WorldWideScience

Sample records for activation vanadium alloy

  1. Manufacturing development of low activation vanadium alloys

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported

  2. Vanadium alloys: development strategy

    A strategy for the development of vanadium alloys for use in radiation environments is outlined. An attractive reference alloy (V-15Cr-5Ti) has been identified. The critical issues in developing vanadium base alloys are summarized

  3. Development of low activation vanadium alloys. Final report for period 1992-1994

    In the period 92-94 ECN carried out a task tilted 'Development of low activation alloys' in the frame of the European Fusion Technology Programme. The work included helium implantation, neutron irradiation and post-irradiation mechanical testing of eight vanadium alloys and three purities of vanadium. Helium and oxygen affect the mechanical properties. Helium injection followed by neutron irradiation has the most embrittling effect. Quantitative modelling of the alloy behaviour needs improvement to explain the observed phenomena. (orig.)

  4. Activation experiments on vanadium alloy NIFS-HEAT-2

    In the present study, activation analysis of impurities and evaluation of activation properties were performed on NIFS-HEAT-2 by DT neutron irradiation at FNS facility. Similar analysis and evaluation were performed on US and Chinese V-4Cr-Ti samples for comparison. For impurity analysis and direct evaluation of activation properties of vanadium alloys, activation experiments with DT neutron irradiations were performed on NIFS-HEAT-2 and Round-Robin samples from the US and China. Eight nuclides of 24Na, 28Al, 54Mn, 56Mn, 57Co, 58Co, 89Zr and 92mNb were identified form analysis of the gamma peaks and concentrations of Al, Si, Mn, Fe, Ni, Co, Zr, Nb and Mo were evaluated. It was confirmed that the concentration of Al in NIFS-HEAT-2, which is harmful for low activation property, was lower than the criteria required for recycling of used material after reactor shutdown. The results were almost consistent with those by chemical analysis. Until ∼8 months after irradiation, significant influence of impurities was not observed in the decay heat measurement. Results of decay heat measurement with the Whole Energy Absorption Spectrometer and those of calculation with MNCP-4C, ACT-4 and JENDL Activation File were consistent within ∼ 15%. Activation calculation considering impurity concentrations from the present analysis indicated that decay heat of 60Co transmuted from Ni impurity will be dominant ∼6 years after irradiation. (author)

  5. ATR-A1 irradiation experiment on vanadium alloys and low activation steels

    Tasi, H.; Strain, R.V.; Gomes, I.; Hins, A.G.; Smith, D.L.

    1996-04-01

    To study the mechanical properties of vanadium alloys under neutron irradiation at low temperatures, an experiment was designed and constructed for irradiation in the Advanced Test Reactor (ATR). The experiment contained Charpy, tensile, compact tension, TEM, and creep specimens of vanadium alloys. It also contained limited low-activation ferritic steel specimens as part of the collaborative agreement with Monbusho of Japan. The design irradiation temperatures for the vanadium alloy specimens in the experiment are {approx}200 and 300{degrees}C, achieved with passive gap-gap sizing and fill gas blending. To mitigate vanadium-to-chromium transmutation from the thermal neutron flux, the test specimens are contained inside gadolinium flux filters. All specimens are lithium-bonded. The irradiation started in Cycle 108A (December 3, 1995) and is expected to have a duration of three ATR cycles and a peak influence of 4.4 dpa.

  6. Low Activation Vanadium Alloys for Fusion Power Reactors - the RF Results

    Full text: The Results of development and researches of functional properties of low activation vanadium alloys (V-Ti-Cr and V-Cr-W-Zr-C systems) being developed for the cores of nuclear fusion and fission (Gen-IV, space) power reactors are presented. Scientific and technological problems of the investigations are related with enhancement of functional properties based on: 1. Special optimized thermal (TT), thermomechanical (TMT) and thermochemical (TCT) treatments of V-4Ti-4Cr alloys. 2. Development of new (V-Cr-W-Zr-C system) vanadium alloys. The TMT and TCT regimes ensuring the capability of significant (up to 2 times) enhancement of yield strength in the temperature range up to 800°C keeping relatively high plasticity reserve have been found for alloys. The results of the theoretical, modeling and simulating studies of characteristics of self-point defects and dislocations, their interactions and mobility are presented. Nuclear physics characteristics (primary radiation damage, activation, transmutation, postreactor cooling) of alloys irradiated for a long time in neutron spectra of the fusion reactor DEMO-RF (15.3 dpa/year) and fast power reactor BN-600 (80 dpa/year) are calculated. The interaction characteristics of V-4Ti-4Cr alloy with hydrogen and the influence of hydrogen on mechanical properties of the alloy (impact toughness, internal friction) have been studied. Obtained results allows one to recommend the vanadium alloys for applications in nuclear reactors at operating temperature window 300 - 800(850)°C. The planes of high-dose and high- temperature reactor tests of vanadium alloys are scheduled at material science assemblies of reactor BN-600 (2013 - 2015, doses 50 - 200 dpa, irradiation temperatures 400 - 800°C). (author)

  7. Development of manufacturing technology for high purity low activation vanadium alloys

    Vanadium alloys are promising candidate low activation materials for structural components of fusion reactors. Establishment of industrial infrastructure is, however, remaining to be a critical issue because of lack of other large scale commercial applications. In the present study, technologies for large scale manufacturing of high purity V-4Cr-4Ti alloy were developed by improving the present commercial production processes of vanadium metal, and optimizing alloying, plating, sheeting and wiring techniques. Efforts were focused on reducing carbon, nitrogen and oxygen impurities, which are known to deteriorate workability, weldability and radiation resistance of vanadium alloys. Especially, improvements were made in atmospheric control during calcination, aluminothermic reduction, vacuum arc remelting, and hot forging and rolling. A medium size (30kg) high purity V-4Cr-4Ti ingot was produced and designated as NIFS-HEAT-1. The specimens produced out of the ingot are being submitted to Round-robin tests by Japanese universities. Two larger ingots of 166kg in total weight were produced recently (NIFS-HEAT-2(A) and (B)). By these efforts, technology for fabricating large V-4Cr-4Ti alloy products with <100ppm C, ∼100ppm N and 100∼200ppm O was demonstrated. (author)

  8. A zero-waste option: recycling and clearance of activated vanadium alloys

    The reduction of long-term radioactivity is analysed here in V-Cr-Ti alloys, one of the proposed structural materials for fusion power plants. In particular is explored the possibility of recycling within the nuclear industry and of clearance, that is declassification to non-active material. Vanadium alloys have the potential to reach the dose rate hands-on recycling limit when used in a blanket, if noxious radioactive products coming from impurities activation are eliminated. Clearance is also possible in principle, but only if further separation of activation products of titanium is carried out after service

  9. A zero-waste option: Recycling and clearance of activated vanadium alloys

    The reduction of long-term radioactivity is analysed here in V-Cr-Ti alloys, one of the proposed structural materials for fusion power reactors. In particular, it is explored the possibility of recycling within the nuclear industry or clearance, that is declassification to non-active material. Vanadium alloys have the potential to reach the dose rate hands-on recycling limit when used in a blanket, if noxious radioactive products coming from impurities activation are eliminated. Clearance is possible in principle too, however only if a further separation of activation products of titanium is done after service. (author)

  10. Status of ATR-A1 irradiation experiment on vanadium alloys and low-activation steels

    Tsai, H.; Strain, R.V.; Gomes, I.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1996-10-01

    The ATR-A1 irradiation experiment was a collaborative U.S./Japan effort to study at low temperature the effects of neutron damage on vanadium alloys. The experiment also contained a limited quantity of low-activation ferritic steel specimens from Japan as part of the collaboration agreement. The irradiation started in the Advanced Test Reactor (ATR) on November 30, 1995, and ended as planned on May 5, 1996. Total exposure was 132.9 effective full power days (EFPDs) and estimated neutron damage in the vanadium was 4.7 dpa. The vehicle has been discharged from the ATR core and is scheduled to be disassembled in the next reporting period.

  11. Activation and clearance of vanadium alloys and beryllium multipliers in fusion reactors

    Bartenev, S.A. [V.G. Khlopin Radium Institute, 2nd Murinskij Prospect 28, 194021 St. Petersburg (Russian Federation); Ciampichetti, A. [EURATOM/ENEA Fusion Association, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Firsin, N.G. [V.G. Khlopin Radium Institute, 2nd Murinskij Prospect 28, 194021 St. Petersburg (Russian Federation); Forrest, R. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Kolbasov, B.N. [Nuclear Fusion Institute, Russian Research Centre ' Kurchatov Institute' , pl. Kurchatova 1, 123182 Moscow (Russian Federation); Romanov, P.V. [Federal Agency for Atomic Energy, Bolshaya Ordynka 24-26, 109017 Moscow (Russian Federation); Romanovskij, V.N. [V.G. Khlopin Radium Institute, 2nd Murinskij Prospect 28, 194021 St. Petersburg (Russian Federation); Zucchetti, M. [EURATOM/ENEA Fusion Association, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)], E-mail: zucchetti@polito.it

    2007-10-15

    The possibility of clearance of vanadium-chromium-titanium (V-Cr-Ti) alloys is analysed. These alloys after their service in fusion power plants, have the potential to reach clearance if they are purified from activation products. The extraction part of the technological scheme for radiochemical separation of components of irradiated V-Cr-Ti alloy and their purification from metallic activation products, developed earlier, was tested for the first time in laboratory conditions using activated alloy specimens. The replacement of the acid reextraction of V with peroxide and of acid reextraction of Cr with alkaline improved characteristics of the extraction reprocessing. Duration of the V and Cr reextraction was shortened by about an order of magnitude, the output of these alloy components was increased, V purification from rare-earth metals became two times as great, and Cr decontamination from Co increased by two orders of magnitude. Activation of Be contaminated with trace quantities of uranium is an issue: estimation of Be activation in the blanket of the Power Plant Conceptual Study (PPCS) has suggested that traces of U impurity in Be should be removed - or substantially reduced - prior to use.

  12. Hydrogen embrittlement of vanadium alloys

    The mechanical properties of several vanadium alloys were measured with the hydrogen concentration high up to 113 mg/kg. The results showed that the alloys with low mechanical strength had better properties against hydrogen embrittlement. Oxygen in the alloy, especially that in the alloys with high strength, could enhance the hydrogen embrittlement. Mechanism analysis was given to show that the brittle fracture was mainly caused by intergranular failure. The effects of oxygen concentration and the strength of the alloy were both resulted from their contributions to the grain strength and the grain boundary strength

  13. Oxygen diffusion in vanadium-based alloys

    The experimental study of transport and equilibrium properties of oxygen in vanadium-based alloys was made by EMF measurements on solid electrolytic cells over the temperature range of 873 to 14230K. The oxygen diffusion in vanadium was not significantly modified by small additions of Ti, Cr, Ni, Nb and Ta. The increase in the activation energy for oxygen diffusion in the V-based alloys containing Cr, Ni, Nb and Ta probably reflects the effect of these substitutional solutes on the activity coefficient of oxygen. The oxygen activity was increased by the addition of 1 at % of Cr, Ni and Nb, and decreased by the addition of Ti and Ta. However, the effects in the alloys containing Nb and Ta are very small

  14. Chemistry related to the procurement of vanadium alloys

    Smith, H.M.; Chung H.M.; Tsai, H.C. [Argonne National Lab., IL (United States)

    1997-08-01

    Evaluation of trace element concentrations in vanadium alloys is important to characterize the low-activation characteristics and possible effects of trace elements on the properties. Detailed chemical analysis of several vanadium and vanadium alloy heats procured for the Argonne vanadium alloy development program were analyzed by Johnson-Matthey (UK) as part of a joint activity to evaluate trace element effects on the performance characteristics. These heats were produced by normal production practices for high grade vanadium. The analyses include approximately 60 elements analyzed in most cases by glow-discharge mass spectrometry. Values for molybdenum and niobium, which are critical for low-activation alloys, ranged from 0.4 to 60 wppm for the nine heats.

  15. Development of fabrication technology for low activation vanadium alloys as fusion blanket structural materials

    High purity vanadium alloy products, such as plates, wires and tubes, were fabricated from reference high-purity V-4Cr-4Ti ingots designated as NIFS-HEAT, by using technologies applicable to industrial scale fabrication. Impurity behavior during breakdown, and its effect on mechanical properties were investigated. It was revealed that mechanical properties of the products were significantly improved by the control of Ti-C, N, O precipitation induced during the processes. (author)

  16. Recycling of vanadium alloys in fusion reactors

    The feasibility of reprocessing a vanadium alloy after its use as a structural material in a fusion reactor, in order to enable its subsequent hands-on recycling within the nuclear industry, has been determined. For less neutron-exposed components, clearance of materials has also been considered. A conceptual model for the radiochemical processing of the alloy has been developed and tested experimentally. Using di-2-ethyl-hexyl-phosphoric acid it is possible to purify the components of the V-Cr-Ti alloy after its exposure in a fusion reactor down to the required level of activation product concentrations

  17. Impact property of low-activation vanadium alloy after laser welding and heavy neutron irradiation

    Nagasaka, Takuya, E-mail: nagasaka@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu (Japan); The Graduate University for Advanced Studies, Toki, Gifu (Japan); Muroga, Takeo [National Institute for Fusion Science, Toki, Gifu (Japan); The Graduate University for Advanced Studies, Toki, Gifu (Japan); Watanabe, Hideo [Research Institute for Applied Mechanics, Kyushu University, Kasuga (Japan); Miyazawa, Takeshi [The Graduate University for Advanced Studies, Toki, Gifu (Japan); Yamazaki, Masanori [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki (Japan); Shinozaki, Kenji [Department of Mechanical System Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima (Japan)

    2013-11-15

    Weld specimens of the reference low activation vanadium alloy, NIFS-HEAT-2, were irradiated up to a neutron fluence of 1.5 × 10{sup 25} n m{sup −2} (E > 0.1 MeV) (1.2 dpa) at 670 K and 1.3 × 10{sup 26} n m{sup −2} (5.3 dpa) at 720 K in the JOYO reactor in Japan. The base metal exhibited superior irradiation resistance with the ductile-to-brittle transition temperature (DBTT) much lower than room temperature (RT) for both irradiation conditions. The weld metal kept the DBTT below RT after the 1.2 dpa irradiation; however, it showed enhanced irradiation embrittlement with much higher DBTT than RT after the 5.3 dpa irradiation. The high DBTT for the weld metal was effectively recovered by a post-irradiation annealing at 873 K for 1 h. Mechanisms of the irradiation embrittlement and its recovery are discussed, based on characterization of the radiation defects and irradiation-induced precipitation.

  18. Dynamics of data flows on the low-activated vanadium alloy for thermonuclear power engineering (analysis of four international data bases)

    The paper presents the results of scientometric analysis of data flows in the International Data Bases SCOPUS, INSPEC, INIS, MSCI over a period since 1971 to 2014 on low-activated vanadium alloys suitable for operation as structural materials under extremely hard conditions in the future fusion reactors. The data on the dynamics of publications and contributions in them from the scientists of different countries have been obtained. The types and languages of publications have been identified. The analysis shows that investigations on the low-activated vanadium alloys are of current importance

  19. Thermodynamics of oxygen in solid solution in vanadium and niobium--vanadium alloys

    A thermodynamic study was made of the vanadium-oxygen and niobium-vanadium-oxygen systems utilizing the solid state galvanic cell technique. Investigations were made with a ThO2/Y2O3 electrolyte over the temperature ranges 700 to 12000C (973 to 1473 K) for the binary system and 650 to 11500C (923 to 1423 K) for the ternary system. The activity of oxygen in vanadium obeys Henry's law for the temperatures of this investigation for concentrations up to 3.2 at. percent oxygen. For higher concentrations the activity coefficient shows positive deviations from Henry's law. The terminal solubility of oxygen in vanadium was determined. The activity of oxygen in Nb--V alloys obeys Henry's law for the temperatures of this study for oxygen concentrations less than approximately 2 at. percent. For certain Nb/V ratios Henry's law is obeyed for concentrations as high as 6.5 at. percent oxygen. First order entropy and enthalpy interaction coefficients have been determined to describe the effect on the oxygen activity of niobium additions to vanadium-rich alloys with dilute oxygen concentrations. Niobium causes relatively small decreases in the oxygen activity of V-rich alloys and increases the oxygen solubility limit. Vanadium additions to Nb-rich alloys also increases the oxygen solubility and causes substantial decreases in the dilute solution oxygen activities. The change in the thermodynamic properties when molecular oxygen dissolves in vanadium and niobium--vanadium alloys and the equilibrium oxygen pressure over the binary and ternary systems were also determined

  20. Characterization for Fusion Candidate Vanadium Alloys

    T. Muroga; T. Nagasaka; J. M. Chen; Z. Y. Xu; Q. Y. Huang; y. C. Wu

    2004-01-01

    This paper summarizes recent achievements in the characterization of candidate vanadium alloys obtained for fusion in the framework of the Japan-China Core University Program.National Institute for Fusion Science (NIFS) has a program of fabricating high-purity V-4Cr4Ti alloys. The resulting products (NIFS-HEAT-1,2), were characterized by various research groups in the world including Chinese partners. South Western Institute of Physics (SWIP) fabricated a new V-4Cr-4Ti alloy (SWIP-Heat), and carried out a comparative evaluation of hydrogen embrittlement of NIFS-HEATs and SWIP-Heat. The tensile test of hydrogen-doped alloys showed that the NIFS-HEAT maintained the ductility to relatively high hydrogen levels.The comparison of the data with those of previous studies suggested that the reduced oxygen level in the NIFS-HEATs should be responsible for the increased resistance to hydrogen embrittlement.Based on the chemical analysis data of NIFS-HEATs and SWIP-Heats, neutron-induced activation was analyzed in Institute of Plasma Physics (IPP-CAS) as a function of cooling time after the use in the fusion first wall. The results showed that the low level of Co dominates the activity up to 50 years followed by a domination of Nb or Nb and Al in the respective alloys. It was suggested that reduction of Co and Nb, both of which are thought to have been introduced via cross-contamination into the alloys from the molds used should be crucial for reducing further the activation.

  1. Irradiation creep of vanadium-base alloys

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  2. Vanadium

    ÇEVİK, Sabri

    2014-01-01

    Vanadium corrosion and oxidation resistant transition metal exhibits common oxidation states ranging from +2 to +5. Vanadium and vanadium compounds are used in production of nonferrous alloy steel, semiconductors, and photographic developing materials. Many vanadium compounds act as catalyst in many industrial process like production of sulfuric acid and many organic compounds. Foods are main source for humans and animals. VO31− ions predominate in extracellular body fluids whereas VO2+ ions ...

  3. Recent progress on gas tungsten arc welding of vanadium alloys

    This is a progress report on a continuing research project to acquire a fundamental understanding of the metallurgical processes in the welding of vanadium alloys. It also has the goal of developing techniques for welding structural vanadium alloys. The alloy V-4Cr-4Ti is used as a representative alloy of the group; it is also the prime candidate vanadium alloy for the U.S. Fusion Program at the present time. However, other alloys of this class were used in the research as necessary. The present work focuses on recent findings of hydrogen embrittlement found in vanadium alloy welds. It was concluded that the atmosphere in the inert gas glove box was insufficient for welding 6mm thick vanadium alloy plates

  4. Corrosion behavior of vanadium alloys in flowing lithium

    Corrosion data are presented for several vanadium alloys exposed to flowing lithium at 427, 482 and 5380C. The corrosion behavior was evaluated by measuring weight change. Metallographic results and data on the nonmetallic element transfer in lithium-exposed specimens are also presented. The influence of alloy composition and exposure conditions on the corrosion behavior of vanadium alloys is discussed. (orig.)

  5. Activity of hydrogen in metal-hydrogen systems: strontium, thorium-nitrogen, and vanadium alloys

    The dissolution of H gas has been studied using pressure-composition isotherms in Sr, Th-N and V alloys containing either Nb, Cr or Ti. Direct H equilibrium vapor pressure measurements were performed in the Sr-H and Th-N-H systems at 973 to 11730K and 623 to 11230K, respectively. Isopiestic solubility was used to measure the H equilibrium pressures for the V alloys at 223 to 4730K. In all the alloys studied, the reaction of hydrogen with the metal phase was exothermic and hydrogen followed Sieverts' law over a considerable range of hydrogen concentration. The enthalpy of solution of H in the Sr and the enthalpy of formation of ThNH/sub x/ are -14.3 +- 1.2 kcal;/mol H and -16.3 +- 1.5 kcal/mol H2, respectively. Enthalpies of solution of H for the V alloys ranged from -8.0 to -10.5 +- 0.3 kcal/mol H. Additions of T to V dramatically enhanced the isopiestic solubility of H, Cr significantly reduced the solubility and Nb moderately increased the solubility. Sieverts' law behavior for H in the V alloys showed that substitutional atoms did not act as deep traps for H

  6. Vanadium alloys - overview and recent results

    Muroga, T.; Nagasaka, T.; Abe, K.; Chernov, V. M.; Matsui, H.; Smith, D. L.; Xu, Z.-Y.; Zinkle, S. J.

    2002-12-01

    This paper reviews recent progress in research on vanadium alloys with emphasis on V-4Cr-4Ti as a reference composition. New high purity V-4Cr-4Ti ingots and products (NIFS-HEATs) were made. The improved purity of the alloys made a practical demonstration of enhanced feasibility of recycling as a method of handling after use in fusion reactors. Significant progress has been made in the understanding of physical metallurgy of V-4Cr-4Ti and effects of O, N and C on the alloy properties such as low and high temperature mechanical properties, welding properties and low temperature irradiation effects, by means of including the comparison of various large heats and model alloys with different impurity levels. The effects of other trace impurities on some of the properties are also discussed. Other current efforts to characterize V-4Cr-4Ti, to improve its properties and to explore advanced vanadium alloys are reviewed. Issues remaining for the future investigations are discussed.

  7. Vanadium-base alloys for fusion reactor applications

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  8. Vanadium

    Although a relatively abundant element, vanadium occurs only rarely in sufficient concentration to be worked commercially. In most cases, vanadium is produced as a co-product of some other element, most commonly iron. The principal ore deposits of vanadium occur in titaniferous magnetites that have been formed by magnetic segregation. Important commercial deposits of vanadium also occur associated with uranium, and with phosphate deposits. The principal uses of vanadium are in the production of special purpose, particularly high-strength low-alloy steels, in the manufacture of titanium alloys, and as a catalyst, notably in the manufacture of sulphuric acid. Small quantities of vanadium, often in combination with niobium, are added to steel to bring about toughening through grain refinement, and increased tensile strength through precipitation hardening. Known world reserves of vanadium are very large and fully adequate to meet any foreseeable demand. By far the largest known deposits of vanadium occur in South Africa. Many other similar deposits are known, but are only exploited in the USSR and China. The present total world demand for vanadium amounts to about 40 000 tons of metal annually and this is produced primarily in four countries, South Africa, the USSR, the People's Republic of China and the United States of America, in that order. South Africa is the principal vanadium producing country in the world, supplying vanadium in various forms. Vanadium has a very low and non-accumulative toxicity; recovery plants can be operated in such a manner to ensure no air or steam pollution results

  9. Development of briquettes for steel semidirect alloying with vanadium

    Based on ferrovanadium type FS40Vd and vanadium-containing containing converter slag the briquettes for alloying steels type 20-60 KhN with vanadium were developed and commercially used. Component content ratios and desired granulometric composition which allow to recover 89-94 % V from a converter slag are determined. The master alloy with silicon concentration ranged within 45-50 % is considered to be optimum, bearing in mind the melting temperature, the density of initial and final alloys, aluminium consumption and vanadium yield from briquettes. 7 refs.; 3 figs.; 4 tabs

  10. Semidirect alloying of steel with vanadium-containing exothermic briquettes

    Exothermic vanadium-containing briquettes are designed and tested in practice. Briquettes allow introducing up to 0.15% V into the steel, vanadium recovery from converter slag being reached 94%. Ladle steel alloying by the briquettes decreases cost by 2-4% and aluminium consumption by a factor of 1.5. The briquettes consist of converter slag (15,54-19,65%V2O5), master alloy (6.18-6.95%V), aluminium and dolomite. 1 ref

  11. Research and development on vanadium alloys for fusion applications

    Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States); Matsui, H.; Abe, K. [Tohoku Univ. (Japan); Smith, D.L. [Argonne National Lab., IL (United States); Osch, E. van [NERF, Petten (Netherlands); Kazakov, V.A. [RIAR, Dimitrovgrad (Russian Federation)

    1998-03-01

    The current status of research and development on unirradiated and irradiated V-Cr-Ti alloys intended for fusion reactor structural applications is reviewed, with particular emphasis on the flow and fracture behavior of neutron-irradiated vanadium alloys. Recent progress on fabrication, joining, oxidation behavior, and the development of insulator coatings is also summarized. Fabrication of large (>500 kg) heats of V-4Cr-4Ti with properties similar to previous small laboratory heats has now been demonstrated. Impressive advances in the joining of thick sections of vanadium alloys using GTA and electron beam welds have been achieved in the past two years, although further improvements are still needed.

  12. Determination of vanadium in double alloys by complete differential spectrophotometry

    A differential method to determine vanadium in the binary alloys (V-Cr, V-Al, V-Re) is described. The method is based on the formation of different-ligand vanadium complexes with o-nitrophenylfluorone and diantipyrylmethane. The complex is formed in pH range from 2.0 to 2.5 and extracted by the mixture of 93 vol.% chloroform and 7 vol.% amyl alcohol. Accidental and systematic errors of determination are calculated

  13. Thermodynamics of oxygen in solid solution in vanadium and niobium--vanadium alloys

    A thermodynamic study has been made of the vanadium--oxygen and niobium--vanadium--oxygen systems utilizing the solid state galvanic cell technique. Investigations were made with a ThO2/Y2O3 electrolyte over the temperature ranges 700 to 12000C (973 to 1473 K) for the binary system and 650 to 11500C (923 to 1423 K) for the ternary system. The activity of oxygen in vanadium obeys Henry's law for the temperatures of this investigation for concentrations up to 3.2 at.% oxygen. For higher concentrations the activity coefficient shows positive deviations from Henry's law. The oxygen activity, entropy, and enthalpy can be described over the entire composition range by interstitial solution theories when it is assumed that second nearest neighbor oxygen--oxygen interaction energies are of the same magnitude as the first nearest neighbor interactions. The terminal solubility of oxygen in vanadium was determined

  14. U.S. Contribution 1994 Summary Report Task T12: Compatibility and irradiation testing of vanadium alloys

    Vanadium alloys exhibit important advantages as a candidate structural material for fusion first wall/blanket applications. These advantages include fabricability, favorable safety and environmental features, high temperature and high wall load capability, and long lifetime under irradiation. Vanadium alloys with (3-5)% chromium and (3-5)% titanium appear to offer the best combination of properties for first wall/blanket applications. A V-4Cr-4Ti alloy is recommended as the reference composition for the ITER application. This report provides a summary of the R ampersand D conducted during 1994 in support of the ITER Engineering Design Activity. Progress is reported for Vanadium Alloy Production, Welding, Physical Properties, Baseline Mechanical Properties, Corrosion/Compatibility, Neutron Irradiation Effects, Helium Transmutation Effects on Irradiated Alloys, and the Status of Irradiation Experiments. Separate abstracts have been prepared for individual reports from this publication

  15. Development of high purity vanadium alloys for fusion reactors

    Vanadium alloys are most attractive candidate materials for liquid Li self-cooled blanket system of fusion reactors. This paper summarizes the program and its activities of the NIFS (National Institute for Fusion Science), Japan for developments of high purity V-4Cr-4Ti alloys. The results from NIFS-Heats show various benefits by reducing the level of oxygen. Significant improvement of the impact properties of the welded joint by reducing oxygen level is one of examples in recent studies. Collaboration is in progress, in which those heats are being characterized by a number of research groups including Japanese universities, and international collaboration partners in the US, Russia and China. The impact tests of irradiated specimens are in progress for further investigation. Significant progress has been made recently on the insulator ceramic coating in static conditions in the Japan-USA Cooperation Program. The understanding on the condition of in-situ CaO coating in liquid Li was enhanced. Based on these achievements, a flowing loop test is being planned to investigate the effects of temperature gradient and Li chemistry. (Y. Tanaka)

  16. Development of low activation vanadium steel for fusion applications

    Proposed fusion reactors may enjoy significant advantages regarding public safety and waste disposal over current fission reactors. Neutron activation to the structural materials can be minimized by the appropriate choice of alloys. Unfortunately, commercially developed alloys for high temperature applications become activated with neutron absorption leading to sometimes very long decay chains. The present paper discusses the results of a new ''low activation'' ferritic alloy (UCVS-1) developed at UCLA. This new alloy, which contains vanadium instead of molybdenum for high temperature strength, shows very promising combinations of strength, ductility and low long-term radioactive products. It is shown in this paper that the strength and ductility of UCVS-1 are comparable to 2 1/4 Cr-1 Mo up to 4000C, achieving significant advantages regarding safety and radioactive waste disposal

  17. Sputtered Clusters from Niobium-Vanadium Alloys

    Schou, Jørgen; Hofer, W. O.

