gouri, Adel; Dekaken, Aoulia; El Bairi, Khalid; Aissaoui, Arifa; Laabed, Nihad; Chefrour, Mohamed; Ciccolini, Joseph; Milano, Gérard; Benharkat, Sadek

    2016-01-01

    Shifting from the historical TNM paradigm to the determination of molecular and genetic subtypes of tumors has been a major improvement to better picture cancerous diseases. The sharper the picture is, the better will be the possibility to develop subsequent strategies, thus achieving higher efficacy and prolonged survival eventually. Recent studies suggest that urokinase-type plasminogen activator (uPA), uPA Receptor (uPAR), and plasmino-gen activator inhibitor-1 (PAI-1) may play a critical role in cancer invasion and metastasis. Consistent with their role in cancer dissemination, high levels of uPA, PAI-1, and uPAR in multiple cancer types correlate with dismal prognosis. In this respect, upfront determination of uPA and PAI-1 as invasion markers has further opened up the possibilities for individualized therapy of breast cancer. Indeed, uPA and PAI-1 could help to classify patients on their risk for metastatic spreading and subsequent relapse, thus helping clinicians in their decision-making process to propose, or not propose, adjuvant therapy. This review covers the implications for cancer diagnosis, prognosis, and therapy of uPA and PAI-1, and therefore how they could be major actors in the development of a precision medicine in breast cancer. PMID:27578963

  11. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo. PMID:26573275

  12. Activity and expression of urokinase-type plasminogen activator and matrix metalloproteinases in human colorectal cancer

    Matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-type plasminogen activator (uPA) are involved in colorectal cancer invasion and metastasis. There is still debate whether the activity of MMP-2 and MMP-9 differs between tumors located in the colon and rectum. We designed this study to determine any differences in the expression of MMP-2, MMP-9 and uPA system between colon and rectal cancer tissues. Cancer tissue samples were obtained from colon carcinoma (n = 12) and rectal carcinomas (n = 10). MMP-2 and MMP-9 levels were examined using gelatin zymography and Western blotting; their endogenous inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), were assessed by Western blotting. uPA, uPAR and PAI-1 were examined using enzyme-linked immunosorbent assay (ELISA). The activity of uPA was assessed by casein-plasminogen zymography. In both colon and rectal tumors, MMP-2, MMP-9 and TIMP-1 protein levels were higher than in corresponding paired normal mucosa, while TIMP-2 level in tumors was significantly lower than in normal mucosa. The enzyme activities or protein levels of MMP-2, MMP-9 and their endogenous inhibitors did not reach a statistically significant difference between colon and rectal cancer compared with their normal mucosa. In rectal tumors, there was an increased activity of uPA compared with the activity in colon tumors (P = 0.0266), however urokinase-type plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1) showed no significant difference between colon and rectal cancer tissues. These findings suggest that uPA may be expressed differentially in colon and rectal cancers, however, the activities or protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, PAI-1 and uPAR are not affected by tumor location in the colon or the rectum

  13. Urokinase-type plasminogen activator-like proteases in teleosts lack genuine receptor-binding epidermal growth factor-like domains

    Bager, René; Kristensen, Thomas K.; Jensen, Jan; Szczur, Agnieszka; Christensen, Anni; Andersen, Lisbeth; Johansen, Jesper Sanderhoff; Larsen, Niels; Baatrup, Erik; Huang, Mingdong; Ploug, Michael; Andreasen, Peter A.

    2012-01-01

    zebrafish proteases, zfuPA-a and zfuPA-b, which by several criteria are the fish orthologs of mammalian uPA. Thus, both proteases catalyze the activation of fish plasminogen efficiently and both proteases are inhibited rapidly by plasminogen activator inhibitor-1 (PAI-1). But zfuPA-a differs from mammalian...... uPA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding...

  14. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    Kim, Yeoun-Hee [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Chang, Yongmin [Department of Molecular Medicine, Kyungpook National University College of Medicine, Kyungpook National University, 200 Dongduk-Ro Jung-Gu, Daegu 700-714 (Korea, Republic of); Jung, Jae-Chang, E-mail: jcjung@knu.ac.kr [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. Black-Right-Pointing-Pointer Staurosporine mediates uPA activation during RGC differentiation in vitro. Black-Right-Pointing-Pointer Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. Black-Right-Pointing-Pointer Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that

  15. Construction of a single lentiviral vector containing tetracycline-inducible Alb-uPA for transduction of uPA expression in murine hepatocytes.

    Jiasi Bai

    Full Text Available The SCID-beige/Alb-uPA mouse model is currently the best small animal model available for viral hepatitis infection studies [1]. But the construction procedure is often costly and time-consuming due to logistic and technical difficulties. Thus, the widespread application of these chimeric mice has been hampered [2]. In order to optimize the procedure, we constructed a single lentiviral vector containing modified tetracycline-regulated system to control Alb-uPA gene expression in the cultured hepatocytes. The modified albumin promoter controlled by tetracycline (Tet-dependent transactivator rtTA2S-M2 was integrated into a lentiviral vector. The full-length uPA cDNA was inserted into another lentiviral vector containing PTight, a modified Tet-responsive promoter. Two vectors were then digested by specific enzymes and ligated by DNA ligase 4. The ligated DNA fragment was inserted into a modified pLKO.1 cloning vector and the final lentiviral vector was then successfully constructed. H2.35 cell, Lewis lung carcinoma, primary kidney, primary hepatic interstitial and CT26 cells were infected with recombinant lentivirus at selected MOI. The expression of uPA induced by DOX was detectable only in the infected H2.35 cells, which was confirmed by real-time PCR and Western blot analysis. Moreover, DOX induced uPA expression on the infected H2.35 cells in a dose-dependent manner. The constructed single lentiviral vector has many biological advantages, including that the interested gene expression under "Tet-on/off" system is controlled by DOX in a dose-depending fashion only in murine liver cells, which provides an advantage for simplifying generation of conditional transgenic animals.

  16. Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system.

    Barroso-Chinea, Pedro; Cruz-Muros, Ignacio; Afonso-Oramas, Domingo; Castro-Hernández, Javier; Salas-Hernández, Josmar; Chtarto, Abdelwahed; Luis-Ravelo, Diego; Humbert-Claude, Marie; Tenenbaum, Liliane; González-Hernández, Tomás

    2016-04-01

    The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis. PMID:26777664

  17. Increased expression of urokinase plasminogen activator and its cognate receptor in human seminomas

    The urokinase plasminogen activating system (uPAS) is implicated in neoplastic progression and high tissue levels of uPAS components correlate with a poor prognosis in different human cancers. Despite that, relative few studies are available on the expression and function of the uPAS components in human seminomas. In the present study we characterized the expression of the urokinase plasminogen activator (uPA), its cognate receptor (uPAR) and the uPA inhibitors PAI-1 and PAI-2 in normal human testis and seminomas. The expression of the above genes was evaluated by means of quantitative RT-PCR, western blot, zymographic analysis and immunohistochemistry. Quantitative RT-PCR analysis of 14 seminomas demonstrated that uPA and uPAR mRNAs were, with respect to control tissues, increased in tumor tissues by 3.80 ± 0.74 (p < 0.01) and 6.25 ± 1.18 (p < 0.01) fold, respectively. On the other hand, PAI-1 mRNA level was unchanged (1.02 ± 0.24 fold), while that of PAI-2 was significantly reduced to 0.34 ± 0.18 (p < 0.01) fold. Western blot experiments performed with protein extracts of three seminomas and normal tissues from the same patients showed that uPA protein levels were low or undetectable in normal tissues and induced in tumor tissues. On the same samples, zymographic analysis demonstrated increased uPA activity in tumor tissue extracts. Western blot experiments showed that also the uPAR protein was increased in tumor tissues by 1.83 ± 0.15 fold (p < 0.01). The increased expression of uPA and uPAR was further confirmed by immunohistochemical staining performed in 10 seminomas and autologous uninvolved peritumoral tissues. Finally, variation in the mRNA level of PAI-1 significantly correlated with tumor size. We demonstrated the increased expression of uPA and uPAR in human seminomas with respect to normal testis tissues, which may be relevant in testicular cancer progression

  18. Increased regucalcin gene expression extends survival in breast cancer patients: Overexpression of regucalcin suppresses the proliferation and metastatic bone activity in MDA-MB-231 human breast cancer cells in vitro.

    Yamaguchi, Masayoshi; Osuka, Satoru; Weitzmann, M Neale; Shoji, Mamoru; Murata, Tomiyasu

    2016-08-01

    Human breast cancer is highly metastatic to bone and drives bone turnover. Breast cancer metastases cause osteolytic lesions and skeletal damage that leads to bone fractures. Regucalcin, which plays a pivotal role as an inhibitor of signal transduction and transcription activity, has been suggested to act as a suppressor of human cancer. In the present study, we compared the clinical outcome between 44 breast cancer patients with higher regucalcin expression and 43 patients with lower regucalcin expression. Prolonged relapse-free survival was identified in the patients with increased regucalcin gene expression. We further demonstrated that overexpression of full length, but not alternatively spliced variants of regucalcin, induces G1 and G2/M phase cell cycle arrest, suppressing the proliferation of MDA-MB-231 cells, a commonly used in vitro model of human breast cancer that metastasize to bone causing osteolytic lesions. Overexpression of regucalcin was found to suppress multiple signaling pathways including Akt, MAP kinase and SAPK/JNK, and NF-κB p65 and β-catenin along with increased p53, a tumor suppressor, and decreased K-ras, c-fos and c-jun. Moreover, we found that co-culture of regucalcin-overexpressing MDA-MB-231 cells with mouse bone marrow cells prevented enhanced osteoclastogenesis and suppressed mineralization in mouse bone marrow cells in vitro. Taken together, the present study suggests that regucalcin may have important anticancer properties in human breast cancer patients. Mechanistically, these effects are likely mediated through suppression of multiple signaling pathways, upregulation of p53 and downregulation of oncogenes leading to anti-proliferative effects and reduced metastases to bone, a phenotype associated with poor clinical outcome. PMID:27221776

  19. Overexpression of Shati/Nat8l, an N-acetyltransferase, in the nucleus accumbens attenuates the response to methamphetamine via activation of group II mGluRs in mice.

    Miyamoto, Yoshiaki; Ishikawa, Yudai; Iegaki, Noriyuki; Sumi, Kazuyuki; Fu, Kequan; Sato, Keiji; Furukawa-Hibi, Yoko; Muramatsu, Shin-Ichi; Nabeshima, Toshitaka; Uno, Kyosuke; Nitta, Atsumi

    2014-08-01

    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens (NAc) of mice with methamphetamine (METH) treatment. Previously we reported that suppression of Shati/Nat8l enhanced METH-induced behavioral alterations via dopaminergic neuronal regulation. However, the physiological mechanisms of Shati/Nat8l on the dopaminergic system in the brain are unclear. In this study, we injected adeno-associated virus (AAV) vector containing Shati/Nat8l into the NAc or dorsal striatum (dS) of mice, to increase Shati/Nat8l expression. Overexpression of Shati/Nat8l in the NAc, but not in the dS, attenuated METH-induced hyperlocomotion, locomotor sensitization, and conditioned place preference in mice. Moreover, the Shati/Nat8l overexpression in the NAc attenuated the elevation of extracellular dopamine levels induced by METH in in vivo microdialysis experiments. These behavioral and neurochemical alterations due to Shati/Nat8l overexpression in the NAc were inhibited by treatment with selective group II metabotropic glutamate receptor type 2 and 3 (mGluR2/3) antagonist LY341495. In the AAV vector-injected NAc, the tissue contents of both N-acetylaspartate and N-acetylaspartylglutamate (NAAG), endogenous mGluR3 agonist, were elevated. The injection of peptidase inhibitor of NAAG or the perfusion of NAAG itself reduced the basal levels of extracellular dopamine in the NAc of naive mice. These results indicate that Shati/Nat8l in the NAc, but not in the dS, plays an important suppressive role in the behavioral responses to METH by controlling the dopaminergic system via activation of group II mGluRs. PMID:24559655

  20. Overexpression of lysine-specific demethylase 1 promotes androgen-independent transition of human prostate cancer LNCaP cells through activation of the AR signaling pathway and suppression of the p53 signaling pathway.

    Li, Xuechao; Li, Tao; Chen, Dehong; Zhang, Peng; Song, Yarong; Zhu, Hongxue; Xiao, Yajun; Xing, Yifei

    2016-01-01

    Lysine-specific demethylase 1 (LSD1) is the first defined histone demethylase, and was found to be closely correlated with the development and progression of various types of cancers, including prostate cancer (PCa). Previous research suggests that LSD1 is closely related with cell proliferation, angiogenesis, migration and invasion in PCa. However, it remains to be elucidated whether LSD1 is correlated with androgen-independent (AI) transition of PCa under androgen-ablated conditions. The present study aimed to investigate the correlation of LSD1 expression with AI transition of human androgen-dependent PCa LNCaP cells. Our data showed that LSD1 was overexpressed in human PCa specimens and in AI PCa LNCaP-AI cells, which were established through a three-month continuous culture of LNCaP cells in androgen-deprived medium. Under androgen-deprived conditions, LNCaP-AI cells grew perfectly with less apoptosis and G0/G1 cell cycle arrest. Overexpression of LSD1 protected the LNCaP cells from androgen deprivation-induced apoptosis and G0/G1 arrest, while knockdown of LSD1 drove LNCaP-AI cells into a higher rate of apoptosis and G0/G1 arrest. Furthermore, LSD1 was found to regulate the androgen receptor (AR) and p53 signaling pathways via demethylation, subsequently influencing apoptosis and cell cycle progression. These findings revealed that overexpression of LSD1 promoted AI transition of PCa LNCaP cells under androgen-ablated conditions via activation of the AR signaling pathway and suppression of the p53 signaling pathway. PMID:26534764

  1. Tissue plasminogen activator and urokinase plasminogen activator in human epileptogenic pathologies

    A.M. Iyer; E. Zurolo; K. Boer; J.C. Baayen; F. Giangaspero; A. Arcella; G.C. Di Gennaro; V. Esposito; W.G.M. Spliet; P.C. van Rijen; D. Troost; J.A. Gorter; E. Aronica

    2010-01-01

    A growing body of evidence demonstrates the involvement of plasminogen activators (PAs) in a number of physiologic and pathologic events in the CNS. Induction of both tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) has been observed in different experimental models of ep

  2. Does Council Tax Valuation Band (CTVB correlate with Under-Privileged Area 8 (UPA8 score and could it be a better 'Jarman Index'?

    Taylor Gordon

    2001-11-01

    Full Text Available Abstract Background Widespread scepticism persists on the use of the Under-Privileged Area (UPA8 score of Jarman in distributing supplementary resources to so-attributed 'deprived' UK general practices. The search for better 'needs' markers continues. Having already shown that Council Tax Valuation Band (CTVB is a predictor of UK GP workload, we compare, here, CTVB of residence of a random sample of patients with their respective 'Jarman' scores. Methods Correlation coefficient is calculated between (i the CTVB of residence of a randomised sample of patients from an English general practice and (ii the UPA8 scores of the relevant enumeration districts in which they live. Results There is a highly significant correlation between the two measures despite modest study size of 478 patients (85% response. Conclusions The proposal that CTVB is a marker of deprivation and of clinical demand should be examined in more detail: it correlates with 'Jarman', which is already used in NHS resource allocation. But unlike 'Jarman', CTVB is simple, objective, and free of the problems of Census data. CTVB, being household-based, can be aggregated at will.

  3. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis

    MASATAKE KAI; CHIKARA KAITO; HIROSHI FUKAMACHI; TAKAYASU HIGO; EIJI TA-KAYAMA; HIROSHI HARA; YOSHIKAZU OHYA; KAZUEI IGARASHI; KOICHIRO SHIOKAWA

    2003-01-01

    In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animalside blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4- and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16- and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8- to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continueddevelopment of the injected embryos. These results indicate that cells overexpressed with SAMDC undergoapoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection.We assume that apoptosis is executed in Xenopus early gastrulae as a "fail-safe" mechanism to eliminatephysiologically-severely damaged cells to save the rest of the embryo.

  4. Camptothecin induces urokinase-type plasminogen activator gene-expression in human RC-K8 malignant lymphoma and H69 small cell lung cancer cells.

    Shibakura M

    2002-10-01

    Full Text Available We previously reported that anthracyclines, which could generate reactive oxygen species (ROS, could induce the urokinase-type plasminogen activator (uPA gene expression in human RC-K8 malignant lymphoma cells and in H69 small cell lung cancer (SCLC cells. In screening other uPA-inducible anti-cancer agents, we found that camptothecin (CPT and its derivative, SN38, could induce uPA in RC-K8 and H69 cells. CPT and SN38, which are also used for the treatment of lymphoma and SCLC, significantly increased the uPA accumulation in the conditioned media of both cells in a dose-dependent manner. The maximum induction of uPA mRNA levels was observed 24 h after stimulation. Pretreatment with pyrrolidine dithiocarbamate (PDTC, an anti-oxidant, inhibited the CPT-induced uPA mRNA expression. Thus, CPT induces uPA through gene expression, and, therefore, CPT may influence the tumor-cell biology by up-regulating the uPA/plasmin system.

  5. Phorbol ester induces the biosynthesis of glycosylated and nonglycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells

    Genton, C.; Kruithof, E.K.; Schleuning, W.D.

    1987-03-01

    The tumor-promoting phorbol ester PMA induces changes in the histiocytic human lymphoma cell line U-937 akin to cellular differentiation and concomitantly stimulates the biosynthesis of plasminogen activator inhibitor 2 (PAI 2) and of urokinase-type plasminogen activator (u-PA). PAI 2 is found in a nonglycosylated intracellular and a glycosylated secreted form. The former appears to be identical to PAI 2 previously purified from placental extracts and large-scale U-937 cell cultures. The sixfold increase of PAI 2 antigen measured 24 h after PMA treatment in cell extracts and conditioned media is accompanied by an equal increase of active PAI 2 mRNA, whereas the 6 to 13-fold increase of u-PA antigen in the same samples is associated with only a 1.5-fold mRNA increase. The increase of PAI 2, but not of u-PA, biosynthesis requires transcription. A 50-fold molar excess of PAI 2 over u-PA is found in both extracts and conditioned media of PMA-treated cells. PAI 2 represents at least 0.3% of total de novo synthesized protein 24 h after induction with PMA. Thus, PAI 2, but not u-PA, is an abundant product of this precursor analogue of the mononuclear phagocyte lineage, and might represent a new marker for monocyte/macrophage differentiation.

  6. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth; Brunner, Nils; Danø, Keld; Johnsen, M.

    2003-01-01

    The plasminogen activator inhibitor-1 (PAI-1) blocks the activation of plasmin(ogen), an extracellular protease vital to cancer invasion. PAI-1 is like the corresponding plasminogen activator uPA (urokinase-type plasminogen activator) consistently expressed in human breast cancer. Paradoxically......, high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model of...... metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth and...

  7. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells

  8. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  9. A facile method to prepare large quantities of active caspase-3 overexpressed by auto-induction in the C41(DE3) strain.

    Hwang, Dohyeon; Kim, Sang Ah; Yang, Eun Gyeong; Song, Hyun Kyu; Chung, Hak Suk

    2016-10-01

    Since human Caspase-3, a member of the cysteine protease family, plays important roles not only in the apoptosis pathway as an executioner protein, but also in neurological disorders as a critical factor, biomedical researchers have been interested in the development of modulators of caspase-3 activity. Such studies require large quantities of purified active caspase-3. So far, purification of soluble caspase-3 from full-length human caspase-3 in Escherichia coli (E. coli) yields only several mg from a liter of culture media. Therefore, a number of alternative strategies to purify active caspase-3 have been described in the literature, including refolding and protein engineering. In this study, we systematically study the effects of host E. coli strains and growth conditions on purifications of active caspase-3 from full-length human caspase-3. Using a combination of conditions that include use of the C41(DE3) strain, low-temperature expression, and auto-induction that induces caspase-3 expression depending on metabolic state of the individual host cell, we are able to obtain 14-17 mg caspase-3 per liter of culture, an amount that is about 7 times larger than published results. This optimized expression and purification method for caspase-3 can be easily scaled up to facilitate the demand for active enzyme. PMID:27320415

  10. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies

    Bøtkjær, Kenneth Alrø; Fogh, Sarah; Bekes, Erin C;

    2011-01-01

    Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types...... to harbour the epitopes for three conformation-specific monoclonal antibodies, two with a preference for the zymogen form pro-uPA, and one with a preference for active uPA. All three antibodies were shown to have overlapping epitopes, with three common residues being crucial for all three antibodies...

  11. Mesothelin confers pancreatic cancer cell resistance to TNF-α-induced apoptosis through Akt/PI3K/NF-κB activation and IL-6/Mcl-1 overexpression

    Li Min

    2011-08-01

    Full Text Available Abstract Background Previous studies showed that mesothelin (MSLN plays important roles in survival of pancreatic cancer (PC cells under anchorage dependent/independent conditions as well as resistance to chemotherapy. The recent success of intratumorally-injected adeno-encoded, chemo/radiation-inducible-promoter driven hTNF-α, (TNFerade + gemcitabine in pre-clinical models of PC have renewed interest in use of TNF-α as a therapeutic component. To help find additional factors which might affect the therapy, we examined the resistance of MSLN-overexpressing pancreatic cancer cell lines to TNF-α-induced growth inhibition/apoptosis. Methods Stable MSLN overexpressing MIA PaCa-2 cells (MIA-MSLN, stable MSLN-silenced AsPC-1 cells (AsPC-shMSLN and other pancreatic cells (MIA-PaCa2, Panc 28, Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 were used. NF-κB activation was examined by western blots and luciferase reporter assay. TNF-α induced growth inhibition/apoptosis was measured by MTT, TUNEL assay and caspase activation. IL-6 was measured using luminex based assay. Results Compared to low endogenous MSLN-expressing MIA PaCa-2 and Panc 28 cells, high endogenous MSLN-expressing Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 cells were resistant to TNF-α induced growth inhibition. Stable MSLN overexpressing MIA-PaCa2 cells (MIA-MSLN were resistant to TNF-α-induced apoptosis while stable MSLN-silenced AsPC1 cells (AsPC-shMSLN were sensitive. Interestingly, TNF-α-treated MIA-MSLN cells showed increased cell cycle progression and cyclin A induction, both of which were reversed by caspase inhibition. We further found that MIA-MSLN cells showed increased expression of anti-apoptotic Bcl-XL and Mcl-1; deactivated (p-Ser75 BAD, and activated (p-Ser70 Bcl-2. Constitutively activated NF-κB and Akt were evident in MIA-MSLN cells that could be suppressed by MSLN siRNA with a resultant increase in sensitivity of TNF-α induced apoptosis

  12. Development of high-specific-activity 68Ga-labeled DOTA-rhenium-cyclized α-MSH peptide analog to target MC1 receptors overexpressed by melanoma tumors

    Introduction: A previous report on 68Ga-1,4,7,10-tetraazacyclodedecane-N,N',N'',N'''-tetraacetic acid (DOTA)-Re(Arg11)CCMSH was shown to indicate the imaging agent's potency for early detection of metastatic melanoma. However, the main limiting factor to developing high-specific-activity 68Ga-DOTA-Re(Arg11)CCMSH is the short half-life of 68Ga, which precludes further purification of the agent. To circumvent this problem, we incorporated the microwave technique to rapidly radiolabel the peptide with 68Ga, thereby allowing enough time to include high-performance liquid chromatography (HPLC) purification in the overall procedure. Methods: DOTA-Re(Arg11)CCMSH was radiolabeled with 68Ga in 68Ga-DOTA-Re(Arg11)CCMSH was then administered on B16/F1 murine melanoma-bearing C57 mice to study its biodistribution and positron emission tomography (PET) imaging capability. Results: The production of high-specific-activity 68Ga-DOTA-Re(Arg11)CCMSH resulted in an improved tumor uptake [6.93±1.11%ID/g at 30 min postinjection (p.i.) and 6.27±1.60%ID/g at 1 h p.i.] and tumor retention (5.85±1.32%ID/g at 4 h p.i.). Receptor-mediated tumor uptake was verified by blocking studies. Furthermore, high-resolution PET images of the tumor were obtained, owing to high tumor-to-nontarget organ ratios at an early time point (i.e., at 1 h biodistribution: tumor/blood, 14.3; tumor/muscle, 89.6; tumor/skin, 12.3) and fast clearance of the labeled peptide from kidney and other healthy tissues. Conclusion: High-specific-activity 68Ga-DOTA-Re(Arg11)CCMSH may have a potential role in the early diagnosis of metastasized melanoma.

  13. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

    Yi Wang

    Full Text Available Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.

  14. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

    Wang, Yi; Ye, Xiangsheng; Ding, Guangda; Xu, Fangsen

    2013-01-01

    Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1) seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals. PMID:23573285

  15. Cytokinins in the bryophyte Physcomitrella patens: Analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins

    von Schwartzenberg, K.; Nunez, M.F.; Blaschke, H.; Dobrev, Petre; Novák, Ondřej; Motyka, Václav; Strnad, Miroslav

    2007-01-01

    Roč. 145, č. 3 (2007), s. 786-800. ISSN 0032-0889 R&D Projects: GA ČR GA522/06/0703; GA AV ČR IAA600380701 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : ARABIDOPSIS-THALIANA * OXIDASE ACTIVITY * ATP/ADP ISOPENTENYLTRANSFERASES Subject RIV: ED - Physiology Impact factor: 6.367, year: 2007

  16. Gene expression of fibrinolytic factors urokinase plasminogen activator and plasminogen activator inhibitor-1 in rabbit temporo-mandibular joint cartilage with disc displacement

    ZHAN Jing; GU Zhi-yuan; WU Li-qun; ZHANG Yin-kai; HU Ji-an

    2005-01-01

    Background The urokinase plasminogen activator system is believed to play an important role in degradation of the extracellular matrix associated with cartilage and bone destruction; however its precise roles in temporomandibular disorders have not yet been clarified. The aims of this study were to investigate the gene expression of fibrinolytic factors urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in the articular cartilage of rabbit temporomandibular joint (TMJ) with disc displacement (DD) and to probe the relationship between fibrinolytic activity and cartilage remodeling. Methods Disc displacement of right joints was performed in 36 of 78 rabbits under investigation. The animals were sacrificed at 4 days and 1, 2, 4, 8 and 12 weeks after surgery, respectively. The right joints of these animals were harvested and processed for the examination of mRNA expression of uPA and PAI-1 in articular cartilage using in situ hybridization techniques. Results The expression of uPA and PAI-1 was co-expressed weakly in the chondrocytes from transitive zone to hypertrophic zone and mineralized zone, while no hybridizing signals were shown in proliferative zone and superficial zone in control rabbits. The most striking was the up-regulation of uPA and PAI-1 mRNA in 4-day rabbits postoperatively at the onset of cartilage degeneration. The strongest hybridizing signals for uPA and PAI-1 were seen in 2-week rabbits postoperatively. After 2 weeks, the expression of uPA and PAI-1 began to decrease and reached nearly normal level at 12 weeks. Conclusions The expression of the uPA/PAI-1 system coincides with the pathological changes in condylar cartilage after DD. The uPA/PAI-1 system may be one of the essential mediators in articular cartilage remodeling.

  17. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    Søderman, Andreas; Thomsen, Morten S; Hansen, Henrik H;

    2008-01-01

    Recent studies have demonstrated that amyloid-beta1-42 (Abeta1-42) binds to the nicotinergic alpha7 acetylcholine receptor (alpha7 nAChR) and that the application of Abeta1-42 to cells inhibits the function of the alpha7 nAChR. The in vivo consequences of the pharmacological activation of the alp...... that clinical trials testing alpha7 nAChR agonists should be related to the content of Abeta peptides in the patient's nervous system....... systemic administration of the alpha7 nAChR agonist SSR180711 (10 mg/kg) result in a significant increase in Fos protein levels in the shell of nucleus accumbens in wild-type mice, but has no effect in the transgene mice. There were fewer cell bodies expressing Fos in the prefrontal cortex of transgene...

  18. Activation of p21CIP1/WAF1 gene expression and inhibition of cell proliferation by overexpression of hepatocyte nuclear factor-4α

    The F9 murine embryonal carcinoma cell line provides an attractive system for studying epithelial differentiation and antiproliferative processes. We have recently established F9 cells expressing doxycycline-inducible hepatocyte nuclear factor (HNF)-4α and shown that HNF-4α triggers the gene expression of tight-junction molecules, occludin, claudin-6, and claudin-7, as well as formation of functional tight junctions and polarized epithelial morphology (Exp. Cell Res. 286, [2003] 288). Since these events were very similar to those induced by retinoids, we investigated whether HNF-4α, like retinoid receptors, was involved in the control of cell proliferation. We herein show that HNF-4α up-regulates expression of the p21 gene, but not the p15, p16, p18, p19, or p27 gene, in a p53-independent manner, and inhibits cell growth in F9 cells. Similar results were observed in rat lung endothelial cells, in which expression of HNF-4α is conditionally induced by doxycycline. Furthermore, we demonstrate, by reporter assay, that HNF-4α significantly elevates the transcriptional activity of the p21 promoter. Since, HNF-4α is expressed not only in the liver but also in organs containing epithelial cells, such as kidney, intestine, pancreas, and stomach, it might also play critical roles in the regulation of epithelial morphogenesis and proliferation in these organs

  19. Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/β-catenin signaling

    Jiang, Jianxin; Yu, Chao; Chen, Meiyuan; Tian, She; Sun, Chengyi, E-mail: chenyisun11@163.com

    2015-09-04

    Hepatocellular carcinoma (HCC) is the most common cancer in the world especially in East Asia and Africa. Advanced stage, metastasis and frequent relapse are responsible for the poor prognosis of HCC. However, the precise mechanisms underlying HCC remained unclear. So it is urgent to identify the pathological processes and relevant molecules of HCC. TRIM37 is an E3 ligase and has been observed deregulated expression in various tumors. Recent studies of TRIM37 have implicated that TRIM37 played critical roles in cell proliferation and other processes. In the present study, we demonstrated that TRIM37 expression was notably up-regulated in HCC samples and was associated with advanced stage and tumor volume, which all indicating the poor outcomes. We also found that TRIM37 could serve as an independent prognostic factor of HCC. During the course of in vitro and in vivo work, we showed that TRIM37 promoted HCC cells migration and metastasis by inducing EMT. Furthermore, we revealed that the effect of TRIM37 mediated EMT in HCC cells was achieved by the activation of Wnt/β-catenin signaling. These finding may provide insight into the understanding of TRIM37 as a novel critical factor of HCC and a candidate target for HCC treatment. - Highlights: • Highly expression of TRIM37 is found in HCC samples compared with nontumorous samples. • TRIM37 expression is correlated with advanced HCC stages and could be an independent prognostic factor. • TRIM37 promotes cell proliferation and metastasis. • We report an E3 ligase TRIM37 affects Wnt/β-catenin signaling.

  20. Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/β-catenin signaling

    Hepatocellular carcinoma (HCC) is the most common cancer in the world especially in East Asia and Africa. Advanced stage, metastasis and frequent relapse are responsible for the poor prognosis of HCC. However, the precise mechanisms underlying HCC remained unclear. So it is urgent to identify the pathological processes and relevant molecules of HCC. TRIM37 is an E3 ligase and has been observed deregulated expression in various tumors. Recent studies of TRIM37 have implicated that TRIM37 played critical roles in cell proliferation and other processes. In the present study, we demonstrated that TRIM37 expression was notably up-regulated in HCC samples and was associated with advanced stage and tumor volume, which all indicating the poor outcomes. We also found that TRIM37 could serve as an independent prognostic factor of HCC. During the course of in vitro and in vivo work, we showed that TRIM37 promoted HCC cells migration and metastasis by inducing EMT. Furthermore, we revealed that the effect of TRIM37 mediated EMT in HCC cells was achieved by the activation of Wnt/β-catenin signaling. These finding may provide insight into the understanding of TRIM37 as a novel critical factor of HCC and a candidate target for HCC treatment. - Highlights: • Highly expression of TRIM37 is found in HCC samples compared with nontumorous samples. • TRIM37 expression is correlated with advanced HCC stages and could be an independent prognostic factor. • TRIM37 promotes cell proliferation and metastasis. • We report an E3 ligase TRIM37 affects Wnt/β-catenin signaling

  1. The pro-urokinase plasminogen-activation system in the presence of serpin-type inhibitors and the urokinase receptor

    Behrendt, Niels; List, Karin; Andreasen, Peter A; Danø, Keld

    The reciprocal pro-enzyme activation system of plasmin, urokinase-type plasminogen activator (uPA) and their respective zymogens is a potent mechanism in the generation of extracellular proteolytic activity. Plasminogen activator inhibitor type 1 (PAI-1) acts as a negative regulator. This system ...

  2. Overexpression of Activation-Induced Cytidine Deaminase in MTX- and Age-Related Epstein-Barr Virus-Associated B-Cell Lymphoproliferative Disorders of the Head and Neck

    Kentaro Kikuchi

    2015-01-01

    Full Text Available Recent research has shown that activation-induced cytidine deaminase (AID triggers somatic hypermutation and recombination, in turn contributing to lymphomagenesis. Such aberrant AID expression is seen in B-cell leukemia/lymphomas, including Burkitt lymphoma which is associated with c-myc translocation. Moreover, Epstein-Barr virus (EBV latent membrane protein-1 (LMP-1 increases genomic instability through early growth transcription response-1 (Egr-1 mediated upregulation of AID in B-cell lymphoma. However, few clinicopathological studies have focused on AID expression in lymphoproliferative disorders (LPDs. Therefore, we conducted an immunohistochemical study to investigate the relationship between AID and LMP-1 expression in LPDs (MTX-/Age-related EBV-associated, including diffuse large B-cell lymphomas (DLBCLs. More intense AID expression was detected in LPDs (89.5% than in DLBCLs (20.0%, and the expression of LMP-1 and EBER was more intense in LPDs (68.4% and 94.7% than in DLBCLs (10.0% and 20.0%. Furthermore, stronger Egr-1 expression was found in MTX/Age-EBV-LPDs (83.3% than in DLBCLs (30.0%. AID expression was significantly constitutively overexpressed in LPDs as compared with DLBCLs. These results suggest that increased AID expression in LPDs may be one of the processes involved in lymphomagenesis, thereby further increasing the survival of genetically destabilized B-cells. AID expression may be a useful indicator for differentiation between LPDs and DLBCLs.

  3. Redes de atenção às urgências e emergências: pré-avaliação das Unidades de Pronto Atendimento (UPAs em uma região metropolitana do Brasil Urgent and emergency care networks: a pre-evaluation of the First Aid Units (UPAs in a metropolitan region of Brazil

    Greciane Soares da Silva

    2012-12-01

    Full Text Available OBJETIVOS: um estudo avaliativo, exploratório das UPAs na região metropolitana do Recife, no ano de 2011. MÉTODOS: considerou-se a descrição da intervenção, o delineamento do modelo lógico, o envolvimento dos interessados e a construção de perguntas avaliativas. Realizou-se abordagem de três fases interativas, utilizando, para sua operacionalização, a análise documental, entrevistas e Conferência de Consenso. O modelo lógico elaborado subsidiou a construção de matriz com critérios e indicadores, que foi submetida a um comitê de informantes-chave para obtenção do consenso. RESULTADOS: a matriz de critérios e indicadores resultante do consenso é composta de três níveis de análise (assistência à saúde, integração interistitucional e gestão com 41 critérios e 74 indicadores avaliativos. Com base no modelo lógico, na Conferência de Consenso, na matriz de critérios/indicadores e nas considerações sistematizadas dos inte-ressados, foram elaboradas 14 perguntas avaliativas. CONCLUSÕES: as UPAs encontram-se adequadas à rea-lização de avaliações, pois se verificou que os elementos identificados no modelo lógico são condizentes com as condições que a intervenção possui para alcançar suas metas e objetivos.OBJECTIVES: an exploratory evaluative study of the UPAs in a metropolitan region of Brazil in 2011. METHODS: the intervention was described, the logical model outlined, along with the involvement of stakeholders, and evaluation questions drawn up. The three interactive phases approach was carried out using document analysis, interviews and consensus conferencing. The logical model was based on building up a matrix of criteria and indicators that was submitted to a committee of key informants with a view to obtaining consensus. RESULTS: the matrix of criteria and indicators resulting from the consensus comprises three levels of analysis (health care, inter-institutional interaction and management with 41

  4. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... domain is directly involved in the molecular contact with uPA. The receptor binds uPA as well as its proenzyme, pro-uPA, in such a manner that the activation cascade can occur directly on the cell surface. Furthermore, the activation rates are enhanced relative to the situation in solution, probably due...

  5. Overexpression, Purification, Characterization, and Pathogenicity of Vibrio harveyi Hemolysin VHH

    Zhong, Yingbin; Zhang, Xiao-Hua; Chen, Jixiang; Chi, Zhenghao; Sun, Boguang; Li, Yun; Austin, Brian

    2006-01-01

    Vibrio harveyi VHH hemolysin is a putative pathogenicity factor in fish. In this study, the hemolysin gene vhhA was overexpressed in Escherichia coli, and the purified VHH was characterized with regard to pH and temperature profiles, phospholipase activity, cytotoxicity, pathogenicity to flounder, and the signal peptide. PMID:16988279

  6. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma.

    Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2016-09-01

    SND1 is a multifunctional protein participating, among others, in gene transcription and mRNA metabolism. SND1 is overexpressed in cancer cells and promotes viability and tumourigenicity of hepatocellular carcinoma cells. This study shows that cholesterol synthesis is increased in SND1-overexpressing hepatoma cells. Neither newly synthesised nor extracellularly supplied cholesterol are able to suppress this increase; however, inhibition of cholesterol esterification reverted the activated state of sterol-regulatory element-binding protein 2 (SREBP2) and cholesterogenesis. These results highlight SND1 as a potential regulator of cellular cholesterol distribution and homeostasis in hepatoma cells, and support the rationale for the therapeutic use of molecules that influence cholesterol management when SND1 is overexpressed. PMID:27238764

  7. Mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3) overexpression is an early event in esophageal tumorigenesis and is a predictor of poor disease prognosis

    Mitogen-activated protein kinase kinase kinase3 (MAP3K3/MEKK3) was identified to be differentially expressed in esophageal squamous cell carcinoma (ESCC) using cDNA microarrays by our laboratory. Here in we determined the clinical significance of MEKK3 in ESCC. Immunohistochemical analysis of MEKK3 expression was carried out in archived tissue sections from 93 ESCCs, 47 histologically normal and 61 dysplastic esophageal tissues and correlated with clinicopathological parameters and disease prognosis over up to 7.5 years for ESCC patients. MEKK3 expression was significantly increased in esophageal dysplasia and ESCC in comparison with normal mucosa (ptrend < 0.001). Kaplan Meier survival analysis showed significantly reduced median disease free survival median DFS = 10 months in patients with MEKK3 positive ESCCs compared to patients with no immunopositivity (median DFS = 19 months, p = 0.04). ESCC patients with MEKK3 positive and lymph node positive tumors had median DFS = 9 months, as compared to median DFS = 21 months in patients who did not show the alterations (p = 0.01). In multivariate Cox regression analysis, combination of MEKK3 overexpression and node positivity [p = 0.015, hazard ratio (HR) = 2.082, 95% CI = 1.154 - 3.756] emerged as important predictor of reduced disease free survival and poor prognosticator for ESCC patients. Alterations in MEKK3 expression occur in early stages of development of ESCC and are sustained during disease progression; MEKK3 in combination with lymph node positivity has the potential to serve as adverse prognosticator in ESCC

  8. Revolutionizing membrane protein overexpression in bacteria

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickström, David; Slotboom, Dirk Jan; De Gier, Jan‐Willem

    2010-01-01

    Summary The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory, especially for eukaryotic membrane proteins. This has initiated a revolution of membrane protein overexpression in bacteria. Recent studies have shown that it is feasible to (i) engineer or ...

