WorldWideScience

Sample records for activation ferritic alloys

  1. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  2. High strength ferritic alloy

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  3. Charpy impact test results of four low activation ferritic alloys irradiated at 370 degrees C to 15 DPA

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370 degrees C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf

  4. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  5. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases

    Highlights: → Model Fe-Cr alloys are exposed to Ar-CO2 and Ar-CO2-H2O at 650 and 800 deg. C. → Alloy microstructures are extensively modified by carburisation. → Chromium carbides precipitate at both temperatures, and martensite forms at 800 deg. C. → Elevated carbon activities reflect local equilibrium at the scale/alloy interface. - Abstract: Model Fe-Cr alloys were exposed to Ar-CO2-H2O gas mixtures at 650 and 800 deg. C. At equilibrium, these atmospheres are oxidising to the alloys, but decarburising (aC ∼ 10-15 to 10-13). In addition to developing external oxide scales, however, the alloys also carburised. Carbon supersaturation at the scale/alloy interface relative to the gas reflects local equilibrium: a low oxygen potential corresponds to a high pCO/pCO2 ratio, and hence to a high carbon activity. Interfacial carbon activities calculated on the basis of scale-alloy equilibrium are shown to be in good agreement with measured carburisation rates and precipitate volume fractions, providing support for the validity of the thermodynamic model.

  6. Mechanical properties of a high-purity Fe-9Cr-2W-0.1C model alloy for low-activation ferritic steels for fusion reactors

    Reduced-activation ferritic steels, such as JLF-1 (Fe-9Cr-2W-0.1C-V-Ta-N) steel, are candidate structural materials for use in the next fusion device. It is essential to develop low-activation ferritic steels which have been purified in order to reduce the amount of radioactive impurity elements. It is important to clarify whether or not purification causes any significant changes in the mechanical properties of the ferritic steels, as they will be used as structural materials. In this study a high-purity Fe-9Cr-2W-0.1C model alloy was prepared from an ultra-high-purity iron. A significantly lower tensile strength was observed in the high-purity ferritic steel at room temperature and 573 K, as compared to that of JLF-1 steel. The difference in yield strength at room temperature is considered to be mainly due to a lower content of nitrogen and soluble impurities, a larger packet diameter and a larger lath length in the case of the high-purity steel. The hardness of the as-quenched high-purity steel and the recovery behavior below 823 K are not significantly different from those of conventional ferritic steel. (author)

  7. Plasticity of oxide dispersion strengthened ferritic alloys

    The object of this work is to study the plasticity mechanisms of two oxide dispersion strengthened ferritic alloys, DT and DY. Microstructural characterisation has been performed on DT and DY alloys by optical, scanning and transmission electron microscopy. These materials, strengthened by an oxide dispersion, contain an intermetallic χ phase precipitated on grain boundaries. The χ phase, stable up to 900 deg, can be dissolved into the matrix by heat treatment beyond 1 000 deg. Between 20 and 700 deg, according to tensile tests, the DY alloy which is strengthened by a fine dispersion of yttria particles is more resistant and less ductile than DT alloy, strengthened by titanium oxides. Tensile tests performed at room temperature, in the chamber of a SEM, have shown that micro-cracking of the χ phase coincides with the first stage of the macroscopic yielding. The cavities initiated by the χ phase micro-cracking induce a ductile fracture of the matrix. A dynamic strain ageing mechanism has been observed around 400 deg, which is attributed to the Mo contribution. Between 20 and 700 deg, comparison of tensile properties of alloys with or without χ phase has shown that the intermetallic phase has a detrimental effect on the ductility, but has no influence on the mechanical strength. Creep tests have been performed between 500 and 700 deg. Thermally activated plasticity mechanisms are observed in this temperature range. The χ phase, which is always micro-cracked after tensile testing, is not damaged after creep testing below a critical stress. This behaviour is explained by the influence of strain rate through the competition between strain hardening and relaxation of the matrix. (author)

  8. High hardness of alloyed ferrite after nitriding

    Detailed layer-by layer structure and phase analyses of the diffusion layer of nitrided binary alloys of iron with aluminium, chromium, vanadium and titanium have been carried out by means of a complex technique. Transition d-metals (chromium, vanadium and titanium) raise to a greater degree the solubility of nitrogen in the α solid solution, sharply increases the hardness of ferrite and decrease the depth of the layer. Nitrided binary alloys of iron with chromium, vanadium and titanium are strengthened through precipitation from the nitrogen-saturated α-solid solution of nitrides of alloying elements TiN, VN and CrN of a structure B1. A maximum hardness of ferrite alloyed by chromium, vanadium and titanium is observed after nitriding at 550 deg C when the precipitated special nitrides are fully coherent with the α matrix

  9. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  10. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel

  11. Gas- and plasma-driven hydrogen permeation through a reduced activation ferritic steel alloy F82H

    Zhou, Haishan, E-mail: zhou.haishan@LHD.nifs.ac.jp [The Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Hirooka, Yoshi; Ashikawa, Naoko; Muroga, Takeo; Sagara, Akio [The Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); National Institute for Fusion Science, 322-6 Oroshi, Toki 509-5292, Gifu (Japan)

    2014-12-15

    The first wall of a magnetic fusion power reactor will be subjected to hydrogen isotope permeation by the two mechanisms: one is gas-driven and the other is plasma-driven. Hydrogen transport through a reduced activation ferritic steel alloy F82H has been investigated using a steady-state laboratory-scale plasma device. Permeation parameters including permeability, solubility and diffusivity have been measured in the temperature range from 150 to 520 °C. The surface recombination coefficient for hydrogen has also been estimated by a one-dimensional steady-state permeation model with the input data taken from experiments. Using these parameters, the hydrogen plasma-driven permeation flux and inventory for a 0.5 cm thick first wall around 500 °C are estimated to be ∼1.0 × 10{sup 13} atom cm{sup −2} s{sup −1} and ∼2 × 10{sup 16} atom cm{sup −3}, respectively. Also, the implications of all these data on reactor operation are discussed.

  12. Proeutectoid ferrite transformation in iron alloys. Tetsugokin no shoseki feraito hentai

    Enomoto, M. (Ibaraki Univ., Ibaraki (Japan). Faculty of Engineering)

    1994-02-20

    This article is not a comprehensive introduction of proeutectoid ferrite transformation, but is an arrangement of the research trends on ferrite transformation prepared by the author from the basic viewpoint on ferrite transformation centering around topics which he was involved. Concerning proeutectoid ferrite transformation, only the mother phase and the final equilibrium phase concern in it and since data of thermodynamics, crystallography and diffusion are outstandingly better organized than other fields, it is considered to be the transformation suitable for comparing the nucleus forming theory with the measured nucleus forming rate. In this article, with regard to proeutectoid ferrite transformation, nucleus forming from a solid phase to a solid phase is discussed, and it is pointed out that activating energy of formation of ferrite nucleus differs noticeably between the edge and surface of the grain boundary, thereby a big difference is made in its nucleus forming rate. Furthermore, the following items are mentioned; diffusion rate determining growth in a ternary alloy and diffusion via a grain boundary of an alloying element, a study on ferrite growth utilizing the fact that the movement of ledges on the side face of ferrite can be observed in situ, incomplete transformation of alloying elements and synergetic effects, etc. 39 refs., 16 figs.

  13. Radiation damage simulation studies of selected austenitic and ferritic alloys

    Results are presented of a study of the radiation damage structure of selected alloys following ion bombardment to simulate fusion-reactor exposures up to 40 dpa (approx. 3 MW-yr m-2) at temperatures from 4750C-6500C. Gas concentrations appropriate to fusion-reactor conditions were simulated using a mixed gas beam of 4 MeV He + 2 MeV H2. A beam of 46 MeV Ni ions was used in sequence with the gas beam to provide gas-to-damage ratios of 13 appm He/dpa and 52 appm H/dpa at a nickel-ion damage rate of approx. 1 dpa/hr. The materials investigated comprised three austenitic stainless steels (316L, modified 316-Ti and 316-Nb), a ferritic alloy (1.4914) and a commercial low-activation alloy containing Mn (TENELON). The results reveal that ferritic steels have good radiation damage resistance and are far superior to austenitic steels in respect of void-induced swelling. (author)

  14. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  15. The properties of silicon alloyed ferritic ductile irons

    Z. Glavas

    2016-07-01

    Full Text Available In this paper the influence of silicon content of 3,1 to 5,4 wt. % on the tensile properties, hardness and impact energy of ferritic ductile iron was analysed. It was found that silicon strengthens the ferrite, resulting in an increase in yield strength and tensile strength with increasing silicon content up to 4,22 wt. %. Elongation and impact energy decreases and the hardness increases with increasing silicon content. Since ferritic ductile irons alloyed and strengthened by silicon have a higher Rp0,2/Rm ratio and a higher elongation than conventional ferritic, ferritic/pearlitic and pearlitic ductile irons at the same level of tensile strength, we can expect an increased demand for these materials in applications where high resistance to impact load and low temperature impact properties are not required.

  16. The properties of silicon alloyed ferritic ductile irons

    Z. Glavas; A. Strkalj; A. Stojakovic

    2016-01-01

    In this paper the influence of silicon content of 3,1 to 5,4 wt. % on the tensile properties, hardness and impact energy of ferritic ductile iron was analysed. It was found that silicon strengthens the ferrite, resulting in an increase in yield strength and tensile strength with increasing silicon content up to 4,22 wt. %. Elongation and impact energy decreases and the hardness increases with increasing silicon content. Since ferritic ductile irons alloyed and strengthened by silicon have a h...

  17. High-coercivity ferrite magnets prepared by mechanical alloying

    Nanocrystalline hexaferrite (BaFe12O19 or SrFe12O19) and mixed Fe,Co-ferrite ((FexCo1-x)Fe2O4 with x=0-1) materials have been prepared by mechanical alloying and subsequent annealing. High coercivities were obtained in these nanocrystalline materials, 6-7 kOe for hexaferrite and ∝3 kOe for Co-ferrite. Hexaferrite powders prepared by mechanical alloying have been used as the starting material for high-coercivity bonded magnets. Hot-pressed anisotropic hexaferrite magnets have been produced with high values of coercivity and remanence. High magnetic performance was also achieved in some mixed Fe,Co-ferrites after magnetic annealing. (orig.)

  18. Alloys influence in ferritic steels with hydrogen attack

    Materials exposed to a corrosive environment and high temperatures, are associated with a decrease of their mechanical properties and embitterment.At room temperatures atomic hydrogen diffuses easily through metals structure, it accumulates in lattice defects forming molecular hydrogen and generating cracking due to internal stresses.Under high temperatures the phenomenon is more complex.The steels in these conditions present different structures of precipitates, that the change under creep conditions period.In this work it is determined the influence of Cr and V alloys, the changes of ferritic steel resistance in a corrosive environment and high temperatures.1.25 Cr 1 Mo 0.25 V and 2.25Cr 1 Mo under different loads and temperatures previously attacked by hydrogen environment.The hydrogen is induced by the electrolytic technique, optimizing the choice of temperatures, current density, electrolyte, etc. In order to control an adequate cathode charge, a follow up procedure is carried out by electronic barrier microscopy.After the attack, the material is settled at room temperatures for certain period of time, to allow the hydrogen to leave and evaluate the residual damage.Creep by torsion assays, under constant load and temperature is used as an experimental technique.With the outcome data curves are drawn in order to study the secondary creep rate, with the applied load and temperature, determining the value of stress exponent n and the activation energy Q.Comparing to equal assays to the same ferritic steels but non attacked by hydrogen, these values allows the prediction of microstructure changes present during these tests

  19. Activation analysis for different structural alloys considered for ITER

    Activation calculations have been made for the austentic steel 316SS, the ferritic alloy HT-9, the titanium alloy Ti6A14V, and the vanadium alloy V5Cr5Ti in a liquid metal (Na) design suggested recently for ITER. The calculations show that the vanadium alloy has the minimum short and long-term radioactivity and BHP. It also has the minimum decay heat at all the time. The titanium alloy has less radioactivity than the austenitic and this ferritic alloys. However, the decay heat of this alloy could exceed that of the conventional alloys

  20. Ferrite hardening response in a low alloy ferrite–martensite dual phase steel

    Highlights: • The ferrite hardening response varies with ferrite volume fraction. • A considerable variation in hardness was observed within a specific ferrite grain. • Finer ferrite grains were accompanied by more homogenized carbon content. • Coarser ferrite grains depicted a significant gradient of carbon content. • Ferrite hardness increased along the center to the peripheral regions of a grain. -- Abstract: This paper is concerned to investigate in details the variation of ferrite hardening response in conjunction with carbon partitioning developed within ferrite during austenite to ferrite phase transformation in a low alloy ferrite–martensite dual phase (DP) steel. For this purpose, a wide variety of ferrite–martensite DP microstructures consisting different volume fractions of ferrite and martensite have been prepared using step quenching heat treatment processes at isothermal temperature of 600 °C for various holding times. Nanoindentation measurements have been supplemented by energy dispersive X-ray and microprobe wavelength-dispersive spectroscopic analyses to follow the variation of ferrite hardening response and its relation to the carbon concentration of ferrite in the ferrite–martensite DP microstructures. The experimental results showed that the ferrite hardening response is quite variable depending on the progress of ferrite formation in the ferrite–martensite DP microstructures. For a specific ferrite grain in a specific ferrite martensite DP microstructure, the location nearer to the ferrite–martensite interfaces has been accompanied with a significant higher carbon concentration and simultaneously higher ferrite hardening response in comparison to that of central regions of ferrite grains. These results are rationalized with a higher concentration of carbon within ferrite developed as a consequence of higher carbon entrapment within defected ferrite area generated at early stage of austenite to ferrite phase transformation

  1. Ferrite hardening response in a low alloy ferrite–martensite dual phase steel

    Fereiduni, E., E-mail: e.fereiduni@yahoo.com; Ghasemi Banadkouki, S.S.

    2014-03-15

    Highlights: • The ferrite hardening response varies with ferrite volume fraction. • A considerable variation in hardness was observed within a specific ferrite grain. • Finer ferrite grains were accompanied by more homogenized carbon content. • Coarser ferrite grains depicted a significant gradient of carbon content. • Ferrite hardness increased along the center to the peripheral regions of a grain. -- Abstract: This paper is concerned to investigate in details the variation of ferrite hardening response in conjunction with carbon partitioning developed within ferrite during austenite to ferrite phase transformation in a low alloy ferrite–martensite dual phase (DP) steel. For this purpose, a wide variety of ferrite–martensite DP microstructures consisting different volume fractions of ferrite and martensite have been prepared using step quenching heat treatment processes at isothermal temperature of 600 °C for various holding times. Nanoindentation measurements have been supplemented by energy dispersive X-ray and microprobe wavelength-dispersive spectroscopic analyses to follow the variation of ferrite hardening response and its relation to the carbon concentration of ferrite in the ferrite–martensite DP microstructures. The experimental results showed that the ferrite hardening response is quite variable depending on the progress of ferrite formation in the ferrite–martensite DP microstructures. For a specific ferrite grain in a specific ferrite–martensite DP microstructure, the location nearer to the ferrite–martensite interfaces has been accompanied with a significant higher carbon concentration and simultaneously higher ferrite hardening response in comparison to that of central regions of ferrite grains. These results are rationalized with a higher concentration of carbon within ferrite developed as a consequence of higher carbon entrapment within defected ferrite area generated at early stage of austenite to ferrite phase

  2. Unusual thermal stability of nano-structured ferritic alloys

    Highlights: ► A nanostructured steel is examined by in situ small angle neutron scattering and high-temperature neutron diffraction. ► A bi-modal particle size distribution is identified by small angle neutron scattering. ► The nanometer sized clusters are thermally stable up to 1400 °C. ► The microstructure of the material is stable at high-temperatures, with no evidence of recrystallization or grain growth. - Abstract: A scientific question vitally important to the materials community is whether there exist “self-assembled” nanoclusters that are thermodynamically stable at elevated temperatures. Using in situ neutron scattering, we have characterized the structure and thermal stability of a nano-structured ferritic alloy. Nanometer sized nanoclusters were found to persist up to ∼1400 °C, providing direct evidence of a thermodynamically stable alloying state for the nanoclusters. High-temperature neutron diffraction measurements show a stable ferritic matrix, with little evidence of recrystallization or grain growth at temperatures up to 1300 °C. This result suggests that thermally stable nanoclusters and the oxygen-vacancy interaction limit the diffusion of Fe atoms and hence the mobility of grain boundaries, stabilizing the microstructure of the ferritic matrix at high temperatures.

  3. Effect of alloy content on microstructure and microchemistry of phases during short term thermal exposure of 9Cr–W–Ta–0.1C reduced activation ferritic/martensitic (RAFM) steels

    Ravikirana; R Mythili; S Raju; S Saroja; G Paneerselvam; T Jayakumar; E Rajendra Kumar

    2014-10-01

    This paper presents the results of an experimental study on the microstructural evolution in 9Cr reduced activation ferritic/martensitic steels during short term thermal exposures. Since the microstructure is strongly influenced by the alloying additions, mainly W, Ta and C contents, the effect of varying W and Ta contents on the martensite structure that forms during normalizing treatment and the subsequent changes during tempering of the martensite in the temperature regime of 923–1033 K have been studied. Microstructural changes like subgrain formation and nature of precipitates have been evaluated and correlated to hardness variations. The systematic change in size distribution and microchemistry of M23C6 carbide is studied with variation in W content at different temperatures.

  4. Processing and characterization of oxide dispersion strengthened 14YWT ferritic alloys

    West, Michael Keith

    Oxide dispersion strengthened (ODS) ferritic steels are currently being investigated as candidate materials for nuclear applications due to their increased high temperature strength and low activation characteristics. Recent studies have shown that ODS ferritic steels containing Ti exhibit enhanced high temperature properties due to the formation of a very fine dispersion of nanometer-sized oxide clusters based on Ti, Y, and O. Studies are currently underway to examine so called 14YWT alloys with nominal compositions of Fe-14Cr-3W-0.4Ti (wt. %) mechanically alloyed with 0.25 (wt.%) Y2O3. The focus of this study was to investigate how the early stages of processing of 14YWT alloys during mechanical milling, heat treatment, and consolidation affect the structure and properties of the alloys. The 14YWT alloys were milled at different times up to 80 hours, along with alloy powder compositions of Fe-14Cr + 0.25 wt.% Y2O 3 (14Y) and Fe-14Cr without Y2O3 (Fe-14Cr). The evolution of the microstructure and mechanical properties during milling was examined with a combination of optical metallography, x-ray diffraction, electron microscopy, atom probe tomography, and nanoindentation. Alloy powders were also heat treated and studied using high temperature x-ray diffraction and differential scanning calorimetry methods. Special attention was paid to milling parameters and temperature ranges which lead to the formation of nanosized oxide clusters in the alloys. Finally, the microstructure of consolidated alloys was examined and related to milling and heat treatment methods. Mechanical properties and microstructure during milling were similar in the three alloy powders examined regardless of dispersoid or alloy addition. Mechanical mixing of the alloy powders was inefficient after 40 hours of milling. Milling did not produce bulk amorphous phases but quickly reduced the crystallite size to ˜10-20 nm. Milling also resulted in relatively uniform dissolution of Y2O3. Thermal

  5. Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel

    T, Hino; K, Yamaguchi; Y, Yamauchi; Y, Hirohata; K, Tsuzuki; Y, Kusama

    2005-04-01

    Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall, vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study, deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus. After a ferritic steel sample was irradiated by 1.7 keV D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention. Ferritic steel sample was

  6. Discussion on the Alloying Element Partition and Growth Kinetics of Proeutectoid Ferrite in Fe-C-Mn-X Alloys

    Wei, R.; Enomoto, M.

    2011-12-01

    Experimental data on alloying element partition and growth kinetics of proeutectoid ferrite in quaternary Fe-C-Mn-Si, Ni, and Co alloys were reanalyzed using an approximate method, which permits a quick evaluation of alloy partitioning to be made. The method yielded results in good agreement with DICTRA and is applicable to Fe-C base multicomponent alloys. Differences of the predicted local condition at the α/ γ boundary from those previously presented in the alloys are noted.

  7. The properties and weldability of low activation ferritic steels

    A series of ferritic steels patterned on the chromium-molybdenum alloys, 2 1/4Cr--1Mo, 9Cr--1MoVNb and 12Cr--1MoVW, were tested for weldability. These steels are being developed as candidates for the first wall and blanket structures of fusion reactors. Use of these materials will minimize the long term radioactive hazards associated with disposal after service. In these low activation alloys, elements which become activated during irradiation with long half lives (Mo and Nb) are replaced. The major changes include the replacement of molybdenum with tungsten, the addition of vanadium in 2 1/4% Cr steels, and the replacement of niobium in the 9% Cr steel with tantalum. These replacement elements radically modify both the mechanical properties and weldability of the alloys. In this study, the effect of the alloy modifications on the microstructure and the mechanical properties of the welds are presented. Bainitic steels (2 1/4 Cr%) usually exhibit good weldability, while the martensitic steels (5, 9 and 12 Cr%) are suspectable to embrittlement in the heat affected zone (HAZ). The objective of this study was to characterize the welded microstructure and mechanical properties of these low activation alloys. Autogeneous bead-on-plate welds were produced using the gas tungsten arc welding (GTAW) process. Microstructure, microhardness, weld bend and tensile test results are reported for the base metal, heat affected zone and fusion zone of the weld. 46 refs., 36 figs., 14 tabs

  8. Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys

    Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G.

    2016-06-01

    This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite.

  9. Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys

    Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G.

    2016-04-01

    This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite.

  10. Characteristics of 14Cr-ODS ferritic alloy fabricated by mechanically alloying and microwave sintering

    Zhenhua, Yao [State Key Laboratory of Materia Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Weihao, Xiong, E-mail: whxiong@mail.hust.edu.cn [State Key Laboratory of Materia Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Bin, Huang; Qingqing, Yang [State Key Laboratory of Materia Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Jiang, Jianjun [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-06-15

    14Cr-ODS ferritic alloys were fabricated by microwave sintering and conventional vacuum sintering. The results showed that the sintering time could be reduced and the sintering temperature could be decreased effectively by adoption of microwave sintering. The tensile strength of the alloy microwave sintered at 1250 °C and the alloy vacuum sintered at 1350 °C were 691.4 MPa and 521.5 MPa respectively. The superior strength of microwave sintered one would be attributed to finer grain size, which was resulted from the shorter sintering time and lower sintering temperature. The elongation of microwave sintered alloy was worse than that of the vacuum sintering one. Nano-oxide precipitates were dispersed homogeneously in the Fe-based matrix, and their size was mostly ranged from several nm to more than 20 nm.