    1982-01-01

    A series of Nb&z.sbnd;V alloys have been irradiated by 6 keV argon ions. Homonuclear and heteronuclear clusters emitted from these alloys have been studied by means of post-ionization and/or secondary ion mass spectrometry. The intensity of clusters of atomic masses up to approximately 300 amu wa...

  18. Vanadium-lithium in-pile loop for comprehensive tests of vanadium alloys and multipurpose coatings

    The reliable information on design and material properties of self-cooled Li-Li blanket and liquid metal divertor under neutron radiation conditions can be obtained using the concept of combined technological and material in-pile tests in a vanadium-lithium loop. The method of in-pile loop tests includes studies of vanadium-base alloys resistance, weld resistance under mechanical stress, multipurpose coating formation processes and coatings' resistance under the following conditions: high temperature (600-700 C), lithium velocities up to 10 m/s, lithium with controlled concentration of impurities and technological additions, a neutron load of 0.4-0.5 MW/m2 and level of irradiation doses up to 5 dpa. The design of such an in-pile loop is considered. The experimental data on corrosion and compatibility with lithium, mechanical properties and welding technology of the vanadium alloys, methods of coatings formation and its radiation tests in lithium environment in the BOR-60 reactor (fast neutron fluence up to 1026 m-2, irradiation temperature range of 500-523 C) are presented and analyzed as a basis for such loop development. (orig.)

  19. Sputtered Clusters from Niobium-Vanadium Alloys

    Schou, Jørgen; Hofer, W. O.

    1982-01-01

    A series of Nb&z.sbnd;V alloys have been irradiated by 6 keV argon ions. Homonuclear and heteronuclear clusters emitted from these alloys have been studied by means of post-ionization and/or secondary ion mass spectrometry. The intensity of clusters of atomic masses up to approximately 300 amu was...... related to the concentrations of Nb and V in the alloys. In addition, the behaviour of polyatomic cluster yields as a function of partial oxygen pressure was studied. At partial pressures larger than approximately 10 6Torr, the yields decreased with increasing partial pressures. By inclusion of the post...

  20. Delayed failure of vanadium-hydrogen alloys

    Group Va refractory metals (Ta, V and Nb) are known to be embrittled in tension by hydrogen at low temperatures, but no work has been reported on delayed failure. The high mobility of hydrogen in V at room temperature, up to 5 x 10-5 cm2/sec, would be expected to enhance hydrogen migration to regions of high stress and affect time-dependent fracture behaviour. The present work was performed to determine the role of hydrogen, in solution and/or as a hydride, in the room temperature delayed failure behaviour of vanadium. Specimens were dead-weight loaded at room temperature in a creep-rupture testing machine; time to rupture was determined as a function of stress intensity, which was calculated by standard ASTM methods for a double edge notched sheet. Results are reported and discussed. (author)

  1. Mechanical alloying process of vanadium powder with 1.7 wt.%Y addition

    Alloying process of vanadium-yttrium powders using mechanical alloying (MA) method was studied. Vanadium powder was compressed after 10 h MA, while yttrium powder was comminuted into small particles. Although yttrium powder was broken into small particles, yttrium scarcely dissolves into vanadium powder. Alloying of yttrium started after 20 h MA and finished after 40 h MA. Molybdenum particle, which came from milling vessels and balls, mixed into vanadium powder after 40 h MA and molybdenum started to dissolve into vanadium powder after 60 h MA. After 80 h MA, Y2O3 particles formed in vanadium powder. Oxygen required for the formation of Y2O3 particles was probably discharged from the vessel wall and balls after flaking of those surface layers. Since prolonged MA caused powder contamination, optimum MA time for making V-1.7Y alloy was 40 h.

  2. Activation analysis for different structural alloys considered for ITER

    Activation calculations have been made for the austentic steel 316SS, the ferritic alloy HT-9, the titanium alloy Ti6A14V, and the vanadium alloy V5Cr5Ti in a liquid metal (Na) design suggested recently for ITER. The calculations show that the vanadium alloy has the minimum short and long-term radioactivity and BHP. It also has the minimum decay heat at all the time. The titanium alloy has less radioactivity than the austenitic and this ferritic alloys. However, the decay heat of this alloy could exceed that of the conventional alloys

  3. Activation analyses for different fusion structural alloys

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m2 respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs

  4. Development of vanadium base alloys for fusion first-wall/blanket applications

    Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications

  5. Development of laser welding techniques for vanadium alloys

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-04-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Lasers do not require a vacuum (as do electron beam welders) and the welds they produce high depth-to-width ratios. Scoping with a small pulsed 50 J YAG laser indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1 mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Following the initial scoping tests, a series of tests were preformed with a 6 kW continuous CO{sub 2} laser. Successful bead-on-plate welds were made on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys to depths of about 4 mm with this laser.

  6. Tensile properties of vanadium alloys irradiated at <430 degrees C

    Recent attention to vanadium alloys has focused on significant susceptibility to loss of work-hardening capability in irradiation experiments at <430 degrees C. An evaluation of this phenomenon was conducted on V-Ti, V-Cr-Ti, and V-Ti-Si alloys irradiated in several conventional and helium-charging irradiation experiments in the FFTF-MOTA, HFIR, and EBR-II. Work hardening capability and uniform tensile elongation appear to vary strongly from alloy and heat to heat. A strong heat-to-heat variation has been observed in V-4Cr-4Ti alloys tested, i.e., a 500-kg heat (No. 832665), a 100-kg heat (VX-8), and a 30-kg heat (BL-47). The significant differences in susceptibility to loss of work-hardening capability from one heat to another are estimated to correspond to a difference of ∼100 degrees C or more in minimum allowable operating temperature (e.g., 450 versus 350 degrees C)

  7. Disassembly of irradiated lithium-bonded capsules containing vanadium alloy specimens

    Tsai, H.; Strain, R.V.

    1996-04-01

    Capsules containing vanadium alloy specimens from irradiation experiments in FFTF and EBR-II are being processed to remove the lithium bond and retrieve the specimens for testing. The work has progressed smoothly.

  8. Microstructure and mechanical properties of vanadium alloys after thermomechanical treatments

    The results of investigation of dispersion strengthening effect on parameters of structural-phase states and characteristics of short-term strength and ductility of vanadium alloys of V–4Ti–4Cr, V–2.4Zr–0.25C, V–1.2Zr–8.8Cr and V–1.7Zr–4.2Cr–7.6W systems with different concentration of interstitial elements after optimized thermomechanical treatment mode were summarized. It was shown that for effective realization of dispersion strengthening by Orowan-type mechanism at least 25–50% of the initial volume fraction of coarse particles should be transformed into fine-disperse state and redistributed over the volume of material

  9. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  10. Technical assessment of vanadium-base alloys for fusion reactor applications. Volume I. Assessment of data base, needs and recommendations. Final report

    A technical assessment of vanadium and vanadium-base alloys for fusion reactor applications has been carried out. The major objective of this assessment was the development of an informed basis of understanding of the chemical, mechanical, and irradiation response characteristics of vanadium alloys. Efforts were focused on several separate, but interrelated, program tasks. First, a detailed review and analysis of the pertinent technical literature was carried out. Properties which were emphasized were those believed to be most important to making judgments of the viability of vanadium alloys as candidate fusion reactor strucutral materials. The next task reviewed the technical data bases, and methods and assumptions related to their use, which have been factored into life/performance analyses. The critical data gaps/priority needs necessary for these analyses are documented. Finally, criteria are suggested, and test/evaluation procedures recommended, pertinent to judging relative performance levels of vanadium alloys during future alloy development activities. Compositional and metallurgical variables recommended for investigation during such future activities are also presented

  11. The development of low-activation alloys at ORNL

    The objective of this program is to advance the technology of reduced-activation ferritic steels, austenitic stainless steels, and vanadium alloys to the point where these alloys could be considered as the structural material for fusion reactors in preference to the conventional high-activation alloys; and develop alloys to meet US Nuclear Regulatory Commission 10CFR61 guidelines for shallow land burial. 20 figs., 1 tab

  12. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-04-01

    V-4Cr-4-Ti alloy has been recently selected for use in the manufacture of a portion of the DIII-D Radiative Divertor modification, as part of an overall DIII-D vanadium alloy deployment effort developed by General Atomics (GA) in conjunction with the Argonne and Oak Ridge National Laboratories (ANL or ORNL). The goal of this work is to produce a production-scale heat of the alloy and fabricate it into product forms for the manufacture of a portion of the Radiative Divertor (RD) for the DIII-D tokamak, to develop the fabrications technology for manufacture of the vanadium alloy radiative Divertor components, and to determine the effects of typical tokamak environments in the behavior of the vanadium alloy. The production of a {approx}1300-kg heat of V-4Cr-4Ti alloy is currently in progress at Teledyne Wah Chang of Albany, oregon (TWCA) to provide sufficient material for applicable product forms. Two unalloyed vanadium ingots for the alloy have already been produced by electron beam melting of raw processes vanadium. Chemical compositions of one ingot and a portion of the second were acceptable, and Charpy V-Notch (CVN) impact test performed on processed ingot samples indicated ductile behavior. Material from these ingots are currently being blended with chromium and titanium additions, and will be vacuum-arc remelted into a V-4Cr-4Ti alloy ingot and converted into product forms suitable for components of the DIII-D RD structure. Several joining methods selected for specific applications in fabrication of the RD components are being investigated, and preliminary trials have been successful in the joining of V-alloy to itself by both resistance and inertial welding processes and to Inconel 625 by inertial welding.

  13. Self-healing electrical insulating coating processes for vanadium alloy-lithium systems

    The existing technological approaches for the formation of nitride- and oxide-based self-healing electrical insulating coatings for vanadium alloy-lithium systems are considered. The results of the property study of coatings applied from liquid lithium containing Al, N, Si, B additions on various modes are considered. The formation conditions of AlN-based coatings with scale specific electrical resistivity (∼50 Ω m) on the V-4Ti-4Cr vanadium alloy are determined. The results of formation and stability research of coatings on the V-4Ti-4Cr vanadium alloy in convectional and forced circulating lithium with Al and N additions in the homogeneous and heterogeneous lithium systems are discussed

  14. Alloyed White Cast Iron With Precipitates of Spheroidal Vanadium Carbides VC

    M. Kawalec

    2012-12-01

    Full Text Available The paper presents the results of tests on the spheroidising treatment of vanadium carbides VC done with magnesium master alloy and mischmetal. It has been proved that the introduction of magnesium master alloy to an Fe-C-V system of eutectic composition made 34% of carbides crystallise in the form of spheroids. Adding mischmetal to the base alloy melt caused 28% of the vanadium carbides crystallise as dendrites. In base alloy without the microstructure-modifying additives, vanadium carbides crystallised in the form of a branched fibrous eutectic skeleton.Testing of mechanical properties has proved that the spheroidising treatment of VC carbides in high-vanadium cast iron increases thetensile strength by about 60% and elongation 14 - 21 times, depending on the type of the spheroidising agent used.Tribological studies have shown that high-vanadium cast iron with eutectic, dendritic and spheroidal carbides has the abrasive wearresistance more than twice as high as the abrasion-resistant cast steel.

  15. Effect of vanadium on nitrate reductase activity in tomato leaves

    J. Buczek

    2015-01-01

    The activity of nitrate reductase in cell-free extracts from tomato leaves is completely inhibited by 100 μM NaVO3 or VOCl2. In experiments in vivo vanadium ions inhibit the activity of the enzyme in 50 to 60 per cent. Addition of l mM vanadium to the medium on which tomato seedlings are grown causes after 24 h almost complete inhibition of nitrate reductase activity in cell-free extracts of the enzyme. Inhibition with vanadium may be abolished in experiments in vitro if the extract is treate...

  16. Reference vanadium alloy V-4Cr-4Ti for fusion application

    Vanadium alloys exhibit important advantages as a candidate structural material for fusion first-wall/blanket applications. These advantages include high temperature and high wall load capability, favorable safety and environmental features, resistance to irradiation damage, and alloys of interest are readily fabricable. A substantial data base has been developed on laboratory-scale heats of V-Ti, V-Cr-Ti and V-Ti-Si alloys before and after irradiation. Investigations in recent years have focused primarily on compositions of V-(0--15)Cr-(0--20)Ti (0--1)Si. Results from these investigations have provided a basis for identifying a V-4Cr-4Ti alloy as the US reference vanadium alloy for further development. Major results obtained on one production-scale heat and three laboratory heats with compositions of V-(4--5)Cr-(4--5)Ti are presented in this paper. Properties measured were input properties, tensile properties, creep, and radiation effects

  17. Measurement and analysis of radioactivity induced in steels and a vanadium alloy by 14-MeV neutrons

    Richter, D.; Forrest, R. A.; Freiesleben, H.; Kovalchuk, Va. D.; Kovalchuk D, Vi.; Markovskij, D. V.; Seidel, K.; Tereshkin, V. I.; Unholzer, S.

    2000-12-01

    Samples of the structural material of the International Thermonuclear Experimental Reactor (SS316), of the low-activation steels MANET and F82H, and of the vanadium alloy V4Ti4Cr were irradiated with D-T fusion neutrons. The radioactivities induced were determined after irradiation several times during decay by γ-spectroscopy. The results were analysed with the European Activation System (EASY-97). In order to validate EASY-97, the total activities of the samples are compared, and ratios of calculated-to-experimental values for the individual activities are derived and discussed.

  18. Hydrogen transport and embrittlement for palladium coated vanadium-chromium-titanium alloys

    Vanadium based alloys have been identified as a leading candidate material for fusion first-wall blanket structure application because they exhibit favorable safety and environmental characteristics, good fabricability, potential for high performance and long-time operation lifetime in a fusion environment. As part of a study of the thermodynamics, kinetics and embrittlement properties of hydrogen in vanadium based alloys, experiments were conducted to determine the rate of hydrogen transport through the vanadium reference alloys, V-7.5Cr-15Ti and V-4Cr-4Ti, and to determine these alloys' hydrogen embrittlement, they were exposed to hydrogen pressures of 3 and 300 kPa (0.03--3 atm) at temperatures between 380 and 475 C. To facilitate hydrogen entry and egress, tubes of these alloys were coated with palladium on the inside and outside faces. Observed permeabilities were 0.015 to 0.065 micromoles/(m2sPa0.5) for the V-7.5Cr-15Ti alloy and 0.02 to 0.05 micromoles/m2sPa0.5 for the V-4Cr-4Ti alloy depending on the quality of the coat and the operating temperature. At 1.7 atm hydrogen, V-7.5Cr-15Ti embrittled at temperatures below 380 C while V-4Cr-4Ti embrittled around 330 C

  19. Prospects and problems using vanadium alloys as a structural material of the first wall and blanket of fusion reactors

    Vanadium-based alloys are most promising as low activation structural materials for DEMO. It was previously established that high priority is to be given to V-alloys of the V-Ti-Cr system as structural materials of a tritium breeding blanket and the first wall of a fusion reactor. However, there is some uncertainty in selecting a specific element ratio between the alloy components in this system. This is primarily explained by the fact that the properties of V-alloys are dictated not only by the ratio between the main alloying elements (here Ti and Cr), but also by impurities, both metallic and oxygen interstitials. Based on a number of papers today one can say that V-Ti-Cr alloys with insignificant variations in the contents of the main constituents within 5-10 mass% Ti and 4-6 mass% Cr must be taken as a base for subsequent optimization of chemical composition and thermomechanical working. However, the database is obviously insufficient to assess the ecological acceptability (activation), physical and mechanical properties, corrosion and irradiation resistance and, particularly, the commercial production of alloys. Therefore, there is a need for comprehensive studies of promising V-alloys, namely V-4Ti-4Cr and V-10Ti-5Cr. (orig.)

  20. Magnetic properties and fine structure of Fe-Co alloys with vanadium and chromium additions

    Dzhavadov, D.M.; Tyapkin, Yu.D. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1982-11-01

    Magnetic properties of alloys iron-cobalt, iron-cobalt-vanadium, iron-cobalt-chromium have been investigated. Measurements of permeability, coercive force Hsub(c), B/sub 25/ and B/sub 100/ magnetic saturation on alloy samples on which electrical resistance previously is measured and fine crystalline structure is studied by the methods of transmission electron microscopy, diffusion scattering of X rays and electrons and NGR. Comparison of properties and structure makes possible to bind Hsub(c), B permeability values with such structure features as a long-range order of B2 type, short-range decomposition order and Cottrell clouds formation in vanadium containing alloys and a complex short-range order in chromium-containing alloys.

  1. Peculiarities of helium bubble formation and helium behavior in vanadium alloys of different chemical composition

    Staltsov, M.S.; Chernov, I.I.; Kalin, B.A.; Oo, Kyi Zin; Polyansky, A.A.; Staltsova, O.S.; Aung, Kyaw Zaw [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow (Russian Federation); Chernov, V.M.; Potapenko, M.M. [A.A. Bochvar High-Technology Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2015-06-15

    The influence of alloying of vanadium by Ti and Fe on helium bubble formation, gaseous swelling and helium release peculiarities is investigated by means of transmission electron microscopy and helium thermal desorption spectrometry (HTDS). The samples were irradiated by 40 keV He{sup +} ions up to a fluence of 5 ⋅ 10{sup 20} m{sup −2} at 293 and 923 K. It is found that large faceted pores/bubbles are formed in pure vanadium and it has the highest gaseous swelling. Alloying by any used quantity of Ti (from 0.1 up to 10 wt.%) or Fe (from 1 up to 10 wt.%) essentially decreases the helium swelling. The effect of alloying of vanadium by Ti on the bubble sizes and the helium swelling is nonmonotonic. The density of bubbles increases significantly and their sizes and swelling grow monotonically with increasing the Fe content in vanadium. With low-temperature helium implantation, alloying of V by Ti shifts the HTDS peaks to higher temperatures and the temperatures of peaks are decreased with increasing the Fe concentration. A significant portion of the helium releases in a high-temperature area beyond the main peak temperatures in the HTDS spectra. It is assumed that this is caused by formation of helium bubbles on the surfaces of incoherent particles of secondary phases (oxides, nitrides), having high binding energies with these particles.

  2. Investigation on Retention and Release Behaviors of Hydrogen and Helium in Vanadium Alloy

    Liu Xiang; Tsuyoshi Yamada; Yuji Yamauchi; Yuko Hirohata; Tomoaki Hino; Nobuaki Noda

    2005-01-01

    Vanadium alloy is proposed as an attractive candidate for first wall and blanketstructural material of fusion reactors. The retention and release behaviors of hydrogen and heliumin vanadium alloy may be an important issue. In the present work, 1.7 keV deuterium and 5keV helium ions are respectively implanted into V-4Cr-4Ti and V-4Ti at room temperature. Theretention and release of deuterium and helium are measured with thermal desorption spectroscopy(TDS). When the helium ion fluence is larger than 3 × 1017 He/cm2, the retained helium saturateswith a value of approximately 2.5 × 1017 He/cm2. However, when the ion fluence is 1 × 1019 D/cm2,the hydrogen saturation in vanadium alloy does not take place. Experimental results indicatesthat hydrogen and helium retention in vanadium alloy may lead to serious problems and specialattention should be paid when it is applied to fusion reactors.

  3. Peculiarities of helium bubble formation and helium behavior in vanadium alloys of different chemical composition

    The influence of alloying of vanadium by Ti and Fe on helium bubble formation, gaseous swelling and helium release peculiarities is investigated by means of transmission electron microscopy and helium thermal desorption spectrometry (HTDS). The samples were irradiated by 40 keV He+ ions up to a fluence of 5 ⋅ 1020 m−2 at 293 and 923 K. It is found that large faceted pores/bubbles are formed in pure vanadium and it has the highest gaseous swelling. Alloying by any used quantity of Ti (from 0.1 up to 10 wt.%) or Fe (from 1 up to 10 wt.%) essentially decreases the helium swelling. The effect of alloying of vanadium by Ti on the bubble sizes and the helium swelling is nonmonotonic. The density of bubbles increases significantly and their sizes and swelling grow monotonically with increasing the Fe content in vanadium. With low-temperature helium implantation, alloying of V by Ti shifts the HTDS peaks to higher temperatures and the temperatures of peaks are decreased with increasing the Fe concentration. A significant portion of the helium releases in a high-temperature area beyond the main peak temperatures in the HTDS spectra. It is assumed that this is caused by formation of helium bubbles on the surfaces of incoherent particles of secondary phases (oxides, nitrides), having high binding energies with these particles

  4. Investigations on the Oxidation of Iron-chromium and Iron-vanadium Molten Alloys

    Wang, Haijuan

    2010-01-01

    With the progress of high alloy steelmaking processes, it is essential to minimize the loss of valuable metals, like chromium and vanadium during the decarburization process, from both economic as well as environmental view points. One unique technique to realize this aim, used in the present work, is the decarburization of high alloy steel grades using oxygen with CO2 in order to reduce the partial pressure of oxygen. In the present work, the investigation on the oxidation of iron-chromium a...

  5. Neutron metrology in the HFR. Irradiation of vanadium alloys. Experiment R204-7/8/9 (VABONA)

    The irradiation experiment R204-7/8/9 is part of a material research program VABONA in which the radiation damage is investigated of different vanadium alloys. The experiment deals with the irradiation of vanadium specimens α-implanted at the cyclotron in Ispra. The irradiation has been performed in a SIENA capsule in the HFR Petten at three different temperatures (873, 973 and 1073 K). The irradiation took place in position C5 during seven HFR operating cycles. The target damage level was 5 dpa (displacements per atom). This report presents the final neutron metrology results obtained from activation monitors in the three specimen holders, coded as R204-7/8/9. Data about the number of displacements per atom are also included. The main results of the thermal and fast neutron fluence measurements are presented. (orig.)

  6. Development of electrically insulating self-healing coatings in vanadium alloys for lithium fusion reactor

    Problems on electrically insulating self-healing coatings (SHC) on vanadium alloys for lithium fusion reactor systems are considered. In particular, the SHC stability and radiation resistance in lithium and effect of magnetic field on the efficiency of the TNR lithium systems are studied. New technological methods for application of self-healing coatings and study on their properties are developed. The vanadium-lithium materials testing in pile loops for solution of the above problems under conditions of the lithium TNR is described

  7. The vanadium alloys technological and corrosion studies in construction and operation of liquid metal facilities for fusion reactor

    The vanadium-lithium test facility has been constructed to carry out corrosion tests of vanadium alloys in lithium flow, to evaluate the welding procedures and to develop electrically insulating coatings for lithium self-cooled blanket application. The corrosion tests were performed in a nonisothermal lithium flow with the flow rate up to 1 m/s at temperatures in the range 450-700 C. The results of development of the electrically insulating coatings are presented. The achieved specific resistance of AlN based coatings is 30-40 Ω m. The results of electron-beam and argon tungsten-arc welding methods are presented for welding sheets, rods and pipes of V-Ti-Cr type alloys. Solution of the vanadium alloys and vanadium alloys-stainless steels welding problems enabled construction of a liquid metal system satisfying all the necessary requirements. (orig.)

  8. Microstructural and microchemical evolution in vanadium alloys by heavy ion irradiation

    Sekimura, Naoto; Kakiuchi, Hironori; Shirao, Yasuyuki; Iwai, Takeo [Tokyo Univ. (Japan)

    1996-10-01

    Microstructural and microchemical evolution in vanadium alloys were investigated using heavy ion irradiation. No cavities were observed in V-5Cr-5Ti alloys irradiated to 30 dpa at 520 and 600degC. Energy dispersive X-ray spectroscopy analyses showed that Ti peaks around grain boundaries. Segregation of Cr atoms was not clearly detected. Co-implanted helium was also found to enhance dislocation evolution in V-5Cr-5Ti. High density of matrix cavities were observed in V-5Fe alloys irradiated with dual ions, whereas cavities were formed only around grain boundaries in single ion irradiated V-5Fe. (author)

  9. Effects of irradiation to 4 dpa at 390 C on the fracture toughness of vanadium alloys

    Gruber, E.E.; Galvin, T.M.; Chopra, O.K. [Argonne National Lab., IL (United States)

    1998-09-01

    Fracture toughness J-R curve tests were conducted at room temperature on disk-shaped compact-tension DC(T) specimens of three vanadium alloys having a nominal composition of V-4Cr-4Ti. The alloys in the nonirradiated condition showed high fracture toughness; J{sub IC} could not be determined but is expected to be above 600 kJ/m{sup 2}. The alloys showed very poor fracture toughness after irradiation to 4 dpa at 390 C, e.g., J{sub IC} values of {approx}10 kJ/m{sup 2} or lower.

  10. Preliminary studies of vanadium-base alloys intended for use in fabrication of cans for fast reactors

    Preliminary research has been carried out on a series of vanadium-based alloys: V, 0.5 per cent Si; V, 5 per cent Ca; V, 5 per cent Mo; V, 5 per cent Nb; V, 2 per cent Zr; V, 20 per cent Ti; V, 10 per cent Al; V, 10 per cent Sn and v, 10 per cent Ti liable to be used as canning material in fast reactors. The transformation by forging at about 1000 deg. C and rolling between 200 deg. C and room temperature is satisfactory for all types of alloys except V with 10 per cent Sn and V with 10 per cent Al. The mechanical properties deduced from tensile strength tests carried out on alloy samples annealed 1 hour at 1050 deg. C in a vacuum show that, generally speaking, the addition elements lead to an improvement in these properties as compared to those of pure vanadium. After undergoing corrosion tests in a liquid sodium loop purified by a cold trap, the alloys become brittle at room temperature. Only the vanadium containing 20 per cent Ti keeps its plastic properties. These alloys are covered by a layer of vanadium carbide VC. After undergoing treatment in a liquid sodium loop purified by a hot trap, all the alloys keep their good mechanical characteristics. The surface layer with which they are covered is composed of two vanadium carbides VC and γVC, and a vanadium sub-oxide VO0.9. (author)

  11. Response of unirradiated and neutron-irradiated vanadium alloys to Charpy-impact loading

    The ductile-brittle transition temperature (DBTT) was determined by Charpy-impact impact tests for dehydrogenated (<30 appm H) and hydrogenated (400--1200 appm H) V-7.2Cr-14.5Ti, V-9.9Cr-9.2Ti, V-13.5Cr-5.2Ti, V-17.7Ti, V-9.2Cr-4.9Ti, V-9.0Cr-3.2Fe-1.2Zr, V-3.1Ti-0.5Si, V-4.1Cr-4.3Ti, V-4.6Ti, and V-2.5Ti-1.0Si alloys. The DBTT was also determined for the V-13.5Cr-5.2Ti, V-9.2Cr-4.9Ti, V-7.2Cr-14.5Ti, and V-17.7Ti alloys after neutron irradiation at 420 and 600 degrees C to 41--44 atom displacements per atom. The DBTTs determined for these vanadium alloys show that a vanadium alloy containing Cr and/or Ti and Si alloying additions to be used as a structural material in a fusion reactor should contain 3--11 wt % total alloying addition for maximum resistance to hydrogen- and/or irradiation-induced embrittlement. 4 refs., 3 figs., 2 tabs

  12. Hydrogen transport and embrittlement for palladium coated vanadium-chromium-titanium alloys

    As part of a study of the thermodynamics, kinetics and embrittlement properties of hydrogen in vanadium based alloys, experiments were conducted to determine the rate of hydrogen transport through the vanadium reference alloys, V-7.5Cr-15Ti and V-4Cr-4Ti, and to determine these alloys' hydrogen embrittlement, they were exposed to hydrogen pressures of 3 and 300 kPa (0.03-3 atm) at temperatures between 380 and 475 C. To facilitate hydrogen entry and egress, tubes of these alloys were coated with palladium on the inside and outside faces. Observed permeabilities were 0.015 to 0.065 μmol/(m2 s Pa0.5) for the V-7.5Cr-15Ti alloy and 0.02 to 0.05 μmol/(m2 s Pa0.5) for the V-4Cr-4Ti alloy depending on the quality of the coat and the operating temperature. At 1.7 atm hydrogen, V-7.5Cr-15Ti embrittled at temperatures below 380 C while V-4Cr-4Ti embrittled around 330 C. (orig.)