  9. NUCKS overexpression in breast cancer

    Kittas Christos

    2009-08-01

    Full Text Available Abstract Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR, real-time PCR (qRT-PCR and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS. It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non

  10. Revolutionizing membrane protein overexpression in bacteria

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickstrom, David; Slotboom, Dirk Jan; de Gier, Jan-Willem; Wickström, David

    2010-01-01

    The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory, e

  11. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib

    Younes, Mohamad; Wu, Zherui; Dupouy, Sandra; Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-01-01

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 wa...

  12. Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy.

    Dong, Wen-Qian; Chao, Min; Lu, Qing-Hua; Chai, Wei-Li; Zhang, Wei; Chen, Xue-Ying; Liang, Er-Shun; Wang, Ling-Bo; Tian, Hong-Liang; Chen, Yu-Guo; Zhang, Ming-Xiang

    2016-01-01

    Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions including proliferation, apoptosis, tumor suppression, transcription, and mitochondrial protein folding. However, its function in diabetic cardiomyopathy (DCM) is still unclear. In vivo, type 2 diabetic rat model was induced by using a high-fat diet and low-dose streptozotocin. Overexpression of the PHB protein in the model rats was achieved by injecting lentivirus carrying PHB cDNA via the jugular vein. Characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, fibrosis and apoptosis. PHB overexpression ameliorated the disease. Cardiofibroblasts (CFs) and H9c2 cardiomyoblasts were used in vitro to investigate the mechanism of PHB in altered function. In CFs treated with HG, PHB overexpression decreased expression of collagen, matrix metalloproteinase activity, and proliferation. In H9c2 cardiomyoblasts, PHB overexpression inhibited apoptosis induced by HG. Furthermore, the increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was significantly decreased and the inhibited phosphorylation of Akt was restored in DCM. Therefore, PHB may be a new therapeutic target for human DCM. PMID:26623724

  13. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Vinciane Régnier

    Full Text Available BACKGROUND: The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  14. Vldlr overexpression causes hyperactivity in rats

    Iwata Keiko

    2012-10-01

    Full Text Available Abstract Background Reelin regulates neuronal positioning in cortical brain structures and neuronal migration via binding to the lipoprotein receptors Vldlr and Lrp8. Reeler mutant mice display severe brain morphological defects and behavioral abnormalities. Several reports have implicated reelin signaling in the etiology of neurodevelopmental and psychiatric disorders, including autism, schizophrenia, bipolar disorder, and depression. Moreover, it has been reported that VLDLR mRNA levels are increased in the post-mortem brain of autistic patients. Methods We generated transgenic (Tg rats overexpressing Vldlr, and examined their histological and behavioral features. Results Spontaneous locomotor activity was significantly increased in Tg rats, without detectable changes in brain histology. Additionally, Tg rats tended to show performance deficits in the radial maze task, suggesting that their spatial working memory was slightly impaired. Thus, Vldlr levels may be involved in determining locomotor activity and memory function. Conclusions Unlike reeler mice, patients with neurodevelopmental or psychiatric disorders do not show striking neuroanatomical aberrations. Therefore, it is notable, from a clinical point of view, that we observed behavioral phenotypes in Vldlr-Tg rats in the absence of neuroanatomical abnormalities.

  15. Ionizing radiation enhances therapeutic activity of mda-7/IL-24: overcoming radiation- and mda-7/IL-24-resistance in prostate cancer cells overexpressing the antiapoptotic proteins bcl-xL or bcl-2.

    Su, Z-Z; Lebedeva, I V; Sarkar, D; Emdad, L; Gupta, P; Kitada, S; Dent, P; Reed, J C; Fisher, P B

    2006-04-13

    Subtraction hybridization applied to terminally differentiating human melanoma cells identified mda-7/IL-24, a cytokine belonging to the IL-10 gene superfamily. Adenoviral-mediated delivery of mda-7/IL-24 (Ad.mda-7) provokes apoptosis selectively in a wide spectrum of cancers in vitro in cell culture, in vivo in human tumor xenograft animal models and in patients with advanced carcinomas and melanomas. In human prostate cancer cells, a role for mitochondrial dysfunction and induction of reactive oxygen species in the apoptotic process has been established. Ectopic overexpression of bcl-xL and bcl-2 prevents these changes including apoptosis induction in prostate tumor cells by Ad.mda-7. We now document that this resistance to apoptosis can be reversed by treating bcl-2 family overexpressing prostate tumor cells with ionizing radiation in combination with Ad.mda-7 or purified GST-MDA-7 protein. Additionally, radiation augments apoptosis induction by mda-7/IL-24 in parental and neomycin-resistant prostate tumor cells. Radiosensitization to mda-7/IL-24 is dependent on JNK signaling, as treatment with the JNK 1/2/3 inhibitor SP600125 abolishes this effect. Considering that elevated expression of bcl-xL and bcl-2 are frequent events in prostate cancer development and progression, the present studies support the use of ionizing radiation in combination with mda-7/IL-24 as a means of augmenting the therapeutic benefit of this gene in prostate cancer, particularly in the context of tumors displaying resistance to radiation therapy owing to bcl-2 family member overexpression. PMID:16331261

  16. Overexpression of protein disulfide isomerase in Aspergillus.

    El-Adawi, H; Khanh, N Q; Gassen, H

    2000-10-01

    One of the major problems with the production of biotechnologically valuable proteins has been the purification of the product. For Escherichia coli and Saccharomyces cerevisiae, there are several techniques for the purification of intracellular proteins, but these are time consuming and often result in poor yields. Purification can be considerably facilitated, if the product is secreted from the host cell. In the work presented, we have constructed an expression vector (pSGNH2) for the secretion of protein disulfide isomerase (PDI; EC 5.3.4.1) from Aspergillus niger, in which the retention signal His-Asp-Glu-Leu (H-D-E-L) was modified to Ala-Leu-Glu-Gln (A-L-E-Q) via the polymerase chain reaction (PCR) method. The PDI gene was placed under the control of the A. oryzae alpha-amylase promoter. This expression vector was transformed into A. niger NRRL3, resulting in PDI secretion into the medium. The catalytic activity of overexpressed PDI from A. niger was indistinguishable from that of PDI isolated from bovine liver. With further strain improvement and optimization of culture conditions, it could be possible to raise the PDI production to the bioprocessing scale. PMID:10977899

  17. Inhibition of urokinase plasminogen activator “uPA” activity alters ethanol consumption and conditioned place preference in mice

    Al Maamari E

    2014-09-01

    Full Text Available Elyazia Al Maamari,* Mouza Al Ameri, Shamma Al Mansouri, Amine Bahi*Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates*These authors contributed equally to this workAbstract: Urokinase plasminogen activator, uPA, is a serine protease implicated in addiction to drugs of abuse. Using its specific inhibitor, B428, we and others have characterized the role of uPA in the rewarding properties of psychostimulants, including cocaine and amphetamine, but none have examined the role of uPA in ethanol use disorders. Therefore, in the current study, we extended our observations to the role of uPA in ethanol consumption and ethanol-induced conditioned place preference. The general aim of the present series of experiments was to investigate the effects of the administration of the B428 on voluntary alcohol intake and ethanol conditioned reward. A two-bottle choice, unlimited-access paradigm was used to compare ethanol intake between vehicle- and 3, 10, and 30 mg/kg B428-administered mice. For this purpose, the mice were presented with an ethanol solution (2.5%–20% and water, at each concentration for 4 days, and their consumption was measured daily. Consumption of saccharin and quinine solutions was also measured. Systemic administration of B428 dose-dependently decreased ethanol intake and preference. Additionally, B428 mice did not differ from vehicle mice in their intake of graded solutions of tastants, suggesting that the uPA inhibition did not alter taste function. Also, ethanol metabolism was not affected following B428 injection. More importantly, 1.5 g/kg ethanol-induced conditioned place preference acquisition was blocked following B428 administration. Taken together, our results are the first to implicate uPA inhibition in the regulation of ethanol consumption and preference, and suggest that uPA may be considered as a possible therapeutic drug target for alcoholism and

  18. Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases

    Illemann, Martin; Bird, Nigel; Majeed, Ali;

    2009-01-01

    Metastatic growth and invasion by colon cancer cells in the liver requires the ability of the cancer cells to interact with the new tissue environment. Plasmin(ogen) is activated on cell surfaces by urokinase-type PA (uPA), and is regulated by uPAR and plasminogen activator inhibitor-1 (PAI-1......). To compare the expression patterns of uPA, uPAR and PAI-1 in colon cancer with that in their liver metastases, we analysed matched samples from 14 patients. In all 14 primary colon cancers, we found upregulation of uPAR, uPA mRNA and PAI-1 in primarily stromal cells at the invasive front. In 5 of the 14......, whereas 8 of the remaining 9 showed direct contact between the cancer cells and the liver parenchyma. We conclude that there are 2 distinct patterns of expression of uPAR, uPA and PAI-1 in colon cancer liver metastases and that these correlate closely with 2 morphological growth patterns. These findings...

  19. A 55,000-60,000 Mr receptor protein for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification

    Nielsen, L S; Kellerman, G M; Behrendt, N;

    1988-01-01

    The iodinated Mr approximately equal to 15,000 amino-terminal fragment (ATF) of the urokinase-type plasminogen activator (u-PA) molecule bound specifically to the cell surface of all of seven cultured human tumor cell lines studied. Cross-linking of iodinated ATF to the cell surface using a bifun...

  20. Cytokines in cerebrospinal fluid of neurosyphilis patients: Identification of Urokinase plasminogen activator using antibody microarrays.

    Lu, Ping; Zheng, Dao-Cheng; Fang, Chang; Huang, Jin-Mei; Ke, Wu-Jian; Wang, Liu-Yuan; Zeng, Wei-Ying; Zheng, He-Ping; Yang, Bin

    2016-04-15

    Little is known regarding protein responses to syphilis infection in cerebrospinal fluid (CSF) of patients presenting with neurosyphilis. Protein and antibody arrays offer a new opportunity to gain insights into global protein expression profiles in these patients. Here we obtained CSF samples from 46 syphilis patients, 25 of which diagnosed as having central nervous system involvement based on clinical and laboratory findings. The CSF samples were then analyzed using a RayBioH L-Series 507 Antibody Array system designed to simultaneously analyze 507 specific cytokines. The results indicated that 41 molecules showed higher levels in patients with neurosyphilis in comparison with patients without neural involvement. For validation by single target ELISA, we selected five of them (MIP-1a, I-TAC/CXCL11, Urokinase plasminogen activator [uPA], and Oncostatin M) because they have previously been found to be involved in central nervous system (CNS) disorders. The ELISA tests confirmed that uPA levels were significantly higher in the CSF of neurosyphilis patients (109.1±7.88pg/ml) versus patients without CNS involvement (63.86±4.53pg/ml, p<0.0001). There was also a clear correlation between CSF uPA levels and CSF protein levels (p=0.0128) as well as CSF-VDRL titers (p=0.0074) used to diagnose neurosyphilis. No significant difference between the two groups of patients, however, was found in uPA levels in the serum, suggesting specific activation of the inflammatory system in the CNS but not the periphery in neurosyphilis patients. We conclude that measurements of uPA levels in CSF may be an additional parameter for diagnosing neurosyphilis. PMID:27049560

  1. Large-Scale Overexpression and Purification of ADARs from Saccharomyces cerevisiae for Biophysical and Biochemical Studies

    Macbeth, Mark R.; Bass, Brenda L.

    2007-01-01

    Many biochemical and biophysical analyses of enzymes require quantities of protein that are difficult to obtain from expression in an endogenous system. To further complicate matters, native adenosine deaminases that act on RNA (ADARs) are expressed at very low levels, and overexpression of active protein has been unsuccessful in common bacterial systems. Here we describe the plasmid construction, expression, and purification procedures for ADARs overexpressed in the yeast Saccharomyces cerev...

  2. Effects of ADH2 Overexpression in Saccharomyces bayanus during Alcoholic Fermentation▿

    Maestre, Oscar; García-Martínez, Teresa; Peinado, Rafael A.; Mauricio, Juan C.

    2007-01-01

    The effect of overexpression of the gene ADH2 on metabolic and biological activity in Saccharomyces bayanus V5 during alcoholic fermentation has been evaluated. This gene is known to encode alcohol dehydrogenase II (ADH II). During the biological aging of sherry wines, where yeasts have to grow on ethanol owing to the absence of glucose, this isoenzyme plays a prominent role by converting the ethanol into acetaldehyde and producing NADH in the process. Overexpression of the gene ADH2 during a...

  3. Effects of p53 overexpression on neoplastic cell pro-liferation and apoptosis in thymic carcinoma

    2000-01-01

    To investigate p53 overexpression and its correlation with neoplastic cell proliferation and apoptosis in 20 thymic carcinomas. Methods: 20 surgical samples of thymic carcinoma were collected randomly during the past 15 years in the Guangzhou area. Immunohistochemical staining was performed using LSAB method with anti-p53 monoclonal antibody (DO-7) and proliferating cell nuclear antigen (clone PC 10) as primary antibodies. The p53 index was indicated by the number of p53 positive cells among 100 carcinoma cells. More than 25 percentage of p53 positive cells found in tissue sections was recognized as p53 overexpression. Carcinoma cell proliferation activity was assayed by PCNA index (PI), and apoptosis degree was evaluated by TUNEL (TdT-mediated dUTP-X nick end labeling) index (TI) using Boehringer Mannheim In Situ Death Detection Kit. Results: P53 positive cells could be found in vast majority of thymic carcinomas (19/20) and the overexpression rate reached 35% (7/20). The median PI (40%) of 7 cases with p53 overexpression was higher than that (31%) of 13 cases without p53 overexpression, but there was no statistical significance that existed between these two data (P>0.05). The median TI (0.5/HPF) of 7 p53 overexpression cases was much lower than that (4.5/HPF) of 13 non-overexpression cases, and there was a significant difference statistically (P<0.05). Conclusion: p53 expression was a frequent finding in thymic carcinoma cells, and the p53 overexpression which might represent p53 inactivation or gene mutation was often involved in thymic carcino-genesis. The median PCNA index of p53 overexpression group was higher than that of non-overexpression group though there existed no statistical difference. This indicates that the inhibiting function of p53 on cell proliferation seemed lost in p53 overexpressed thymic carcinomas. It is worthy to be specially mentioned that the inducing function of p53 on cell apoptosis was markedly lost in p53 overexpressed thymic

  4. Overexpression of Fatty-Acid-β-Oxidation-Related Genes Extends the Lifespan of Drosophila melanogaster

    Shin-Hae Lee

    2012-01-01

    Full Text Available A better understanding of the aging process is necessary to ensure that the healthcare needs of an aging population are met. With the trend toward increased human life expectancies, identification of candidate genes affecting the regulation of lifespan and its relationship to environmental factors is essential. Through misexpression screening of EP mutant lines, we previously isolated several genes extending lifespan when ubiquitously overexpressed, including the two genes encoding the fatty-acid-binding protein and dodecenoyl-CoA delta-isomerase involved in fatty-acid β-oxidation, which is the main energy resource pathway in eukaryotic cells. In this study, we analyzed flies overexpressing the two main components of fatty-acid β-oxidation, and found that overexpression of fatty-acid-β-oxidation-related genes extended the Drosophila lifespan. Furthermore, we found that the ability of dietary restriction to extend lifespan was reduced by the overexpression of fatty-acid-β-oxidation-related genes. Moreover, the overexpression of fatty-acid-β-oxidation-related genes enhanced stress tolerance to oxidative and starvation stresses and activated the dFOXO signal, indicating translocation to the nucleus and transcriptional activation of the dFOXO target genes. Overall, the results of this study suggest that overexpression of fatty-acid-β-oxidation-related genes extends lifespan in a dietary-restriction-related manner, and that the mechanism of this process may be related to FOXO activation.

  5. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling

  6. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    Xu, Hanwen [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208 (United States); Pirisi, Lucia [Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Creek, Kim E., E-mail: creekk@sccp.sc.edu [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208 (United States)

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.

  7. Retraction: "Down-regulation of uPA and uPAR by 3,3'-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells" by Ahmad et al.

    2016-08-01

    The above article, published online on August 19, 2009 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the third author and the corresponding author that found Figure 5C to be inappropriately re-used and re-labeled. REFERENCE Ahmad A, Kong D, Wang Z, Sarkar SH, Banerjee S, Sarkar FH. 2009. Down-regulation of uPA and uPAR by 3,3'-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. J Cell Biochem 108:916-925; doi: 10.1002/jcb.22323. PMID:27301886

  8. EFFECTS OF p53 OVEREXPRESSION ON NEOPLASTIC CELL MITOSIS AND APOPTOSIS IN NASOPHARYNGEAL CARCINOMA

    2001-01-01

    To investigate the p53 overexpression and its correlation withneoplastic cell mitosis and apoptosis in 43 nasopharyngeal carcinomas (NPCs). Methods: Forty-three pretreated NPC biopsy samples were randomly collected in the year 1997 for this study. p53 overexpression was detected by LSAB immunohistochemistry using DO-7 primary antibody. Mitotic figures were counted on H&E stained slides, and apoptotic cells on TUNEL-stained slides by use of in-situ cell death detection kit. Both of mitotic and apoptotic cells were quantitated by cell numbers per one high power field (5′ 40) averagely in terms of mitotic index (MI) and TUNEL index (TI), respectively. To compare the mean MIs of two groups categorized by different percentages of positive p53 positive cells found in NPC specimens was taken for the purpose of designating the criterion of p53 overexpression. And then, the correlation of p53 overexpression with MI and TI was made by statistical analysis. Results: Because statistically significant difference appeared at the criterion of 20%, the p53 overexpression of NPC was defined as≥20% of positive cells found. The p53 overexpression thus could be detected in 37 out of 43 NPCs, reaching 86.05% (37/43). The mean MI (1.87± 1.78/HPF) of 37 NPCs with p53 overexpression was significantly higher than that (0.76± 0.63/HPF) of 6 NPCs without p53 overexpression, the P value being <0.05. However, there was no statistical difference between the mean TI (24.50± 26.66HPF) of 37 NPCs with p53 overexpression and TI (23.17± 25.30/HPF) of 6 NPCs without p53 overexpression. Conclusions: p53 overexpression of NPC could be designated by ≥20% of positive neoplastic cells found in pretreated NPC specimens, and the rate of which reached 86.05% (37/43). The overexpressed p53 could enhance cell proliferative activity in pretreated NPCs represented by increasing of MI, but showed no effect on neoplastic cell apoptosis.

  9. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    Karhumaa Kaisa

    2011-07-01

    gave a substantial improvement in isobutanol production for the reference strain, but not for the ILV2 ILV3 ILV5 overexpression strain. This result implies that other constraints besides the enzyme activities for the supply of 2-ketoisovalerate may become bottlenecks for isobutanol production after ILV2, ILV3, and ILV5 have been overexpressed, which most probably includes the valine inhibition to Ilv2.

  10. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Wen-Hui [Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001 (China); Yan, Ba-Yi; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Yang, Wu-Lin, E-mail: wulinyoung@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research - A*STAR (Singapore)

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  11. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5

  12. Kif14 overexpression accelerates murine retinoblastoma development.

    O'Hare, Michael; Shadmand, Mehdi; Sulaiman, Rania S; Sishtla, Kamakshi; Sakisaka, Toshiaki; Corson, Timothy W

    2016-10-15

    The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo. PMID:27270502

  13. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  14. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway.

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. PMID:27003260

  15. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  16. Effect of all-trans retinoic acid on procoagulant and fibrinolytic activities of cultured blast cells from patients with acute promyelocytic leukemia.

    De Stefano, V; Teofili, L; Sica, S; Mastrangelo, S; Di Mario, A; Rutella, S; Salutari, P; Rumi, C; d'Onofrio, G; Leone, G

    1995-11-01

    The mechanisms underlying acute promyelocytic leukemia (APL) coagulopathy and its reversal by administration of all-trans retinoic acid (ATRA) have been investigated. Bone marrow promyelocytic blasts from nine patients with APL were cultured with or without ATRA 1 mumol/L. Cultured blasts (days 0, 3, 6, and 9) were washed, resuspended in phosphate buffer, lysed by freezing and thawing, and then assayed for procoagulant activity (PCA), elastase activity, tissue factor (TF) antigen, tissue-type plasminogen activator (t-PA) antigen and urokinase-type plasminogen activator (u-PA) antigen. PCA was determined by a recalcification assay. Elastase was measured by an amidolytic assay (S-2484). TF, t-PA, and u-PA antigens were measured by an enzyme-linked immunosorbent assay (ELISA). Malignant promyelocytes isolated from the patients had increased levels of PCA and TF as compared with the control polymorphonucleates, and low levels of elastase, t-PA, and u-PA; the patient blast PCA level was significantly related to the degree of hypofibrinogenemia. In this system, blast PCA depended on the tissue factor and was significantly correlated to the TF antigen values. In the cultures without ATRA, PCA, TF, and u-PA progressively increased, whereas elastase and t-PA levels remained essentially unchanged. In the presence of ATRA, all parameters (except u-PA) decreased during the culture time. Thus, a major role of the promyelocytic blast cell PCA in the pathogenesis of M3-related coagulopathy is suggested; the ATRA effect on coagulopathy seems mainly mediated by a downregulation of the PCA. PMID:7579461

  17. Phorbol ester induces the biosynthesis of glycosylated and nonglycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells

    1987-01-01

    The tumor-promoting phorbol ester PMA induces changes in the histiocytic human lymphoma cell line U-937 akin to cellular differentiation (Ralph, P., N. Williams, M. A. S. Moore, and P. B. Litcofsky, 1982, Cell. Immunol., 71:215-223) and concomitantly stimulates the biosynthesis of plasminogen activator inhibitor 2 (PAI 2) and of urokinase-type plasminogen activator (u-PA). PAI 2 is found in a nonglycosylated intracellular and a glycosylated secreted form. The former appears to be identical to...

  18. Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway.

    Kawiak, Anna; Zawacka-Pankau, Joanna; Lojkowska, Ewa

    2012-04-27

    Breast cancer is the leading cause of death-related cancers in women. Approximately 30% of breast cancers overexpress the Her2 oncogene, which is associated with a poor prognosis and increased resistance to chemotherapy. Plumbagin (1), a constituent of species in the plant genera Drosera and Plumbago, displays antineoplastic activity toward various cancers. The present study was aimed at determining the anticancer potential of 1 toward Her2-overexpressing breast cancer cells and defining the mode of cell death induced in these cells. The results showed that 1 exhibited high antiproliferative activity toward the Her2-overexpressing cell lines SKBR3 and BT474. The antiproliferative activity of 1 was associated with apoptosis-mediated cell death, as revealed by caspase activation and an increase in the sub-G1 fraction of the cell cycle. Compound 1 increased the levels of the proapoptotic Bcl-2 family of proteins and decreased the level of the antiapoptotic Bcl-2 protein in SKBR3 and BT474 cells. Thus, these findings indicate that 1 induces apoptosis in Her2-overexpressing breast cancers through the mitochondrial-mediated pathway and suggest its potential for further investigation for the treatment of Her2-overexpressing breast cancer. PMID:22512718

  19. Bicyclic Peptide Inhibitor of Urokinase-Type Plasminogen Activator

    Roodbeen, Renée; Paaske, Berit; Jiang, Longguang;

    2013-01-01

    The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptidebased inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase-type plasminogen activator (uPA), based on the established...... monocyclic peptide, upain-2. It was successfully converted to a bicyclic peptide, without loss of inhibitory properties. The aim was to produce a peptide cyclised by an amide bond with an additional stabilising across-the-ring covalent bond. We expected this bicyclic peptide to exhibit a lower entropic...... burden upon binding. Two bicyclic peptides were synthesised with affinities similar to that of upain-2, and their binding energetics were evaluated by isothermal titration calorimetry. Indeed, compared to upain-2, the bicyclic peptides showed reduced loss of entropy upon binding to uPA. We also...

  20. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes.

    Li, Chun Yao; Leopold, Alex L; Sander, Guy W; Shanks, Jacqueline V; Zhao, Le; Gibson, Susan I

    2015-01-01

    Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression. PMID:26483828

  1. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes

    Chun Yao eLi

    2015-10-01

    Full Text Available Terpenoid indole alkaloid (TIA biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Towards this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a fine-tune regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression.

  2. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA) and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1). In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS) and Breast Cancer specific Survival (BCS) were significantly shorter in patients expressing high levels of PAI-1 mRNA (p < 0.0001; p < 0.0001; respectively). In Cox multivariate analysis, the level of PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR) = 10.12; p = 0.0002) and for BCS (HR = 13.17; p = 0.0003). Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41) nor with BCS (p = 0.19). In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer

  3. The effects of over-expressing Tip60 on cellular DNA damage repair and cell cycle progression

    To investigate the effects of Tip60 on DNA damage repair, cell cycle and the related mechanism as well, the proliferative activity, DNA double strand break (DSB) repair competency and cell cycle arrest were analyzed in stable Tip60-overexpression U2OS cells established by transfecting with exogenous Tip60 gene. It was found that the overexpression of Tip60 inhibited the proliferative activity but increased the DNA damage repair competency. The radiation-induced G2/M arrest was prolonged in Tip60 over-expressed U2OS cells, which was associated with a decreasing level of cell cycle checkpoint protein Cyclin B/CDC2 complex. (authors)

  4. Overexpressed TP73 induces apoptosis in medulloblastoma

    Perlaky Laszlo; Adesina Adekunle M; Rajan Jessen A; Skapura Darlene G; Lin Linda L; De Bortoli Massimiliano; Castellino Robert C; Irwin Meredith S; Kim John YH

    2007-01-01

    Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic ...

  5. Hand1 overexpression inhibits medulloblastoma metastasis.

    Asuthkar, Swapna; Guda, Maheedhara R; Martin, Sarah E; Antony, Reuben; Fernandez, Karen; Lin, Julian; Tsung, Andrew J; Velpula, Kiran K

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. PMID:27297109

  6. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  7. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Cook-Moreau, Jeanne [Université de Limoges, FR 3503 GEIST, UMR CNRS 7276 “Contrôle de la réponse immune B et lymphoproliférations”, Faculté de Médecine, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Beneytout, Jean-Louis [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Liagre, Bertrand, E-mail: bertrand.liagre@unilim.fr [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France)

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.

  8. Overexpression of the Gene Encoding GTP:Mannose-1-Phosphate Guanyltransferase, mpg1, Increases Cellular GDP-Mannose Levels and Protein Mannosylation in Trichoderma reesei

    Zakrzewska, Anna; Palamarczyk, Grazyna; Krotkiewski, Hubert; Zdebska, Ewa; Saloheimo, Markku; Penttilä, Merja; Kruszewska, Joanna S.

    2003-01-01

    To elucidate the regulation and limiting factors in the glycosylation of secreted proteins, the mpg1 and dpm1 genes from Trichoderma reesei (Hypocrea jecorina) encoding GTP:α-d-mannose-1-phosphate guanyltransferase and dolichyl phosphate mannose synthase (DPMS), respectively, were overexpressed in T. reesei. No significant increases were observed in DPMS activity or protein secretion in dpm1-overexpressing transformants, whereas overexpression of mpg1 led to a twofold increase in GDP-mannose ...

  9. Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis

    Osteopontin (OPN) is a secreted phosphoprotein often overexpressed at high levels in the blood and primary tumors of breast cancer patients. OPN contains two integrin-binding sites and a thrombin cleavage domain located in close proximity to each other. To study the role of the thrombin cleavage site of OPN, MDA-MB-468 human breast cancer cells were stably transfected with either wildtype OPN (468-OPN), mutant OPN lacking the thrombin cleavage domain (468-ΔTC) or an empty vector (468-CON) and assessed for in vitro and in vivo functional differences in malignant/metastatic behavior. All three cell lines were found to equivalently express thrombin, tissue factor, CD44, αvβ5 integrin and β1 integrin. Relative to 468-OPN and 468-CON cells, 468-ΔTC cells expressing OPN with a deleted thrombin cleavage domain demonstrated decreased cell adhesion (p < 0.001), decreased mRNA expression of MCAM, maspin and TRAIL (p < 0.01), and increased uPA expression and activity (p < 0.01) in vitro. Furthermore, injection of 468-ΔTC cells into the mammary fat pad of nude mice resulted in decreased primary tumor latency time (p < 0.01) and increased primary tumor growth and lymph node metastatic burden (p < 0.001) compared to 468-OPN and 468-CON cells. The results presented here suggest that expression of thrombin-uncleavable OPN imparts an early tumor formation advantage as well as a metastatic advantage for breast cancer cells, possibly due to increased proteolytic activity and decreased adhesion and apoptosis. Clarification of the mechanisms responsible for these observations and the translation of this knowledge into the clinic could ultimately provide new therapeutic opportunities for combating breast cancer

  10. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    Chuang, Jian-Ying [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Hung, Jan-Jong, E-mail: petehung@mail.ncku.edu.tw [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2011-04-15

    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  11. SNEV overexpression extends the life span of human endothelial cells

    In a recent screening for genes downregulated in replicatively senescent human umbilical vein endothelial cells (HUVECs), we have isolated the novel protein SNEV. Since then SNEV has proven as a multifaceted protein playing a role in pre-mRNA splicing, DNA repair, and the ubiquitin/proteosome system. Here, we report that SNEV mRNA decreases in various cell types during replicative senescence, and that it is increased in various immortalized cell lines, as well as in breast tumors, where SNEV transcript levels also correlate with the survival of breast cancer patients. Since these mRNA profiles suggested a role of SNEV in the regulation of cell proliferation, the effect of its overexpression was tested. Thereby, a significant extension of the cellular life span was observed, which was not caused by altered telomerase activity or telomere dynamics but rather by enhanced stress resistance. When SNEV overexpressing cells were treated with bleomycin or bleomycin combined with BSO, inducing DNA damage as well as reactive oxygen species, a significantly lower fraction of apoptotic cells was found in comparison to vector control cells. These data suggest that high levels of SNEV might extend the cellular life span by increasing the resistance to stress or by improving the DNA repair capacity of the cells

  12. Overexpressed TP73 induces apoptosis in medulloblastoma

    Perlaky Laszlo

    2007-07-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and

  13. Short-form RON overexpression augments benzyl isothiocyanate-induced apoptosis in human breast cancer cells.

    Sehrawat, Anuradha; Singh, Shivendra V

    2016-05-01

    Chemoprevention of breast cancer is feasible with the use of non-toxic phytochemicals from edible and medicinal plants. Benzyl isothiocyanate (BITC) is one such plant compound that prevents mammary cancer development in a transgenic mouse model in association with tumor cell apoptosis. Prior studies from our laboratory have demonstrated a role for reactive oxygen species (ROS)-dependent Bax activation through the intermediary of c-Jun N-terminal kinases in BITC-induced apoptosis in human breast cancer cells. The present study demonstrates that truncated Recepteur d'Origine Nantais (sfRON) is a novel regulator of BITC-induced apoptosis in breast cancer cells. Overexpression of sfRON in MCF-7 and MDA-MB-361 cells resulted in augmentation of BITC-induced apoptosis when the apoptotic fraction was normalized against vehicle control for each cell type (untransfected and sfRON overexpressing cells). ROS generation and G2 /M phase cell cycle arrest resulting from BITC treatment were significantly attenuated in sfRON overexpressing cells after normalization with vehicle control for each cell type. Increased BITC-induced apoptosis by sfRON overexpression was independent of c-Jun N-terminal kinase or p38 mitogen-activated protein kinase hyperphosphorylation. On the other hand, activation of Bax and Bak following BITC exposure was markedly more pronounced in sfRON overexpressing cells than in controls. sfRON overexpression also augmented apoptosis induction by structurally diverse cancer chemopreventive phytochemicals including withaferin A, phenethyl isothiocyanate, and D,L-sulforaphane. In conclusion, the present study provides novel mechanistic insights into the role of sfRON in apoptosis regulation by BITC and other electrophilic phytochemicals. © 2015 Wiley Periodicals, Inc. PMID:25857724

  14. Nucleophosmin is overexpressed in thyroid tumors

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed in tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.

  15. Overexpressed Genes/ESTs and Characterization of Distinct Amplicons on 17823 in Breast Cancer Cells

    Ayse E. Erson

    2001-01-01

    Full Text Available 17823 is a frequent site of gene amplification in breast cancer. Several lines of evidence suggest the presence of multiple amplicons on 17823. To characterize distinct amplicons on 17823 and localize putative oncogenes, we screened genes and expressed sequence tags (ESTs in existing physical and radiation hybrid maps for amplification and overexpression in breast cancer cell lines by semiquantitative duplex PCR, semiquantitative duplex RT-PCR, Southern blot, Northern blot analyses. We identified two distinct amplicons on 17823, one including TBX2 and another proximal region including RPS6KB1 (PS6K and MUL. In addition to these previously reported overexpressed genes, we also identified amplification and overexpression of additional uncharacterized genes and ESTs, some of which suggest potential oncogenic activity. In conclusion, we have further defined two distinct regions of gene amplification and overexpression on 17823 with identification of new potential oncogene candidates. Based on the amplification and overexpression patterns of known and as of yet unrecognized genes on 17823, it is likely that some of these genes mapping to the discrete amplicons function as oncogenes and contribute to tumor progression in breast cancer cells.

  16. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression

    Haredy, Ahmad M.; Nishizawa, Akitoshi; Honda, Kohsuke; Ohya, Tomoshi; Ohtake, Hisao; Omasa, Takeshi

    2013-01-01

    To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host c...

  17. Dictyostelium discoideum: a model for testing novel inhibitors of urokinase-type plasminogen activator

    Thompson, Elinor

    2013-01-01

    The social amoeba Dictyostelium discoideum is a useful non-animal eukaryote for testing novel compounds and dissecting cell regulatory molecular networks. We used this model organism to investigate the effect of a series of arylboronic acids and pinacol esters on development, chemotaxis and viability. These compounds were studied in parallel by collaborators for serine protease and urokinase-type plasminogen activator (uPA) inhibition, both in vitro and in vivo. In those biochemical assays, t...

  18. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger

    Meijer, Susan Lisette; Otero, José Manuel; Olivares Hernandez, Roberto;

    2009-01-01

    In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards...

  19. Mer receptor tyrosine kinase is frequently overexpressed in human non-small cell lung cancer, confirming resistance to erlotinib

    Xie, Shengzhi; Li, Yongwu; Li, Xiaoyan; WANG, LINXIONG; Yang, Na; Wang, Yadi; Wei, Huafeng

    2015-01-01

    Mer is a receptor tyrosine kinase (RTK) with oncogenic properties that is often overexpressed or activated in various malignancies. Using both immunohistochemistry and microarray analyses, we demonstrated that Mer was overexpressed in both tumoral and stromal compartments of about 70% of non-small cell lung cancer (NSCLC) samples relative to surrounding normal lung tissue. This was validated in freshly harvested NSCLC samples; however, no associations were found between Mer expression and pat...

  20. Genetic transformation of sweet orange to overexpress a CsPR-8 gene aiming for Candidatus Liberibacter asiaticus resistance

    MOURÃO FILHO F.A.A.; Stipp, L. C.L.; Beltrame, A. B.; Boscariol-Camargo, R. L.; Harakava, R.; B.M.J. Mendes

    2014-01-01

    A strategy to produce HLB-resistant citrus using genetic engineering is the overexpression of genes identified in the citrus genome. Plants respond to pathogen attacks by producing several pathogenesis-related (PR) proteins. Therefore, individual PR overexpression in transgenic plants can lead to an increased resistance. In this study, we have chosen to use one PR-8 isoform cloned from Citrus sinensis (CsPR-8). The PR-8 is an endochitinase that also has lysozyme activity, to be potentially us...

  1. Enhancing Indigo Production by Over-Expression of the Styrene Monooxygenase in Pseudomonas putida.

    Cheng, Lei; Yin, Sheng; Chen, Min; Sun, Baoguo; Hao, Shuai; Wang, Chengtao

    2016-08-01

    As an important traditional blue dye, indigo has been used in food and textile industry for centuries, which can be produced via the styrene oxygenation pathway in Pseudomonas putida. Hence, the styrene monooxygenase gene styAB and oxide isomerase gene styC are over-expressed in P. putida to investigate their roles in indigo biosynthesis. RT-qPCR analysis indicated that transcriptions of styA and styB were increased by 2500- and 750-folds in the styAB over-expressed strain B4-01, compared with the wild-type strain B4, consequently significantly enhancing the indole monooxygenase activity. Transcription of styC was also increased by 100-folds in the styC over-expressed strain B4-02. Besides, styAB over-expression slightly up-regulated the transcription of styC in B4-01, while styC over-expression hardly exerted an effect on the transcriptional levels of styA and styB and indole monooxygenase activity in B4-02. Furthermore, shaking flask experiments showed that indigo production in B4-01 reached 52.13 mg L(-1) after 24 h, which was sevenfold higher than that in B4. But no obvious increase in indigo yield was observed in B4-02. Over-expression of styAB significantly enhanced the indigo production, revealing that the monooxygenase STYAB rather than oxide isomerase STYC probably acted as the key rate-limiting enzyme in the indigo biosynthesis pathway in P. putida. This work provided a new strategy for enhancing indigo production in Pseudomonas. PMID:27154464

  2. Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity

    Hill Peter A

    2005-02-01

    Full Text Available Abstract Background Breast cancer cells frequently metastasize to the skeleton and induce extensive bone destruction. Cancer cells produce proteinases, including matrix metalloproteinases (MMPs and the plasminogen activator system (PAS which promote invasion of extracellular matrices, but whether these proteinases degrade bone matrix is unclear. To characterize the role that breast cancer cell proteinases play in bone degradation we compared the effects of three human breast cancer cell lines, MDA-MB-231, ZR-75-1 and MCF-7 with those of a normal breast epithelial cell line, HME. The cell lines were cultured atop radiolabelled matrices of either mineralized or non-mineralized bone or type I collagen, the principal organic constituent of bone. Results The 3 breast cancer cell lines all produced significant degradation of the 3 collagenous extracellular matrices (ECMs whilst the normal breast cell line was without effect. Breast cancer cells displayed an absolute requirement for serum to dissolve collagen. Degradation of collagen was abolished in plasminogen-depleted serum and could be restored by the addition of exogenous plasminogen. Localization of plasmin activity to the cell surface was critical for the degradation process as aprotinin, but not α2 antiplasmin, prevented collagen dissolution. During ECM degradation breast cancer cell lines expressed urokinase-type plasminogen activator (u-PA and uPA receptor, and MMPs-1, -3, -9,-13, and -14. The normal breast epithelial cell line expressed low levels of MMPs-1, and -3, uPA and uPA receptor. Inhibitors of both the PAS (aprotinin and PA inhibitor-1 and MMPs (CT1166 and tisue inhibitor of metalloproteinase blocked collagen degradation, demonstrating the requirement of both plasminogen activation and MMP activity for degradation. The activation of MMP-13 in human breast cancer cells was prevented by plasminogen activator inhibitor-1 but not by tissue inhibitor of metalloproteinase-1, suggesting

  3. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041), increased lymph node metastasis (P = 0.001), less differentiation (P = 0.005), increased recurrence (P = 0.038) and shorter survival (P = 0.004) of the patients. In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC

  4. Anti-metastatic activities of Antrodia camphorata against human breast cancer cells mediated through suppression of the MAPK signaling pathway.