  11. Mapping of 475 oC embrittlement in ferritic Fe-Cr-Al alloys

    Embrittlement at 475 oC was mapped in ferritic ternary alloys with a wide composition range of Fe-(10-30)Cr-(0-20)Al (at.%) using a diffusion multiple technique. A large solid solution of Al suppresses the 475 oC embrittlement, while a small solid solution of Al promotes embrittlement. Transmission electron microscopy observations on aged samples suggest that suppression of the embrittlement due to Al addition can be attributed to the suppression of phase separation of the ferrite phase into the two phases Fe-rich ferrite and Cr-rich ferrite.

  12. The development of low-activation alloys at ORNL

    The objective of this program is to advance the technology of reduced-activation ferritic steels, austenitic stainless steels, and vanadium alloys to the point where these alloys could be considered as the structural material for fusion reactors in preference to the conventional high-activation alloys; and develop alloys to meet US Nuclear Regulatory Commission 10CFR61 guidelines for shallow land burial. 20 figs., 1 tab

  13. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Miller, M. K.; Reinhard, D.; Larson, D. J.

    2015-07-01

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 1024 m-3 and 1.2 × 1024 m-3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti-Y-O- clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  14. Precipitation of Icosahedral Quasicrystalline Phase, R-phase and Laves Phase in Ferritic Alloys

    Keisuke Yamamoto; Yoshisato Kimura; Yoshinao Mishima

    2004-01-01

    Ferritic heat resistant steels involving precipitation of intermetallic phases have drawn a growing interest for the enhancement of creep strength, while the brittleness of the intermetallic phases may lower the toughness of the alloy.Therefore, it is necessary to optimize the dispersion characteristics of the intermetallics phase through microstructural control to minimize the trade-off between the strength and toughness. The effects of α-Fe matrix substructures on the precipitation sequence, morphology, dispersion characteristics, and the stability of the intermetallic phases are investigated in Fe-Cr-W-Co-Si system. The precipitates of the Si-free Fe-10Cr-1.4W-4.5Co (at%) alloy aged at 873K are the R-phase but those of the Si-added Fe-10Cr-1.4W-4.5Co-0.3Si (at%) alloy are the icosahedral quasicrystalline phase. The precipitates in both the Si-free and Si-added alloys aged at 973K are the Laves phase. Matrix of the alloys is controlled by heat treatments as to provide three types of matrix substructures; ferrite, ferrite/martensite mixture and martensite. The hardening behavior of the alloys depends on the matrix substructures and is independent of the kinds of precipitates. In the alloys with ferrite matrix, the peak of hardness during aging at 873K shifts to longer aging time in comparison with that in the alloys with lath martensite matrix which contain numbers of nucleation sites.

  15. Effects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys

    Fully consolidated nanostructured ferritic alloys (NFAs) were prepared by attritor milling pre-alloyed Fe-14Cr-3W-0.4Ti and 0.3 wt% Y2O3 powders, followed by hot isostatic pressing (HIPing) at 1000 oC or 1150 oC at 200 MPa for 4 h. Transmission electron microscopy (TEM) revealed similar bimodal distributions of fine and coarse ferrite grains in both cases. However, as expected, the alloy microhardness decreased with increasing in HIPing temperature. Three point bend tests on single edge notched specimens, with a nominal root radius ρ = 0.15 mm, were used to measure the notch fracture toughness, K ρ, as a function of test temperature. The K ρ curves were found to be similar for both processing conditions. It appears that the coarser ferrite grains control cleavage fracture, in a way that is independent of alloy strength and HIPing temperature

  16. Irradiation creep of various ferritic alloys irradiated {approximately}400 C in the PFR and FFTF reactors

    Toloczko, M.B. [Washington State Univ., WA (United States); Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Eiholzer, C.R. [Westinghouse Hanford Co., WA (United States)

    1998-03-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400 C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400 C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 {times} 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  17. Substrate integrated ferrite phase shifters and active frequency selective surfaces

    Cahill, B M

    2002-01-01

    There are two distinct parts to this thesis; the first investigates the use of ferrite tiles in the construction of printed phase shifting transmission lines, culminating in the design of two compact electromagnetic controlled beam steered patch and slot antenna arrays. The second part investigates the use of active frequency selective surfaces (AFSS), which are later used to cover a uPVC constructed enclosure. Field intensity measurements are taken from within the enclosure to determine the dynamic screening effectiveness. Trans Tech G-350 Ferrite is investigated to determine its application in printed microstrip and stripline phase shifting transmission lines. 50-Ohm transmission lines are constructed using the ferrite tile and interfaced to Rogers RT Duroid 5870 substrate. Scattering parameter measurements are made under the application of variable magnetic fields to the ferrite. Later, two types of planar microwave beam steering antennas are constructed. The first uses the ferrites integrated into the Dur...

  18. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Sedigheh Rashidi; Abolghasem Ataie

    2015-01-01

    In this research, the effect of different biopolymers such as polyethylene glycol (PEG) and polyvinylalcohol (PVA) on synthesis and characterization of polymer/cobalt ferrite (CF) nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD),Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), fieldemission ...

  19. Carburization of austenitic and ferritic alloys in hydrocarbon environments at high temperature

    Serna, A.

    2003-12-01

    Full Text Available The technical and industrial aspects of high temperature corrosion of materials exposed to a variety of aggressive environments have significant importance. These environments include combustion product gases and hydrocarbon gases with low oxygen potentials and high carbon potentials. In the refinery and petrochemical industries, austenitic and ferritic alloys are usually used for tubes in fired furnaces. The temperature range for exposure of austenitic alloys is 800-1100 °C, and for ferritic alloys 500-700 °C, with carbon activities ac > 1 in many cases. In both applications, the carburization process involves carbon (coke deposition on the inner diameter, carbon absorption at the metal surface, diffusion of carbon inside the alloy, and precipitation and transformation of carbides to a depth increasing with service. The overall kinetics of the internal carburization are approximately parabolic, controlled by carbon diffusion and carbide precipitation. Ferritic alloys exhibit gross but uniform carburization while non-uniform intragranular and grain-boundary carburization is observed in austenitic alloys.

    La corrosión a alta temperatura, tal como la carburación de materiales expuestos a una amplia variedad de ambientes agresivos, tiene especial importancia desde el punto de vista técnico e industrial. Estos ambientes incluyen productos de combustión, gases e hidrocarburos con bajo potencial de oxígeno y alto potencial de carbono. En las industrias de refinación y petroquímica, las aleaciones austeníticas y ferríticas se utilizan en tuberías de hornos. El rango de temperatura de exposición para aleaciones austeníticas está entre 800-1.100°C y para aleaciones ferríticas está entre 500-700°C, con actividades de carbono ac>1 en algunos casos. En tuberías con ambas aleaciones, el proceso de carburación incluye deposición de carbón (coque en el diámetro interno, absorción de carbono en la superficie

  20. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  1. FERRITE STRUCTURE AND MECHANICAL PROPERTIES OF LOW ALLOY DUPLEX STEELS

    Hoel, R.H.; Thomas, G.

    1981-04-01

    The purpose of this communication is threefold. 1) To confirm the presence of and to characterize the precipitates in the ferrite phase of the base + Nb and base + Mo steels, 2) to study any possible variation in precipitate density as the martensitic volume fraction is changed and 3) to determine the level of precipitation strengthening.

  2. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Highlights: • Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency. • Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP. • High densities, 1.8 × 1024 m−3, of solute clusters were detected in as-milled flakes of 14YWT. • Lower densities, 1.2 × 1024 m−3, were detected in the stir zone of a FSW. • Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. - Abstract: A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 1024 m−3 and 1.2 × 1024 m−3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys

  3. Activation analyses for different fusion structural alloys

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m2 respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs

  4. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    Liaw, Peter

    2014-12-31

    A new class of ferritic superalloys containing B2-type zones inside parent L21-type precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate strengthened ferritic alloy (HPSFA), has been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by the addition of the Ti element into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). In the present research, systematic investigations, including advanced experimental techniques, first-principles calculations, and numerical simulations, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of HPSFAs. The experimental techniques include transmission-electron microscopy, scanningtransmission- electron microscopy, neutron diffraction, and atom-probe tomography, which provide detailed microstructural information of HPSFAs. Systematic tension/compression creep tests revealed that HPSFAs exhibit the superior creep resistance, compared with the FBB8 and conventional ferritic steels (i.e., the creep rates of HPSFAs are about 4 orders of magnitude slower than the FBB8 and conventional ferritic steels.) First-principles calculations include interfacial free energies, anti-phase boundary (APB) free energies, elastic constants, and impurity diffusivities in Fe. Combined with kinetic Monte- Carlo simulations of interdiffusion coefficients, and the integration of computational thermodynamics and kinetics, these calculations provide great understanding of thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first

  5. Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite

    Manganese zinc ferrites (MZF) have resistivities between 0.01 and 10 Ω m. Making composite materials of ferrites with either natural rubber or plastics will modify the electrical properties of ferrites. The moldability and flexibility of these composites find wide use in industrial and other scientific applications. Mixed ferrites belonging to the series Mn(1-x)ZnxFe2O4 were synthesized for different ‘x’ values in steps of 0.2, and incorporated in natural rubber matrix (RFC). From the dielectric measurements of the ceramic manganese zinc ferrite and rubber ferrite composites, ac conductivity and activation energy were evaluated. A program was developed with the aid of the LabVIEW package to automate the measurements. The ac conductivity of RFC was then correlated with that of the magnetic filler and matrix by a mixture equation which helps to tailor properties of these composites.

  6. Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite

    Hashim, Mohd.; Alimuddin; Kumar, Shalendra; Shirsath, Sagar E.; Mohammed, E. M.; Chung, Hanshik; Kumar, Ravi

    2012-11-01

    Manganese zinc ferrites (MZF) have resistivities between 0.01 and 10 Ω m. Making composite materials of ferrites with either natural rubber or plastics will modify the electrical properties of ferrites. The moldability and flexibility of these composites find wide use in industrial and other scientific applications. Mixed ferrites belonging to the series Mn(1-x)ZnxFe2O4 were synthesized for different ‘x’ values in steps of 0.2, and incorporated in natural rubber matrix (RFC). From the dielectric measurements of the ceramic manganese zinc ferrite and rubber ferrite composites, ac conductivity and activation energy were evaluated. A program was developed with the aid of the LabVIEW package to automate the measurements. The ac conductivity of RFC was then correlated with that of the magnetic filler and matrix by a mixture equation which helps to tailor properties of these composites.

  7. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy.

    Stoica, G M; Stoica, A D; Miller, M K; Ma, D

    2014-01-01

    Nanostructured ferritic alloys are a new class of ultrafine-grained oxide dispersion-strengthened steels that have promising properties for service in extreme environments in future nuclear reactors. This is due to the remarkable stability of their complex microstructures containing numerous Y-Ti-O nanoclusters within grains and along grain boundaries. Although nanoclusters account primarily for the exceptional resistance to irradiation damage and high-temperature creep, little is known about the mechanical roles of the polycrystalline grains that constitute the ferritic matrix. Here we report an in situ mesoscale characterization of anisotropic responses of ultrafine ferrite grains to stresses using state-of-the-art neutron diffraction. We show the experimental determination of single-crystal elastic constants for a 14YWT alloy, and reveal a strong temperature-dependent elastic anisotropy that leads to elastic softening and instability of the ferrite. We also demonstrate, from anisotropy-induced intergranular strains, that a deformation crossover exists from low-temperature lattice hardening to high-temperature lattice softening in response to extensive plastic deformation. PMID:25300893

  8. SAW surfacing of low-alloyed steel with super-ferrite additional material

    Klimpel, A; T. Kik; J. Górka; A. Czupryński; P. Sitarz

    2009-01-01

    Purpose: of these researches was to investigate influence of heat input in SAW surfacing of low-alloyed steel with super-ferrite filler material on quality of deposits.Design/methodology/approach: the quality of single and multilayer, stringer beads was assessed by metallographic examinations, stresses measurements and hardness tests.Findings: due to the fact that it was used at automated surfacing stand, the analysis of properties of the deposits was performed for single and multilayer, str...

  9. The welding of austenitic-ferritic Mo-alloyed Cr-Ni-Steel

    This paper provides general information and guidance on the welding of austenitic-ferritic Mo-alloyed Cr-Ni stainless steel. Information is given on the various chemical compositions and on resistance to corrosion and on the mechanical and physical properties of commercially available steels. The effect of welding on the base metal and the selection of welding processes and welding consumables are described

  10. Precipitation behaviour of a ferritic FeNiAl alloy under irradiation

    Coarsening of coherent NiAl (β') precipitates in a ferritic Fe-8.3Al-3.ONi-O.1Nb (at.%) alloy was investigated during thermal annealing and during irradiation with 6.2 MeV protons at temperatures from 673 K to 973 K. The matrix concentration of Ni and Al was traced by resistivity measurements while the growth of the precipitates was studied quantitatively by transmission electron microscopy (TEM). Additional Vickershardness measurements gave information on precipitation strengthening in the alloy. (orig.)

  11. Development of ferritic steels for reduced activation: the US program

    The Cr-Mo ferritic (martensitic) steels are candidates for the structural components of fusion reactors. Irradiation of such steels in a fusion environment produces long-lived radioactive isotopes, which lead to difficult radioactive waste disposal problems once the structure is removed from service. Such problems could be reduced by using steels that contain only elements that produce radioactive isotopes that decay to low levels in a reasonable time (tens of years instead of hundreds or thousands of years). The US Department of Energy has a program to develop steels to meet the criteria for shallow land burial as opposed to deep geologic storage. A review of the alloy development programs indicates that ferritic steels that meet these criteria can be developed

  12. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors

    Tan, L.; Snead, L. L.; Katoh, Y.

    2016-09-01

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ∼500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys.

  13. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through ...

  14. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  15. Development of new ferritic alloys reinforced by nano titanium nitrides

    Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Poirier, L., E-mail: poirier@nitruvid.com [Bodycote France and Belgium, 9 r Jean Poulmarch, 95100 Argenteuil (France); Ratti, M., E-mail: mathieu.ratti@snecma.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France); Hervé, N., E-mail: nicolas.herve@cea.fr [CEA, DRT, LITEN, F38054 Grenoble (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France)

    2015-01-15

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH{sub 2} powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy.

  16. Atom probe tomography of the austenite-ferrite interphase boundary composition in a model alloy Fe-C-Mn

    Thuillier, O. [Groupe de Physique des Materiaux, UMR CNRS 6634, Institut des Materiaux de Rouen, Universite de Rouen, 76 801 Saint Etienne du Rouvray Cedex (France)]. E-mail: olivier.thuillier@etu.univ-rouen.fr; Danoix, F. [Groupe de Physique des Materiaux, UMR CNRS 6634, Institut des Materiaux de Rouen, Universite de Rouen, 76 801 Saint Etienne du Rouvray Cedex (France); Goune, M. [Arcelor Research, Voie Romaine B.P. 320, 57214 Maizieres-Les-Metz (France); Blavette, D. [Groupe de Physique des Materiaux, UMR CNRS 6634, Institut des Materiaux de Rouen, Universite de Rouen, 76 801 Saint Etienne du Rouvray Cedex (France)

    2006-12-15

    A tomographic atom p analysis has been developed to study the interfacial conditions during isothermal austenite transformation to ferrite at 700 deg. C in an Fe-C-Mn model alloy. The interfacial conditions lead to different alloying element profiles across the interface, and a comparison is made between this experimental result and the DICTRA software predictions under the various conditions.

  17. Atom probe tomography of the austenite-ferrite interphase boundary composition in a model alloy Fe-C-Mn

    A tomographic atom probe analysis has been developed to study the interfacial conditions during isothermal austenite transformation to ferrite at 700 deg. C in an Fe-C-Mn model alloy. The interfacial conditions lead to different alloying element profiles across the interface, and a comparison is made between this experimental result and the DICTRA software predictions under the various conditions

  18. Postirradiation deformation behavior in ferritic Fe-Cr alloys

    It has been demonstrated that fast-neutron irradiation produces significant hardening in simple Fe-(3-18)Cr binary alloys irradiated to about 35 dpa in the temperature range 365 to 420 degrees C, whereas irradiation at 574 degrees C produces hardening only for 15% or more chromium. The irradiation-induced changes in tensile properties are discussed in terms of changes in the power law work-hardening exponent. The work-hardening exponent of the lower chromium alloys decreased significantly after low-temperature irradiation (≤ 420 degrees C) but increased after irradiation at 574 degrees C. The higher chromium alloys failed either in cleavage or in a mixed ductile/brittle fashion. Deformation microstructures are presented to support the tensile behavior

  19. Computational thermodynamics aided design of novel ferritic alloys

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Tianyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-30

    With the aid of computational thermodynamics, Ni was identified to suppress the liquidus temperature of Fe2Zr and four Fe-Cr-Ni-Zr alloys were designed to study the Ni effect on the phase stability of Fe2Zr laves_phase. These alloys were fabricated through traditional arc-metling, followed by annealing at 1000 C for 336 hours and 700 C for 1275 hours. The microstructure were examined and characterized by SEM BSE image, EDS compositional mapping and point scan, XRD and TEM analysis. The major results were summarized below: 1)For investigated alloys with 12wt% Cr, 3~6wt% Zr and 3~9 wt%Ni, the phases in equilibrium with the BCC phase are C15_Laves phase, Fe23Zr6 phase. The volume fraction of intermetallic phases increases with Ni and Zr contents. 2)Instead of (Fe,Cr)2Zr C14_Laves phase, Ni stabilizes the C15_Laves structure in Fe-Cr-Ni-Zr alloys by substituting Fe and Cr atoms with Ni atoms in the first sublattice. 3)Fe23Zr6, that is metastable in the Fe-Cr-Zr ternary, is also stabilized by Ni addition. 4)Ni7Zr2 phase was observed in samples with high Ni/Zr ratio. Extensive solubility of Fe was identified in the phase. The microstructural and composition results obtained from this study will be incorportated into the the Fe-Cr-Ni-Zr database. The current samples will be subjected to ion irradiaition to be compared with those results for Fe-Cr-Zr alloys. Additional alloys will be designed to form (Fe,Cr,Ni)2Zr nanoprecipitates for further studies.

  20. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Miller, M.K., E-mail: millermk@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6139 (United States); Reinhard, D., E-mail: David.Reinhard@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States); Larson, D.J., E-mail: David.Larson@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States)

    2015-07-15

    Highlights: • Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency. • Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP. • High densities, 1.8 × 10{sup 24} m{sup −3}, of solute clusters were detected in as-milled flakes of 14YWT. • Lower densities, 1.2 × 10{sup 24} m{sup −3}, were detected in the stir zone of a FSW. • Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. - Abstract: A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 10{sup 24} m{sup −3} and 1.2 × 10{sup 24} m{sup −3}, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  1. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    Mazumder, B.; Parish, C. M.; Bei, H.; Miller, M. K.

    2015-10-01

    Nanostructured ferritic alloys have outstanding high temperature creep properties and enhanced tolerance to radiation damage over conventional ferritic alloys. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of α-Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of α-Fe with 50-100 μm irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embedded precipitates with the Y3Al5O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These variances can be explained by the microstructural differences and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms that retard diffusion.

  2. The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy

    Zhang, Guangming [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Pinghuai [Fusion Reactor & Materials Division, Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Miao, Yinbin [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Li, Shaofu; Wang, Man [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Liu, Xiang [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Gong, Mengqiang [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2015-11-05

    In this study, a 9Cr oxide-dispersion strengthened (ODS) alloy with additional corrosion resistant element Al was fabricated by mechanical alloying (MA) and hot pressing (HP) to explore the impact of Al on the microstructure and mechanical property of a 9Cr ODS alloy. It is found that the Al completely dissolved into the Fe–Cr matrix after milling for 30 h. The minor phases in the Al-containing 9Cr ODS ferritic alloy were investigated by a high-energy X-ray, and were identified to be orthorhombic-YAlO{sub 3} (YAP), bcc-Y{sub 3}Al{sub 5}O{sub 12} (YAG), monoclinic-Al{sub 2}Y{sub 4}O{sub 9} (YAM), and hexagonal-YAlO{sub 3} (YAH). These phases were further confirmed by selected area diffraction pattern (SADP), energy dispersive spectroscopy (EDS), and high resolution transmission electron microscopy (HRTEM). In addition, their volume fractions were also calculated from the integrated intensities. According to the analysis of the particles and their formation sequences, the larger particles (greater than 100 nm) are identified as mainly YAG and Al{sub 2}O{sub 3} particles, while the particles with small size (less than 30 nm) are likely primarily YAM, YAH, and YAP particles. The yielding strength (YS) and ultimate tensile strength (UTS) at RT are 563 MPa and 744 MPa, respectively, while the YS and UTS at 700 °C are 245 MPa and 276 MPa, respectively. Although the addition Al in ODS alloys decreases the strength at RT, the values at high temperature are similar to those obtained for 9Cr ODS alloys strengthened by fine Y–Ti–O particles. - Graphical abstract: Synchrotron X-ray diffraction line profile of the 9CrAl ODS alloy; (Ferrite matrix phases, along with minor phases, orthorhombic YAlO{sub 3} (yttrium aluminum perovskite, YAP), bcc Y{sub 3}Al{sub 5}O{sub 12} (yttrium aluminum garnet, YAG), monoclinic Al{sub 2}Y{sub 4}O{sub 9} (yttrium aluminum monoclinic, YAM), and hexagonal YAlO{sub 3} (yttium aluminum hexagonal, YAH) were recognized.). - Highlights: • The

  3. The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy

    In this study, a 9Cr oxide-dispersion strengthened (ODS) alloy with additional corrosion resistant element Al was fabricated by mechanical alloying (MA) and hot pressing (HP) to explore the impact of Al on the microstructure and mechanical property of a 9Cr ODS alloy. It is found that the Al completely dissolved into the Fe–Cr matrix after milling for 30 h. The minor phases in the Al-containing 9Cr ODS ferritic alloy were investigated by a high-energy X-ray, and were identified to be orthorhombic-YAlO3 (YAP), bcc-Y3Al5O12 (YAG), monoclinic-Al2Y4O9 (YAM), and hexagonal-YAlO3 (YAH). These phases were further confirmed by selected area diffraction pattern (SADP), energy dispersive spectroscopy (EDS), and high resolution transmission electron microscopy (HRTEM). In addition, their volume fractions were also calculated from the integrated intensities. According to the analysis of the particles and their formation sequences, the larger particles (greater than 100 nm) are identified as mainly YAG and Al2O3 particles, while the particles with small size (less than 30 nm) are likely primarily YAM, YAH, and YAP particles. The yielding strength (YS) and ultimate tensile strength (UTS) at RT are 563 MPa and 744 MPa, respectively, while the YS and UTS at 700 °C are 245 MPa and 276 MPa, respectively. Although the addition Al in ODS alloys decreases the strength at RT, the values at high temperature are similar to those obtained for 9Cr ODS alloys strengthened by fine Y–Ti–O particles. - Graphical abstract: Synchrotron X-ray diffraction line profile of the 9CrAl ODS alloy; (Ferrite matrix phases, along with minor phases, orthorhombic YAlO3 (yttrium aluminum perovskite, YAP), bcc Y3Al5O12 (yttrium aluminum garnet, YAG), monoclinic Al2Y4O9 (yttrium aluminum monoclinic, YAM), and hexagonal YAlO3 (yttium aluminum hexagonal, YAH) were recognized.). - Highlights: • The Al-containing 9Cr ODS ferritic alloy was firstly fabricated by MA and HP. • The precipitates were

  4. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    Toloczko, M.B., E-mail: mychailo.toloczko@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States); Voyevodin, V.N.; Bryk, V.V.; Borodin, O.V.; Mel’nychenko, V.V.; Kalchenko, A.S. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2014-10-15

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr{sup +} ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  5. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    Toloczko, M. B.; Garner, F. A.; Voyevodin, V. N.; Bryk, V. V.; Borodin, O. V.; Mel'nychenko, V. V.; Kalchenko, A. S.