  13. Mechanical properties of neutron irradiated vanadium alloys under liquid sodium environment

    Full text of publication follows: Vanadium alloys are candidate materials for fusion reactor blanket structural materials, but its knowledge about the mechanical properties at high temperatures during neutron irradiation is limited and there are uncertainties that may have influenced the results such as the interstitial impurity content of specimens. The objective of this study is to investigate the mechanical properties and microstructural changes of the high-purified V-4Cr-4Ti alloys, NIFS-HEAT2 during neutron irradiation. In this study, tensile test, Charpy impact test and microstructural observation were done for V-4Cr-4Ti alloys and vanadium binary alloys. Small sized tensile specimens, 1.5 Charpy V-notched specimens and TEM specimens of highly purified V-4Cr-4Ti alloys, NIFS-Heat and vanadium binary alloys were irradiated in Joyo in the temperature range from 450 deg. C to 650 deg. C with a damage level from 1 to 5 dpa. In the irradiation experiment, we have developed Na-enclosed irradiation rig in Joyo in order to equalize the irradiation temperature of large scale specimens and prevent the invasion of interstitial impurities from the circumstance in irradiation rig during irradiation for irradiation specimens. After dismantling the Na-enclosed capsule and cleaning the surface of specimens, tensile tests at room temperature, Charpy impact tests and TEM observation were performed. Irradiation hardening and reduction of ductility for NIFS-Heat alloys could be seen at 450 deg. C irradiation in tensile tests, but the destructive loss of plasticity could not be in any vanadium specimens even at 450 deg. C irradiation. Results of Charpy impact test showed that the amounts of upper shelf energy of NIFS-heat specimens irradiated at 450 deg. C and 600 deg. C were about 0.1-0.2 J at room temperature and brittle behavior could not be seen from load displacement relationship and SEM observation of fracture surface. From the TEM observation of NIFS-Heat alloys

  14. Proceedings of the 2. workshop on vanadium alloy development for fusion

    Osch, E.V. van [ed.

    1996-10-01

    From 20 to 22 May 1996 the Second IEA Vanadium Alloy Development for Fusion Workshop was held at the Netherlands Energy Research Foundation, ECN in Petten. Twenty three experts from the European Union, Japan, the Russian Federation and the United States exchanged results and analyses of completed experiments and discussed the program planning. The manufacturing of half-finished products and the optimization of subsequent heat treatments were presented and discussed in the first session. The problems and solutions to joining vanadium alloy half-finished products by welding and brazing have been addressed in another session. Corrosion and compatibility properties have been evaluated in a different session together with coating requirements. Several sessions were devoted to the effects of radiation on the mechanical properties, especially toughness, of vanadium alloys. Also the role of the transmutation product helium, in particular its introduction into specimens, was evaluated. The respective plans of the four parties for continuation of the ongoing research and development programs have been discussed with the emphasis on avoiding duplications in the area of radiation experiments. The critical issues were identified and the related priorities discussed in the time frame set by the schedule for the building of ITER test modules and with the long term DEMO requirements in mind. (orig.).

  15. Proceedings of the 2. workshop on vanadium alloy development for fusion

    From 20 to 22 May 1996 the Second IEA Vanadium Alloy Development for Fusion Workshop was held at the Netherlands Energy Research Foundation, ECN in Petten. Twenty three experts from the European Union, Japan, the Russian Federation and the United States exchanged results and analyses of completed experiments and discussed the program planning. The manufacturing of half-finished products and the optimization of subsequent heat treatments were presented and discussed in the first session. The problems and solutions to joining vanadium alloy half-finished products by welding and brazing have been addressed in another session. Corrosion and compatibility properties have been evaluated in a different session together with coating requirements. Several sessions were devoted to the effects of radiation on the mechanical properties, especially toughness, of vanadium alloys. Also the role of the transmutation product helium, in particular its introduction into specimens, was evaluated. The respective plans of the four parties for continuation of the ongoing research and development programs have been discussed with the emphasis on avoiding duplications in the area of radiation experiments. The critical issues were identified and the related priorities discussed in the time frame set by the schedule for the building of ITER test modules and with the long term DEMO requirements in mind. (orig.)

  16. Development of laser welding techniques for vanadium alloys

    Strain, R.V.; Leong, K.H.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1996-10-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO{sub 2} laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m{sup 3}/s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to {approx}180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000{degrees}C for 1 h in vacuum reduced the DBTT to <{minus}25{degrees}C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study.

  17. Tensile properties of vanadium alloys irradiated at 200{degrees}C in the HFIR

    Chung, H.M.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Vanadium alloys were irradiated in a helium environment to {approx}10 dpa at {approx}200{degrees}C in the High Flux Isotope Reactor (HFIR). This report presents results of postirradiation tests of tensile properties of laboratory heats of V-(1-18)Ti, V-4Cr-4Ti, V-8Cr-6Ti, V-9Cr-5Ti, V-3Ti-1Si, and V-3Ti-0.1C alloys. Because of significant loss of work-hardening capability, all alloys except V-18Ti exhibited a very low uniform plastic strain <1%. For V-Ti. The mechanism of the loss of work-hardening capability in the other alloys is not understood.

  18. Tensile properties of vanadium alloys irradiated at 200 degrees C in the HFIR

    Vanadium alloys were irradiated in a helium environment to ∼10 dpa at ∼200 degrees C in the High Flux Isotope Reactor (HFIR). This report presents results of postirradiation tests of tensile properties of laboratory heats of V-(1-18)Ti, V-4Cr-4Ti, V-8Cr-6Ti, V-9Cr-5Ti, V-3Ti-1Si, and V-3Ti-0.1C alloys. Because of significant loss of work-hardening capability, all alloys except V-18Ti exhibited a very low uniform plastic strain <1%. For V-Ti. The mechanism of the loss of work-hardening capability in the other alloys is not understood

  19. Hydrogen internal friction and interaction of solute atoms in niobium- and vanadium-based alloys

    A computer model has been proposed to be used to calculate the internal friction spectrum, caused by the ''diffusion under stress'' of hydrogen atoms in a solid solution with a b.c.c. lattice containing substitutional atoms. The model takes into account the long-range pair interaction of dissolved atoms. It is suggested that such interaction acts on diffusion by producing short-range order of mobile hydrogen atoms and by changing their energy. These changes occur in the tetrahedral (before the jump) as well as in the octahedral (at the saddle point of the diffusion barrier) interstitial sites and, therefore, produce local changes of the hydrogen diffusion activation energy (the activation energy of internal friction). The relaxation strength is calculated from the local fields of atomic displacements around every atom that participates in diffusion. The model has been used to study the nature of hydrogen relaxation in Ti- and Zr-containing Nb- and V-based alloys and to calculate the ''chemical'' interaction energy of the H(D)-Ti(Zr) pairs. It was shown that the hydrogen relaxation mechanism in Nb(V)-Ti(Zr)-H(D) alloys consists in diffusion under stress of hydrogen or deuterium atoms in the vicinity of single substitutional atoms at low concentration of substitutional atoms and high hydrogen or deuterium concentration, and in the vicinity of substitutional pairs - at high concentration of substitutional atoms and low hydrogen or deuterium concentration. The ''chemical'' interaction H(D)-Ti(Zr) in niobium and vanadium is stronger or is of the same order, as the strain-induced (elastic) interaction. (orig.)

  20. The creep- and creep-rupture-behavior of vanadium-base-alloys

    In connection with the development of vanadium-base-alloys as potential cladding-material for Fast Breeder fuel elements different melts of the following composition-groups were tested: 1) V-Ti-Nb (3-20% Ti, 0-20% Nb); 2) V-Zr-Cr, V-Zr-Nb (2-3% Zr, 2-15% Cr, 15% Nb); 3) V-Ti-Cr, V-Ti-Nb-Cr (0-5% Ti, 2-13% Cr, 5-10% Nb); 4) V-Ti-Mo, V-Al (5% Ti, 5% Mo, 0,2% Al); 5) V-Ti-Ge (3% Ti, 1-4% Ge); 6) V-Ti-Si, V-Ti-Nb-Si (3% Ti, 1-1,5% Si, 5-15% Nb); 7) Rein-Vanadium (O2=220-800 ppm). The creep- and creep-rupture-behavior is summarized and described comparatively. In the temperature range 650-8750C the long-time-strength behavior up to 43,000 hours and the creep constants have been determined. The outstanding influence of the titanium content, the strong matrix-hardening effect of the niobium and the interaction between titanium and the interstitial impurities have been established. It is also shown that the oxygen content plays a special role in improving greatly the creep and creep-rupture-behavior, both in pure vanadium and in alloys with titanium and silicon. The second edition (1989) of this report includes as appendix a short contribution to vanadium-alloys as a potential fusion-reactor material. (orig./MM)

  1. Insulating Coating Development for Vanadium Alloys. Phase I Technical Report

    Self-cooled liquid-lithium/vanadium blanket offers many advantages for fusion power systems. Liquid metals moving through a magnetic field are subjected to magnetohydrodynamic (MHD) effects that can increase the pressure drop and affect the flow profiles and heat transfer. Insulating coatings are required to eliminate this effect. Based on the thermodynamic stability data five different coatings were selected PVD and CVD processes were developed to deposit these coatings. All coatings have resistivities much higher than the minimum required. Liquid lithium testing at Argonne National Laboratory indicates that one of the coatings showed only partial spalling. Thus, further refinement of this coating has significant potential to satisfy the requirements for Li/V blanket technology

  2. Local magnetic moment and hyperfine field in hydrogenated iron and iron-vanadium alloy

    Elzain, M.E.; Yousif, A.A. [Sultan Qaboos Univ., Al-Khod (Oman). Dept. of Phys.

    1994-11-01

    The local magnetic moment {mu} and hyperfine field B{sub hf} at Fe and V sites in hydrogenated iron and iron-vanadium were calculated using the discrete variational method. The variations in {mu} and B{sub hf} with H occupation of the octahedral (O) site were considered. It was found that when H occupies the O site neighbouring an Fe atom, both local moment and hyperfine field at this atom decrease linearly with increasing number of H atoms. The rate of decrease is larger for Fe in iron as compared to iron in vanadium. On the other hand, when H resides at an O site next neighbouring an Fe atom, whether in iron metal or in iron-vanadium, the Fe magnetic moment increases slowly, while the hyperfine field remains almost constant. The V moment in iron, which is negative ({approx} -0.83 {mu}{sub B}), becomes less negative ({approx} -0.30 {mu}{sub B}) as H occupies the neighboring O sites, whereas slight changes occur ({approx} -0.88 {mu}{sub B}) when H is at the next neighbouring O site. The net effect of H on Fe in iron is to decrease the average magnetic moment at a rate of {approx} 1.2 {mu}{sub B} per H/Fe for low H content. On the other hand, the average Fe moment in an iron-vanadium alloy increases if H resides at O sites which are immediate neigbours of V and next neighbours of Fe. This may explain the development of a magnetic state on hydrogenation of Fe-V alloys, which is exhibited by the specific heat and susceptibility measurements. The changes in the isomer shift were found to agree with experimental trends. (orig.)

  3. Effect of helium on tensile properties of vanadium alloys

    Chung, H.M.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  4. Effect of vanadium neighbors on the hyperfine properties of iron-vanadium alloys

    Elzain, M., E-mail: elzain@squ.edu.om; Yousif, A.; Gismelseed, A.; Al Rawas, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [College of Science, Sultan Qaboos University, Physics Department (Oman)

    2008-06-15

    The electronic and magnetic structures of Fe-V alloys are calculated using the discrete-variational and full-potential linearized-augmented-plane wave methods. The derived hyperfine properties at Fe sites are studied against the number of Fe atoms in the neighbouring shells. As expected the magnetic hyperfine field depends strongly on the number of Fe atoms in the first and second shells of neighbours while its dependence on the variation of atoms in the third shell is weak. The calculated distribution of the magnetic hyperfine fields at the Fe sites, are compared to the experimental data of Krause et al. (Phys Rev B 61:6196-6204, 2000). The contact charge densities and the magnetic moments are also calculated. It was found that the contact charge density increases with increasing V contents and this leads to negative isomer shift on addition of V.

  5. Mechanical behavior of tungsten-vanadium-lanthana alloys as function of temperature

    Palacios García, Teresa; Pastor Caño, Jose Ignacio; Aguirre Cebrian, Maria Vega; Martin Sanz, Antonia; Monge, M. A.; A. Muñoz; Pareja, R.

    2011-01-01

    This study is presented of: The Fifteenth International Conference on Fusion Reactor Materials (ICFRM-14) was held October 16–22, 2011, at the Charleston Marriott Hotel in Charleston, South Carolina. The mechanical behavior of three tungsten (W) alloys with vanadium (V) and lanthana (La₂O₃) additions (W–4%V, W–1%La2O3, W–4%V–1%La₂O₃) processed by hot isostatic pressing (HIP) have been compared with pure-W to analyze the influence of the dopants. Mechanical characterization was performed by...

  6. Surface cracking of tungsten-vanadium alloys under transient heat loads

    Kameel Arshad

    2015-07-01

    Full Text Available To evaluate high heat load performance of tungsten-vanadium (W-V alloys as a potential candidate for plasma facing materials of fusion devices, the target materials with three different V concentrations (1, 5 and 10 wt% are exposed to thermal shock loading. The alloys are fabricated by cold isostatic pressing and subsequently sintered in a vacuum furnace. Thereafter, they are exposed to different high heat flux densities ranging from 340 to 675 MW/m2 for single shot of 5 ms duration in an intense electron beam test facility. The alloys with lowest V concentration (1 wt% are highly damaged in form of seriously cracking. The ones with intermediate V content (5 wt% has shown comparatively better performance than both highest and lowest V contents alloys. The results indicate that improved mechanical properties and reduced thermal conductivity due to V addition comprehensively affect the cracking behavior of W-V alloy under transient thermal shock.

  7. Tensile properties of vanadium alloys irradiated at <430{degrees}C

    Chung, H.M.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Recent attention to vanadium alloys has focused on significant susceptibility to loss of work-hardening capability in irradiation experiments at <430{degrees}C. An evaluation of this phenomenon was conducted on V-Ti, V-Cr-Ti, and V-Ti-Si alloys irradiated in several conventional and helium-charging irradiation experiments in the FFTF-MOTA, HFIR, and EBR-II. Work hardening capability and uniform tensile elongation appear to vary strongly from alloy and heat to heat. A strong heat-to-heat variation has been observed in V-4Cr-4Ti alloys tested, i.e., a 500-kg heat (No. 832665), a 100-kg heat (VX-8), and a 30-kg heat (BL-47). The significant differences in susceptibility to loss of work-hardening capability from one heat to another are estimated to correspond to a difference of {approx}100{degrees}C or more in minimum allowable operating temperature (e.g., 450 versus 350{degrees}C).

  8. Formation Energies and Electronic Properties of Vanadium Carbides Found in High Strength Steel Alloys

    Limmer, Krista; Medvedeva, Julia

    2013-03-01

    Carbide formation and stabilization in steels is of great interest owing to its effect on the microstructure and properties of the Fe-based alloys. The appearance of carbides with different metal/C ratios strongly depends on the carbon concentration, alloy composition as well as the heat treatment. Strong carbide-forming elements such as Ti, V, and Nb have been used in microalloyed steels; with VC showing an increased solubility in the iron matrix as compared with TiC and NbC. This allows for dissolution of the VC into the steel during heating and fine precipitation during cooling. In addition to VC, the primary vanadium carbide with cubic structure, a wide range of non-stoichiometric compositions VCy with y varying from 0.72 to 0.88, has been observed. This range includes two ordered compounds, V8C7 and V6C5. In this study, first-principles density functional theory (DFT) is employed to examine the stability of the binary carbides by calculating their formation energies. We compare the local structures (atomic coordination, bond distances and angles) and the density of states in optimized geometries of the carbides. Further, the effect of alloying additions, such as niobium and titanium, on the carbide stabilization is investigated. We determine the energetically preferable substitutional atom location in each carbide and study the impurity distribution as well as its role in the carbide formation energy and electronic structure.

  9. Impact properties of vanadium-base alloys irradiated at < 430 C

    Recent attention to vanadium-base alloys has focused on the effect of low-temperature (<430 C) neutron irradiation on the mechanical properties, especially the phenomena of loss of work-hardening capability under tensile loading and loss of dynamic toughness manifested by low impact energy and high ductile-brittle-transition temperature (DBTT). This paper summarizes results of an investigation of the low-temperature impact properties of V-5Ti, V-4Cr-4Ti, and V-3Ti-Si that were irradiated in several fission reactor experiments, i.e., FFTF-MOTA, EBR-II X-530, and ATR-A1. Irradiation performance of one production-scale and one laboratory heat of V-4C-4Ti and one laboratory heat of V-3Ti-Si was the focus of the investigation. Even among the same lass of alloy, strong heat-to-heat variation was observed in low-temperature impact properties. A laboratory heat of V-4Cr-4Ti and V-3Ti-1Si exhibited good impact properties whereas a 500-kg heat of V-4Cr-4Ti exhibited unacceptably high DBTT. The strong heat-to-heat variation in impact properties of V-4Cr-4Ti indicates that fabrication procedures and minor impurities play important roles in the low-temperature irradiation performance of the alloys

  10. Impact properties of vanadium-base alloys irradiated at < 430 C

    Chung, H.M.; Smith, D.L. [Argonne National Lab., IL (United States)

    1998-03-01

    Recent attention to vanadium-base alloys has focused on the effect of low-temperature (<430 C) neutron irradiation on the mechanical properties, especially the phenomena of loss of work-hardening capability under tensile loading and loss of dynamic toughness manifested by low impact energy and high ductile-brittle-transition temperature (DBTT). This paper summarizes results of an investigation of the low-temperature impact properties of V-5Ti, V-4Cr-4Ti, and V-3Ti-Si that were irradiated in several fission reactor experiments, i.e., FFTF-MOTA, EBR-II X-530, and ATR-A1. Irradiation performance of one production-scale and one laboratory heat of V-4C-4Ti and one laboratory heat of V-3Ti-Si was the focus of the investigation. Even among the same lass of alloy, strong heat-to-heat variation was observed in low-temperature impact properties. A laboratory heat of V-4Cr-4Ti and V-3Ti-1Si exhibited good impact properties whereas a 500-kg heat of V-4Cr-4Ti exhibited unacceptably high DBTT. The strong heat-to-heat variation in impact properties of V-4Cr-4Ti indicates that fabrication procedures and minor impurities play important roles in the low-temperature irradiation performance of the alloys.

  11. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  12. Fine structure and resistance to fracture of low-alloyed steel with vanadium and boron

    An attempt to evaluate the effect of recovery recrystallization and precipitation processes of dispersion phases on the nature of heat-treating steel resistance to fracture is made. A low-alloy steel of industrial melting with the following content of components, weight %: C-0.18; Mn-1.4; Si-0.3; V-0.06; B-0.003; Al-0.04 and Ti-0.015 has been chosen. It is shown that vanadium carbide precipitation during tempering essentially contributes to the weakening processes. The main contribution to strength is made by the most dispersive carbide phase with the dimensions less than 0.03 mkm delaying weakening during tempering

  13. Ultra-fine ferrite grain refinement by static re-crystallization of hot rolled vanadium micro-alloyed steels

    The phenomenon of ultrafine-grain refinement of ferrite during transformational grain refinement (TGR) followed by static re-crystallization of vanadium micro-alloyed steels was studied. A substantial grain refinement (2.8 mu m) was attained during TGR process by rolling at 900 deg. C. Cold rolling with 70% of reduction introduced strain, utilized for re-crystallization during annealing at different temperatures. Electron Backscattered Diffraction (EBSD) technique was employed to quantify the low angle grain boundaries (LAGB) and high angle grain boundaries (HAGB) spacings and results were correlated with hardness drops during annealing process. At higher annealing times and temperatures the vanadium precipitates restricted the process of grain growth probably due to effective dispersion strengthening. The abnormal grain growth during annealing, predicted previously for niobium steels, found absent in the present vanadium microalloyed steels. (author)

  14. Effect of Cr and Ti contents on the recovery, recrystallization, and mechanical properties of vanadium alloys

    Gubbi, A.N.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L. [Oak Ridge National Laboratory, TN (United States)] [and others

    1996-04-01

    A series of vacuum-anneals at temperatures from 900 to 100{degrees}C for 1 to 4 h was carried out on small heats of vanadium alloys with Cr and Ti contents ranging from 2 to 6wt. %. The alloys examined on this work were V-3Cr-3Ti, V-4Cr-4Ti, V-5Cr-5Ti, V-6Cr-3Ti, and V-6Cr-6Ti. Optical miscroscopy, TEM, and microhardness testing were conducted. Variation in Cr and Ti over the range of 3 to 6 wt% had no discernible effect on recovery/recrystallization behavior. The hardness of both recovered and recrystallized structures increased with total (CR + Ti) content. In order to study the effect of Cr and Ti content on mechanical properties, Charpy impact testing and tensile testing were carried out on small heats of compositional variants. The V-4Cr-4Ti-Si alloy, in a fully recrystallized conditions, exhibited a high level of resistance to cleavage failure with a DBTT at {approx} 190{degrees}C. The alloy containing higher concentrations of Cr and Ti, in a fully recrystallized condition, exhibited a DBTT around -100{degrees}C, whereas the V-3Cr-3Ti alloy failed by pure ductile shear at liquid nitrogen temperature without any ductile-to-brittle transition. Tensile testing was conducted on SS-3 tensile specimens punched from 0.762-mm-thick plates of V-3Cr-3Ti and V-6Cr-6Ti. The tests were done in air at temperature at strain rates ranging from 10{sup -3} to 2x10{sup -1}/s. For V-6Cr-6Ti, both the 0.2% yield stress (YS) and the ultimate tensile strength (UTS) were higher than those for V-3Cr-3Ti at all strain rates. Both YS and UTS showed a similiar trend in incremental increase with strain rate for the two alloys. In the same token, both alloys exhibited an identical behavior of almost no change in uniform and total elongation up to a strain rate of 10{sup -1}/s and a decrease with further increase in strain rate.

  15. Structure and properties of a layered steel/vanadium alloy/steel composite prepared by high-pressure torsion

    Nikulin, S. A.; Rogachev, S. O.; Rozhnov, A. B.; Khatkevich, V. M.; Nechaikina, T. A.; Morozov, M. V.

    2016-04-01

    The microstructure and hardness of a layered steel 08Kh17T/V-10Ti-5Cr/steel 08Kh17T composite, which was prepared by torsion under a high hydrostatic pressure at temperatures of 20, 200, and 400°C, have been studied. Severe plastic deformation under used conditions is shown to provide good joining of layers, which is accompanied by their substantial hardening (from 2.0 to 3.5 times). During deformation at temperatures of 20 and 200°C, fragmentation of the vanadium alloy layer into thinner layers is observed; at 400°C, mainly a plane interface between the vanadium alloy and the steel layers is formed.

  16. Tensile properties of vanadium alloys irradiated at 390{degrees}C in EBR-II

    Chung, H.M.; Tsai, H.C.; Nowicki, L.J. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    Vanadium alloys were irradiated in Li-bonded stainless steel capsules to {approx}390{degrees}C in the EBR-II X-530 experiment. This report presents results of postirradiation tests of tensile properties of two large-scale (100 and 500 kg) heats of V-4Cr-Ti and laboratory (15-30 kg) heats of boron-doped V-4Cr-4Ti, V-8Cr-6Ti, V-5Ti, and V-3Ti-1Si alloys. Tensile specimens, divided into two groups, were irradiated in two different capsules under nominally similar conditions. The 500-kg heat (No. 832665) and the 100-kg heat (VX-8) of V-4Cr-4Ti irradiated in one of the subcapsules exhibited complete loss of work-hardening capability, which was manifested by very low uniform plastic strain. In contrast, the 100-kg heat of V-4Cr-4Ti irradiated in another subcapsule exhibited good tensile properties (uniform plastic strain 2.8-4.0%). A laboratory heat of V-3Ti-1Si irradiated in the latter subcapsule also exhibited good tensile properties. These results indicate that work-hardening capability at low irradiation temperatures varies significantly from heat to heat and is influenced by nominally small differences in irradiation conditions.

  17. Effect of neutron irradiation on the tensile properties and microstructure of several vanadium alloys

    Braski, D.N.

    1986-01-01

    Specimens of V-15Cr-5Ti, VANSTAR-7, and V-3Ti-1Si were encapsulated in TZM tubes containing /sup 7/Li to prevent interstitial pickup and irradiated in FFTF (MOTA experiment) to a damage level of 40 dpa. The irradiation temperatures were 420, 520, and 600/sup 0/C. For a better simulation of fusion reactor conditions, helium was preimplanted in some specimens using a modified version of the ''tritium trick.'' The V-15Cr-5Ti alloy was most susceptible to irradiation hardening and helium embrittlement, followed by VANSTAR-7 and V-3Ti-1Si. VANSTAR-7 exhibited a relatively high maximum void swelling of approx.6% at 520/sup 0/C while V-15Cr-5Ti and V-3Ti-1Si had values of less than 0.3% at all three temperatures. The V-3Ti-1Si clearly outperformed the other two vanadium alloys in resisting the effects of neutron irradiation.

  18. Tensile properties of vanadium alloys irradiated at 390 degrees C in EBR-II

    Vanadium alloys were irradiated in Li-bonded stainless steel capsules to ∼390 degrees C in the EBR-II X-530 experiment. This report presents results of postirradiation tests of tensile properties of two large-scale (100 and 500 kg) heats of V-4Cr-Ti and laboratory (15-30 kg) heats of boron-doped V-4Cr-4Ti, V-8Cr-6Ti, V-5Ti, and V-3Ti-1Si alloys. Tensile specimens, divided into two groups, were irradiated in two different capsules under nominally similar conditions. The 500-kg heat (No. 832665) and the 100-kg heat (VX-8) of V-4Cr-4Ti irradiated in one of the subcapsules exhibited complete loss of work-hardening capability, which was manifested by very low uniform plastic strain. In contrast, the 100-kg heat of V-4Cr-4Ti irradiated in another subcapsule exhibited good tensile properties (uniform plastic strain 2.8-4.0%). A laboratory heat of V-3Ti-1Si irradiated in the latter subcapsule also exhibited good tensile properties. These results indicate that work-hardening capability at low irradiation temperatures varies significantly from heat to heat and is influenced by nominally small differences in irradiation conditions

  19. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  20. Chlorine ions effect on photochemical activity of alcoholate complexes of vanadium

    Photochemical activity of vanadium complexes during alcogolate ion substitution by chlorine is studied. Using the method of electron spectroscopy and ESR photochemical transformations in alcohol solutions, containing alkoxides VO(OR)3, VO(OR)2Cl, VO(OR)Cl2 as well as VOCl3 with additions of HCl and LiCl, are investigated. It is shown that with the increase of chloride-ion concentration in solution the rate of all the stages of photochemical reduction of vanadium increases considerably. It is also found that photoreduction of vanadium (5) in the case of absence of chlorine ions ends at the stage of vanadium (3) complex formation, whereas when chlorine ions are present in solution the process proceeds further to the formation of divalent vanadium complexes

  1. Structure and mechanical properties of the three-layer material based on a vanadium alloy and corrosion-resistant steel

    Nikulin, S. A.; Rozhnov, A. B.; Nechaikina, T. A.; Rogachev, S. O.; Zavodchikov, S. Yu.; Khatkevich, V. M.