    Yang, Hsin-Ling; Kuo, Yueh-Hsiung; Tsai, Ching-Tsan; Huang, Yi-Ting; Chen, Ssu-Ching; Chang, Hsueh-Wei; Lin, Elong; Lin, Wen-Hsin; Hseu, You-Cheng

    2011-01-01

    The fermented culture broth of Antrodia camphorata (A. camphorata) has been shown to promote cell cycle arrest and apoptosis of human estrogen-nonresponsive MDA-MB-231 cells. Herein, we demonstrate that non-cytotoxic concentrations (20-80 μg/mL) of A. camphorata markedly inhibited the invasion/migration of highly metastatic MDA-MB-231 cells as shown by an in vitro transwell and a wound-healing repair assay. The results of a gelatin zymography assay showed that A. camphorata suppressed the activity of matrix metalloproteinase (MMP)-9 and urokinase plasminogen activator (uPA). Western blot results demonstrated that treatment with A. camphorata decreased the expression of MMP-9, MMP-2, uPA, uPA receptor (uPAR) and vascular endothelial growth factor (VEGF); while the expression of the endogenous inhibitors of these proteins, i.e., tissue inhibitors of MMP (TIMP-1 and TIMP-2), and plasminogen activator inhibitor (PAI)-1, increased. Further investigation revealed that A. camphorata suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. camphorata treatment also led to a dose-dependent inhibition on NF-κB binding and activation. This is the first report confirming the anti-metastatic activity of this potentially beneficial mushroom against human breast cancer. PMID:21056076

  5. Practicas de cuidado que poseen las adolescentes gestantes que asisten al curso de preparación para la maternidad y paternidad “un proyecto de vida” en la UPA 10 abastos de la localidad 8ª DE Kennedy durante el periodo de agosto a noviembre del 2009 / Care practices that have the pregnant teenagers who attended the course of preparation for maternity and paternity "one life project" in the UPA 10 abastos of the Kennedy locality 8th during the period of august to november 2009

    Beltrán Granados, Laura Alejandra; Díaz Córdoba , Ingrid Carolina; Lizcano Ortega , Mabel Rocío

    2009-01-01

    Con el objetivo de identificar las Prácticas de Cuidado que poseen las Adolescentes Gestantes que asistieron al Curso de Preparación para la Maternidad y Paternidad “Un Proyecto de Vida” en la UPA 10 Abastos de la localidad 8ª de Kennedy durante el periodo de Agosto a Noviembre de 2009, se desarrolló un estudio descriptivo de corte transversal, en una muestra de 23 Adolescentes Gestantes (menores de 20 años), implementando el instrumento “Prácticas de cuidado que realizan consigo mismas y con...

  6. Elevated levels of plasminogen activators in the pathogenesis of delayed radiation damage in rat cervical spinal cord in vivo

    The pathophysiology of the cellular basis of radiation-induced demyelination and white-matter necrosis of the central nervous system (CNS) is poorly understood. Preliminary data suggest that tissue damage is partly mediated through changes in the proteolytic enzymes. In this study, we irradiated rat cervical spinal cords with single doses of 24 Gy of 18 MV photons or 20 MeV electrons and measured the levels of plasminogen activators at days 2, 7, 30, 60, 90, 120, 130 and 145 after irradiation, using appropriate controls at each time. Fibrin zymography revealed fibrinolytic bands representing molecular weights of 68,000 and 48,000 in controls and irradiated samples; these bands increased significantly at days 120, 130 and 145 after irradiation. Inhibition of these enzymatic bands with specific antibodies against tissue-type plasminogen activator (tPA) and amiloride, an inhibitor for urokinase plasminogen activator (uPA), confirmed that these bands were tPA and uPA. Enzymatic levels quantified by densitometry showed a twofold elevation in the levels of tPA and more than a tenfold increase in uPA after 120 days' irradiation. Activity of uPA was increased threefold by day 2 and increased steadily with time compared to nonirradiated control samples. Enzyme-linked immunosorbent assay (ELISA) also showed a threefold increase in the tPA content in the extracts of irradiated rat cervical spinal cords at days 120, 130 and 145. This study adds additional information to the proposed role of plasminogen activators in the pathogenic pathways of radiation damage in the CNS. 38 refs., 6 figs

  7. MUC1 gene overexpressed in breast cancer: structure and transcriptional activity of the MUC1 promoter and role of estrogen receptor alpha (ERα in regulation of the MUC1 gene expression

    Wreschner Daniel H

    2006-11-01

    Full Text Available Abstract Background The MUC1 gene encodes a mucin glycoprotein(s which is basally expressed in most epithelial cells. In breast adenocarcinoma and a variety of epithelial tumors its transcription is dramatically upregulated. Of particular relevance to breast cancer, steroid hormones also stimulate the expression of the MUC1 gene. The MUC1 gene directs expression of several protein isoforms, which participate in many crucial cell processes. Although the MUC1 gene plays a critical role in cell physiology and pathology, little is known about its promoter organization and transcriptional regulation. The goal of this study was to provide insight into the structure and transcriptional activity of the MUC1 promoter. Results Using TRANSFAC and TSSG soft-ware programs the transcription factor binding sites of the MUC1 promoter were analyzed and a map of transcription cis-elements was constructed. The effect of different MUC1 promoter regions on MUC1 gene expression was monitored. Different regions of the MUC1 promoter were analyzed for their ability to control expression of specific MUC1 isoforms. Differences in the expression of human MUC1 gene transfected into mouse cells (heterologous artificial system compared to human cells (homologous natural system were observed. The role of estrogen on MUC1 isoform expression in human breast cancer cells, MCF-7 and T47D, was also analyzed. It was shown for the first time that synthesis of MUC1/SEC is dependent on estrogen whereas expression of MUC1/TM did not demonstrate such dependence. Moreover, the estrogen receptor alpha, ERα, could bind in vitro estrogen responsive cis-elements, EREs, that are present in the MUC1 promoter. The potential roles of different regions of the MUC1 promoter and ER in regulation of MUC1 gene expression are discussed. Conclusion Analysis of the structure and transcriptional activity of the MUC1 promoter performed in this study helps to better understand the mechanisms controlling

  8. Effects of urokinase-type plasminogen activator in the acquisition, expression and reinstatement of cocaine-induced conditioned-place preference

    Bahi, Amine; Kusnecov, Alexander W; Dreyer, Jean-Luc

    2008-01-01

    Cocaine and many other psychostimulants strongly induce urokinase-type plasminogen activator (uPA) expression in the mesolimbic dopaminergic pathway, which plays a major role in drug-mediated behavioral plasticity [Bahi A, Boyer F, Gumy C, Kafri T, Dreyer JL. In vivo gene delivery of urokinase-type plasminogen activator with regulatable lentivirus induces behavioral changes in chronic cocaine administration. Eur J Neurosci 2004;20:3473–88; Bahi A, Boyer F, Kafri T, Dreyer JL. Silencing urokin...

  9. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice

    Cui, Li-Li; Lu, Yu-sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense. PMID:27540387

  10. The Effect of cdk- 5 Overexpression and Overactivation on Tau Hyperphosphorylation in Cultured N2a Cells

    CHEN Juan; LI Hong-lian; FENG You-mei; WANG Jian-zhi

    2005-01-01

    Neurofibrillary tangles (NFTs) are one of the neuropathological hallmarks of Alzheimer' s disease (AD) and abnormally hyperphosphorylated tau is the major protein of NFTs. It was reported that cyclin-dependent kinase5 (Cdk-5) could phosphorylate tau at most AD-related epitopes in vivo. In this study, we investigated the effect of cdk-5 overexpression on tau hyperphosphorylation in neuroblastoma N2a cells. We demonstrated that overexpression of cdk-5 which resulted in a 3.5-fold Cdk5 activation in the transfected cells induced a dramatic increase in phosphorylation of tau at several phosphorylation sites. Overexpression of cdk-5 led to a reduced staining with antibody Tau-1 and an enhanced staining with antibody PHF-1, suggesting hy perphosphorylation of tau at Ser199/202 and Ser396/404 sites. It implies that in vitro overexpression of cdk-5 leads to Cdk5 overactivation and tau hyperphosphorylation may be the underline mechanism.

  11. The effect of anti-human plasminogen monoclonal antibodies on Glu-plasminogen activation by plasminogen activators

    M. Akrami

    2006-07-01

    Full Text Available Background: Human plasminogen is a plasma glycoprotein synthesized mainly in the liver. Conversion of plasminogen to plasmin by plasminogen activators is a key event in the fibrinolytic system. In this study, we investigated the effects of two anti-human plasminogen monoclonal antibodies, A1D12 and MC2B8 on Glu-plasminogen activation in presence of u-PA, t-PA and streptokinase. Methods: Producing of Hybridoma antibodies was performed by fusion of spleen cells from BALB/C mice immunized with Glu-plasminogen and NS1 myeloma cells. Antibody binding to Human Glu-plasminogen was assessed using an ELISA assay. Activation of plasminogen was determined by measuring plasmin generation using the chromogenic substrate S-2251 and the effect of monoclonal antibodies, A1D12 and MC2B8 on plasminogen activation in solution was then evaluated. Initial rates and kinetic parameters of plasminogen activation in the presence of monoclonal antibodies were calculated. The effect of the monoclonal antibody MC2B8 on the rate of plasmin hydrolysis was measured. The effect of F(ab'2 fragment of A1D12 on u-PA catalyzed-plasminogen activation also compared with the effect of the whole antibody in this reaction. Results: ELISA assay showed that the antibodies reacted well with antigens. A1D12 increased the maximum velocity (Vmax of plasminogen activation by each of the three plasminogen activators and MC2B8 decreased it. In all activation reactions, the KM value of plasminogen activation did not significantly change in the presence of antibody A1D12 whereas antibody MC2B8 increased the KM value of plasminogen activation by u-PA, fibrin monomer dependent t-PA and streptokinase. Monoclonal antibody MC2B8 had no significant effect on plasmin hydrolysis rate of synthetic substrate S-2251. Activation rate of plasminogen by u-PA in the lower concentration of F (ab2 fragment of A1D12 was identical to activation in the presence of the whole antibody. Conclusion: The binding of

  12. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.

    Ding, Jun; Holzwarth, Garrett; Bradford, C Samuel; Cooley, Ben; Yoshinaga, Allen S; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H; Bakalinsky, Alan T

    2015-10-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671

  13. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  14. Overexpression of Mitochondrial Sirtuins Alters Glycolysis and Mitochondrial Function in HEK293 Cells

    Barbi de Moura, Michelle; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S.

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak. PMID:25165814

  15. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl2, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 ± 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K M value for FMN of 1.5 ± 0.3 μM. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast

  16. Focal adhesion kinase overexpression and its impact on human osteosarcoma

    Chen, Yong; Yang, Aizhen; Chen, Hui; Zhang, Jian; Wu, Sujia; Shi, Xin; Wang, Chen; Sun, Xiaoliang

    2015-01-01

    Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. siRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis. PMID:26393679

  17. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression

    Duckworth, C; Zhang, L; Carroll, S L; Ethier, S P; Cheung, H W

    2016-01-01

    We previously found that the scaffold adapter GRB2-associated binding protein 2 (GAB2) is amplified and overexpressed in a subset of primary high-grade serous ovarian cancers and cell lines. Ovarian cancer cells overexpressing GAB2 are dependent on GAB2 for activation of the phosphatidylinositol 3-kinase (PI3K) pathway and are sensitive to PI3K inhibition. In this study, we show an important role of GAB2 overexpression in promoting tumor angiogenesis by upregulating expression of multiple chemokines. Specifically, we found that suppression of GAB2 by inducible small hairpin RNA in ovarian cancer cells inhibited tumor cell proliferation, angiogenesis and peritoneal tumor growth in immunodeficient mice. Overexpression of GAB2 upregulated the secretion of several chemokines from ovarian cancer cells, including CXCL1, CXCL2 and CXCL8. The secreted chemokines not only signal through endothelial CXCR2 receptor in a paracrine manner to promote endothelial tube formation, but also act as autocrine growth factors for GAB2-induced transformation of fallopian tube secretory epithelial cells and clonogenic growth of ovarian cancer cells overexpressing GAB2. Pharmacological inhibition of inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ), but not PI3K, mechanistic target of rapamycin (mTOR) or mitogen-activated protein kinase (MEK), could effectively suppress GAB2-induced chemokine expression. Inhibition of IKKβ augmented the efficacy of PI3K/mTOR inhibition in suppressing clonogenic growth of ovarian cancer cells with GAB2 overexpression. Taken together, these findings suggest that overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating expression of CXCL1, CXCL2 and CXCL8 that is IKKβ-dependent. Co-targeting IKKβ and PI3K pathways downstream of GAB2 might be a promising therapeutic strategy for ovarian cancer that overexpresses GAB2. PMID:26657155

  18. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases

    Yu-Hung eYeh

    2015-05-01

    Full Text Available Upon recognition of microbe-associated molecular patterns (MAMPs such as the bacterial flagellin (or the derived peptide flg22 by pattern-recognition receptors (PRRs such as the FLAGELLIN SENSING2 (FLS2, plants activate the pattern-triggered immunity (PTI response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2 is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs possess two copies of the C-X8-C-X2-C (DUF26 motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6 and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1 was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6 and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity.

  19. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  20. Ras1CA overexpression in the posterior silk gland improves silk yield

    Li Ma; Hanfu Xu; Jinqi Zhu; Sanyuan Ma; Yan Liu; Rong-Jing Jiang; Qingyou Xia; Sheng Li

    2011-01-01

    Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm,Bombyx mori,but has reached a plateau during the last decades. For the first time,we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1CA oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%,while increasing food consumption by only 20%. Ras activation by Ras1CA overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins,up-regulated fibroin mRNA levels,increased total DNA content,and stimulated endoreplication. Moreover,Rasl activation increased cell and nuclei sizes,enriched subcellular organelles related to protein synthesis,and stimulated ribosome biogenesis for mRNA translation. We conclude that Rasl activation increases cell size and protein synthesis in the posterior silk gland,leading to silk yield improvement.

  1. Frequent Nek1 overexpression in human gliomas.

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-08-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients' poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. PMID:27251576

  2. AMPKα1 overexpression alleviates the hepatocyte model of nonalcoholic fatty liver disease via inactivating p38MAPK pathway.

    Zhang, Hong-Ai; Yang, Xiao-Yan; Xiao, Yan-Feng

    2016-05-27

    Nonalcoholic fatty liver disease (NAFLD) has a wide spectrum of liver damage with a worldwide prevalence of almost 20%. AMP-activated protein kinase α1 (AMPKα1) is an energy sensor that plays a key role in regulating lipid metabolism of the liver. This study explores the role of AMPKα1 overexpression in a steatotic hepatocyte model. The results displayed that the AMPKα1 overexpression suppressed lipid accumulation in the cytoplasm, decreased triglyceride levels, maintained the survival of steatotic hepatocyte model with decreased cell apoptosis and increased survival rate. Besides, AMPKα1 overexpression promoted the expression of lipid catabolism-related genes, reduced the level of anabolism-related genes, alleviated the inflammatory response by reducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines. Moreover, AMPKα1 overexpression could inhibit the activation of p38 mitogen-activated protein kinase (p38MAPK). Finally, Anisomycin, a frequently-used activator of p38MAPK, reversed the inhibitory effect of pc-AMPKα1 on the expression of p-p38MAPK, suggesting that AMPKα1 overexpression alleviates inflammatory response through the inactivation of p38MAPK. These results indicated that AMPKα1 may serve as a novel target for treatment of NAFLD. PMID:27109475

  3. Urokinase-targeted recombinant bacterial protein toxins-a rationally designed and engineered anticancer agent for cancer therapy

    Yizhen LIU; Shi-Yan LI

    2009-01-01

    Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

  4. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model

    c-Jun/AP-1 has been linked to invasive properties of aggressive breast cancer. Recently, it has been reported that overexpression of c-Jun in breast cancer cell line MCF-7 resulted in increased AP-1 activity, motility and invasiveness of the cells in vitro and tumor formation in nude mice. However, the role of c-Jun in metastasis of human breast cancer in vivo is currently unknown. To further investigate the direct involvement of c-Jun in tumorigenesis and metastasis, in the present study, the effects of c-Jun overexpression were studied in both in vitro and in nude mice. Ectopic overexpression of c-Jun promoted the growth of MCF-7 cells and resulted in a significant increase in the percentage of cells in S phase and increased motility and invasiveness. Introduction of c-Jun gene alone into weakly invasive MCF-7 cells resulted in the transfected cells capable of metastasizing to the nude mouse liver following tail vein injection. The present study confirms that overexpression of c-Jun contributes to a more invasive phenotype in MCF-7 cells. It indicates an interesting relationship between c-Jun expression and increased property of adhesion, migration and in vivo liver metastasis of MCF-7/c-Jun cells. The results provide further evidence that c-Jun is involved in the metastasis of breast cancer. The finding also opens an opportunity for development of anti-c-Jun strategies in breast cancer therapy

  5. Overexpression and topology of bacterial oligosaccharyltransferase PglB

    Li, Lei [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Woodward, Robert [Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Ding, Yan; Liu, Xian-wei [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Yi, Wen; Bhatt, Veer S. [Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Chen, Min [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Zhang, Lian-wen [College of Pharmacy, Nankai University, Tianjin 300071 (China); Wang, Peng George, E-mail: wang.892@osu.edu [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States)

    2010-04-16

    Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, PglB, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous PglB proteins. PglB was overexpressed in Escherichia coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified PglB was verified using a chemically synthesized sugar donor: N-acetylgalactosamine-diphospho-undecaprenyl (GalNAc-PP-Und) and a synthesized peptide acceptor. The result confirms that PglB is solely responsible for the oligosaccharyltransferase activity and complements the finding that PglB exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of PglB using the PhoA/LacZ fusion method. The topological model shows that PglB possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common N{sub cyt}-C{sub peri} topology with 11 transmembrane segments for the STT3 family proteins.

  6. HSP25 overexpression attenuates oxidative stress-induced apoptosis: role of ERK1/2 signaling and manganase superoxide dismutase

    Full text: HSP25 has been shown to induce resistance to radiation and oxidative stress. However, its exact mechanisms remain unclear. In the present study, high concentration of H 2 O 2 was found to induce DNA fragmentation in L929 mouse fibroblast cells, and HSP25 overexpression attenuated this phenomenon. To elucidate the mechanisms of H 2 O 2 mediated cell death, ERK1/2, p38-MAPK and JNK1/2 phosphorylation by H2O2were examined. ERK1/2 and JNK1/2 were activated by H2O2and ERK1/2 activation was inhibited in HSP25 overexpressed cells, while JNK1/2 was indifferent. Inhibition of ERK1/2 activation by treatment with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced cell death, while HSP25 overexpressed cells was not affected at all. Moreover, inhibition of JNK1/2 by dominant-negative JNK1 or JNK2, or MKK4 or MKK7 transfection did not affect H2O2-mediated cell death in control cells. Dominant negative Ras or Raf transfection inhibited H2O2-mediated ERK1/2 activation and cell death in control cells. On the contrary, HSP25 overexpressed cells did not show any differences. Upstream pathways of H2O2-mediated ERK1/2 activation and cell death were both tyrosine kinase (PDGF and receptor and Src) and PKC and, while these kinases did not respond by H2O2treatment in HSP25 overexpressed cells. Since HSP25 overexpression increased manganese superoxide dismutase (MnSOD) gene expression and enzyme activity, involvement of MnSOD in HSP25 mediated attenuation of H2O2-mediated ERK1/2 activation and cell death was examined. Blockage of MnSOD with antisense oligonucleotides prevented DNA fragmentation and returned the ERK1/2 activation to the control level. Indeed, when MnSOD was overexpressed in L929 cells, similar phenomenon to HSP25 overexpressed cells to reduce DNA fragmentation and ERK1/2 activation was observed. From the above results, we suggested for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated downregulation of ERK1/2

  7. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    Li, Fangyi [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Dong, Lei, E-mail: dlleidong@126.com [Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Street, Shahekou District, Dalian 116001 (China); Xing, Rong [Department of Pathology and Pathophysiology, Dalian Medical University, No. 9 Lvshunnan Road, Lvshunkou District, Dalian 116044 (China); Wang, Li; Luan, Fengming; Yao, Chenhui [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Ji, Xuening [Department of Oncology, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China); Bai, Lizhi, E-mail: dllizhibai@126.com [Department of Emergency, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China)

    2014-02-07

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.

  8. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1.

    Wang, Juan; Wu, Yaning; Gong, Yanfen; Yu, Shaowen; Liu, Gang

    2015-09-01

    The xylanase regulator 1 protein in Myceliophthora thermophila ATCC42464 (MtXyr1) is 60 % homologous with that of Trichoderma reesei. However, MtXyr1's regulatory role on cellulolytic and xylanolytic genes in M. thermophila is unknown. Herein, MtXyr1 was overexpressed under the control of the MtPpdc (pyruvate decarboxylase) promoter. Compared with the wild type, the extracellular xylanase activities of the transformant cultured in non-inducing and inducing media for 120 h were 25.19- and 9.04-fold higher, respectively. The Mtxyr1 mRNA level was 300-fold higher than in the wild type in corncob-containing medium. However, the filter paper activity and endoglucanase activities were unchanged in corncob-containing medium and glucose-containing medium. The different zymograms between the transformant and the wild type were analyzed and identified by mass spectrometry as three xylanases of the glycoside hydrolase (GH) family 11. Thus, overexpression of xyr1 resulted in enhanced xylanase activity in M. thermophila. Xylanase production could be improved by overexpressing Mtxyr1 in M. thermophila. PMID:26173497

  9. Expression and activation of proteases in co-cultures.

    Paduch, Roman; Kandefer-Szerszeń, Martyna

    2011-01-01

    The present study concerned the expression and activation of metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and the urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) system in co-cultures of human colon carcinoma cell spheroids (HT29, LS180, SW948) with human normal colon epithelium (CCD 841 CoTr), myofibroblasts (CCD-18Co) and endothelial cells (HUVEC). Additionally, the influence of monensin on the production and function of the proteases was tested. Tumor cells expressed small amounts of MMP-2, MMP-9 and uPA. Normal cells generally produced proportionally higher concentrations of these proteases (especially MMP-2, compared with significantly smaller yields of MMP-9 and significantly lower amounts of uPAR than tumors. In co-cultures of tumor spheroids with normal cell monolayers, the concentration of the proteases was equal to the sum of the enzymes produced in monocultures of both types of cells. The highest activity of uPA, measured as the reduction of the chromogenic substrate (S-2444), was detected in supernatants and lysates of endothelial cells. Interestingly, in normal cells, the higher expression of proteases, mainly uPA, measured as the level of protein concentration, was closely linked with their lower activity and inversely, in tumor cells, the low level of the expression of the enzymes correlated with their high enzymatic activity. In zymography analysis, mainly pro-MMPs were detected both in culture supernatants and cell lysates. The highest amounts of active forms of the MMPs were detected in tumor spheroids co-cultured with endothelial cells. Monensin inhibited MMPs and uPA secretion but significantly increased uPAR release, mainly from normal cells. In conclusion, during direct interactions of tumor cells with normal cells, MMPs and the uPA/uPAR system play an important role in the degradation of ECM and tumor development, but as we found, there is a reverse relationship between the concentration and the

  10. Over-expressed CmbT multidrug resistance transporter improves the fitness of Lactococcus lactis

    Filipić Brankica

    2013-01-01

    Full Text Available The influence of the over-expression of CmbT multidrug resistance transporter on the growth rate of Lactococcus lactis NZ9000 was studied. L. lactis is a lactic acid bacteria (LAB widely used as a starter culture in dairy industry. Recently characterized CmbT MDR transporter in L. lactis confers resistance to a wide variety of toxic compounds as well as to some clinically relevant antibiotics. In this study, the cmbT gene was over-expressed in the strain L. lactis NZ9000 in the presence of nisin inducer. Over-expression of the cmbT gene in L. lactis NZ9000 was followed by RT-PCR. The obtained results showed that the cmbT gene was successfully over-expressed by addition of sub-inhibitory amounts of nisin. Growth curves of L. lactis NZ9000/pCT50 over-expressing the cmbT gene and L. lactis NZ9000 control strain were followed in the rich medium as well as in the chemically defined medium in the presence solely of methionine (0.084 mM or mix of methionine and cysteine (8.4 mM and 8.2 mM, respectively. Resulting doubling times revealed that L. lactis NZ9000/pCT50 had higher growth rate comparing to the control strain. This could be a consequence of the CmbT efflux activity, which improves the fitness of the host bacterium through the elimination of toxic compounds from the cell.

  11. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis

    Nakai, Yusuke; Fujiwara, Sumire; Kubo, Yasuyuki; Sato, Masa H.

    2013-01-01

    VOZ (vascular plant one zinc-finger protein) is a plant specific one-zinc finger type transcriptional activator, which is highly conserved through land plant evolution. We have previously shown that loss-of-function mutations in VOZ1 and VOZ2 showed increased cold and drought stress tolerances whereas decreased biotic stress resistance in Arabidopsis. Here, we demonstrate that transgenic plants overexpressing VOZ2 impairs freezing and drought stress tolerances but increases resistance to a fu...

  12. Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes

    Jun-Fei Gu; Ming Qiu; Jian-Chang Yang

    2013-01-01

    Maize-specific pyruvate orthophosphate dikinase (PPDK) was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase (PCK). The wild-type (WT) cultivar Kitaake and transgenic plants were evaluated in independent field and tank experiments. Three soil moisture treatments, well-watered (WW), moderate drought (MD) and severe drought (SD), were imposed from 9 d post-anthesis till maturity. Leaf physiological and biochemical traits, root activ...

  13. Overexpression of nuclear receptor SHP in adipose tissues affects diet-induced obesity and adaptive thermogenesis

    Tabbi-Anneni, Imene; Cooksey, Robert; Gunda, Viswanath; Liu, Shiguo; Mueller, Aubrey; Song, Guisheng; McClain, Donald A.; Wang, Li

    2010-01-01

    The orphan nuclear receptor small heterodimer partner (SHP) regulates metabolic pathways involved in hepatic bile acid production and both lipid and glucose homeostasis via the transcriptional repression of other nuclear receptors. In the present study, we generated fat-specific SHP-overexpressed transgenic (TG) mice and determined the potential role of SHP activation, specifically in adipocytes, in the regulation of adipose tissue function in response to stressors. We determined in 2 mo-old ...

  14. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer

    Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei

    2015-01-01

    Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, ...

  15. Immortalization of Neural Precursors When Telomerase Is Overexpressed in Embryonal Carcinomas and Stem Cells

    Schwob, Anneke E.; Nguyen, Lilly J.; Meiri, Karina F.

    2008-01-01

    The DNA repair enzyme telomerase maintains chromosome stability by ensuring that telomeres regenerate each time the cell divides, protecting chromosome ends. During onset of neuroectodermal differentiation in P19 embryonal carcinoma (EC) cells three independent techniques (Southern blotting, Q-FISH, and Q-PCR) revealed a catastrophic reduction in telomere length in nestin-expressing neuronal precursors even though telomerase activity remained high. Overexpressing telomerase protein (mTERT) pr...

  16. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal

    Cleasby, M. E.; Jarmin, S.; Eilers, W; Elashry, M.; Andersen, D K; Dickson, G.; Foster, K.

    2014-01-01

    Insulin resistance (IR) in skeletal muscle is a prerequisite for type 2 diabetes and is often associated with obesity. IR also develops alongside muscle atrophy in older individuals in sarcopenic obesity. The molecular defects that underpin this syndrome are not well characterized, and there is no licensed treatment. Deletion of the transforming growth factor-β family member myostatin, or sequestration of the active peptide by overexpression of the myostatin propeptide/latency-associated pept...

  17. Overexpression of the Transcription Factor GATA-3 Enhances the Development of Pulmonary Fibrosis

    Kimura, Toru; Ishii, Yukio; Yoh, Keigyou; Morishima, Yuko; Iizuka, Takashi; Kiwamoto, Takumi; Matsuno, Yosuke; HOMMA, SHINSUKE; Nomura, Akihiro; Sakamoto, Tohru; Takahashi, Satoru; Sekizawa, Kiyohisa

    2006-01-01

    Recent studies have demonstrated that Th2 cytokines, such as interleukin-4 and interleukin-13, enhance fibrotic processes by activating fibroblast proliferation and collagen production, whereas interferon-γ, a Th1 cytokine, inhibits these processes. Th1 and Th2 cells both differentiate from common T precursor cells, with transcription factor GATA-3 a key regulator of Th2 differentiation. In the present study, therefore, we examined the effects of GATA-3 overexpression on the development of pu...

  18. Tumor marker utility and prognostic relevance of cathepsin B, cathepsin L, urokinase-type plasminogen activator, plasminogen activator inhibitor type-1, CEA and CA 19-9 in colorectal cancer

    Cathepsin B and L (CATB, CATL), urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 play an important role in colorectal cancer invasion. The tumor marker utility and prognostic relevance of these proteases have not been evaluated in the same experimental setting and compared with that of CEA and CA-19-9. Protease, CEA and CA 19-9 serum or plasma levels were determined in 56 patients with colorectal cancer, 25 patients with ulcerative colitis, 26 patients with colorectal adenomas and 35 tumor-free control patients. Protease, CEA, CA 19-9 levels have been determined by ELISA and electrochemiluminescence immunoassay, respectively; their sensitivity, specificity, diagnostic accuracy have been calculated and correlated with clinicopathological staging. The protease antigen levels were significantly higher in colorectal cancer compared with other groups. Sensitivity of PAI-1 (94%), CATB (82%), uPA (69%), CATL (41%) were higher than those of CEA or CA 19-9 (30% and 18%, respectively). PAI-1, CATB and uPA demonstrated a better accuracy than CEA or CA 19-9. A combination of PAI-1 with CATB or uPA exhibited the highest sensitivity value (98%). High CATB, PAI-1, CEA and CA 19-9 levels correlated with advanced Dukes stages. CATB (P = 0.0004), CATL (P = 0.02), PAI-1 (P = 0.01) and CA 19-9 (P = 0.004) had a significant prognostic impact. PAI-1 (P = 0.001), CATB (P = 0.04) and CA 19-9 (P = 0.02) proved as independent prognostic variables. At the time of clinical detection proteases are more sensitive indicators for colorectal cancer than the commonly used tumor markers. Determinations of CATB, CATL and PAI-1 have a major prognostic impact in patients with colorectal cancer

  19. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing. PMID:26955712

  20. Evidence that SOX2 overexpression is oncogenic in the lung.

    Yun Lu

    Full Text Available BACKGROUND: SOX2 (Sry-box 2 is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS: We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during development and in the adult. In both cases, overexpression leads to extensive hyperplasia. In the terminal bronchioles, a trachea-like pseudostratified epithelium develops with p63-positive cells underlying columnar cells. Over 12-34 weeks, about half of the mice expressing the highest levels of Sox2 develop carcinoma. These tumors resemble adenocarcinoma but express the squamous marker, Trp63 (p63. CONCLUSIONS: These findings demonstrate that Sox2 overexpression both induces a proximal phenotype in the distal airways/alveoli and leads to cancer.

  1. Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity

    Golson Maria L

    2005-06-01

    Full Text Available Abstract Background Acute RT-induced damage to the lung is characterized by inflammatory changes, which proceed to the development of fibrotic lesions in the late phase of injury. Ultimately, complete structural ablation will ensue, if the source of inflammatory / fibrogenic mediators and oxidative stress is not removed or attenuated. Therefore, the purpose of this study is to determine whether overexpression of extracellular superoxide dismutase (EC-SOD in mice ameliorates acute radiation induced injury by inhibiting activation of TGFβ1 and downregulating the Smad 3 arm of its signal transduction pathway. Methods Whole thorax radiation (single dose, 15 Gy was delivered to EC-SOD overexpressing transgenic (XRT-TG and wild-type (XRT-WT animals. Mice were sacrificed at 1 day, 1 week, 3, 6, 10 and 14 weeks. Breathing rates, right lung weights, total/differential leukocyte count, activated TGFβ1 and components of its signal transduction pathway (Smad 3 and p-Smad 2/3 were assessed to determine lung injury. Results Irradiated wild-type (XRT-WT animals exhibited time dependent increase in breathing rates and right lung weights, whereas these parameters were significantly less increased (p vs. XRT-WT. Conclusion This study shows that overexpression of EC-SOD confers protection against RT-induced acute lung injury. EC-SOD appears to work, in part, via an attenuation of the macrophage response and also decreases TGFβ1 activation with a subsequent downregulation of the profibrotic TGFβ pathway.

  2. Mechanisms regulating c-met overexpression in liver-metastatic B16-LS9 melanoma cells.

    Elia, G; Ren, Y; Lorenzoni, P; Zarnegar, R; Burger, M M; Rusciano, D

    2001-01-01

    Liver selected B16-LS9 melanoma cells show a dramatic overexpression of the proto-oncogene c-met, the cellular receptor for hepatocyte growth factor/scatter factor. As a consequence, c-met becomes constitutively active, and the cells become more responsive to hepatocyte growth factor stimulation. We have investigated the molecular mechanisms regulating c-met expression in both the parental line B16-F1, which has low expression levels, and the liver-specific B16-LS9, overexpressing c-met. Overexpression is observed at the protein and mRNA levels, however without further evidence of gene amplification or rearrangement. c-met promoter activity was higher in B16-LS9 than B16-F1 cells, and also a nuclear run-off showed higher transcription levels in B16-LS9 cells. Moreover, we found that c-met mRNA had a longer half-life in B16-LS9 cells, thus indicating also the involvement of post-transcriptional regulation mechanisms. Finally, we found evidence that autonomous activation of the melanocortin receptor-1 (MCR-1) is at least partially responsible for c-met upregulation in B16-LS9 cells, since treatment of the cells with a potent MSH antagonist (the agouti peptide) has strong down-regulatory effects. PMID:11255230

  3. Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases:Relevance to intracellular signaling pathways

    Elke Roeb; Anja-Katrin Bosserhoff; Sabine Hamacher; Bettina Jansen; Judith Dahmen; Sandra Wagner; Siegfried Matern

    2005-01-01

    AIM: To study the effect of gelatinases (especially MMP-9)on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells.METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases.RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05)and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly.Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1deactivates cell signaling pathways of MMP-2 and MMP-9involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1.CONCLUSION: Overexpressing functional TIMP-1-enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9.

  4. Odontoblast-targeted Bcl-2 Overexpression Impairs Dentin Formation

    Zhang, Wenjian; Ju, Jun; Gronowicz, Gloria

    2010-01-01

    Apoptosis has been described extensively in tooth development, which is under tight control of multiple apoptosis regulators, including anti-apoptotic protein Bcl-2. However, it is totally unclear how Bcl-2 is related to odontogenesis, especially dentinogenesis. Using a transgenic mouse Col2.3Bcl-2 in which human Bcl-2 was overexpressed in odontoblasts, the effect of Bcl-2 on dentinogenesis was investigated. Overexpression of Bcl-2 was detected by immunohistochemistry and Western blot. Odonto...

  5. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis

    Müller-Decker, Karin; Neufang, Gitta; Berger, Irina; Neumann, Melanie; Marks, Friedrich; Fürstenberger, Gerhard

    2002-01-01

    Genetic and pharmacological evidence suggests that overexpression of cyclooxygenase-2 (COX-2) is critical for epithelial carcinogenesis and provides a major target for cancer chemoprevention by nonsteroidal antiinflammatory drugs. Transgenic mouse lines with keratin 5 promoter-driven COX-2 overexpression in basal epidermal cells exhibit a preneoplastic skin phenotype. As shown here, this phenotype depends on the level of COX-2 expression and COX-2-mediated prostaglandin accumulation. The tran...

  6. Effects of GLO-I gene overexpression on proliferative and apoptotic activity in endometri- al cancer cell induced by progestin.%乙二醛酶 I 过表达对孕激素调控子宫内膜癌细胞株Ishikawa增殖和凋亡活性的影响

    王倩倩; 王亮; 祝亚平; 张箴波; 丰有吉

    2015-01-01

    目的:探讨乙二醛酶I( GLO-I)过表达对孕激素调控子宫内膜癌细胞增殖和凋亡活性的影响. 方法:采用脂质体将GLO-I基因真核表达载体pcDNA GLO-I及空白载体pcDNA转染子宫内膜癌细胞株Ishikawa,G418 筛选获得抗性亚克隆细胞株. RT-PCR和Western blot法检测子宫内膜癌细胞中GLO-I表达,Western blot法检测未转染组、转染pcDNA-GLO-I组及转染pcDNA组的caspase 3、cyclin D1凋亡和增殖分子的表达. 用DM-SO和10μmol/L甲羟孕酮( MPA)分别刺激转染pcDNA-GLO-I组和未转染Ishikawa细胞, Western blot法检测增殖和凋亡分子表达. 结果:转染pcDNA-GLO-I组细胞中GLO-I mR-NA、蛋白水平均显著高于未转染组( P0 . 05 ). 结论:GLO-I高表达影响子宫内膜癌细胞的增殖和凋亡,并影响孕激素对肿瘤细胞的增殖和调控.%Objective:To investigate the effects of GLO-I gene overexpression on prolif-erative and apoptotic activity in endometrial cancer cell induced Progestin. Methods:After GLOI gene was transferred into cells of Ishikawa cancer cell line,the subclone cells were ob-tained by pemistent G418 selection. Cellular GLOI gene expression was determinated by RT-PCR and Western blot. Western blot was used to detect the expressions of caspase 3,cyclin D in the three groups of untransferred、transferred pc-DNA-GLO-I and transferred pc-DNA. Then treatment with DMSO and MPA in the subclone cells and Ishikawa cell line,and western blot was used to detect the expression of caspase 3. Results:The groups of Ishikawa,stable express-ing GLOI and neo gene respectively were successfully selected, named as Ishikawa/pc-DNA-GLOI and Ishikawa/pc-DNA. RT-PCR and Western blot results demonstrated GLOI mRNA and protein levels of Ishikawa/pc-DNA-GLOI cells were significantly higher than those of Ishikawa and Ishikawa/pc-DNA ( P 0. 05). Conclusion:The overexpression of GLO-I can influence the proliferation and apoptosis of cancer cells,and further affect the treatment of

  7. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments. PMID:26323261

  8. Overexpression and export of Vibrio anguillarum metalloprotease in Escherichia coli

    Zhang Fengli; Chi Zhenming; Chen Jixiang; Wu Longfei; Liang Likun

    2007-01-01

    Vibrio anguillarum metalloprotease, an extracellular zinc metalloprotease involved in the virulence mechanism of Vibrio anguillarum, is synthesized from the empA gene as a 611-residue precursor and naturally secreted via Sec secretion pathway in Vibrio anguillarum. In this study, heterologous expression of the empA gene encoding metallopmtease and export of the recombinant metalloprotease in Escherichia coliwere examined. The empA gene was subcloned into pBAD24 with arabinose promoter and sequenced. The sequence encoded a polypeptide(611 amino acids)consisting of four domains: a signal peptide, an Nterminal propeptide, a mature region and a C-terminal propeptide. The empA gene inserted in plasmid pBAD24 was overexpressed in TOP10 strain of E. Coli after arabinose induction. The 36kDa polypeptide of the recombinant metalloprotease as the mature protease was further confirmed by SDS-PAGE and immunoblotting. It was found that recombinant metalloprotease with the EmpA activity and antigenicity wasexported into the periplasm of Escherichia coli cells via Sec translocation pathway, whereas it was secreted into extracellular environments in V. Anguillarum. The results imply that the expression, export and processing mechanism of the protein in E. Coli are similar to those in V. Anguillarum.