    2014-10-01

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr+ ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  6. Reduced activation ferritic steel R and D in US/Japan collaborative research

    Material performance of reduced activation ferritic steels (RAFS) and their response to neutron irradiation, which have been investigated by utilizing fission reactors under the US/Japan collaborative research program (JUPITER), are summarized. Rather high resistance to neutron irradiation and helium was recognized for 9Cr-2W RAFS; irradiation hardening and helium embrittlement of RAFS were evaluated to be much less than for other candidate materials. Alloy design of high-temperature steels and the development of oxide dispersion-strengthened steels have been progressing. (author)

  7. System and method of forming nanostructured ferritic alloy

    Dial, Laura Cerully; DiDomizio, Richard; Alinger, Matthew Joseph; Huang, Shenyan

    2016-07-26

    A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.

  8. Effect of alloying on microstructure and precipitate evolution in ferritic weld metal

    Narayanan, Badri Kannan

    The effect of alloying on the microstructure of ferritic weld metal produced with an self-shielded flux cored arc welding process (FCAW-S) has been studied. The welding electrode has a flux core that is intentionally alloyed with strong deoxidizers and denitriding elements such as aluminum, titanium and zirconium in addition to austenite formers such as manganese and nickel. This results in formation of microstructure consisting of carbide free bainite, retained austenite and twinned martensite. The work focuses on characterization of the microstructures and the precipitates formed during solidification and the allotropic phase transformation of the weld metal. Aluminum, manganese and nickel have significant solubility in iron while aluminum, titanium and zirconium have very strong affinity for nitrogen and oxygen. The effect of these alloying elements on the phase transformation and precipitation of oxides and nitrides have been studied with various characterization techniques. In-situ X-ray synchrotron diffraction has been used to characterize the solidification path and the effect of heating and cooling rates on microstructure evolution. Scanning Transmission Electron Microscopy (STEM) in conjunction with Energy Dispersive Spectroscopy (EDS) and Electron energy loss spectroscopy (EELS) was used to study the effect of micro-alloying additions on inclusion evolution. The formation of core-shell structure of oxide/nitride is identified as being key to improvement in toughness of the weld metal. Electron Back Scattered Diffraction (EBSD) in combination with Orientation Imaging Microscopy (OIM) and Transmission electron microscopy (TEM) has been employed to study the effect of alloying on austenite to ferrite transformation modes. The prevention of twinned martensite has been identified to be key to improving ductility for achieving high strength weld metal.

  9. Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy

    The goal of this study is to characterize microstructure of a friction stir welded oxide dispersion strengthened alloy. The welded material is constituted by two sheets of an yttria-dispersion-strengthened PM 2000 ferritic steel. Different areas of the friction stir welded product were analyzed using field emission gun secondary electron microscopy (FEG-SEM) and electron microprobe whereas nanoindentation was used to evaluate mechanical properties. The observed microstructural evolution, including distribution of the yttria dispersoids, after friction stir welding process is discussed and a correlation between the microstructure and the results of nanoindentation tests is established.

  10. Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy

    Legendre, F. [CEA Saclay, DEN/DANS/DMN/SRMP, 91191 Gif-sur-Yvette cedex (France)], E-mail: flegendre@cea.fr; Poissonnet, S.; Bonnaillie, P.; Boulanger, L. [CEA Saclay, DEN/DANS/DMN/SRMP, 91191 Gif-sur-Yvette cedex (France); Forest, L. [CEA Saclay, DEN/DANS/DM2S/SEMT/LTA, 91191 Gif-sur-Yvette cedex (France)

    2009-04-30

    The goal of this study is to characterize microstructure of a friction stir welded oxide dispersion strengthened alloy. The welded material is constituted by two sheets of an yttria-dispersion-strengthened PM 2000 ferritic steel. Different areas of the friction stir welded product were analyzed using field emission gun secondary electron microscopy (FEG-SEM) and electron microprobe whereas nanoindentation was used to evaluate mechanical properties. The observed microstructural evolution, including distribution of the yttria dispersoids, after friction stir welding process is discussed and a correlation between the microstructure and the results of nanoindentation tests is established.

  11. Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy

    Legendre, F.; Poissonnet, S.; Bonnaillie, P.; Boulanger, L.; Forest, L.

    2009-04-01

    The goal of this study is to characterize microstructure of a friction stir welded oxide dispersion strengthened alloy. The welded material is constituted by two sheets of an yttria-dispersion-strengthened PM 2000 ferritic steel. Different areas of the friction stir welded product were analyzed using field emission gun secondary electron microscopy (FEG-SEM) and electron microprobe whereas nanoindentation was used to evaluate mechanical properties. The observed microstructural evolution, including distribution of the yttria dispersoids, after friction stir welding process is discussed and a correlation between the microstructure and the results of nanoindentation tests is established.

  12. Radiation damage simulation studies of selected austenitic and ferritic/martensitic alloys for fusion reactor structural applications

    Results are given of an investigation of the radiation damage stability of selected austenitic and ferritic alloys following ion bombardment in the Harwell VEC to simulate fusion-reactor exposures up to 110 dpa at temperatures from 425 deg to 625 deg C. Gas production rates appropriate to CTR conditions were simulated using a mixed beam of (4 MeV He + 2 MeV H2) in the ratio 1:4 He:H. A beam of 46 MeV Ni or 20 MeV Cr ions was used in sequence with the mixed gas beam to provide a gas/damage ratio of 13 appm He/dpa at a damage rate of approx. 1 dpa/hr. The materials were investigated using TEM and comprised three austenitic alloys: European reference 316L, 316-Ti, 316-Nb; four high-nickel alloys: Fe/25 Ni/8Cr, Inconel 625, Inconel 706 and Nimonic PE16, and four ferritic/martensitic alloys: FV 448, FV 607, CRM 12 and FI. Some data were obtained for a non-magnetic structural alloy Nonmagne-30. The swelling behaviour is reported. The overall results of the study indicate that on a comparative basis the ferritic alloys are the most swelling-resistant, whilst the high-nickel alloys have an acceptable low swelling response up to 110 dpa. The 316 alloys tested have shown an unfavourable swelling response. (author)

  13. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    Ren, Xiaowei

    The corrosion behavior of ferritic/martensitic (F/M) steels and Ni-based alloys in supercritical water (SCW) has been studied due to their potential applications in future nuclear reactor systems, fossil fuel power plants and waste treatment processes. 9˜12% chromium ferritic/martensitic steels exhibit good radiation resistance and stress corrosion cracking resistance. Ni-based alloys with an austenitic face-centered cubic (FCC) structure are designed to retain good mechanical strength and corrosion/oxidation resistance at elevated temperatures. Corrosion tests were carried out at three temperatures, 360°C, 500°C and 600°C, with two dissolved oxygen contents, 25 ppb and 2 ppm for up to 3000 hours. Alloys modified by grain refinement and reactive element addition were also investigated to determine their ability to improve the corrosion resistance in SCW. A duplex oxide structure was observed in the F/M steels after exposure to 25 ppb oxygen SCW, including an outer oxide layer with columnar magnetite grains and an inner oxide layer constituted of a mixture of spinel and ferrite phases in an equiaxed grain structure. An additional outermost hematite layer formed in the SCW-exposed samples when the oxygen content was increased to 2 ppm. Weight gain in the F/M steels increased with exposure temperatures and times, and followed parabolic growth kinetics in most of the samples. In Ni-based alloys after exposure to SCW, general corrosion and pitting corrosion were observed, and intergranular corrosion was found when exposed at 600°C due to formation of a local healing layer. The general oxide structure on the Ni-based alloys was characterized as NiO/Spinel/(CrxFe 1-x)2O3/(Fe,Ni). No change in oxidation mechanism was observed in crossing the critical point despite the large change in water properties. Corrosion resistance of the F/M steels was significantly improved by plasma-based yttrium surface treatment because of restrained outward diffusion of iron by the

  14. SAW surfacing of low-alloyed steel with super-ferrite additional material

    A. Klimpel

    2009-10-01

    Full Text Available Purpose: of these researches was to investigate influence of heat input in SAW surfacing of low-alloyed steel with super-ferrite filler material on quality of deposits.Design/methodology/approach: the quality of single and multilayer, stringer beads was assessed by metallographic examinations, stresses measurements and hardness tests.Findings: due to the fact that it was used at automated surfacing stand, the analysis of properties of the deposits was performed for single and multilayer, stringer beads.Research limitations/implications: for complete information about tested deposits it is needed to compare deposits properties with other technologies of super-ferrite deposits surfacing.Practical implications: results of this paper is an optimal range of parameters for surfacing of single and multilayer, stringer beads of super-ferrite layers.Originality/value: the researches (macro- and micro-observations, hardness tests, stresses distribution tests were provided for surfacing of single and multilayer, stringer beads, and the results were compared. The influence of heat input on layers properties and theirs structure was defined.

  15. Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys

    Chen, Hao; Zhu, Benqiang; Militzer, Matthias

    2016-08-01

    Three different approaches for considering the effect of Mn on the austenite-ferrite interface migration in an Fe-0.1C-0.5Mn alloy have been coupled with a phase field model (PFM). In the first approach (PFM-I), only long-range C diffusion is considered while Mn is assumed to be immobile during the phase transformations. Both long-range C and Mn diffusions are considered in the second approach (PFM-II). In the third approach (PFM-III), long-range C diffusion is considered in combination with the Gibbs energy dissipation due to Mn diffusion inside the interface instead of solving for long-range diffusion of Mn. The three PFM approaches are first benchmarked with isothermal austenite-to-ferrite transformation at 1058.15 K (785 °C) before considering cyclic phase transformations. It is found that PFM-II can predict the stagnant stage and growth retardation experimentally observed during cycling transformations, whereas PFM-III can only replicate the stagnant stage but not the growth retardation and PFM-I predicts neither the stagnant stage nor the growth retardation. The results of this study suggest a significant role of Mn redistribution near the interface on reducing transformation rates, which should, therefore, be considered in future simulations of austenite-ferrite transformations in steels, particularly at temperatures in the intercritical range and above.

  16. Substrate integrated ferrite phase shifters and active frequency selective surfaces

    There are two distinct parts to this thesis; the first investigates the use of ferrite tiles in the construction of printed phase shifting transmission lines, culminating in the design of two compact electromagnetic controlled beam steered patch and slot antenna arrays. The second part investigates the use of active frequency selective surfaces (AFSS), which are later used to cover a uPVC constructed enclosure. Field intensity measurements are taken from within the enclosure to determine the dynamic screening effectiveness. Trans Tech G-350 Ferrite is investigated to determine its application in printed microstrip and stripline phase shifting transmission lines. 50-Ohm transmission lines are constructed using the ferrite tile and interfaced to Rogers RT Duroid 5870 substrate. Scattering parameter measurements are made under the application of variable magnetic fields to the ferrite. Later, two types of planar microwave beam steering antennas are constructed. The first uses the ferrites integrated into the Duroid as microstrip lines with 3 patch antennas as the radiating elements. The second uses stripline transmission lines, with slot antennas as the radiating sources etched into the ground plane of the triplate. Beam steering is achieved by the application of an external electromagnet. An AFSS is constructed by the interposition of PIN diodes into a dipole FSS array. Transmission response measurements are then made for various angles of electromagnetic wave incidence. Two states of operation exist: when a current is passed through the diodes and when the diodes are switched off. These two states form a high pass and band stop space filter respectively. An enclosure covered with the AFSS is constructed and externally illuminated in the range 2.0 - 2.8GHz. A probe antenna inside the enclosure positioned at various locations through out the volume is used to establish the effective screening action of the AFSS in 3 dimensional space. (author)

  17. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys

  18. TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys

    A transmission electron microscopy (TEM) study was carried out on the co-evolution of the coarser-scale microstructural features in mechanically alloyed (MA) powders and hot isostatic press (HIP) consolidated Fe-14Cr-3W-0 and 0.4Ti-0.25Y2O3 nanostructured ferritic alloys (NFAs). The pancake shaped nanoscale grains in the as-MA powders are textured and elongated parallel to the particle surface. Powder annealing results in re-crystallization at 850 deg. C and grain growth at 1150 deg. C. The grains also recrystallize and may grow in the alloys HIPed at 850 deg. C, but appear to retain a polygonized sub-grain structure. The grains are larger and more distinct in the alloys HIPed at 1000 and 1150 deg. C. However, annealing resulted in bi-modal grain size distribution. Finer grains retained a significant dislocation density and populations of small precipitates with crystal structures distinct form the matrix. The grains and precipitates were much larger in alloys without Ti

  19. Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys

    The mechanical properties and radiation tolerance of nanostructured ferritic alloys rely on a dense population of nanometer-scale Y–Ti oxides. The stability of these nano-oxides during extended service is critical in high temperature applications. Here, a model framework is developed for the thermodynamics and kinetics of Y–Ti oxide nucleation, growth and coarsening. The model, which is based upon available thermodynamic and kinetic data as well as key density functional theory calculations, shows that nano-oxide nucleation and growth are highly driven and that pipe diffusion is the dominant mode of their coarsening, in agreement with previous analyses of experimental high temperature data. The model predicts that the nano-oxides are thermally stable for 80 or more years below 1175 K. This analysis also provides insights into the effect of O and Ti on nano-oxide sizes, and on optimization of alloy microstructure

  20. Plasticity of oxide dispersion strengthened ferritic alloys; Plasticite des alliages ferritiques renforces par dispersion d`oxydes

    Zakine, C.

    1994-07-05

    The object of this work is to study the plasticity mechanisms of two oxide dispersion strengthened ferritic alloys, DT and DY. Microstructural characterisation has been performed on DT and DY alloys by optical, scanning and transmission electron microscopy. These materials, strengthened by an oxide dispersion, contain an intermetallic {chi} phase precipitated on grain boundaries. The {chi} phase, stable up to 900 deg, can be dissolved into the matrix by heat treatment beyond 1 000 deg. Between 20 and 700 deg, according to tensile tests, the DY alloy which is strengthened by a fine dispersion of yttria particles is more resistant and less ductile than DT alloy, strengthened by titanium oxides. Tensile tests performed at room temperature, in the chamber of a SEM, have shown that micro-cracking of the {chi} phase coincides with the first stage of the macroscopic yielding. The cavities initiated by the {chi} phase micro-cracking induce a ductile fracture of the matrix. A dynamic strain ageing mechanism has been observed around 400 deg, which is attributed to the Mo contribution. Between 20 and 700 deg, comparison of tensile properties of alloys with or without {chi} phase has shown that the intermetallic phase has a detrimental effect on the ductility, but has no influence on the mechanical strength. Creep tests have been performed between 500 and 700 deg. Thermally activated plasticity mechanisms are observed in this temperature range. The {chi} phase, which is always micro-cracked after tensile testing, is not damaged after creep testing below a critical stress. This behaviour is explained by the influence of strain rate through the competition between strain hardening and relaxation of the matrix. (author).

  1. Study of behaviour during a quench treatment of ferrite delta of binary and pseudo-binary alloys

    Focusing of Fe-Cr and Fe-Mo alloys (and extending results to different binary alloys like Fe-W, Fe-Al and Fe-Si, and even to some ternary systems such as Fe-Cr-Ni and Fe-Mo-Ni), and after having recalled some previous results and presented experimental materials and processes, this research thesis describes the behaviour of the considered alloys, reports a detailed study of Fe-Mo alloys (influence of carbon content), a bibliographical study of the gamma-to-delta transformation, the study of hybrid alloys (behaviour, partial transformations, diffusion), the study of other types of alloys (hyper-quench of delta ferrite of Fe-Mo alloys, adsorption and diffusion). It discusses the case of two-phase structures, and the mechanism and kinetics of the delta-to-gamma transformation

  2. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures

  3. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    Miller, M.K., E-mail: millermk@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Parish, C.M.; Bei, H. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-07-15

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.

  4. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    Miller, M. K.; Parish, C. M.; Bei, H.

    2015-07-01

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti-Y-O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.

  5. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  6. Microstructural characterization of a friction stir welded oxide dispersion strengthened ferritic steel alloy

    Full text of publication follows: The fusion and fission reactors are faced with important challenges, notably in the field of materials. A class of materials, susceptible to resist to the required severe environments, is the ODS family (Oxide Dispersion Strengthened), who are metallic alloys strengthened by a very fine oxide dispersion. An obstacle to the development of these materials is their weldability because conventional fusion welding methods can disturb the fine oxide dispersion in the alloy that leads to a degradation of the high temperature behavior. Consequently, the Friction Stir Welding (FSW), which is a solid-state joining process, could be an alternative way to weld ODS alloys while keeping the fine microstructure. In this framework, the goal of this study is to make a microstructural characterization of a friction stir welded ODS alloy. The welded material is constituted by two plates of a yttria dispersion-strengthened PM 2000 ferritic steel. Different areas (non welded, heat affected zone and nugget) of the FSW welded product are analyzed by using field emission gun secondary electron microscopy (FEG-SEM), electron microprobe and transmission electron microscopy (TEM). The observed evolution of the microstructure, as the modification of the size and the repartition of the yttria dispersoids, after friction stir welding process is discussed and a correlation between the microstructural examinations and the results of nano-indentation tests is established. (authors)

  7. Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations

    Hardouin Duparc, A.; Moingeon, C.; Smetniansky-de-Grande, N.; Barbu, A. E-mail: alain.barbu@poly.polytechnique.fr

    2002-04-01

    The point-defect clustering is an important component of the hardening of low copper content pressure vessel steels. This study reports the first steps of a project devoted to the modelling of the nucleation and growth of point-defect clusters in ferritic alloys under irradiation at large fluence. A cluster-dynamics modelling based on rate equations giving the evolution of the population of interstitial loops up to some 0.1 {mu}m and of vacancy clusters is developed. It is applied to two alloys FeCu (0.13 wt%) and FeMn(1.5 wt%)Ni(0.8 wt%)Cu(0.13 wt%)P(0.01 wt%) the composition of which is close to the one of pressure vessel steels and to non-alloyed Fe for comparison. The model was calibrated by carrying out 1 MeV irradiations in a high voltage microscope on these three materials and by using the results of experiments and atomic simulations reported in the literature. It is shown that the presence of copper in iron stabilises the interstitial clusters and more important that the parameters relative to the interstitials in the complex alloys are totally different from those for iron: the migration energy must be increased from 0.3 to 1 eV and the binding energy of di-interstitials must be decrease from 0.9 to 0.2 eV.

  8. The potential for using high chromium ferritic alloys for hydroprocessing reactors

    This paper outlines the development of hydroprocessing reactors and the parallel development of applicable steels for their high temperature and high pressure process environments. Trends in the development of newer processes for severe hydroprocessing applications have been increasing in operating hydrogen partial pressures and operating temperatures that require the development of new alloys to meet these more severe process environments. The paper outlines the properties of conventional hydroprocessing reactor materials and discusses the advantages of the advanced high chromium ferritic steel alloy Grade 91 (9Cr-1Mo-V) for high temperature hydroprocessing applications. Additionally, the alloys permitted for ASME Section I and Section VIII Division I construction, Grade 92 (Code Case 2179), and what will probably be called Grade 122 (Code Case 2180) are briefly introduced as possible future choices for hydroprocessing reactor construction. These three alloys contain 9-12% Cr and have time independent allowable stress values above 566 deg. C. These high, time independent, strength values provide materials that will in some cases permit extending hydroprocessing temperature limits by 112 deg. C. The paper provides room temperature and elevated temperature mechanical and toughness properties for the low chrome and Grade 91 materials and discusses the effects of hydrogen attack, and hydrogen and isothermal embrittlement. Fabrication aspects, including forming and welding are addressed. The paper discusses the environmental resistance of these alloys and investigates the possibility of utilizing excess wall metal thickness in these materials in less severe applications in lieu of the deposition of a higher chromium alloy weld overlay to overcome the corrosive effects of the process environment

  9. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    Rebak, Raul B. [General Electric Global Research, Schnectady, NY (United States)

    2014-12-30

    provide hermetic seal. The replacement of a zirconium alloy using a ferritic material containing chromium and aluminum appears to be the most near term implementation for accident tolerant nuclear fuels.

  10. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y2O3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y2O3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  11. Previsions of the microstructural evolution of ferritic alloys under irradiation by numerical atomic scale simulations

    In this work, we have improved a diffusion model for point defects (vacancies and self-interstitials) by introducing hetero-interstitials. The model has been used to simulate by Kinetic Monte Carlo (KMC) the formation of solute rich clusters that are observed experimentally in irradiated ferritic model alloys of type Fe - CuMnNiSiP - C.Electronic structure calculations have been used to characterize the interactions between self-interstitials and all solute atoms, and also carbon. P interacts with vacancies and strongly with self-interstitials. Mn also interacts with self-interstitials to form mixed dumbbells. C, with occupies octahedral sites, interacts strongly with vacancies and less with self-interstitials. Binding and migration energies, as well as others atomic scale properties, obtained by ab initio calculations, have been used as parameters for the KMC code. Firstly, these parameters have been optimized over isochronal annealing experiments, in the literature, of binary alloys that have been electron-irradiated. Isochronal annealing simulations, by reproducing experimental results, have allowed us to link each mechanism to a single evolution of the resistivity during annealing. Moreover, solubility limits of all the elements have been determined by Metropolis Monte Carlo. Secondly, we have simulated the evolution at 300 C of the microstructure under irradiation of different alloys of increasing complexity: pure Fe, binary alloys, ternaries, quaternaries, and finally complex alloys which compositions are close to those of pressure vessel steels. The results show that the model globally reproduces all the experimental tendencies, what has led us to propose mechanisms to explain the behaviours observed. (author)

  12. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

    Karak, Swapan Kumar; Dutta Majumdar, J.; Witczak, Zbigniew; Lojkowski, Witold; Ciupiński, Łukasz; Kurzydłowski, K. J.; Manna, Indranil

    2013-06-01

    In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young's modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (ferritic matrix useful for grain boundary pinning and creep resistance.