    2014-10-01

    The quality of three-layer pipes has been studied; they are manufactured by hot pressing of a three-layer assembly of tubular billets followed by forging and cold rolling. The operating core is made from a V-4Ti-4Cr alloy. The protective claddings are made from corrosion-resistant steels of two grades, 08Kh17T and 20Kh13. The results of investigation into the structure and microhardness of the junction zone of steel and the vanadium alloy, which includes a contact zone and a transition diffusion layer, are reported. The 08Kh17T steel is shown to be a preferred cladding material.

  2. Void structure and density change of vanadium-base alloys irradiated in the dynamic helium charging experiment

    Chung, H.M.; Nowicki, L.; Gazda, J. [Argonne National Lab., Chicago, IL (United States)] [and others

    1995-04-01

    The objective of this work is to determine void structure, distribution, and density changes of several promising vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment (DHCE). Combined effects of dynamically charged helium and neutron damage on density change, void distribution, and microstructural evolution of V-4Cr-4Ti alloy have been determined after irradiation to 18-31 dpa at 425-600{degree}C in the DHCE, and the results compared with those from a non-DHCE in which helium generation was negligible.

  3. Thermodynamical study of the vanadium-hydrogen system. The hydrogen effect on the mechanical properties of V-4Cr-4Ti and V-5Cr-5Ti alloys

    In the framework of the international research programs on fusion reactors, the vanadium alloys are among the most appropriate candidate to constitute the first wall. The author deals with the specific alloys V-4Cr-4Ti and V-5Cr-5Ti and study the hydrogen diffusion. Experimental results show that the induced hydrogen concentration in the sample by diffusion is higher, for the same partial pressure of exposure, in the case of the alloy than for the pure vanadium. He shows that this result can be explained by the trapping for which the hydrogen is trapped by the titanium. (A.L.B.)

  4. Solidification microstructures and mechanical properties of high-vanadium Fe-C-V and Fe-C-V-Si alloys

    Fe-C-V and Fe-C-V-Si alloys of various C, V and Si compositions were investigated in this work. It was found that the phases present in both of these alloy systems were alloyed ferrite, alloyed cementite, and VCx carbides. Depending on the alloy composition the solidified microstructural constituents were granular pearlite-like, lamellar pearlite, or mixtures of alloyed ferrite + granular pearlite-like or granular pearlite-like + lamellar pearlite. In addition, it is shown that in Fe-C-V alloys the C/V ratio influences (a) the type of matrix, (b) the fraction of vanadium carbides, fv and (c) the eutectic cell count, NF. In Fe-C-V alloys, a relationship between the alloy content corresponding to the eutectic line was experimentally determined and can be described by Ce=7.91Ve-0.635 where Ce and Ve are the carbon and vanadium composition of the eutectic. Moreover, in the Fe-C-V alloys (depending on the alloy chemistry), the primary VCx carbides crystallize with non-faceted or non-faceted/faceted interfaces, while the eutectic morphology is non-faceted/non-faceted with regular fiber-like structures, or it possesses a dual morphology (non-faceted/non-faceted with regular fiber-like structures + non-faceted/faceted with complex regular structures). In the Fe-C-V-Si system, the primary VCx carbides solidify with a non-faceted/faceted interface, while the eutectic is non-faceted/faceted with complex regular structures. In particular, spiral eutectic growth is observed when Si is present in the Fe-C-V alloys. In general, it is found that as the matrix constituent shifts from predominantly ferrite to lamellar pearlite, the hardness, yield and tensile strengths exhibit substantial increases at expenses of ductility. Moreover, Si additions lead to alloy strengthening by solid solution hardening of the ferrite phase and/or through a reduction in the eutectic fiber spacings with a decrease in the alloy ductility.

  5. Solidification microstructures and mechanical properties of high-vanadium Fe-C-V and Fe-C-V-Si alloys

    Fras, E.; Kawalec, M. [AGH - University of Science and Technology, Reymonta 23, 30-059 Krakow (Poland); Lopez, H.F., E-mail: hlopez@uwm.edu [Materials Department, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211 (United States)

    2009-10-25

    Fe-C-V and Fe-C-V-Si alloys of various C, V and Si compositions were investigated in this work. It was found that the phases present in both of these alloy systems were alloyed ferrite, alloyed cementite, and VC{sub x} carbides. Depending on the alloy composition the solidified microstructural constituents were granular pearlite-like, lamellar pearlite, or mixtures of alloyed ferrite + granular pearlite-like or granular pearlite-like + lamellar pearlite. In addition, it is shown that in Fe-C-V alloys the C/V ratio influences (a) the type of matrix, (b) the fraction of vanadium carbides, f{sub v} and (c) the eutectic cell count, N{sub F}. In Fe-C-V alloys, a relationship between the alloy content corresponding to the eutectic line was experimentally determined and can be described by C{sub e}=7.91V{sub e}{sup -0.635} where C{sub e} and V{sub e} are the carbon and vanadium composition of the eutectic. Moreover, in the Fe-C-V alloys (depending on the alloy chemistry), the primary VC{sub x} carbides crystallize with non-faceted or non-faceted/faceted interfaces, while the eutectic morphology is non-faceted/non-faceted with regular fiber-like structures, or it possesses a dual morphology (non-faceted/non-faceted with regular fiber-like structures + non-faceted/faceted with complex regular structures). In the Fe-C-V-Si system, the primary VC{sub x} carbides solidify with a non-faceted/faceted interface, while the eutectic is non-faceted/faceted with complex regular structures. In particular, spiral eutectic growth is observed when Si is present in the Fe-C-V alloys. In general, it is found that as the matrix constituent shifts from predominantly ferrite to lamellar pearlite, the hardness, yield and tensile strengths exhibit substantial increases at expenses of ductility. Moreover, Si additions lead to alloy strengthening by solid solution hardening of the ferrite phase and/or through a reduction in the eutectic fiber spacings with a decrease in the alloy ductility.

  6. Selective spectrophotometric determination of molybdenum(VI) and vanadium(V) with resacetophenone benzoic hydrazone in steels and alloys

    A spectrophotometric method for the determination of molybdenum(VI) and vanadium(V) using 2, 4-dihydroxyacetophenone benzoic hydrazone (RPBH) is reported. The reagent forms 1:1 yellow coloured complexes with Mo(VI) and V(V) at pH 3.5. The colour development of molybdenum complex is instantaneous and shows absorption maximum at 410nm. In the case of vanadium complex, maximum colour is developed after heating for 10 minutes on a water bath and show maximum absorption at 380nm. The molybdenum(VI) complex with a molar absorptivity of 3.6x103 l mol-1 cm-1 and Sandell's sensitivity of 0.02 μg/cm2, obeys Beer's law in the range 2.4 to 33.6 ppm. The vanadium(V) complex whose molar absorptivity and Sandell's sensitivity are 1.3x104 l mol-1 cm-1 and 0.004 μg/cm2 respectively, obeys Beer's law in the range 0.25 to 7.6 ppm. The effect of various diverse ions on the determination of the metal ions is studied. The method is applied for the determination of molybdenum and vanadium in steel and alloy samples. (author). 10 refs., 1 fig., 3 tabs

  7. CaO insulator coatings on a vanadium-base alloy in liquid 2 at.% calcium-lithium

    Park, J.H.; Kassner, T.F. [Argonne National Laboratory, IL (United States)

    1996-10-01

    The electrical resistance of CaO coatings produced on V-4%Cr-4%Ti and V-15%Cr-5%Ti by exposure of the alloy (round bottom samples 6-in. long by 0.25-in. dia.) to liquid lithium that contained 2 at.% dissolved calcium was measured as a function of time at temperatures between 300-464{degrees}C. The solute element, calcium in liquid lithium, reacted with the alloy substrate at these temperatures for 17 h to produce a calcium coating {approx}7-8 {mu}m thick. The calcium-coated vanadium alloy was oxidized to form a CaO coating. Resistance of the coating layer on V-15Cr-5Ti, measured in-situ in liquid lithium that contained 2 at.% calcium, was 1.0 x 10{sup 10} {Omega}-cm{sup 2} at 300{degrees}C and 400 h, and 0.9 x 10{sup 10} {Omega}-cm{sup 2} at 464{degrees}C and 300 h. Thermal cycling between 300 and 464{degrees}C changed the resistance of the coating layer, which followed insulator behavior. Examination of the specimen after cooling to room temperature revealed no cracks in the CaO coating. The coatings were evaluated by optical microscopy, scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and X-ray analysis. Adhesion between CaO and vanadium alloys was enhanced as exposure time increased.

  8. Extraction-spectrophotometric determination of vanadium in stainless steel and nickel-base alloys with N-benzoyl-N-phenylhydroxylamine

    A simple, rapid, and accurate extraction-spectrophotometric methods has been developed for the determination of vanadium in stainless steel and Ni-base alloys. The procedure is as follows: Take 0.5 g of sample into a beaker and add 20 ml of aqua regia, then heat and dissolve it. Furthermore add 5 ml of perchloric acid, and heat until the sample is dissolved, and add 14 ml of sulfuric acid (1 + 1) and 5 ml of phosphoric acid. Continue heating untill fumes of sulfuric acid generate from it. Thereafter, transfer it with use of water into a polyethylene separating funnel, add 10 ml of hydrofluoric acid (46%) and dilute to 50 ml with water. Then, add 4 ml of iron (II) ammonium sulfate solution (10%) and mix it thoroughly. Allow to stand for two or three min, and add 10 ml of ammonium peroxy-sulfate solution (45%) and mix it thoroughly again. By this procedure vanadium is oxidized to vanadium (V) without any oxidation of chromium (III). Allow to stand for about five minutes. Then add exactly 20 ml of N-benzoyl-N-phenylhydroxylamine chloroform solution (0.1%) and shake it vigorously for two min. Then, determine vanadium by measuring absorbance at the wavelength of 530 nm against a chloroform reference. The interference of chromium can be eliminated by reduction to Cr (III) with iron (II) ammonium sulfate, while manganese and molybdenum do not interfere at 530 nm. In the determination of 100 μg vanadium, the following amounts of foreign ions are tolerated: Fe (III) and Ni 1 g, Cr (III) 500 mg, Al 200 mg, Mo (VI) 100 mg, Mn, Co (II), Ti (IV) and Nb (V) 50 mg, Si 20 mg, Cu 10 mg, Ta (V) and W (VI) 5 mg. (author)

  9. Textured tape substrates from binary copper alloys with vanadium and yttrium for the epitaxial deposition of buffer and superconducting layers

    Khlebnikova, Yu. V.; Rodionov, D. P.; Egorova, L. Yu.; Suaridze, T. R.

    2016-05-01

    The structure of tapes of binary Cu-0.6 wt % V and Cu-1 wt % Y alloys and texturing process of them in the course of cold deformation by rolling to 99% and subsequent recrystallizing annealing have been studied. The possibility of achieving the perfect cube texture in thin tapes made from binary copper-based alloys with vanadium and yttrium additions has in principle been shown. This opens the prospect of using them as substrates when manufacturing tapes of second-generation high-temperature superconductors. Optimum annealing conditions for the studied alloys have been determined, which have made it possible to produce the perfect biaxial texture with a content of cube {001} ± 10° grains on the surfaces of textured tapes of more than 95%.

  10. Effects of B, Fe, Gd, Mg, and C on the structure, hydrogen storage, and electrochemical properties of vanadium-free AB2 metal hydride alloy

    Highlights: → B, Fe, Gd, Mg, and C were studied as modifiers to the V-free AB2 MH alloys. → Mg and C show improvement in charge retention. → Fe, Gd, and B improve the low temperature performance. - Abstract: The structural, gaseous phase hydrogen storage, and electrochemical properties of a series of vanadium-free AB2 Laves phase based metal hydride alloys with various modifiers (Ti5Zr30Cr9Mn19Co5Ni32-xMx, M = B, Fe, Gd, Mg, and C) were studied. While B and Fe completely dissolve in the main AB2 phases, Gd, Mg, and C form individual secondary phases. The solubilities of Gd, Mg, and C in the AB2 phases are not detectable, 0.3 at.%, and very low, respectively. The C14 crystallite sizes, C15 phase abundances, and Zr7Ni10 phase abundances of modified alloys are larger than those of the base alloy. All modified alloys show decreases in plateau pressure, reversible gaseous phase storage capacity, formation activity, electrochemical capacity, and cycle life. A small amount of boron (0.2 at.%) and carbon in the alloy improve the half-cell high-rate dischargeability and bulk hydrogen diffusion. All modifiers, except for boron, reduce the surface exchange reaction current densities of the alloys. Both Mg and C show improvement in charge retention. Full-cell high-rate performance is improved by adding only a small amount of boron (0.2 at.%). Fe, Gd and 0.2 at.% of boron improve the low-temperature performance of the sealed batteries.

  11. Effects of AS-cast and wrought cobalt-chrome-molybdenum and titanium-aluminium-vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    S S Jakobsen; Larsen, A.; M Stoltenberg; J. M. Bruun; Soballe, K

    2007-01-01

    Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy...

  12. Phase transitions in multicomponent interstitial alloys on the base of titanium and vanadium carbides

    Key words: interstitial alloys, nonstoichiometry, ordering, phase transitions, short-range and long-range order, neutron diffraction, X-ray crystallography, full-scale profile analysis, phase diagram, heat capacity. Objects of the research: phase formation and phase transitions in multicomponent systems on the base of nonstoichiometric titanium carbide and vanadium subcarbide. Aim of the research: study of phase transitions, regularities of ordered structures formation in nonstoichiometric interstitial alloys with one-, two-, three component metal and nonmetal sublattice on the base of titanium carbides and vanadium subcarbide. Methods of the research: neutron and X-ray structure analysis, full-scale profile analysis, calorimetric method. The obtained results and their novelty. By neutron diffraction in TiCx (0.59≤ x ≤0.66) the phase transition of order-order type is found caused by disappearance of distortions of the basic cubic lattice with conservation of the ordered distribution of metalloid atoms over octahedral interstitial positions; improved variant of a region of the TiCx phase diagram (0.59≤ x≤0.71) is offered. Partial replacement of carbon atoms by oxygen (O/Ti=0.08) is found to lead to change of the phase transition scheme in titanium carbide. Existence of trigonal ordered structure in TiCxNy (x=0.45†0.545; y=0.09†0.20) is discovered. Structure investigation showed the influence of nitrogen and hydrogen atoms on the existing cubic and trigonal ordered phases and on phase transition schemes in titanium carbide. Ordered phases are discovered and identified in titanium oxycarbonitrides; the scheme and temperature of phase transition are determined; structure of the ordered phase depends on nitrogen content: in TiC0.52O0.08N0.06 - trigonal (sp. gr. P31), in TiC0.48O0.08N0.10 - rhombohedral (sp. gr. R 3 bar m), in TiC0.31O0.08N0.29-cubic (sp. gr. Fd3m) ordered structures are formed. In Ti1-xZrxC0.65, Ti1-xCrxC0.7 and Ti0.8V0.2C0.62Hy a new

  13. Preliminary results on hydrogen permeation through vanadium alloy V-4Cr-4Ti in the conditions of reactor irradiation

    The objective of this work was the determination of hydrogen mass transfer parameters in vanadium alloy V-4Cr-4Ti > of reactor irradiation. The experiments were carried out on IVG.1M reactor of Kazakhstan Nuclear Center at fast neutrons flux of 1013 n/cm2s, thermal neutrons flux of 1014 n/cm2s. Determination of apparent diffusion coefficients was carded out by Dayness technique over the temperature range 873-973 K and inlet hydrogen pressures 0.07-0.2 torr. The thickness of the researched membrane shaped specimens was 1 and 5 mm. (author)

  14. Fabrication development and usage of vanadium alloys in DIII-D

    GA is procuring material, designing components, and developing fabrication techniques for use of V alloy into the DIII-D divertor as elements of the Radiative Divertor Project modification. This program was developed to assist in the development of low activation alloys for fusion use by demonstrating the fabrication and installation of V alloy components in an operating tokamak. Along with fabrication development, the program includes multiple steps starting with small coupons installed in DIII-D to measure the environmental effects on V. This is being done in collaboration with DOE Fusion Materials Program (particularly at ANL and ORNL). Procurement of the material has been completed; the world's largest heat of V alloy (1200 kg V-4Cr-4Ti) was produced and converted into various products. Manufacturing process is described and chemistry results presented. Research into potential fabrication methods is being performed. Joining of V alloys was identified as the most critical fabrication issue for its use in the Radiative Divertor program. Successful welding trials were done using resistance, friction, and electron beam methods; metallography and mechanical tests were done to evaluate the welds

  15. Growth of Vanadium Carbide by Halide-Activated Pack Diffusion

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Dahl, Kristian Vinter;

    The present work investigates growth of vanadium carbide (VC) layers by the pack diffusion method on a Vanadis 6 tool steel. The VC layers were produced by pack diffusion at 1000°C for 1, 4 and 16 hours. The VC layers were characterized with optical and electron microscopy, Vickers hardness tests...

  16. Volumetric changes during sintering of vanadium briquettes with niobium and molybdenum diselenides

    Volumetric changes which occur during sintering of vanadium with niobium and molybdenum diselenides are studied within 1200- 1500 deg C. It is shown that growth of briquettes during sintering of the above composites is due to preferential vanadium diffusion flow into the diselenide phase. Formation of the niobium- enriched (due to diselenide decomposition) alloy on the vanadiUm particle surface leads to a volumetric sintering activation- shrinkage

  17. Morphology and activity of vanadium-containing catalysts for the selective oxidation of benzene to maleic anhydride

    Dosumov, K.; Ergazieva, G. E.

    2012-11-01

    The morphology and activity of vanadium catalysts are studied using a number of physicochemical methods: electron microscopy, electron paramagnetic resonance, and infrared spectroscopy. It is found that the active agent of the conversion of benzene to maleic anhydride over modified vanadium catalysts is the V4+ ion in the vanadyl configuration.

  18. Vanadium Attack with Sigma Phase Occurrence in Fe-CrNi Alloy (ASTM A447)

    The vanadium attack of sigma phase occurrence in high chromium-nickel steel (ASTM A447) has been studied in fuel oil combustion environment. 80mole% V2O5-20mole% Na2SO4 was used as corrosive synthetic ash. Using metallograph and scanning electron microscope, various changes of microstructure of the specimen were observed in the corrosion process. The vanadium attack was affected by carbide rather than sigma phase in initial period of the test, but in the later period, sigma phase occurrence was more related for the attack. Vanadium attack seemed to be propagated along the boundary of matrix and sigma phase. Finally, sigma phase itself might be flaked out from grain boundary. However, stress corrosion cracking might be propagated through sigma phase which is brittle

  19. Effect of vanadium on the microstructures and mechanical properties of an Al–Mg–Si–Cu–Cr–Ti alloy of 6XXX series

    Highlights: •The shapes of Al3V and Al10V are like petal and coarse plate respectively. •Fine elliptical-shaped Al(VCrTi)Si phases are present when Al3V phases are added. •Coarse AlVMg phases are present when Al10V phases are added. •Larger as-cast grain refinement is carried out by Al3V phases rather than Al10V. •V improves the UTS and plasticity of the alloy only when Al3V phases are added. -- Abstract: Vanadium can be considered as a minor element to improve mechanical properties of wrought aluminium alloys by modifying their microstructures. However, so far, it is not widely used in wrought aluminium alloys due to its indissolubility during smelting and solidification. In the present work, Al–4 wt.% V master alloys were prepared with different solidification rates and these master alloys were introduced to a commercial Al–1.6Mg–1.2Si–1.1Cu–0.16Cr–0.03Ti (all in wt.%) wrought alloy to study the effect of vanadium on the microstructures and mechanical properties of this alloy. The results showed that the fast solidification rate resulted in the formation of petal-like shaped Al3V phase in Al–4 wt.% V master alloy, while the slow solidification rate resulted in the formation of Al10V phase with coarse plate shape. The addition of Al3V phases into the experimental alloy not only promotes the formation of a fine, equiaxed as-cast grain structure, but also inhibits the recrystallisation nucleation and grain growth during hot extrusion and subsequent T6 heat treatment. In this case, the main vanadium phase in this alloy is the metastable and fine Al(VCrTi)Si phase with elliptical morphology and relatively high vanadium content. And the Al(VCrTi)Si phases developed from Al3V phases could pin the movement of dislocations and impede recrystallisation nucleation and growth, resulting in the improvement of mechanical properties. In the experimental alloy with the addition of Al10V phases, the stable AlVMg phase and Al10V phase with angular shape are

  20. 可视滴定法测定铝钒中间合金中的钒时称样量和滴定液浓度的优化%Optimization of the Sampling and the Titration Concentration of Vanadium in the Determination of Vanadium in Aluminium-Vanadium Master Alloy by Visual Titration

    付二红; 蒙益林; 汪磊

    2013-01-01

    The correlation between the sampling and the titration concentration of vanadium in the determination of vanadium in aluminium-vanadium master alloy by visual titration was explored.The influence of aluminium substrate on the determination of vanadium content was investigated,the result indicated that the aluminium substrate could not affect the vanadium determination.The concentration of the vanadium was usually 50%-60%,there was no experimental sample in which vanadium content less than 50% or higher than 60.5%.It was necessary to simulate the sample of the aluminium-vanadium master alloy by adding vanadium standards without the matching of the substrate.According to the chemical reaction laws,the test specimens with different content of vanadium were chosen,the sampling and the titration concentration of vanadium were optimized.The appropriate relationship of the concentration of ferrous ammonium sulphate solution and the volume of titrant was defined.%用可视滴定法测定铝钒中间合金中的钒时,对称样量和硫酸亚铁铵滴定液浓度的关系进行了探讨.实验发现,基体铝对于铝钒合金中钒的测定无影响.常见的铝钒合金范围为50%~60%,低于50%和高于标准上限0.5%钒含量的合金没有实验样品,通过向样品溶液中加入钒标准溶液可模拟铝钒合金试样.依据化学分析等物质量反应定律,选择不同钒含量的试验样品,对钒的称样量和滴定液浓度进行优化,确定了硫酸亚铁铵滴定液的浓度与滴定液消耗体积的合适关系.

  1. The active component of vanadium-molybdenum catalysts for the oxidation of acrolein to acrylic acid

    The catalytic properties of the vanadium-molybdenum oxide system were investigated in the oxidation of acrolein to acrylic acid. The active component of the catalyst is the compound VMo3O11, the maximum amount of which is observed at a content of 7-15 mole% V2O4. The compound VMo3O11 is formed in the thermodecomposition of silicomolybdovanadium heteropoly acids or isopoly compounds, reduced with respect to vanadium, and contains V4+ and Mo6+. The optimum treatment for the formation of this compound is treatment in the reaction mixture at 400 degrees C

  2. Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer

    Successful continuous laser joining of AISI 316L stainless steel with Ti6Al4V titanium alloy through pure vanadium interlayer has been performed. Three welding configurations were tested: one-pass welding involving all three materials and two pass and double spot welding involving creation of two melted zones separated by remaining solid vanadium. For the most relevant welds, the investigation of microstructure, phase content and mechanical properties has been carried out. In case of formation of a single melted zone, the insertion of steel elements into V-based solid solution embrittles the weld. In case of creation of two separated melted zones, the mechanical resistance of the junction is determined by annealing of remaining vanadium interlayer, which can be witnessed by observing the increase of grain size and decrease of UTS. The two pass configuration allows attain highest mechanical resistance: 367 MPa or 92% of UTS of annealed vanadium. Double spot configuration produces excessive heat supply to vanadium interlayer, which results in important decrease of tensile strength down to 72% of UTS of annealed vanadium. It was found that undesirable σ phase which forms between Fe and V is not created during the laser welding process because of high cooling rates. However, the zones whose composition corresponds to σ homogeneity range are crack-susceptible, so the best choice is to reduce the V content in steel/vanadium melted zone below σ phase formation limit. In the same time, the proportion between V and Ti in Ti6Al4V/vanadium melted zones does not influence mechanical properties as these elements form ideal solid solution

  3. Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr; Grevey, D.; Sallamand, P.

    2015-01-12

    Successful continuous laser joining of AISI 316L stainless steel with Ti6Al4V titanium alloy through pure vanadium interlayer has been performed. Three welding configurations were tested: one-pass welding involving all three materials and two pass and double spot welding involving creation of two melted zones separated by remaining solid vanadium. For the most relevant welds, the investigation of microstructure, phase content and mechanical properties has been carried out. In case of formation of a single melted zone, the insertion of steel elements into V-based solid solution embrittles the weld. In case of creation of two separated melted zones, the mechanical resistance of the junction is determined by annealing of remaining vanadium interlayer, which can be witnessed by observing the increase of grain size and decrease of UTS. The two pass configuration allows attain highest mechanical resistance: 367 MPa or 92% of UTS of annealed vanadium. Double spot configuration produces excessive heat supply to vanadium interlayer, which results in important decrease of tensile strength down to 72% of UTS of annealed vanadium. It was found that undesirable σ phase which forms between Fe and V is not created during the laser welding process because of high cooling rates. However, the zones whose composition corresponds to σ homogeneity range are crack-susceptible, so the best choice is to reduce the V content in steel/vanadium melted zone below σ phase formation limit. In the same time, the proportion between V and Ti in Ti6Al4V/vanadium melted zones does not influence mechanical properties as these elements form ideal solid solution.