  9. Construction and identification of urokinase-type plasminogen activator biosensor plasmid%尿激酶型纤溶酶原激活物生物传感器的构建及鉴定

    崔钢华; 饶烽; 王琰; 曹薇薇; 刘伟; 王维山; 史晨辉

    2015-01-01

    目的:构建含有增强型青色荧光蛋白-尿激酶型纤溶酶原激活物(uPA)作用底物(substrate)-黄色荧光蛋白变体(YPet)融合蛋白的真核表达载体(ECFP-uPA substrate-linker-YPet),即 uPA 的生物传感器。方法:以 Src-biosensor 为模板,Primer Premier 5.0软件设计 YPet 引物,设计时5′端引入 uPA 底物序列及Linker,两端连接酶切位点及保护碱基。以 pMDTM-18T 为中间载体,通过基因工程方法构建含有 ECFP-uPA substrate-linker-YPet 的真核表达载体。然后转染293T 细胞,24 h 后观察转染效率和融合蛋白表达情况,在荧光显微镜下,应用 MetaFlour FRET 4.6软件观察并测量 uPA 生物传感器荧光共振能量转移(FRET)。结果:经过 PCR和双酶切鉴定,克隆片段和酶切片段均与 uPA substrate 分子大小相符。细胞转染后转染效率达40%。免疫荧光检测,uPA 生物传感器在293T 细胞膜表达,用重组人 uPA (rhuPA)刺激转染细胞可以检测到FRET 现象。结论:成功构建 uPA 生物传感器,该生物传感器能够作为活细胞分子探针用于研究 uPA 的时空变化。%Objective To construct the eukaryotic expression vector urokinase-type plasminogen activator (uPA) biosensor which was the composition of the fusion protein enhanced cyan fluorescent protein-uPA (substrate)-yellow fluorescent protein variant (ECFP-uPA substrate-linker-YPet).Methods By the template Src-biosensor, the YPet primers were designed by Primer Premier 5.0 software,and the restriction enzyme sites,uPA substrate gene sequence and linker were added in its 5′ end. With the intermediate vector pDMTM-18T, an eukaryotic expression vector which contained a fusion protein of ECFP-uPA substrate-linker-YPet was constructed by genetic engineering.Then the uPA biosensor was transfected into 293T cells.The transfection efficiency and expression of fusion proteins were observed after 24 h

  10. Inhibitory mechanism of peptides and antibodies targeting murine urokinase-type plasminogen activator

    Liu, Zhuo

    2012-01-01

    high affinity and specificity of mupain-1-16 makes it a suitable inhibitor for targeting of murine uPA in order to investigate the importance of uPA in murine disease models. Secondly, two high affinity monoclonal antibodies targeting murine uPA (mU1 and mU3) were studied. These antibodies showed...... be important for future tumour model studies and the development of more efficient inhibitors against uPA....

  11. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. As expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo

  12. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  13. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Zhang, Ji; Qiao, Congzhen; Chang, Lin; Guo, Yanhong; Fan, Yanbo; Villacorta, Luis; Chen, Y Eugene; Zhang, Jifeng

    2016-01-01

    Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway. PMID:27294862

  14. Analysis of Rheb in the cellular slime mold Dictyostelium discoideum: cellular localization, spatial expression and overexpression.

    Swer, Pynskhem Bok; Bhadoriya, Pooja; Saran, Shweta

    2014-03-01

    Dictyostelium discoideum encodes a single Rheb protein showing sequence similarity to human homologues of Rheb. The DdRheb protein shares 52 percent identity and 100 percent similarity with the human Rheb1 protein. Fluorescence of Rheb yellow fluorescent protein fusion was detected in the D. discoideum cytoplasm. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that rheb is expressed at all stages of development and in prestalk cells in the multicellular structures developed. When the expression of rheb as a fusion with lacZ was driven under its own promoter, the beta-galactosidase activity was seen in the prestalk cells. D. discoideum overexpressing Rheb shows an increase in the size of the cell. Treatment of the overexpressing Rheb cells with rapamycin confirms its involvement in the TOR signalling pathway. PMID:24499792

  15. ß-Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia

    Egerod, Kristoffer Lihme; Jin, Chunyu; Petersen, Pia Steen;

    2011-01-01

    Mice deficient in the zinc-sensor GPR39, which has been demonstrated to protect cells against endoplasmatic stress and cell death in vitro, display moderate glucose intolerance and impaired glucose-induced insulin secretion. Here, we use the Tet-On system under the control of the proinsulin...... promoter to selectively overexpress GPR39 in the ß cells in a double transgenic mouse strain and challenge them with multiple low doses of streptozotocin, which in the wild-type littermates leads to a gradual increase in nonfasting glucose levels and glucose intolerance observed during both food intake and...... OGTT. Although the overexpression of the constitutively active GPR39 receptor in animals not treated with streptozotocin appeared by itself to impair the glucose tolerance slightly and to decrease the ß-cell mass, it nevertheless totally protected against the gradual hyperglycemia in the steptozotocin...

  16. Analysis of Rheb in the cellular slime mold Dictyostelium discoideum: Cellular localization, spatial expression and overexpression

    Pynskhem Bok Swer; Pooja Bhadoriya; Shweta Saran

    2014-03-01

    Dictyostelium discoideum encodes a single Rheb protein showing sequence similarity to human homologues of Rheb. The DdRheb protein shares 52% identity and 100% similarity with the human Rheb1 protein. Fluorescence of Rheb yellow fluorescent protein fusion was detected in the D. discoideum cytoplasm. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that rheb is expressed at all stages of development and in prestalk cells in the multicellular structures developed. When the expression of rheb as a fusion with lacZ was driven under its own promoter, the -galactosidase activity was seen in the prestalk cells. D. discoideum overexpressing Rheb shows an increase in the size of the cell. Treatment of the overexpressing Rheb cells with rapamycin confirms its involvement in the TOR signalling pathway.

  17. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  18. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase. PMID:15966328

  19. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness.

    Murcia-Belmonte, Verónica; Esteban, Pedro F; Martínez-Hernández, José; Gruart, Agnès; Luján, Rafael; Delgado-García, José María; de Castro, Fernando

    2016-04-01

    During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination. PMID:25662897

  20. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Anna Frenzel

    Full Text Available Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C. Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  1. Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging.

    François Casas

    Full Text Available In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43 acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overexpression in skeletal muscle stimulates mitochondrial respiration and induces a shift in metabolic and contractile features of muscle fibers which became more oxidative.Here we have studied the influence of p43 overexpression in skeletal muscle of mice during aging. We report that p43 overexpression initially increased mitochondrial mass. However, after the early rise in mitochondrial DNA occurring at 2 months of age in transgenic mice, we observed a progressive decrease of mitochondrial DNA content which became 2-fold lower at 23 months of age relatively to control animals. Moreover, p43 overexpression induced an oxidative stress characterized by a strong increase of lipid peroxidation and protein oxidation in quadriceps muscle, although antioxidant enzyme activities (catalase and superoxide dismutase were stimulated. In addition, muscle atrophy became detectable at 6 months of age, probably through a stimulation of the ubiquitin proteasome pathway via two muscle-specific ubiquitin ligases E3, Atrogin-1/MAFbx and MuRF1.Taken together, these results demonstrate that a prolonged stimulation of mitochondrial activity induces muscle atrophy. In addition, these data underline the importance of a tight control of p43 expression and suggest that a deregulation of the direct T3 mitochondrial pathway could be one of the parameters involved in the occurrence of sarcopenia.

  2. mad—overexpression down regulates the malignant growth and p53 mediated apoptosis in human hepatocellular carcinoma BEL—7404 cells

    ZHANHUA; YONGHUAXU

    1999-01-01

    Mad protein has been shown as an antagonist of cMyc protein in some cell lines.The effect of Mad protein to the malignant phenotype of human hepatoma BEL-7404 cell line was investigated experimentally.An eukarryotic vector pCDNA Ⅲ containing full ORF fragment of mad cDNA was transfected into targeted cells.Under G418 selection,stable Mad-overexpressed cells were cloned.Studies on the effect of Mad over-expression in cell proliferation and cell cycle revealed that cell morphology of the Mad-overexpressed BEL-7404-M1 cells was significantly different from the parent and control vector transfected cells.DNA synthesis,cell proliferation and anchorage-independent growth in soft-agar of the madtransfected cells were partially inhibited in comparison to control cells.Flos cytometry analysis indicated that mad over-expression might block more transfectant cells at G0/G1 phase,resulting in the retardation of cell proliferation.RT-PCR detected a marked inhibition of the expression of cdc25A,an important regulator gene of G0/G1 to S phase in cell cycle.It was also found that Mad protein overexpression could greatly suppress p53-mediated apoptosis in BEL-74040M1 cells in the absence of serume.Thus,Mad proteins may function as a negative regulator antagonizing c-Myc activity in the control of cell growth and apoptosis in human hepatocellular carcinoma BEL-7404 cells.

  3. High-level quinolone resistance is associated with the overexpression of smeVWX in Stenotrophomonas maltophilia clinical isolates.

    García-León, G; Ruiz de Alegría Puig, C; García de la Fuente, C; Martínez-Martínez, L; Martínez, J L; Sánchez, M B

    2015-05-01

    Stenotrophomonas maltophilia is the only known bacterium in which quinolone-resistant isolates do not present mutations in the genes encoding bacterial topoisomerases. The expression of the intrinsic quinolone resistance elements smeDEF, smeVWX and Smqnr was analysed in 31 clinical S. maltophilia isolates presenting a minimum inhibitory concentration (MIC) range to ciprofloxacin between 0.5 and > 32 μg/mL; 11 (35.5%) overexpressed smeDEF, 2 (6.5%) presenting the highest quinolone MICs overexpressed smeVWX and 1 (3.2%) overexpressed Smqnr. Both strains overexpressing smeVWX presented changes at the Gly266 position of SmeRv, the repressor of smeVWX. Changes at the same position were previously observed in in vitro selected S. maltophilia quinolone-resistant mutants, indicating this amino acid is highly relevant for the activity of SmeRv in repressing smeVWX expression. For the first time SmeVWX overexpression is associated with quinolone resistance of S. maltophilia clinical isolates. PMID:25753190

  4. Effect of anti-inflammatory agents on transforming growth factor beta over-expressing mouse brains: a model revised.

    Landreth Gary E; Heneka Michael T; Breidert Tilo; Schmidt Stephen D; Mathews Paul M; Lacombe Pierre; Feinstein Douglas L; Galea Elena

    2004-01-01

    Abstract Background The over-expression of transforming growth factor β-1(TGF-β1) has been reported to cause hydrocephalus, glia activation, and vascular amyloidβ (Aβ) deposition in mouse brains. Since these phenomena partially mimic the cerebral amyloid angiopathy (CAA) concomitant to Alzheimer's disease, the findings in TGF-β1 over-expressing mice prompted the hypothesis that CAA could be caused or enhanced by the abnormal production of TGF-β1. This idea was in accordance with the view that...

  5. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    Albacete, Alfonso; Cantero-Navarro, Elena; Grosskinsky, Dominik Kilian;

    2015-01-01

    %), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold...

  6. Glyoxalase 1 overexpression does not affect atherosclerotic lesion size and severity in ApoE-/- mice with or without diabetes

    Hanssen, Nordin M J; Brouwers, Olaf; Gijbels, Marion J;

    2014-01-01

    E(-/-) huGLO1(+/-) (n = 20) mice. To induce diabetes, we injected a subset with streptozotocin (STZ) to generate diabetic ApoE(-/-) (n = 8) and ApoE(-/-) huGLO1(+/-) (n = 13) mice. All mice were fed chow and sacrificed at 25 weeks of age. The GLO1 activity was three-fold increased in huGLO1(+/-) aorta, but......(+/-) overexpression. Although diabetic mice showed decreased GLO1 expression (P < 0.05) and increased lesion size (P < 0.05) in comparison with non-diabetic mice, GLO1 overexpression also did not affect the aortic root lesion size or inflammation in diabetic mice. CONCLUSION: In ApoE(-/-) mice with or without...... diabetes, GLO1 overexpression did not lead to decreased atherosclerotic lesion size or systemic inflammation. Increasing GLO1 levels does not seem to be an effective strategy to reduce glycation in atherosclerotic lesions, likely due to increased AGE formation through GLO1-independent mechanisms....

  7. Effects of overexpressing p14ARF on the apoptosis in human melanoma cells irradiated with γ-ray

    PENG Lixia; ZHANG Wei; LIU Huitu; HE Dacheng; GAO Ping

    2003-01-01

    Tumor suppressor ARF can induce cell cycle arrest or apoptosis by activating p53. In order to explore the molecular mechanism of the induction of apoptosis by p14ARF, a human melanoma cell model overexpressing p14ARF was constructed. Present study indicated that in the cells overexpressing p14ARF, p53 was accumulated in nucleus while it dispersed in cytosol in the control cells. Irradiated with γ-ray, overexpressing p14ARF promoted the apoptosis of A375 cells, triggered Smac release from mitochondria to cytosol, and increased the expression of p53, Bax, Caspase-3, Caspase-9, p21cip1 and p27kip1. However, the protein level of Bcl-2 and phospho-ERK was down-regulated. These results suggested a possible mechanism of p14ARF in promotion of apoptosis.

  8. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse.

    Cervetto, Chiara; Vergani, Laura; Passalacqua, Mario; Ragazzoni, Milena; Venturini, Arianna; Cecconi, Francesco; Berretta, Nicola; Mercuri, Nicola; D'Amelio, Marcello; Maura, Guido; Mariottini, Paolo; Voci, Adriana; Marcoli, Manuela; Cervelli, Manuela

    2016-03-01

    Transgenic mice overexpressing spermine oxidase (SMO) in the cerebral cortex (Dach-SMO mice) showed increased vulnerability to excitotoxic brain injury and kainate-induced epileptic seizures. To investigate the mechanisms by which SMO overexpression leads to increased susceptibility to kainate excitotoxicity and seizure, in the cerebral cortex of Dach-SMO and control mice we assessed markers for astrocyte proliferation and neuron loss, and the ability of kainate to evoke glutamate release from nerve terminals and astrocyte processes. Moreover, we assessed a possible role of astrocytes in an in vitro model of epileptic-like activity in combined cortico-hippocampal slices recorded with a multi-electrode array device. In parallel, as the brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms, we analyzed the oxidative status of the cerebral cortex of both SMO-overexpressing and control mice by evaluating enzymatic and non-enzymatic scavengers such as metallothioneins. The main findings in the cerebral cortex of Dach-SMO mice as compared to controls are the following: astrocyte activation and neuron loss; increased oxidative stress and activation of defense mechanisms involving both neurons and astrocytes; increased susceptibility to kainate-evoked cortical epileptogenic activity, dependent on astrocyte function; appearance of a glutamate-releasing response to kainate from astrocyte processes due to activation of Ca(2+)-permeable AMPA receptors in Dach-SMO mice. We conclude that reactive astrocytosis and activation of glutamate release from astrocyte processes might contribute, together with increased reactive oxygen species production, to the vulnerability to kainate excitotoxicity in Dach-SMO mice. This mouse model with a deregulated polyamine metabolism would shed light on roles for astrocytes in increasing vulnerability to excitotoxic neuron injury. PMID:26530396

  9. Overexpression of artemin in the tongue increases expression of TRPV1 and TRPA1 in trigeminal afferents and causes oral sensitivity to capsaicin and mustard oil

    Elitt, Christopher M.; Malin, Sacha A.; Koerber, H Richard; Davis, Brian M.; Albers, Kathryn M.

    2008-01-01

    Artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, supports a subpopulation of trigeminal sensory neurons through activation of the Ret/GFRα3 receptor tyrosine kinase complex. In a previous study we showed that artemin is increased in inflamed skin of wildtype mice and that transgenic overexpression of artemin in skin increases TRPV1 and TRPA1 expression in dorsal root ganglia neurons. In this study we examined how transgenic overexpression of artemin in tongu...

  10. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress.

    Masataka Ikeda

    Full Text Available Mitochondrial DNA (mtDNA copy number decreases in animal and human heart failure (HF, yet its role in cardiomyocytes remains to be elucidated. Thus, we investigated the cardioprotective function of increased mtDNA copy number resulting from the overexpression of human transcription factor A of mitochondria (TFAM or Twinkle helicase in volume overload (VO-induced HF.Two strains of transgenic (TG mice, one overexpressing TFAM and the other overexpressing Twinkle helicase, exhibit an approximately 2-fold equivalent increase in mtDNA copy number in heart. These TG mice display similar attenuations in eccentric hypertrophy and improved cardiac function compared to wild-type (WT mice without any deterioration of mitochondrial enzymatic activities in response to VO, which was accompanied by a reduction in matrix-metalloproteinase (MMP activity and reactive oxygen species after 8 weeks of VO. Moreover, acute VO-induced MMP-2 and MMP-9 upregulation was also suppressed at 24 h in both TG mice. In isolated rat cardiomyocytes, mitochondrial reactive oxygen species (mitoROS upregulated MMP-2 and MMP-9 expression, and human TFAM (hTFAM overexpression suppressed mitoROS and their upregulation. Additionally, mitoROS were equally suppressed in H9c2 rat cardiomyoblasts that overexpress hTFAM or rat Twinkle, both of which exhibit increased mtDNA copy number. Furthermore, mitoROS and mitochondrial protein oxidation from both TG mice were suppressed compared to WT mice.The overexpression of TFAM or Twinkle results in increased mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. Our findings suggest that increasing mtDNA copy number could be a useful therapeutic strategy to target mitoROS in HF.

  11. Overexpression of Csk-binding protein contributes to renal cell carcinogenesis.

    Feng, X; Lu, X; Man, X; Zhou, W; Jiang, L Q; Knyazev, P; Lei, L; Huang, Q; Ullrich, A; Zhang, Z; Chen, Z

    2009-09-17

    C-terminal Src kinase (Csk)-binding protein (Cbp) is a transmembrane adaptor protein that localizes exclusively in lipid rafts, where it regulates Src family kinase (SFK) activities through recruitment of Csk. Although SFKs are well known for their involvement in cancer, the function of Cbp in carcinogenesis remains largely unknown. In this study, we reported overexpression of Cbp in more than 70% of renal cell carcinoma (RCC) specimens and in the majority of tested RCC cell lines. Depletion of Cbp in RCC cells by RNA interference led to remarkable inhibition of cell proliferation, migration, anchorage-independent growth as well as tumorigenicity in nude mice. Strikingly, silencing of Cbp negatively affected the sustaining of Erk1/2 activation but not c-Src activation induced by serum. Besides, the RhoA activity in RCC cells was remarkably impaired when Cbp was knocked down. Overexpression of wild-type Cbp, but not its mutant Cbp/DeltaCP lacking C-terminal PDZ-binding motif, significantly enhanced RhoA activation and cell migration of RCC cells. These results provided new insights into the function of Cbp in modulating RhoA activation, by which Cbp might contribute to renal cell carcinogenesis. PMID:19581936

  12. Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes

    Jun-Fei; Gu; Ming; Qiu; Jian-Chang; Yang

    2013-01-01

    Maize-specific pyruvate orthophosphate dikinase(PPDK) was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase(PCK). The wild-type(WT) cultivar Kitaake and transgenic plants were evaluated in independent field and tank experiments. Three soil moisture treatments,well-watered(WW), moderate drought(MD) and severe drought(SD), were imposed from 9d post-anthesis till maturity. Leaf physiological and biochemical traits, root activities,biomass, grain yield, and yield components in the untransformed WT and two transgenic rice lines(PPDK and PCK) were systematically studied. Compared with the WT, both transgenic rice lines showed increased leaf photosynthetic rate: by 20%–40% under WW, by45%–60% under MD, and by 80%–120% under SD. The transgenic plants produced 16.1%,20.2% and 20.0% higher grain yields than WT under the WW, MD and SD treatments,respectively. Under the same soil moisture treatments, activities of phosphoenolpyruvate carboxylase(PEPC) and carbonic anhydrase(CA) in transgenic plants were 3–5-fold higher than those in WT plants. Compared with ribulose-1,5-bisphosphate carboxylase, activities of PEPC and CA were less reduced under both MD and SD treatments. The transgenic plants also showed higher leaf water content, stomatal conductance, transpiration efficiency, and root oxidation activity and a stronger active oxygen scavenging system than the WT under all soil moisture treatments, especially MD and SD. The results suggest that drought tolerance is greatly enhanced in transgenic rice plants overexpressing C4photosynthesis enzymes. This study was performed under natural conditions and normal planting density to evaluate yield advantages on a field basis. It may open a new avenue to droughttolerance breeding via overexpression of C4enzymes in rice.

  13. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  14. Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes

    Jun-Fei Gu

    2013-12-01

    Full Text Available Maize-specific pyruvate orthophosphate dikinase (PPDK was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase (PCK. The wild-type (WT cultivar Kitaake and transgenic plants were evaluated in independent field and tank experiments. Three soil moisture treatments, well-watered (WW, moderate drought (MD and severe drought (SD, were imposed from 9 d post-anthesis till maturity. Leaf physiological and biochemical traits, root activities, biomass, grain yield, and yield components in the untransformed WT and two transgenic rice lines (PPDK and PCK were systematically studied. Compared with the WT, both transgenic rice lines showed increased leaf photosynthetic rate: by 20%–40% under WW, by 45%–60% under MD, and by 80%–120% under SD. The transgenic plants produced 16.1%, 20.2% and 20.0% higher grain yields than WT under the WW, MD and SD treatments, respectively. Under the same soil moisture treatments, activities of phosphoenolpyruvate carboxylase (PEPC and carbonic anhydrase (CA in transgenic plants were 3–5-fold higher than those in WT plants. Compared with ribulose-1,5-bisphosphate carboxylase, activities of PEPC and CA were less reduced under both MD and SD treatments. The transgenic plants also showed higher leaf water content, stomatal conductance, transpiration efficiency, and root oxidation activity and a stronger active oxygen scavenging system than the WT under all soil moisture treatments, especially MD and SD. The results suggest that drought tolerance is greatly enhanced in transgenic rice plants overexpressing C4 photosynthesis enzymes. This study was performed under natural conditions and normal planting density to evaluate yield advantages on a field basis. It may open a new avenue to drought-tolerance breeding via overexpression of C4 enzymes in rice.

  15. Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza.

    Wu, Yucui; Liu, Congling; Kuang, Jing; Ge, Qian; Zhang, Yuan; Wang, Zhezhi

    2014-09-01

    Salinity and drought are important abiotic stresses limiting plant growth and development. Late embryogenesis abundant (LEA) proteins are a group of proteins associated with tolerance to water-related stress. We previously cloned an LEA gene, SmLEA, from Salvia miltiorrhiza Bunge. Phylogenetic analysis indicated that SmLEA belongs to Group LEA14, which is involved in the dehydration response. To determine its function in detail, we have now overexpressed SmLEA in Escherichia coli and S. miltiorrhiza. The logarithmic increase in accumulations of SmLEA proteins in E. coli occurred earlier under salinity than under standard conditions. SmLEA-transformed S. miltiorrhiza plants also showed faster root elongation and a lower malondialdehyde concentration than the empty vector control plants did when cultured on MS media supplemented with 60 mM NaCl or 150 mM mannitol. Moreover, SmLEA-overexpressing transgenics experienced a less rapid rate of water loss. Under either salinity or drought, overexpressing plants had greater superoxide dismutase activity and a higher glutathione concentration. These results suggest that SmLEA may be useful in efforts to improve drought and salinity tolerance in S. miltiorrhiza. Our data also provide a good foundation for further studies into the stress resistance mechanism and molecular breeding of this valuable medicinal plant. PMID:24595620

  16. HSET overexpression fuels tumor progression via centrosome clustering-independent mechanisms in breast cancer patients

    Pannu, Vaishali; Rida, Padmashree C.G.; Ogden, Angela; Turaga, Ravi Chakra; Donthamsetty, Shashikiran; Bowen, Nathan J.; Rudd, Katie; Gupta, Meenakshi V.; Reid, Michelle D.; Cantuaria, Guilherme; Walczak, Claire E.; Aneja, Ritu

    2015-01-01

    Human breast tumors harbor supernumerary centrosomes in almost 80% of tumor cells. Although amplified centrosomes compromise cell viability via multipolar spindles resulting in death-inducing aneuploidy, cancer cells tend to cluster extra centrosomes during mitosis. As a result cancer cells display bipolar spindle phenotypes to maintain a tolerable level of aneuploidy, an edge to their survival. HSET/KifC1, a kinesin-like minus-end directed microtubule motor has recently found fame as a crucial centrosome clustering molecule. Here we show that HSET promotes tumor progression via mechanisms independent of centrosome clustering. We found that HSET is overexpressed in breast carcinomas wherein nuclear HSET accumulation correlated with histological grade and predicted poor progression-free and overall survival. In addition, deregulated HSET protein expression was associated with gene amplification and/or translocation. Our data provide compelling evidence that HSET overexpression is pro-proliferative, promotes clonogenic-survival and enhances cell-cycle kinetics through G2 and M-phases. Importantly, HSET co-immunoprecipitates with survivin, and its overexpression protects survivin from proteasome-mediated degradation, resulting in its increased steady-state levels. We provide the first evidence of centrosome clustering-independent activities of HSET that fuel tumor progression and firmly establish that HSET can serve both as a potential prognostic biomarker and as a valuable cancer-selective therapeutic target. PMID:25788277

  17. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  18. Transgenic mice overexpressing renin exhibit glucose intolerance and diet-genotype interactions

    Sarah J. Fletcher

    2013-01-01

    Full Text Available Numerous animal and clinical investigations have pointed to a potential role of the renin-angiotensin system (RAS in the development of insulin resistance and diabetes in conditions of expanded fat mass. However, the mechanisms underlying this association remain unclear. We used a transgenic mouse model overexpressing renin in the liver (RenTgMK to examine the effects of chronic activation of RAS on adiposity and insulin sensitivity. Hepatic overexpression of renin resulted in constitutively elevated plasma angiotensin II (4-6-fold increase vs. wild type. Surprisingly, RenTgMK mice developed glucose intolerance despite low levels of adiposity and insulinemia. The transgenics also had lower plasma triglyceride levels. Glucose intolerance in transgenic mice fed a low-fat diet was comparable to that observed in high fat-fed wild type mice. Glucose intolerance was exacerbated by high-fat feeding, only in female transgenic mice. These studies demonstrate that overexpression of renin and associated hyperangiotensinemia impair glucose tolerance in a diet-dependent manner and further support a consistent role of RAS in the pathogenesis of diabetes and insulin resistance, independent of changes in fat mass.

  19. Functional Overexpression of Vomeronasal Receptors Using a Herpes Simplex Virus Type 1 (HSV-1)-Derived Amplicon.

    Stein, Benjamin; Alonso, María Teresa; Zufall, Frank; Leinders-Zufall, Trese; Chamero, Pablo

    2016-01-01

    In mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO) detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues. Nearly 400 receptor genes have been identified in the mouse VNO, but the tuning properties of individual receptors remain poorly understood, in part due to the lack of a robust heterologous expression system. Here we develop a herpes virus-based amplicon delivery system to overexpress three types of vomeronasal receptor genes and to characterize cell responses to their proposed ligands. Through Ca2+ imaging in native VNO cells we show that virus-induced overexpression of V1rj2, V2r1b or Fpr3 caused a pronounced increase of responsivity to sulfated steroids, MHC-binding peptide or the synthetic hexapeptide W-peptide, respectively. Other related ligands were not recognized by infected individual neurons, indicating a high degree of selectivity by the overexpressed receptor. Removal of G-protein signaling eliminates Ca2+ responses, indicating that the endogenous second messenger system is essential for observing receptor activation. Our results provide a novel expression system for vomeronasal receptors that should be useful for understanding the molecular logic of VNO ligand detection. Functional expression of vomeronasal receptors and their deorphanization provides an essential requirement for deciphering the neural mechanisms controlling behavior. PMID:27195771

  20. Functional Overexpression of Vomeronasal Receptors Using a Herpes Simplex Virus Type 1 (HSV-1-Derived Amplicon.

    Benjamin Stein

    Full Text Available In mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues. Nearly 400 receptor genes have been identified in the mouse VNO, but the tuning properties of individual receptors remain poorly understood, in part due to the lack of a robust heterologous expression system. Here we develop a herpes virus-based amplicon delivery system to overexpress three types of vomeronasal receptor genes and to characterize cell responses to their proposed ligands. Through Ca2+ imaging in native VNO cells we show that virus-induced overexpression of V1rj2, V2r1b or Fpr3 caused a pronounced increase of responsivity to sulfated steroids, MHC-binding peptide or the synthetic hexapeptide W-peptide, respectively. Other related ligands were not recognized by infected individual neurons, indicating a high degree of selectivity by the overexpressed receptor. Removal of G-protein signaling eliminates Ca2+ responses, indicating that the endogenous second messenger system is essential for observing receptor activation. Our results provide a novel expression system for vomeronasal receptors that should be useful for understanding the molecular logic of VNO ligand detection. Functional expression of vomeronasal receptors and their deorphanization provides an essential requirement for deciphering the neural mechanisms controlling behavior.

  1. HSET overexpression fuels tumor progression via centrosome clustering-independent mechanisms in breast cancer patients.

    Pannu, Vaishali; Rida, Padmashree C G; Ogden, Angela; Turaga, Ravi Chakra; Donthamsetty, Shashikiran; Bowen, Nathan J; Rudd, Katie; Gupta, Meenakshi V; Reid, Michelle D; Cantuaria, Guilherme; Walczak, Claire E; Aneja, Ritu

    2015-03-20

    Human breast tumors harbor supernumerary centrosomes in almost 80% of tumor cells. Although amplified centrosomes compromise cell viability via multipolar spindles resulting in death-inducing aneuploidy, cancer cells tend to cluster extra centrosomes during mitosis. As a result cancer cells display bipolar spindle phenotypes to maintain a tolerable level of aneuploidy, an edge to their survival. HSET/KifC1, a kinesin-like minus-end directed microtubule motor has recently found fame as a crucial centrosome clustering molecule. Here we show that HSET promotes tumor progression via mechanisms independent of centrosome clustering. We found that HSET is overexpressed in breast carcinomas wherein nuclear HSET accumulation correlated with histological grade and predicted poor progression-free and overall survival. In addition, deregulated HSET protein expression was associated with gene amplification and/or translocation. Our data provide compelling evidence that HSET overexpression is pro-proliferative, promotes clonogenic-survival and enhances cell-cycle kinetics through G2 and M-phases. Importantly, HSET co-immunoprecipitates with survivin, and its overexpression protects survivin from proteasome-mediated degradation, resulting in its increased steady-state levels. We provide the first evidence of centrosome clustering-independent activities of HSET that fuel tumor progression and firmly establish that HSET can serve both as a potential prognostic biomarker and as a valuable cancer-selective therapeutic target. PMID:25788277

  2. MET overexpression and gene amplification in NSCLC: a clinical perspective

    Landi L

    2013-06-01

    Full Text Available Lorenza Landi, Gabriele Minuti, Armida D'Incecco, Jessica Salvini, Federico CappuzzoMedical Oncology Department, Istituto Toscano Tumori, Ospedale Civile, Livorno, ItalyAbstract: The transmembrane tyrosine kinase mesenchymal-epidermal transition (MET receptor and its ligand, hepatocyte growth factor, also known as scatter factor, have recently been identified as novel promising targets in several human malignancies, including non-small cell lung cancer (NSCLC. Amplification, mutation, or overexpression of the MET gene can result in aberrant activation of the MET axis, leading to migration, invasion, proliferation, metastasis, and neoangiogenesis of cancer cells, suggesting that interfering with the MET/hepatocyte growth factor pathway could represent a potential antitumor strategy. While the role of MET mutations in NSCLC is not as yet fully understood, retrospective studies have shown that an increased MET gene copy number is a negative prognostic factor. In NSCLC, amplification of the MET gene is a relatively rare event, occurring in approximately 4% of patients not previously exposed to systemic therapies and in up to 20% of patients with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. In preclinical models, the presence of MET amplification is a predictor of high sensitivity to anti-MET compounds, and several agents have entered in clinical trials for patients having advanced disease, with promising results. The aim of the present review is to summarize available data on the role of MET in NSCLC and to describe therapeutic strategies under investigation.Keywords: mesenchymal-epidermal transition, hepatocyte growth factor, epidermal growth factor receptor, non-small cell lung cancer

  3. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells. PMID:26676266

  4. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors

  5. Overexpression of Caspase-1 in adenocarcinoma of pancreas and chronic pancreatitis

    Yin-Mo Yang; Marco Ramadani; Yan-Ting Huang

    2003-01-01

    AIM: To identify the expression of Caspase-l(interleukin1.β converting enzyme) and its role in adenoma of the pancreas and chronic pancreatitis.METHODS: The expression of Caspase-1 was assessed in 42 pancreatic cancer tissue samples, 38 chronic pancreatitis specimens, and 9 normal pancreatic tissues by immunohistochemistry and Western blot analysis.RESULTS: Overexpression of Caspase-1 was observed in both disorders, but there were differences in the expression patterns in distinct morphologic compartments. Pancreatic cancer tissues showed a clear cytoplasmatic overexpression of Caspase-1 in tumor cells of 71% of the tumors, whereas normal pancreatic tissues showed only occasional immunoreactivity. In chronic pancreatitis, overexpression of Caspase-1 was found in atrophic acinar cells (89 %),hyperplastic ducts (87 %), and dedifferentiating acinar cells (84 %). Although in atrophic cells a clear nuclear expression was found, hyperplastic ducts and dedifferentiating acinar cells showed dear cytoplasmic expression. Western blot analysis revealed a marked expression of the 45 kDa precursor of Caspase-1 in pancreatic cancer and chronic pancreatitis (80 %and 86 %, respectively). Clear bands at 30 kDa, which suggested the p10-p20 heterodimer of active Caspase-1, were found in 60 % of the cancer tissue and 14 % of the pancreatitis tissue specimens, but not in normal pancreatic tissues.CONCLUSION: Overexpression of Caspase-1 is a frequent event in pancreatic disorders and its differential expression patterns may reflect two functions of the protease. One is its participation in the apoptotic pathway in atrophic acinar cells and tumor-surrounding pancreatitis tissue, the other is its possible role in proliferative processes in pancreatic cancer cells and hyperplastic duct cells and dedifferentiating acinar cells in chronic pancreatitis.

  6. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  7. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction.

    Muñoz-Félix, José M; Pérez-Roque, Lucía; Núñez-Gómez, Elena; Oujo, Bárbara; Arévalo, Miguel; Ruiz-Remolina, Laura; Cuesta, Cristina; Langa, Carmen; Pérez-Barriocanal, Fernando; Bernabeu, Carmelo; Lopez-Novoa, José M

    2016-09-01

    Transforming growth factor beta 1 (TGF-β1) is one of the most studied cytokines involved in renal tubulo-interstitial fibrosis, which is characterized by myofibroblast abundance and proliferation, and high buildup of extracellular matrix in the tubular interstitium leading to organ failure. Endoglin (Eng) is a 180-kDa homodimeric transmembrane protein that regulates a great number of TGF-β1 actions in different biological processes, including ECM synthesis. High levels of Eng have been observed in experimental models of renal fibrosis or in biopsies from patients with chronic kidney disease. In humans and mice, two Eng isoforms are generated by alternative splicing, L-Eng and S-Eng that differ in the length and composition of their cytoplasmic domains. We have previously described that L-Eng overexpression promotes renal fibrosis after unilateral ureteral obstruction (UUO). However, the role of S-Eng in renal fibrosis is unknown and its study would let us analyze the possible function of the cytoplasmic domain of Eng in this process. For this purpose, we have generated a mice strain that overexpresses S-Eng (S-ENG(+)) and we have performed an UUO in S-ENG(+) and their wild type (WT) control mice. Our results indicate that obstructed kidney of S-ENG(+) mice shows lower levels of tubulo-interstitial fibrosis, less inflammation and less interstitial cell proliferation than WT littermates. Moreover, S-ENG(+) mice show less activation of Smad1 and Smad2/3 pathways. Thus, S-Eng overexpression reduces UUO-induced renal fibrosis and some associated mechanisms. As L-Eng overexpression provokes renal fibrosis we conclude that Eng-mediated induction of renal fibrosis in this model is dependent on its cytoplasmic domain. PMID:27321931

  8. Overexpression of inosine 5'-monophosphate dehydrogenase type II mediates chemoresistance to human osteosarcoma cells.

    Jörg Fellenberg

    Full Text Available BACKGROUND: Chemoresistance is the principal reason for poor survival and disease recurrence in osteosarcoma patients. Inosine 5'-monophosphate dehydrogenase type II (IMPDH2 encodes the rate-limiting enzyme in the de novo guanine nucleotide biosynthesis and has been linked to cell growth, differentiation, and malignant transformation. In a previous study we identified IMPDH2 as an independent prognostic factor and observed frequent IMPDH2 overexpression in osteosarcoma patients with poor response to chemotherapy. The aim of this study was to provide evidence for direct involvement of IMPDH2 in the development of chemoresistance. METHODOLOGY/PRINCIPAL FINDINGS: Stable cell lines overexpressing IMPDH2 and IMPDH2 knock-down cells were generated using the osteosarcoma cell line Saos-2 as parental cell line. Chemosensitivity, proliferation, and the expression of apoptosis-related proteins were analyzed by flow cytometry, WST-1-assay, and western blot analysis. Overexpression of IMPDH2 in Saos-2 cells induced strong chemoresistance against cisplatin and methotrexate. The observed chemoresistance was mediated at least in part by increased expression of the anti-apoptotic proteins Bcl-2, Mcl-1, and XIAP, reduced activation of caspase-9, and, consequently, reduced cleavage of the caspase substrate PARP. Pharmacological inhibition of IMPDH induced a moderate reduction of cell viability and a strong decrease of cell proliferation, but no increase in chemosensitivity. However, chemoresistant IMPDH2-overexpressing cells could be resensitized by RNA interference-mediated downregulation of IMPDH2. CONCLUSIONS: IMPDH2 is directly involved in the development of chemoresistance in osteosarcoma cells, suggesting that targeting of IMPDH2 by RNAi or more effective pharmacological inhibitors in combination with chemotherapy might be a promising means of overcoming chemoresistance in osteosarcomas with high IMPDH2 expression.

  9. Matrix metalloproteinase-8 overexpression prevents proper tissue repair

    Danielsen, Patricia L; Holst, Anders V; Maltesen, Henrik R; Bassi, Maria R; Holst, Peter J; Heinemeier, Katja M; Olsen, Jørgen; Danielsen, Carl Christian; Poulsen, Steen S; Jorgensen, Lars N; Agren, Magnus S

    2011-01-01

    The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus-driven tra......The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus...

  10. Pericellular proteolytic cascade by plasmin/plasminogen activator system

    2001-01-01

    Plasmin/plasminogen activators (PA) are the serine enzyme which digests fibrin and/or fibrinogen. Plasmin is produced by the cleavage of its precursor, plasminogen by PAs (urokinase-type PA and tissue-type PA). These events are expected in the thrmbolytic therapy for thromboembolic deseases. Apart from the blood fibrinolysis mentioned above, new role of plasmin/plasminogen activators has been extensively investigated in the field of cellular biology. On the cell surface, the receptor for urokinase-type PA (u-PAR) was found (that for t-PA has not cloned yet). Then, plasmin as well as u-PA itself activates pro-form of matrix metalloproteinases (MMPs) around the pericellular space. These proteolytic activities by u-PA, plasmin and MMPs induce the degradation of extracellular matrix (ECM), affording the cells certain enviroment for their biological function. Further, the coupling of u-PA/u-PAR system and integrins can generate intracellular signal transductions which take part in the regulation of cell proliferation, attachment or migration followed by various physiological and pathophysiological functions. These serial mechanisms are the principle of pericellular proteolytic cascade.

  11. Overexpression of transcription factor AP-2 stimulates the PA promoter of the human uracil-DNA glycosylase (UNG) gene through a mechanism involving derepression

    Aas, Per Arne; Pena Diaz, Javier; Liabakk, Nina Beate;

    2009-01-01

    alpha, lacking the activation domain but retaining the DNA binding and dimerization domains, stimulated PA to a level approaching that of full-length AP-2, suggesting that AP-2 overexpression stimulates PA activity by a mechanism involving derepression rather than activation, possibly by neutralizing an...