  13. High-temperature oxidation behavior of nano-structured ferritic oxide dispersion-strengthened alloys

    Graphical abstract: - Highlights: • Oxidation behavior was studied avoiding chemical composition effect except yttrium. • Nano-particle effect was compared with yttrium addition effect. • Grain size effect in ODS alloy was investigated. - Abstract: The effect of yttrium and nanoclusters on the high-temperature oxidation behavior of Fe–14Cr–3W–0.4Ti nano-structured ferritic oxide dispersion-strengthened alloys was investigated. For comparison purposes, conventional stainless steels with the same chemical composition were studied as well. Long-term oxidation tests were conducted at 800 °C for up to 2000 h in atmospheric air. The mass-gain versus time curves were obtained and the microstructure and chemical elements distribution in different regions of the specimens after oxidation were then analyzed by SEM/EDS and XRD. The experimental results showed that an addition of yttrium to Fe–14C–3W–0.4Ti alloy sufficiently reduced the oxidation rate. However, ODS processing to precipitate nanoclusters is a more effective means of improving high-temperature oxidation rather than a simple yttrium addition

  14. Interaction of carbon–vacancy complex with minor alloying elements of ferritic steels

    Interstitial carbon, dissolved in bcc matrix of ferritic steels, plays an important role in the evolution of radiation-induced microstructure since it exhibits strong interaction with vacancies. Frequent formation and break-up of carbon–vacancy pairs, occurring in the course of irradiation, affect both kinetics of the accumulation of point defect clusters and carbon spatial distribution. The interaction of typical alloying elements (Mn, Ni, Cu, Si, Cr and P) in ferritic steels used as structural materials in nuclear reactors with a carbon–vacancy complex is analyzed using ab initio techniques. It is found that all the considered solutes form stable triple clusters resulting in the increase of the total binding energy by 0.2–0.3 eV. As a result of the formation of energetically favourable solute–carbon–vacancy triplets, the dissociation energy for vacancy/carbon emission is also increased by ∼0.2–0.3 eV, suggesting that the solutes enhance thermal stability of carbon–vacancy complex. Association of carbon–vacancy pairs with multiple solute clusters is found to be favorable for Ni, Cu and P. The energetic stability of solute(s)–carbon–vacancy complexes was rationalized on the basis of pairwise interaction data and by analyzing the variation of local magnetic moments on atoms constituting the clusters

  15. Interaction of carbon–vacancy complex with minor alloying elements of ferritic steels

    Bakaev, A., E-mail: abakaev@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya Str., 195251 St. Petersburg (Russian Federation); Terentyev, D. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); He, X. [China Institute of Atomic Energy, P.O. Box 275-51, 102413 Beijing (China); Zhurkin, E.E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya Str., 195251 St. Petersburg (Russian Federation); Van Neck, D. [Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2014-08-01

    Interstitial carbon, dissolved in bcc matrix of ferritic steels, plays an important role in the evolution of radiation-induced microstructure since it exhibits strong interaction with vacancies. Frequent formation and break-up of carbon–vacancy pairs, occurring in the course of irradiation, affect both kinetics of the accumulation of point defect clusters and carbon spatial distribution. The interaction of typical alloying elements (Mn, Ni, Cu, Si, Cr and P) in ferritic steels used as structural materials in nuclear reactors with a carbon–vacancy complex is analyzed using ab initio techniques. It is found that all the considered solutes form stable triple clusters resulting in the increase of the total binding energy by 0.2–0.3 eV. As a result of the formation of energetically favourable solute–carbon–vacancy triplets, the dissociation energy for vacancy/carbon emission is also increased by ∼0.2–0.3 eV, suggesting that the solutes enhance thermal stability of carbon–vacancy complex. Association of carbon–vacancy pairs with multiple solute clusters is found to be favorable for Ni, Cu and P. The energetic stability of solute(s)–carbon–vacancy complexes was rationalized on the basis of pairwise interaction data and by analyzing the variation of local magnetic moments on atoms constituting the clusters.

  16. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-06-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe-9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (KJQ) at represented temperatures: 240-280 MPa √m at room temperature and 160-220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic-martensitic steels such as HT9 and NF616.

  17. Low-chromium reduced-activation ferritic steels for fusion

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Development of reduced-activation ferritic steels has concentrated on high-chromium (8-10 wt% Cr) steels. However, there are advantages for a low-chromium steel, and initial ORNL studies on reduced-activation steels were on compositions with 2.25 to 12% Cr. Those studies showed an Fe-2.25Cr-2W-0.25V-0.1C (2 1/4Cr-2WV) steel to have the highest strenglth of the steels studied. Although this steel had the best strength, Charpy impact properties were inferior to those of an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) and an Fe-2.25Cr-2W-0.1C (2 1/4Cr-2W) steel. Therefore, further development of the low-chromium Cr-W steels was required. These results indicate that it is possible to develop low-chromium reduced-activation ferritic steels that have tensile and impact properties as good or better than those of high-chromium (7-9% Cr) steels. Further improvement of properties should be possible by optimizing the composition.

  18. The effect of ageing temperature and time on the mechanical properties of Fe-NiCrMo alloys with different contents of δ ferrite

    Laboratory cast alloys with 2-27% of δ ferrite were aged for up to 17,520 h in the temperature range 290-350 deg. C. Tensile and Charpy tests were performed at 22 and 290 deg. C on specimens aged for different times, and the microhardnesses of both constituents of the microstructure were determined for the alloy with 27% of δ ferrite. The effects of the content of δ ferrite, the ageing and testing temperature, and the ageing time on mechanical properties and notch toughness are presented and discussed

  19. Activating Flux Design for Laser Welding of Ferritic Stainless Steel

    马立; 胡绳荪; 胡宝; 申俊琦; 王勇慧

    2014-01-01

    The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investi-gated in this study. Some conventional oxides, halides and carbonates were applied in laser welding. The results showed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved the penetration more effectively at low power than that at high power. The uniform design was adopted to arrange the formula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to 2.23 times as large as that without flux, including 50%ZrO2, 12.09%CaCO3, 10.43%CaO and 27.48%MgO. Through the high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the pene-tration capability.

  20. Reduced activation ODS ferritic steel - recent development in high speed hot extrusion processing

    Oksiuta, Zbigniew [Faculty of Mechanical Engineering, Bialystok Technical University (Poland); Lewandowska, Malgorzata; Kurzydlowski, Krzysztof [Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland); Baluc, Nadine [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Villigen PSI (Switzerland)

    2010-05-15

    The paper presents the microstructure and mechanical properties of an oxide dispersion strengthened (ODS), reduced activation, ferritic steel, namely the Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} alloy, which was fabricated by hot isostatic pressing followed by high speed hydrostatic extrusion (HSHE) and heat treatment HT at 1050 C. Transmission electron microscopy (TEM) observations revealed significant differences in the grain size and dislocation density between the as-HIPped and as-HSHE materials. It was also found that the microstructure of the steel is stable after HT. The HSHE process improves significantly the tensile and Charpy impact properties of the as-HIPped steel. The ultimate tensile strength at room temperature increases from 950 up to 1350 MPa, while the upper shelf energy increases from 3.0 up to 6.0 J. However, the ductile-to-brittle transition temperature (DBTT) remains relatively high (about 75 C).These results indicate that HSHE is a promising method for achieving grain refinement and thus improving the mechanical properties of ODS ferritic steels. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Formation of Y2O3 nanoclusters in nano-structured ferritic alloys: Modeling of precipitation kinetics and yield strength

    The solubility product of Y2O3 in ferrite and the diffusion coefficient of yttrium in ferrite have been obtained by fitting a model based on the classical nucleation-growth-coarsening theory of precipitation, as adapted to an anisothermal heat treatment, to experimental small angle neutron scattering results of Y2O3 precipitate size distributions in a mechanically alloyed and consolidated Fe-15 at.%Cr-0.13 at.%Y-0.18 at.%O ferritic alloy. This precipitation model is coupled to a dispersed barrier model of structural hardening to predict the yield strength of the alloys as a function of heat treatment. The resulting model and thermodynamic/kinetic properties are then applied to better understand how the precipitation kinetics impact the yield stress in various anisothermal heat treatments, as compared to an isothermal heat treatment. The modeling results clearly indicate that the anisothermal heat treatments can be tailored to establish a higher density and a smaller size distribution of Y2O3 precipitates, which also increase the yield stress.

  2. Electronic Structures and Alloying Behaviors of Ferrite Phases in High Co-Ni Secondary Hardened Martensitic Steels

    2000-01-01

    @@The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LDOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ∑BOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects.

  3. Study of the precipitation and of the hardening microscopic mechanisms under irradiation in dilute ferritic alloys

    The copper precipitation plays a significant role in the embrittlement process of reactor vessel steels under neutron irradiation at 300 deg C. In order to understand the copper precipitation mechanisms, we have studied model ferritic binary FeCu and ternary alloys FeCuX (X=Mn,Ni, Cr, P). These materials have been either Irradiated with 2.5 MeV electrons In the 175-360 deg C temperature range or thermal aged at 500 deg C. The evolution of materials has been followed by resistivity measurements under irradiation, by small angle neutron scattering and by Vickers microhardness measurements. We have shown the similarity of copper precipitation under thermally ageing at 500 deg C and electron Irradiation at 300 deg C, in FeCu1,34%. This result confirms that the main effect of electronic irradiation is to accelerate precipitation. Nevertheless, we have observed that irradiation induces an additional contribution to hardening attributed to point defect clusters. Concerning the ternary alloys, we observed that at 300 deg C the addition of a third element has no significant effect on the copper precipitation kinetic under irradiation but that at lower temperature manganese slows down precipitation kinetic. In order to reproduce the experimental results obtained on FeCu1,34% by using a cluster kinetics model, we have to suppose that the precipitation is heterogeneous and controlled by interface reactions for the small size clusters. In addition, neutron or electron irradiated industrial steels have been studied by small angle neutron scattering. The results revealed the presence of nano-metric solute clusters which contain few copper atoms and which are not linked to the formation of displacement cascades. (author)

  4. Thermal stability of nanoscale helium bubbles in a 14YWT nanostructured ferritic alloy

    Edmondson, P.D., E-mail: philip.edmondson@materials.ox.ac.uk; Parish, C.M.; Li, Q.; Miller, M.K.

    2014-02-01

    Highlights: • 14YWT NFA irradiated with 335keV He{sup +} to 6.75x10{sup 20} He m{sup -2} at 400 °C then thermally treated at 750 °C for up to 100 hr. • As-irradiated material displayed poly-disperse bubble size distribution that became more inhomogeneous with thermal treatment. • The bubbles were observed to coarsen following thermal treatment. • Coarsening behaviour exhibits characteristics of self-interstitial and dislocation loop punching, Brownian motion and coalescence and Ostwald ripening. - Abstract: A 14YWT nanostructured ferritic alloy has been irradiated with 335 keV He{sup +} to a total fluence of 6.75 × 10{sup 20} He m{sup −2} at a temperature of 400 °C and subsequently thermally treated at 750 °C for up to 100 h. Transmission electron microscopy has been used to characterize the size and distribution of the resultant helium bubbles. The results indicate that the bubbles generally increase in size and the distribution becomes more inhomogeneous during the thermal treatment. The results are discussed in terms of the helium supply and vacancy supersaturation, Brownian motion and coalescence, and Ostwald ripening mechanisms.

  5. Incidence of mechanical alloying contamination on oxides and carbides formation in ODS ferritic steels

    Ferritic ODS steels containing 14 or 18 wt.% Cr are produced by mechanical alloying (MA), hot consolidation and cold working. This study focuses on the evolution of interstitials such as oxygen, nitrogen and carbon at each stage of the fabrication route by comparing two MA methods: attrition milling or ball milling. The milling time required to obtain a homogenous distribution of yttrium at the micron scale in the ground powders is relatively short by using an attritor. But, in this case the carbon and nitrogen contamination is more pronounced considering powders which have reached a similar metastable stationary state. The presence of oxygen in excess results in the formation of large micron-sized oxides after extrusion. Most of them are identified as titanium-based or silicon oxides by EDS analysis. For attrition milling, a high density of aligned Ti(C,N) compounds and some FeCrW carbides (M23C6 type) mainly distributed at the grain boundaries are identified, correlated with the higher carbon contamination

  6. Effects of alloying elements on sticking occurring during hot rolling of ferritic stainless steels

    In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content

  7. Design optimization of ferritic alloy LMFBR fuel assemblies as affected by in-reactor deformation

    Because of the relatively high resistance to irradiation-induced creep and swelling exhibited by the high strength ferritic alloy HT-9, it is a major structural material candidate for use in Liquid Metal Fast Breeder Reactor (LMFBR) fuel assembly hexagonal ducts, principally to minimize the duct dilation due to the nuclear environment. The design of a fuel assembly with an HT-9 duct can be performed as part of an overall plant performance optimization to achieve minimum plant operational costs. Such evaluations were performed to quantify the effect on fuel cycle costs of possible future changes to either the current estimates of HT-9 swelling and creep or to the uncertainty band widths of creep and swelling. The evaluations were conducted using a reactor system design computer code capable of implementing core design tradeoff studies to obtain a minimum cost optimization of the reactor system performance. The results of the study quantify the incentive for minimum creep and swelling and the incentive to obtain sufficient data to minimize the creep and swelling uncertainty band widths

  8. Effect of mechanical alloying parameters on irradiation damage in oxide dispersion strengthened ferritic steels

    Issues for developing oxide dispersion strengthened (ODS) steel are anisotropic mechanical properties due to the bamboo-like structure, impurity pick up during the mechanical alloying (MA) process, stability of oxide particles, heat-treatment condition and chemical composition. Several ODS steels were fabricated with a changing gas environment during MA, heat-treatment condition and chemical composition, and were electron-irradiated to 12 dpa at 673-748 K in a high-voltage electron microscope. An ODS martensitic steel (M-Ar) with high dislocation density showed very good swelling resistance. Swelling levels of ODS ferritic steels depended on the gas environment during MA and the recrystallization condition. These indicated that a helium gas environment during MA was more effective to suppress swelling than an argon gas environment and that cold working after recrystallization reduced void formation and swelling. The effect of MA parameters, such as the gas environment, heat-treat condition and cold working on the swelling behavior was evaluated

  9. Dual-beam irradiation of friction stir spot welding of nanostructured ferritic oxide dispersion strengthened alloy

    Chen, Chun-Liang, E-mail: chunliang@mail.ndhu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Richter, Asta [Department of Engineering, Technical University of Applied Sciences, Wildau, Bahnhofstrasse 1, 15745 Wildau (Germany); Koegler, Reinhard [Institute of Ion Beam Physics and Materials Research, Helmholtz Center Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Wu, Lung-Tien [Metal Industries Research and Development Centre, Kaohsiung 811, Taiwan (China)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer FSSW has been successfully applied to join two sheets of ODS material. Black-Right-Pointing-Pointer Dynamic recrystallization occurs in the thermo mechanically affected zone, resulting in a decrease in hardness. Black-Right-Pointing-Pointer After irradiation, a clear maximum is visible in all depth dependent hardness charts, which is caused by defects generated during ion bombardment. Black-Right-Pointing-Pointer The material changes during FSSW are larger than the radiation induced hardness increase. - Abstract: Nanostructured ferritic oxide dispersion strengthened (ODS) alloys usually contain a high density of Y-Al-O and Y-Ti-O nanoparticles, high dislocation densities and fine grains. Friction stir spot welding (FSSW) is a very promising technique for the joining of ODS materials without oxide particle agglomeration and loss in mechanical properties in the weld zone. Heating and severe plastic deformation can significantly alter the originally as-received material. The local microstructure determines the weld mechanical properties, which are analyzed by nanoindentation. The FSSW region consists of three different zones: the base material, the thermo-mechanically affected zone and the heat affected zone. Irradiation of the FSSW area was performed with a Fe{sup +}/He{sup +} dual ion beam. Hardness changes within the welding zones and variation with irradiation damage are discussed.

  10. Dual-beam irradiation of friction stir spot welding of nanostructured ferritic oxide dispersion strengthened alloy

    Highlights: ► FSSW has been successfully applied to join two sheets of ODS material. ► Dynamic recrystallization occurs in the thermo mechanically affected zone, resulting in a decrease in hardness. ► After irradiation, a clear maximum is visible in all depth dependent hardness charts, which is caused by defects generated during ion bombardment. ► The material changes during FSSW are larger than the radiation induced hardness increase. - Abstract: Nanostructured ferritic oxide dispersion strengthened (ODS) alloys usually contain a high density of Y–Al–O and Y–Ti–O nanoparticles, high dislocation densities and fine grains. Friction stir spot welding (FSSW) is a very promising technique for the joining of ODS materials without oxide particle agglomeration and loss in mechanical properties in the weld zone. Heating and severe plastic deformation can significantly alter the originally as-received material. The local microstructure determines the weld mechanical properties, which are analyzed by nanoindentation. The FSSW region consists of three different zones: the base material, the thermo-mechanically affected zone and the heat affected zone. Irradiation of the FSSW area was performed with a Fe+/He+ dual ion beam. Hardness changes within the welding zones and variation with irradiation damage are discussed.

  11. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  12. Effects of austenite grain size and cooling rate on Widmanstaetten ferrite formation in low-alloy steels

    Bodnar, R.L.; Hansen, S.S. (Bethlehem Steel Corp., PA (United States). Hot Rolled Products Div.)

    1994-04-01

    Deformation dilatometry is used to simulate the hot rolling of 0.20 pct C-1.10 pct Mn steels over a product thickness range of 6 to 170 mm. In addition to a base steel, steels with additions of 0.02 pct Ti, 0.06 pct V, or 0.02 pct Nb are included in the study. The transformation behavior of each steel is explored for three different austenite grain sizes, nominally 30, 55, and 100 [mu]m. In general, the volume fraction of Widmanstaetten ferrite increases in all four steels with increasing austenite grain size and cooling rate, with austenite grain size having the more significant effect. The Nb steel has the lowest transformation temperature range and the greatest propensity for Widmanstaetten ferrite formation, while the amount of Widmanstaetten ferrite is minimized in the Ti steel (as a result of intragranular nucleation of polygonal ferrite on coarse TiN particles). The data emphasize the importance of a refined austenite grain size in minimizing the formation of a coarse Widmanstaetten structure. With a sufficiently fine prior austenite grain size (e.g., [le]30 [mu]m), significant amounts of Widmanstaetten structure can be avoided, even in a Nb-alloyed steel.

  13. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100–500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials’ excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer-to micrometer-scale materials analysis. Modern high-brightness, high-X-ray collection STEM instruments are capable of enabling advanced experiments, such as simultaneous energy dispersive X-ray spectroscopy and electron energy loss spectroscopy spectrum imaging at nm to sub-nm resolution, that are now well-established for the study of nuclear materials. In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis

  14. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    Parish, Chad M.; Miller, Michael K.

    2015-07-01

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer-to micrometer-scale materials analysis. Modern high-brightness, high-X-ray collection STEM instruments are capable of enabling advanced experiments, such as simultaneous energy dispersive X-ray spectroscopy and electron energy loss spectroscopy spectrum imaging at nm to sub-nm resolution, that are now well-established for the study of nuclear materials. In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.

  15. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  16. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. Technologically, cold-drawing is the only way

  17. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    Rieken, Joel [Iowa State Univ., Ames, IA (United States)

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  18. Characterization and corrosion resistance of organically modified silicate-NiZn ferrite/polyaniline hybrid coatings on aluminum alloys

    Wu, K.H. [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China)]. E-mail: khwu@ccit.edu.tw; Chao, C.M. [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China); Liu, C.H. [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China); Chang, T.C. [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China)

    2007-07-15

    Hybrid coatings based on organically modified silicate (Ormosil)-NiZn ferrite/polyaniline (10-30 wt.%) were synthesized through a sol-gel technique. Tetraethylenepentamine, 3-glycidoxypropyltrimethoxysilane, tetraethoxysilane and Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}/polyaniline were used as precursors for the hybrid coatings. These hybrid films were deposited via spin coating onto an aluminum alloy to improve the corrosion protection. The effects induced by the NiZn ferrite/polyaniline content on the chain dynamics, ferromagnetic behavior and corrosion performances of the coated samples were investigated. The rotating-frame spin-lattice relaxation times and scale of the spin-diffusion path length indicated that the configuration of the hybrid films was highly cross-linked, dense and adhered to the aluminum alloy substrates. The magnetic properties of the resulting hybrids showed super-paramagnetic behavior, such as zero coercive force (coercivity 0 G) and a low blocking temperatures (45 K). Potentio-dynamic and salt-spray analysis revealed that the hybrid films provided an exceptional barrier and corrosion protection in comparison with untreated aluminum alloy substrates.

  19. Characterization and corrosion resistance of organically modified silicate-NiZn ferrite/polyaniline hybrid coatings on aluminum alloys

    Hybrid coatings based on organically modified silicate (Ormosil)-NiZn ferrite/polyaniline (10-30 wt.%) were synthesized through a sol-gel technique. Tetraethylenepentamine, 3-glycidoxypropyltrimethoxysilane, tetraethoxysilane and Ni0.5Zn0.5Fe2O4/polyaniline were used as precursors for the hybrid coatings. These hybrid films were deposited via spin coating onto an aluminum alloy to improve the corrosion protection. The effects induced by the NiZn ferrite/polyaniline content on the chain dynamics, ferromagnetic behavior and corrosion performances of the coated samples were investigated. The rotating-frame spin-lattice relaxation times and scale of the spin-diffusion path length indicated that the configuration of the hybrid films was highly cross-linked, dense and adhered to the aluminum alloy substrates. The magnetic properties of the resulting hybrids showed super-paramagnetic behavior, such as zero coercive force (coercivity 0 G) and a low blocking temperatures (45 K). Potentio-dynamic and salt-spray analysis revealed that the hybrid films provided an exceptional barrier and corrosion protection in comparison with untreated aluminum alloy substrates

  20. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  1. Low-chromium reduced-activation ferritic steels

    Steels are being developed for fusion-reactor applications that contain only elements that produce radioactive isotopes that decay to low levels in a reasonable time. These reduced-activation or fast induced-radioactivity decay ferritic steels are being developed to be analogous to the Cr-Mo steels presently in the fusion program, but with molybdenum replaced by tungsten. In this paper, steels with 2-1/4% Cr will be discussed. To determine the effect of tungsten and vanadium on these steels, heats were produced with 2% W, with 0.25% V, with 1% W and 0.25% V, and with 2% W and 0.25% V. Tempering and microstructural studies were made and tensile and impact tests were conducted. Preliminary results indicate that it should be possible to develop a low-chromium Cr-W steel without molybdenum or niobium. Such steels should have properties as good as or better than the three Cr-Mo steels presently being considered as candidates for fusion-reactor applications. 22 refs., 12 figs., 3 tabs

  2. Microstructure and Mechanical Propertiesof a Nitride-Strengthened Reduced ActivationFerritic/Martensitic Steel

    Zhou, Qiangguo; Zhang, Wenfeng; Yan, Wei; Wang, Wei; SHA, WEI; Shan, Yiyin; Yang, Ke

    2012-01-01

    Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic micro...