  4. Drawing up of a procedure for vanadium determination in mussels using the neutron activation analysis method

    This work establishes an adequate procedure for obtaining reliable results for determination of vanadium in mussels, leg by leg by the neutron activation analysis (NAA), viewing the posterior application on the bio monitoring the coastal pollution, particularly near the petroleum terminals.For the evaluation of result quality concerning to the quality of those results, the work analysed the reference material certification NIST SRM 1566b Oyster Tissue. The precision of the results were also analysed using repetitions of mussel samples collected at the coastal of northern Sao Paulo state, Brazil. The NAA procedure consisted of 200 mg of sample and a synthetic standard of vanadium during a period of 8 s and under a thermal neutron flux of 6.6 x 1012 n cm-2 s-1 at the pneumatic station 4 of the IEA-R1 nuclear reactor of IPEN-CNEN/SP. After a 3 min decay, the measurements of the gamma activities of the sample and the standard were done using a Ge hyper pure semi-conductor detector, connected to gamma ray multichannel analyser. The vanadium were determined by the measurement of the gamma activity of the 52V through the 1434.08 keV peak, and half-life time of 3.75 min. The concentration of V were calculated by the comparative method. The obtained results indicated the viability of the NAA procedure established for the determination of vanadium in mussels

  5. Neutron Activation Analysis of Vanadium, Copper, Zinc, Bromine and Iodine in Pyura Microcosmus

    Most of the tunicates seem to accumulate vanadium more energetically than other marine organisms. However, there is a very great variation within the group. Maximum amounts of vanadium were found in the Ascididae family whereas in some species of the Pyuridae family vanadium was apparently absent. This paper describes the simple and rapid determination by activation analysis of vanadium, copper, zinc, bromine and iodine in Pyura microcosmus, a species of the Pyuridae family. The same elements were also investigated in the environmental sea-water. Samples of P. microcosmus and sea-water were collected from a point about 15 m below the surface in the Saronic Gulf near Athens. All irradiations of samples and standards were carried out with the DEMOCRITUS Reactor of the Nuclear Research Centre of Greece, at a neutron flux of 2 x 1011 n/cm2s. The time of irradiation with the pneumatic transfer system ranged from 1 to 25 min, depending on the element being determined. After irradiation and addition of inactive carriers, the radioisotopes of interest were isolated by fast radiochemical procedures based on solvent extraction techniques. Vanadium and copper were extracted as cupferrates into chloroform, and zinc was extracted with 8% methyldioctylamine into trichloroethylene. Bromine and iodine were distilled first and then separated from each other by selective redox and extraction procedures. The photopeak areas of 52V, 64Cu, 69mZn, 82Br and 128I were measured by means of a multichannel analyser and compared with those of standards of the above radionuclides processed in the same manner. After irradiation the time to complete the analysis ranged from 5 to 35 min depending on the element being determined. The quantities of the elements determined in P. microcosmus, expressed in micrograms per gram of dry matter, were: vanadium 1.0, copper 7.5, iodine 14.1, bromine 406 and zinc 702. The per cent concentration of the same elements found in the sea-water was as follows

  6. Thermodynamic calculation of carbonitrides solubility in low-carhon steels alloyed with vanadium and aluminium

    The aim of the study is to calculate the vanadium carbonitride solubility in low-carbon steels on the basis of data on VC and VN solubility, to describe phase equilibrium in the system with regard to all phases the formation of which is possible in an austenitic region, to perform the thermodynamic calculation and to carry out an experimental investigation with the purpose of checking the permissibility of accepted simplifications. It is shown that the #betta#-Fe-V(C,N)-AlN-Al2O3 system perfectly corresponds to the case of austenitic region in low-carbon steels with vanadium and aluminium. The equations which permit to calculate phase equilibrium in this system are derived. Thermodynamic calculations are performed and comparison of their results with the data of experimental investigation of phase composition is carried out. A perfect coinsidence of calculation and experiment results is shown

  7. Determination of vanadium in stainless steel and Ni-base alloys by NBPHA spectrophotometric method combined with chloroform extraction separation in media of sulfuric-hydrofluoric acid

    A new method of rapid vanadium analysis was proposed. In this method, vanadium is directly extracted and determined from sample solutions in sulfuric-hydrofluoric acid. The interference of the coexisting elements can be ignored in this method. Take one gram of sample into a 200 ml beaker, and add 30 ml of aqua regia. Then heat and dissolve it, and add 14 ml of sulfuric acid (1+1) and 5 ml of phosphoric acid. After cooling, dissolve the salts with a small amount of water. Thereafter, transfer it with use of water into a polyethylene separatory funnel, add 10 ml of 46% hydrofluoric acid, and dilute to 50 ml. Then, add 4 ml iron (II) ammonium sulfate solution (10%) and mix it thoroughly. Allow to stand for two or three minutes, add 10 ml of 45% ammonium persulfate solution and mix it thoroughly again. Allow to stand for about five minutes. Then, add exactly 20 ml of BPHA-chloroform solution (0.1%) and shake and mix it vigorously for two minutes. After a while, transfer the chloroform complex into a 10 mm cell through a piece of absorbent cotton. Then, determine vanadium by measuring the absorbance at the wave length of 530 nm against a chloroform reference. This method can be applicable to the analysis of vanadium in other metals and alloys than stainless steel and Ni-base alloys. (Iwakiri, K.)

  8. The effect of nitrogen on the coarsening rate of precipitate phases in iron-based alloys with chromium and vanadium. Experimental and theoretical investigations

    Lindwall, Greta; Frisk, Karin [Swerea KIMAB AB, Kista (Sweden). Virtual Lab.

    2013-05-15

    A comparison of the coarsening of nitrogen-rich vanadium precipitates and the coarsening of carbon-rich vanadium precipitates is presented. The precipitate phases are studied experimentally, via fabrication of model alloys, and theoretically, via simulations utilizing the DICTRA software. The experimental investigations indicate that the nitrogen-rich precipitates exhibit a slower coarsening behaviour than the carbon-rich precipitates. Analysis using thermodynamic and kinetic modelling shows that this can be explained by the higher thermodynamic stability of the nitrogen-rich precipitate compared to the carbon-rich precipitate. The calculated coarsening rates are compared with the measured rates, and found to be in satisfactory agreement using reasonable values for the interfacial energies. The investigations are motivated by the fine precipitate size distribution of nitrides and carbonitrides characteristic for high nitrogen alloyed tool steels produced by means of powder metallurgy. (orig.)

  9. Grain boundary chemistry and heat treatment effects on the ductile-to-brittle transition behavior of vanadium alloys

    The ductile-to-brittle transition (DBTT) behavior of vanadium alloys currently being developed for fusion power systems is sensitive to thermo-mechanical processing variables and history. Factors which contribute to this sensitivity are (1) pickup of interstitial impurities such as oxygen, nitrogen and carbon during heat treatments and elevated temperature forming operations, (2) the final grain size achieved, (3) removal of impurities from solid solution due to precipitation reactions, and (4) segregation of impurities to grain boundaries. Previous work on a V-5Cr-5Ti (Heat No. 832394) alloy suggested that sulfur segregation or precipitation during final mill annealing may play a role in determining DBTT behavior. The effect of heat treatment on grain boundary chemistry and Charpy impact behavior was investigated using a production-scale heat of V-4Cr-4Ti (Heat No. 832665). Specimens were examined with Auger electron spectroscopy to characterize grain boundary microchemistry for correlation with Charpy impact test results obtained from one-third size specimens. (orig.)

  10. Enhanced erythropoietin and suppression of γ-glutamyl trans-peptidase (GGT) activity in murine lymphoma following administration of vanadium

    Administration of vanadium as ammonium mono-vanadate (0.005 μg/0.1 ml/mouse/day) was found to reduce the tumor cell proliferation in the host mice bearing Dalton's lymphoma. The high activity of γ-glutamyl trans-peptidase (CCT), a neoplastic marker, was seen in the host cells bearing lymphoma. Vanadium effectively prevented an increase in activity of γ-glutamyl trans-peptidase and maintained a sustained low activity of this enzyme. In addition, an improvement of the hematological aspects of the mice and almost fourfold elevation of erythropoietin (Epo) was obtained following vanadium treatment. This in Epo activity may play a vital role in regulating the growth of cellular neoplasia. The present study further confirms the anti-tumorigenic potential of vanadium in the control of tumor progression in lymphoma via modulating several factors involving erythropoiesis and may emerge as a new chemo-preventive agent for the future. (author)

  11. Relationship of microstructure and tensile properties for neutron-irradiated vanadium alloys

    The microstructures in V-15Cr-5Ti, V-10Cr-5RTi, V-3Ti-1Si, V-15Ti-7.5Cr, and V-20Ti alloys were examined by transmission electron microscopy after neutron irradiation at 600 degree C to 21--84 atom displacements per atom in the Materials Open Test Assembly of the Fast Flux Test Facility. The microstructures in these irradiated alloys were analyzed to determine the radiation-produced dislocation density, precipitate number density and size, and void number density and size. The results of these analyses were used to compute increases in yield stress and swelling of the irradiated alloys. The computed increase in yield stress was compared with the increase in yield stress determined from tensile tests on these irradiated alloys. This comparison made it possible to evaluate the influence of alloy composition on the evolution of radiation-damaged microstructures and the resulting tensile properties. 11 refs

  12. Quality assurance of neutron activation analysis of traces of vanadium in workplace air, the environment and human tissues

    The essentiality, distribution and toxicology of vanadium are still areas of ongoing research at the present time. Analytical quality assurance procedures, such as analysis of suitable reference materials (RMs) or comparative analyses using independent analytical techniques, should be extensively applied in these studies in order to elucidate the existing discrepancies and gaps in our knowledge of vanadium levels in the biosphere, environment and especially in human tissues, where vanadium is present at extremely low levels. Results of vanadium determination by instrumental and radiochemical neutron activation analysis at concentrations ranging from less than 0.001 mg/kg to several hundreds of mg/kg in a number of environmental and biological RMs, mostly those recently prepared, are presented. Problems of quality assurance in vanadium related environmental studies are discussed in terms of the availability of suitable matrix and vanadium level matched RMs for the following matrices: workplace and ambient air; soils, sediments and waters; botanical materials; and animal and human tissues. The possibilities of pursuing quality assurance by comparative analyses of the above matrices using independent analytical techniques are briefly evaluated. The need for quality assurance of the pre-analytical stages of the above studies, especially those aimed at establishing normal vanadium values in selected human tissues, is also mentioned. (author)

  13. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin;

    2007-01-01

    Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to...... the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti...... asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine...

  14. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy

  15. Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement

    The structural properties and hydrogen permeation characteristics of ternary vanadium–iron–aluminum (V–Fe–Al) alloy were investigated. To achieve not only high hydrogen permeability but also strong resistance to hydrogen embrittlement, the alloy composition was modulated to show high hydrogen diffusivity but reduced hydrogen solubility. We demonstrated that matching the lattice constant to the value of pure V by co-alloying lattice-contracting and lattice-expanding elements was quite effective in maintaining high hydrogen diffusivity of pure V

  16. ETHYLENE/1-HEXENE COPOLYMERIZATION BY SALICYLALDIMINATO VANADIUM(Ⅲ) COMPLEXES ACTIVATED WITH DIETHYLALUMINUM CHLORIDE

    Ji-qian Wu; Yan-guo Li; Bai-xiang Li; Yue-sheng Li

    2011-01-01

    Mono salicylaldirninato vanadium(Ⅲ) complexes (1a-1f) [RN =CH(ArO)]VCl2(THF)2 (Ar =C6H4 (1a-1e),R =Ph,1a; R =p-CF3Ph,1b; R =2,6-Me2Ph,1c; R =2,6-iPr2Ph,1d; R =cyclohexyl,1e; Ar =C6H2tBu2(2,4),R =2,6-iPr2Plh,1f) and bis(salicylaldiminato) vanadium(Ⅲ) complexes (2a-2f) [RN =CH(ArO)]2VCl(THF)x (Ar =C6H4 (2a-2e),x =1(2a-2e),R =Ph,2a; R =p-CF3Ph,2b; R =2,6-Me2Ph,2c; R =2,6-iPr2Ph,2d; R =cyclohexyl,2e; Ar =C6H2tBu2(2,4),R =2,6-iPr2Ph,x =0,2f) have been evaluated as the active catalysts for ethylene/1-hexene copolymerization in the presence of Et2AlCl.The ligand substitution pattern and the catalyst structure model significantly influenced the polymerization behaviors such as the catalytic activity,the molecular weight and molecular weight distribution of the copolymers etc.The highest catalytic activity of 8.82 kg PE/(mmolv·h) was observed for vanadium catalyst 2d with two 2,6-diisopropylphenyl substituted salicylaldiminato ligands.The copolymer with the highest molecular weight was obtained by using mono salicylaldiminato vanadium catalyst 1f having ligands with tert-butyl at the ortho andpara of the aryloxy moiety.

  17. Thermal oxidation of vanadium-free Ti alloys: An X-ray photoelectron spectroscopy study

    Lopez, Maria Francisca, E-mail: mflopez@icmm.csic.es [Department of Surfaces and Coatings, ICMM-CSIC, Sor Juana Ines de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain); Gutierrez, Alejandro [Departamento de Fisica Aplicada and Instituto Nicolas Cabrera, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Jimenez, Jose Antonio [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Martinesi, Maria; Stio, Maria; Treves, Cristina [Department of Biochemical Sciences of University of Florence, Viale Morgagni 50, 50134 Florence (Italy)

    2010-04-06

    In the present work, X-ray photoelectron spectroscopy (XPS) was used to study the surface chemical composition of three alloys for biomedical applications: Ti-7Nb-6Al, Ti-13Nb-13Zr and Ti-15Zr-4Nb. The surface of these alloys was modified by annealing in air at 750 deg. C for different times with the aim of developing an oxide thick layer on top. The evolution of surface composition with annealing time was studied by XPS, and compared with the composition of the native oxide layer present on the samples before annealing. Two different oxidation trends were observed depending on the alloying elements and their corresponding diffusion kinetics, which give rise to different chemical species at the topmost layers. These results were linked with an evaluation of the biological response of the alloys by bringing them in contact with human peripheral blood mononuclear cells (PBMC).

  18. Thermal oxidation of vanadium-free Ti alloys: An X-ray photoelectron spectroscopy study

    In the present work, X-ray photoelectron spectroscopy (XPS) was used to study the surface chemical composition of three alloys for biomedical applications: Ti-7Nb-6Al, Ti-13Nb-13Zr and Ti-15Zr-4Nb. The surface of these alloys was modified by annealing in air at 750 deg. C for different times with the aim of developing an oxide thick layer on top. The evolution of surface composition with annealing time was studied by XPS, and compared with the composition of the native oxide layer present on the samples before annealing. Two different oxidation trends were observed depending on the alloying elements and their corresponding diffusion kinetics, which give rise to different chemical species at the topmost layers. These results were linked with an evaluation of the biological response of the alloys by bringing them in contact with human peripheral blood mononuclear cells (PBMC).

  19. Transmission measurements of guides for ultra-cold neutrons using UCN capture activation analysis of vanadium

    Frei, A., E-mail: Andreas.Frei@ph.tum.d [Technische Universitaet Muenchen, Physik Department, 85748 Garching (Germany); Schreckenbach, K.; Franke, B.; Hartmann, F.J.; Huber, T.; Picker, R.; Paul, S. [Technische Universitaet Muenchen, Physik Department, 85748 Garching (Germany); Geltenbort, P. [Institut Laue-Langevin, 38042 Grenoble (France)

    2010-01-01

    The efficient transport of ultra-cold neutrons (UCN) from their source to the experimental site is a major issue for various kinds of precision experiments. Neutron guides often have to transport the UCN several tens of meters with acceptable losses. In order to qualify the guides, their UCN transmission properties have to be determined with high precision. For this purpose we have developed a novel method. The transmitted UCN were absorbed at the end of the guide in a vanadium disc producing the {beta}-emitter {sup 52} V (half life 3.74 min). The intensity of the 1434 keV {gamma}-ray following the {beta}-decay was measured. UCN guides of non-magnetic nickel alloys made by the replication technique were studied. They show a high Fermi pseudopotential V{sub F} for UCN and a low surface roughness. For these guides the transmission per meter was determined with a relative error of +-0.6%, resulting in values above 0.95/m. By an absolute calibration of the gamma-ray detection system we also deduced the absolute value of the UCN current absorbed in the vanadium plate. Possible applications of this method are discussed.

  20. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging

  1. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Johnson, W.R.; Smith, J.P.

    1997-08-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging.

  2. Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media

    Mareci, D.

    2009-02-01

    Full Text Available The electrochemical behaviour of Ti6Al4V, Ti6Al3.5Fe and Ti5Al2.5Fe alloys has been evaluated in Ringer’s solution at 25 °C. The effect of the substitution of vanadium in Ti6Al4V alloy has been specifically addressed. The evaluation of the corrosion resistance was carried out through the analysis of the open circuit potential variation with time, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS tests. Very low current densities were obtained (order of nA/cm2 from the polarization curves and EIS, indicating a typical passive behaviour for all investigated alloys. The EIS results exhibited relative capacitive behaviour (large corrosion resistance with phase angle close to –80° and relative high impedance values (order of 105 Ω•cm2 at low and medium frequencies, which are indicative of the formation of a highly stable film on these alloys in Ringer’s solution. In conclusion, the electrochemical behaviour of Ti6Al4V is not affected by the substitution of vanadium with iron.

    El comportamiento electroquímico de las aleaciones Ti6Al4V, Ti6Al3.5Fe y Ti5Al2.5Fe fue evaluado en una disolución Ringer a 25 °C. Se ha estudiado especialmente el efecto de la sustitución del vanadio en la aleación Ti6Al4V. La evaluación de la resistencia a la corrosión se ha llevado a cabo a través del análisis de la variación del potencial de un circuito abierto con el tiempo, las curvas de polarización potenciodinámicas y los ensayos de espectroscopía de impedancia electroquímica (EIS. Se han obtenido densidades de corriente muy bajas (del orden de nA/cm2 en las curvas de polarización y EIS, indicando un comportamiento pasivo típico para todas las aleaciones investigadas. Los resultados de la EIS mostraron un comportamiento capacitivo relativo (gran resistencia a la corrosión con ángulos de fase próximos a –80° y valores de impedancia relativamente altos (del orden de

  3. Experimental investigation and thermodynamic modeling of molybdenum and vanadium-containing carbide hardened iron-based alloys

    Highlights: ► Improvement of a carbide selective extraction method. ► Determination of experimental data on the Fe–C–Cr–Mo–V system for carbides above 900 °C: crystallographic structures and compositions of precipitates, matrix composition. ► High molybdenum solubility in FCC carbides. ► Improvement of thermodynamic databases from experimental results. ► Validation of the optimized database with different compositions steels. -- Abstract: A technique for the microstructural study of steels, based on the use of matrix dissolution to collect the very low number density precipitates formed in martensitic steels, has been considerably improved. This technique was applied to two different grades of alloy, characterized by high nickel and cobalt contents and varying chromium, molybdenum and vanadium contents. The technique was implemented at temperatures ranging between 900 °C and 1000 °C, in order to accurately determine experimental data including the crystallographic structure and chemical composition of the carbides, the carbide solvus temperatures, and variations in the chemical composition of the matrix. These experimental investigations reveal that the solubility of molybdenum in FCC carbides can be very high. These results have been compared with the behavior predicted by computational thermodynamics, and used to evaluate and improve the thermodynamic Matcalc steel database. This upgraded database has been validated on three other steels with different chemical compositions, characterized by the same Fe–Cr–Mo–V–C system

  4. Pseudogap state and strong scattering of current carriers by local spin moments as the mechanisms of appearance of semiconductor properties of almost stoichiometrical iron-vanadium-aluminium alloys

    New experimental data are obtained which substantiate the physical nature of semiconductor properties of Fe2-xV1+x Al alloys with almost stoichiometrical composition (x = 0). We investigated low temperature thermoelectric power of two alloys of characteristic compositions: one alloy, enriched with vanadium, exhibited a pseudogap in the density of states of electrons with Fermi energy and the other one vanadium depleted, more strong influence of the scattering of electrons by localized spins is revealed. The experimental temperature dependences of thermoelectric power at low temperatures displayed characteristic anomalies that were observed for the first time and which in line with our analysis conform to the manifestations the effects above. Using the existing theories, the anomalous contributions of the both effects (types) were interpreted, the parameters, characterizing them have determined and the specific features of their presence in V-depleted and V-enriched alloys have also established. The data for thermoelectric power in magnetic field were obtained. It is found that thermoelectric power decreases considerably with increasing field intensity, confirming the key role of the mechanism of current carrier scattering by localized moments.

  5. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950 degrees C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties

  6. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  7. Measuring and modeling oxygen diffusion in niobium-vanadium and niobium-palladium alloys

    Hennessey, Theresa P.

    Niobium alloys are under consideration for high-temperature aerospace applications, but they have poor oxidation resistance and need high-temperature coatings for protection in severe environments. Our approach to creating an oxidation-resistant Nb alloy is to identify substitutional solute elements that lower the diffusivity of oxygen in Nb. In theory, this will induce a transition from internal to external oxidation and promote the formation of a desirable, protective oxide scale. The objective of this particular project is to compare the oxygen diffusivity in Nb alloys that contain either trap or repulsive sites. In Nb, oxygen atoms diffuse via an interstitial mechanism, and they can interact with substitutional solute atoms in different ways. The interstitial sites adjacent to a substitutional atom constitute a "zone of influence". If the sites in this zone have a lower energy than the normal sites, they are called "trap" sites. If these sites have a higher energy, they are called "repulsive" sites. Oxygen diffusion is inhibited in both cases: trap sites hold the oxygen and keep it from diffusing further, while repulsive sites block the path of the oxygen. Two new mathematical models for interstitial diffusion in these systems were derived from probability and statistical thermodynamic theory. The models were verified using a new random-walk computer simulation of oxygen diffusion through Nb alloys. These models were also tested experimentally by measuring oxygen diffusivity in Nb-V and Nb-Pd alloys. These results showed that V atoms create trap sites for oxygen atoms, confirming previous work. However, there was not enough data to prove definitively that Pd atoms create repulsive sites, as expected by theory.

  8. Development of electrically insulating coatings on vanadium alloys for lithium-cooled blankets

    The self-cooled lithium blanket concept with a vanadium structure offers a potential for high performance with attractive safety and environmental features. Based on blanket design studies, it became apparent that electrically insulating duct walls would be required to reduce the magnetohydrodynamic (MHD) pressure drop for liquid metal-cooled blankets for high magnetic field fusion devices. As a result, development of insulator coatings was recommended as the most appropriate approach for resolving this issue. Oxides such as CaO, Y2O3, BeO, MgO, MgAl2O4, and Y3Al2O12 and nitrides such as AlN, BN and Si3N2 were initially considered potential candidate coating materials. Based on results of scoping studies, CaO and AlN have been selected as primary candidates for further development. Progress on the development of CaO and AlN coatings, including in-situ formation and electrical properties measurements, are summarized in this paper

  9. Density decrease in vanadium-base alloys irradiated in the dynamic helium charging experiment

    Chung, H.M.; Galvin, T.M.; Smith, D.L. [Argonne National Laboratory, Chicago, IL (United States)

    1996-04-01

    Combined effects of dynamically charged helium and neutron damage on density decrease (swelling) of V-4Cr-4Ti, V-5Ti, V-3Ti-1Si, and V-8Cr-6Ti alloys have been determined after irradiation to 18-31 dpa at 425-600{degrees}C in the Dynamic helium Charging Experiment (DHCE). To ensure better accuracy in density measurement, broken pieces of tensile specimens {approx} 10 times heavier than a transmission electron microscopy (TEM) disk were used. Density increases of the four alloys irradiated in the DHCE were <0.5%. This small change seems to be consistent with the negligible number density of microcavities characterized by TEM. Most of the dynamically produced helium atoms seem to have been trapped in the grain matrix without significant cavity nucleation or growth.

  10. Study of in-reactor creep of vanadium alloy in the HFIR RB-12J experiment

    Strain, R.V.; Konicek, C.F.; Tsai, H. [Argonne National Lab., IL (United States)

    1996-10-01

    Biaxial creep specimens will be included in the HFIR RB-12J experiment to study in-reactor creep of the V-4Cr-4Ti alloy at {approx}500{degrees}C and 5 dpa. These specimens were fabricated with the 500-kg, heat (832665) material and pressurized to attain 0, 50, 100, 150, and 200 MPa mid-wall hoop stresses during the irradiation.

  11. Quadrupole interactions in molybdenum base dilute binary vanadium and niobium alloys

    The 95Mo resonance in pure Mo after filing and annealing near 10000C consists entirely of the m = 1/2 → -1/2 transition. Decreased absorption intensity and line broadening caused by solute addition can be understood as a direct result of second order perturbation of the m = 1/2 → -1/2 transition. A/h for 95Mo is roughly 200 Hz for nuclei near either V or Nb in Mo. The data establish the magnitude and the mechanism of the broadening observed in 95Mo when V and Nb are present as minor alloying elements

  12. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel

    Highlights: • Precipitation behavior of (Ti, V)C precipitates was elucidated. • (Ti, V)C precipitation can induce the grain refinement after reheating-quenching process. • Ultra-fine austenite grains with the average size smaller than 5 μm were obtained. • The microstructure transformed from ultra-fine austenite was analyzed. • Excellent mechanical properties were achieved in ultra-fine grained steel. - Abstract: The precipitation behavior of vanadium-rich carbides formed during the reheating processes and its influence on the microstructure and mechanical properties have been systematically investigated in a high strength low alloy martensite steel. It was found that the nano-sized (Ti, V)C particles mainly precipitated during reheating rather than soaking at the austenitization process. For their pinning effect on grain growth, ultra-fine austenite grain with the average size of 3.5 μm formed during holding at 880 °C for 1 h. As the austenitization temperature increased, the prior nano-sized (Ti, V)C coarsened and its volume fraction decreased, which led to increment of austenite grain size. Excellent combined mechanical properties such as tensile strength 1670 MPa, yield strength 1460 MPa, elongation 10% at room temperature and impact energy (Akv) 57 J at −40 °C were obtained in the ultra-fine grained steels. In particular, the low-temperature toughness was improved by grain refinement. The strengthening mechanisms were also investigated by comparing the experimental results with theoretical calculation. The variation of yield strength with the condition of heat treatment was discussed in detail

  13. Results of R and D for lithium/vanadium breeding blanket design

    The self-cooled lithium/vanadium blanket concept has several attractive features for fusion power systems, including reduced activation, resistance to radiation damage, accommodation of high heat loads and operating to temperatures of 650--700 C. The primary issue associated with the lithium/vanadium concept is the potentially high MHD pressure drop experienced by the lithium as it flows through the high magnetic field of the tokamak. The solution to this issue is to apply a thin insulating coating to the inside of the vanadium alloy to prevent the generation of eddy currents within the structure that are responsible for the high MHD forces and pressure drop. This paper presents progress in the development of an insulator coating that is capable of operating in the severe fusion environment, progress in the fabrication development of vanadium alloys, and a summary of MHD testing. A large number of small scale tests of vanadium alloy specimens coated with CaO and AlN have been conducted in liquid lithium to determine the resistivity and stability of the coating. In-situ measurements in lithium have determined that CaO coatings, ∼ 5 microm thick, have resistivity times thickness values exceeding 106 Ω-cm2. These results have been used to identify fabrication procedures for coating a large vanadium alloy (V-4Cr-4Ti) test section that was tested in the ALEX (Argonne Liquid metal Experiment) facility. Similar test sections have been produced in both Russia and the US

  14. DNA-Binding and Topoisomerase-I-Suppressing Activities of Novel Vanadium Compound Van-7

    Xiao-mei Mo

    2012-01-01

    Full Text Available Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal anticancer agents in combination to its low toxicity. Here, we found a vanadium compound Van-7 as an inhibitor of Topo I other than Topo II using topoisomerase-mediated supercoiled DNA relaxation assay. Agarose gel electrophoresis and comet assay showed that Van-7 treatment did not produce cleavable complexes like HCPT, thereby suggesting that Topo I inhibition occurred upstream of the relegation step. Further studies revealed that Van-7 inhibited Topo I DNA binding involved in its intercalating DNA. Van-7 did not affect the catalytic activity of DNase I even up to100 μM. Van-7 significantly suppressed the growth of cancer cell lines with IC50 at nanomolar concentrations and arrested cell cycle of A549 cells at G2/M phase. All these results indicate that Van-7 is a potential selective Topo I inhibitor with anticancer activities as a kind of Topo I suppressor, not Topo I poison.

  15. DNA-Binding and Topoisomerase-I-Suppressing Activities of Novel Vanadium Compound Van-7.

    Mo, Xiao-Mei; Chen, Zhan-Fang; Qi, Xin; Li, Yan-Tuan; Li, Jing

    2012-01-01

    Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal anticancer agents in combination to its low toxicity. Here, we found a vanadium compound Van-7 as an inhibitor of Topo I other than Topo II using topoisomerase-mediated supercoiled DNA relaxation assay. Agarose gel electrophoresis and comet assay showed that Van-7 treatment did not produce cleavable complexes like HCPT, thereby suggesting that Topo I inhibition occurred upstream of the relegation step. Further studies revealed that Van-7 inhibited Topo I DNA binding involved in its intercalating DNA. Van-7 did not affect the catalytic activity of DNase I even up to100 μM. Van-7 significantly suppressed the growth of cancer cell lines with IC(50) at nanomolar concentrations and arrested cell cycle of A549 cells at G2/M phase. All these results indicate that Van-7 is a potential selective Topo I inhibitor with anticancer activities as a kind of Topo I suppressor, not Topo I poison. PMID:23055949

  16. Irradiation-induced precipitation and mechanical properties of vanadium alloys at <430 C

    Chung, H.M.; Gazda, J.; Smith, D.L. [Argonne National Lab., IL (United States)

    1998-09-01

    Recent attention to V-base alloys has focused on the effect of low-temperature (<430 C) irradiation on tensile and impact properties of V-4Cr-4Ti. In previous studies, dislocation channeling, which causes flow localization and severe loss of work-hardening capability, has been attributed to dense, irradiation-induced precipitation of very fine particles. However, efforts to identify the precipitates were unsuccessful until now. In this study, analysis by transmission electron microscopy (TEM) was conducted on unalloyed V, V-5Ti, V-3Ti-1Si, and V-4Cr-4Ti specimens that were irradiated at <430 C in conventional and dynamic helium charging experiments. By means of dark-field imaging and selected-area-diffraction analysis, the characteristic precipitates were identified to be (V,Ti{sub 1{minus}x})(C,O,N). In V-3Ti-1Si, precipitation of (V,Ti{sub 1{minus}x})(C,O,N) was negligible at <430 C, and as a result, dislocation channeling did not occur and work-hardening capability was high.