  12. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    Kim, Dohee [Department of Internal Medicine, Dankook University College of Medicine, Cheonan (Korea, Republic of); Yang, Jae-Yeon [Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Chongno-Gu, Seoul 110-744 (Korea, Republic of); Shin, Chan Soo, E-mail: csshin@snu.ac.kr [Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Chongno-Gu, Seoul 110-744 (Korea, Republic of)

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.

  13. Overexpression of AtBMI1C, a polycomb group protein gene, accelerates flowering in Arabidopsis.

    Wei Li

    Full Text Available Polycomb group protein (PcG-mediated gene silencing is emerging as an essential developmental regulatory mechanism in eukaryotic organisms. PcGs inactivate or maintain the silenced state of their target chromatin by forming complexes, including Polycomb Repressive Complex 1 (PRC1 and 2 (PRC2. Three PRC2 complexes have been identified and characterized in Arabidopsis; of these, the EMF and VRN complexes suppress flowering by catalyzing the trimethylation of lysine 27 on histone H3 of FLOWER LOCUS T (FT and FLOWER LOCUS C (FLC. However, little is known about the role of PRC1 in regulating the floral transition, although AtRING1A, AtRING1B, AtBMI1A, and AtBMI1B are believed to regulate shoot apical meristem and embryonic development as components of PRC1. Moreover, among the five RING finger PcGs in the Arabidopsis genome, four have been characterized. Here, we report that the fifth, AtBMI1C, is a novel, ubiquitously expressed nuclear PcG protein and part of PRC1, which is evolutionarily conserved with Psc and BMI1. Overexpression of AtBMI1C caused increased H2A monoubiquitination and flowering defects in Arabidopsis. Both the suppression of FLC and activation of FT were observed in AtBMI1C-overexpressing lines, resulting in early flowering. No change in the H3K27me3 level in FLC chromatin was detected in an AtBMI1C-overexpressing line. Our results suggest that AtBMI1C participates in flowering time control by regulating the expression of FLC; moreover, the repression of FLC by AtBMI1C is not due to the activity of PRC2. Instead, it is likely the result of PRC1 activity, into which AtBMI1C is integrated.

  14. Nicotinamide phosphoribosyltransferase leukocyte overexpression in Graves' opthalmopathy.

    Sawicka-Gutaj, Nadia; Budny, Bartłomiej; Zybek-Kocik, Ariadna; Sowiński, Jerzy; Ziemnicka, Katarzyna; Waligórska-Stachura, Joanna; Ruchała, Marek

    2016-08-01

    To investigate the role of NAMPT/visfatin in euthyroid patients with Graves' disease without (GD) and with Graves' ophthalmopathy (GO), we analyzed NAMPT leukocyte expression and its serum concentration. This was a single-center, cross-sectional study with consecutive enrollment. In total, 149 patients diagnosed with Graves' disease were enrolled in the study. We excluded subjects with hyper- or hypothyroidism, diabetes mellitus, other autoimmune disorders, active neoplastic disease, and infection. The control group was recruited among healthy volunteers adjusted for age, sex, and BMI with normal thyroid function and negative thyroid antibodies. Serum levels of visfatin, TSH, FT4, FT3, antibodies against TSH receptor (TRAb), antithyroperoxidase antibodies, antithyroglobulin antibodies, fasting glucose, and insulin were measured. NAMPT mRNA leukocyte expression was assessed using RT-qPCR. NAMPT/visfatin serum concentration was higher in GD (n = 44) and GO (n = 49) patients than in the control group (n = 40) (p = 0.0275). NAMPT leukocyte expression was higher in patients with GO (n = 30) than in GD patients (n = 27) and the control group (n = 29) (p < 0.0001). Simple linear regression analysis revealed that NAMPT/visfatin serum concentration was significantly associated with GD (β = 1.5723; p = 0.021). When NAMPT leukocyte expression was used as a dependent variable, simple regression analysis found association with TRAb, fasting insulin level, HOMA-IR, GD, and GO. In the stepwise multiple regression analysis, we confirmed the association between higher serum NAMPT/visfatin level and GD (coefficient = 1.5723; p = 0.0212), and between NAMPT leukocyte expression and GO (coefficient = 2.4619; p = 0.0001) and TRAb (coefficient = 0.08742; p = 0.006). Increased NAMPT leukocyte expression in patients with GO might suggest a presently undefined role in the pathogenesis of GO. PMID:26767650

  15. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa.

    Pan, Ya-Ping; Xu, Yuan-Hong; Wang, Zhong-Xin; Fang, Ya-Ping; Shen, Ji-Lu

    2016-08-01

    Efflux pump systems are one of the most important mechanisms conferring multidrug resistance in Pseudomonas aeruginosa. MexAB-OprM efflux pump is one of the largest multi-drug resistant efflux pumps with high-level expression, which is controlled by regulatory genes mexR, nalC, and nalD. This study investigated the role of efflux pump MexAB-OprM in 75 strains of carbapenem-resistant P. aeruginosa and evaluated the influence of point mutation of the regulatory genes. The minimum inhibitory concentrations of imipenem and meropenem, with or without MC207110, an efflux pump inhibitor, were determined by agar dilution method to select the positive strains for an overexpressed active efflux pump. Carba NP test and EDTA-disk synergy test were used for the detection of carbapenemase and metallo-β-lactamases, respectively. The gene mexA, responsible for the fusion protein structure, and the reference gene rpoD of the MexAB-OprM pump were amplified by real-time PCR. The quantity of relative mRNA expression was determined simultaneously. By PCR method, the efflux regulatory genes mexR, nalC, and nalD and outer membrane protein OprD2 were amplified for the strains showing overexpression of MexAB-OprM and subsequently analyzed by BLAST. Among the 75 P. aeruginosa strains, the prevalence of efflux pump-positive phenotype was 17.3 % (13/75). Carba NP test and EDTA-disk synergy test were all negative in the 13 strains. PCR assay results showed that ten strains overexpressed the MexAB-OprM efflux pump and were all positive for the regulatory genes mexR, nalC, and nalD. Sequence analysis indicated that of the ten isolates, nine had a mutation (Gly → Glu) at 71st amino acid position in NalC, and eight also had a mutation (Ser → Arg) at 209th position in NalC. Only one strain had a mutation (Thr → Ile) at the 158th amino acid position in NalD, whereas eight isolates had mutations in MexR. In conclusion, overexpression of efflux pump MexAB-OprM plays an important role in

  16. Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3

    Yokota Takashi

    2008-05-01

    Full Text Available Abstract Background The transcription factor STAT3 is a downstream target of the LIF signalling cascade. LIF signalling or activation is sufficient to maintain embryonic stem (ES cells in an undifferentiated and pluripotent state. To further investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells. Results Transgenic STAT3-MER blastocysts yielded pluripotent germline-competent ES cells at a high frequency in the absence of LIF when established in tamoxifen-containing medium. Expression profiling of tamoxifen-induced transgenic FVB ES cell lines revealed a set of 26 genes that were markedly up- or down-regulated when compared with wild type cells. The expression of four of the up-regulated genes (Hexokinase II, Lefty2, Pramel7, PP1rs15B was shown to be restricted to the inner cell mass (ICM of the blastocysts. These differentially expressed genes represent potential candidates for the maintenance of pluripotency of ES cells. We finally overexpressed two candidate genes, Pem/Rhox5 and Pramel7, in ES cells and demonstrated that their overexpression is sufficient for the maintenance of expression of ES cell markers as well as of the typical morphology of pluripotent ES cells in absence of LIF. Conclusion Overexpression of STAT3-MER in the inner cell mass of blastocyst facilitates the establishment of ES cells and induces the upregulation of potential candidate genes involved in the maintenance of pluripotency. Two of them, Pem/Rhox5 and Pramel7, when overexpressed in ES cells are able to maintain the embryonic stem cells in a pluripotent state in a LIF independent

  17. Protein Kinase G1 α Overexpression Increases Stem Cell Survival and Cardiac Function after Myocardial Infarction

    Linlin Wang; Zeeshan Pasha; Shuyun Wang; Ning Li; Yuliang Feng; Gang Lu; Millard, Ronald W.; Muhammad Ashraf

    2013-01-01

    BACKGROUND: We hypothesized that overexpression of cGMP-dependent protein kinase type 1α (PKG1α) could mimic the effect of tadalafil on the survival of bone marrow derived mesenchymal stem cells (MSCs) contributing to regeneration of the ischemic heart. METHODS AND RESULTS: MSCs from male rats were transduced with adenoviral vector encoding for PKG1α ((PKG1α)MSCs).Controls included native MSCs ((Nat)MSCs) and MSCs transduced with an empty vector ((Null)MSCs). PKG1α activity was increased appr...

  18. Method to Screen Multidrug Transport Inhibitors Using Yeast Overexpressing a Human MDR Transporter.

    Fiorini, Laura; Mus-Veteau, Isabelle

    2016-01-01

    Multidrug resistance has appeared to mitigate the efficiency of anticancer drugs and the possibility of successful cancer chemotherapy. The Hedgehog receptor Patched is a multidrug transporter expressed in several cancers and as such it represents a new target to circumvent chemotherapy resistance. In this chapter, we describe the screening test developed to identify molecules able to inhibit the drug efflux activity of Patched. This screening test uses yeast overexpressing functional human Patched that have been shown to resist to chemotherapeutic agents. This test can be adapted to other MDR transporters. PMID:27485344

  19. Urokinase plasminogen activator inhibits HIV virion release from macrophage-differentiated chronically infected cells via activation of RhoA and PKCε.

    Francesca Graziano

    Full Text Available BACKGROUND: HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA with its cell surface receptor (uPAR has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA. By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles. RESULTS: uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA. CONCLUSIONS: These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed

  20. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good targets for developing diagnostic and

  1. Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER-2 gene overexpression.

    Li, Dan; Williams, Jon I; Pietras, Richard J

    2002-04-25

    Angiogenesis is important for growth and progression of ovarian cancers. Squalamine is a natural antiangiogenic sterol, and its potential role in treatment of ovarian cancers with or without standard cisplatin chemotherapy was assessed. Since HER-2 gene overexpression is associated with cisplatin resistance in vitro and promotion of tumor angiogenesis in vivo, the response of ovarian cancer cells with or without HER-2 gene overexpression to squalamine and cisplatin was evaluated both in tumor xenograft models and in tissue culture. Ovarian cancer cells with or without HER-2 overexpression were grown as subcutaneous xenografts in nude mice. Animals were treated by intraperitoneal injection with control vehicle, cisplatin, squalamine or cisplatin combined with squalamine. At the end of the experiment, tumors were assessed for tumor growth inhibition and for changes in microvessel density and apoptosis. Additional in vitro studies evaluated effects of squalamine on tumor and endothelial cell growth and on signaling pathways in human endothelial cells. Profound growth inhibition was elicited by squalamine alone and by combined treatment with squalamine and cisplatin for both parental and HER-2-overexpressing ovarian tumor xenografts. Immunohistochemical evaluation of tumors revealed decreased microvessel density and increased apoptosis. Although HER-2-overexpressing tumors had more angiogenic and less apoptotic activity than parental cancers, growth of both tumor types was similarly suppressed by treatment with squalamine combined with cisplatin. In in vitro studies, we found that squalamine does not directly affect proliferation of ovarian cells. However, squalamine significantly blocked VEGF-induced activation of MAP kinase and cell proliferation in human vascular endothelial cells. The results suggest that squalamine is anti-angiogenic for ovarian cancer xenografts and appears to enhance cytotoxic effects of cisplatin chemotherapy independent of HER-2 tumor status

  2. A transgenic mouse model of neuroepithelial cell specific inducible overexpression of dopamine D1-receptor.

    Fujimoto, K; Araki, K; McCarthy, D M; Sims, J R; Ren, J Q; Zhang, X; Bhide, P G

    2010-10-27

    Dopamine and its receptors appear in the brain during early embryonic period suggesting a role for dopamine in brain development. In fact, dopamine receptor imbalance resulting from impaired physiological balance between D1- and D2-receptor activities can perturb brain development and lead to persisting changes in brain structure and function. Dopamine receptor imbalance can be produced experimentally using pharmacological or genetic methods. Pharmacological methods tend to activate or antagonize the receptors in all cell types. In the traditional gene knockout models the receptor imbalance occurs during development and also at maturity. Therefore, assaying the effects of dopamine imbalance on specific cell types (e.g. precursor versus postmitotic cells) or at specific periods of brain development (e.g. pre- or postnatal periods) is not feasible in these models. We describe a novel transgenic mouse model based on the tetracycline dependent inducible gene expression system in which dopamine D1-receptor transgene expression is induced selectively in neuroepithelial cells of the embryonic brain at experimenter-chosen intervals of brain development. In this model, doxycycline-induced expression of the transgene causes significant overexpression of the D1-receptor and significant reductions in the incorporation of the S-phase marker bromodeoxyuridine into neuroepithelial cells of the basal and dorsal telencephalon indicating marked effects on telencephalic neurogenesis. The D1-receptor overexpression occurs at higher levels in the medial ganglionic eminence (MGE) than the lateral ganglionic eminence (LGE) or cerebral wall (CW). Moreover, although the transgene is induced selectively in the neuroepithelium, D1-receptor protein overexpression appears to persist in postmitotic cells. The mouse model can be modified for neuroepithelial cell-specific inducible expression of other transgenes or induction of the D1-receptor transgene in other cells in specific brain regions by

  3. Ectopic Overexpression of Sonic Hedgehog (Shh Induces Stromal Expansion and Metaplasia in the Adult Murine Pancreas

    Volker Fendrich

    2011-10-01

    Full Text Available Ligand-dependent activation of the Hedgehog (Hh signaling pathway has been implicated in both tumor initiation and metastasis of pancreatic ductal adenocarcinoma (PDAC. Prior studies in genetically engineered mouse models (GEMMs have assessed the role of Hh signaling by cell autonomous expression of a constitutively active Gli2 within epithelial cells. On the contrary, aberrant pathway reactivation in the human exocrine pancreas occurs principally as a consequence of Sonic Hh ligand (Shh overexpression from epithelial cells. To recapitulate the cognate pathophysiology of Hh signaling observed in the human pancreas, we examined GEMM where Hh ligand is conditionally overexpressed within the mature exocrine pancreas using a tamoxifen-inducible Elastase-Cre promoter (Ela-CreERT2;LSL-mShh. We also facilitated potential cell autonomous epithelial responsiveness to secreted Hh ligand by generating compound transgenic mice with concomitant expression of the Hh receptor Smoothened (Ela-CreERT2;LSL-mShh;LSL-mSmo. Of interest, none of these mice developed intraductal precursor lesions or PDAC during the follow-up period of up to 12 months after tamoxifen induction. Instead, all animals demonstrated marked expansion of stromal cells, consistent with the previously described epithelial-to-stromal paracrine Hh signaling. Hh responsiveness was mirrored by the expression of primary cilia within the expanded mesenchymal compartment and the absence within mature acinar cells. In the absence of cooperating mutations, Hh ligand overexpression in the mature exocrine pancreas is insufficient to induce neoplasia, even when epithelial cells coexpress the Smo receptor. This autochthonous model serves as a platform for studying epithelial stromal interactions in pancreatic carcinogenesis.

  4. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  5. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells.

    Veronica L Martinez-Marignac

    Full Text Available Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3 and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion.

  6. Overexpression of esterase D in kidney from trisomy 13 fetuses

    Loughna, S.; Moore, G. (Institute of Obstetrics and Gynaecology, London (United Kingdom)); Gau, G.; Blunt, S. (Cytogenetics Lab., London (United Kingdom)); Nicolaides, K. (King' s College School of Medicine and Dentistry, London (United Kingdom))

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.

  7. Overexpression of kinesins mediates docetaxel resistance in breast cancer cells.

    De, Sarmishtha; Cipriano, Rocky; Jackson, Mark W; Stark, George R

    2009-10-15

    Resistance to chemotherapy remains a major barrier to the successful treatment of cancer. To understand mechanisms underlying docetaxel resistance in breast cancer, we used an insertional mutagenesis strategy to identify proteins whose overexpression confers resistance. A strong promoter was inserted approximately randomly into the genomes of tumor-derived breast cancer cells, using a novel lentiviral vector. We isolated a docetaxel-resistant clone in which the level of the kinesin KIFC3 was elevated. When KIFC3 or the additional kinesins KIFC1, KIF1A, or KIF5A were overexpressed in the breast cancer cell lines MDA-MB231 and MDA-MB 468, the cells became more resistant to docetaxel. The binding of kinesins to microtubules opposes the stabilizing effect of docetaxel that prevents cytokinesis and leads to apoptosis. Our finding that kinesins can mediate docetaxel resistance might lead to novel therapeutic approaches in which kinesin inhibitors are paired with taxanes. PMID:19789344

  8. Perilipin overexpression in mice protects against diet-induced obesity

    Miyoshi, Hideaki; Souza, Sandra C.; Endo, Mikiko; Sawada, Takashi; Perfield, James W.; Shimizu, Chikara; Stancheva, Zlatina; Nagai, So; Strissel, Katherine J.; Yoshioka, Narihito; Obin, Martin S.; Koike, Takao; Greenberg, Andrew S.

    2010-01-01

    Perilipin A is the most abundant phosphoprotein on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Perilipin null mice exhibit diminished adipose tissue, elevated basal lipolysis, reduced catecholamine-stimulated lipolysis, and increased insulin resistance. To understand the physiological consequences of increased perilipin expression in vivo, we generated transgenic mice that overexpressed either human or mouse perilipin using the adipocyte-specific aP2 promoter/en...

  9. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    Srivastava Anurag; Shukla Nootan K; DattaGupta Siddartha; Sawhney Meenakshi; Kaur Jatinder; Ralhan Ranju

    2010-01-01

    Abstract Background We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signa...

  10. From Biogenesis to Overexpression of Membrane Proteins in Escherichia coli

    Wagner, Samuel

    2008-01-01

    In both pro- and eukaryotes 20-30% of all genes encode alpha-helical transmembrane domain proteins, which act in various and often essential capacities. Notably, membrane proteins play key roles in disease and they constitute more than half of all known drug targets. The natural abundance of membrane proteins is in general too low to conveniently isolate sufficient material for functional and structural studies. Therefore, most membrane proteins have to be obtained through overexpression. Esc...

  11. Overexpression of Protochlorophyllide Oxidoreductase C Regulates Oxidative Stress in Arabidopsis

    Pattanayak, Gopal K.; Tripathy, Baishnab C

    2011-01-01

    Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen ((1)O(2)). As there is no enzymatic detoxification mechanism available in plants to destroy (1)O(2), its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide ox...

  12. Overexpression of esterase D in kidney from trisomy 13 fetuses.

    Loughna, S; P. Bennett; Gau, G; K. Nicolaides; Blunt, S; Moore, G

    1993-01-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses a...

  13. DKC1 overexpression associated with prostate cancer progression

    Sieron, P; Hader, C; Hatina, J; Engers, R; Wlazlinski, A; Müller, M.; Schulz, W A

    2009-01-01

    Background: Dyskerin encoded by the DKC1 gene is a predominantly nucleolar protein essential for the formation of pseudouridine in RNA and the telomerase RNA subunit hTR. Inherited mutations inactivating dyskerin cause dyskeratosis congenita, a syndrome with progeroid features characterised by skin defects and haematopoiesis failure, as well as cancer susceptibility. In this study, we report DKC1 overexpression in prostate cancers. Methods: Expression of DKC1 was measured by quantitative RT–P...

  14. The Role of Neurotransmitters in Protection against Amyloid- β Toxicity by KiSS-1 Overexpression in SH-SY5Y Neurons.

    Chilumuri, Amrutha; Milton, Nathaniel G N

    2013-01-01

    Recent studies have suggested that the kisspeptin (KP) and kissorphin (KSO) peptides have neuroprotective actions against the Alzheimer's amyloid- β (A β ) peptide. Overexpression of the human KiSS-1 gene that codes for KP and KSO peptides in SH-SY5Y neurons has also been shown to inhibit A β neurotoxicity. The in vivo actions of KP include activation of neuroendocrine and neurotransmitter systems. The present study used antagonists of KP, neuropeptide FF (NPFF), opioids, oxytocin, estrogen, adrenergic, cholinergic, dopaminergic, serotonergic, and γ -aminobutyric acid (GABA) receptors plus inhibitors of catalase, cyclooxygenase, nitric oxide synthase, and the mitogen activated protein kinase cascade to characterize the KiSS-1 gene overexpression neuroprotection against A β cell model. The results showed that KiSS-1 overexpression is neuroprotective against A β and the action appears to involve the KP or KSO peptide products of KiSS-1 processing. The mechanism of neuroprotection does not involve the activation of the KP or NPFF receptors. Opioids play a role in the toxicity of A β in the KiSS-1 overexpression system and opioid antagonists naloxone or naltrexone inhibited A β toxicity. The mechanism of KiSS-1 overexpression induced protection against A β appears to have an oxytocin plus a cyclooxygenase dependent component, with the oxytocin antagonist atosiban and the cyclooxygenase inhibitor SC-560 both enhancing the toxicity of A β . PMID:24967306

  15. Genome wide transcription profiling of the effects of overexpression of Spc1 and its kinase dead mutant in Schizosaccharomyces pombe

    Madhurima Paul

    2015-12-01

    Full Text Available The Mitogen Activated Protein Kinase Spc1 (p38 homolog is a major player in stress responses of the unicellular fission yeast Schizosaccharomyces pombe. This pathway is therefore also known as the SAPK or Stress Activated Protein Kinase pathway. Spc1 is a known activator of transcription factors that control gene expression in response to extracellular stimuli and is also known to interact with the translation machinery [1–8]. Spc1 has also been implicated in cell cycle regulation and meiosis in S. pombe [1,2,9,10]. Given its documented role in modulating gene expression, we performed a microarray based identification of genes whose expression in unperturbed cells (absence of stress stimuli is dependent on Spc1. For this we overexpressed Spc1 in S. pombe. Additionally we also overexpressed Spc1K49R (a kinase dead mutant of Spc1 to understand the contribution of Spc1's kinase activity towards the observed gene expression changes. The microarray data are available at NCBI's Gene Expression Omnibus (GEO Series (accession number GSE73618. Here we report the annotation of the genes whose expression get altered by Spc1/Spc1K49R overexpression and also provide details related to sample processing and statistical analysis of our microarray data.

  16. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    Mattanovich Diethard

    2008-07-01

    Full Text Available Abstract Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1 is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established.

  17. Role of overexpressed CFA/I fimbriae in bacterial swimming

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility. (paper)

  18. Influence of overexpression of SOCS2 on cells of DN rat

    Na-Na; Bao; De-Yang; Kong; Dan; Zhu; Li-Rong; Hao

    2015-01-01

    Objective: To explore the influence and mechanism of overexpression of SOCS2 on diabetic nephropathy(DN) rats and cells. Methods: STZ was used to induce male SD rats and SOCS2 was injected into left renal vein. Rats were divided into DN group, DN-Ad-null group and DNAd-SOCS2 group. Glucose with high and normal concentration was used to culture HBZY-1 cells and then transfect Ad-SOCS2. HG group, HG-Ad-null group, HG-Ad-SOCS2 group, CG group, CG-Ad-null group, and CG-Ad-SOCS2 group were created. The expression of inflammatory cytokines(MCP-1, TNF-α and IL-6) in kidney tissue of rats, fibrosis related protein(FN, Collagen Ⅳ and TGF-β) in kidney tissue and cells of rats, and JAK/STAT signaling pathway related proteins(p-JAK2 and p-STAT3) were tested by western blot. ELISA was used to test the expression of inflammatory cytokines(TNF-α and IL-6) in cells. Results: The expression of inflammatory cytokines in DN rats(MCP-1, TNF-α and IL-6) and cell(TNF-α and IL-6) were increased(P<0.01) significantly. However, SOCS2 could decrease the overexpression of mediated inflammatory cytokines in DN animal models and cell models(P<0.01). The expression of fibrosis related protein in DN rats and cells increased while SOCS2 decreased the overexpression of mediated fibrosis related protein in DN model rats and cells(P<0.01). The expression of JAK/STAT pathway related protein in both DN rats and cells increased and the JAK/STAT signaling pathway was activated. Yet, SOCS2 obviously suppressed the expression of the JAK/STAT signaling pathway as well as the related proteins(p-JAK2 and p-STAT3) in both DN rats and cells. Conclusions: The overexpression of SOCS2 can decrease the expression of inflammatory cytokines and fibrosis related proteins in DN rats and cells, and meanwhile suppress the activation of JAK/STAT signaling pathway mediated by DN.

  19. Large-Scale Overexpression and Purification of ADARs from Saccharomyces cerevisiae for Biophysical and Biochemical Studies

    Macbeth, Mark R.; Bass, Brenda L.

    2008-01-01

    Many biochemical and biophysical analyses of enzymes require quantities of protein that are difficult to obtain from expression in an endogenous system. To further complicate matters, native adenosine deaminases that act on RNA (ADARs) are expressed at very low levels, and overexpression of active protein has been unsuccessful in common bacterial systems. Here we describe the plasmid construction, expression, and purification procedures for ADARs overexpressed in the yeast Saccharomyces cerevisiae. ADAR expression is controlled by the Gal promoter, which allows for rapid induction of transcription when the yeast are grown in media containing galactose. The ADAR is translated with an N-terminal histidine tag that is cleaved by the tobacco etch virus protease, generating one nonnative glycine residue at the N-terminus of the ADAR protein. ADARs expressed using this system can be purified to homogeneity, are highly active in deaminating RNA, and are produced in quantities (from 3 to 10 mg of pure protein per liter of yeast culture) that are sufficient for most biophysical studies. PMID:17662848

  20. Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips.

    Ryu, Sun-Hwa; Cho, Myung-Kil; Kim, Myungkil; Jung, Sang-Min; Seo, Jin-Ho

    2013-11-01

    The laccase gene of Polyporus brumalis was genetically transformed to overexpress its laccase. The transformants exhibited increased laccase activity and effective decolorization of the dye Remazol Brilliant Blue R than the wild type. When the transformants were pretreated with wood chips from a red pine (softwood) and a tulip tree (hardwood) for 15 and 45 days, they showed higher lignin-degradation activity as well as higher wood-chip weight loss than the wild type. When the wood chips treated with the transformant were enzymatically saccharified, the highest sugar yields were found to be 32.5 % for the red pine wood and 29.5 % for the tulip tree wood, on the basis of the dried wood weights, which were 1.6-folds higher than those for the wild type. These results suggested that overexpression of the laccase gene from P. brumalis significantly contributed to the pretreatment of lignocellulose for increasing sugar yields. PMID:23975277

  1. Regulation, overexpression, and target gene identification of Potato Homeobox 15 (POTH15) - a class-I KNOX gene in potato.

    Mahajan, Ameya S; Kondhare, Kirtikumar R; Rajabhoj, Mohit P; Kumar, Amit; Ghate, Tejashree; Ravindran, Nevedha; Habib, Farhat; Siddappa, Sundaresha; Banerjee, Anjan K

    2016-07-01

    Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and stolons under tuber-inducing short-day conditions. POTH15 promoter activity was detected in apical and axillary meristems, stolon tips, tuber eyes, and meristems of tuber sprouts, indicating its role in meristem maintenance and leaf development. POTH15 overexpression altered multiple morphological traits including leaf and stem development, leaflet number, and number of nodes and branches. In particular, the rachis of the leaf was completely reduced and leaves appeared as a bouquet of leaflets. Comparative transcriptomic analysis of 35S::GUS and two POTH15 overexpression lines identified more than 6000 differentially expressed genes, including 2014 common genes between the two overexpression lines. Functional analysis of these genes revealed their involvement in responses to hormones, biotic/abiotic stresses, transcription regulation, and signal transduction. qRT-PCR of selected candidate target genes validated their differential expression in both overexpression lines. Out of 200 randomly chosen POTH15 targets, 173 were found to have at least one tandem TGAC core motif, characteristic of KNOX interaction, within 3.0kb in the upstream sequence of the transcription start site. Overall, this study provides insights to the role of POTH15 in controlling diverse developmental processes in potato. PMID:27217546

  2. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  3. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    Li, Hui; Li, Min; Xu, Ding; Zhao, Chun; Liu, Guodong; Wang, Fang, E-mail: milwang_122@msn.com

    2014-03-28

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.

  4. Bacterial lipoprotein-induced tolerance is reversed by overexpression of IRAK-1.

    Li, Chong Hui

    2012-03-01

    Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and\\/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.

  5. Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype

    Monestier Olivier

    2012-10-01

    Full Text Available Abstract Background Myostatin, a member of the TGFβ superfamily, is well known as a potent and specific negative regulator of muscle growth. Targeting the myostatin signalling pathway may offer promising therapeutic strategies for the treatment of muscle-wasting disorders. In the last decade, various myostatin-binding proteins have been identified to be able to inhibit myostatin activity. One of these is GASP1 (Growth and Differentiation Factor-Associated Serum Protein-1, a protein containing a follistatin domain as well as multiple domains associated with protease inhibitors. Despite in vitro data, remarkably little is known about in vivo functions of Gasp1. To further address the role of GASP1 during mouse development and in adulthood, we generated a gain-of-function transgenic mouse model that overexpresses Gasp1 under transcriptional control of the human cytomegalovirus immediate-early promoter/enhancer. Results Overexpression of Gasp1 led to an increase in muscle mass observed not before day 15 of postnatal life. The surGasp1 transgenic mice did not display any other gross abnormality. Histological and morphometric analysis of surGasp1 rectus femoris muscles revealed an increase in myofiber size without a corresponding increase in myofiber number. Fiber-type distribution was unaltered. Interestingly, we do not detect a change in total fat mass and lean mass. These results differ from those for myostatin knockout mice, transgenic mice overexpressing the myostatin propeptide or follistatin which exhibit both muscle hypertrophy and hyperplasia, and show minimal fat deposition. Conclusions Altogether, our data give new insight into the in vivo functions of Gasp1. As an extracellular regulatory factor in the myostatin signalling pathway, additional studies on GASP1 and its homolog GASP2 are required to elucidate the crosstalk between the different intrinsic inhibitors of the myostatin.

  6. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition

  7. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    Li, Guodong [Department of Surgical Oncology, Cancer Treatment Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin (China); Kong, Bo [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Zhu, Yan [Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing (China); Zhan, Le [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Williams, Jessica A. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Tawfik, Ossama [Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Kassel, Karen M. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Luyendyk, James P. [Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI (United States); Wang, Li [Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT (United States); Guo, Grace L., E-mail: guo@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States)

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  8. Preparation and preclinical evaluation of 177Lu-nimotuzumab targeting epidermal growth factor receptor overexpressing tumors

    Objectives: Nimotuzumab (h-R3) is a humanized monoclonal antibody (mAb) which recognizes the external domain of the epidermal growth factor receptor (EGFR) with high specificity. It was demonstrated that h-R3 has a unique clinical profile for immunotherapy of adult gliomas and pediatric pontine gliomas. The aim of this work was to evaluate the conjugate 177Lu-h-R3 as a potential radioimmunoconjugate for radioimmunotherapy (RIT) of tumors overexpressing EGFR. Methods: h-R3 was modified with the macrocylcic ligand S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA) and the acyclic ligand S-2-(4-Isothiocyanatobenzyl)-diethylenetriamine pentaacetic acid (p-SCN-Bn-DTPA); the immunoconjugates were labeled with no-carried added 177Lu. Specificity and affinity were tested using radioimmunoassays in a cell line overexpressing EGFR. Biodistribution in mice, healthy or bearing A431 epithelial carcinoma xenografts, was performed for 11 days. Tumor uptake, the influence of the nature of the chelate and the way of administration were studied. Absorbed dose in tumor and selected organs was calculated using the OLINDA/EXM software; the data from the animals was extrapolated to humans. Results: 177Lu-h-R3 conjugates were obtained with specific activity up to 915 MBq/mg without significant loss of immunoreactivity. The binding of 177Lu-h-R3 conjugates to A431 cells showed to be EGFR specific, and the affinity was similar to native h-R3. Tumor uptake reached a maximum value of 22.4±3.1 %ID/g at 72 h and remained ∼20% ID/g over 1 week. Locoregional application showed better tumor/nontumor ratios than intravenous application. Conclusions: 177Lu-h-R3 should be considered for further evaluations as a potential radiopharmaceutical for RIT of tumors overexpressing EGFR.

  9. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  10. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR−/− and SHP−/− mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR−/− mice and therefore, increased SHP expression in FXR−/− mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR−/− mice with overexpression of SHP in hepatocytes (FXR−/−/SHPTg) and determined the contribution of SHP in HCC development in FXR−/− mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR−/− mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR−/− mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency

  11. Tropomyosin3 overexpression and a potential link to epithelial-mesenchymal transition in human hepatocellular carcinoma

    Since hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, it is still important to understand hepatocarcinogenesis mechanisms and identify effective markers for tumor progression to improve prognosis. Amplification and overexpression of Tropomyosin3 (TPM3) are frequently observed in HCC, but its biological meanings have not been properly defined. In this study, we aimed to elucidate the roles of TPM3 and related molecular mechanisms. TPM3-siRNA was transfected into 2 HCC cell lines, HepG2 and SNU-475, which had shown overexpression of TPM3. Knockdown of TPM3 was verified by real-time qRT-PCR and western blotting targeting TPM3. Migration and invasion potentials were examined using transwell membrane assays. Cell growth capacity was examined by colony formation and soft agar assays. Silencing TPM3 resulted in significant suppression of migration and invasion capacities in both HCC cell lines. To elucidate the mechanisms behind suppressed migration and invasiveness, we examined expression levels of Snail and E-cadherin known to be related to epithelial-mesenchymal transition (EMT) after TPM3 knockdown. In the TPM3 knockdown cells, E-cadherin expression was significantly upregulated and Snail downregulated compared with negative control. TPM3 knockdown also inhibited colony formation and anchorage independent growth of HCC cells. Based on our findings, we formulate a hypothesis that overexpression of TPM3 activates Snail mediated EMT, which will repress E-cadherin expression and that it confers migration or invasion potentials to HCC cells during hepatocarcinogenesis. To our knowledge, this is the first evidence that TPM3 gets involved in migration and invasion of HCCs by modifying EMT pathway

  12. Overexpression of cancer-associated genes via epigenetic derepression mechanisms in gynecologic cancer

    Hae MinJeong

    2014-02-01

    Full Text Available Like other cancers, most gynecologic cancers caused by aberrant expression of cancer-related genes. Epigenetics is one of important gene expression mechanisms which contribute to cancer development and progression by regulating cancer-related genes. Since the discovery of differential gene expression patterns in cancer cells compared with normal cells, extensive efforts have been made to explore the origins of abnormal gene expression in cancer. Epigenetics, the study inheritable changes in gene expression that do not alter DNA sequence, is a key area of this research. DNA methylation and histone modification are well-known epigenetic mechanisms, microRNAs and alternative splicing have recently been identified as important regulators of epigenetic changes. These epigenetic mechanisms not only affect specific target gene expression but also regulate the functioning of other epigenetic mechanisms. Moreover, these diverse epigenetic regulations occur simultaneously. Epigenetic regulation of gene expression is extraordinarily complicated and requires that all epigenetic mechanisms be studied at once to determine the exact gene regulation mechanisms. Traditionally, the contribution of epigenetics to cancer is thought to be mediated through the inactivation of tumor suppressor genes (TSGs expression. But recently it is arising that some oncogenes or cancer-promoting genes (CPGs are overexpressed in diverse type of cancers through epigenetic derepression mechanism, such as DNA demethylation, histone demethylation. Epigenetic derepression arises from diverse epigenetic changes, and all of these mechanisms are actively interact each other to increase oncogenes or CPGs expression in cancer cell. Oncogenes or CPGs overexpressed through epigenetic derepression can initiate cancer development, and the accumulation of these abnormal epigenetic changes makes cancer more aggressive and resistant to treatment. This review discusses epigenetic mechanisms involved

  13. Enhanced water and salt intake in transgenic mice with brain-restricted overexpression of angiotensin (AT1) receptors

    Lazartigues, Eric; Sinnayah, Puspha; Augoyard, Ginette; Gharib, Claude; Johnson, Alan Kim; Davisson, Robin L.

    2008-01-01

    To address the relative contribution of central and peripheral angiotensin II (ANG II) type 1A receptors (AT1A) to blood pressure and volume homeostasis, we generated a transgenic mouse model [neuron-specific enolase (NSE)-AT1A] with brain-restricted overexpression of AT1A receptors. These mice are normotensive at baseline but have dramatically enhanced pressor and bradycardic responses to intracerebroventricular ANG II or activation of endogenous ANG II production. Here our goal was to exami...

  14. Impaired Timing Precision Produced by Striatal D2 Receptor Overexpression is Mediated by Cognitive and Motivational Deficits

    Ward, Ryan D; Kellendonk, Christoph; Simpson, Eleanor H.; Lipatova, Olga; Drew, Michael R.; Fairhurst, Stephen; Kandel, Eric R.; Balsam, Peter D

    2009-01-01

    Increased striatal dopamine D2 receptor activity is thought to contribute to the pathophysiology of schizophrenia. To model this condition in mice, Kellendonk et al. (2006) generated transgenic mice which selectively overexpress the D2 receptor in striatum (D2OE). Drew et al. (2007) reported that D2OE mice display deficits in interval timing and motivation. The present study further explored the impaired timing in D2OE mice. Experiment 1 assessed the role of motivation in producing timing def...

  15. Targeted Skin Overexpression of the Mineralocorticoid Receptor in Mice Causes Epidermal Atrophy, Premature Skin Barrier Formation, Eye Abnormalities, and Alopecia

    Sainte Marie, Yannis; Toulon, Antoine; Paus, Ralf; Maubec, Eve; Cherfa, Aicha; Grossin, Maggy; Descamps, Vincent; Clemessy, Maud; Gasc, Jean-Marie; Peuchmaur, Michel; Glick, Adam; Farman, Nicolette; Jaisser, Frederic

    2007-01-01

    The mineralocorticoid receptor (MR) is a transcription factor of the nuclear receptor family, activation of which by aldosterone enhances salt reabsorption in the kidney. The MR is also expressed in nonclassical aldosterone target cells (brain, heart, and skin), in which its functions are incompletely understood. To explore the functional importance of MR in mammalian skin, we have generated a conditional doxycycline-inducible model of MR overexpression, resulting in double-transgenic (DT) mi...

  16. Several mutations of Zymoseptoria tritici field strains lead to MFS1 overexpression and multi-drug-resistance (MDR)

    Fillinger, Sabine; Omrane, Selim; Audeon, Colette; Ignace, Amandine; Duplaix, Clémentine; Aouini, Lamia; Kema, Gert; Walker, Anne-Sophie

    2016-01-01

    Multidrug resistance (MDR) is a common trait developed by many organisms to counteract chemicals and/or drugs used against them. The basic MDR mechanism is relying on an overexpressed efflux transport system that actively expulses the toxic agent outside the cell. In fungi, MDR (or PDR) has been extensively studied in Saccharomyces cerevisiae and Candida albicans. Plant pathogenic fungi are also concerned by this phenomenon. MDR strains were detected in septoria leaf blotch (Zymoseptoria trit...

  17. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance

    Cao, Hui; Li, Xin; Dong, Xinnian

    1998-01-01

    The recently cloned NPR1 gene of Arabidopsis thaliana is a key regulator of acquired resistance responses. Upon induction, NPR1 expression is elevated and the NPR1 protein is activated, in turn inducing expression of a battery of downstream pathogenesis-related genes. In this study, we found that NPR1 confers resistance to the pathogens Pseudomonas syringae and Peronospora parasitica in a dosage-dependent fashion. Overexpression of NPR1 leads to enhanced resistance with no obvious detrimental...

  18. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana

    Wang, Fang; Wang, Chen; Yan, Yan; Jia, Haihong; Guo, Xingqi

    2016-01-01

    Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes. PMID:27242882

  19. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana.