  3. EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels.

    Zaefferer, S; Romano, P; Friedel, F

    2008-06-01

    Bainite is thought to play an important role for the chemical and mechanical stabilization of metastable austenite in low-alloyed TRIP steels. Therefore, in order to understand and improve the material properties, it is important to locate and quantify the bainitic phase. To this aim, electron backscatter diffraction-based orientation microscopy has been employed. The main difficulty herewith is to distinguish bainitic ferrite from ferrite because both have bcc crystal structure. The most important difference between them is the occurrence of transformation induced geometrically necessary dislocations in the bainitic phase. To determine the areas with larger geometrically necessary dislocation density, the following orientation microscopy maps were explored: pattern quality maps, grain reference orientation deviation maps and kernel average misorientation maps. We show that only the latter allow a reliable separation of the bainitic and ferritic phase. The kernel average misorientation threshold value that separates both constituents is determined by an algorithm that searches for the smoothness of the boundaries between them. PMID:18503676

  4. Simulation of Ferrite Formation in Fe-C Alloys Based on a Three-Dimensional Mixed-Mode Transformation Model

    van Bohemen, S. M. C.; Bos, C.; Sietsma, J.

    2011-09-01

    A three-dimensional mixed-mode (MM) transformation model accounting for both soft impingement and hard impingement was developed that calculates the growth kinetics of ferrite grains in an austenite matrix. The simulations are compared to the kinetics of ferrite formation in high-purity Fe-C alloys for which phase-transformation kinetics were measured isothermally by dilatometry at several temperatures in the range of 973 K to 1043 K (700 °C to 770 °C). The interface mobility is obtained from the best fit of the data at 1023 K (750 °C) for which the nucleus density N is estimated from the final microstructure. Subsequently, the experimental ferrite kinetics in Fe-0.36C at the other temperatures are simulated. The values of N extracted from the fits can be described with a nucleation model. The significance of the MM calculations is rationalized by comparing the results for Fe-0.17C with simulations assuming purely diffusion-controlled (DC) and purely interface-controlled (IC) growth. Comparison of simulated fraction curves for Fe-0.57C with the three models demonstrates that the transformation in high-carbon steels is essentially DC.

  5. A wear and corrosion resistant α-ferrite toughened Fe9Cr9Si2 ternary intermetallic alloy

    Mechanical moving components working under corrosion or elevated temperature aggressive service conditions demand tribological materials having excellent combinations of wear and corrosion resistance. Most conventional high-performance wear resistant materials such as high Cr cast irons lack adequate corrosion resistance, while most corrosion resistant materials such as stainless steels are poor in resisting wear. In this paper, a novel α-ferrite toughened Fe9Cr9Si2 wear and corrosion resistant ternary intermetallic alloy was developed with a microstructure consisting of small amount of dispersive α particles well distributed in the continuous matrix of Fe9Cr9Si2 (referred as α/Fe9Cr9Si2 alloy). Corrosion properties were evaluated using the anodic polarization methods in H2SO4 and NaCl water solutions. Wear resistance was tested under room-temperature block-on-wheel dry sliding wear test conditions. Due to the unique chemical composition of both the Cr and Si highly alloyed α and the σ-phase Fe9Cr9Si2, the α/Fe9Cr9Si2 alloy exhibited outstanding corrosion resistance. Due to the excellent combination of high hardness and the strong covalent-dominant atomic bonds of σ-Fe9Cr9Si2, the excellent toughness and ductility of α and the unique chemical composition induced oxidation wear, the α-toughened Fe9Cr9Si2 σ-based alloy exhibited outstanding dry sliding wear resistance

  6. Helium Retention and Desorption Behaviour of Reduced Activation Ferritic/Martenstic Steel

    WANG Pinghuai; NOBUTA Yuji; HINO Tomoaki; YAMAUCHI Yuji; CHEN Zilning; XU Zengyu; LI Xiongwei; LIU Shi

    2009-01-01

    The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwest-ern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non-welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.

  7. Post extrusion heat treatment effects on microstructure and mechanical properties of 9Cr nano structured ferritic alloy

    Yoon, Jihyu; Kang, Sukhoon; Lee, Yongbok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Byun, Thak S.; Hoelzer, David T. [Oak Ridge National Laboratory, Oak Ridge (United States)

    2012-10-15

    Nano structured ferritic alloys (NFAs) show enhanced high temperature strength by adding nano scale oxide particles into ferritic-martensitic (FM) steel. High Cr FM steels are under intense research as candidate materials for the components of next generation nuclear systems. The adequate mechanical and fract ural properties are prerequisites for core materials that are subjected to a rigorous environment at a high temperature of up to 650 .deg. C and neutron irradiation of 200 {approx} 400 dpa. A few recent researches have reported that the fracture toughness of NFAs is very low at above 300 .deg. C. To overcome this drawback of NFAs, post extrusion heat treatments that can evolve the partial phase transformations in a 9Cr-NFA were applied in this study. The objectives of this study are to improve the fracture toughness and ductility of NFA through a simple post-extrusion thermo-mechanical process, which can lead to changes in the microstructure of nano structured 9Cr alloy into a dual phase structure.

  8. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  9. Microstructural developments in Fe-Cr-W low activation ferritic steels under dual beam charged particle irradiation

    Chromium-molybdenum ferritic steels have a better resistance to void swelling than austenitic steels and were considered for use as first wall structural materials in future fusion reactors. One of the major alloying elements, Mo, is deleterious for the reduction of radioactivity; reduced activation steels are under development, where Mo is replaced by W. In this work, four kinds of reduced activation steels were dual or single ion irradiated to 125 dpa. In the duel ion irradiated steels with a 7-12% Cr content, the dimensional stability of the martensite phase was superior to the other phases. The cavity microstructures of bainitic steels with 2.25% Cr content were affected by the He/dpa ratio (and by the He injection rate) even when they had a high damage level (up to 125 dpa.) Hitherto, the low activation steels developed by replacing Mo by W suggest excellent stability of microstructures and thus a high resistance to swelling. (orig.)

  10. Dispersoid Distribution and Microstructure in Fe-Cr-Al Ferritic Oxide Dispersion-Strengthened Alloy Prepared by Friction Consolidation

    Catalini, David; Kaoumi, Djamel; Reynolds, Anthony; Grant, Glenn J.

    2015-07-09

    INCOLOY® MA956 is a ferritic Oxide Dispersion Strengthened (ODS) alloy. Three different oxides, Y4Al2O9, YAlO3 and Y3Al5O12, have been observed in this alloy. The oxide particle sizes range from just a few up to hundreds of nm and these particles are responsible of the high temperature mechanical strength of this alloy. Mechanically alloyed MA956 powder was consolidated via Friction Consolidation using three different processing conditions. As a result, three small compacts of low porosity were produced. The compacts exhibited a refined equiaxed grain structure with grain sizes smaller than 10 µm and the desired oxide dispersion.YAlO3 and Y3Al5O12 were identified in the compacts by Scanning Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD). The size distribution of precipitates above 50 nm showed a direct proportionality between average precipitate size and grain size. The total energy input during processing was correlated with the relative amount of each of the oxides in the disks: the higher the total processing energy input, the higher the relative amount of Y3Al5O12 precipitates. The elemental composition of the oxide precipitates was also probed individually by EDS showing an aluminum enrichment trend as precipitates grow in size.

  11. Transmutation of alloys in MFE facilities as calculated by REAC (a computer code system for activation and transmutation)

    A computer code system for fast calculation of activation and transmutation has been developed. The system consists of a driver code, cross-section libraries, flux libraries, a material library, and a decay library. The code is used to predict transmutations in a Ti-modified 316 stainless steel, a commercial ferritic alloy (HT9), and a V-15%Cr-5%Ti alloy in various magnetic fusion energy (MFE) test facilities and conceptual reactors

  12. Testing for compatibility of reduced activation ferritic steel with plasma on JFT-2M partial coverage of the vacuum vessel with ferritic steel

    The compatibility of reduced activation ferritic steel (F82H), which is a leading candidate material for the demo reactor (e.g. SSTR), with plasma has been investigated in the JFT-2M tokamak with 3 steps in an AMTEX (Advanced Material Tokamak EXperiment). In the first step, the reduction of fast ion losses was well demonstrated with the ferritic steel outside the vacuum vessel. In the second step, the ferritic steel was installed inside the vacuum vessel in order to perform a preliminary investigation of the effect of the ferromagnetism on plasma stability and control, and impurity release. For this purpose, ferritic steels of 7 mm thickness were installed to form 2 sets of toroidally uniform belts, which cover 20% of the vacuum vessel. No deteriorative effects were observed regarding mode locking, plasma control, and impurity desorption. The initial boron coating was applied in order to modify the surface of the ferritic steel. The impurity is remarkably reduced and high normalized-beta plasma was obtained. Thus encouraging results were obtained for the third step, where whole vacuum vessel wall will be covered with ferritic steel. (author)

  13. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials

    Oxide dispersion strengthened (ODS) ferrite steels with excellent swelling resistance and superior high temperature strength are prospective cladding materials for advanced fast breeder reactors. The addition of Ti in 13Cr-3W ODS ferritic steels improved the high temperature strength remarkably by the formation of uniformly distributed ultra-fine oxide particles. ODS ferritic steels have a bamboo-like grain structure and a strong deformation texture. The decrease of creep rupture strength in the bi-axial direction compared to the uni-axial direction is attributed mainly to this unique bamboo grain structure. Nearly equivalent creep rutpure strength for both bi-axial and uni-axial direction was successfully attained by introducing the α to γ transformation in ODS martensitic steel. (orig.)

  14. Evaluation of mechanical properties in stainless alloy ferritic with 5 % molybdenum; Avaliacao das propriedades mecanicas em ligas inoxidaveis ferriticas com 5% de molibdenio

    Lima Filho, V.X.; Gomes, F.H.F.; Guimaraes, R.F.; Saboia, F.H.C.; Abreu, H.F.G. de [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara (IFCE). Campus Maracanau, CE (Brazil)], e-mail: venceslau@ifce.edu.br

    2010-07-01

    The deterioration of equipment in the oil industry is caused by high aggressiveness in processing the same. One solution to this problem would increase the content of molybdenum (Mo) alloys, since this improves the corrosion resistance. As the increase of Mo content causes changes in mechanical properties, we sought to evaluate the mechanical properties of alloys with 5% Mo and different levels of chromium (Cr). Were performed metallography and hardness measurement of the alloys in the annealed condition. Subsequent tests were performed tensile and Charpy-V, both at room temperature. The results showed that 2% difference in the content of Cr did not significantly alter the mechanical properties of alloys. The alloys studied had higher values in measured properties when compared to commercial ferritic alloys with similar percentages of Cr. The high content of Mo resulted in a brittle at room temperature but ductile at temperatures above 70 degree C. (author)

  15. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends

  16. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy

    ODS (oxide dispersion strengthened) alloys have superior creep properties. As it is well known, these excellent creep properties result from very fine oxide particles dispersed with the matrix. However, there is no common understanding about the nature of the very small oxide particles. Two hypotheses arise from the literature, 1: non-stoichiometric Y-, Ti-, O-enriched clusters and 2: stoichiometric Y2Ti2O7. In this work, both chemically extracted residue method and extraction replica method were applied to the commercial ODS ferritic alloy, MA957. These samples were then observed using XRD (X-ray diffractometry) and FEG-STEM (field emission gun-scanning transmission electron microscopy) with EDS (energy dispersive X-ray spectrometer). From the results, it was concluded that the composition of small particles is related to the particle size. They exhibit at least two types of phase, 1: non-stoichiometric Y-, Ti-, O-enriched clusters from ∼2 to ∼15 nm (Y/Ti 2Ti2O7 from ∼15 to ∼35 nm. Based on the result, it is suggested that the appropriate increase of titanium content compared to yttrium content in oxide particles by modifying the chemical compositions of ODS alloys could be an effective way to obtain a finer dispersion of oxide particles

  17. Correlation of Fe/Cr phase decomposition process and age-hardening in Fe–15Cr ferritic alloys

    The effects of thermal aging on the microstructure and mechanical properties of Fe–15Cr ferritic model alloys were investigated by TEM examinations, micro-hardness measurements and tensile tests. The materials used in this work were Fe–15Cr, Fe–15Cr–C and Fe–15Cr–X alloys, where X refers to Si, Mn and Ni to simulate a pressure vessel steel. Specimens were isothermally aged at 475 °C up to 5000 h. Thermal aging causes a significant increase in the hardness and strength. An almost twice larger hardening is required for embrittlement of Fe–15Cr–X relative to Fe–15Cr. The age-hardening is mainly due to the formation of Cr-rich α′ precipitates, while the addition of minor elements has a small effect on the saturation level of age-hardening. The correlation of phase decomposition process and age-hardening in Fe–15Cr alloy was interpreted by dispersion strengthened models

  18. Influence of scandium addition on the high-temperature grain size stabilization of oxide-dispersion-strengthened (ODS) ferritic alloy

    The influence of 1–4 at% Sc addition on the thermal stability of mechanically alloyed ODS ferritic alloy was studied in this work. Sc addition was found to significantly stabilize grain size and microhardness at high temperatures. Grain sizes of samples with 1 and 4 at% Sc was found maintained in the nanoscale range at temperatures up to 1000 °C with hardness maintained at 5.6 and 6.7 GPa, respectively. The detailed microstructure was also investigated from EDS elemental mapping, where nanofeatures [ScTiO] were observed, while nanosized [YTiO] particles were rarely seen. This is probably due to the concentration difference between Sc and Y, leading to the formation of [ScTiO] favoring that of [YTiO]. Precipitation was considered as the major source for the observed high temperature stabilization. In addition, 14YT–Sc alloys without large second phases such as Ti-oxide can exhibit better performance compared to conventional ODS materials

  19. Development of ultra high strength nano-Y2O3 dispersed ferritic steel by mechanical alloying and hot isostatic pressing

    Highlights: → Nano-Y2O3 dispersed FeCrTiAl ferritic alloys developed by mechanical alloying. → Over 99% density (7.32-7.38 Mg/m3) achieved by hot isostatic pressing. → Dispersion of nanometric Y2Ti2O7, Y2O3, Fe11TiY or Al9.22Cr2.78Y is uniform. → Extremely high compressive strength, modulus, fracture toughness, hardness achieved. → Compressive strength is 2-3 times higher with lower density than similar ODS steel. - Abstract: The present investigation aims to develop ultra high strength ferritic steels through consolidation of mechanically alloyed powders of 1.0 wt% nano-Y2O3 dispersed 83.0Fe-13.5Cr-2.0Al-0.5Ti (alloy A), 79.0Fe-17.5Cr-2.0Al-0.5Ti (alloy B), 75.0Fe-21.5Cr-2.0Al-0.5Ti (alloy C) and 71.0Fe-25.5Cr-2.0Al-0.5Ti (alloy D) alloys (all in wt%) by hot isostatic pressing (HIP) at 600, 800 and 1000 deg. C using 1.2 GPa pressure for 1 h. Following this mechano-chemical synthesis and consolidation, extensive effort has been undertaken to characterize the microstructural evolution by X-ray diffraction, scanning and transmission electron microscopy and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus and fracture toughness were determined using nano-indentation and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (2012-3325 MPa), Young's modulus (230-295 GPa), fracture toughness (4.6-21.8 MPa √m) and hardness (15.5-19.7 GPa), and measure up to 2-3 times greater strength with a lower density (∼7.4 Mg/m3) than that of other oxide dispersion strengthened ferritic steels (2O3 (ex situ) or Y2Ti2O7 (in situ) particles in higher volume fraction in high-Cr ferritic matrix.

  20. Ultra-fine ferrite grain refinement by static re-crystallization of hot rolled vanadium micro-alloyed steels

    The phenomenon of ultrafine-grain refinement of ferrite during transformational grain refinement (TGR) followed by static re-crystallization of vanadium micro-alloyed steels was studied. A substantial grain refinement (2.8 mu m) was attained during TGR process by rolling at 900 deg. C. Cold rolling with 70% of reduction introduced strain, utilized for re-crystallization during annealing at different temperatures. Electron Backscattered Diffraction (EBSD) technique was employed to quantify the low angle grain boundaries (LAGB) and high angle grain boundaries (HAGB) spacings and results were correlated with hardness drops during annealing process. At higher annealing times and temperatures the vanadium precipitates restricted the process of grain growth probably due to effective dispersion strengthening. The abnormal grain growth during annealing, predicted previously for niobium steels, found absent in the present vanadium microalloyed steels. (author)

  1. Journal of Nuclear Materials - Radiation-induced segregation and phase stability in ferritic-martensitic alloy T 91

    Jiao, Zhijie [ORNL; Busby, Jeremy T [ORNL; Was, Gary S [ORNL; Jiao, Zhijie [University of Michigan

    2010-01-01

    Radiation-induced segregation in ferritic martensitic alloy T 91 was studied to understand the behavior of solutes as a function of dose and temperature. Irradiations were conducted using 2 MeV protons to doses of 1, 3, 7 and 10 dpa at 400 C. Radiation-induced segregation at prior austenite grain boundaries was measured, and various features of the irradiated microstructure were characterized, including grain boundary carbide coverage, the dislocation microstructure, radiation-induced precipitation and irradiation hardening. Results showed that Cr, Ni and Si segregate to prior austenite grain boundaries at low dose, but segregation ceases and redistribution occurs above 3 dpa. Grain boundary carbide coverage mirrors radiation-induced segregation. Irradiation induces formation of Ni Si Mn and Cu-rich precipitates that account for the majority of irradiation hardening. Radiation-induced segregation behavior is likely linked to the evolution of the precipitate and dislocation microstructures. 2010 Elsevier B.V. All rights reserved

  2. Consideration of the growth mode in isochronal austenite-ferrite transformation of ultra-low-carbon Fe-C alloy

    Chen, Hao; Liu, Yongchang; Li, Yanli; Zhang, Lifang [Tianjin University, Tianjin Key Lab of Advanced Jointing Technology, School of Materials Science and Engineering, Tianjin (China); Yan, Zesheng [Tianjin Pipe (Group) Cooperation, Tianjin (China)

    2010-01-15

    The three cooling rates of 10, 100, 200 K/min dilatometry experiments are used to investigate the kinetics of the isochronal austenite ({gamma}) to ferrite ({alpha}) transformation of Fe-0.0036wt.%C alloy. ''Normal transformation'' and ''abnormal transformation'' have both been observed for transformations at different cooling rates. In accordance with the thermodynamic characteristics of the {gamma}{yields}{alpha} transformation investigated here and previous kinetic considerations, a JMAK-like approach for the kinetics of isochronal phase transformations was developed that incorporates three overlapping processes: site saturation nucleation, alternate growth modes (from interface-controlled to diffusion-controlled to interface-controlled growth), as well as impingement for random distribution nuclei. The JMAK-like approach has been employed to fit the experimental results, and the fitting results show that for the {gamma}{yields}{alpha} transformation of the Fe-C alloy at all applied cooling rates, the growth mode evolves in the corresponding order: from interface-controlled to diffusion-controlled growth; from interface-controlled to diffusion-controlled to interface-controlled growth; and interface-controlled growth. (orig.)

  3. Outgassing characteristics of F82H ferritic steel as a low activation material for fusion reactor

    Odaka, Kenji; Satou, Osamu [Hitachi Ltd., Tsuchiura, Ibaraki (Japan). Mechanical Engineering Research Lab.; Ootsuka, Michio; Abe, Tetsuya; Hara, Shigemitsu; Takatsu, Hideyuki; Enoeda, Mikio

    1997-09-01

    Outgassing characteristics of F82H ferritic steel as a low activation material for the blanket of fusion device were investigated. A test chamber was constructed by welding F82H ferritic steel plates. The inner surface of the chamber was buffed and electropolished. The test chamber was degassed by the prebaking at temperature of 350degC for 20 h in vacuum. Then outgassing rates of the test chamber were measured by the throughput method as a function of pumping time for the cases that the test chamber was baked and not baked. The typical outgassing rate after baking at 250degC for 24 h was 3 x 10{sup -9} Pa{center_dot}ms{sup -1} and it seems that this value is sufficiently small to produce pressures at least as low as 10{sup -9} Pa in the vacuum chamber made of F82H ferritic steel. In the pump-down of the test chamber without baking after exposure to air, the outgassing rate decreases with pumping time and reached 1 x 10{sup -7} Pa{center_dot}ms{sup -1} at t = 10{sup 5} s. The activation energy of hydrogen in bulk diffusion in the F82H ferritic steel was measured and found to be 7 kcal/mol. (author)

  4. Experimental study and Monte Carlo simulations of phase transformations in ferrite of duplex stainless steels and their model alloys

    Duplex stainless steels used in primary circuit of 2. generation nuclear power plant endure thermal ageing at service temperatures (285 C-323 C). This leads to an increase of their hardness and to a decrease of their Charpy toughness. The evolution of these properties is due to the phase transformations which occur in ferrite. Even if it is well known that the steel composition plays a role on the mechanical properties evolution (steels with low Ni and Mo contents are less sensitive to thermal ageing), the origin of this difference of behaviour has not been clearly identified yet. In this study, the kinetics of the phase transformations in the ferrite of a duplex stainless steel with low Ni and Mo contents and duplex model alloys with specific compositions have been studied by atom probe tomography.This work showed that: i) G phase precipitation is less intense and the kinetic of the spinodal decomposition is slower for this steel than for steels with higher Ni and Mo contents, ii) the synergy between spinodal decomposition and G phase precipitation is also observed in this steel, iii) the Mo does not affect the early stages of the G phase precipitation, iv) the formation mechanism of G phase precipitates is at least a two steps mechanism, v) when the number density of G phase precipitates is low, hardening is mainly controlled by the amplitude and the mean wavelength of the spinodal decomposition, vi) when the number density of G phase precipitates is high, the hardening due to G phase precipitates may not be negligible. A kinetic Monte Carlo model has been developed to explain the synergy observed experimentally between the spinodal decomposition and the G phase precipitation. This model allowed us to show that the coarsening of G phase precipitates is driven by a diffusion mechanism along a/a' interfaces, and not by a bulk diffusion mechanism. (author)

  5. Compatibility of reduced activation ferritic/martensitic steel specimens with liquid Na and NaK in irradiation rig of IFMIF

    In the high flux region of the International Fusion Materials Irradiation Facility (IFMIF), the neutron irradiation damage for iron-based alloys will exceed 20 dpa/year. An accurate specimen temperature measurement under a large amount of nuclear heating is a key issue but the change of heat transfer of gap between irradiation specimens and specimen holder during irradiation test is inevitable, if gap is filled with an inert gas and temperature is monitored by a thermocouple buried in the specimen holder. A solution to make heat transfer predictable is to fill the gap with a liquid metal (sodium or sodium-potassium alloy). An issue of compatibility between Reduced Activation Ferritic/Martensitic steels and the liquid metals is addressed in this paper, and some recommendations for designing irradiation rig are presented, such as a purification control before filling liquid metals, or a careful selection of material of rig to avoid carbon mass transfer. (author)

  6. (Ni, Zn, Sn) Ru and (Ni, Sn) Sn substituted barium ferrite prepared by mechanical alloying

    NiRu, ZnRu, SnRu and SnSn mixtures considerably improved the saturation magnetization, Ms with low substitution values; diminishing quickly at the same times the coercivity, Hci to suitable values for high-density magnetic recording applications. On the other hand, the NiSn mixture also decreased the coercivity rapidly however without enhancing the saturation magnetization. The shown differences on magnetic properties were mainly due both to magnetic nature of divalent ion and to secondary phase apparitions. The mixtures with Sn2+ as partner ion diminished markedly to Tc. The tetravalent Ru4+ ion has a special effect on magnetic properties of hexagonal ferrites (increases Ms and diminishes fast Hci with low substitutions).