  17. Microstructure of A γ-α2-β Ti-Al alloy containing iron and vanadium

    Ordered β-phase (B2 CsCl structure) has been identified in a Ti-45.5 at.% Al-1.6 at.% Fe-1.1 at.% V-0.7 at.% B alloy being developed for high temperature applications. Selected area electron diffraction has been used to identify the orientation relationships and interface planes of the β-phase with the bulk γ-TiAl and α2-Ti3Al phases. Energy dispersive X-ray spectroscopy indicates that the β-phase has approximately the same Ti/Al ratio as the α2-Ti3Al phase, and is stabilized within the microstructure by Fe and V. Channeling enhanced microanalysis studies (ALCHEMI) show that the Fe and V both occupy the same sublattice as the Al atoms in the cubic β-phase structure, and that Fe occupies the Al sites in the γ-phase. Fe and V are concentrated in the β-phase, which effectively getters these dopants from the γ and α2 phases. Titanium ferride precipitates, probably FeTi, have been observed within the β-phase

  18. Influence of Ni doping on anti-poison properties of vanadium

    The VNi0.01 alloy was fabricated by induction melting. The VNi0.01 alloy and pure vanadium were poisoned by 0.5% CO2 in deuterium (1.0 MPa) after activation. The deuterium absorption rate of VNi0.01 alloy was faster than that of pure vanadium in the early stage, though it rapidly decreased to zero. After removing the gas by heating and vacuumizing, the pure deuterium was resent to sample chamber with final pressure at 1.0 MPa. The ability of deuterium absorption of VNi0.01 alloy was regenerated as it was fully activated, but the absorption rate of pure vanadium was lower than it was first activated. Besides, the pressure boost property of VNi0.01 alloy was superior to pure vanadium in the temperature range of 300-400 K. It is expected that VNi0.01 alloy could be used in pressure boost chemical bed. The results of these studies will provide a direct basis for application of the material. (authors)

  19. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation

    Pezeshki, Alan M.; Clement, Jason T.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-10-01

    The roundtrip electrochemical energy efficiency is improved from 63% to 76% at a current density of 200 mA cm-2 in an all-vanadium redox flow battery (VRFB) by utilizing modified carbon paper electrodes in the high-performance no-gap design. Heat treatment of the carbon paper electrodes in a 42% oxygen/58% nitrogen atmosphere increases the electrochemically wetted surface area from 0.24 to 51.22 m2 g-1, resulting in a 100-140 mV decrease in activation overpotential at operationally relevant current densities. An enriched oxygen environment decreases the amount of treatment time required to achieve high surface area. The increased efficiency and greater depth of discharge doubles the total usable energy stored in a fixed amount of electrolyte during operation at 200 mA cm-2.

  20. Model of Calculating Activity of Nitrogen and Vanadium in Fe-C-V-N Molten Metal

    PENG Jun; WANG Shi-jun; DONG Yuan-chi; LIU Li-xia; ZHOU Yun; CHEN Er-bao

    2008-01-01

    The solubility of nitrogen in the Fe-C-V-N system was measured at 1 708 K and the model of calculating activity (action concentration) of nitroge.n (N) and vanadium (V) was derived according to the phase diagram and the coexistence theory of the metal melt structure.The solubility expression of nitrogen in the Fe-C-V-N system at 1 708 K was wN=0.058 194-0.010 367WC+0.005 543 4wV.Comparing the computing results with the experimental results,a satisfactory conclusion could be obtained.The analysis of the Fe-C-V-N system using this model showed that VN was present in a high temperature metal melt,which would reduce the action concentration of nitrogen obviously.It was consequently disadvantageous to the removal of nitrogen from hot metal.

  1. 熔融钒渣直接氧化钠化提钒新工艺研究%A New Process for Vanadium Extraction from Molten Vanadium Slag by Direct Oxidation and Sodium Activating Method

    宋文臣; 李宏

    2012-01-01

    To address the problem of heat waste of vanadium slag in the existing vanadium extraction process, a new process is proposed in this paper to extract vanadium from molten vanadium slag by direct oxidation and sodium activating method. On the basis of current vanadium extraction process, the new process was verified by thermodynamic and kinetic calculation and analysis, and then simulation tests were carried out in the laboratory. The results show that with enough heat, vanadium slag can be kept in molten state during the vanadium extraction process. The dynamic conditions of the new process are noticeably better than the existing process. The oxidization rate of vanadium slag is about 90% and vanadium leaching rate can reach 82% or above with enough oxygen and Na2CO3 content at 20% ~ 30% of vanadium slag' weight. Thus, the feasibility of the new process is confirmed by the results.%针对现行钒渣焙烧工艺中存在的钒渣高温物理热的浪费问题,提出“熔融钒渣直接氧化钠化提钒”新工艺.在现行工艺基础上,对新工艺进行了热力学和动力学的计算与分析,最后进行了新工艺的实验室模拟试验.研究结果表明:新工艺条件下,钒渣在反应过程中热量充足会保持良好的熔融状态;新工艺的动力学条件明显优越于现行工艺;实验室试验结果验证了新工艺的可行性,在供氧充足,Na2CO3用量为20%~30%的条件下,钒渣氧化率约为90%,钒浸出率在82%以上.

  2. Individual simultaneous first derivative spectrophotometric determination of copper and vanadium in alloy steels and complex materials with 2-hydroxy-1-naphthaldehydebenzoylhydrazone

    2-Hydroxy-l-naphthaldehydebenzoylhydrazone (OHNABH) reacts with VV and CuII at pH 5.0 forming respectively yellow and green coloured soluble complexes in 30% DMF. The first derivative amplitude measurements show that Beer's law is obeyed in the range 0-7.5μg ml-1 for V at 465 nm and 0-4.5 μg ml-1 for Cu at 443 nm. The sensitivity of the method is greater than the zero order method, and foreign ions like UVI, ThIV, CrVI which interfere in zero order method, do not interfere even in large excess. Vanadium and copper present in a mixture are simultaneous determined without solving the simultaneous equations by measuring the first derivative amplitudes at 412.6 and 430.2 nm for V and Cu, respectively. The method is applied for the determination of Cu in food materials, V in alloy steels, and both V and Cu in chromium-vanadium steel. (author)

  3. Effects of AS-cast and wrought cobalt-chrome-molybdenum and titanium-aluminium-vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    S S Jakobsen

    2007-09-01

    Full Text Available Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo alloys and Titanium-Aluminium-Vanadium (TiAlV alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines [TNF-alpha, IL-6, IL-alpha, IL-1beta, IL-10] and proteins known to induce proliferation [M-CSF], chemotaxis [MCP-1] and osteogenesis [TGF-beta, OPG] were determined by ELISA and Real Time reverse transcriptase - PCR (Real Time rt-PCR. Lactate dehydrogenase (LDH was measured in the medium to asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6 transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77 %, 36 %, and 62 %, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove to be a superior implant material generating less inflammation which might result in less osteolysis.

  4. The Recovery and Recrystallization of the Cold Rolled V-W-Ti Alloys

    CHENJiming; T.Muroga; T.Nagasaka1; XUYing; XUZengyu

    2002-01-01

    Vanadium alloys, especially that of V4Cr4Ti, are supposed as the promising candidate structural material for fusion applications for their good thermal properties, high temperature strength and the inherent low activation characteristics. However, in recent

  5. Tensile properties of vanadium-base alloys irradiated in the Fusion-1 low-temperature experiment in the BOR-60 reactor

    Tsai, H.; Gazda, J.; Nowicki, L.J.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States)

    1998-09-01

    The irradiation has been completed and the test specimens have been retrieved from the lithium-bonded capsule at the Research Institute of Atomic Reactors (RIAR) in Russia. During this reporting period, the Argonne National Laboratory (ANL) tensile specimens were received from RIAR and initial testing and examination of these specimens at ANL has been completed. The results, corroborating previous findings showed a significant loss of work hardening capability in the materials. There appears to be no significant difference in behavior among the various heats of vanadium-base alloys in the V-(4-5)Cr-(4-5)Ti composition range. The variations in the preirradiation annealing conditions also produced no notable differences.

  6. Irradiation effects on 17-7 PH stainless steel, A-201 carbon steel, and titanium-6-percent-aluminum-4-percent-vanadium alloy

    Hasse, R. A.; Hartley, C. B.

    1972-01-01

    Irradiation effects on three materials from the NASA Plum Brook Reactor Surveillance Program were determined. An increase of 105 K in the nil-ductility temperature for A-201 steel was observed at a fluence of approximately 3.1 x 10 to the 18th power neutrons/sq cm (neutron energy E sub n greater than 1.0 MeV). Only minor changes in the mechanical properties of 17-7 PH stainless steel were observed up to a fluence of 2 x 10 to the 21st power neutrons/sq cm (E sub n greater than 1.0 MeV). The titanium-6-percent-aluminum-4-percent-vanadium alloy maintained its notch toughness up to a fluence of 1 x 10 to the 21st power neutrons/sq cm (E sub n greater than 1.0 MeV).

  7. Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis

    Yu, Yu; Li, Pei; Wang, Xiaofang; Gao, Wenyu; Shen, Zongxu; Zhu, Yanan; Yang, Shuliang; Song, Weiguo; Ding, Kejian

    2016-05-01

    Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity.Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity. Electronic supplementary information (ESI) available: More SEM, TEM images, XRD patterns, LSV curves, XPS spectra. See DOI: 10.1039/c6nr02395a

  8. Activity Enhancement of Vanadium Catalysts with Ultrasonic Preparation Process for the Oxidation of Sulfur Dioxide

    Zhenxing Chen; Honggui Li; Lingsen Wang

    2003-01-01

    The effect of ultrasonic cavitations on the activity of vanadium catalysts at low temperatures for the oxidation of sulfur dioxide, in which refined carbonized mother liquor had been added, was investigated.Twenty minutes were needed to produce obvious cavitations when the catalyst raw material was treated in the 50 W ultrasonic generator. However, only 10 minutes would be needed in a 150 W ultrasonic generator.The higher the temperature of the wet material, the less time was needed to produce cavitations, and the optimal temperature was 60 ℃. The water content in the wet material mainly affected the quantity of cavitations. Ls-8 catalyst was prepared using ultrasonic. Its activity for conversion of SO2 reached to 52.5% at 410 ℃ and 4.2% at 350 ℃. The differential thermal analyses indicate that both endothermic peaks and exothermic peaks noticeably shifted forward compared with Ls catalyst prepared without ultrasonic, and SEM results show a uniform pore size distribution for Ls-8 catalyst.

  9. PL and EL properties of Tm-activated vanadium oxide-based phosphor thin films

    The preparation of high-luminance blue emitting Tm-activated multicomponent oxide phosphor thin films is described. The phosphor thin films were deposited on thick BaTiO3 ceramic sheets by r.f. magnetron sputtering using powder targets. A very high photoluminescence (PL) intensity in blue emission could be observed in postannealed Tm-activated gadolinium oxide-vanadium oxide Gd0.5-V0.5-O:Tm thin films prepared using Tm2O3-doped (Gd2O3)0.5-(V2O5)0.5 targets (V2O5 content of 50 mol.%). It should be noted that thin films of this phosphor postannealed at 1100 deg. C in air exhibited higher PL intensity than those from commercially available blue BaMgAl14O23:Eu (BAM) phosphor powder and Gd0.5-V0.5-O:Tm powders. In addition, a Gd0.5-V0.5-O:Tm thin-film electroluminescent device exhibited a blue emission that was the same as the PL emission

  10. Complex steel saturation with niobium and vanadium

    Studies on determining possibility of niobium and vanadium alloying with carbides were conducted. Possibility of simultaneous saturation of carbon steels with niobium and vanadium was established. Diffusion layers coated on surfaces of 45, U8A and U10A steels under different conditions. It is shown that increase of coating density by means of alloying favours the increase of its corrosion resistance in water and aqueous solutions of salt and soda 2 times, wear resistance -1.6-5 times

  11. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries

    Highlights: ► Improved reactions at the positive electrode in all-vanadium redox flow batteries. ► Graphene-derived and PAN-modified electrodes have been successfully prepared. ► Modification with bimetallic CuPt3 nanocubes yielded the best catalytic behavior. ► N and O-containing groups enhances the vanadium flow battery performance. - Abstract: Two strategies for improving the electroactivity towards VO2+/VO2+ redox pair, the limiting process in all-vanadium redox flow batteries (VFBs), were presented. CuPt3 nanoparticles supported onto graphene substrate and nitrogen and oxygen polyacrylonitrile (PAN)-functionalized electrodes materials have been evaluated. The morphology, composition, electrochemical properties of all electrodes prepared was characterized with field emission-scanning electrode microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and cell charge–discharge test. The presence of the CuPt3 nanocubes and nitrogen and oxygen functionalities enhance the electrocatalytic activity of the electrodes materials accelerating the oxygen and electron transfer processes. The battery performance was also evaluated using PAN-functionalized electrodes exhibiting a high of energy efficiency of 84% (at current density 20 mA cm−2) up to 30th cycle, indicating a promising alternative for improving the VFB

  12. Formation of vanadium carbide precipitations at the surface of alloys: Thermodynamics and kinetics aspects; Bildung von Vanadiumcarbid-Ausscheidungen auf Legierungsoberflaechen: Thermodynamische und kinetische Aspekte

    Schneider, A.; Uebing, C. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    The paper describes the formation of vanadium carbides on the surface layers of Fe-3%V-C(100) alloys. The phase diagram calculated for this alloyed material using the ThermoCalc program package reveals a co-existence of ferritic matrix and V{sub 3}C{sub 2} at temperatures of T{<=}650 C. This carbide is instable at elevated temperatures, leading to co-existence of ferrite and the cubic VC{sub 1-x}. Experimental analyses revealed the formation of a 2D VC compound in the top layers of the surface of Fe-3%V-C(100) alloys, induced by equilibrium segregation. The paper explains the usefulness of thermodynamic and kinetic calculations for interpretation of precipitation phenomena in steels. Mathematically derived and experimental results of analyses for the case of non-equilibrium segregation showed excellent agreement in the determination of carbide thickness (nanometer scale) and time dependence of segregation under fast cooling conditions. (orig./CB) [Deutsch] In der vorliegenden Arbeit wurde die Bildung von Vanadiumcarbiden auf Fe-3%V-C(100)-Legierungsoberflaechen beschrieben. Das anhand des ThermoCalc-Programmpakets fuer diese Legierungszusammensetzung berechnete Phasendiagramm zeigt bei niedrigen Temperaturen T{<=}650 C die Koexistenz von ferritischer Matrix und V{sub 3}C{sub 2}. Bei hoeheren Temperaturen ist dieses Carbid instabil und es liegt Koexistenz von Ferrit und dem kubischen VC{sub 1-x} vor. Die experimentellen Untersuchungen zeigen die Ausbildung einer zweidimensionalen VC-Oberflaechenverbindung auf Fe-3%V-C(100)-Legierungsoberflaechen durch Gleichgewichtssegregation. Diese Arbeit zeigt, dass thermodynamische und kinetische Rechnungen bei der Deutung von Ausscheidungsphaenomenen in Staehlen sinnvoll eingesetzt werden koennen. Bei der Nichtgleichgewichtssegregation wurde bezueglich Carbiddicke (im Nanometerbereich) und Zeitabhaengigkeit der Ausscheidung bei schneller Abkuehlung eine hervorragende Uebereinstimmung zwischen Simulation und Experiment gefunden

  13. Vanadium recycling in the United States in 2004

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  14. Improvement of melting technology for vanadium-containing steel by using briquets of direct reduction

    The method of ladle alloying with vanadium is developed for commercial production of high-quality steel. Briquets of vanadium containing converter slag and low cost silicon-vanadium alloying additive 0.5 kg in mass are introduced into a ladle at steel temperature of 1620-1650 deg C in the amount of 2.7-17.0 kg per ton. This method allows vanadium assimilation up to 0.15 %. 5 refs

  15. Results of R and D for lithium/vanadium breeding blanket design

    Mattas, R.F.; Smith, D.L.; Reed, C.B.; Park, J.H. [Argonne National Lab., IL (United States); Kirillov, I.R. [D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Strebkov, Yu.S. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Rusanov, A.E. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation); Votinov, S.N. [A.A. Bochvar Inst. of Non-Organic Materials, Moscow (Russian Federation)

    1997-04-01

    The self-cooled lithium/vanadium blanket concept has several attractive features for fusion power systems, including reduced activation, resistance to radiation damage, accommodation of high heat loads and operating to temperatures of 650--700 C. The primary issue associated with the lithium/vanadium concept is the potentially high MHD pressure drop experienced by the lithium as it flows through the high magnetic field of the tokamak. The solution to this issue is to apply a thin insulating coating to the inside of the vanadium alloy to prevent the generation of eddy currents within the structure that are responsible for the high MHD forces and pressure drop. This paper presents progress in the development of an insulator coating that is capable of operating in the severe fusion environment, progress in the fabrication development of vanadium alloys, and a summary of MHD testing. A large number of small scale tests of vanadium alloy specimens coated with CaO and AlN have been conducted in liquid lithium to determine the resistivity and stability of the coating. In-situ measurements in lithium have determined that CaO coatings, {approximately} 5 {micro}m thick, have resistivity times thickness values exceeding 10{sup 6} {Omega}-cm{sup 2}. These results have been used to identify fabrication procedures for coating a large vanadium alloy (V-4Cr-4Ti) test section that was tested in the ALEX (Argonne Liquid metal Experiment) facility. Similar test sections have been produced in both Russia and the US.

  16. In Vitro Antitumor Activity of a Keggin Vanadium-Substituted Polyoxomolybdate and Its ctDNA Binding Properties

    2015-01-01

    A Keggin vanadium-substituted polyoxomolybdate, K5PMo10V2O40 (PMo10V2), has been synthesized and it’s antitumor effect against Hela cells was investigated. The calf thymus DNA (ctDNA) binding ability of PMo10V2 was also evaluated by UV-Vis absorption spectra and fluorescence spectra. The identity and high purity of PMo10V2 was confirmed by elemental analysis and IR analysis. And the antitumor activity test of PMo10V2 was carried out on Hela cancer cells line by MTT assay. The results of MTT ...

  17. Vanadium Oxide Supported on MSU-1 as a Highly Active Catalyst for Dehydrogenation of Isobutane with CO2

    Guosong Sun; Qingze Huang; Shiyong Huang; Qiuping Wang; Huiquan Li; Haitao Liu; Shijie Wan; Xuewang Zhang; Jinshu Wang

    2016-01-01

    Vanadium oxide supported on MSU-1, with VOx loading ranging from 2.5 to 17.5 wt. %, was developed as a highly active catalyst in dehydrogenation of isobutane with CO2. The obtained catalysts of VOx/MSU-1 were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and H2-temperature programmed reduction (H2-TPR) methods and the results showed that the large surface area of MSU-1 was favorable for the dispersion of VOx species and the optimal loading of VOx was 12.0 wt. %. Meanwhil...

  18. The rapid determination of manganese, vanadium, and aluminium by instrumental neutron-activation analysis

    Aluminium, manganese, and vanadium were determined in chromuim, ferrochromium, and slags. Because of the short-lived isotopes produced, the technique is rapid, and the total analysis time per sample is 15 minutes. The reproducibility is 3 to 4 per cent, and this value can be improved by certain modifications, particularly to the irradiation facilities. A similar method could be applied to on-line or in-plant analysis if an isotopic source of neutrons were used

  19. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide ∼800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding

  20. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-10-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide {approximately}800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding.

  1. Synthesis and characterization of vanadium doped SnO{sub 2} diluted magnetic semiconductor nanoparticles with enhanced photocatalytic activities

    Mazloom, J. [Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 413351914, Rasht (Iran, Islamic Republic of); Ghodsi, F.E., E-mail: feghodsi@guilan.ac.ir [Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 413351914, Rasht (Iran, Islamic Republic of); Golmojdeh, H. [Department of Chemistry, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 413351914, Rasht (Iran, Islamic Republic of)

    2015-08-05

    Highlights: • Pure and V-doped SnO{sub 2} nanoparticles were synthesized using a facile sol–gel route. • The V{sup 4+} ions were incorporated into the SnO{sub 2} lattice and located at the Sn{sup 4+} sites. • TEM images reveled that by increasing the doping content, average grain size decreased. • We show that the V-doped SnO{sub 2} is more photoactive than undoped SnO{sub 2}. • The V-doped SnO{sub 2} nanoparticles exhibited ferromagnetism at room temperature. - Abstract: Vanadium doped SnO{sub 2} nanoparticles were synthesized by a facile sol–gel method. Different analytical techniques including TG/DTG, XRD, XPS, VSM and PL were used to investigate the influence of dopant concentration on structural, morphological, compositional, magnetic and optical properties of prepared nanoparticles. The XRD study showed a dominant tetragonal structure. The X-ray photoelectron spectroscopy proved the presence of vanadium as V{sup 4+} species. TEM image revealed that particle size decrease by doping. It was found that room temperature ferromagnetic (RTFM) behavior is strongly dependent on vanadium dopant content and the magnetic saturation dropped rapidly with increasing V content, which can be explained reasonably through bound magnetic polaron (BMP) model. A quenching in green luminescence intensity was observed in V-doped SnO{sub 2} compared to undoped sample. The 5% V-doped SnO{sub 2} sample showed better photocatalytic activity than undoped one in decomposing methylene blue and rhodamine B.

  2. Neutron activation analysis of zirconium niobium alloys

    Full text: One of the important problems in nuclear reactor projecting is the choice of constructional materials, which meet to the requirements concerned with function, technical characteristics and expected performance of the reactor construction. Also it is necessary to take into account change of their properties under the influence of intensive neutron radiation. Zirconium and zirconium-niobium alloys are used in nuclear engineering as a fuel cladding and both matrix and impurity composition have an influence on their performance capabilities.Under intensive neutron radiation high content of undesirable trace elements in constructional materials can cause forming long-lived radionuclides with high induced activity and hence severe problems may occur at service, control of the equipment and carrying out experiments. Therefore analytical control of component and impurity composition of these materials is an important problem.Neutron activation analysis (NAA) is one of multielemental and high sensitivity methods, which widely applied for the analysis of high purity materials. Prior experiments have shown that instrumental NAA is not suitable for analysis of Zr-Nb alloys due to strong induced matrix activity. Therefore we have developed radiochemical procedure for separation of impurities from matrix elements. Study of the literature data has shown that zirconium and niobium are good extracted from hydrochloric medium by 0 75 M solution of di-2-ethylhexylphosphoric acid (DEHPA) in ortho-xylene. Also this system good extracts hafnium which being accompanying element has high content and interferes with determining impurity elements. To improve separation efficiency we have used 'DEHPA - ZM HCl' chromatography system. On the basis of the carried out researches the radiochemical NAA technique for analysis of high purity zirconium and zirconium-niobium alloys has been developed. The technique is based on extraction-chromatographic separation of matrix radionuclides

  3. Development of irradiation capsules in liquid metal environment in Joyo and their application to irradiation creep measurement of vanadium alloys

    In order to perform irradiation experiments in a liquid metal environment in a nuclear reactor, an irradiation technique with sodium bonding irradiation capsules was developed and a series of neutron irradiation experiments with sodium bonding irradiation capsules were performed in Joyo. The design and fabrication of sodium bonding capsules, sodium filling into capsules, capsule loading to Joyo, irradiation experiments, dismantling for irradiated capsules, removing the irradiated specimens from sodium-filled capsules, and sodium cleaning of the irradiated specimens were established through this study. Using the Joyo irradiation with the sodium bonding capsules where irradiation temperature was distributed uniformly, the irradiation creep experiment for highly purified V-4Cr-4Ti alloys, NIFS-Heat, was carried out and the knowledge about the irradiation creep behavior of the alloys was obtained. (author)

  4. Tensile and impact properties of vanadium-base alloys irradiated at low temperatures in the ATR-A1 experiment

    Tsai, H.; Nowicki, L.J.; Billone, M.C.; Chung, H.M.; Smith, D.L. [Argonne National Lab., IL (United States)

    1998-03-01

    Subsize tensile and Charpy specimens made from several V-(4-5)Cr-(4-5)Ti alloys were irradiated in the ATR-A1 experiment to study the effects of low-temperature irradiation on mechanical properties. These specimens were contained in lithium-bonded subcapsules and irradiated at temperatures between {approx}200 and 300 C. Peak neutron damage was {approx}4.7 dpa. Postirradiation testing of these specimens has begun. Preliminary results from a limited number of specimens indicate a significant loss of work-hardening capability and dynamic toughness due to the irradiation. These results are consistent with data from previous low-temperature neutron irradiation experiments on these alloys.

  5. Preparation and electrochemical activities of iridium-decorated graphene as the electrode for all-vanadium redox flow batteries

    This study reports the preparation of iridium-decorated graphene (Ir-G) as an electrode material for an all-vanadium redox flow battery (VRB) by synchronously reducing graphite oxide (GO) and iridium chloride hydrate (IrCl3·3H2O). X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution X-ray photoelectron spectroscopy (XPS) were employed to characterize the physicochemical properties of Ir-G. Cyclic voltammetry (CV) was used to measure the electrochemical behaviors of the Ir-G for the VRB system. In addition, this study investigated and compared the electrochemical behaviors of graphene with those of Vulcan XC-72. The Ir nanoparticles were exclusively deposited on graphene surface with high uniformity and a mean size of 3 nm. The CV results reveal that Ir-G possesses a highly electrocatalytic activity and reversibility among all samples. In addition, the redox current densities of Ir-G are approximately four times higher than those of XC-72. The large electrolyte-accessible surface area and intense affinity of Ir/vanadium-oxygen ions that facilitate electronic and ionic transport contribute to these improvements. Therefore, this study proposes a synchronous reduction method for preparing an Ir-G electrode that exhibits excellent electrocatalytic performance, thereby demonstrating significant improvements in VRB applications.

  6. Assimilation characteristics of vanadium ferroalloys in liquid steel

    The assimilation characteristics of various vanadium ferroalloys were identified in a ''dynamic way'' using the load cell technique. The ferrovanadium alloys which have a vanadium content less than 68 wt % belong to class 1 ferroalloys. They utilize a melting mechanism during their assimilation in liquid steel. The ferrovanadium alloys which have a vanadium content greater than 68 wt % belong to class 2 ferroalloys. These follow a dissolution mechanism during their assimilation in liquid steel. Their mass transfer kinetics is at least seven times slower than the previously mentioned ferrovanadium alloys

  7. Vanadium and zirconium effects on rolling and recrystallization texture and on Young modulus anisotropy in Ti-V and Ti-Zr alloys

    Using the method of building the direct pole figures [0002] and [10 anti 10] formation of cold rolling texture and the change of the main orientations during heat treatment of different alloys Ti-V and Ti-Zr are studied. Evaluation of Young modulus anisotropy is made. It is shown that cold rolling forms monocomponent texture in the alloys, and when Zr content is above 45% - a two-component one. Texture distinctness and increase of Young modulus anisotropy during annealings are connected with the active proceeding of polygonization processes

  8. Comparison of hypoglycemic activity of fermented mushroom of Inonotus obliquus rich in vanadium and wild-growing I. obliquus.