    Wang, Fang; Wang, Chen; Yan, Yan; Jia, Haihong; Guo, Xingqi

    2016-01-01

    Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes. PMID:27242882

  20. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype

    Val A. Fajardo

    2015-08-01

    Full Text Available Centronuclear myopathy (CNM is a congenital myopathy that is histopathologically characterized by centrally located nuclei, central aggregation of oxidative activity, and type I fiber predominance and hypotrophy. Here, we obtained commercially available mice overexpressing phospholamban (PlnOE, a well-known inhibitor of sarco(endoplasmic reticulum Ca2+-ATPases (SERCAs, in their slow-twitch type I skeletal muscle fibers to determine the effects on SERCA function. As expected with a 6- to 7-fold overexpression of phospholamban, SERCA dysfunction was evident in PlnOE muscles, with marked reductions in rates of Ca2+ uptake, maximal ATPase activity and the apparent affinity of SERCA for Ca2+. However, our most significant discovery was that the soleus and gluteus minimus muscles from the PlnOE mice displayed overt signs of myopathy: they histopathologically resembled human CNM, with centrally located nuclei, central aggregation of oxidative activity, type I fiber predominance and hypotrophy, progressive fibrosis and muscle weakness. This phenotype is associated with significant upregulation of muscle sarcolipin and dynamin 2, increased Ca2+-activated proteolysis, oxidative stress and protein nitrosylation. Moreover, in our assessment of muscle biopsies from three human CNM patients, we found a significant 53% reduction in SERCA activity and increases in both total and monomeric PLN content compared with five healthy subjects, thereby justifying future studies with more CNM patients. Altogether, our results suggest that the commercially available PlnOE mouse phenotypically resembles human CNM and could be used as a model to test potential mechanisms and therapeutic strategies. To date, there is no cure for CNM and our results suggest that targeting SERCA function, which has already been shown to be an effective therapeutic target for murine muscular dystrophy and human cardiomyopathy, might represent a novel therapeutic strategy to combat CNM.

  1. Clinical significance of the plasminogen activator system in relation to grade of tumor and treatment response in colorectal carcinoma patients.

    Halamkova, J; Kiss, I; Pavlovsky, Z; Tomasek, J; Jarkovsky, J; Cech, Z; Tucek, S; Hanakova, L; Moulis, M; Zavrelova, J; Man, M; Benda, P; Robek, O; Kala, Z; Penka, M

    2011-01-01

    Urokinase (uPA) plays an essential role in the activation of plasminogen to plasmin, and together with its receptor (uPAR), tissue activator (tPA) and urokinase inhibitors (PAI 1, PAI 2, PAI 3 and protease nexin) forms the plasminogen activator system (PAS), a component of metastatic cascade importantly contributing to the invasive growth and angiogenesis of malignant tumours. In our project we examined the expression of uPA, uPAR, PAI 1 and PAI 2 in tumor tissue and we also studied the plasma levels of PAI 1 before and after the initiation of therapy in patients with colorectal carcinoma in relationship to grade of tumor and the treatment response. In our prospective evaluation we included 80 patients treated for adenocarcinoma of the colon and rectum. Analysis of collected data revealed statistically significant evidence of a relationship between the level of PAI 1 in plasma before treatment and grade of the tumor, which increases with tumor grade (p=0.025). We demonstrated that there exists a statistically significant relationship between the expression of PAI 2 (p<0.001) and uPAR (p=0.031) and grade of tumor. We also confirmed a statistically significant relationship between soluble levels of PAI 1 before treatment and therapeutic response (p=0.021). In our group of patients the expression of uPA, uPAR, PAI 1 and 2 in tumor tissue in relation to response to treatment was also assessed. Our results suggest that the greater expression of these parameters in tumor tissue is linked to a worse response to therapy. In conclusion, PAS factors help as a prognostic indicators and could also act as a predictive factor in colorectal carcinoma. PMID:21744990

  2. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  3. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells

  4. [Community vegetable gardens as a health promotion activity: an experience in Primary Healthcare Units].

    Costa, Christiane Gasparini Araújo; Garcia, Mariana Tarricone; Ribeiro, Silvana Maria; Salandini, Marcia Fernanda de Sousa; Bógus, Cláudia Maria

    2015-10-01

    Urban and peri-urban agriculture (UPA) is being practiced in different settings, contributing to the improvement of health in communities and healthier environments. In order to identify the meanings and implications of the practice of UPA in Primary Healthcare Units (PHU) as an activity of health promotion (HP), and to what extent its therapeutic dimension characterizes it as an activity aligned with complementary and integrative practices (CIP), a qualitative cross-sectional study was performed in Embu das Artes, State of São Paulo. From the analysis, the following main themes arose: health concept, health outcomes, the return to traditional practices and habits and the reorientation of health services. It was possible to identify the close link between the cultivation of vegetable gardens and HP guidelines and fields of action, such as creating healthier environments, boosting community actions, developing personal skills, stimulating autonomy and empowerment and demands for the reorientation of services. The garden activities, set up in PHU areas, proved to be an implementation strategy of CIP. The conclusion reached is that vegetable gardening activities in community gardens are seen to be health promotion practices that integrate key elements of CIP. PMID:26465852

  5. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli.

    Kirubakaran, S Isaac; Sakthivel, N

    2007-03-01

    Plant chitinases are pathogenesis-related proteins, which are believed to be involved in plant defense responses to pathogen infection. In this study, chitinase gene from barley was cloned and overexpressed in Escherichia coli. Chitinase (35 kDa) was isolated and purified. Since the protein was produced as insoluble inclusion bodies, the protein was solubilized and refolded. Purified chitinase exerted broad-spectrum antifungal activity against Botrytis cinerea (blight of tobacco), Pestalotia theae (leaf spot of tea), Bipolaris oryzae (brown spot of rice), Alternaria sp. (grain discoloration of rice), Curvularia lunata (leaf spot of clover) and Rhizoctonia solani (sheath blight of rice). Due to the potential of broad-spectrum antifungal activity barley chitinase gene can be used to enhance fungal-resistance in crop plants such as rice, tobacco, tea and clover. PMID:17029984

  6. Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors

    Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.

    1994-09-01

    The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.

  7. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  8. Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae.

    Lee, Min Young; Kurioka, Takaomi; Nelson, Megan M; Prieskorn, Diane M; Swiderski, Donald L; Takada, Yohei; Beyer, Lisa A; Raphael, Yehoash

    2016-01-01

    Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing. PMID:27525291

  9. Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice.

    Boris L Vaisman

    Full Text Available Cardiovascular disorders associated with endothelial dysfunction, such as atherosclerosis, have decreased nitric oxide (NO bioavailability. Arginase in the vasculature can compete with eNOS for L-arginine and has been implicated in atherosclerosis. The aim of this study was to evaluate the effect of endothelial-specific elevation of arginase II expression on endothelial function and the development of atherosclerosis.Transgenic mice on a C57BL/6 background with endothelial-specific overexpression of human arginase II (hArgII gene under the control of the Tie2 promoter were produced. The hArgII mice had elevated tissue arginase activity except in liver and in resident peritoneal macrophages, confirming endothelial specificity of the transgene. Using small-vessel myography, aorta from these mice exhibited endothelial dysfunction when compared to their non-transgenic littermate controls. The blood pressure of the hArgII mice was 17% higher than their littermate controls and, when crossed with apoE -/- mice, hArgII mice had increased aortic atherosclerotic lesions.We conclude that overexpression of arginase II in the endothelium is detrimental to the cardiovascular system.

  10. β-Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia

    Kristoffer L. Egerod

    2011-01-01

    Full Text Available Mice deficient in the zinc-sensor GPR39, which has been demonstrated to protect cells against endoplasmatic stress and cell death in vitro, display moderate glucose intolerance and impaired glucose-induced insulin secretion. Here, we use the Tet-On system under the control of the proinsulin promoter to selectively overexpress GPR39 in the β cells in a double transgenic mouse strain and challenge them with multiple low doses of streptozotocin, which in the wild-type littermates leads to a gradual increase in nonfasting glucose levels and glucose intolerance observed during both food intake and OGTT. Although the overexpression of the constitutively active GPR39 receptor in animals not treated with streptozotocin appeared by itself to impair the glucose tolerance slightly and to decrease the β-cell mass, it nevertheless totally protected against the gradual hyperglycemia in the steptozotocin-treated animals. It is concluded that GPR39 functions in a β-cell protective manner and it is suggested that it is involved in some of the beneficial, β-cell protective effects observed for Zn++ and that GPR39 may be a target for antidiabetic drug intervention.

  11. Selenium status and over-expression of interleukin-15 in celiac disease and autoimmune thyroid diseases

    Anna Velia Stazi

    2010-12-01

    Full Text Available In celiac disease (CD, for its multifactorial nature, the target organs are not limited to the gut, but include thyroid, liver, skin and reproductive and nervous systems. Between the extraintestinal symptoms associated with CD, autoimmune thyroid diseases (AITDs are more evident, underlining as CD-related autoimmune alterations can be modulated not only by gluten but also by various concurrent endogenous (genetic affinity, over-expression of cytokines and exogenous (environment, nutritional deficiency factors. In their pathogenesis a central role for over-expression of interleukin-15 (IL-15 is shown, by inhibiting apoptosis, leading to the perpetuation of inflammation and tissue destruction. Thyroid is particularly sensitive to selenium deficiency because selenoproteins are significant in biosynthesis and activity of thyroid hormones; besides, some selenoproteins as glutathione peroxidase are involved in inhibiting apoptosis. Thus, selenium malabsorption in CD can be thought as a key factor directly leading to thyroid and intestinal damage. Considering the complexity of this interaction and on the basis of available evidence, the aim of this review is to assess as preventive and therapeutic target the role of IL-15 and selenium in the pathogeneses of both CD and AITD.

  12. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1 Improves Salinity Tolerance in Tobacco.

    Yang Xiang

    Full Text Available Calreticulin (CRT is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD, peroxidase (POD and catalase (CAT than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants.

  13. Hereditary overexpression of adenosine deaminase in erythrocytes: Evidence for a cis-acting mutation

    Chen, E.H. (Univ. of Michigan, Ann Arbor, MI (United States)); Tartaglia, A.P. (Albany Medical College, Albany, MI (United States)); Mitchell, B.S. (Univ. of North Carolina, Chapel Hill, NC (United States))

    1993-10-01

    Overexpression of adenosine deaminase (ADA) in red blood cells is inherited as an autosomal dominant trait and causes hemolytic anemia. The increased ADA activity in erythrocytes is due to an increase in steady-state levels of ADA mRNA of normal sequence. Increased ADA mRNA may be due to a cis-acting mutation which results in increased transcription or a loss of down-regulation during erythroid differentiation. Alternatively, it is possible that the mutation is in a trans-acting factor which interacts with normal ADA transcriptional elements to cause overexpression in red blood cells. To discriminate between a cis-acting and a trans-acting mutation, the authors took advantage of a highly polymorphic TAAA repeat located at the tail end of an Alu repeat approximately 1.1 kb upstream of the ADA gene. Using PCR to amplify this region, the authors identified five different alleles in 19 members of the family. All 11 affected individuals had an ADA allele with 12 TAAA repeats, whereas none of the 8 normal individuals did. The authors conclude that this disorder results from a cis-acting mutation in the vicinity of the ADA gene. 24 refs., 3 figs.

  14. Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins.

    Jing, Li; Li, Lizhong; Zhao, Jing; Zhao, Jun; Sun, Zhiwei; Peng, Shuangqing

    2016-08-01

    1. Cardiotoxicity is an important factor that limits the clinical use of doxorubicin (Dox). Metallothionein (MT) can antagonize the Dox-induced cardiotoxicity. Using a proteomics approach we have detected that major peroxiredoxins (Prxs) may be involved in this process. In the present study, we further investigate the mechanisms of the MT effects against Dox-induced cytotoxicity and the interactions between MT and Prxs. 2. We have established a primary cardiomyocyte culture system from MT-I/II null (MT(-/-)) and corresponding wild type (MT(+/+)) neonatal mice, and pretreated the MT(+/+) cardiomyocytes with ZnCl2 to establish the MT overexpression cardiomyocyte model. 3. Based on the results, in MT(+/+) cardiomyocytes, ZnCl2 pretreatment significantly increased the cardiomyocytes MT levels and inhibited the cardiotoxicity of Dox; it can resist LDH leakage, cardiomyocyte apoptosis, DNA damage, ROS accumulation and inhibit the decrease in activity of antioxidant enzymes induced by Dox. Moreover, ZnCl2 enhanced the expression of Prx-2, -3, -5 and -6, it can inhibit the expression of Prxs decrease in MT(+/+) cardiomyocytes induced by Dox, but had no effect in MT(-/-) cardiomyocytes. 4. Therefore, the present study suggests that ZnCl2 can protect the cardiomyocytes from the Dox-induced oxidative injury and can inhibit the changes in Prxs expression through induced MT overexpression. PMID:26599915

  15. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Pan, Si-Jian [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Wu, Yue-Bing [Department of Internal Medicine Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Cai, Shang [Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 21500 (China); Pan, Yi-Xin; Liu, Wei [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Bian, Liu-Guan [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Sun, Bomin [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Sun, Qing-Fang, E-mail: sunqingfang11@163.com [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)

    2015-03-13

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.

  16. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation

  17. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3121, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme

  18. SOD1 Overexpression Preserves Baroreflex Control of Heart Rate with an Increase of Aortic Depressor Nerve Function.

    Hatcher, Jeffrey; Gu, He; Cheng, Zixi Jack

    2016-01-01

    Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2 (∙-)), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2 (∙-) may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951

  19. Proinflammatory cytokine production and insulin sensitivity regulated by overexpression of resistin in 3T3-L1 adipocytes

    Garvey W Timothy

    2006-07-01

    Full Text Available Abstract Resistin is secreted from adipocytes, and high circulating levels have been associated with obesity and insulin resistance. To investigate whether resistin could exert autocrine effects in adipocytes, we expressed resistin gene in 3T3-L1 fibroblasts using a lentiviral vector, and selected several stably-transduced cell lines under blasticidin selection. We observed that 3T3-L1 adipocytes expressing resistin have a decreased gene expression for related transcriptional factors (CCAAT/enhancer binding protein α(C/EBPα , peroxisome proliferator-activated receptor gamma (PPARγ, and adipocyte lipid binding protein (ALBP/aP2 which is one of target genes for the PPARγ during adipocyte differentiation,. Overexpression of resistin increased the levels of three proinflammatory cytokines, tumor necrosis factor alpha (TNFα, interleukin 6 (IL-6 and monocyte chemoattractant protein-1 (MCP-1, which play important roles for insulin resistance, glucose and lipid metabolisms during adipogenesis. Furthermore, overexpressing resistin in adipocytes inhibits glucose transport 4 (GLUT4 activity and its gene expression, reducing insulin's ability for glucose uptake by 30 %. In conclusion, resistin overexpression in stably transduced 3T3-L1 cells resulted in: 1 Attenuation of programmed gene expression responsible for adipogenesis; 2 Increase in expression of proinflammatory cytokines; 3 Decrease in insulin responsiveness of the glucose transport system. These data suggest a new role for resistin as an autocrine/paracrine factor affecting inflammation and insulin sensitivity in adipose tissue.

  20. Evidence for altered ion transport in Saccharomyces cerevisiae overexpressing human MDR 1 protein.

    Fritz, F; Howard, E M; Hoffman, M M; Roepe, P D

    1999-03-30

    Recently [Hoffman, M. M., and Roepe, P. D. (1997) Biochemistry 36, 11153-11168] we presented evidence for a novel Na+- and Cl--dependent H+ transport process in LR73/hu MDR 1 CHO transfectants that likely explains pHi, volume, and membrane potential changes in eukaryotic cells overexpressing the hu MDR 1 protein. To further explore this process, we have overexpressed human MDR 1 protein in yeast strain 9.3 following a combination of approaches used previously [Kuchler, K., and Thorner, J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 2302-2306; Ruetz, S., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11588-11592]. Thus, a truncated hu MDR 1 cDNA was cloned behind a tandem array of sterile 6 (Ste6) and alchohol dehydrogenase (Adh) promoters to create the yeast expression vector pFF1. Valinomycin resistance of intact cells and Western blot analysis with purified yeast plasma membranes confirmed the overexpression of full length, functional, and properly localized hu MDR 1 protein in independently isolated 9.3/pFF1 colonies. Interestingly, relative valinomycin resistance and growth of the 9.3/hu MDR 1 strains are found to strongly depend on the ionic composition of the growth medium. Atomic absorption reveals significant differences in intracellular K+ for 9.3/hu MDR 1 versus control yeast. Transport assays using [3H]tetraphenylphosphonium ([3H]TPP+) reveal perturbations in membrane potential for 9.3/hu MDR 1 yeast that are stimulated by KCl and alkaline pHex. ATPase activity of purified plasma membrane fractions from yeast strains and LR73/hu MDR 1 CHO transfectants constructed previously [Hoffman, M. M., et al. (1996) J. Gen. Physiol. 108, 295-313] was compared. MDR 1 ATPase activity exhibits a higher pH optimum and different salt dependencies, relative to yeast H+ ATPase. Inside-out plasma membrane vesicles (ISOV) fabricated from 9.3/hu MDR 1 and control strains were analyzed for formation of H+ gradients +/- verapamil. Similar pharmacologic profiles are found for

  1. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor.

    Nelson, Bethany T; Ding, Xunshan; Boney-Montoya, Jamie; Gerard, Robert D; Kliewer, Steven A; Andrews, Matthew T

    2013-01-01

    Hibernation is a natural adaptation that allows certain mammals to survive physiological extremes that are lethal to humans. Near freezing body temperatures, heart rates of 3-10 beats per minute, absence of food consumption, and depressed metabolism are characteristic of hibernation torpor bouts that are periodically interrupted by brief interbout arousals (IBAs). The molecular basis of torpor induction is unknown, however starved mice overexpressing the metabolic hormone fibroblast growth factor 21 (FGF21) promote fat utilization, reduce body temperature, and readily enter torpor-all hallmarks of mammalian hibernation. In this study we cloned FGF21 from the naturally hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and found that levels of FGF21 mRNA in liver and FGF21 protein in serum are elevated during hibernation torpor bouts and significantly elevated during IBAs compared to summer active animals. The effects of artificially elevating circulating FGF21 concentrations 50 to 100-fold via adenoviral-mediated overexpression were examined at three different times of the year. This is the first time that a transgenic approach has been used in a natural hibernator to examine mechanistic aspects of hibernation. Surgically implanted transmitters measured various metrics of the hibernation phenotype over a 7-day period including changes in motor activity, heart rate and core body temperature. In April fed-state animals, FGF21 overexpression decreased blood insulin and free fatty acid concentrations, effects similar to those seen in obese mice. However, elevated FGF21 concentrations did not cause torpor in these fed-state animals nor did they cause torpor or affect metabolic parameters in fasted-state animals in March/April, August or October. We conclude that FGF21 is strongly regulated during torpor and IBA but that its overexpression is not sufficient to cause torpor in naturally hibernating ground squirrels. PMID:23301087

  2. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    Zhang Youjun

    2012-04-01

    Full Text Available Abstract Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2 promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive.

  3. Antimetastatic Effects of Norcantharidin on Hepatocellular Carcinoma by Transcriptional Inhibition of MMP-9 through Modulation of NF-kB Activity

    Yeh, Chao-Bin; Hsieh, Ming-Ju; Hsieh, Yi-Hsien; Chien, Ming-Hsien; Chiou, Hui-Ling; Yang, Shun-Fa

    2012-01-01

    Background The rate of morbidity and mortality of hepatocellular carcinoma (HCC) in Taiwan has not lessened because of difficulty in treating tumor metastasis. Norcantharidin (NCTD) is currently used as an anticancer drug for hepatoma, breast cancer, and colorectal adenocarcinoma. NCTD possesses various biological anticancer activities, including apoptosis. However, detailed effects and molecular mechanisms of NCTD on metastasis are unclear. Thus, HCC cells were subjected to treatment with NCTD and then analyzed to determine the effects of NCTD on cell metastasis. Methodology/Principal Findings Modified Boyden chamber assays revealed that NCTD treatment inhibited cell migration and invasion capacities of HCC cells substantially. Results of zymography and western blotting showed that activities and protein levels of matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (u-PA) were inhibited by NCTD. Western blot analysis showed that NCTD inhibits phosphorylation of ERK1/2. Testing of mRNA level, quantitative real-time PCR, and promoter assays evaluated the inhibitory effects of NCTD on MMP-9 and u-PA expression in HCC cells. The chromatin immunoprecipitation (ChIP) assay for analyzing the genomic DNA sequences bound to these proteins was reactive to the transcription protein nuclear factor (NF)-kappaB, which was inhibited by NCTD. The expression of NF-kappa B was measured by western blot analysis, which revealed decreased nuclear-factor DNA-binding activity after NCTD treatment. Conclusions NCTD inhibited MMP-9 and u-PA expression through the phosphorylation of ERK1/2 and NF-kappaB signaling pathway which serves as a powerful chemopreventive agent in HCC cell metastasis. PMID:22363545

  4. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression.

    Isas, J M; Yannone, S M; Burgess, B K

    1995-09-01

    Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon. PMID:7673160

  5. Overexpression of glutamine synthetases confers transgenic rice herbicide resistance

    Sun Hui; Huang Qiman; Su Jin

    2005-01-01

    Glutamine synthetase (GS, E.C.6.3.1.2) is a key enzyme involved in the assimilation of inorganic nitrogen in higher plants and gram-negative microorganisms. GS is the targeting enzyme of a herbicide phosphinothricin (PPT) or Basta. In order to generate PPT-resistant transgenic rice via overexpression of GS, we constructed a plant expression vector p2GS harboring two different isoenzymes GS1 and GS2 cDNAs under the control of constitutive promoters of rice Act1 and maize Ubiquitin(Ubi) genes. The p2GS was introduced into rice genome by Agrobacterium-mediated transformation and confirmed by PCR and Southern blot hybridization. GS-transgene expression was first detected by Northern blot analyses. Results from Basta test indicated that GS-transgenic plants can tolerate as high as 0.3% Basta solution. In addition, our results also demonstrated that GS overexpression conferred transformed rice calli PPT resistance. Thus, GS cassette can serve as a selective marker gene instead of bar cassette for selection of PPT transformants.

  6. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  7. Over-expression of EGFR in Breast Cancer

    BO Ai-hua; HOU Jin-chao; LAN Yong-hao; TIAN Ya-ting; ZHANG Jun-yan

    2008-01-01

    Objective:To explore the relationship of overexpression of epidermal growth factor receptor(EGFR)in occurrence,development and treatment of breast cancer. Methods:Samples of 46 breast adenoma tissues and 86 breast cancer tissues were regularly dehydrate-fixed,embedded in paraffin,sliced in to 5 μm thick,stained with SABC immunohistochemistry and coloured with DAB. Results:The positive staining of EGFR was shown as brown- yellow and distributed in cytoplasm.The positive rates in the tissues of breast adenosis and breast cancer were 17.04%(6/46)and 56.98%(49/86)respectively.The positive rates of EGFR in the tissue of invasive ductal carcinoma was 64.49%(41/59),which was significantly higher than that in in situ carcinoma(P<0.05).The positive rate of lymph metastasis group was higher than that in non-lymph metastasis group (P<0.05). Conclusion:The overexpression of EGFR was related with occurrence,lymph metastasis and pathologic types of breast cancer.The examination of EGFR in the breast cancer can serve as a guidance for target chemotherapy.

  8. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  9. Muscle cell atrophy induced by HSP gene silencing was counteracted by HSP overexpression

    Choi, Inho; Lee, Joo-Hee; Nikawa, Takeshi; Gwag, Taesik; Park, Kyoungsook; Park, Junsoo

    Heat shock proteins (HSP), as molecular chaperones, are known to assist protein quality control under various stresses. Although overexpression of HSP70 was found to contribute to muscle size retention under an unloading condition, it remains largely unclarified whether muscle atrophy is induced by active suppression of HSP expression. In this study, we pre-treated Hsp70 siRNA to rat L6 cells for the HSP gene silencing, and determined myotube diameter, HSP72 expression and anabolic and catabolic signaling activities in the absence or presence of triterpene celastrol (CEL), the HSP70 inducer. Relative to a negative control (NC), muscle cell diameter was reduced 0.89-fold in the siRNA-treated group, increased 1.2-fold in the CEL-treated group and retained at the size of NC in the siRNA+CEL group. HSP72 expression was decreased 0.35-fold by siRNA whereas the level was increased 6- to 8-fold in the CEL and siRNA+CEL groups. Expression of FoxO3 and atrogin-1 was increased 1.8- to 4.8-fold by siRNA, which was abolished by CEL treatment. Finally, phosphorylation of Akt1, S6K and ERK1/2 was not affected by siRNA, but was elevated 2- to 6-fold in the CEL and siRNA+CEL groups. Taken together, HSP downregulation by Hsp gene silencing led to muscle cell atrophy principally via increases in catabolic activities and that such anti-atrophic effect was counteracted by HSP overexpression.

  10. Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Yi-Jen Chen

    2011-11-01

    Full Text Available Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs, may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity.

  11. CYP3A4 overexpression enhances apoptosis induced by anticancer agent imidazoacridinone C-1311, but does not change the metabolism of C-1311 in CHO cells

    Pawłowska, Monika; Augustin, Ewa; Mazerska, Zofia

    2013-01-01

    Aim: To examine whether CYP3A4 overexpression influences the metabolism of anticancer agent imidazoacridinone C-1311 in CHO cells and the responses of the cells to C-1311. Methods: Wild type CHO cells (CHO-WT), CHO cells overexpressing cytochrome P450 reductase (CPR) [CHO-HR] and CHO cells coexpressing CPR and CYP3A4 (CHO-HR-3A4) were used. Metabolic transformation of C-1311 and CYP3A4 activity were measured using RP-HPLC. Flow cytometry analyses were used to examine cell cycle, caspase-3 act...

  12. Lead Optimization of 2-Cyclohexyl-N-[(Z-(3-methoxyphenyl/3-hydroxyphenyl methylidene]hydrazinecarbothioamides for Targeting the HER-2 Overexpressed Breast Cancer Cell Line SKBr-3

    Mashooq A. Bhat

    2015-10-01

    Full Text Available Lead derivatives of 2-cyclohexyl-N-[(Z-(3-methoxyphenyl/3-hydroxyphenyl methylidene]hydrazinecarbothioamides 1–18 were synthesized, characterized and evaluated in vitro against HER-2 overexpressed breast cancer cell line SKBr-3. All the compounds showed activity against HER-2 overexpressed SKBr-3 cells with IC50 = 17.44 ± 0.01 µM to 53.29 ± 0.33 µM. (2Z-2-(3-Hydroxybenzylidene-N-(3-methoxyphenylhydrazinecarbothioamide (12, IC50 = 17.44 ± 0.01 µM was found to be most potent compound of this series targeting HER-2 overexpressed breast cancer cells compared to the standard drug 5-fluorouracil (5-FU (IC50 = 38.58 ± 0.04 µM. Compound 12 inhibited the cellular proliferation via DNA degradation.

  13. Over-expression of carboxypeptidase of extreme thermophile pyrococcus furiosus in escherichia coli

    Thermophiles and extreme thermophiles are potential source of thermostable proteases for economical application. This study deals with cloning and over-expression of a carboxypeptidase (CBP) from the extreme thermophile archaeon Pyrococcus furiosus in E. coli. Using the forward and the reverse primers designed according to the putative CBP gene sequence analysed from the published genome sequence of P. furiosus, 1.5 kb fragment of CBP gene was PCR amplified. After TA-cloning in pTZ57R/T vector, the gene was ligated into pET-22b(+) and the recombinant plasmid thus obtained was used to transform E. coli BL21 (DE3)RIPL. On induction with IPTG for 6-8 hours CBP was expressed up to 30% of the total cell proteins. The enzyme, however, was expressed in an insoluble form which was refolded to an active state by treatment with urea. (author)

  14. Overexpression of multiple detoxification genes in deltamethrin resistant Laodelphax striatellus (Hemiptera: Delphacidae in China.

    Lu Xu

    Full Text Available BACKGROUND: The small brown planthopper (SBPH, Laodelphax striatellus (Fallén, is one of the major rice pests in Asia and has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is essential to the management of this pest. Biochemical and molecular assays were performed in this study to systematically characterize deltamethrin resistance mechanisms with laboratory-selected resistant and susceptible strains of SBPH. METHODOLOGY/PRINCIPAL FINDINGS: Deltamethrin resistant strains of SBPH (JH-del were derived from a field population by continuously selections (up to 30 generations in the laboratory, while a susceptible strain (JHS was obtained from the same population by removing insecticide pressure for 30 generations. The role of detoxification enzymes in the resistance was investigated using synergism and enzyme activity assays with strains of different resistant levels. Furthermore, 71 cytochrome P450, 93 esterases and 12 glutathione-S-transferases cDNAs were cloned based on transcriptome data of a field collected population. Semi-quantitative RT-PCR screening analysis of 176 identified detoxification genes demonstrated that multiple P450 and esterase genes were overexpressed (>2-fold in JH-del strains (G4 and G30 when compared to that in JHS, and the results of quantitative PCR coincided with the semi-quantitative RT-PCR results. Target mutation at IIS3-IIS6 regions encoded by the voltage-gated sodium channel gene was ruled out for conferring the observed resistance. CONCLUSION/SIGNIFICANCE: As the first attempt to discover genes potentially involved in SBPH pyrethroid resistance, this study putatively identified several candidate genes of detoxification enzymes that were significantly overexpressed in the resistant strain, which matched the synergism and enzyme activity testing. The biochemical and molecular evidences suggest that the high level pyrethroid resistance in L. striatellus could be due to

  15. Overexpression of SIRT6 in the hippocampal CA1 impairs the formation of long-term contextual fear memory.

    Yin, Xi; Gao, Yuan; Shi, Hai-Shui; Song, Li; Wang, Jie-Chao; Shao, Juan; Geng, Xu-Hong; Xue, Gai; Li, Jian-Li; Hou, Yan-Ning

    2016-01-01

    Histone modifications have been implicated in learning and memory. Our previous transcriptome data showed that expression of sirtuins 6 (SIRT6), a member of Histone deacetylases (HDACs) family in the hippocampal cornu ammonis 1 (CA1) was decreased after contextual fear conditioning. However, the role of SIRT6 in the formation of memory is still elusive. In the present study, we found that contextual fear conditioning inhibited translational expression of SIRT6 in the CA1. Microinfusion of lentiviral vector-expressing SIRT6 into theCA1 region selectively enhanced the expression of SIRT6 and impaired the formation of long-term contextual fear memory without affecting short-term fear memory. The overexpression of SIRT6 in the CA1 had no effect on anxiety-like behaviors or locomotor activity. Also, we also found that SIRT6 overexpression significantly inhibited the expression of insulin-like factor 2 (IGF2) and amounts of proteins and/or phosphoproteins (e.g. Akt, pAkt, mTOR and p-mTOR) related to the IGF2 signal pathway in the CA1. These results demonstrate that the overexpression of SIRT6 in the CA1 impaired the formation of long-term fear memory, and SIRT6 in the CA1 may negatively modulate the formation of contextual fear memory via inhibiting the IGF signaling pathway. PMID:26732053

  16. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Erica L Cain

    Full Text Available BACKGROUND: Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis. SIGNIFICANCE: Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  17. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. PMID:26694324

  18. Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila.

    Cui, Lijie; Ni, Xiaoling; Ji, Qian; Teng, Xiaojuan; Yang, Yanru; Wu, Chao; Zekria, David; Zhang, Dasheng; Kai, Guoyin

    2015-01-01

    Camptothecin (CPT) belongs to a group of monoterpenoidindole alkaloids (TIAs) and its derivatives such as irinothecan and topothecan have been widely used worldwide for the treatment of cancer, giving rise to rapidly increasing market demands. Genes from Catharanthus roseus encoding strictosidine synthase (STR) and geraniol 10-hydroxylase (G10H), were separately and simultaneously introduced into Ophiorrhiza pumila hairy roots. Overexpression of individual G10H (G lines) significantly improved CPT production with respect to non-transgenic hairy root cultures (NC line) and single STR overexpressing lines (S lines), indicating that G10H plays a more important role in stimulating CPT accumulation than STR in O. pumila. Furthermore, co-overexpression of G10H and STR genes (SG Lines) caused a 56% increase on the yields of CPT compared to NC line and single gene transgenic lines, showed that simultaneous introduction of G10H and STR can produce a synergistic effect on CPT biosynthesis in O. pumila. The MTT assay results indicated that CPT extracted from different lines showed similar anti-tumor activity, suggesting that transgenic O. pumila hairy root lines could be an alternative approach to obtain CPT. To our knowledge, this is the first report on the enhancement of CPT production in O. pumila employing a metabolic engineering strategy. PMID:25648209

  19. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.

    Wriessnegger, Tamara; Moser, Sandra; Emmerstorfer-Augustin, Anita; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Pichler, Harald

    2016-04-01

    Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6. PMID:26898115

  20. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6

    Molinero, Amalia; Penkowa, Milena; Hernández, Joaquín;

    2003-01-01

    such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression......Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) causes significant damage and alters the expression of many genes, including a dramatic upregulation of metallothionein-I (MT-I). The findings in...... this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines...

  1. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback.

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-01-01

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress. PMID:27077813

  2. Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling.

    Zhang, Lichao; Li, Zongwei; Fan, Yongsheng; Li, Hanqing; Li, Zhouyu; Li, Yaoping

    2015-07-01

    Glucose-regulated protein of 78kD (GRP78) is a multifunctional protein belonging to the heat shock protein 70 family. Overexpression of GRP78 triggered by environmental and physiological stresses is positively correlated with the occurrence and progression of various tumors, but the molecular mechanisms have not been well established. The present study indicated that overexpression of GRP78 in colon cancer cells could promote cell-matrix adhesion through the upregulation of fibronectin, integrin-β1 and phosphorylated FAK. Meanwhile, it resulted in a visible epithelial-mesenchymal transition in DLD1 cells, and the Snail-2 played the key role during the process. More importantly, the data indicated that GRP78 overexpression facilitated the expression and secretion of TGF-β1, which further activated the downstream Smad2/3 signaling module to effectuate the cell-matrix adhesion and epithelial-mesenchymal transition. Taken together, this study provides a novel molecular mechanism involving in the effects of GRP78 on colon cancer metastasis. PMID:25934251

  3. Adipose Overexpression of Desnutrin Promotes Fatty Acid Use and Attenuates Diet-Induced Obesity

    Ahmadian, Maryam; Duncan, Robin E.; Varady, Krista A.; Frasson, Danubia; Hellerstein, Marc K.; Birkenfeld, Andreas L.; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Kang, Chulho; Sul, Hei Sook

    2009-01-01

    OBJECTIVE To investigate the role of desnutrin in adipose tissue triacylglycerol (TAG) and fatty acid metabolism. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing desnutrin (also called adipose triglyceride lipase [ATGL]) in adipocytes (aP2-desnutrin) and also performed adenoviral-mediated overexpression of desnutrin in 3T3-L1CARΔ1 adipocytes. RESULTS aP2-desnutrin mice were leaner with decreased adipose tissue TAG content and smaller adipocyte size. Overexpression of d...

  4. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster.

    Sun, Jingtao; Folk, Donna; Bradley, Timothy J.; Tower, John

    2002-01-01

    A transgenic system ("FLP-out") based on yeast FLP recombinase allowed induced overexpression of MnSOD enzyme in adult Drosophila melanogaster. With FLP-out a brief heat pulse (HP) of young, adult flies triggered the rearrangement and subsequent expression of a MnSOD transgene throughout the adult life span. Control (no HP) and overexpressing (HP) flies had identical genetic backgrounds. The amount of MnSOD enzyme overexpression achieved varied among six independent transgenic lines, with inc...

  5. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons.

    Caudal, D; Alvarsson, A; Björklund, A; Svenningsson, P

    2015-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigral dopaminergic neurons and by the presence of aggregates containing α-synuclein called Lewy bodies. Viral vector-induced overexpression of α-synuclein in dopaminergic neurons represents a model of PD which recapitulates disease progression better than commonly used neurotoxin models. Previous studies using this model have reported motor and cognitive impairments, whereas depression, mood and anxiety phenotypes are less described. To investigate these psychiatric phenotypes, Sprague-Dawley rats received bilateral injections of a recombinant adeno-associated virus (AAV) vector expressing human α-synuclein or GFP into the substantia nigra pars compacta. Behavior was assessed at two timepoints: 3 and 8 weeks post-injection. We report that nigral α-synuclein overexpression led to a pronounced nigral dopaminergic cell loss accompanied by a smaller cell loss in the ventral tegmental area, and to a decreased striatal density of dopaminergic fibers. The AAV-α-synuclein group exhibited modest, but significant motor impairments 8 weeks after vector administration. The AAV-α-synuclein group displayed depressive-like behavior in the forced swim test after 3 weeks, and reduced sucrose preference at week 8. At both timepoints, overexpression of α-synuclein was linked to a hyperactive hypothalamic-pituitary-adrenal (HPA) axis regulation of corticosterone. The depressive-like phenotype was also correlated with decreased nigral brain-derived neurotrophic factor and spinophilin levels, and with decreased striatal levels of the activity-regulated cytoskeleton-associated protein. This study demonstrates that AAV-mediated α-synuclein overexpression in dopamine neurons is not only useful to model motor impairments of PD, but also depression. This study also provides evidence that depression in experimental Parkinsonism is correlated to dysregulation of the HPA axis and to

  6. Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway

    Overexpression of Aurora-A and mutant Ras (RasV12) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear. Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-ras mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either RasV12and wild-type Aurora-A (designated WT) or RasV12 and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved. Overexpression of wild-type Aurora-A and mutation of RasV12 were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the RasV12 transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the RasV12 transformants. Wild-type-Aurora-A enhances focus formation and aggregation of the RasV12 transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway

  7. Scutellaria baicalensis Alleviates Cantharidin-Induced Rat Hemorrhagic Cystitis through Inhibition of Cyclooxygenase-2 Overexpression

    Li-Chun Lin

    2012-05-01

    Full Text Available Cantharidin, an active component in mylabris, is used in traditional Chinese medicine (TCM to treat scabies and hepatoma, but accompanied by hemorrhagic cystitis. Evidence shows that cantharidin induces human bladder carcinoma cell death through COX-2 overexpression in vitro. In TCM, Scutellaria baicalensis is usually used to cure mylabris-induced hematuria. This work was undertaken to determine the mechanisms of cantharidin-induced rat hemorrhagic cystitis and explore the uroprotective effect of S. baicalensis. In vitro results showed cantharidin could induce cytotoxicity through prostaglandin (PGE2 overproduction of T24 cells. Boiling-water extract of S. baicalensis (SB-WE could significantly inhibit PGE2 production and COX-2 expression in lipo-polysaccharide-induced RAW 264.7 cells, indicating obvious anti-inflammatory abilities. In vivo results indicated that cantharidin caused rat hemorrhagic cystitis with hematuria via c-Fos and COX-2 overexpression. SB-WE was given orally to cantharidin-treated rats, whereby hematuria level, elevated PGE2 and COX-2 protein overexpression were significantly and dose-dependently inhibited by SB-WE. The anti-inflammatory components of SB-WE are baicalin and wogonin, whose contents were 200.95 ± 2.00 and 31.93 ± 0.26 μg/mg, respectively. In conclusion, cantharidin induces rat cystitis through c-Fos and COX-2 over-expression and S. baicalensis can prevent the resulting hematuria because of its anti-inflammatory effects.