  7. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-01-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660

  8. Preparation of ferritic 17%Cr ODS steel by mechanical alloying from prealloyed steel powder

    Hadraba, Hynek; Husák, Roman; Kuběna, Ivo; Bureš, R.; Fáberová, M.; Strečková, M.

    2014-01-01

    Roč. 14, č. 4 (2014), s. 222-227. ISSN 1335-8987 R&D Projects: GA ČR(CZ) GA14-25246S Institutional support: RVO:68081723 Keywords : ODS steel * mechanical alloying * hot rolling Subject RIV: JG - Metallurgy

  9. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  10. Effect of ferrite formation on abnormal austenite grain coarsening in low-alloy steels during the hot rolling process

    Asahi, Hitoshi; Yagi, Akira; Ueno, Masakatsu

    1998-05-01

    Abnormal coarsening of austenite (γ) grains occurred in low-alloy steels during a seamless pipe hotrolling process. Often, the grains became several hundred micrometers in diameter. This made it difficult to apply direct quenching to produce high-performance pipes. The phenomenon of grain coarsening was successfully reproduced using a thermomechanical simulator, and the factors which affected grain coarsening were clarified. The mechanism was found to be basically strain-induced grain rowth which occurred during reheating at around 930 °C. Furthermore, once a pipe temperature decreased to the dual-phase region after the minimal hot working and prior to the reheating process, the grain coarsening was more pronounced. It was understood that the formation of ferrite along grain boundaries had the role of reducing the migration of grain boundaries into neighboring grains, leaving a strain-free, recrystallized region behind. This abnormal grain coarsening was found to be effectively prevented by an addition of Nb, the content of which varied depending on the C content. The effect of the Nb addition was confirmed by an in-line test.

  11. Ab Initio Investigation of He Bubbles at the Y2Ti2O7-Fe Interface in Nanostructured Ferritic Alloys

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys are promising materials candidates for the next generation of nuclear reactors due to their ability to withstand high temperatures, high pressures, high neutron flux and especially, the presence of high concentrations of transmutation product helium. As helium diffuses through the matrix, large number densities of complex oxide nanoclusters, namely Y2Ti2O7, Y2O3 and Y2TiO5, act as trapping sites for individual helium atoms and helium clusters. Consequently, there is a significant decrease in the amount of helium that reaches grain boundaries, mitigating the threat of pressurized bubble formation and embrittlement. In order to understand the helium trapping mechanisms of the oxides at a fundamental level, the interface between the nanoclusters and the iron matrix must be modeled. We present results obtained using density functional theory on the Y2Ti2O7-Fe interface where the structure has been modeled based on experimental observations. Helium has been added along the interface in order to investigate the influence of helium on the structure and to obtain thermodynamic and kinetic parameters of helium along the interface.

  12. Stress-corrosion and fatigue cracking behaviour of nitrogen-alloyed austenitic and ferritic-austenitic chrome-nickel-(molybdenum)steels

    Under unfavorable heat-exchanger conditions simulated with 3 % sodium chloride solutions of different rhoH-values and redox potentials there excists a close connection between the stress-corrosion and fatigue behavior and the results of electrochemical measurements for nitrogen-alloyed austenitic and ferritic-austenitic high-alloy stells. Elevated contents of chromium and molybdenum have a positive effect. With free corrosion the materials no. 1.4311 and 1.4406 as well as partly also 1.4439 and the corresponding weldings are not suited if there is a hazard of stress corrosion. For 1.4439 and 1.4462 and their weldings of the same type a lower-bound stress may be given for the hazard of stress corrosion. It is within the order of magnitude of the garanteed elevated temperature yield strength and is therefore distinctly higher for the ferritic-austenitic steel 1.4462 than for nitrogenous austenitic steels. For the nitrogenous austenitic steels mentioned the dynamic loading capacity with and without the action of corrosive media is marked by lower than for the steel 1.4462 with ferritic-austenitic structure and its welding of the same type. As the notch sensitivity for both groups of material can be taken as equal the steel 1.4462 appears suitable for being used under unfavorable heat-exchanger conditions if high resistance against stress-corrosion and fatigue cracking is taken into account. (orig.)

  13. Microstructure and Mechanical Properties of a Nitride-Strengthened Reduced Activation Ferritic/Martensitic Steel

    Zhou, Qiangguo; Zhang, Wenfeng; Yan, Wei; Wang, Wei; Sha, Wei; Shan, Yiyin; Yang, Ke

    2012-12-01

    Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873 K (600 °C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243 K (-30 °C), which could be further reduced by purification.

  14. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn0.552+Fe0.183+)tet[Zr0.452+Fe1.823+]octO4 through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe3+ on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics

  15. ATR-A1 irradiation experiment on vanadium alloys and low activation steels

    Tasi, H.; Strain, R.V.; Gomes, I.; Hins, A.G.; Smith, D.L.

    1996-04-01

    To study the mechanical properties of vanadium alloys under neutron irradiation at low temperatures, an experiment was designed and constructed for irradiation in the Advanced Test Reactor (ATR). The experiment contained Charpy, tensile, compact tension, TEM, and creep specimens of vanadium alloys. It also contained limited low-activation ferritic steel specimens as part of the collaborative agreement with Monbusho of Japan. The design irradiation temperatures for the vanadium alloy specimens in the experiment are {approx}200 and 300{degrees}C, achieved with passive gap-gap sizing and fill gas blending. To mitigate vanadium-to-chromium transmutation from the thermal neutron flux, the test specimens are contained inside gadolinium flux filters. All specimens are lithium-bonded. The irradiation started in Cycle 108A (December 3, 1995) and is expected to have a duration of three ATR cycles and a peak influence of 4.4 dpa.

  16. Development and characterisation of 9Cr ODS and reduced activation ferritic/martensitic steels for fast fission and fusion reactors

    This paper presents the results of the indigenous efforts at IGCAR towards developing a 9Cr Oxide Dispersion Strengthened (ODS) and Reduced Activation Ferritic Martensitic (RAFM) steels for the Fast Breeder Reactors (FBR) and fusion program in India. The sodium cooled fast reactors require development of high temperature radiation resistant materials for achieving high fuel burn-up of 200GWd/t (∼160 dpa) or higher, which is one of the key factors for their efficient and economical operation. Ferritic/Martensitic steels (9-12% Cr) although exhibit higher void swelling resistance than austenitics, have poor high temperature creep strength, which limits the operating temperatures to ∼550 deg. C. Oxide dispersion strengthening (ODS) is a promising means of extending the creep resistance of F/M steels beyond 650 deg. C together with the advantages of high thermal conductivity and low swelling. Based on these well known principles, a developmental effort has been taken up to fabricate clad tubes using the yttria strengthened 9Cr ferritic steel. A small amount of Ti addition resulted in very fine mixed oxide particles of Y and Ti, thus improving creep rupture strength significantly. The process of clad tubes fabrication involved mechanical milling of alloy powders, consolidation by hot extrusion and tube formation by cold pilgering. Further, the particle size distribution studied using Analytical and High Resolution Electron Microscopy at intermediate stages and in the product showed a distribution of Y2O3 particles predominantly in the size range of 5-20nm. The process parameters have been optimized and tubes of outer diameter 6.6 mm, thickness 0.48 mm and length 1500mm have been produced. The RAFM steel for the test blanket module of International Thermonuclear Experimental Reactor (ITER) project has also been developed. The steel conforming to specifications has been achieved by replacement of Mo and Nb (elements that lead to high induced radioactivity) by W and Ta

  17. Numerical atomic scale simulations of the microstructural evolution of ferritic alloys under irradiation

    In this work, we have developed a model of point defect (vacancies and interstitials) diffusion whose aim is to simulate by kinetic Monte Carlo (KMC) the formation of solute rich clusters observed experimentally in irradiated FeCuNiMnSi model alloys and in pressure vessel steels. Electronic structure calculations have been used to characterize the interactions between point defects and the different solute atoms. Each of these solute atoms establishes an attractive bond with the vacancy. As for Mn, which is the element which has the weakest bond with the vacancy, it establishes more favourable bonds with interstitials. Binding energies, migration energies as well as other atomic scale properties, determined by ab initio calculations, have led to a parameter set for the KMC code. Firstly, these parameters have been optimised on thermal ageing experiments realised on the FeCu binary alloy and on complex alloys, described in the literature. The vacancy diffusion thermal annealing simulations show that when a vacancy is available, all the solutes migrate and form clusters, in agreement with the observed experimental tendencies. Secondly, to simulate the microstructural evolution under irradiation, we have introduced interstitials in the KMC code. Their presence leads to a more efficient transport of Mn. The first simulations of electron and neutron irradiations show that the model results are globally qualitatively coherent with the experimentally observed tendencies. (author)

  18. The microstructure and strength properties of MA957 nanostructured ferritic alloy joints produced by friction stir and electro-spark deposition welding

    The nanostructured ferritic alloy (NFA) MA957 was joined by friction stir welding (FSW) and electro-sparked deposition (ESD) welding. Transmission electron microscopy (TEM) and small angle neutron scattering (SANS) characterization studies showed a uniform fine-scale equiaxed ferrite structure with a high dislocation density and slightly coarsened nm-scale particles in the joint region of the FSW weld compared to the base metal. Microhardness and tensile measurements on the FSW showed a modest reduction in the strength of the joint compared to the as-processed MA957. In contrast, the ESD-welds contained considerable porosity and the nm-scale particles dissolved or coarsened significantly, resulting in a larger degradation of the joint region strength. Thus FSW is a promising method for joining NFAs

  19. The effect of Alloying elements on pitting resistance of ferritic and austenitic stainless steels in terms of pitting resistance equivalents (PRE)

    The alloying elements, such as Cr, Mo, and N of stainless steels play important roles in their resistances to pitting corrosion. The pitting resistances of stainless steels ha e long been characterized in terms of electrochemical parameters such as pitting potentials. however, in order to better understand the resistances to pitting of stainless steels, Pit Propagation Rate (PPR) and Critical Pitting Temperature (CPT) tests were carried out in deaerated 0.1N H2SO4 + 0.1N NaCl solution. The effect of Cr, Mo, and N alloying elements on the pitting corrosion resistances of both ferritic Fe-Cr, Fe-Cr-Mo stainless steels and austenitic stainless steels was examined by performing polarization, PPR, and CPT tests. The comparison between test results was made in terms of the Pitting Resistance Equivalent (PRE). Results showed that PRE values are the good parameters representing the extents of pitting corrosion resistance on a single scale regardless of both kinds of alloying elements and types of ferritic or austenitic stainless steels

  20. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken

  1. Study of the formation of solute clusters under irradiation in model ferritic alloys

    Neutron irradiation results in the formation of a high number density (1023 to 1024 m-3) of ultrafine (2 nm in diameter) solute clusters in reactor vessel steels. These clusters contain a supersaturated element (copper), and some others solutes (Mn, Ni, Si and P) soluble at the temperature of irradiation (300 C). The aim of the work described in this report is to understand what are the basic processes at the origin of the formation of these clusters, and to obtain information about the effect of the different solutes. The microstructure of model alloys, after different irradiation experiments is characterised by atom probe. The comparison between experimental results and results obtained by mean field modelling (evolution of point defects under irradiation) suggests that the precipitation of the solute clusters is heterogeneous, on point defects clusters. Precipitation kinetic is slowed down by solutes other than copper. (author)

  2. Tensile properties of ODS-14%Cr ferritic alloy irradiated in a spallation environment

    The tensile properties of mechanically-alloyed oxide dispersion strengthened MA957 steel were measured at room temperature following irradiation in the SINQ spallation target up to almost 20 dpa corresponding to an accumulated helium content of about 1750 appm, with an average irradiation temperature range of 100-360 deg. C. In contrast to the behaviour of 9Cr-1Mo martensitic steel samples subjected to identical irradiation conditions and which were drastically embrittled at high dose, all tested MA957 specimens displayed a ductile fracture mode as shown by the measured values of uniform and total elongations and by the results of fracture surface examinations. This good mechanical behaviour is a new evidence that this type of material may be able to sustain high displacement damage and helium levels and is thus particularly well suited for fusion applications.

  3. High-temperature tensile properties of nano-oxide dispersion strengthened ferritic steels produced by mechanical alloying and spark plasma sintering

    Oxide-dispersion strengthened (ODS) ferritic steels were produced by mechanical alloying and subsequent spark plasma sintering. Very fast heating rates were used to minimize porosity when controlling grain size and precipitation of dispersoids within a compacted material. Sintering cycles performed at 1373 K (1100 C) induced heterogeneous, but fine grain size distribution and high density of nano-oxides. Yield strengths at room temperature and at 923 K (650 C) are 975 MPa and 298 MPa, respectively. Furthermore, high-temperature ductility is much increased: total strain of 28 pct at 923 K (650 C). (authors)

  4. Corrosion characteristics of low activation ferritic steel, JLF-1, in liquid lithium in static and thermal convection conditions

    The compatibility of JLF-1(Fe-9Cr-2W-0.1C), a reduced activation ferritec/martensitic (RAFM) steel with static and flowing lithium (Li) was investigated. The corrosion characteristics were studied by means of measurement of weight losses and scanning electron microscope (SEM)/energy dispersive X-ray spectrometer (EDS) analysis on the surfaces and cross-sections of the specimens. The weight losses of JLF-1 specimens showed saturation at the temperature of 500 deg. C and 600 deg. C. This is possibly due to the saturation of Fe, Cr in bulk Li or formation of saturated layer of dissolved elements in liquid Li near the specimen surface. In the corrosion test in a thermal convection loop, the corrosion rate at 500 deg. C for 250 h was significantly larger than that obtained in the static test in an identical condition. After Li exposure, the phase transformation from martensite to ferrite was found on the specimens. The chemical analysis results and the loss of carbides suggested that the phase change was caused by the depletion of carbon. At the same time, selective depletion of alloy elements, such as Cr and W was detected by EDS on the surface. The result of Vickers hardness test showed that obvious softening occurred on the surface of the specimens after Li exposure and the depth of the softened region was consistent with that of the phase transformation. The flowing Li enhanced the weight loss, phase change and hardness reduction due to the mass transfer

  5. Analysis of ferrite grain growth mechanisms during {gamma}-{alpha} transformation in a niobium alloyed steel using EBSD

    Novillo, E. [CEIT and TECNUN, P Manuel de Lardizabal 15, 20018 Donostia-San Sebastian (Spain); Hernandez, D. [CEIT and TECNUN, P Manuel de Lardizabal 15, 20018 Donostia-San Sebastian (Spain); Gutierrez, I. [CEIT and TECNUN, P Manuel de Lardizabal 15, 20018 Donostia-San Sebastian (Spain)]. E-mail: igutierrez@ceit.es; Lopez, B. [CEIT and TECNUN, P Manuel de Lardizabal 15, 20018 Donostia-San Sebastian (Spain)

    2004-11-15

    The austenite to ferrite phase transformation was studied in a C-Mn-Nb steel after different hot deformation schedules, leading to deformed and recrystallized austenite. The mechanisms of nucleation and growth of ferrite grains were investigated by means of the electron back scattered diffraction (EBSD) technique. The ferrite microstructures were characterised in terms of the misorientation angles between ferrite grains and the deviations from an ideal Kurdjumov-Sachs orientation relationship with the austenite. The results show that the grain refinement produced by the accumulation of the deformation in the austenite is limited to a certain extent by the ferrite grain coarsening taking place behind the transformation front. Both coalescence and normal grain growth have been observed to contribute to this coarsening. Coalescence is enhanced as a result of the variant selection taking place in transformation from a recrystallized austenite. The accumulation of the deformation in the austenite results in ferrite-ferrite boundaries of higher misorientation, causing coalescence in this case to be less favoured, as compared with normal grain growth.

  6. Report of IEA workshop on reduced activation ferritic/martensitic steels

    IEA Workshop on Reduced Activation Ferritic/Martensitic Steels under implementing agreement for program of research and development on fusion materials was held at Tokyo Yayoi Kaikan and JAERI headquarter on November 2-3, 2000. The objective of this workshop was a review of the fusion material development programs, the progress of the collaboration and the irradiation effects studies on RAF/M steels in the collaborating parties (Europe, Russia the United States, and Japan). Moreover, the development of plans for future collaboration was discussed. The present report contains viewgraphs presented at the workshop. (author)

  7. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300–500 nm, rather than at the peak damage region (at a depth of ∼840 nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  8. Absorption and Decomposition of CO2 by Active Ferrites Prepared by Atmospheric Plasma Spraying

    Li, Shaowei; He, Zhida; Zheng, Yanjun; Chen, Changfeng

    2015-12-01

    Active ferrites, which play an important role in the catalytic decomposition of CO2, have been fabricated by atmospheric plasma spraying to incorporate FeO and anoxic iron oxide [Fe3O4-δ (0 powder a greater ability to decompose CO2 when compared to hydrogen-reduced Fe3O4 or Fe2O3 particles. Spraying distance is found to play an important role in modulating the decomposition ability of the powders, while elevated temperatures can also enhance the catalytic decomposition of CO2.

  9. Report of IEA workshop on reduced activation ferritic/martensitic steels

    NONE

    2001-03-01

    IEA Workshop on Reduced Activation Ferritic/Martensitic Steels under implementing agreement for program of research and development on fusion materials was held at Tokyo Yayoi Kaikan and JAERI headquarter on November 2-3, 2000. The objective of this workshop was a review of the fusion material development programs, the progress of the collaboration and the irradiation effects studies on RAF/M steels in the collaborating parties (Europe, Russia the United States, and Japan). Moreover, the development of plans for future collaboration was discussed. The present report contains viewgraphs presented at the workshop. (author)

  10. Hot-rolling of reduced activation 8CrODS ferritic steel

    Highlights: •Hot-rolling can induce a coarser ferrite grain in 8CrODS ferritic steel. •HR specimen consists of martensite, residual ferrite and transformed ferrite. •The coarsening of the transformed ferrite was analyzed by EBSD. •Hot-rolling can improve the strength of 8CrODS ferritic steel at 700 °C. -- Abstract: The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite

  11. Hot-rolling of reduced activation 8CrODS ferritic steel

    Wu, Xiaochao, E-mail: chaoxiaowu_008@163.com [Hokkaido University, Graduate School of Engineering, Materials Science and Engineering, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Ukai, Shigeharu [Hokkaido University, Faculty of Engineering, Materials Science and Engineering, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Leng, Bin [Hokkaido University, Graduate School of Engineering, Materials Science and Engineering, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Oono, Naoko; Hayashi, Shigenari [Hokkaido University, Faculty of Engineering, Materials Science and Engineering, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Sakasegawa, Hideo; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki 311-1393 (Japan)

    2013-11-15

    Highlights: •Hot-rolling can induce a coarser ferrite grain in 8CrODS ferritic steel. •HR specimen consists of martensite, residual ferrite and transformed ferrite. •The coarsening of the transformed ferrite was analyzed by EBSD. •Hot-rolling can improve the strength of 8CrODS ferritic steel at 700 °C. -- Abstract: The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above A{sub r3} of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.

  12. Manufacturing development of low activation vanadium alloys

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported

  13. Compatibility of graphite with a martensitic-ferritic steel, an austenitic stainless steel and a Ni-base alloy up to 1250 C

    To study the chemical interactions between graphite and a martensitic-ferritic steel (1.4914), an austenitic stainless steel (1.4919; AISI 316), and a Ni-base alloy (Hastelloy X) isothermal reaction experiments were performed in the temperature range between 900 and 1250 C. At higher temperatures a rapid and complete liquefaction of the components occurred as a result of eutectic interactions. The chemical interactions are diffusion-controlled processes and can be described by parabolic rate laws. The reaction behavior of the two steels is very similar. The chemical interactions of the steels with graphite are much faster above 1100 C than those for the Ni-base alloy. Below 1000 C the effect is opposite. (orig.)

  14. Development of oxide dispersion strengthened ferritic steels for fusion

    An oxide dispersion strengthened (ODS) ferritic steel with high temperature strength has been developed in line with low activation criteria for application in fusion power systems. The composition Fe-13.5Cr-2W-0.5Ti-0.25Y2O3 was chosen to provide a minimum chromium content to insure fully delta-ferrite stability. High temperature strength has been demonstrated by measuring creep response of the ODS alloy in uniaxial tension at 650 and 900 C in an inert atmosphere chamber. Results of tests at 900 C demonstrate that this alloy has creep properties similar to other alloys of similar design and can be considered for use in high temperature fusion power system designs. The alloy selection process, materials production, microstructural evaluation and creep testing are described

  15. Development of oxide dispersion strengthened ferritic steels for fusion

    Mukhopadhyay, D.K. [Vista Metals, Inc., McKeesport, PA (United States); Froes, F.H. [Univ. of Idaho, ID (United States); Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    An oxide dispersion strengthened (ODS) ferritic steel with high temperature strength has been developed in line with low activation criteria for application in fusion power systems. The composition Fe-13.5Cr-2W-0.5Ti-0.25Y{sub 2}O{sup 3} was chosen to provide a minimum chromium content to insure fully delta-ferrite stability. High temperature strength has been demonstrated by measuring creep response of the ODS alloy in uniaxial tension at 650 and 900 C in an inert atmosphere chamber. Results of tests at 900 C demonstrate that this alloy has creep properties similar to other alloys of similar design and can be considered for use in high temperature fusion power system designs. The alloy selection process, materials production, microstructural evaluation and creep testing are described.