    Zhang, Yibing; Zhao, Yong; Cui, Haifeng; Cao, Chunyu; Guo, Jianyou; Liu, Sha

    2011-12-01

    The effects of vanadium-enriched and wild Inonotus obliquus were tested on hyperglycemic mice. The vanadium content of the culture medium was 0.6%, reaching a concentration of 3.0 mg/g in the cultured mushroom while in the wild variety is 1/100 of that amount. The toxicity of vanadium at the 3.0 mg/g level is negligible, but its anti-diabetic effects are significantly different to those of the wild variety (p obliquus could be used as a means of vanadium supplementation, with expectation of obtaining higher bioavailability and lower toxicity in animals. PMID:21465283

  9. FIA versatile system for spectrophotometric determinations of vanadium and molybdenum exploring the catalytic activities of V(V) and Mo(VI)

    A versatile system for chemical analysis by flow injection analysis was developed and applied for catalytic spectrophotometric determination of vanadium or molybdenum in metallic alloys. The selected methods were based upon indicator reactions chromotropic (CS)-bromate acid or hydrogen iodide-peroxide, respectively. Initially, a model system was proposed, in which common parameters for methods were studied. This included a re-sampling process in which high degrees of samples dilution were obtained. Other parameters such as concentrations and reagents addition order, reaction medium Ph, temperature and ionic power, as well as procedures for sample solubilization, were studied relating to each method. A mini-column with cationic exchanger resin (Dowex 50W-X8, 50-100 mesh, H+ form) was used. The system for vanadium determination processes 120 samples by hour, consuming 2,0 mg CS and 10 mg K Br O3by determination. Concerning the method for molybdenum, the reagents consumption was 2,0 mg KI and 1,0 μL of solution 30% H2O2 by determination, since the analytic velocity was the same, in relation to vanadium

  10. Selective determination of vanadium using N-benzoyl-N-phenylhydroxylamine

    Technique for selective spectrophotometric vanadium determination in alloys after extraction by chloroform of vanadium (5) complexes with N-benzoyl-N-phenylhydroxylamine from phosphoric acid solutions was developed. Low boundary of determination on sample dissolving ∼1 h. Effect of the nature of mineral acids and aliphatic alcohols on spectrophotometric characteristics of complexes was investigated

  11. Revealing the low-temperature effect of strengthening the magnetism of iron-vanadium-aluminum alloy upon small variation of the non-transition element content in the stoichiometric composition

    Lonchakov, A. T.; Marchenkov, V. V.; Okulov, V. I.; Govorkova, T. E.; Okulova, K. A.; Bobin, S. B.; Deryushkin, V. V.; Emel'yanova, S. M.; Usik, A. Yu.; Weber, H. W.

    2016-03-01

    Anomalously strong change of ferromagnetic ordering parameters upon a small variation of aluminum content was revealed in low-temperature experimental studies of electrical resistivity and galvanomagnetic properties of iron-vanadium-aluminum magnetic alloys with the compositions near the stoichiometric Fe2VAl. By comparing the temperature and magnetic field dependences of the electrical resistivity and Hall effect in Fe2.1V0.91Al0.99 and Fe2.05V0.91Al1.04 alloys, it was shown that a small increase of aluminum content leads to doubling of the Curie temperature and a sharp change in the temperature dependences of the magnetoresistance and saturation of the spontaneous magnetization.

  12. Behaviour of Al2O3 scales on Fe-Al and Fe-Ni-Al alloys with small additions of titanium, zirconium, niobium and vanadium on thermal cycling and creep in oxidizing and carburizing atmospheres

    Aluminium as an alloying element in steels is beneficial for the formation of slow-growing oxide layers at high temperatures. Steels with aluminium as the oxide former are of interest for use in carburizing atmospheres with low O2 partial pressures, e.g. coal gasification or the high temperature nuclear reactor. The behaviour of Al2O3 layers on ferritic and austenitic steels with small additions of titanium, zirconium, niobium and vanadium was studied by measuring radiocarbon penetration in thermal cycling and creep experiments. The oxide layers on the ferritic steels adhered well and were compact with a high carburization resistance. In the creep tests on the austenitic alloys, cracking of the oxide layer and subsequent intergranular oxidation and carburization were observed. (orig.)

  13. Composite Nickel Coatings Produced on 6XXX Series Aluminium Alloys with the Addition of Vanadium / Kompozytowe Powłoki Niklowe Wytwarzane Na Stopach Aluminum Serii 6XXX Z Dodatkiem Wanadu

    Nowak M.

    2015-12-01

    Full Text Available Studies of composite nickel coatings electrolytically deposited on aluminium alloys with different content of vanadium were described. Composite coatings were deposited from a Watts bath containing fine-dispersed SiC powder particles in an amount of 20 g/l and organic matters such as saccharin and sodium laurate. The morphology, structure and thickness of the obtained composite coatings were presented. The corrosion resistance of produced coatings was examined by electrochemical method. Basing on the results of studies it was found that coatings obtained with the sole addition of saccharin were characterized by numerous surface defects. The addition of sodium laurate eliminated the occurrence of defects caused by hydrogen evolution and the resulting coatings were continuous with good adhesion to the substrate. The distribution of the ceramic SiC phase in coatings was fairly uniform for all the examined variants of aluminium alloys. SEM examinations did not reveal the phenomenon of the ceramic particles agglomeration.

  14. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N+ clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N+ clusters decreases as the N increases, and it is higher than that of (V 2O5)N+ for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N+ (N = 2–6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion

  15. Vanadium in soils

    Larsson, Maja A

    2014-01-01

    Vanadium is a redox-sensitive metal that is released to soils by weathering and anthropogenic emissions. Swedish metallurgical slags are naturally high in vanadium and used as soil amendments and in road materials. However, understanding of vanadium chemistry and bioavailability in soils is limited. The aim of this thesis was to provide knowledge of vanadium in soils in terms of sorption, toxicity and speciation, in order to enable improved environmental risk assessments. Vanadium sorption to...

  16. Vanadium carbide coatings: deposition process and properties

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 oC. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  17. Methane Activation Mediated by a Series of Cerium-Vanadium Bimetallic Oxide Cluster Cations: Tuning Reactivity by Doping.

    Ma, Jia-Bi; Meng, Jing-Heng; He, Sheng-Gui

    2016-04-18

    The reactions of cerium-vanadium cluster cations Cex Vy Oz (+) with CH4 are investigated by time-of-flight mass spectrometry and density functional theory calculations. (CeO2 )m (V2 O5 )n (+) clusters (m=1,2, n=1-5; m=3, n=1-4) with dimensions up to nanosize can abstract one hydrogen atom from CH4 . The theoretical study indicates that there are two types of active species in (CeO2 )m (V2 O5 )n (+) , V[(Ot )2 ](.) and [(Ob )2 CeOt ](.) (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size-dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2 )m (V2 O5 )n (+) clusters falls between those of (CeO2 )2-4 (+) and (V2 O5 )1-5 (+) in terms of C-H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping. PMID:26714587

  18. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides.

    Ding, Xun-Lei; Wang, Dan; Wu, Xiao-Nan; Li, Zi-Yu; Zhao, Yan-Xia; He, Sheng-Gui

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N(+) clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N(+) clusters decreases as the N increases, and it is higher than that of (V 2O5)N(+) for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N(+) (N = 2-6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion. PMID:26429016

  19. 钒合金与钢异种材料焊接研究现状分析%Research status analysis on welding technology of vanadium alloy to steel

    王亚荣; 滕文华; 杨家林; 余洋

    2012-01-01

    The research status of welding technology of vanadium alloy to steel was summarized by taking the brazing, pressure welding and fusion welding as the main study body. The present results show that the oxidation film on the material surface and the brittle intermetallic compounds formed in the welding process are the key factors to influence the joint properties. The effective solution methods were proposed. It was found that the proper filler materials such as Au -Ni, V, Nd, and so on exhibit good wettability with vanadium alloy on stainless steel, which help to improve the weld quality. The metallurgical bonded joints were developed by several solid - state joining, such as explosive welding or friction welding. In order to minimize the formation of intermetallics, the reaction between liquid metal and solid metal can be precisely controlled by brazing the stainless steel with the lower melting point to the vanadium alloy with higher melting point.%以钎焊、压焊和熔焊为研究主体,综述了钒合金与钢的连接技术研究进展.现有的研究成果表明,钒合金与钢的连接存在着很大的难度,材料表面氧化膜、结合界面形成的脆性金属间化合物是影响接头性能的关键.解决的有效途径是:选择合适的中间层材料,如Au-Ni,V,Nb等,可以很好地润湿钒合金与钢以提高接头性能;采用爆炸焊或摩擦焊的固相连接手段,避免金属的熔化;采用熔化低熔点金属润湿-钎接高熔点金属的方法精确控制材料之间的反应,将产生金属间化合物的可能性降至最低,以实现异种金属间的可靠连接.

  20. Vanadium Oxide Supported on MSU-1 as a Highly Active Catalyst for Dehydrogenation of Isobutane with CO2

    Guosong Sun

    2016-03-01

    Full Text Available Vanadium oxide supported on MSU-1, with VOx loading ranging from 2.5 to 17.5 wt. %, was developed as a highly active catalyst in dehydrogenation of isobutane with CO2. The obtained catalysts of VOx/MSU-1 were characterized by X-ray diffraction (XRD, N2 adsorption-desorption, and H2-temperature programmed reduction (H2-TPR methods and the results showed that the large surface area of MSU-1 was favorable for the dispersion of VOx species and the optimal loading of VOx was 12.0 wt. %. Meanwhile, the catalytic activity of VOx/MSU-1 was investigated, and VOx/MSU-1 with 12.0 wt. % VOx content was found to be the best one, with the conversion of isobutane (58.8% and the selectivity of isobutene (78.5% under the optimal reaction conditions. In contrast with the reaction in the absence of CO2, the presence of CO2 in the reaction stream could obviously enhance the isobutane dehydrogenation, which raised the conversion of reaction and the stability of VOx/MSU-1.

  1. Study on Determination Method of Nitrogen in Vanadium-Nitrogen Alloy with Nitrogen Oxygen Meter%氮氧仪测定钒氮合金中氮的方法研究

    程张生; 张亚红; 侯社林; 郭少毅

    2014-01-01

    Using the EMGA-800/SP nitrogen oxygen analyzer , adding tin-nickel fluxing agent , adopting the impulse-heat-ing and thermal conductivity method , rapid analysis method of nitrogen in vanadium-nitrogen alloy was developed with measuring range:1.00%~20.00%.The method is simple in operation , accurate in data .The relative standard deviation is RSD≤1%.%利用EMGA-800W/SP氮氧分析仪,添加锡-镍助熔剂,采用脉冲加热-热导法研制了钒氮合金中氮的快速分析方法。测量范围:1.00%~20.00%。该方法操作简便,数据准确。相对标准偏差RSD≤1%。

  2. Spectrophotometric determination of vanadium after extraction as vanadium(III) picolinate.

    Yatirajam, V; Arya, S P

    1979-01-01

    Vanadium(V) is conveniently reduced by sodium dithionite to vanadium(III) which is extracted as its picolinate complex into chloroform. Vanadium is determined spectrophotometrically by measuring the absorbance of the complex at 385 nm against a reagent blank, Beer's law being obeyed over the range 1-50 microg/ml. The method is one of the most selective, being free from interference by relatively high concentrations of almost all the important elements, titanium, chromium, manganese, iron, cobalt, nickel, zinc, copper, aluminium, molybdenum, tungsten and uranium, found in industrial alloys. Only bismuth interferes. The method is quite simple and rapid. It has been successfully applied for the analysis of vanadium in a variety of samples. PMID:18962377

  3. Activation of Janus kinase/signal transducers and activators of transcription pathway involved in megakaryocyte proliferation induced by vanadium resembles some aspects of essential thrombocythemia.

    Gonzalez-Villalva, Adriana; Piñon-Zarate, Gabriela; Falcon-Rodriguez, Carlos; Lopez-Valdez, Nelly; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; Rendon-Huerta, Erika; Colin-Barenque, Laura; Fortoul, Teresa I

    2016-05-01

    Vanadium (V) is an air pollutant released into the atmosphere by burning fossil fuels. Also, it has been recently evaluated for their carcinogenic potential to establish permissible limits of exposure at workplaces. We previously reported an increase in the number and size of platelets and their precursor cells and megakaryocytes in bone marrow and spleen. The aim of this study was to identify the involvement of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway and thrombopoietin (TPO) receptor, and myeloproliferative leukemia virus oncogene (Mpl), in megakaryocyte proliferation induced by this compound. Mice were exposed twice a week to vanadium pentoxide inhalation (0.02 M) and were killed at 4th, 6th, and 8th week of exposure. Phosphorylated JAK2 (JAK2 ph), STAT3 (STAT3 ph), STAT5, and Mpl were identified in mice spleen megakaryocytes by cytofluorometry and immunohistochemistry. An increase in JAK2 ph and STAT3 ph, but a decrease in Mpl at 8-week exposure was identified in our findings. Taking together, we propose that the morphological findings, JAK/STAT activation, and decreased Mpl receptor induced by V leads to a condition comparable to essential thrombocythemia, so the effect on megakaryocytes caused by different mechanisms is similar. We also suggest that the decrease in Mpl is a negative feedback mechanism after the JAK/STAT activation. Since megakaryocytes are platelet precursors, their alteration affects platelet morphology and function, which might have implications in hemostasis as demonstrated previously, so it is important to continue evaluating the effects of toxics and pollutants on megakaryocytes and platelets. PMID:24442345

  4. Activation of vanadium-based Ziegler-Natta catalysts by halocarbons for ethylene polymerization: results and mechanism

    The reactions for the low productivity of the heterogeneous and homogenous V-based catalysts in the synthesis of LLDPE were discussed and some routes of improving their activity and stability were proposed. Ethylene polymerizations were performed in the isododecane solutions at 160 C and under constant ethylene pressure of 5 bars. One Ti-based catalytic system (TiCl3 - 0.3 AlCl3) and two V-based systems (TiCl3 - 0.3 AlCl3 and VCl4) were investigated. The main reason of activity loss is a rapid reduction of V4+ and V3+ to inactive V2+ form. AlR3 cocatalysts are also involved in the deactivation process. The effect of addition to the system of various alkyl halides (a.o. of CCl4, CH3Cl3, CF3CCCl3, CHCl3, CHBr3, CH2Cl2, CH2BrCl and CH2Br2) on the yield of polyethylene was investigated. The alkyl halides act as efficient activators for the heterogeneous and homogeneous vanadium catalysts in the high temperature ethylene polymerization and its copolymerization with 1-hexane. The effect of the presence of CHCl3 on the short chain branching and the molecular weight distribution (GPC) of these copolymers was also investigated. Halocarbons do not act as chain transfer agents. The peak molecular weight remains almost unchanged but a narrowing of molecular weight distribution is observed due to the suppression of the amount of high-molecular-weight fraction in polymer. (author). 4 refs, 3 figs, 2 tabs

  5. Effect of the composition of Ti alloy on the photocatalytic activities of Ti-based oxide nanotube arrays prepared by anodic oxidation

    Tang, Dingding, E-mail: 13396064706@163.com [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang, Yixin, E-mail: 821314137@qq.com [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Zhao, Yuwei, E-mail: 412494599@qq.com [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Yang, Yijia, E-mail: newyang214@126.com [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Zhang, Lieyu, E-mail: zhanglieyu@163.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Mao, Xuhui, E-mail: clab@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China)

    2014-11-15

    Highlights: • Effect of Ti alloy composition on the properties of TiO{sub 2} nanotube arrays is studied. • Al and V decrease the growth rate of nanotube arrays and deteriorate the performance. • Nanotube arrays derived from Ti–0.2Pd alloy exhibit enhanced photocatalytic activity. • Nanotube arrays derived from Ti–0.2Pd alloy have preferable stability. • Anodization of Ti alloys provides a way to prepare high-performance doped titania. - Abstract: Three types of Ti-based oxide nanotube arrays are prepared by anodic oxidation of pure Ti and Ti alloys (Ti–0.2Pd and Ti–6Al–4V) in the glycol–2 wt% H{sub 2}O–0.3 wt% NH{sub 4}F solution. The nanotube arrays are characterized by a series of techniques, including SEM, TEM, EIS, XRD, EDS, ICP, XPS and UV–vis DRS, to elucidate the effect of alloying elements on the properties of titania nanotube arrays. The results suggest that aluminium and vanadium elements greatly slow down the growth rate and therefore decrease the yield of nanotube arrays. Al and V deteriorate the photoreactivity of the resultant nanotube arrays. The palladium inside the Ti–0.2Pd alloy-derived nanotube arrays cannot be detected by EDS or XPS, but is quantitatively determined by ICP analysis. Incorporation of Pd significantly improves the photocatalytic activity of the resultant titania nanotube arrays powder. The presence of Pd element not only enhances the light absorption, but also facilitates the separation of photogenerated charge carriers. The uniform doping of Pd into the microstructure endows nanotube arrays with resistance to sulphur poison and preferable stability for organic degradation. This study suggests that anodization of Ti alloys, rather than pure Ti metal, allows to produce micron-sized high-performance photocatalysts for environmental and energy applications.

  6. Effect of the composition of Ti alloy on the photocatalytic activities of Ti-based oxide nanotube arrays prepared by anodic oxidation

    Highlights: • Effect of Ti alloy composition on the properties of TiO2 nanotube arrays is studied. • Al and V decrease the growth rate of nanotube arrays and deteriorate the performance. • Nanotube arrays derived from Ti–0.2Pd alloy exhibit enhanced photocatalytic activity. • Nanotube arrays derived from Ti–0.2Pd alloy have preferable stability. • Anodization of Ti alloys provides a way to prepare high-performance doped titania. - Abstract: Three types of Ti-based oxide nanotube arrays are prepared by anodic oxidation of pure Ti and Ti alloys (Ti–0.2Pd and Ti–6Al–4V) in the glycol–2 wt% H2O–0.3 wt% NH4F solution. The nanotube arrays are characterized by a series of techniques, including SEM, TEM, EIS, XRD, EDS, ICP, XPS and UV–vis DRS, to elucidate the effect of alloying elements on the properties of titania nanotube arrays. The results suggest that aluminium and vanadium elements greatly slow down the growth rate and therefore decrease the yield of nanotube arrays. Al and V deteriorate the photoreactivity of the resultant nanotube arrays. The palladium inside the Ti–0.2Pd alloy-derived nanotube arrays cannot be detected by EDS or XPS, but is quantitatively determined by ICP analysis. Incorporation of Pd significantly improves the photocatalytic activity of the resultant titania nanotube arrays powder. The presence of Pd element not only enhances the light absorption, but also facilitates the separation of photogenerated charge carriers. The uniform doping of Pd into the microstructure endows nanotube arrays with resistance to sulphur poison and preferable stability for organic degradation. This study suggests that anodization of Ti alloys, rather than pure Ti metal, allows to produce micron-sized high-performance photocatalysts for environmental and energy applications

  7. Experimental study on activating welding for aluminum alloys

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  8. Superficial effects during the activation of zirconium AB2 alloys

    The activation of zirconium nickel alloys with and without the addition of chromium and titanium is investigated through electrochemical and optical techniques.These alloys show high hydrogen absorption capacity and are extensively used in metal hydride batteries.Recent investigations in aqueous 1 M KOH indicate oxide layer growth and occlusion of hydrogen species in the alloys during the application of different cathodic potential programmes currently used in the activation process.In this research several techniques such as voltammetry, ellipsometry, energy dispersive analysis of X-rays EDAX, and scanning electron microscopy SEM are applied on the polished massive alloy Zr1-xTix, x=0.36 y 0.43, and Zr1-xTixCrNi, x=0.1,0.2 y 0.4.Data analysis shows that the stability, compactness and structure of the passive layers are strongly dependent on the applied potential programme.The alloy activation depends on the formation of deepen crevices that remain after a new polishing. Microscopic observation shows increase in the crevices thickness after the cathodic sweep potential cycling, which produces fragmentation of the grains and oxide growth during the activation process.This indicates metal breaking and intergranular dissolution that take place together with oxide and hydride formation.In some cases the resultant crevice thickness is one or two orders higher than that of the superficial oxide growth indicating intergranular localised corrosion

  9. Titanium and vanadium ethylene polymerization catalysts containing tris(pyrazolyl)borate ligand: Effects of polymerization parameters on activity and polymer properties

    The ethylene polymerization behavior of a series of titanium(IV) and vanadium(V) complexes, [Tp'MXCl2] (1, M= Ti, Tp'= TpMs*, X = Cl; 2, M Ti, Tp'= TpMs, X = Cl; 3, M = V, Tp'= TpMs*, X = NtBu; 4, M = V, Tp'TpMs*, X = NAr) (TpMs*HB(3-mesityl-pyrazolyl)2(5-mesityl-pyrazolyl), TpMs HB(3-mesityl-pyrazolyl)3, Ar = 2,6-iPr2-C6 H3) was investigated in toluene or hexane using MAO or TiBA/MAO (1:1) as activators, and varying the polymerization temperature. The polymerization results showed that independently of the catalysts precursors used in the polymerization run, higher activities were found using TiBA/MAO/hexane system. For titanium species, the maximum catalytic activities were reached at 60 deg C while for vanadium ones the highest activities were attained at 30 deg C. Studies related to the influence of the [Al]/[M] molar ratio (M = Ti, V) have shown that these catalyst precursors presented highest activities using Al concentrations as low as 50:1. DSC curves showed the production of linear polyethylene with melting temperature in the range of 123-140 deg C. The viscosity average molecular weights of the polyethylenes are in the range of 7 x 103-16.4 x 106 g mol-1. (author)

  10. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    1997-01-01

    A mixt. of metallic iron particles and vanadium pentoxide contg. V in its pentavalent state in a liq. is reacted to convert at least some of the pentavalent V to its tetravalent state and form a gel. The liq. phase is then sepd. from the oxide based gel to obtain a solid material(I) comprising Fe......, V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge and...

  11. Delayed Fracture Behavior of CrMo Type High Strength Steel Containing Vanadium

    HUI Wei-jun; DONG Han; WENG Yu-qing

    2003-01-01

    The effect of microalloying element vanadium on hydrogen-induced delayed fracture behavior of quenched and tempered low alloy CrMo type steel in Walpole aqueous solution was investigated. The sustained load tensile test was carried out by using notched tensile specimens. The experimental results show that the suitable addition of vanadium is effective in improving delayed fracture resistance. The finely dispersed precipitation of vanadium carbide causes a significant secondary hardening, so the tempering temperature of steel containing vanadium is higher than that of the base steel at the same strength level. This homogeneously distributed carbide acts as strong hydrogen trap, thus retards the diffusion and accumulation of hydrogen and avoids the entering of hydrogen into stress concentration site. These beneficial effects of vanadium carbide are the main reasons for the improvement of delayed fracture resistance of steel containing vanadium. Furthermore, the fine prior austenite grain of steel with suitable addition of vanadium is also an important factor for the improvement.

  12. Enhancement in Activity of a Vanadium Catalyst for the Oxidation of Sulfur Dioxide by Radio Frequency Plasma During the Preparation Process

    Zhenxing Chen; Honggui Li; Lingsen Wang

    2003-01-01

    Radio frequency plasma was used to prepare a vanadium catalyst. The results showed that activating time of the catalyst could be shortened quickly and the catalytic activity was improved to some extent with the use of plasma. Catalyst Ls-9 was prepared under an optimal condition of 40 W discharge power, 10 min discharge time and 8 Pa gas pressure. The catalytic activity was up to 54.7% at 410 ℃,which was 2.2% higher than that of the Ls-8 catalyst. Only 10 min was needed to activate the catalyst with plasma, which was 1/9 of the traditional calcination time. For Ls-9, both the endothermic as well as the exothermic peaks detected by differential thermal analysis shifted to higher temperatures obviously,indicating that its crystal phase could melt easily. There existed an apparent endothermic peak at 283 ℃. SEM photographs showed a uniform size distribution. It is inferred that the quadrivalent vanadium compound may exist mainly in the form of VOSO4.

  13. Macromolecular peroxo complexes of Vanadium(V) and Molybdenum(VI): Catalytic activities and biochemical relevance

    Nashreen S Islam; Jeena Jyoti Boruah

    2015-05-01

    Our recent achievements concerning the synthesis and characterization of water soluble peroxo complexes of V(V) and Mo(VI) in macroligand environment, as well as some key features of biological relevance of these compounds, such as their hydrolytic stability, activity with phosphohydrolase enzyme vis-à-vis free peroxovanadium (pV) or peroxomolybdenum (pMo) complexes, and their activity in biomimetic oxidative bromination are presented here. Immobilization of pMo species on insoluble polymer matrices viz., amino acid functionalized Merrifield resins and poly(acrylonitrile) on the other hand, afforded a set of heterogeneous catalysts highly effective in facile organic transformations such as selective oxidation of organic sulfides and oxidative bromination of aromatic substrates by H2O2, at ambient temperature. The methodologies are straightforward, high-yielding, halogen-free and the catalysts afford easy regeneration. Our findings illustrate the various features which make the procedures sustainable and synthetically useful.

  14. One-step pickling-activation before magnesium alloy plating

    WANG Xin-juan; YU Gang; OUYANG Yue-jun; HE Xiao-mei; ZHANG Jun; YE Li-yuan

    2009-01-01

    A one-step pickling-activation process was proposed as an environmental friendly pretreatment method in phosphate-permanganate solution before electroplating on magnesium alloys. The effects of pickling-activation on qualities of coating were assessed by adhesion and porosity testing of copper plating. The interfacial reactions between specimen and solution were analyzed with SEM, EDX and XRD. The results show that the developed process of pickling-activation can equalize the potentials on substrate surface. The compacted zinc film can be obtained by zinc immersion after treating magnesium alloy in the pH 4-6 phosphate-permanganate solution for 3-5 min. The adhesion and corrosion resistance of copper plating are enhanced. The one-step pickling-activation can replace the existing two-step process of acid pickling and activation which contains a great deal of chromium and fluorine. The procedure of surface pretreatment is simplified and the production environment is improved.

  15. Vanadium recovery process

    A process for recovering vanadium values from carbonaceous type vanadium ores, and vanadium scrap, such as vanadium contaminated spent catalyst, is disclosed which comprises roasting the vanadium containing material in air at a temperature less than about 6000C to produce a material substantially devoid of organic matter, subjecting said roasted material to a further oxidizing roast in an oxygen atmosphere at a temperature of at least about 8000C for a period sufficient to convert substantially all of the vanadium to the soluble form, leaching the calcine with a suitable dilute mineral acid or water at a pH of neutral to about 2 to recover vanadium values, precipitating vanadium values as iron vanadate from the leach solution with a soluble iron compound at a pH from neutral to about 1, and recovering ferrovanadium from the iron vanadate by a reduction vacuum smelting operation. The conversion of vanadium in the ore to the soluble form by the oxidizing roast is accomplished without the addition of an alkaline salt during calcining

  16. Activation of vanadium nitrogenase expression in Azotobacter vinelandii DJ54 revertant in the presence of molybdenum.

    Lei, S; Pulakat, L; Gavini, N

    2000-09-29

    Azotobacter vinelandii carries three different and genetically distinct nitrogenase systems on its chromosome. Expression of all three nitrogenases is repressed by high concentrations of fixed nitrogen. Expression of individual nitrogenase systems is under the control of specific metal availability. We have isolated a novel type of A. vinelandii DJ54 revertant, designated A. vinelandii BG54, which carries a defined deletion in the nifH gene and is capable of diazotrophic growth in the presence of molybdenum. Inactivation of nifDK has no effect on growth of this mutant strain in nitrogen-free medium suggesting that products of the nif system are not involved in supporting diazotrophic growth of A. vinelandii BG54. Similar to the wild type, A. vinelandii BG54 is also sensitive to 1 mM tungsten. Tn5-B21 mutagenesis to inactivate the genes specific to individual systems revealed that the structural genes for vnf nitrogenase are required for diazotrophic growth of A. vinelandii BG54. Analysis of promoter activity of different nif systems revealed that the vnf promoter is activated in A. vinelandii BG54 in the presence of molybdenum. Based on these data we conclude that A. vinelandii BG54 strain utilizes vnf nitrogenase proteins to support its diazotrophic growth. PMID:11018539

  17. Low-crystalline β-FeOOH and vanadium ferrite for positive active materials of lithium secondary cells

    Funabiki, Atsushi; Yasuda, Hideo; Yamachi, Masanori

    Low-crystalline β-FeOOH and vanadium ferrite were prepared by a simple hydrolysis method. XRD measurement revealed that the former material had a framework of β-FeOOH with somewhat amorphous structure, and that the latter one gave a crystalline structure analogous to that of the hydrated iron orthovanadate. From the electrochemical measurements, it was found that the low-crystalline β-FeOOH positive electrode showed a discharge capacity of 230 mAh/g in the potential range of 4.3 V and 1.6 V versus Li/Li +, and better cycle performance than the high-crystalline one. The vanadium ferrite positive electrode also showed a high discharge capacity over 300 mAh/g and superior cycle performance.