  8. Overexpression of Eg5 correlates with high grade astrocytic neoplasm.

    Liu, Liqiong; Liu, Xichun; Mare, Marcus; Dumont, Aaron S; Zhang, Haitao; Yan, Dong; Xiong, Zhenggang

    2016-01-01

    To investigate the relationship between Eg5 and histopathological grade of astrocytoma, Eg5 expression was evaluated by immunohistochemical examination on 88 specimens including 25 cases of glioblastoma (WHO grade IV), 22 cases of anaplastic astrocytoma (WHO grade III), 20 cases of diffuse astrocytoma (WHO grade II), and 21 cases of pilocytic astrocytoma (WHO grade I). The histopathological characteristics and Eg5 expression level of each tumor were assessed and statistically analyzed. Astrocytic tumors exhibited significant correlation of expression of Eg5 with higher WHO histopathological grades (p astrocytoma, 6-36% (mean 18.60%) of neoplastic cells in diffuse astrocytoma, and 2-28% (mean 13.48%) of neoplastic cells in pilocytic astrocytoma. In conclusion, overexpression of Eg5 associates with high-grade astrocytic neoplasm, and it may represent an independent diagnostic and prognostic factor in grading astrocytic tumors and predicting prognosis of astrocytic tumor patients. PMID:26456023

  9. Flavonol-enriched fraction from Vaccinium macrocarpon fruit inhibits matrix metalloproteinase-2, matrix metalloproteinase-9 and urokinase-type plasminogen activator expression in human prostate cancer cells in vitro

    James MacPhee

    2014-11-01

    Full Text Available Background: Prostate cancer, amongst other cancer types has a genetic and environmental component, which can contribute to prostate cancer development and progression. Vaccinum macrocarpon (American cranberry is a botanical that contains several phytochemicals which have been suggested to play a role in preventing cardiovascular disease, cancer, and urinary tract infections as well as in the maintenance of oral health. Context and purpose of this study: This investigation evaluated the effects of a flavonolenriched fraction (FL from the American cranberry (Vaccinium macrocarpon containing quercetin and myricetin glycosides on matrix metalloproteinase (MMP and urokinase-type plasminogen activator (uPA activities and their associated regulatory proteins in DU145 human prostate cancer cells in vitro. Results: A flavonol-enriched fraction (FL was prepared from Vaccinium macrocarpon berries and the effect of this fraction on prostate cancer cell behaviour was assessed using biochemical and molecular approaches including cytotoxicity assays and Western blot analysis to determine protein expression. Cranberry FL decreased cellular viability of DU145 cells at a concentration of 25 ug/ml by 20% after 6 hours of treatment. Further investigations determined that associated with this cytotoxicity, cranberry FL decreases matrix metalloproteinase (MMP ( specifically MMP-2 and MMP-9 activity and urokinase plasminogen activator (uPA activity through effects on specific temporal MMP regulators and uPA regulators and by affecting either the phosphorylation status and/or expression of specific MAP kinase, PI-3 kinase, NF-kB and AP-1 pathway associated proteins. Conclusion: This study demonstrates, for the first time, the ability of Vaccinium macrocarpon flavonols to modulate cellular pathways associated with migration, invasion, and proliferation, suggesting that cranberry (Vaccinium macrocarpon is a viable candidate for further research as a natural product that

  10. Overexpression of Androgen Receptors in Target Musculature Confers Androgen Sensitivity to Motoneuron Dendrites

    Huguenard, Anna L.; Fernando, Shannon M.; Monks, D. Ashley; Sengelaub, Dale R.

    2010-01-01

    Androgen sensitivity of motoneuron dendrites is conferred indirectly via the enrichment of androgen receptors in the musculature in transgenic rats overexpressing androgen receptors in skeletal muscle.

  11. Correlation between human papillomavirus and p16 overexpression in oropharyngeal tumours

    Grønhøj Larsen, C; Gyldenløve, M; Jensen, D H; Therkildsen, M H; Kiss, Katalin; Norrild, B; Konge, L; von Buchwald, C

    2014-01-01

    A significant proportion of squamous cell carcinomas of the oropharynx (OP-SCC) are related to human papillomavirus (HPV) infection and p16 overexpression. This subgroup proves better prognosis and survival but no evidence exists on the correlation between HPV and p16 overexpression based on diag...... diagnostic measures and definition of p16 overexpression. We evaluated means of p16 and HPV diagnostics, and quantified overexpression of p16 in HPV-positive and -negative OP-SCCs by mode of immunohistochemical staining of carcinoma cells....

  12. Overexpression of GTP cyclohydrolase 1 feedback regulatory protein is protective in a murine model of septic shock.

    Starr, Anna; Sand, Claire A; Heikal, Lamia; Kelly, Peter D; Spina, Domenico; Crabtree, Mark; Channon, Keith M; Leiper, James M; Nandi, Manasi

    2014-11-01

    Overproduction of nitric oxide (NO) by inducible NO synthase contributes toward refractory hypotension, impaired microvascular perfusion, and end-organ damage in septic shock patients. Tetrahydrobiopterin (BH4) is an essential NOS cofactor. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme for BH4 biosynthesis. Under inflammatory conditions, GCH1 activity and hence BH4 levels are increased, supporting pathological NOS activity. GCH1 activity can be controlled through allosteric interactions with GCH1 feedback regulatory protein (GFRP). We investigated whether overexpression of GFRP can regulate BH4 and NO production and attenuate cardiovascular dysfunction in sepsis. Sepsis was induced in mice conditionally overexpressing GFRP and wild-type littermates by cecal ligation and puncture. Blood pressure was monitored by radiotelemetry, and mesenteric blood flow was quantified by laser speckle contrast imaging. Blood biochemistry data were obtained using an iSTAT analyzer, and BH4 levels were measured in plasma and tissues by high-performance liquid chromatography. Increased BH4 and NO production and hypotension were observed in all mice, but the extents of these pathophysiological changes were attenuated in GFRP OE mice. Perturbations in blood biochemistry were similarly attenuated in GFRP OE compared with wild-type controls. These results suggest that GFRP overexpression regulates GCH1 activity during septic shock, which in turn limits BH4 bioavailability for iNOS. We conclude that the GCH1-GFRP axis is a critical regulator of BH4 and NO production and the cardiovascular derangements that occur in septic shock. PMID:25046538

  13. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    Sasnauskas Kęstutis

    2011-05-01

    Full Text Available Abstract Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN and measles hemagglutinin (MeH in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A and is closely associated with small heat shock proteins (sHsps that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of

  14. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  15. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  16. Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa.

    Beaufort, Nathalie; Seweryn, Paulina; de Bentzmann, Sophie; Tang, Aihua; Kellermann, Josef; Grebenchtchikov, Nicolai; Schmitt, Manfred; Sommerhoff, Christian P; Pidard, Dominique; Magdolen, Viktor

    2010-06-15

    Pathogenic bacteria, including Pseudomonas aeruginosa, interact with and engage the host plasminogen (Plg) activation system, which encompasses the urokinase (uPA)-type Plg activator, and is involved in extracellular proteolysis, including matrilysis and fibrinolysis. We hypothesized that secreted bacterial proteases might contribute to the activation of this major extracellular proteolytic system, thereby participating in bacterial dissemination. We report that LasB, a thermolysin-like metalloprotease secreted by Ps. aeruginosa, converts the human uPA zymogen into its active form (kcat=4.9 s-1, Km=8.9 microM). Accordingly, whereas the extracellular secretome from the LasB-expressing pseudomonal strain PAO1 efficiently activates pro-uPA, the secretome from the isogenic LasB-deficient strain PDO240 is markedly less potent in pro-uPA activation. Still, both secretomes induce some metalloprotease-independent activation of the human zymogen. The latter involves a serine protease, which we identified via both recombinant protein expression in Escherichia coli and purification from pseudomonal cultures as protease IV (PIV; kcat=0.73 s-1, Km=6.2 microM). In contrast, neither secretomes nor the pure proteases activate Plg. Along with this, LasB converts Plg into mini-Plg and angiostatin, whereas, as reported previously, it processes the uPA receptor, inactivates the plasminogen activator inhibitor 1, and activates pro-matrix metalloproteinase 2. PIV does not target these factors at all. To conclude, LasB and PIV, although belonging to different protease families and displaying quite different substrate specificities, both activate the urokinase-type precursor of the Plg activation cascade. Direct pro-uPA activation, as also reported for other bacterial proteases, might be a frequent phenomenon that contributes to bacterial virulence. PMID:20337595

  17. Expression of the Reverse Tetracycline-Transactivator Gene Causes Emphysema-Like Changes in Mice

    Sisson, Thomas H.; Hansen, Jean M.; Shah, Mitali; Hanson, Kerstin E.; Du, Ming; Ling, Tony; Simon, Richard H.; Christensen, Paul J.

    2006-01-01

    The doxycycline-inducible, gene regulatory system allows tight control of transgene expression for the study of organ development and disease pathogenesis. Multiple recent reports have employed this model to investigate various lung diseases including emphysema. For our study, we used this transgenic system to test whether prolonged, lung-specific, overexpression of the serine protease urokinase plasminogen activator (uPA) would result in alveolar wall destruction. Double transgenic mice were...

  18. Pathogenesis of dilated cardiomyopathy: molecular, structural, and population analyses in tropomodulin-overexpressing transgenic mice.

    Sussman, M A; Welch, S; Gude, N; Khoury, P R; Daniels, S R; Kirkpatrick, D; Walsh, R A; Price, R L; Lim, H W; Molkentin, J D

    1999-12-01

    Dilated cardiomyopathy is characterized by decreased contractile function and loss of myofibril organization. Previously unexplored structural and molecular events that precede and initiate dilation can now be studied in tropomodulin-overexpressing transgenic (TOT) mice exhibiting progressive dilated cardiomyopathy. Onset of dilation did not correspond to a change in transgene expression levels, which were more than threefold above normal at birth and remained elevated throughout postnatal life. Similarly, mitogen-activated protein kinase activation (p38, ERK1/ERK2, JNK1/JNK2) was not associated with dilation. In contrast, calcineurin was activated before dilation, presumably due to doubling of intracellular diastolic calcium levels in TOT cardiomyocytes. Amplitude of systolic calcium transients was greatly increased as well, demonstrating the novel and unique calcium handling profile of TOT cardiomyocytes. Loss of myofibril organization was not apparent by confocal microscopy until over 1 week after birth, although neonatal sarcomeric abnormalities were revealed by ultrastructural analysis. Rapid postnatal increases in heart:body weight ratio at 1.5 weeks were followed by two waves of mortality between 2 and 3 weeks after birth coincident with maturational stress. Ultimately, TOT pathogenesis is a compensatory response to altered sarcomeric structure driven by calcineurin activation within days after birth, making TOTs an excellent paradigm for studying the role of calcium overload in dilated cardiomyopathy. PMID:10595939

  19. Core I gene is overexpressed in Hürthle and non-Hürthle cell microfollicular adenomas and follicular carcinomas of the thyroid

    Most of the steps involved in the initiation and progression of Hürthle (oncocytic, oxyphilic) cell carcinomas of the thyroid remain unknown. Using differential display and semiquantitative RT-PCR we found, among other alterations, overexpression of the gene encoding the Core I subunit of the complex III of the mitochondrial respiratory chain in a follicular carcinoma composed of Hürthle cells. Similar high levels of Core I gene expression were detected in nine follicular carcinomas (seven with Hürthle cell features), in seven microfollicular adenomas (one with Hürthle cell features) and in one micro/macrofollicular adenoma, in contrast to a lower/normal expression in nine papillary carcinomas (three with Hürthle cell features) and five macrofollicular adenomas (one of which displaying Hürthle cell features). No significative correlation was found between Core I overexpression and the proliferative activity of the lesions. We conclude that Core I overexpression in thyroid tumours is not associated with malignancy, Hürthle cells or proliferative activity. The pathogenetic mechanism linking Core I overexpression to the microfollicular pattern of growth of thyroid tumours remains to be clarified

  20. Analysis of membrane proteome and secretome in cells over-expressing ADAM17 using quantitative proteomics

    Full text: A disintegrin and metalloproteinase (ADAM) protease is involved in proteolytic ectodomain shedding of several membrane-associated proteins and modulation of key cell signaling pathways in the tumor microenvironment. In this study, we examined the effect of over-expressing the full length human ADAM17 in membrane and secreted proteins. To this end, we constructed a stable Flp-In T-RExHEK293 cells expressing ADAM17 by tetracycline induction. These cells were grown in Dulbeccos modified Eagles medium containing light lysine, arginine or heavy, L-Arg-13C615N4 and L-Lys -13C615N2 (SILAC: stable isotope labeling with amino acid in cell culture) media and they were treated with an ADAM17 activator, phorbolester (PMA). Controls such as Flp-In T-RExHEK293 cell without PMA treatment and without ADAM17 cloned were cultivated in light medium. The ADAM17 overexpression was induced with tetracycline 500 ng/ml for 24 hours. Cells in a heavy condition were treated with PMA 50 ng/ml for 1 hour and vehicle DMSO was used as control in a light cell condition. The extracellular media were collected, concentrated and used to evaluate the secretome and a cell surface biotinylation-based approach was used to capture cell surface-associated proteins. The biotinylated proteins were eluted with dithiothreitol, alkylated with iodoacetamide and then digested with trypsin. The resulting peptides were subjected to LC-MS/MS analysis on an ETD enabled Orbitrap Velos instrument. The results showed different proteins up or down regulated in membrane and secretome analysis which might represent potential molecules involved in signaling or ADAM17 regulation events. (author)

  1. Analysis of membrane proteome and secretome in cells over-expressing ADAM17 using quantitative proteomics

    Kawahara, R.; Simabuco, F.M. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Yokoo, S.; Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Sherman, N. [University of Virginia, Charlottesville, VA (United States)

    2012-07-01

    Full text: A disintegrin and metalloproteinase (ADAM) protease is involved in proteolytic ectodomain shedding of several membrane-associated proteins and modulation of key cell signaling pathways in the tumor microenvironment. In this study, we examined the effect of over-expressing the full length human ADAM17 in membrane and secreted proteins. To this end, we constructed a stable Flp-In T-RExHEK293 cells expressing ADAM17 by tetracycline induction. These cells were grown in Dulbeccos modified Eagles medium containing light lysine, arginine or heavy, L-Arg-13C615N4 and L-Lys -13C615N2 (SILAC: stable isotope labeling with amino acid in cell culture) media and they were treated with an ADAM17 activator, phorbolester (PMA). Controls such as Flp-In T-RExHEK293 cell without PMA treatment and without ADAM17 cloned were cultivated in light medium. The ADAM17 overexpression was induced with tetracycline 500 ng/ml for 24 hours. Cells in a heavy condition were treated with PMA 50 ng/ml for 1 hour and vehicle DMSO was used as control in a light cell condition. The extracellular media were collected, concentrated and used to evaluate the secretome and a cell surface biotinylation-based approach was used to capture cell surface-associated proteins. The biotinylated proteins were eluted with dithiothreitol, alkylated with iodoacetamide and then digested with trypsin. The resulting peptides were subjected to LC-MS/MS analysis on an ETD enabled Orbitrap Velos instrument. The results showed different proteins up or down regulated in membrane and secretome analysis which might represent potential molecules involved in signaling or ADAM17 regulation events. (author)

  2. Constitutive overexpression of asm18 increases the production and diversity of maytansinoids in Actinosynnema pretiosum.

    Li, Shanren; Lu, Chunhua; Chang, Xiaoyan; Shen, Yuemao

    2016-03-01

    Ansamitocins isolated from Actinosynnema pretiosum, potent antitumor compounds, belong to the family of maytansinoids, and the antibody-maytansinoid conjugates are currently under different phases of clinical trials. The clinical applications of ansamitocins have stimulated extensive studies to improve their production yields. In this study, we investigated the function of a pathway-specific S treptomyces antibiotic regulatory protein (SARP) family regulator, Asm18, and observed that ectopic overexpression of the asm18 gene increased the production of N-demethyl-4,5-desepoxy-maytansinol (2) to 50 mg/L in the HGF052 + pJTU824-asm18 strain, an increase by 4.7-fold compared to that of the control strain HGF052 + pJTU824. Real-time PCR analysis showed that the overexpression of the asm18 gene selectively increased the transcription levels of the genes involved in the biosynthesis of the starter unit (asm43), polyketide assembly (asmA), post-PKS modification (asm21), as well as the transcription levels of the regulatory gene (asm8), which is a specific LAL-type activator in ansamitocin biosynthesis. With the increase of fermentation titre, seven ansamitocin analogs (1-7) including three new ones (1, 5, and 6) and maytansinol (7) were isolated from the HGF052 + pJTU824-asm18 strain. Our results not only pave the way for further improving the production of ansamitocin analogs but also indicate that the post-PKS modifications of ansamitocin biosynthesis are flexible, which brings a potential of producing maytansinol, the most fascinating intermediate for the synthesis of antibody-maytansinoid conjugates, by optimizing the HGF052 and/or HGF052 + pJTU824-asm18 strains. PMID:26572523

  3. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction.

    Xiao Chen

    Full Text Available Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases. Many studies have demonstrated that heme oxygenase-1 (HO-1 is involved in diverse biological processes as a cytoprotective molecule, including anti-inflammatory, anti-oxidant, anti-apoptotic, antiproliferative, and immunomodulatory effects. However, the mechanisms of HO-1 prevention in renal interstitial fibrosis remain unknown. In this study, HO-1 transgenic (TG mice were employed to investigate the effect of HO-1 on renal fibrosis using a unilateral ureter obstruction (UUO model and to explore the potential mechanisms. We found that HO-1 was adaptively upregulated in kidneys of both TG and wild type (WT mice after UUO. The levels of HO-1 mRNA and protein were increased in TG mice compared with WT mice under normal conditions. HO-1 expression was further enhanced after UUO and remained high during the entire experimental process. Renal interstitial fibrosis in the TG group was significantly attenuated compared with that in the WT group after UUO. Moreover, overexpression of HO-1 inhibited the loss of peritubular capillaries. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by HO-1 overexpression. Furthermore, HO-1 restrained tubulointerstitial infiltration of macrophages and regulated the secretion of inflammatory cytokines in UUO mice. We also found that high expression of HO-1 inhibited reactivation of Wnt/β-catenin signaling, which could play a crucial role in attenuating renal fibrosis. In conclusion, these data suggest that HO-1 prevents renal tubulointerstitial fibrosis possibly by regulating the inflammatory response and Wnt/β-catenin signaling. This study provides evidence that augmentation of HO-1 levels may be a therapeutic strategy against renal interstitial fibrosis.

  4. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer

    Xiaolei Li

    2016-03-01

    Full Text Available (1 Background: Transient receptor potential vanilloid 3 (TRPV3 is a member of the TRP channels family of Ca2+-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC; (2 Methods: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca2+]i. Flow cytometry was used to analyze cell cycle; (3 Results: TRPV3 was overexpressed in 65 of 96 (67.7% human lung cancer cases and correlated with differentiation (p = 0.001 and TNM stage (p = 0.004. Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca2+]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4 Conclusions: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC.

  5. Overexpression of acetylcholinesterase gene in rice results in enhancement of shoot gravitropism.

    Yamamoto, Kosuke; Shida, Satoshi; Honda, Yoshihiro; Shono, Mariko; Miyake, Hiroshi; Oguri, Suguru; Sakamoto, Hikaru; Momonoki, Yoshie S

    2015-09-25

    Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor. Here we clearly demonstrate plant AChE play an important role as a positive regulator in the gravity response of plants based on a genetic study. First, the gene encoding a second component of the ACh-mediated signal transduction system, AChE was cloned from rice, Oryza sativa L. ssp. Japonica cv. Nipponbare. The rice AChE shared high homology with maize, siratro and Salicornia AChEs. Similar to animal and other plant AChEs, the rice AChE hydrolyzed acetylthiocholine and propionylthiocholine, but not butyrylthiocholine. Thus, the rice AChE might be characterized as an AChE (E.C.3.1.1.7). Similar to maize and siratro AChEs, the rice AChE exhibited low sensitivity to the AChE inhibitor, neostigmine bromide, compared with the electric eel AChE. Next, the functionality of rice AChE was proved by overexpression in rice plants. The rice AChE was localized in extracellular spaces of rice plants. Further, the rice AChE mRNA and its activity were mainly detected during early developmental stages (2 d-10 d after sowing). Finally, by comparing AChE up-regulated plants with wild-type, we found that AChE overexpression causes an enhanced gravitropic response. This result clearly suggests that the function of the rice AChE relate to positive regulation of gravitropic response in rice seedlings. PMID:26277389

  6. A high-throughput platform for lentiviral overexpression screening of the human ORFeome.

    Dubravka Škalamera

    Full Text Available In response to the growing need for functional analysis of the human genome, we have developed a platform for high-throughput functional screening of genes overexpressed from lentiviral vectors. Protein-coding human open reading frames (ORFs from the Mammalian Gene Collection were transferred into lentiviral expression vector using the highly efficient Gateway recombination cloning. Target ORFs were inserted into the vector downstream of a constitutive promoter and upstream of an IRES controlled GFP reporter, so that their transfection, transduction and expression could be monitored by fluorescence. The expression plasmids and viral packaging plasmids were combined and transfected into 293T cells to produce virus, which was then used to transduce the screening cell line. We have optimised the transfection and transduction procedures so that they can be performed using robotic liquid handling systems in arrayed 96-well microplate, one-gene-per-well format, without the need to concentrate the viral supernatant. Since lentiviruses can infect both dividing and non-dividing cells, this system can be used to overexpress human ORFs in a broad spectrum of experimental contexts. We tested the platform in a 1990 gene pilot screen for genes that can increase proliferation of the non-tumorigenic mammary epithelial cell line MCF-10A after removal of growth factors. Transduced cells were labelled with the nucleoside analogue 5-ethynyl-2'-deoxyuridine (EdU to detect cells progressing through S phase. Hits were identified using high-content imaging and statistical analysis and confirmed with vectors using two different promoters (CMV and EF1α. The screen demonstrates the reliability, versatility and utility of our screening platform, and identifies novel cell cycle/proliferative activities for a number of genes.

  7. Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana

    Neal D. Teaster

    2012-02-01

    Full Text Available N-Acylethanolamines (NAEs are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE. In animal systems this reaction is part of the endocannabinoid signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH, which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440 lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA, enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD and inductive long day (LD conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3, were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

  8. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters.

    Walid Fayad

    Full Text Available BACKGROUND: Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. METHOD AND FINDINGS: A library of natural products (NCI Natural Product set was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine, an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. CONCLUSIONS: The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids.

  9. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.

    Hu, Jianzhong; Lang, Ye; Zhang, Tao; Ni, Shuangfei; Lu, Hongbin

    2016-07-22

    Peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) is a crucial neuronal regulator in the brain. However, its role in the spinal cord and the underlying regulating mechanisms remain poorly understood. Our previous study demonstrated that PGC-1α is significantly down-regulated following acute spinal cord injury (SCI) in rats. The current study aimed to explore the effects of PGC-1α overexpression on the injured spinal cord by establishing a contusive SCI model in adult Sprague-Dawley rats, followed by immediate intraspinal injection of lentiviral vectors at rostral and caudal sites 3mm from the lesion epicenter. Hindlimb motor function was monitored using the Basso-Beattie-Bresnahan Locomotor Rating Scale (BBB scores), and cords were collected. Transfection efficiency analysis showed that lentivirus successfully induced enhanced PGC-1α expression. This resulted in attenuated apoptotic changes and a greater number of surviving spinal neurons, as determined by transmission electron microscopy and Nissl staining, respectively. Western blot and immunofluorescence analyses revealed increased growth-associated protein 43 and 5-hydroxytryptamine expression, two key markers of axonal regeneration. Importantly, BBB scores showed improved hindlimb motor functional recovery. Moreover, quantitative real-time polymerase chain reaction analysis demonstrated significantly inhibited RhoA, ROCK1, and ROCK2 mRNA expression, revealing a potential mechanism of PGC-1α overexpression following traumatic SCI. Altogether, these results suggest that gene delivery of PGC-1α exerts a significant neuroprotective effect following traumatic SCI, which could serve as a promising treatment for repair of the injured cord, and RhoA-ROCK pathway inhibition may partially underlie this neuroprotection. PMID:27132229

  10. Conditional over-expression of PITX1 causes skeletal muscle dystrophy in mice

    Sachchida N. Pandey

    2012-05-01

    Paired-like homeodomain transcription factor 1 (PITX1 was specifically up-regulated in patients with facioscapulohumeral muscular dystrophy (FSHD by comparing the genome-wide mRNA expression profiles of 12 neuromuscular disorders. In addition, it is the only known direct transcriptional target of the double homeobox protein 4 (DUX4 of which aberrant expression has been shown to be the cause of FSHD. To test the hypothesis that up-regulation of PITX1 contributes to the skeletal muscle atrophy seen in patients with FSHD, we generated a tet-repressible muscle-specific Pitx1 transgenic mouse model in which expression of PITX1 in skeletal muscle can be controlled by oral administration of doxycycline. After PITX1 was over-expressed in the skeletal muscle for 5 weeks, the mice exhibited significant loss of body weight and muscle mass, decreased muscle strength, and reduction of muscle fiber diameters. Among the muscles examined, the tibialis anterior, gastrocnemius, quadricep, bicep, tricep and deltoid showed significant reduction of muscle mass, while the soleus, masseter and diaphragm muscles were not affected. The most prominent pathological change was the development of atrophic muscle fibers with mild necrosis and inflammatory infiltration. The affected myofibers stained heavily with NADH-TR with the strongest staining in angular-shaped atrophic fibers. Some of the atrophic fibers were also positive for embryonic myosin heavy chain using immunohistochemistry. Immunoblotting showed that the p53 was up-regulated in the muscles over-expressing PITX1. The results suggest that the up-regulation of PITX1 followed by activation of p53-dependent pathways may play a major role in the muscle atrophy developed in the mouse model.

  11. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  12. Mild overexpression of Mecp2 in mice causes a higher susceptibility toward seizures.

    Bodda, Chiranjeevi; Tantra, Martesa; Mollajew, Rustam; Arunachalam, Jayamuruga P; Laccone, Franco A; Can, Karolina; Rosenberger, Albert; Mironov, Sergej L; Ehrenreich, Hannelore; Mannan, Ashraf U

    2013-07-01

    An intriguing finding about the gene encoding methyl-CpG binding protein 2 (MeCP2) is that the loss-of-function mutations cause Rett syndrome and duplication (gain-of-function) of MECP2 leads to another neurological disorder termed MECP2 duplication syndrome. To ensure proper neurodevelopment, a precise regulation of MeCP2 expression is critical, and any gain or loss of MeCP2 over a narrow threshold level may lead to postnatal neurological impairment. To evaluate MeCP2 dosage effects, we generated Mecp2(WT_EGFP) transgenic (TG) mouse in which MeCP2 (endogenous plus TG) is mildly overexpressed (approximately 1.5×). The TG MeCP2(WT_EGFP) fusion protein is functionally active, as cross breeding of these mice with Mecp2 knockout mice led to alleviation of major phenotypes in the null mutant mice, including premature lethality. To characterize the Mecp2(WT_EGFP) mouse model, we performed an extensive battery of behavioral tests, which revealed that these mice manifest increased aggressiveness and higher pentylenetetrazole (PTZ)-induced seizure propensity. Evaluation of neuronal parameters revealed a reduction in the number of tertiary branching sites and increased spine density in Mecp2(WT_EGFP) transgenic (TG) neurons. Treatment of TG neurons with epileptogenic compound-PTZ led to a marked increase in amplitude and frequency of calcium spikes. Based on our ex vivo and in vivo data, we conclude that epileptic seizures are manifested as the first symptom when MeCP2 is mildly overexpressed in mice. PMID:23684790

  13. Ecto-5'-Nucleotidase Overexpression Reduces Tumor Growth in a Xenograph Medulloblastoma Model.

    Angélica R Cappellari

    Full Text Available Ecto-5'-nucleotidase/CD73 (ecto-5'-NT participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5'-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB is the most common brain tumor of the cerebellum and affects mainly children.The effects of ecto-5'-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified.The human MB cell line D283, transfected with ecto-5'-NT (D283hCD73, revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5'-NT.This work suggests that ecto-5'-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5'-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy.

  14. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-03-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  15. Overexpression of SOS (Salt Overly Sensitive)Genes Increases Salt Tolerance in Transgenic Arabidopsis

    Qing Yang; Zhi-Zhong Chen; Xiao-Feng Zhoua; Hai-Bo Yin; Xia Li; Xiu-Fang Xin; Xu-Hui Hong; Jian-Kang Zhu; Zhizhong Gong

    2009-01-01

    Soil salinity is a major abiotic stress that decreases plant growth and productivity. Recently, it was reported that plants overexpressing AtNHX1 or SOS1 have significantly increased salt tolerance. To test whether overexpression of multiple genes can improve plant salt tolerance even more, we produced six different transgenic Arabidopsis plants that overexpress AtNHX1, SOS3, AtNHXl + SOS3, SOS1, SOS2 + SOS3, or SOS1 + SOS2 + SOS3. Northern blot analyses confirmed the presence of high levels of the relevant gene transcripts in transgenic plants. Transgenic Arabidopsis plants overexpressing AtNHX1 alone did not present any significant increase in salt tolerance, contrary to earlier reports. We found that transgenic plants overexpressing SOS3 exhibit increased salt tolerance similar to plants overexpressing SOS1. Moreover, salt tolerance of transgenic plants overexpressing AtNHXl + SOS3, 50S2 + SOS3, or SOS1 + SOS2 +SOS3, respectively, appeared similar to the tolerance of transgenic plants overexpressing either SOS1 or SOS3 alone.

  16. COX-2 overexpression in resected pancreatic head adenocarcinomas correlates with favourable prognosis

    Pomianowska, Ewa; Schjølberg, Aasa R.; Clausen, Ole P F; Gladhaug, Ivar P

    2014-01-01

    Background Overexpression of cyclooxygenase-2 (COX-2) has been implicated in oncogenesis and progression of adenocarcinomas of the pancreatic head. The data on the prognostic importance of COX expression in these tumours is inconsistent and conflicting. We evaluated how COX-2 overexpression affected overall postoperative survival in pancreatic head adenocarcinomas. Methods The study included 230 conse...

  17. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M;

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe clin...

  18. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas; Olesen, Mikkel V; Sørensen, Gunnar; Christiansen, Søren Hofman Oliveira; Ängehagen, Mikael; Woldbye, David Paul Drucker; Kokaia, Merab

    2012-01-01

    the hippocampus strengthened the seizure-suppressant effect of transgene Y2 receptors. Here we show for the first time that another neuropeptide Y receptor, Y5, can also be overexpressed in the hippocampus. However, unlike Y2 receptor overexpression, transgene Y5 receptors in the hippocampus had no...

  19. Regulation of [Ca2+](i) homeostasis in MRP1 overexpressing cells

    Filipeanu, C.M; Nelemans, Adriaan; Veldman, Robert Jan; de Zeeuw, Dick; Kok, Jan Willem

    2000-01-01

    Regulation of capacitative Ca2+ entry,vas studied in two different multidrug resistance (MDR) protein (MRP1) overexpressing cell lines, HT29(col) and GLC4/ADR. MRP1 overexpression was accompanied by a decreased response to thapsigargin, Moreover, inhibition of capacitative Ca2+ entry by D,L-threo-1-

  20. Adult T-cell leukemia cells overexpress Wnt5a and promote osteoclast differentiation

    Bellon, Marcia; Ko, Nga Ling; Lee, Min-Jung; Yao, Yuan; Waldmann, Thomas A; Trepel, Jane B; Nicot, Christophe

    2013-01-01

    Profiling of the Wnt/β-catenin pathway reveals overexpression of Wnt5a, LEF-1 and TCF-1 in ATL patient cells.ATL cells overexpress Wnt5a, which enhances osteoclastogenesis and may contribute to the osteolytic bone lesions and hypercalcemia.

  1. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials.

    Richman, Susan D; Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-03-01

    HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti-EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK-AKT pathway activation through HER2 up-regulation. We assessed HER2-amplification/overexpression in stage II-III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II-III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2-amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression-free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II-III tumours showed HER2 protein overexpression. Of the HER2-overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II-III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2-overexpression was associated with KRAS/BRAF wild-type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II-III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II-III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2-overexpressing cases experienced recurrence, but the difference was not significant. HER2-amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II-III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2-targeted therapy in patients with HER2-amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society

  2. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma

    Despite advances in diagnostic and treatment strategies, head and neck squamous cell cancer (HNSCC) constitutes one of the worst cancer types in terms of prognosis. PTEN is one of the tumour suppressors whose expression and/or activity have been found to be reduced in HNSCC, with rather low rates of mutations within the PTEN gene (6-8%). We reasoned that low expression levels of PTEN might be due to a transcriptional repression governed by an oncogene. Tbx2 and Tbx3, both of which are transcriptional repressors, have been found to be amplified or over-expressed in various cancer types. Thus, we hypothesize that Tbx3 may be over expressed in HNSCC and may repress PTEN, thus leading to cancer formation and/or progression. Using immunohistochemistry and quantitative PCR (qPCR), protein and mRNA levels of PTEN and Tbx3 were identified in samples excised from cancerous and adjacent normal tissues from 33 patients who were diagnosed with HNSCC. In addition, HeLa and HEK cell lines were transfected with a Tbx3 expressing plasmid and endogenous PTEN mRNA and protein levels were determined via qPCR and flow cytometry. Transcription assays were performed to demonstrate effects of Tbx3 on PTEN promoter activity. Mann–Whitney, Spearman’s Correlation and Wilcoxon signed-rank tests were used to analyze the data. We demonstrate that in HNSCC samples, Tbx3 mRNA levels are increased with respect to their normal tissue counterparts (p<0.001), whereas PTEN mRNA levels are significantly reduced in cancer tissues. Moreover, Tbx3 protein is also increased in HNSCC tissue sections. Over-expression of Tbx3 in HeLa and HEK cell lines causes reduction in endogenous PTEN mRNA and protein levels. In addition, transcription activity assays reveal that Tbx3 is capable of repressing both the basal and induced promoter activity of PTEN. We show that Tbx3 is up-regulated in tissue samples of HNSCC patients and that Tbx3 represses PTEN transcription. Thus, our data not only reveals a new

  3. Arsenic trioxide inhibits tumor cell growth in malignant rhabdoid tumors in vitro and in vivo by targeting overexpressed Gli1.

    Kerl, Kornelius; Moreno, Natalia; Holsten, Till; Ahlfeld, Julia; Mertins, Julius; Hotfilder, Marc; Kool, Marcel; Bartelheim, Kerstin; Schleicher, Sabine; Handgretinger, Rupert; Schüller, Ulrich; Meisterernst, Michael; Frühwald, Michael C

    2014-08-15

    Rhabdoid tumors are highly aggressive tumors occurring in infants and very young children. Despite multimodal and intensive therapy prognosis remains poor. Molecular analyses have uncovered several deregulated pathways, among them the CDK4/6-Rb-, the WNT- and the Sonic hedgehog (SHH) pathways. The SHH pathway is activated in rhabdoid tumors by GLI1 overexpression. Here, we demonstrate that arsenic trioxide (ATO) inhibits tumor cell growth of malignant rhabdoid tumors in vitro and in a mouse xenograft model by suppressing Gli1. Our data uncover ATO as a promising therapeutic approach to improve prognosis for rhabdoid tumor patients. PMID:24420698

  4. Overexpression of Cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis

    Li, Tiangang; Matozel, Michelle; Boehme, Shannon; Kong, Bo; Nilsson, Lisa-Mari; Guo, Grace; Ellis, Ewa; Chiang, John Y. L.

    2011-01-01

    We reported previously that mice overexpressing Cyp7a1 (Cyp7a1-tg) are protected against high fat diet-induced hypercholesterolemia, obesity and insulin resistance (1). Here we investigated the underlying mechanism of bile acid signaling in maintaining cholesterol homeostasis in Cyp7a1-tg mice. Cyp7a1-tg mice had 2-fold higher Cyp7a1 activity and bile acid pool than wild type mice. Gallbladder bile acid composition changed from predominantly cholic acid (57%) in wild type to chenodeoxycholic ...

  5. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic ¤Nicotiana sylvestris¤

    Michalecka, A.M.; Agius, S.C.; Møller, I.M.; Rasmusson, A.G.

    2004-01-01

    The plant respiratory chain contains a complex setup of non-energy conserving NAD(P)H dehydrogenases, the physiological consequences of which are highly unclear. An expression construct for the potato (Solanum tuberosum L., cv. Desiree) ndb1 gene, a homologue of bacterial and fungal type II NAD...... specific for NADPH and dependent on calcium for activity. Transgenic lines overexpressing St-ndb1 had specifically increased protein levels for alternative oxidase and uncoupling protein, as compared to the WT and one co-suppressing line. This indicates cross-talk in the expressional control, or metabolic...

  6. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco.

    Zhou, Shiyi; Hu, Wei; Deng, Xiaomin; Ma, Zhanbing; Chen, Lihong; Huang, Chao; Wang, Chen; Wang, Jie; He, Yanzhen; Yang, Guangxiao; He, Guangyuan

    2012-01-01

    Aquaporin (AQP) proteins have been shown to transport water and other small molecules through biological membranes, which is crucial for plants to combat stress caused by drought. However, the precise role of AQPs in drought stress response is not completely understood in plants. In this study, a PIP2 subgroup gene AQP, designated as TaAQP7, was cloned and characterized from wheat. Expression of TaAQP7-GFP fusion protein revealed its localization in the plasma membrane. TaAQP7 exhibited high water channel activity in Xenopus laevis oocytes and TaAQP7 transcript was induced by dehydration, and treatments with polyethylene glycol (PEG), abscisic acid (ABA) and H(2)O(2). Further, TaAQP7 was upregulated after PEG treatment and was blocked by inhibitors of ABA biosynthesis, implying that ABA signaling was involved in the upregulation of TaAQP7 after PEG treatment. Overexpression of TaAQP7 increased drought tolerance in tobacco. The transgenic tobacco lines had lower levels of malondialdehyde (MDA) and H(2)O(2), and less ion leakage (IL), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities when compared with the wild type (WT) under drought stress. Taken together, our results show that TaAQP7 confers drought stress tolerance in transgenic tobacco by increasing the ability to retain water, reduce ROS accumulation and membrane damage, and enhance the activities of antioxidants. PMID:23285044

  7. Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice.