  16. Microstructural stability of reduced activation ferritic/martensitic steels under high temperature and stress cycling

    Reduced activation ferritic/martensitic steels are leading candidates for blanket/first-wall structures of the D-T fusion reactors. In fusion application, structural materials will suffer cyclic stresses caused by repeated changes of temperature and electromagnetic forces according to reactor operation scenarios. Therefore, creep-fatigue behaviors are extremely important to qualify reduced activation steels as fusion structural materials. In this work, microstructural stability of reduced activation ferritic/martensitic steels under various external stresses, such as constant stress cyclic stress, was studied. The materials used are JLF-1 steel (9Cr-2W-V,Ta) and JLS-2 steel (9Cr-3W-V,Ta). The microstructure inspection by means of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) was performed following creep rupture tests, fatigue and creep-fatigue tests at elevated temperatures. In order to examine precipitation morphology in detail, the improved extracted residue and extracted replica methods were applied. From the microstructural observation of creep rupture-tested specimen, intergranular precipitates such as M23C6 and Laves phase coarsened by applying the static stress

  17. High-temperature creep rupture of low alloy ferritic steel butt-welded pipes subjected to combined internal pressure and end loadings.

    Vakili-Tahami, F; Hayhurst, D R; Wong, M T

    2005-11-15

    Constitutive equations are reviewed and presented for low alloy ferritic steels which undergo creep deformation and damage at high temperatures; and, a thermodynamic framework is provided for the deformation rate potentials used in the equations. Finite element continuum damage mechanics studies have been carried out using these constitutive equations on butt-welded low alloy ferritic steel pipes subjected to combined internal pressure and axial loads at 590 and 620 degrees C. Two dominant modes of failure have been identified: firstly, fusion boundary failure at high stresses; and, secondly, Type IV failure at low stresses. The stress level at which the switch in failure mechanism takes place has been found to be associated with the relative creep resistance and lifetimes, over a wide range of uniaxial stresses, for parent, heat affected zone, Type IV and weld materials. The equi-biaxial stress loading condition (mean diameter stress equal to the axial stress) has been confirmed to be the worst loading condition. For this condition, simple design formulae are proposed for both 590 and 620 degrees C. PMID:16243708

  18. Underwater explosive welding of tungsten to reduced-activation ferritic steel F82H

    Mori, Daichi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morizono, Yasuhiro [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Hokamoto, Kazuyuki [Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-10-15

    Highlights: • The underwater explosive welding was successfully applied in the joining of tungsten to F82H reduced activation ferritic steel. • Microstructure of the interface showed the formation of a wave-like interface with a thin mixed layer of tungsten and F82H. • Nanoindentation hardness results exhibited a gradual change away from the welded interface without hardened layer. • Small punch tests on the welded specimens resulted in the cracking at a center of tungsten followed by the interfacial cracking. - Abstract: The present study reports the underwater explosive welding of commercially pure tungsten onto the surface of a reduced-activation ferritic steel F82H plate. Cross-sectional observation revealed the formation of a wave-like interface, consisting of a thin mixed layer of W and F82H. The results of nanoindentation hardness testing identified a gradual progressive change in the interface, with no hardened or brittle layer being observed. Small punch tests on the welded specimens resulted in cracking at the center of the tungsten, followed by crack propagation toward both the tungsten surface and the tungsten/steel interface.

  19. A strong magneto-optical activity in rare-earth La3+ substituted M-type strontium ferrites

    M-type strontium ferrites with substitution of Sr2+ by rare-earth La3+ were prepared by conventional ceramic technology. The structure, magnetic properties, and magneto-optical Kerr activity of Sr1-xLaxFe12O19 (x = 0, 0.05, 0.10, 0.15, 0.20) were investigated by x-ray diffraction (XRD), vibrating sample magnetometer (VSM), and magneto-optical ellipsometry, respectively. X-ray diffraction showed that the samples sintered at 1290 deg. C for 3 h were single M-type hexagonal ferrites. The magnetic properties were remarkably changed due to the valence change of Fe ions induced by the substitution of La ions. Most significantly, an important magneto-optical activity was induced in the La3+ substituted M-type strontium ferrites around 3 eV.

  20. Interaction of minor alloying elements of high-Cr ferritic steels with lattice defects: An ab initio study

    Bakaev, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Experimental Nuclear Physics K-89, Faculty of Physics and Mechanics, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Bonny, G. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Klaver, T.P.C. [Department of Materials Science and Engineering, Faculty of 3mE, TU Delft, Mekelweg 2, 2628 CD Delft (Netherlands); Olsson, P. [Department of Neutron Research, Angstrom Laboratory, Uppsala University, Box 525, SE-75120 Uppsala (Sweden); Van Neck, D. [Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2014-01-15

    Highlights: • The interaction of Mo, W, Nb, Ta, V, Mn, Si with point and extended defects is characterized. • Mn and Si exhibit peculiar interaction with both point and extended lattice defects. • The results for substitutional atoms of the refractory metals well follow one specific trend. -- Abstract: Basic properties of minor alloying elements, namely Mo, W, Nb, Ta, V, Mn, Si entering the conventional and reduced-activation structural Fe–(9–12)Cr steels have been analyzed using ab initio calculations. The electronic structure calculations were applied to study the interaction of minor alloying elements with a number of important and well defined lattice structures, such as point defects, the 1/2〈1 1 1〉 screw dislocation core, high angle symmetric grain boundaries and free surfaces. The studied elements were classified according to their similarities and discrepancies regarding the interaction with the above mentioned defects. The refractory alloying elements are found to follow the same trend whereas Mn and Si exhibit peculiar behavior with respect to the interaction with both point and extended lattice defects. The obtained results are discussed and compared with previously published ab initio and available experimental data.

  1. Investigation on different oxides as candidates for nano-sized ODS particles in reduced-activation ferritic (RAF) steels

    Future generation reactor concepts are based on materials that can stand higher temperatures and higher neutron doses in corrosive environments. Oxide dispersion strengthened steels with chromium contents ranging from 9 to 14 wt.% – produced by mechanical alloying – are typical candidate materials for future structural materials in fission and fusion power plants. Y2O3 has proven to be a good candidate for addition to ferritic steels during mechanical alloying to form nano-sized dispersion oxide particles during compacting of the material. These oxide particles have many positive effects on the material such as improved high-temperature properties and higher corrosion resistance. However, there is potential for improvements by choosing different oxides. In this present work, four different oxides (MgO, La2O3, Ce2O3 and ZrO2) are selected by looking at their thermal stabilities and Gibbs free enthalpies of various chemical compositions. These oxides are mixed and mechanically alloyed with ferritic steel powder (Fe13Cr1W0.3Ti) and compared to a reference material produced with Y2O3 (Fe13Cr1W0.3Ti + Y2O3). The materials were characterized in terms of their mechanical properties and detailed microstructural investigations by transmission electron microscopy and electron backscatter diffraction. All further results of the mechanical testing and microstructural characterizations are analyzed, compared, and discussed in this paper

  2. Compatibility of reduced activation ferritic/martensitic steels with liquid breeders

    The compatibility of Reduced Activation Ferritic/Martensitic Steel (RAFM) with liquid Li and molten-salt Flibe have been characterized and accessed. Static compatibility tests were carried out in which the specimens were immersed into liquid Li or Flibe in isothermal autoclaves. Also carried out were compatibility tests in flowing liquid Li by thermal convection loops. In the case of liquid Li, the corrosion rate increased with temperature significantly. The corrosion was almost one order larger for the loop tests than for the static tests. Chemical analysis showed that the corrosion was enhanced when the level of N in Li is increased. Transformation from martensitic to ferritic phase and the resulting softening were observed in near-surface area of Li-exposed specimens, which were shown to be induced by decarburization. In the case of Flibe, the corrosion loss was much larger in a Ni crucible than in a RAFM crucible. Both fluorides and oxides were observed on the surfaces. Thus, the key corrosion process of Flibe is the competing process of fluoridation and oxidation. Possible mechanism of the enhanced corrosion in Ni crucible is electrochemical circuit effect. It was suggested that the corrosion loss rate of RAFM by liquid Li and Flibe can be reduced by reducing the level of impurity N in Li and avoiding the use of dissimilar materials in Flibe, respectively. (author)

  3. Diffusive transport parameters of deuterium through China reduced activation ferritic-martensitic steels

    Wang, Bo; Liu, Lingbo; Xiang, Xin; Rao, Yongchu; Ye, Xiaoqiu; Chen, Chang An

    2016-03-01

    Reduced Activation Ferritic/Martensitic (RAFM) steels have been considered as the most promising candidate structure materials for a fusion reactor. In the recent decades, two new types of RAFM steels, called China Low Activation Martensitic (CLAM) steel and China Low-activation Ferritic (CLF-1) steel, have been developed. The gas evolution permeation technique has been used to investigate diffusive transport parameters of deuterium through CLAM and CLF-1 over the temperature range 623 ∼ 873 K at deuterium pressure of 105 Pa. The resultant transport parameters are: Φ (mol. m-1 s-1 Pa-1/2) = 5.40 × 10-8 exp (-46.8 (kJ. mol-1)/RT), D(m2 s-1) = 3.81 × 10-7 exp(-24.0(kJ. mol-1)/RT) and S (mol. m-3 Pa-1/2) = 1.42 × 10-1 exp(-22.8(kJ. mol-1)/RT) for CLAM; while Φ(mol m-1 s-1 Pa-1/2) = 1.76 × 10-8 exp(-43.9(kJ. mol-1)/RT), D(m2. s-1) = 1.02 × 10-7 exp(-16.9(kJ. mol-1)/RT) and S(mol. m-1 Pa-1/2) = 1.73 × 10-1 exp(-27.0(kJ. mol-1) /RT) for CLF-1. The results show that CLAM is more permeable than CLF-1, thus it is easier for hydrogen isotopes to transport and be removed.

  4. Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels

    The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 deg. C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials

  5. Nitriding treatment of reduced activation ferritic steel as functional layer for liquid breeder blanket

    The development of functional layers such as a tritium permeation barrier and an anti-corrosion layer is the essential technology for the development of a molten salt type self cooled fusion blanket. In the present study, the characteristics of a nitriding treatment on a reduced activation ferritic steel, JLF-1 (Fe-9Cr-2W-0.1C) as the functional layer were investigated. The steel surface was nitrided by an ion nitriding treatment or a radical nitriding treatment. The nitridation characteristic of the steel surface was made clear based on the thermodynamic stability. The thermal diffusivity, the hydrogen permeability and the chemical stability in the molten salt Flinak were investigated. The results indicated that the nitriding treatment can improve the compatibility in the Flinak without the decrease of the thermal diffusivity, though there was little improvement as the hydrogen permeation barrier. (author)

  6. Effect of mechanical restraint on weldability of reduced activation ferritic/martensitic steel thick plates

    Serizawa, Hisashi; Nakamura, Shinichiro; Tanaka, Manabu; Kawahito, Yousuke; Tanigawa, Hiroyasu; Katayama, Seiji

    2011-10-01

    As one of the reduced activation ferritic/martensitic steels, the weldability of thick F82H plate was experimentally examined using new heat sources in order to minimize the total heat input energy in comparison with TIG welding. A full penetration of 32 mm thick plate could be produced as a combination of a 12 mm deep first layer generated by a 10 kW fiber laser beam and upper layers deposited by a plasma MIG hybrid welding with Ar + 2%O shielding gas. Also, the effect of mechanical restraint on the weldability under EB welding of thick F82H plate was studied by using FEM to select an appropriate specimen size for the basic test. The appropriate and minimum size for the basic test of weldability under EB welding of 90 mm thick plate might be 200 mm in length and 400 mm in width where the welding length should be about 180 mm.

  7. Effect of mechanical restraint on weldability of reduced activation ferritic/martensitic steel thick plates

    As one of the reduced activation ferritic/martensitic steels, the weldability of thick F82H plate was experimentally examined using new heat sources in order to minimize the total heat input energy in comparison with TIG welding. A full penetration of 32 mm thick plate could be produced as a combination of a 12 mm deep first layer generated by a 10 kW fiber laser beam and upper layers deposited by a plasma MIG hybrid welding with Ar + 2%O shielding gas. Also, the effect of mechanical restraint on the weldability under EB welding of thick F82H plate was studied by using FEM to select an appropriate specimen size for the basic test. The appropriate and minimum size for the basic test of weldability under EB welding of 90 mm thick plate might be 200 mm in length and 400 mm in width where the welding length should be about 180 mm.

  8. Magnetic properties and adsorptive performance of manganese–zinc ferrites/activated carbon nanocomposites

    Owing to the unique microstructure and high specific surface area, activated carbon (AC) could act as an excellent adsorbent for wastewater treatment and good carrier for functional materials. In this paper, manganese–zinc ferrites (Mn0.5Zn0.5Fe2O4: MZF) were anchored into AC by hydrothermal method, resulting in the excellent magnetic response for AC nanocomposites in wastewater treatment. All results demonstrated the magnetic nanoparticles presented a spinel phase structure and existed in the pores of AC. The saturation magnetization (Ms) of MZF/AC nanocomposites increased with the ferrites content, while the pore volume and specific surface area declined. The Sample-5 possessed the specific surface area of 1129 m2 g−1 (close to 1243 m2 g−1 of AC) and Ms of 3.96 emu g−1. Furthermore, the adsorptive performance for organic dyes was studied and 99% methylene blue was adsorbed in 30 min. The magnetic AC nanocomposites could be separated easily from solution by magnetic separation technique. - Graphical abstract: The Sample-5 presented both good magnetic response and high BET surface area up to 1129 m2 g−1 (close to AC of 1243 m2 g−1), which could be separated completely for about 60 s. MZF/AC nanocomposites (Sample-3, 4, 5) in our work could be used as the magnetic absorbents, which could be separated easily by an outer magnet after the MB adsorption. - Highlights: • Mn0.5Zn0.5Fe2O4 (MZF) as few as possible was implanted into activated carbon (AC) for the higher surface area. • Sample-5 possessed the high specific surface area (1129 m2 g−1) and the suitable Ms (3.96 emu g−1). • Methylene blue was adsorbed almost completely by MZF/AC nanocomposites in 30 min. • MZF/AC nanocomposites were separated easily from solution by magnetic separation technique

  9. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  10. Manifestation of weak ferromagnetism and photocatalytic activity in bismuth ferrite nanoparticles

    Bismuth ferrite (BFO) nanoparticles were synthesized by auto-ignition technique with and without adding ignition fuel such as citric acid. The presence of citric acid in the reaction mixture yielded highly-magnetic BFO/γ-Fe2O3 nanocomposite. When this composite was annealed to 650°C, a single phase BFO was formed with average crystallite size of 50 nm and showed weak ferromagnetic behavior. Conversely, the phase pure BFO prepared without adding citric acid exhibited antiferromagnetism because of its larger crystallite size of around 70 nm. The visible-light driven photocatalytic activity of both the pure BFO and BFO/γ-Fe2O3 nanocomposite were examined by degrading methyl orange dye. The pure BFO showed a moderate photocatalytic activity; while BFO/γ-Fe2O3 nanocomposite showed enhanced activity. This could be probably due to the optimal band gap ratio between BFO and γ-Fe2O3 phases reduced the recombination of electron-hole pairs which aided in the enhancement of photocatalytic activity.

  11. Development of Reduced Activation Ferritic-Martensitic Steels in South Korea

    In the mid-1980s research programs for development of low activation materials began. This is based on the US Nuclear Regulatory Commission Guidelines (10CFR part 61) that were developed to reduce longlived radioactive isotopes, which allows nuclear reactor waste to be disposed of by shallow land burial when removed from service. Development of low activation materials is also key issue in nuclear fusion systems, as the structural components can became radioactive due to nuclear transmutation caused by exposure to high dose neutron irradiation. Reduced-activation ferritic martensitic (RAFM) steels have been developed in the leading countries in nuclear fusion technology, and are now being considered as candidate structural material for the test blanket module (TBM) in the international thermonuclear experiment reactor (ITER). South Korea joined the ITER program in 2003 and since then extensive effort has been made for developing the helium-cooled solid-breeder (HCSB) TBM which is scheduled to be tested in the ITER program. However, there has been no research activity to develop RAFM steels in South Korea, while all the participants in the ITER program have developed their own RAFM steels. It is recently that the Korea Atomic Energy Research Institute (KAERI) started the Korean RAFM steel research program, aiming at an application for the HCSB-type TBM structure in ITER. In what follows, the current status of RAFM steels and the R and D program led by KAERI to develop Korean RAFM steels are summarized

  12. Effect of water depth on the underwater wet welding of ferritic steels using austenitic Ni-based alloy electrodes.

    Sheakley, Brian J.

    2000-01-01

    Underwater welding using shielded metal arc welding (SMAW) on US naval Vessels is very attractive because of the ability to effect repairs without costly dry dock expenses. In the past the primary problems with underwater wet weldments on steels utilizing SMAW with ferritic electrodes, were underbead cracking in the heat affected zone (HAZ), slag inclusions, oxide inclusions, and porosity. To avoid underbead cracking three weld samples were made using an austenitic nickel weld metal with an O...

  13. TEM Study of the Orientation Relationship Between Cementite and Ferrite in a Bainitic Low Carbon High Strength Low Alloy Steel

    Illescas Fernandez, Silvia; Brown, A P; He, K.; Fernández, Javier; Guilemany Casadamon, Josep Maria

    2005-01-01

    Two different bainitic structures are observed in a steel depending on the sample heat treatment. The different types of bainitic structures exhibit different orientation relationships between cementite and the ferrite matrix. Upper bainite presents a Pitsch orientation relationship and lower bainite presents a Bagaryatski orientation relationship. Different heat treatments of low carbon HSLA steel samples have been studied using TEM in order to find the orientation relationshi...

  14. Investigation on different oxides as candidates for nano-sized ODS particles in reduced-activation ferritic (RAF) steels

    Hoffmann, Jan, E-mail: j.hoffmann@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Karlsruhe (Germany); Rieth, Michael; Lindau, Rainer; Klimenkov, Michael; Möslang, Anton [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Karlsruhe (Germany); Sandim, Hugo Ricardo Zschommler [Department of Materials Engineering, EEL, University of São Paulo, 12600-970 Lorena (Brazil)

    2013-11-15

    Future generation reactor concepts are based on materials that can stand higher temperatures and higher neutron doses in corrosive environments. Oxide dispersion strengthened steels with chromium contents ranging from 9 to 14 wt.% – produced by mechanical alloying – are typical candidate materials for future structural materials in fission and fusion power plants. Y{sub 2}O{sub 3} has proven to be a good candidate for addition to ferritic steels during mechanical alloying to form nano-sized dispersion oxide particles during compacting of the material. These oxide particles have many positive effects on the material such as improved high-temperature properties and higher corrosion resistance. However, there is potential for improvements by choosing different oxides. In this present work, four different oxides (MgO, La{sub 2}O{sub 3}, Ce{sub 2}O{sub 3} and ZrO{sub 2}) are selected by looking at their thermal stabilities and Gibbs free enthalpies of various chemical compositions. These oxides are mixed and mechanically alloyed with ferritic steel powder (Fe13Cr1W0.3Ti) and compared to a reference material produced with Y{sub 2}O{sub 3} (Fe13Cr1W0.3Ti + Y{sub 2}O{sub 3}). The materials were characterized in terms of their mechanical properties and detailed microstructural investigations by transmission electron microscopy and electron backscatter diffraction. All further results of the mechanical testing and microstructural characterizations are analyzed, compared, and discussed in this paper.

  15. Progress of reduced activation ferritic/martensitic steel development in Japan

    Recent accomplishment by the Japanese activity for the reduced activation ferritic/martensitic steel (RAF/M) development has been reviewed. Some of the results obtained in EU and US by international collaborative activities are also introduced. Effect of irradiation on the shift of ductile-to-brittle transition temperature (DBTT) has been evaluated to a dose of 20dpa. Results suggest that RAF/M appears to satisfy the requirement on DBTT-shift for the blanket application in the dose range up to several tens of dpa. Also, enhancement effect of DBTT-shift by transmutation produced helium (He) atoms was revealed to be smaller than has been suggested previously. Preliminary studies about the effect of irradiation on fatigue mechanism, the susceptibility to environmentally assisted cracking in water and flow stress-strain relation have been conducted for the specimens irradiated to several dpa, including the post irradiation tensile property examination of the joints by Hot-isostatic press (HIP) bonding method. The results also indicate that RAF/Ms exhibit suitable properties for ITER test blanket module. (author)

  16. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V52 M > VA508 > Vmartensite. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508

  17. Neutron activation analysis of zirconium niobium alloys

    Full text: One of the important problems in nuclear reactor projecting is the choice of constructional materials, which meet to the requirements concerned with function, technical characteristics and expected performance of the reactor construction. Also it is necessary to take into account change of their properties under the influence of intensive neutron radiation. Zirconium and zirconium-niobium alloys are used in nuclear engineering as a fuel cladding and both matrix and impurity composition have an influence on their performance capabilities.Under intensive neutron radiation high content of undesirable trace elements in constructional materials can cause forming long-lived radionuclides with high induced activity and hence severe problems may occur at service, control of the equipment and carrying out experiments. Therefore analytical control of component and impurity composition of these materials is an important problem.Neutron activation analysis (NAA) is one of multielemental and high sensitivity methods, which widely applied for the analysis of high purity materials. Prior experiments have shown that instrumental NAA is not suitable for analysis of Zr-Nb alloys due to strong induced matrix activity. Therefore we have developed radiochemical procedure for separation of impurities from matrix elements. Study of the literature data has shown that zirconium and niobium are good extracted from hydrochloric medium by 0 75 M solution of di-2-ethylhexylphosphoric acid (DEHPA) in ortho-xylene. Also this system good extracts hafnium which being accompanying element has high content and interferes with determining impurity elements. To improve separation efficiency we have used 'DEHPA - ZM HCl' chromatography system. On the basis of the carried out researches the radiochemical NAA technique for analysis of high purity zirconium and zirconium-niobium alloys has been developed. The technique is based on extraction-chromatographic separation of matrix radionuclides

  18. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  19. Effect of strain on ferrite transformation from super-cooled austenite in Fe-0. 5%C alloy. Fe-0. 5%C gokin no karei osutenaito/feraito hentai ni oyobosu kako no eikyo

    Matsuura, K.; Ito, Y.; Narita, T. (Hokkaido Univ., Sapporo (Japan). Faculty of Engineering)

    1993-08-01

    During the cooling of a steel, when austenite is applied by strain, the temperature of ferrite transformation would increase accompanied with decrease of its given temperature and increase of strain. In this study, the isothermal transformation behaviour from austenite to ferrite applied by strain in the super-cooled state was investigated, effect of strain on size of ferrite particles and increase of volume rate during transformation were explained by using the velocity theory. That is, concerning to the alloy of two-elemental system Fe-0.51%C cooled at 0.3[degree]C/s and applied by strain at 710[degree]C, at which austenite was super-cooled by 55[degree]C, its isothermal transformation behaviour was investigated. As a result, the following conclusions were obtained. Time required for the transformation remarkably decreased and the size of ferrite particles became ultra-fine subjected to strain. The nucleation rate of ferrite particles remarkably increased with increasing strain. 14 refs., 11 figs., 1 tab.