  18. Microadditions of boron and vanadium in ADI

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  19. Summary report for ITER task - D4: Activation calculations for the lithium vanadium ITER design

    Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (Li/V) options. The activation code RACC-P, which has been modified under ITER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loading of 0.91 and 1.2 MW/m2, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/m2, which corresponds to the target fluence of ITER, and 0.1 MWa/m2, which is anticipated to correspond to the beginning of the extended maintenance period. The decay heat results show that a large fraction of this energy (50 to 90%) Is produced by photons. This implies that this energy would be transported to different parts of the reactor, thus relieving the energy concentration at high intensity source locations such as the first wall. Accurate modeling for the decay gamma transport is required to produce realistic spatial distribution of the decay heat which may be used in LOCA and LOFA analyses. The results of the pulsed operation, using the new version of RACC, show large reductions in the radioactivity and the decay heat for pure pulsed operation

  20. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases

    Jan Korbecki; Irena Baranowska-Bosiacka; Izabela Gutowska; Dariusz Chlubek

    2015-01-01

    This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ...

  1. Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium

    Fine-grained Ti-doped FeVSb half-Heusler alloys were synthesized by combining mechanical alloying and spark plasma sintering and their thermoelectric properties were investigated with an emphasis on the influences of Ti doping and phase purity. It was found that substituting V with Ti can change the electrical transport behavior from n-type to p-type due to one less valence electron of Ti than V, and the sample with nominal composition FeV0.8Ti0.4Sb exhibits the largest Seebeck coefficient and the maximum power factor. By optimizing the sintering temperature and applying annealing treatment, the power factor is significantly improved and the thermal conductivity is reduced simultaneously, resulting in a ZT value of 0.43 at 500 °C, which is relatively high as for p-type half-Heusler alloys containing earth-abundant elements. - Graphical abstract: Fine-grained Ti-doped FeVSb alloys were prepared by the MA-SPS method. The maximum ZT value reaches 0.43 at 500 °C, which is relatively high for p-type half-Heusler alloys. Highlights: ► Ti-doped FeVSb half-Heusler alloys were synthesized by combining MA and SPS. ► Substituting V with Ti changes the electrical behavior from n-type to p-type. ► Thermoelectric properties are improved by optimizing sintering temperature. ► Thermoelectric properties are further improved by applying annealing treatment. ► A high ZT value of 0.43 is obtained at 500 °C for p-type Ti-doped FeVSb alloys.

  2. Effects of cerium and vanadium on the activity and selectivity of MnOx-TiO2 catalyst for low-temperature NH3-SCR

    WU Xiaodong; SI Zhichun; LI Guo; WENG Duan; MA Ziran

    2011-01-01

    MnOx-TiO2, CeO2-MnOx-TiO2 and V2O5-MnOx-TiO2 catalysts for low-temperature NH3-SCR were prepared by sol-gel method.The results showed that both cerium and vanadium prevented the transformation of anatase TiO2 to the rutile phase. The addition of vanadium oxide induced the segregation of crystalline Mn2O3, which contributed little to low-temperature SCR and ammonia oxidation, from the MnOx-TiO2 solid solutions. However, the selectivity of the V-containing catalyst was almost 100% due to the decreased ammonia consumption and enhanced adsorption capacity of ammonia on Brφnsted acid sites at relatively high temperatures. The electron-donating effect of cerium reduced the Mn4+/Mn3+ ratio to some extent, resulting in a decreased activity for ammonia oxidation. This, in combination with the enhanced ammonia adsorption capacity by Cen+ as additional Lewis acid sites, endowed the Ce-doped catalyst a higher N2 selectivity than MnOx-TiO2 despite the slightly elevated light-off temperature for NO conversion.

  3. Influence of the austenite-martensite transformation in the dimensional stability of a new tool steel alloyed with niobium (0.08% wt.) and vanadium (0.12% wt.)

    Austenite-martensite transformation influence on the dimensional stability of a new experimental tool steel alloyed with niobium (0.08% wt.) and vanadium (0.12% wt.) has been studied. The dimensional stability of this new steel was compared with the dimensional stability of commercial steel, after and before two thermal treatments, T1 (860 degree centigrade) and T2 (900 degree centigrade). The thermal treatments consisted on heating and cooling, at 1 atmosphere of pressure, in N2 atmosphere furnace, following by heating in a conventional furnace at 180 degree centigrade during 1 hour. Initially, the experimental steel composition and Ac1 and Ac3 transformation temperatures were determined by glow-discharge luminescence (GDL) and dilatometric tests, respectively, in order to select the austenization temperatures of T1 and T2 treatments. After hardness measurement, the microstructure of both steels was characterized by X-Ray Diffraction (XRD) and optical metallography, before and after of T1 and T2 thermal treatments. Finally, longitudinal and angular dimensional stability analyses were realized for both commercial and experimental steels. After a contrastive hypothesis analysis, the results showed that the longitudinal relative variation of the experimental steel calculated was around 0.2% and the angular relative variation was not significant. (Author)

  4. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  5. Effect of drying method on properties of vanadium-molybdenum oxide catalysts

    Effect of drying method of molybdenum and vanadium salt solutions on physicochemical and catalytical properties of vanadium-molybdenum catalysts is studied. It is shown that the drying method of solutions determines the completeness of vanadium binding into oxide vanadium-molybdenum compounds and thus effects the activity and selectivity of catalysts in acrolein oxidation into acrylic acid. Besides the drying method determines the porous structure of catalysts

  6. Effect of minor addition of vanadium on mechanical properties and microstructures of as-extruded near eutectic Al–Si–Mg alloy

    Wu, Yuna; Liao, Hengcheng, E-mail: hengchengliao@seu.edu.cn; Zhou, Kexin

    2014-04-01

    Mechanical properties of near eutectic Al–12.5 wt%Si–0.6 wt%Mg alloys with and without addition of V were tested. Results show that addition of 0.1 wt% V only has a minor influence on the tensile properties of near eutectic Al–Si–Mg alloy in as-cast and as-homogenized conditions. However, it can significantly improve the tensile properties in as-extruded condition. The YS is enhanced nearly 50% and the elongation can reach 14%. Three factors that may contribute to the enhancement of YS were analyzed by EBSD, XRD and TEM investigation, i.e. Δσ{sub gb} (the strengthening from (sub-) grain boundaries), M (Taylor factor) and τ{sub tot} (critical resolved shear stress). Results show that the higher τ{sub tot} in the alloy with V addition is the main contributor to the higher YS. According to the TEM observation and EDX analysis, the fine precipitates contributed to the higher τ{sub tot} in 4{sup #} alloy are quaternary AlFeVSi phases.

  7. Effect of minor addition of vanadium on mechanical properties and microstructures of as-extruded near eutectic Al–Si–Mg alloy

    Mechanical properties of near eutectic Al–12.5 wt%Si–0.6 wt%Mg alloys with and without addition of V were tested. Results show that addition of 0.1 wt% V only has a minor influence on the tensile properties of near eutectic Al–Si–Mg alloy in as-cast and as-homogenized conditions. However, it can significantly improve the tensile properties in as-extruded condition. The YS is enhanced nearly 50% and the elongation can reach 14%. Three factors that may contribute to the enhancement of YS were analyzed by EBSD, XRD and TEM investigation, i.e. Δσgb (the strengthening from (sub-) grain boundaries), M (Taylor factor) and τtot (critical resolved shear stress). Results show that the higher τtot in the alloy with V addition is the main contributor to the higher YS. According to the TEM observation and EDX analysis, the fine precipitates contributed to the higher τtot in 4# alloy are quaternary AlFeVSi phases

  8. 9Cr-1Mo martensitic alloys: effects of the nitrogen, niobium and vanadium additions on the microstructure, phase transformations and mechanical properties. Pt. 1 and 2

    9Cr - 1Mo martensitic steels are leading candidate materials for fast reactor sub-assembly wrapper applications. The microstructure, phase transformations and mechanical properties of five 9Cr1Mo alloys containing N, Nb and/or V have been studied by dilatometry, optical and electron transmission microscopy and microanalysis

  9. Extractable vanadium trihydroxyfluoronates

    Extraction has been studied of vanadium (4) trihydroxyfluoronates into high-molecular-weight alcohols or mixtures of non-polar solvents and monoatomic aliphatic alcohols with a chain containing not less than three carbon atoms. The mechanism of solvation of the complexes extracted has been elucidated. The possibility has been shown of extraction of trihydroxifluoronates of easily hydrolized elements in the systems studied. This can be used for preseparation of vanadium from a number of metals. A procedure has been developed of extraction-spectrophotometric determination of vanadium

  10. Drawing up of a procedure for vanadium determination in mussels using the neutron activation analysis method; Estabelecimento de procedimento para determinacao de vanadio em mexilhoes pelo metodo de analise por ativacao com neutrons

    Seo, Daniele, E-mail: danyseo@uol.com.b [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Centro de Ciencias Biologicas e da Saude; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vasconcellos, Marina B.A.; Saiki, Mitiko; Catharino, Marilia G.M.; Moreira, Edson G., E-mail: mbvascon@ipen.b, E-mail: mitiko@ipen.b, E-mail: mgcatharino@uol.com.b, E-mail: emoreira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sousa, Eduinetty C.P.M. de; Pereira, Camilo D.S., E-mail: edvinett@usp.b, E-mail: camilo.pereira@usp.b [Universidade de Sao Paulo (IO/USP), SP (Brazil). Inst. Oceanografico. Lab. de Ecotoxicologia Marinha

    2009-07-01

    This work establishes an adequate procedure for obtaining reliable results for determination of vanadium in mussels, leg by leg by the neutron activation analysis (NAA), viewing the posterior application on the bio monitoring the coastal pollution, particularly near the petroleum terminals.For the evaluation of result quality concerning to the quality of those results, the work analysed the reference material certification NIST SRM 1566b Oyster Tissue. The precision of the results were also analysed using repetitions of mussel samples collected at the coastal of northern Sao Paulo state, Brazil. The NAA procedure consisted of 200 mg of sample and a synthetic standard of vanadium during a period of 8 s and under a thermal neutron flux of 6.6 x 10{sup 12} n cm{sup -2} s{sup -1} at the pneumatic station 4 of the IEA-R1 nuclear reactor of IPEN-CNEN/SP. After a 3 min decay, the measurements of the gamma activities of the sample and the standard were done using a Ge hyper pure semi-conductor detector, connected to gamma ray multichannel analyser. The vanadium were determined by the measurement of the gamma activity of the {sup 52}V through the 1434.08 keV peak, and half-life time of 3.75 min. The concentration of V were calculated by the comparative method. The obtained results indicated the viability of the NAA procedure established for the determination of vanadium in mussels

  11. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases

    Jan Korbecki

    2015-06-01

    Full Text Available This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate, vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP, epidermal growth factor receptor (EGFR, PLCγ, Src, mitogen-activated protein kinase (MAPK cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds.

  12. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases.

    Korbecki, Jan; Baranowska-Bosiacka, Irena; Gutowska, Izabela; Chlubek, Dariusz

    2015-01-01

    This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ, Src, mitogen-activated protein kinase (MAPK) cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds. PMID:26053397

  13. Cellular uptake of titanium and vanadium from addition of salts or fretting corrosion in vitro

    Maurer, A.M.; Merritt, K.; Brown, S.A. (Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Biomedical Engineering)

    1994-02-01

    The use of titanium and titanium-6% aluminum-4% vanadium alloy for dental and orthopedic implants has increased in the last decade. The implants are presumed to be compatible because oseointegration, bony apposition, and cell attachment are known. However, the cellular association of titanium and vanadium have remained unknown. This study examined the uptake of salts or fretting corrosion products. Titanium was not observed to be toxic to the cells. Vanadium was toxic at levels greater than 10[mu]g/mL. The percentage of cellular association of titanium was shown to be about 10 times that of vanadium. The percentage of cellular association of either element was greater from fretting corrosion than from the addition of salts. The presence of vanadium did not affect the cellular uptake of titanium. The presence of titanium decreased the cell association of vanadium.

  14. Conceptual chemistry approach towards the support effect in supported vanadium oxides : Valence bond calculations on the ionicity of vanadium catalysts

    Fievez, Tim; De Proft, Frank; Geerlings, Paul; Weckhuysen, Bert M.; Havenith, Remco W. A.

    2011-01-01

    The concept of bond ionicity, obtained via a valence bond analysis, is invoked in the interpretation of the catalytic activity of supported vanadium oxides, in analogy with previous work conducted within the framework of conceptual DFT. For a set of model clusters representing the vanadium oxide sup

  15. Vanadium research recharged

    US President Barack Obama has described Maria Skyllas-Kazacos’ research as “one of the coolest things I’ve ever said out loud”. Vanadium redox batteries could be electricity’s ultimate storage mechanism.

  16. Hydrogen influence on metal behavior. Pt. 5. Hydrogen embrittlement and stress corrosion cracking of 0,2 wt % vanadium uranium alloy

    Internal hydrogen embrittlement (IHE) has been investigated by means of an improved sensitivity mechanical test involving multiaxial stresses. Embedded disks clamped at their edge are submitted to an increasing gaseous pressure on one side. Modelling with the finite elements methode has demonstrated that the disk pole is plane stressed and the anchorage plane strained. It is shown that thermally H-charged, α-structured, U-0.2V alloy has an IHE threshold lower than 0,02 ppm. A systematic study of the stressing rate influence shows that this alloy is affected by two main kinds of IHE, one due to hydrides at high rates and, one due to dissolved H at low rates. Finally Stress Corrosion Cracking has been studied in aqueous media as a function of pH and the role of HE is indicated. H can form by a chemical reaction with the metal and enter the metal. In pH zones without cracking, H either is not formed or cannot enter the metal. Similar conclusions are proposed for U 0.2 wt%Cr alloy

  17. Nitriding of titanium and titanium: 8 percent aluminum, 1 percent molybdenum, 1 percent vanadium alloy with an ion-beam source

    Gill, A.

    1983-01-01

    Titanium and Ti-8Al-1Mo-1V alloy were nitrided with an ion-beam source of nitrogen or argon and nitrogen at a total pressure of 2 x 10 to the minus 4th power to 10 x 10 to the minus 4th power torr. The treated surface was characterized by surface profilometry, X-ray diffractometry, Auger electron spectroscopy and microhardness measurements. The tetragonal Ti2N phase formed in pure titanium and Ti-8Al-1Mo-1V alloy with traces of AlN in the alloy. Two opposite processes competed during the ion-beam-nitriding process: (1) formation of nitrides in the surface layer and (2) sputtering of the nitrided layers by the ion beam. The highest surface hardnesses, about 500 kg/sq mm in titanium and 800 kg/sq mm in Ti-8Al-1Mo-1V, were obtained by ion nitriding with an ion beam of pure nitrogen at 4.2 x 10 to the minus 4th power torr at a beam voltage of 1000 V.

  18. Electromigration of hydrogen and deuterium in vanadium, niobium and tantalum

    The electric mobility and effective valence of hydrogen and deuterium in vanadium, niobium, tantalum and three niobium--tantalum alloys were measured. A resistance technique was used to directly determine the electric mobility of hydrogen and deuterium at 300C while a steady-state method was used to measure the effective valence

  19. Radiochemical reprocessing of V-Cr-Ti alloy and its feasibility study

    Bartenev, S. A.; Kvasnitskij, I. B.; Kolbasov, B. N.; Romanov, P. V.; Romanovskij, V. N.

    2004-08-01

    An extraction scheme for radiochemical reprocessing of an activated vanadium-chromium-titanium alloy after a fusion reactor decommissioning was developed and checked experimentally. It is based on extraction of V, Cr and Ti freed of activation products from the alloy dissolved in nitric acid. The solution of di-2-ethyl-hexyl-phosphoric acid (D2EHPA) in a hydrocarbon solvent (dodecane) serves as an extractant. It takes 50 extraction steps to recover V, Cr and Ti down to an effective dose rate Technical and economic analysis suggests that the reprocessing alternative is more attractive economically than the burial of spent V-Cr-Ti alloy components.

  20. Effect of aluminum on the equilibrium solubility of hydrogen in vanadium

    A part from the temperature and pressure the solubility of hydrogen in a given matrix is also affected by the composition of the matrix. In metal matrices the presence of one or more substitutional as well as interstitial alloying components can have a significant effect on the solubility of hydrogen. As vanadium is an important refractory metal and vanadium based alloys having high melting point, low solubility of hydrogen isotopes, and most importantly resistance to irradiation properties make it a potential structural material for fusion reactor. It is essential to study the solubility of hydrogen in this metal and its alloys to understand the hydrogen solubility in the service conditions. Vanadium metal, a BCC crystal structure can accommodate more hydrogen in the open voids but solubility of hydrogen substantially affected by the presence of s and p block elements. Aluminothermy reduction of vanadium pentaoxide is one of the method of preparing vanadium metal and therefore aluminium is usually present in unrefined vanadium metal. The alloying effects on the solubility of hydrogen were investigated experimentally in binary V-14%Al (crude),V-10%Al (electron beam melted) and V-5%Al (electron beam melted followed by vacuum arc melting) alloys prepared by aluminothermy followed by refining process mentioned in bracket. It was found that solubility of hydrogen is substantially affected by the presence of aluminum

  1. Vanadium carcinogenic, immunotoxic and neurotoxic effects: a review of in vitro studies.

    Zwolak, Iwona

    2014-01-01

    Deleterious health effects induced by inorganic vanadium compounds are linked with carcinogenic, immunotoxic and neurotoxic insults. The goal of this review is to provide a summary of mammalian cell culture studies (from the 1990s to most recent) looking into the mode of the above-mentioned adverse actions of vanadium. Regarding the carcinogenicity potential, the key cell-based studies have evidenced the ability of vanadium to induce genotoxic lesions, cell morphological transformation and anti-apoptotic effects in a certain type of cells. Two contradictory effects of vanadium on the immune functions of cells have been observed in cell culture studies. The first effect involves reduction of cell immune responses such as vanadium-dependent inhibition of cytokine-inducible functions, which may underlie the mechanism of vanadium-induced immunosuppression. The second one involves stimulation of immune activity, for example, a vanadium-mediated increase in cytokine production, which may contribute to vanadium-related inflammation. So far, an in vitro evaluation of vanadium neurotoxicity has only been reported in few articles. These papers indicate probable cytotoxic mechanisms resulting from exposure of neurons and glial cells to vanadium. In summary, this literature review collects in vitro reports on adverse vanadium effects and thus provides vanadium researchers with a single, concise source of data. PMID:24147425

  2. The precipitation of vanadium compounds

    The results of a study on the chemistry of the precipitation process of vanadium compounds in sulfuric media are presented, in order to recover the vanadium contained in the ore from Campo Alegre de Lourdes (Bahia-Brazil). (Author)

  3. Surface characterization and reactivity of vanadium-tin oxide nanoparticles

    Wang, Chien-Tsung; Chen, Miao-Ting; Lai, De-Lun

    2011-03-01

    Surface state and reactivity of vanadium-tin mixed oxide nanoparticles (V/Sn ratios 0.05-0.2) were characterized by spectroscopic techniques and catalytic measurements. Analyses by X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS) revealed that the oxidation state and surface structure of vanadium oxide species and the electronic interaction between Sn and V atoms are dependent upon the vanadium content. These oxides were evaluated as catalysts for methanol oxidation in a fixed-bed reactor. Both reaction rate and formaldehyde selectivity increased with increasing the vanadium amount in catalyst. Results demonstrate that the V 5+ site in the bridging V-O-Sn structure exhibits a high redox activity to facilitate the transformation of adsorbed methoxy to formaldehyde and that the vanadium dispersion plays a crucial role in the surface reactivity. A mechanism that elucidates the catalytic redox process is proposed.

  4. Chromium Activity Measurements in Nickel Based Alloys for Very High Temperature Reactors: Inconel 617, Haynes 230, and Model Alloys

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHXs) of (very) high temperature reactors ((V)-HTRs). The behavior under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra- and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer. The alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow (Rouillard, F., 2007, 'Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR, Ph.D. thesis, Ecole des Mines de Saint-Etienne, France). To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T approximate to 1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617, and model alloys 1178, 1181, and 1201. This coupling makes it possible for the thermodynamic equilibrium to be obtained between the vapor phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (I) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared with that of the pure substance (Cr) at the same temperature

  5. Influence of aggressive media on the mechanical behavior of the uranium--0.20 wt % vanadium alloy the role of hydrogen embrittlement

    The tests comprised tensile tests under constant load or up to the fracture point using cylindrical or flat, trapezoidal test pieces, tests in which disks were ruptured under gaseous pressure, and tenacity tests. The alloy was found to be sensitive to: (1) intrinsic brittleness (I.B.) due to dissolved residual hydrogen from the preparation stage. This manifested itself mainly by cracking at an elongation threshold of about 3 percent. (2) Cracking due to stress corrosion (S.C.C.) in the true sense, which is made possible under certain conditions by an imperfect passivation of the metal surface. The process is initiated either by the appearance of microcracks which appear at the surface, or by corrosion pits. (3) Generalized corrosion accelerated by the stress (S.A.C.), whose microscopic appearance is similar to that observed with corrosion under gaseous hydrogen. Below pH 2 there is no stress corrosion. Stress rupture tests in moist air at 80 and 1000C measure I.B. + S.C.C. under high stress, giving rise to short lifetimes. I.B. + S.C.C. + S.A.C., with S.A.C. predominant, occurs under lower stresses that give long lifetimes. Stress rupture tests measure at 20 and 600C I.B. + S.C.C. with I.B. predominant. Under high stresses (short lifetimes) the magnitude of the S.C.C. component increases as the temperature increases. The most serious effects are those of S.A.C. at 80 and 1000C, and of I.B. at all temperatures. The way this alloy behaves can only be changed by an effective reduction in the quantity of residual hydrogen present, or by coatings that will in no case allow the ingress of hydrogen. 62 fig, 82 references, 15 tables

  6. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    Kawashima, Asahi; Hashimoto, Koji

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  7. Vanadium determination in Perna perna mussels (Linnaeus, 1758: Mollusca, Bivalvia) by instrumental neutron activation analysis using the passive biomonitoring in the Santos coast, Brazil

    Vanadium determination present in seawater is of great importance to evaluate marine contamination from industrial sources as well as to identify health hazards since mussels and other marine organisms are used as food. Besides, this evaluation in the Santos coast, SP, Brazil, is important, since this area is impacted by industrial and urban activities and discharges from ships and boats. In a previous study, V results obtained for transplanted mussel (active biomonitoring) were presented. This study aimed the V determination by passive biomonitoring by analyzing Perna perna mussels collected in natural environment, from three sites in Sao Paulo State coast: Cocanha Beach (reference site), Ponta de Itaipu and Palmas Island. Ninety individuals of mussels were collected in each site between September/08 and July/09 during the four seasons of the year. After shell removal and sample preparation, V was determined by instrumental neutron activation analysis. For analytical quality control, the NIST Standard Reference Material SRM 1566b Oyster Tissue was analyzed and the results presented good accuracy. The V concentrations in mussels on dry mass basis varied from 0.77 ± 0.02 to 3.56 ± 0.88 mg kg-1. Statistical tests were applied to the results showing differences on V concentrations among the sampling sites and season of sample collection. (author)

  8. Impaired bacterial attachment to light activated Ni-Ti alloy

    Chrzanowski, Wojciech; Valappil, Sabeel P. [UCL Eastman Dental Institute, Division of Biomaterials and Tissue Engineering, 256 Gray' s In Road, WC1X 8LD, London (United Kingdom); Dunnill, Charles W. [University College London, Centre for Materials Chemistry, Chemistry Department, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Abou Neel, Ensanya A. [UCL Eastman Dental Institute, Division of Biomaterials and Tissue Engineering, 256 Gray' s In Road, WC1X 8LD, London (United Kingdom); Lee, Kevin [London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Parkin, Ivan P. [University College London, Centre for Materials Chemistry, Chemistry Department, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Wilson, Michael [UCL Eastman Dental Institute, Division of Microbial Diseases, 256 Gray' s In Road, WC1X 8LD, London (United Kingdom); Armitage, David A. [De Montfort University, Leicester School of Pharmacy, The Gateway, Leicester, LE1 9BH (United Kingdom); Knowles, Jonathan C., E-mail: j.knowles@eastman.ucl.ac.uk [UCL Eastman Dental Institute, Division of Biomaterials and Tissue Engineering, 256 Gray' s In Road, WC1X 8LD, London (United Kingdom)

    2010-01-30

    Ni-Ti alloy due to its unique mechanical properties, is used for many types of implants. Failure of these implants can be attributed to many different factors; however infections are a common problem. In this paper, the attachment of the bacteria, Staphylococcus aureus, to the Ni-Ti surface modified by a range of processes with and without of light activation (used to elicit antimicrobial properties of materials) was assessed and related to different surface characteristics. Before the light activation the number of bacterial colony forming units was the greatest for the samples thermally oxidised at 600 deg. C. This sample and the spark oxidised samples showed the highest photocatalytic activity but only the thermally oxidised samples at 600 deg. C showed a significant drop of S. aureus attachment. The findings in this study indicate that light activation and treating samples at 600 deg. C is a promising method for Ni-Ti implant applications with inherent antimicrobial properties. Light activation was shown to be an effective way to trigger photocatalytic reactions on samples covered with relatively thick titanium dioxide via accumulation of photons in the surface and a possible increase in defects which may result in free oxygen. Moreover, light activation caused an increase in the total surface energy.

  9. Impaired bacterial attachment to light activated Ni-Ti alloy

    Ni-Ti alloy due to its unique mechanical properties, is used for many types of implants. Failure of these implants can be attributed to many different factors; however infections are a common problem. In this paper, the attachment of the bacteria, Staphylococcus aureus, to the Ni-Ti surface modified by a range of processes with and without of light activation (used to elicit antimicrobial properties of materials) was assessed and related to different surface characteristics. Before the light activation the number of bacterial colony forming units was the greatest for the samples thermally oxidised at 600 deg. C. This sample and the spark oxidised samples showed the highest photocatalytic activity but only the thermally oxidised samples at 600 deg. C showed a significant drop of S. aureus attachment. The findings in this study indicate that light activation and treating samples at 600 deg. C is a promising method for Ni-Ti implant applications with inherent antimicrobial properties. Light activation was shown to be an effective way to trigger photocatalytic reactions on samples covered with relatively thick titanium dioxide via accumulation of photons in the surface and a possible increase in defects which may result in free oxygen. Moreover, light activation caused an increase in the total surface energy.

  10. THE INFLUENCE OF NIOBIUM ON THE ACIDITY AND STRUCTURE OF GAMMA-ALUMINA-SUPPORTED VANADIUM OXIDES

    Sathler M.N.B.

    1998-01-01

    Full Text Available Gamma-alumina-supported niobium oxide was used as a support for vanadium oxides. The influence of the addition of niobium oxide was studied by looking for changes in the structure and acid-base character of superficial species. Vanadium oxide was deposited using the continuous adsorption method; niobium oxide was impregnated using the incipient wetness method. The catalysts were characterized by XPS, UV-visible and IR spectroscopy. Catalytic tests were performed using propane oxidation reaction at 400oC. For coverage below the monolayer, both vanadium and niobium oxides were observed in slightly condensed superficial species. The presence of vanadium oxide on the support was found to increase the Lewis acidity and create some Bronsted acidity. Higher catalytic activity and selectivity for propene were associated with vanadium oxides. The presence of niobium did not contribute to the modification of the chemical properties of superficial vanadium but did decrease the adsorption of vanadium on the alumina.