    Huang, Luping; Belousova, Tatiana; Chen, Minyi; DiMattia, Gabriel; Liu, Dajun; Sheikh-Hamad, David

    2012-10-01

    Reactive oxygen species, endothelial dysfunction, inflammation, and mitogen-activated protein kinases have important roles in the pathogenesis of ischemia/reperfusion kidney injury. Stanniocalcin-1 (STC1) suppresses superoxide generation in many systems through the induction of mitochondrial uncoupling proteins and blocks the cytokine-induced rise in endothelial permeability. Here we tested whether transgenic overexpression of STC1 protects from bilateral ischemia/reperfusion kidney injury. This injury in wild-type mice caused a halving of the creatinine clearance; severe tubular vacuolization and cast formation; increased infiltration of macrophages and T cells; higher vascular permeability; greater production of superoxide and hydrogen peroxide; and higher ratio of activated extracellular regulated kinase/activated Jun-N-terminal kinase and p38, all compared to sham-treated controls. Mice transgenic for human STC1 expression, however, had resistance to equivalent ischemia/reperfusion injury indicated as no significant change from controls in any of these parameters. Tubular epithelial cells in transgenic mice expressed higher mitochondrial uncoupling protein 2 and lower superoxide generation. Pre-treatment of transgenic mice with paraquat, a generator of reactive oxygen species, before injury restored the susceptibility to ischemia/reperfusion kidney injury, suggesting that STC1 protects by an anti-oxidant mechanism. Thus, STC1 may be a therapeutic target for ischemia/reperfusion kidney injury. PMID:22695329

  8. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos [INTA, Laboratorio de Bioinformatica y Expresion Genica, Universidad de Chile, El Libano 5524, Macul, Santiago (Chile); Cerpa, Waldo [Centro de Envejecimiento y Regeneracion (CARE), Centro de Regulacion Celular y Patologia ' Joaquin V. Luco' (CRCP), MIFAB, Departamento de Biologia Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago (Chile); Cambiazo, Veronica [INTA, Laboratorio de Bioinformatica y Expresion Genica, Universidad de Chile, El Libano 5524, Macul, Santiago (Chile); Millenium Nucleus CGC, Universidad de Chile (Chile); Inestrosa, Nibaldo C. [Centro de Envejecimiento y Regeneracion (CARE), Centro de Regulacion Celular y Patologia ' Joaquin V. Luco' (CRCP), MIFAB, Departamento de Biologia Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago (Chile); Gonzalez, Mauricio, E-mail: mgonzale@inta.cl [INTA, Laboratorio de Bioinformatica y Expresion Genica, Universidad de Chile, El Libano 5524, Macul, Santiago (Chile)

    2009-05-15

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to both Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  9. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu2+ reduction and 64Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu2+ ions. Moreover, wild-type cells exposed to both Cu2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu2+ reductase activity and increased 64Cu uptake. We conclude that Cu2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  10. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry. PMID:26211445

  11. Distinct Overexpression of Fas Ligand on T Lymphocytes in Aplastic Anemia

    Wenxin Li; Jinxiang Fu; Fengming Wang; Gehua Yu; Yong Wang; Xueguang Zhang

    2004-01-01

    Increased expression of Fas by hematopoietic progenitors in aplastic anemia (AA) suggests that Fas/Fas ligand (FasL) system plays a key role in the formation of severe pancytopenia. To further confirm the above hypothesis, T cells from 8 patients with AA were systematically studied for their FasL's distribution pattern,releasing manner and proapoptotic activity, compared with normal resting T cells and artificially activated Tcell blasts. The results demonstrated that AA T cells abnormally expressed low levels of membrane-bound FasL and contained high levels of intracellular FasL which could be triggered to release by high-dose phytohemagglutinin (PHA) pulse-stimulation. The supernatants from the PHA-stimulated AA T cells had apparent cytotoxicity against FasL-sensitive Jurkat cells, which could be significantly inhibited by monoclonal antibody against FasL in a dose-dependent manner, or nearly completely abrogated by ultracentrifugation. The above phenomena also appeared on artificially activated T cell blasts, but this was not the case on normal resting Tcells. These results indicate that AA T cell is a type of "preactivated" T lymphocyte, characterized by overexpression of FasL, especially intracellular FasL which can be stimulated to release in bioavtive exosomesbound form. Taken together, our data provide further and direct evidence for the hypothesis that T cells might mediate the destruction of hematopietic progenitor in AA through Fas/FasL system.

  12. Distinct Overexpression of Fas Ligand on T Lymphocytes in Aplastic Anemia

    WenxinLi; JinxiangFu; FengmingWang; GehuaYu; YongWang; XueguangZhang

    2004-01-01

    Increased expression of Fas by hematopoietic progenitors in aplastic anemia (AA) suggests that Fas/Fas ligand (FasL) system plays a key role in the formation of severe pancytopenia. To further confirm the above hypothesis, T cells from 8 patients with AA were systematically studied for their FasL's distribution pattern, releasing manner and proapoptotic activity, compared with normal resting T cells and artificially activated T cell blasts. The results demonstrated that AA T cells abnormally expressed low levels of membrane-bound FasL and contained high levels of intracellular FasL which could be triggered to release by high-dose phytohemagglutinin (PHA) pulse-stimulation. The supernatants from the PHA-stimulated AA T cells had apparent cytotoxicity against FasL-sensitive Jurkat cells, which could be significantly inhibited by monoclonal antibody against FasL in a dose-dependent manner, or nearly completely abrogated by ultracentrifugation. The above phenomena also appeared on artificially activated T cell blasts, but this was not the case on normal resting T cells. These results indicate that AA T cell is a type of "preactivated" T lymphocyte, characterized by overexpression of FasL, especially intracellular FasL which can be stimulated to release in bioavtive exosomesbound form. Taken together, our data provide further and direct evidence for the hypothesis that T cells might mediate the destruction of hematopietic progenitor in AA through Fas/FasL system. Cellular & Molecular Immunology. 2004;1(2):142-147.

  13. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco.

    Shiyi Zhou

    Full Text Available Aquaporin (AQP proteins have been shown to transport water and other small molecules through biological membranes, which is crucial for plants to combat stress caused by drought. However, the precise role of AQPs in drought stress response is not completely understood in plants. In this study, a PIP2 subgroup gene AQP, designated as TaAQP7, was cloned and characterized from wheat. Expression of TaAQP7-GFP fusion protein revealed its localization in the plasma membrane. TaAQP7 exhibited high water channel activity in Xenopus laevis oocytes and TaAQP7 transcript was induced by dehydration, and treatments with polyethylene glycol (PEG, abscisic acid (ABA and H(2O(2. Further, TaAQP7 was upregulated after PEG treatment and was blocked by inhibitors of ABA biosynthesis, implying that ABA signaling was involved in the upregulation of TaAQP7 after PEG treatment. Overexpression of TaAQP7 increased drought tolerance in tobacco. The transgenic tobacco lines had lower levels of malondialdehyde (MDA and H(2O(2, and less ion leakage (IL, but higher relative water content (RWC and superoxide dismutase (SOD and catalase (CAT activities when compared with the wild type (WT under drought stress. Taken together, our results show that TaAQP7 confers drought stress tolerance in transgenic tobacco by increasing the ability to retain water, reduce ROS accumulation and membrane damage, and enhance the activities of antioxidants.

  14. Ectopic automaticity induced in ventricular myocytes by transgenic overexpression of HCN2.

    Oshita, Kensuke; Itoh, Masayuki; Hirashima, Shingo; Kuwabara, Yoshihiro; Ishihara, Keiko; Kuwahara, Koichiro; Nakao, Kazuwa; Kimura, Takeshi; Nakamura, Kei-Ichiro; Ushijima, Kazuo; Takano, Makoto

    2015-03-01

    Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) are expressed in the ventricles of fetal hearts but are normally down-regulated as development progresses. In the hypertrophied heart, however, these channels are re-expressed and generate a hyperpolarization-activated, nonselective cation current (Ih), which evidence suggests may increase susceptibility to arrhythmia. To test this hypothesis, we generated and analyzed transgenic mice overexpressing HCN2 specifically in their hearts (HCN2-Tg). Under physiological conditions, HCN2-Tg mice exhibited no discernible abnormalities. After the application of isoproterenol (ISO), however, ECG recordings from HCN2-Tg mice showed intermittent atrioventricular dissociation followed by idioventricular rhythm. Consistent with this observation, 0.3 μmol/L ISO-induced spontaneous action potentials (SAPs) in 76% of HCN2-Tg ventricular myocytes. In the remaining 24%, ISO significantly depolarized the resting membrane potential (RMP), and the late repolarization phase of evoked action potentials (APs) was significantly longer than in WT myocytes. Analysis of membrane currents revealed that these differences are attributable to the Ih tail current. These findings suggest HCN2 channel activity reduces the repolarization reserve of the ventricular action potential and increases ectopic automaticity under pathological conditions such as excessive β-adrenergic stimulation. PMID:25562801

  15. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco

  16. Impaired baroreflex function in mice overexpressing alpha-synuclein

    Sheila eFleming

    2013-07-01

    Full Text Available Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD. In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn, a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate, computed from R-R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in heart rate and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD.

  17. Effects on capacitance by overexpression of membrane proteins

    Functional Channelrhodopsin-2 (ChR2) overexpression of about 104 channels/μm2 in the plasma membrane of HEK293 cells was studied by patch-clamp and freeze-fracture electron microscopy. Simultaneous electrorotation measurements revealed that ChR2 expression was accompanied by a marked increase of the area-specific membrane capacitance (Cm). The Cm increase apparently resulted partly from an enlargement of the size and/or number of microvilli. This is suggested by a relatively large Cm of 1.15 ± 0.08 μF/cm2 in ChR2-expressing cells measured under isotonic conditions. This value was much higher than that of the control HEK293 cells (0.79 ± 0.02 μF/cm2). However, even after complete loss of microvilli under strong hypoosmolar conditions (100 mOsm), the ChR2-expressing cells still exhibited a significantly larger Cm (0.85 ± 0.07 μF/cm2) as compared to non-expressing control cells (0.70 ± 0.03 μF/cm2). Therefore, a second mechanism of capacitance increase may involve changes in the membrane permittivity and/or thickness due to the embedded ChR2 proteins

  18. Ornithine decarboxylase gene is overexpressed in colorectal carcinoma

    Hai-Yan Hu; Bing Zhang; Xian-Xi Liu; Chun-Ying Jiang; Yi Lu; Shi-Lian Liu; Ji-Feng Bian; Xiao-Ming Wang; Zhao Geng; Yan Zhang

    2005-01-01

    AIM: To investigate the ornithine decarboxylase (ODC)gene expression in colorectal carcinoma, ODC mRNA was assayed by RT-PCR and ODC protein was detected by a monoclonal antibody against fusion of human colon ODC prepared by hybridoma technology.METHODS: Total RNA was extracted from human colorectal cancer tissues and their normal counterpart tissues. ODC mRNA levels were examined by RT-PCR.ODC genes amplified from RT-PCR were cloned into a prokaryotic vector pQE-30. The expressed proteins were purified by chromatography. Anti-ODC mAb was prepared with classical hybridoma techniques and used to determine the ODC expression in colon cancer tissues by immunohistochemical and Western blotting assay.RESULTS: A cell line, which could steadily secrete antiODC mAb, was selected through subcloning four times.Western blotting reconfirmed the mAb and ELISA showed that its subtype was IgG2a. RT-PCR showed that the ODC mRNA level increased greatly in colon cancer tissues (P<0.01). Immunohistochemical staining showed that colorectal carcinoma cells expressed a significantly higher level of ODC than normal colorectal mucosa (98.6±1.03%vs 5.26±5%, P<0.01).CONCLUSION: ODC gene overexpression is significantly related to human colorectal carcinoma. ODC gene expression may be a marker for the gene diagnosis and therapy of colorectal carcinoma.

  19. Lymphopoiesis in transgenic mice over-expressing Artemis.

    Rivera-Munoz, P; Abramowski, V; Jacquot, S; André, P; Charrier, S; Lipson-Ruffert, K; Fischer, A; Galy, A; Cavazzana, M; de Villartay, J-P

    2016-02-01

    Artemis is a factor of the non-homologous end joining pathway involved in DNA double-strand break repair that has a critical role in V(D)J recombination. Mutations in DCLRE1C/ARTEMIS gene result in radiosensitive severe combined immunodeficiency in humans owing to a lack of mature T and B cells. Given the known drawbacks of allogeneic hematopoietic stem cell transplantation (HSCT), gene therapy appears as a promising alternative for these patients. However, the safety of an unregulated expression of Artemis has to be established. We developed a transgenic mouse model expressing human Artemis under the control of the strong CMV early enhancer/chicken beta actin promoter through knock-in at the ROSA26 locus to analyze this issue. Transgenic mice present a normal development, maturation and function of T and B cells with no signs of lymphopoietic malignancies for up to 15 months. These results suggest that the over-expression of Artemis in mice (up to 40 times) has no deleterious effects in early and mature lymphoid cells and support the safety of gene therapy as a possible curative treatment for Artemis-deficient patients. PMID:26361272

  20. Overexpression of DRAM enhances p53-dependent apoptosis

    Tumor suppressor p53-dependent apoptosis is thought to be one of the most important tumor-suppressive mechanisms in human tumorigenesis. Till date, “super p53” mutants exhibiting more potent ability to induce apoptosis than wild-type p53 have been reported. These super p53s may provide a clue for development of novel therapeutic targets. However, the major mechanism underlying the super p53-dependent apoptosis remains unclear. To identify critical gene(s) in this mechanism, we performed a comprehensive and comparative expression analysis in p53-null Saos-2 cells with conditional expression of wild-type p53 and S121F, which was previously reported as a super p53 mutant. We identified damage-regulated autophagy modulator (DRAM) as one of the genes that were more upregulated by S121F than wild-type p53. Although knockdown of DRAM was not sufficient for reducing the ability of S121F to induce apoptosis, DRAM overexpression enhanced the ability in a wild-type p53-dependent manner. Here, we show that DRAM is an important gene for the enhancement of p53-dependent apoptosis. Additional analysis of the mechanism of super p53-dependent apoptosis may lead to the identification of novel drug targets for cancer therapy

  1. Changes in gene expression associated with FTO overexpression in mice.

    Myrte Merkestein

    Full Text Available Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected.

  2. Changes in gene expression associated with FTO overexpression in mice.

    Merkestein, Myrte; McTaggart, James S; Lee, Sheena; Kramer, Holger B; McMurray, Fiona; Lafond, Mathilde; Boutens, Lily; Cox, Roger; Ashcroft, Frances M

    2014-01-01

    Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected. PMID:24842286

  3. Identification of stromal proteins overexpressed in nodular sclerosis Hodgkin lymphoma

    de Leval Laurence

    2011-10-01

    Full Text Available Abstract Hodgkin lymphoma (HL represents a category of lymphoid neoplasms with unique features, notably the usual scarcity of tumour cells in involved tissues. The most common subtype of classical HL, nodular sclerosis HL, characteristically comprises abundant fibrous tissue stroma. Little information is available about the protein composition of the stromal environment from HL. Moreover, the identification of valid protein targets, specifically and abundantly expressed in HL, would be of utmost importance for targeted therapies and imaging, yet the biomarkers must necessarily be accessible from the bloodstream. To characterize HL stroma and to identify potentially accessible proteins, we used a chemical proteomic approach, consisting in the labelling of accessible proteins and their subsequent purification and identification by mass spectrometry. We performed an analysis of potentially accessible proteins in lymph node biopsies from HL and reactive lymphoid tissues, and in total, more than 1400 proteins were identified in 7 samples. We have identified several extracellular matrix proteins overexpressed in HL, such as versican, fibulin-1, periostin, and other proteins such as S100-A8. These proteins were validated by immunohistochemistry on a larger series of biopsy samples, and bear the potential to become targets for antibody-based anti-cancer therapies.

  4. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine

    Xuanbin Wang; Ning Wang; Hongliang Li; Ming Liu; Fengjun Cao; Xianjun Yu; Jingxuan Zhang; Yan Tan; Longchao Xiang; Yibin Feng

    2016-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the i...

  5. Generation of IgE-based immunotherapies against HER-2 overexpressing tumours

    In combination with chemotherapy or radiation, passive immunotherapy with monoclonal antibodies is state of the art in cancer therapy. For this purpose, two properties of antibodies are harnessed: i) via the Fab fragment they bind a specific tumour antigen and ii) via the Fc portion they recruit effector cells and activate the complement system. One of these antibodies is trastuzumab (Herceptin), a growth-inhibitory humanized monoclonal IgG1 antibody recognizing the tumour antigen HER-2, which is overexpressed in 30% of human breast cancers. Interestingly, all antibodies applied for passive immunotherapy are so far exclusively of the IgG subclass. In contrast, antibodies of the IgE subclass are best-known for their detrimental function in type I hypersensitivity. It is little-known that IgE has anti-tumour capacity which could be exploited for immunotherapy of cancer. Thus, the aim of this doctoral thesis was to examine alternative strategies for cancer treatment based on IgE antibodies, and to compare their efficacy with that of IgG. The oral immunization route is well suited for the induction of a Th2 immunity including high affine IgE responses to administered antigens. Therefore, the establishment of an IgE dependent food allergy model in mice is described, which we applied also for our cancer studies. When mice were fed with different concentrations of ovalbumin under concomitant anti-acid medication, an antigen-specific IgE induction in a Th2 environment could be achieved. This oral vaccination regimen was also used for feeding HER-2 mimotopes, i.e. epitope-mimics of the anti-HER-2 IgG antibody trastuzumab. Indeed, these mimotopes induced IgE antibodies recognizing the tumour antigen which were able to bind HER-2 overexpressing breast cancer cells and led to tumour cell lysis. Complementary to this active immunotherapeutic approach a trastuzumab-like IgE antibody for passive immunotherapy was constructed. We could show that this trastuzumab IgE exhibited the

  6. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    Graziela Rosa Ravacci

    2015-01-01

    Full Text Available In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36, transport (FABP4, and storage (DGAT of exogenous fatty acids (FA, as well as increased activation of “de novo” FA synthesis (FASN. We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4 in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA.

  7. Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-κB signal pathway.

    Chen, Shaoqin; Chen, Wei; Zhang, Xiang; Lin, Suyong; Chen, Zhihua

    2016-04-01

    Metastasis of colorectal cancer (CRC) depends critically on MMP-9. KiSS-1 is a human malignant melanoma metastasis-suppressor gene. Thus, the interaction between MMP-9 and KiSS-1 has drawn considerable attention in recent years. In the present study, it was hypothesized that KiSS-1 gene could repress the metastatic potential of colorectal cancer cells by inhibiting the expression of MMP-9. Stable transfection of KiSS-1 specific siRNA and KiSS-1 expression vector in human CRC cell line HCT-116 was achieved by lentivirus infection. Moreover, the cell proliferation, invasiveness, and apoptosis were evaluated by CCK-8 method, transwell experiment, and fluorescence activated cell sorter, respectively. We also investigated the expression of MMP-9, PI3K, Akt, pAKt, and NF-кB subunit p65 using western blotting. KiSS-1 overexpression significantly decreased the cell proliferation and invasiveness of HCT-119 cells, while apoptosis was enhanced. The result of western blotting showed that synthesis of MMP-9, PI3K, p65, and phosphorylation of Akt were significantly blocked by overexpression of KiSS-1. Concatenated treatment of KiSS-1 overexpression vector with PI3K and Akt agonists attenuated the effect of KiSS-1 on the biological activity of CRC cells and also released the expression of MMP-9, PI3K, p65, and phosphorylation of Akt from the influence of overexpression of KiSS-1. Overexpression of KiSS-1 suppressed the invasiveness of CRC cells, and the gene exerted its function by reducing the expression of MMP-9 via blocking of tge PI3K/Akt/NF-κB pathway. PMID:26847533

  8. Effects of Pleiotrophin Overexpression on Mouse Skeletal Muscles in Normal Loading and in Actual and Simulated Microgravity

    Liantonio, Antonella; De Bellis, Michela; Cannone, Maria; Sblendorio, Valeriana; Conte, Elena; Mele, Antonietta; Tricarico, Domenico; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Ohira, Yoshinobu; Danieli-Betto, Daniela; Ciciliot, Stefano; Germinario, Elena; Sandonà, Dorianna; Betto, Romeo; Desaphy, Jean-François

    2013-01-01

    Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca2+ concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle

  9. Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins

    Cheng Chung-Hsien

    2009-07-01

    Full Text Available Abstract Background Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase, were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D, and the other with five contiguous arginine residues (5R. Results Both fusion proteins were overexpressed in Escherichia coli and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of N-acetyl-D-neuraminic acid (Neu5Ac from N-acetyl-D-glucosamine (GlcNAc. Conclusion Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.

  10. Overexpression of lycopene ε-cyclase gene from lycium chinense confers tolerance to chilling stress in Arabidopsis thaliana.

    Song, Xinyu; Diao, Jinjin; Ji, Jing; Wang, Gang; Li, Zhaodi; Wu, Jiang; Josine, Tchouopou Lontchi; Wang, Yurong

    2016-01-15

    Lutein plays an important role in protecting the photosynthetic apparatus from photodamage and eliminating ROS to render normal physiological function of cells. As a rate-limiting step for lutein synthesis in plants, lycopene ε-cyclase catalyzes lycopene to δ-carotene. We cloned a lycopene ε-cyclase gene (Lcε-LYC) from Lycium chinense (L. chinense), a deciduous woody perennial halophyte growing in various environmental conditions. The Lcε-LYC gene has an ORF of 1569bp encoding a protein of 522 aa. The deduced amino acid sequence of Lcε-LYC gene has higher homology with LycEs in other plants, such as Nicotiana tabacum and Solanum tuberosum. When L. chinense was exposed to chilling stress, relative expression of Lcε-LYC increased. To study the protective role of Lcε-LYC against chilling stress, we overexpressed the Lcε-LYC gene in Arabidopsis thaliana. Lcε-LYC overexpression led to an increase of lutein accumulation in transgenic A. thaliana, and the content of lutein decreased when transgenics were under cold conditions. In addition, the transgenic plants under chilling stress displayed higher activities of superoxide dismutase (SOD) and peroxidase (POD) and less H2O2 and malondialdehyde (MDA) than the control. Moreover, the photosynthesis rate, photosystem II activity (Fv/fm), and Non-photochemical quenching (NPQ) also increased in the transgenetic plants. On the whole, overexpression of Lcε-LYC ameliorates photoinhibition and photooxidation, and decreases the sensitivity of photosynthesis to chilling stress in transgenic plants. PMID:26526130

  11. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila.

    Auer, Jasmin S; Nagel, Anja C; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-12-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H) (MAPK-) (ko) and a phospho-mimetic Su(H) (MAPK-ac) isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vg (BE) -lacZ). In general, Su(H) (MAPK-) (ko) induced a stronger response than wild-type Su(H), whereas the response to Su(H) (MAPK-ac) was very weak. Notch target genes cut, wingless and vg (BE) -lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DER (act) ) or the MAPK (rl (SEM) ) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones. PMID:26702412

  12. MicroRNA181a Is Overexpressed in T-Cell Leukemia/Lymphoma and Related to Chemoresistance

    Zi-Xun Yan

    2015-01-01

    Full Text Available MicroRNAs (miRs play an important role in tumorogenesis and chemoresistance in lymphoid malignancies. Comparing with reactive hyperplasia, miR181a was overexpressed in 130 patients with T-cell leukemia/lymphoma, including acute T-cell lymphoblastic leukemia (n=32, T-cell lymphoblastic lymphoma (n=16, peripheral T-cell lymphoma, not otherwise specified (n=45, anaplastic large cell lymphoma (n=15, and angioimmunoblastic T-cell lymphoma (n=22. Irrespective to histological subtypes, miR181a overexpression was associated with increased AKT phosphorylation. In vitro, ectopic expression of miR181a in HEK-293T cells significantly enhanced cell proliferation, activated AKT, and conferred cell resistance to doxorubicin. Meanwhile, miR181a expression was upregulated in Jurkat cells, along with AKT activation, during exposure to chemotherapeutic agents regularly applied to T-cell leukemia/lymphoma treatment, such as doxorubicin, cyclophosphamide, cytarabine, and cisplatin. Isogenic doxorubicin-resistant Jurkat and H9 cells were subsequently developed, which also presented with miR181a overexpression and cross-resistance to cyclophosphamide and cisplatin. Meanwhile, specific inhibition of miR181a enhanced Jurkat and H9 cell sensitivity to chemotherapeutic agents, further indicating that miR181a was involved in acquired chemoresistance. Collectively, miR181a functioned as a biomarker of T-cell leukemia/lymphoma through modulation of AKT pathway. Related to tumor cell chemoresistance, miR181a could be a potential therapeutic target in treating T-cell malignancies.

  13. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila

    Auer, Jasmin S.; Nagel, Anja C.; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-01-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H)MAPK-ko and a phospho-mimetic Su(H)MAPK-ac isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vgBE-lacZ). In general, Su(H)MAPK-ko induced a stronger response than wild-type Su(H), whereas the response to Su(H)MAPK-ac was very weak. Notch target genes cut, wingless and vgBE-lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DERact) or the MAPK (rlSEM) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones. PMID:26702412

  14. TNF-overexpression in Borna disease virus-infected mouse brains triggers inflammatory reaction and epileptic seizures.

    Katharina Kramer

    Full Text Available Proinflammatory state of the brain increases the risk for seizure development. Neonatal Borna disease virus (BDV-infection of mice with neuronal overexpression of tumor necrosis factor-α (TNF was used to investigate the complex relationship between enhanced cytokine levels, neurotropic virus infection and reaction pattern of brain cells focusing on its role for seizure induction. Viral antigen and glial markers were visualized by immunohistochemistry. Different levels of TNF in the CNS were provided by the use of heterozygous and homozygous TNF overexpressing mice. Transgenic TNF, total TNF (native and transgenic, TNF-receptor (TNFR1, TNFR2, IL-1 and N-methyl-D-aspartate (NMDA-receptor subunit 2B (NR2B mRNA values were measured by real time RT-PCR. BDV-infection of TNF-transgenic mice resulted in non-purulent meningoencephalitis accompanied by epileptic seizures with a higher frequency in homozygous animals. This correlated with lower weight gain, stronger degree and progression of encephalitis and early, strong microglia activation in the TNF-transgenic mice, most obviously in homozygous animals. Activation of astroglia could be more intense and associated with an unusual hypertrophy in the transgenic mice. BDV-antigen distribution and infectivity in the CNS was comparable in TNF-transgenic and wild-type animals. Transgenic TNF mRNA-expression was restricted to forebrain regions as the transgene construct comprised the promoter of NMDA-receptor subunit2B and induced up-regulation of native TNF mRNA. Total TNF mRNA levels did not increase significantly after BDV-infection in the brain of transgenic mice but TNFR1, TNFR2 and IL-1 mRNA values, mainly in the TNF overexpressing brain areas. NR2B mRNA levels were not influenced by transgene expression or BDV-infection. Neuronal TNF-overexpression combined with BDV-infection leads to cytokine up-regulation, CNS inflammation and glial cell activation and confirmed the presensitizing effect of elevated

  15. Driving gradual endogenous c-myc overexpression by flow-sorting: intracellular signaling and tumor cell phenotype correlate with oncogene expression

    Knudsen, Kasper Jermiin; Holm, G.M.N.; Krabbe, J.S.;

    2009-01-01

    Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c-myc overex...... alternative modeling of the receptor-mediated carcinogenic process, compared to the currently used approaches of recombinant constitutive or conditional overexpression of oncogenic transmembrane receptor tyrosine kinases or oncogenic transcription factors.......Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c...... exhibited overexpression of the IGF-1R, and slightly elevated expression of the IR. Increased susceptibility to the mitogenic effect of insulin was seen in a small proportion of the sorted cells, and insulin was more effective in activating the p44/42 MAPK pathway, but not the PI3K pathway, in the sorted...

  16. Analysis of striatal transcriptome in mice overexpressing human wild-type alpha-synuclein supports synaptic dysfunction and suggests mechanisms of neuroprotection for striatal neurons

    Cabeza-Arvelaiz Yofre

    2011-12-01

    Full Text Available Abstract Background Alpha synuclein (SNCA has been linked to neurodegenerative diseases (synucleinopathies that include Parkinson's disease (PD. Although the primary neurodegeneration in PD involves nigrostriatal dopaminergic neurons, more extensive yet regionally selective neurodegeneration is observed in other synucleinopathies. Furthermore, SNCA is ubiquitously expressed in neurons and numerous neuronal systems are dysfunctional in PD. Therefore it is of interest to understand how overexpression of SNCA affects neuronal function in regions not directly targeted for neurodegeneration in PD. Results The present study investigated the consequences of SNCA overexpression on cellular processes and functions in the striatum of mice overexpressing wild-type, human SNCA under the Thy1 promoter (Thy1-aSyn mice by transcriptome analysis. The analysis revealed alterations in multiple biological processes in the striatum of Thy1-aSyn mice, including synaptic plasticity, signaling, transcription, apoptosis, and neurogenesis. Conclusion The results support a key role for SNCA in synaptic function and revealed an apoptotic signature in Thy1-aSyn mice, which together with specific alterations of neuroprotective genes suggest the activation of adaptive compensatory mechanisms that may protect striatal neurons in conditions of neuronal overexpression of SNCA.

  17. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  18. Conditional overexpression of Stat3alpha in differentiating myeloid cells results in neutrophil expansion and induces a distinct, antiapoptotic and pro-oncogenic gene expression pattern.

    Redell, Michele S; Tsimelzon, Anna; Hilsenbeck, Susan G; Tweardy, David J

    2007-10-01

    Normal neutrophil development requires G-CSF signaling, which includes activation of Stat3. Studies of G-CSF-mediated Stat3 signaling in cell culture and transgenic mice have yielded conflicting data regarding the role of Stat3 in myelopoiesis. The specific functions of Stat3 remain unclear, in part, because two isoforms, Stat3alpha and Stat3beta, are expressed in myeloid cells. To understand the contribution of each Stat3 isoform to myelopoiesis, we conditionally overexpressed Stat3alpha or Stat3beta in the murine myeloid cell line 32Dcl3 (32D) and examined the consequences of overexpression on cell survival and differentiation. 32D cells induced to overexpress Stat3alpha, but not Stat3beta, generated a markedly higher number of neutrophils in response to G-CSF. This effect was a result of decreased apoptosis but not of increased proliferation. Comparison of gene expression profiles of G-CSF-stimulated, Stat3alpha-overexpressing 32D cells with those of cells with normal Stat3alpha expression revealed novel Stat3 gene targets, which may contribute to neutrophil expansion and improved survival, most notably Slc28a2, a purine nucleoside transporter, which is critical for maintenance of intracellular nucleotide levels and prevention of apoptosis, and Gpr65, an acid-sensing, G protein-coupled receptor with pro-oncogenic and antiapoptotic functions. PMID:17634277

  19. Structural and functional peculiarities of plasminogen activator inhibitor PAI-1

    Kondratuk A. S.

    2010-07-01

    Full Text Available PAI-1, an important component of the hemostasis system, is a specific inhibitor of both urokinase type and tissue type plasminogen activators. PAI-1 belongs to the serpin family. The interaction between somatomedin-like domain of vitronectin and PAI-1 leads to stabilization of the latter. PAI-1 latency transition is related to the conformational changes in the reactive central loop. The inhibitory mechanism of PAI-1 is in accordance with the classic scheme of serpin action. PAI-1 blocks the adhesion mediated by UPA and integrins, so this inhibitor plays an important role in adhesion process and angiogenesis. An altered PAI-1level is associated with the development of cardiovascular diseases, kidney fibrosis, diabetis, cancerogenesis.

  20. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco.

    Yao, Wenjing; Wang, Lei; Zhou, Boru; Wang, Shengji; Li, Renhua; Jiang, Tingbo

    2016-07-01

    Ethylene response factors (ERFs) belong to a large plant-specific transcription factor family, which play a significant role in plant development and stress responses. Poplar ERF76 gene, a member of ERF TF family, can be up-regulated in response to salt stress, osmotic stress, and ABA treatment. The ERF76 protein was confirmed to be targeted preferentially in the nucleus of onion cell by particle bombardment. In order to understand the functions of ERF76 gene in salt stress response, we conducted temporal and spatial expression analysis of ERF76 gene in poplar. Then the ERF76 cDNA fragment containing an ORF was cloned from di-haploid Populus simonii×P. nigra and transferred into tobacco (Nicotiana tobacum) genome by Agrobacterium-mediated leaf disc method. Under salt stress, transgenic tobacco over-expressing ERF76 gene showed a significant increase in seed germination rate, plant height, root length, and fresh weight, as well as in relative water content (RWC), superoxide dismutase (SOD) activity, peroxidase (POD) activity, and proline content, compared to control tobacco lines. In contrast, transgenic tobacco lines displayed a decrease in malondialdehyde (MDA) accumulation, relative electrical conductivity (REC) and reactive oxygen species (ROS) accumulation in response to salt stress, compared to control tobacco lines. Over all, the results indicated that ERF76 gene plays a critical role in salt tolerance in transgenic tobacco. PMID:27123829

  1. Vitamin D receptor overexpression in osteoblasts and osteocytes prevents bone loss during vitamin D-deficiency.

    Lam, Nga N; Triliana, Rahma; Sawyer, Rebecca K; Atkins, Gerald J; Morris, Howard A; O'Loughlin, Peter D; Anderson, Paul H

    2014-10-01

    There are several lines of evidence that demonstrate the ability of 1,25-dihydroxyvitamin D (1,25(OH)2D3), acting via the vitamin D receptor (VDR) to mediate negative or positive effects in bone. Transgenic over-expression of VDR in osteoblasts and osteocytes in a mouse model (OSVDR) has been previously shown to inhibit processes of bone resorption and enhance bone formation, under conditions of adequate calcium intake. While these findings suggest that vitamin D signalling in osteoblasts and osteocytes promotes bone mineral accrual, the vitamin D requirement for this action is not well understood. In this study, 4 week old female OSVDR and wild-type (WT) mice were fed either a vitamin D-replete (1000IU/kg diet, D+) or vitamin D-deficient (D-) diet for 4 months to observe changes to bone mineral homeostasis. Tibial bone mineral volume was analysed by micro-CT and changes to bone cell activities were measured using standard dynamic histomorphometric techniques. While vitamin D-deplete WT mice demonstrated a reduction in periosteal bone accrual and overall bone mineral volume, OSVDR mice, however, displayed increased cortical and cancellous bone volume in mice which remained higher during vitamin D-depletion due to a reduced osteoclast number and increased bone formation rate. These data suggest that increased VDR-mediated activity in osteoblast and osteocytes prevents bone loss due to vitamin D-deficiency. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. PMID:24434283

  2. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation

    2002-01-01

    To investigate whether the expression of exogenous heme oxygenase-1 (HO-l) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation,we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector.The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-l, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.

  3. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.

    Tesfaye, M; Temple, S J; Allan, D L; Vance, C P; Samac, D A

    2001-12-01

    Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity. PMID:11743127

  4. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity. PMID:26635848

  5. Transgenic mice overexpressing the beta 1-adrenergic receptor in adipose tissue are resistant to obesity.

    Soloveva, V; Graves, R A; Rasenick, M M; Spiegelman, B M; Ross, S R

    1997-01-01

    The ratio of alpha- to beta-receptors is thought to regulate the lipolytic index of adipose depots. To determine whether increasing the activity of the beta 1-adrenergic receptor (AR) in adipose tissue would affect the lipolytic rate or the development of this tissue, we used the enhancer-promoter region of the adipocyte lipid-binding protein (aP2) gene to direct expression of the human beta 1 AR cDNA to adipose tissue. Expression of the transgene was seen only in brown and white adipose tissue. Adipocytes from transgenic mice were more responsive to beta AR agonists than were adipocytes from nontransgenic mice, both in terms of cAMP production and lipolytic rates. Transgenic animals were partially resistant to diet-induced obesity. They had smaller adipose tissue depots than their nontransgenic littermates, reflecting decreased lipid accumulation in their adipocytes. In addition to increasing the lipolytic rate, overexpression of the beta 1 AR induced the abundant appearance of brown fat cells in subcutaneous white adipose tissue. These results demonstrate that the beta 1 AR is involved in both stimulation of lipolysis and the proliferation of brown fat cells in the context of the whole organism. Moreover, it appears that it is the overall beta AR activity, rather than the particular subtype, that controls these phenomena. PMID:8994185

  6. Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

    Caihong Zhou

    2013-02-01

    Full Text Available TTRAP is a multi-functional protein that is involved in multipleaspects of cellular functions including cell proliferation,apoptosis and the repair of DNA damage. Here, we demonstratedthat the lentivirus-mediated overexpression of TTRAPsignificantly inhibited cell growth and induced apoptosis inosteosarcoma cells. The ectopic TTRAP suppressed the growthand colony formation capacity of two osteosarcoma cell lines,U2OS and Saos-2. Cell apoptosis was induced in U2OS cellsand the cell cycle was arrested at G2/M phase in Saos-2 cells.Exogenous expression of TTRAP in serum-starved U2OS andSaos-2 cells induced an increase in caspase-3/-7 activity and adecrease in cyclin B1 expression. In comparison with wild-typeTTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesteraseactivity of TTRAP, in particular TTRAPE152A, showed decreasedinhibitory activity on cell growth. These results may aid inclarifying the physiological functions of TTRAP, especially itsroles in the regulation of cell growth and tumorigenesis. [BMBReports 2013; 46(2: 113-118

  7. Overexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus

    Venkatakrishna R Jala; V Prakash; N Appaji Rao; H S Savithri

    2002-06-01

    Serine hydroxymethyltransferase (SHMT), a pyridoxal-5′-phosphate (PLP) dependent enzyme catalyzes the interconversion of L-Ser and Gly using tetrahydrofolate as a substrate. The gene encoding for SHMT was amplified by PCR from genomic DNA of Bacillus stearothermophilus and the PCR product was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme was isolated as a mixture of dimer (90%) and tetramer (10%). This is the first report demonstrating the existence of SHMT as a dimer and tetramer in the same organism. The specific activities at 37°C of the dimeric and tetrameric forms were 6.7 U/mg and 4.1 U/mg, respectively. The purified dimer was extremely thermostable with a m of 85°C in the presence of PLP and L-Ser. The temperature optimum of the dimer was 80°C with a specific activity of 32.4 U/mg at this temperature. The enzyme catalyzed tetrahydrofolate-independent reactions at a slower rate compared to the tetrahydrofolate-dependent retro-aldol cleavage of L-Ser. The interaction with substrates and their analogues indicated that the orientation of PLP ring of B. stearothermophilus SHMT was probably different from sheep liver cytosolic recombinant SHMT (scSHMT).

  8. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  9. CA9 overexpression is an independent favorable prognostic marker in intrahepatic cholangiocarcinoma

    Gu, Mijin

    2015-01-01

    The aim of this study is to evaluate the expression of carbonic anhydrase IX (CA9) and to identify its prognostic significance in intrahepatic cholangiocarcinoma (IHCC). We performed immunohistochemistry (IHC) for CA9 in a total of 85 IHCCs. CA9 overexpression was observed in 38 of 85 (44.7%) IHCCs. CA9 overexpression was related to tumors with intraductal growth than mass forming or periductal infiltrative type. CA9 overexpression was more observed in tumors with well/moderate differentiation than poor differentiation and without lymph node metastasis. No significant correlation was observed in CA9 overexpression with tumor size, pT, stage and lymphovascular invasion. Intrahepatic cholangiocarcinomas with CA9 overexpression showed better overall survival than that without expression (P = 0.001). In multivariate analysis, lymph node metastasis (95% CI: 2.103 (1.167-3.791), P = 0.013) was an independent poor prognostic factor. IHCC with CA9 overexpression showed a 0.5-fold (95% confidence interval, 0.328-0.944) lower risk of death compared with those of no or weak expression. CA9 overexpression was related to histologic differentiation and an independent good prognostic factor. PMID:25755787

  10. LIM only 4 is overexpressed in late stage pancreas cancer

    Fujita Hayato

    2008-12-01

    Full Text Available Abstract Background LIM-only 4 (LMO4, a member of the LIM-only (LMO subfamily of LIM domain-containing transcription factors, was initially reported to have an oncogenic role in breast cancer. We hypothesized that LMO4 may be related to pancreatic carcinogenesis as it is in breast carcinogenesis. If so, this could result in a better understanding of tumorigenesis in pancreatic cancer. Methods We measured LMO4 mRNA levels in cultured cells, pancreatic bulk tissues and microdissected target cells (normal ductal cells; pancreatic intraepithelial neoplasia-1B [PanIN-1B] cells; PanIN-2 cells; invasive ductal carcinoma [IDC] cells; intraductal papillary-mucinous adenoma [IPMA] cells; IPM borderline [IPMB] cells; and invasive and non-invasive IPM carcinoma [IPMC] by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR. Results 9 of 14 pancreatic cancer cell lines expressed higher levels of LMO4 mRNA than did the human pancreatic ductal epithelial cell line (HPDE. In bulk tissue samples, expression of LMO4 was higher in pancreatic carcinoma than in intraductal papillary-mucinous neoplasm (IPMN or non-neoplastic pancreas (p LMO4 than did normal ductal epithelia or PanIN-1B cells (p p = 0.014. IPMC cells expressed significantly higher levels of LMO4 than did normal ductal epithelia (p p p = 0.003. Conclusion Pancreatic carcinomas (both IDC and IPMC expressed significantly higher levels of LMO4 mRNA than did normal ductal epithelia, PanIN-1B, PanIN-2, IPMA and IPMB. These results suggested that LMO4 is overexpressed at late stages in carcinogenesis of pancreatic cancer.