  20. Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite

    J Temuujin; M Aoyama; M Senna; T Masuko; C Ando; H Kishi; A Minjigmaa

    2006-10-01

    -type hexagonal ferrite precursor was prepared by a soft mechanochemical treatment of BaCO3 and -FeOOH mixtures. The effect of milling on its structure and thermal behaviour was examined by XRD, SEM and FTIR. Well crystallized -type hexagonal ferrite was formed from just 1 h milled precursors at 800°C. The beneficial effect of milling was explained in terms of increased homogeneity with simultaneous hetero bridging bond formation between powder constituents.

  1. Size effect of primary Y2O3 additions on the characteristics of the nanostructured ferritic ODS alloys: Comparing as-milled and as-milled/annealed alloys using S/TEM

    The need for providing S/TEM evidence to clarify the mechanisms of nano-scale precipitate formation was the motivation of this investigation. In this study, an Fe–14Cr–0.4Ti alloy was ball-milled with different amounts of Y2O3 content up to 10 wt.%, and then annealed at temperatures up to 1100 °C. Micron-size Y2O3 particles were substituted for the nano-size counterpart to elucidate the mechanism of oxide precipitate formation. The S/TEM studies revealed that the microstructure of the alloy with 10 wt.% yttria contained amorphous undissolved Y2O3 after ball milling, while a small part of the initial oxide particles were dissolved into the solid solution. Consequently, when the amount of yttria was reduced to 1 wt.%, the amorphous phase of the yttria vanished and the whole content of Y2O3 was dissolved into the BCC solid solution. Defect analysis of precipitates on the annealed samples via S/TEM and micro-hardness studies revealed that the use of micron-size primary oxide particles can produce nano-size precipitates, stable up to temperatures as high as 1100 °C, and uniformly distributed throughout the microstructure. This study indicates that the use of high energy ball milling along with micron-size primary oxide particles can lead to nanostructured ferritic ODS alloys without the use of nano-size primary oxide additions

  2. Deposition of La0.8Sr0.2Cr0.97V0.03O3 and MnCr2O4 thin films on ferritic alloy for solid oxide fuel cell application

    Mikkelsen, Lars; Chen, Ming; Hendriksen, Peter Vang;

    2007-01-01

    Single layer dense films of La0.8Sr0.2Cr0.97V0.03O3 (LSC) and MnCr2O4 with a thickness of 500 nm were deposited on a commercially available ferritic alloy (Crofer 22APU) by large-area Pulsed Laser Deposition. The deposited samples were subsequently oxidized at 1173 K for 500 h in humidified air...

  3. Weldability of reduced activation ferritic/martensitic steel under ultra power density fiber laser welding

    Full text of publication follows: Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems as it has been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. As one of RAFMS, F82H, which has been developed and studied in Japan, is designed with emphasis on high temperature property and weldablility, and was provided and evaluated in various countries as a part of the collaboration of IEA fusion materials development. Although F82H is the well perceived RAFM as ITER Test Blanket Module (TBM) structural material, the weldability was proved though TIG, EB and YAG laser weld tests using only 15 and 25 mm thickness plate. In order to reduce the welding distortion, the residual stress and the area of the heat affected zone, it is necessary to decrease the total heat input under the welding. Recently, as a result of R and D efforts about the sources of laser beam, a high-power fiber laser beam has been developed as one of the desirable heat sources for high-speed and deep-penetration welding. Since the power density of the fiber laser beam is very large, it is possible to increase the welding speed more than 10 m/min. So, in this study, the weldability of 1.5 mm thickness F82H plate and pipe was examined by using a ultra power density fiber laser, in order to reveal the excellent weldability of F82H. As a basic study of the butt welding between 1.5 mm plate and 1.5 mm thickness pipe with 11 mm outer diameter, the focus position, the beam position and the laser power were varied using 25 mm square plate and 25 mm length pipe. Then, by using the fiber laser with 1.1 MW/mm2 peak power density under the appropriate welding condition obtained from the basic study, a full penetrated weld bead with narrow width was formed in the butt welding

  4. A proposal to alloy design for low activation high manganese austenitic stainless steel - role of carbon and nitrogen

    The role of carbon and nitrogen in high Mn-Cr-Fe base alloy has been investigated in order to propose a favorable starting composition for a low activation austenitic stainless steel. The base composition of Fe-12% Cr-15% Mn was selected by the results of our previous study, because of prevention of δ ferrite formation and retardation of σ phase. The combined addition of carbon and nitrogen is very beneficial in making a stable γ phase, preventing σ phase formation and increasing high-temperature strength at around 875 K. Cold work of 20% is also very useful in increasing creep rupture strength because of finely dispersed precipitation of carbide during creep. From the consideration of these results, an alloy system of Fe-12% Cr-15% Mn-0.2% C-0.2% N has been designed as one of the preferable primary low activation austenitic stainless steel. (orig.)

  5. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  6. Past research and fabrication conducted at SCK-CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    De Bremaecker, Anne, E-mail: adbremae@sckcen.be [Studiecentrum voor Kernenergie-Centre d' Etude de l' Energie Nucleaire (SCK-CEN), NMS, Mol (Belgium)

    2012-09-15

    In the 1960s in the frame of the sodium-cooled fast breeders, SCK-CEN decided to develop claddings made with ferritic stainless materials because of their specific properties, namely a higher thermal conductivity, a lower thermal expansion, a lower tendency to He-embrittlement, and a lower swelling than the austenitic stainless steels. To enhance their lower creep resistance at 650-700 Degree-Sign C arose the idea to strengthen the microstructure by oxide dispersions. This was the starting point of an ambitious programme where both the matrix and the dispersions were optimized. A purely ferritic 13 wt% Cr matrix was selected and its mechanical strength was improved through addition of ferritizing elements. Results of tensile and stress-rupture tests showed that Ti and Mo were the most beneficial elements, partly because of the chi-phase precipitation. In 1973 the optimized matrix composition was Fe-13Cr-3.5Ti-2Mo. To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al{sub 2}O{sub 3}, MgO, ZrO{sub 2}, TiO{sub 2}, ZrSiO{sub 4}) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 Degree-Sign C, solution annealing at 1050 Degree-Sign C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 Degree-Sign C, final annealing at 1050 Degree-Sign C, straightening and final aging at 800 Degree-Sign C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO{sub 2} were loaded in Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial

  7. Status of ATR-A1 irradiation experiment on vanadium alloys and low-activation steels

    Tsai, H.; Strain, R.V.; Gomes, I.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1996-10-01

    The ATR-A1 irradiation experiment was a collaborative U.S./Japan effort to study at low temperature the effects of neutron damage on vanadium alloys. The experiment also contained a limited quantity of low-activation ferritic steel specimens from Japan as part of the collaboration agreement. The irradiation started in the Advanced Test Reactor (ATR) on November 30, 1995, and ended as planned on May 5, 1996. Total exposure was 132.9 effective full power days (EFPDs) and estimated neutron damage in the vanadium was 4.7 dpa. The vehicle has been discharged from the ATR core and is scheduled to be disassembled in the next reporting period.

  8. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel

    Chen, Shenghu; Rong, Lijian

    2015-04-01

    The effect of Si in the range of 0.05-0.77 wt.% on the microstructure, tensile properties and impact toughness of reduced activation ferritic/martensitic (RAFM) steels has been investigated. An increase in Si content affected the prior austenite grain size resulting in an increase in the tensile strength at room temperature. The tensile strength of steels tested above 773 K did not change significantly with the addition of Si, which was due to the diminished carbide hardening effect and boundary strengthening effect. Detailed fractographic analysis revealed that tear fractures occurred in the samples tensile tested at room temperature, while cup and cone fractures were found in samples tensile tested at temperatures above 773 K, which were induced by the easing of dislocation pile-ups. The ductile-to-brittle transition temperature (DBTT) decreased when the Si content increased to 0.22 wt.%. However, the DBTT increased when the Si content reached 0.77 wt.% and this was due to the precipitation of Laves phase. The RAFM steel with approximately 0.22 wt.% Si content was found to possess an optimized combination of microstructure, tensile properties and impact toughness.

  9. Influence of smelting processes on precipitation behaviors and mechanical properties of low activation ferrite steels

    Research highlights: → Creep properties could be improved dramatically by control of smelting process. → VIM + ESR smelting process could improve the W macrosegregation. → W could accelerate the transition of M7C3 to M23C6 in RAFM steel. → The synergetic effect of carbides and tungsten depletion of solid solution lead to the decrease in creep resistance. - Abstract: In this paper, the influence of smelting processes on precipitation behaviors and mechanical properties of CLF-1 (China low activation ferrite) steel was investigated. Mechanical properties of CLF-1 steels melted by vacuum induction melting (VIM, CS25 steel) and vacuum induction melting followed by consumable electrode remelting (VIM + ESR, CS350 steel) had been studied. The results indicated that the steels showed similar values of hardness and tensile strength, however, creep properties of CLF-1 steel were obviously improved by VIM + ESR process. M23C6 and M7C3 Carbides were precipitated in the CS25 steel, and M23C6 carbides were precipitated in CS350 steel after high-temperature tempering at 1013 K for 90 min. Creep properties of CS25 steel were shown to be dramatically deteriorated by the existence of rod M7C3 precipitates, which was due to W macrosegregation in the CS25 steel melted by VIM. M7C3 was replaced by M23C6 after ageing at 823 K for 5000 h.

  10. Thermal and mechanical behaviour of the reduced-activation-ferritic-martensitic steel EUROFER

    Reduced activation ferritic/martensitic (RAFM) steels are being considered for structural application in potential fusion energy systems. Based on the substantial experience with RAFM developmental steels of OPTIFER type, an industrial 3.5 tons batch of a 9CrWVTa-RAFM steel, called EUROFER 97 had been specified and ordered. A characterisation programme has been launched to determine the relevant mechanical and physical-metallurgical properties in order to qualify the steel for fusion application. The hardening, tempering and transformation behaviour of EUROFER is in good agreement with that of other RAFM-steels like OPTIFER and the Japanese industrial scale heat F82H mod. Tensile tests, performed between RT and 750 deg. C, show comparable strength and ductility values that are not strongly affected by different heat treatments and ageing at 580 and 600 deg. C up to 3300 h. Impact bending tests indicate a superior ductile to brittle transition temperature (DBTT) of EUROFER in the as-received condition compared with that of F82H mod. Creep tests between 450 and 650 deg. C up to test times of 15000 h reveal a creep strength similar to other RAFM steels like OPTIFER and F82H mod. EUROFER shows a good low-cycle fatigue behaviour with longer lifetimes than F82H mod. The deformation and softening behaviour is similar

  11. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects

    Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik

    2016-09-01

    To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.

  12. Catalysis by Oxidic Spinel Ferrites

    Darshane, V.; Lokegaonkar, S.; Oak, S.

    1997-01-01

    Mixed metal oxides viz. ferrites, ferrochromites and chromites have been studied with a view to investigating a correlation between bulk physical properties and catalytic performance over decomposition of alcohols. We could observe a satisfactory relationship between lattice parameter, electronic activation energy, nature and mobility of charge carriers and Curie temperature with reference to catalytic activity of various spinel ferrites.

  13. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  14. Effect of heat treatment and irradiation temperature on impact behavior of irradiated reduced-activation ferritic steels

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    Charpy tests were conducted on eight normalized-and-tempered reduced-activation ferritic steels irradiated in two different normalized conditions. Irradiation was conducted in the Fast Flux Test Facility at 393 C to {approx}14 dpa on steels with 2.25, 5, 9, and 12% Cr (0.1% C) with varying amounts of W, V, and Ta. The different normalization treatments involved changing the cooling rate after austenitization. The faster cooling rate produced 100% bainite in the 2.25 Cr steels, compared to duplex structures of bainite and polygonal ferrite for the slower cooling rate. For both cooling rates, martensite formed in the 5 and 9% Cr steels, and martensite with {approx}25% {delta}-ferrite formed in the 12% Cr steel. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy. The difference in microstructure in the low-chromium steels due to the different heat treatments had little effect on properties. For the high-chromium martensitic steels, only the 5 Cr steel was affected by heat treatment. When the results at 393 C were compared with previous results at 365 C, all but a 5 Cr and a 9 Cr steel showed the expected decrease in the shift in DBTT with increasing temperature.

  15. Fractographic examination of reduced activation ferritic/martensitic steel charpy specimens irradiated to 30 dpa at 370{degrees}C

    Gelles, D.S.; Hamilton, M.L. [Pacific Northwest National Lab., Richland, WA (United States); Schubert, L.E. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    Fractographic examinations are reported for a series of reduced activation ferritic/Martensitic steel Charpy impact specimens tested following irradiation to 30 dpa at 370{degrees}C in FFTF. One-third size specimens of six low activation steels developed for potential application as structural materials in fusion reactors were examined. A shift in brittle fracture appearance from cleavage to grain boundary failure was noted with increasing manganese content. The results are interpreted in light of transmutation induced composition changes in a fusion environment.

  16. Research and Development of Reduced Activation Ferritic/Martensitic Steel CLF-1 in SWIP

    Full text: Because of the good industrial bases and the superior resistance for irradiation, reduced activation ferritic/martensitic (RAFM) steel is recognized as the primary structural material for ITER test blanket modules (TBM) and a DEMOnstration reactor. In China, one of the basic options of the blanket module concept to be tested in ITER is helium cooled solid breeder (HCSB) with the RAFM steel as the reference structural material. To provide material and property database for the design and fabrication of the ITER HCSB TBM, a new type of RAFM steel CLF-1 was developed and characterized by South Western Institute of Physics in China. In this paper, recent progress in SWIP research on RAFM steel CLF-1 R and D is reviewed with a focus on ITER-TBM design and fabrication. A new heat of 350 kg of CLF-1 steel was produced recently and different product forms (plates, rods and welding wires) were manufactured. Recent advances in the fields of steel development, mainly on the melting and processing techniques, composition optimization and thermo-mechanical treatment were addressed. The properties database and technical information required for blanket design and fabrication were derived. From the tensile and creep properties test, the design allowable stresses are derived. From the Charpy impact test, ductile to brittle transition temperature (DBTT) are evaluated. From the physical properties databases, density, modulus of elasticity, thermal conductivity, thermal diffusivity, specific heat, linear expansion coefficients are derived. The effect of thermal ageing on the microstructure and properties was investigated to study the stability under high temperature for long periods of time. In addition, the efforts to characterize the weldability of CLF-1 using tungsten-inert-gas (TIG) method for the fabrication of TBM were also introduced. (author)

  17. Optimization of production and properties of the nanoscaled ferritic ODS-alloy 13Cr-1W-0,3Y2O3-0,3TiH2 and characterization of structure and property correlations

    Fusion power reactors next to renewable energy sources shall form an important basis for a future energy scenario avoiding damaging emissions due to the lack of fossil primary energy carriers. An efficient operation of such reactors necessitate temperatures >700 C, which require new kinds of structural materials. Today only reduced activated oxide dispersion-strengthened (ODS-) materials based on iron, which have high strengths at elevated temperatures, offer the possibility to meet those criterias, which are developed in internationally coordinated programs. Therefore a nearly industrial production process based on the powdermetallurgical route is iteratively and systematically optimized to produce the ferritic ODS-alloy 13Cr-1W-0,3Y2O3-0,3TiH2. Through TEM elemental analyses of mechanically alloyed steel powder it is confirmed, that the additives Y2O3 and TiH2 dissolve completely in the powder and form the ODS-particles during the HIP-cycle. Detailed studies of powder contamination during mechanical alloying reveal correlations between the contamination behaviour of certain elements and the milling parameters. A specially designed procedure of powder encapsulation and sealing leads to a successful powder compaction to the ODS-material 13Cr-1W-0,3Y2O3-0,3TiH2. Detailed TEM studies show a bimodal grain size distribution within the material at first. The alloy's recrystallization behaviour is the main reason for this phenomenon and is therefore discussed in detail. A high dispersion of ODS-particles as the decisive material's component with particle sizes von 3-5nm within grains and 12-36nm at the grain boundaries is successfully reached and verified by numerous TEM-Elemental Mappings. By applying hot rolling as an additional step during production a more even grain structure by equally maintaining the fine nanoskaled particle dispersion is set up. The microstructure is highly stable, since no grain- or ODS-particle coarsening occurs during short term heat

  18. Cryomilling effect on the mechanical alloying behaviour of ferritic oxide dispersion strengthened powder with Y2O3

    Highlights: •Significant particle/grain size refinement of both Y2O3 and Fe-alloy powders by cryomilling. •Mechanisms of fragmentation/dissolution of Y2O3 during cryomilling were suggested. •The effect of cryomilling on residual microstrain was found. •Increased interstitial elements contamination during cryomilling was found. -- Abstract: Cryogenic cooling effect on mechanical alloying of the mixture of Fe–14Cr–3W–0.1Ti and Y2O3 powders was investigated. The powder mixtures were ball milled for 40 h at room-temperature and −150 °C. Cryomilling produced much finer particle/grain size than conventional room-temperature milling. XRD diffraction peak intensity was much lower under cryomilling conditions due to formation of nano-size grains and increased residual microstrain. Absorption amounts of interstitial elements were considerably higher under cryomilling conditions

  19. The effect of chelating/combustion agent on catalytic activity and magnetic properties of Dy doped Ni-Zn ferrite

    Samoila, P.; Slatineanu, T. [Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Boulevard 700506 (Romania); Postolache, P. [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Boulevard 700506 (Romania); Iordan, A.R. [Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Boulevard 700506 (Romania); Palamaru, M.N., E-mail: palamaru@uaic.ro [Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Boulevard 700506 (Romania)

    2012-09-14

    The spinel ferrite Ni{sub 0.8}Zn{sub 0.2}Fe{sub 1.98}Dy{sub 0.02}O{sub 4} was prepared by sol-gel low temperature autocombustion method using four different chelating/combustion agents: citric acid, tartaric acid, urea and cellulose. Infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area measurement, the catalytic H{sub 2}O{sub 2} decomposition and the magnetic behavior were employed to investigate the influence of the combustion agents on structural characteristics, catalytic activity and magnetic properties. Spinel-type phase in the nano-scale domain was accomplished during sol-gel synthesis and was confirmed by XRD and IR. The best catalytic activity is belonging to the sample obtained using urea, which shows the smallest grain size (SEM), the highest specific surface area (BET measurements) and DyFeO{sub 3} phase (XRD), while ferrimagnetic behavior prevails for all the samples independently of fuel agent. Highlights: Black-Right-Pointing-Pointer Ni-Zn ferrite doped with Dy as catalyst and magnetic material. Black-Right-Pointing-Pointer Four chelating/combustion agents were used in sol-gel method. Black-Right-Pointing-Pointer Citric acid and cellulose allowed spinel monophase formation confirmed by XRD. Black-Right-Pointing-Pointer Catalytic activity of ferrite samples is affected by synthesis conditions. Black-Right-Pointing-Pointer Magnetic behavior is not changed significantly as a function of fuel agent.

  20. Effect of alloying elements on the electronic properties of thin passive films formed on carbon steel, ferritic and austenitic stainless steels in a highly concentrated LiBr solution

    The influence of alloying elements on the electrochemical and semiconducting properties of thin passive films formed on several steels (carbon steel, ferritic and austenitic stainless steels) has been studied in a highly concentrated lithium bromide (LiBr) solution at 25 °C, by means of potentiodynamic tests and Mott–Schottky analysis. The addition of Cr to carbon steel promoted the formation of a p-type semiconducting region in the passive film. A high Ni content modified the electronic behaviour of highly alloyed austenitic stainless steels. Mo did not modify the electronic structure of the passive films, but reduced the concentration of defects. - Highlights: • The addition of Cr to carbon steel promotes p-type semiconductivity. • Passive films formed on stainless steels are made up of complex spinel oxides. • Ni modifies the electronic behaviour of highly alloyed austenitic stainless steels

  1. The anti-microbial activity of titania-nickel ferrite composite nanoparticles

    Rana, S.; Misra, R. D. K.

    2005-12-01

    A novel approach to synthesize a new generation of composite nanoparticles consisting of a photocatalytic shell of anatase-titania and a magnetic core of nickel ferrite has been adopted combining reverse micelle and chemical hydrolysis techniques. Titania is an effective anti-microbial agent that can be directly sprayed on infected areas of the human body or environment. Unfortunately, titania is an electrical insulator and is difficult to extract from the sprayed surface after treatment. The titania photocatalytic shell provides good antimicrobial capability that renders the bacteria inactive and removes the organic pollutants, while the nickel ferrite magnetic core enables controlled delivery of composite nanoparticles through the application of a small magnetic field, encouraging their application as removable anti-microbial photocatalyst nanoparticles.

  2. Synthesis, characterization and catalytic activity of furosemide-functionalized ferrite on the sedimentation behavior of starch

    Palanikumar, S.; Meenarathi, B.; Kannammal, L.; Anbarasan, R.

    2015-01-01

    Furosemide-functionalized nanoferrite was synthesized and characterized by various analytical techniques. The furosemide-functionalized ferrite was used to settle down the starch particles under three different pH. Thus, obtained starch/Fe3O4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), fluorescence spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The sedimentation velocity of starch in the presence of furosemide-functionalized Fe3O4 was critically compared with the available literature value and the results are discussed in detail. The high sedimentation velocity of starch under the influence of gravitational force and the external magnetic force is studied. The starch-coated ferrites exhibited the lower vibrating sample magnetometer (VSM) value. This novel research work will bring out a new methodology in the field of starch materials.

  3. Impedance spectroscopy of the oxide films formed during high temperature oxidation of a cobalt-plated ferritic alloy

    Velraj, S.; Zhu, J. H.; Painter, A. S.; Du, S. W.; Li, Y. T.

    2014-02-01

    Impedance spectroscopy was used to evaluate the oxide films formed on cobalt-coated Crofer 22 APU ferritic stainless steel after thermal oxidation at 800 °C in air for different times (i.e. 2, 50, 100 and 500 h). Impedance spectra of the oxide films exhibited two or three semicircles depending on the oxidation time, which correspond to the presence of two or three individual oxide layers. Coupled with scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD), the individual oxide layer corresponding to each semicircle was determined unambiguously. Impedance spectrum analysis of the oxide films formed on the sample after thermal exposure at 800 °C in air for 2 h led to the identification of the low-frequency and high-frequency semicircles as being from Cr2O3 and Co3O4, respectively. SEM/EDS and XRD analysis of the 500-h sample clearly revealed the presence of three oxide layers, analyzed to be Co3-xCrxO4, CoCr2O4, and Cr2O3. Although the SEM images of the 50-h and 100-h samples did not clearly show the CoCr2O4 layer, impedance plots implied their presence. The oxide scales were assigned to their respective semicircles and the electrical properties of Co3-xCrxO4, CoCr2O4 and Cr2O3 were determined from the impedance data.

  4. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    Thomas Paul, V.; Saroja, S.; Albert, S.K.; Jayakumar, T.; Rajendra Kumar, E., E-mail: vtp@igcar.gov.in

    2014-10-15

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering process has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.

  5. Ferrite stability in duplex austenitic stainless steel welds

    The presence of ferrite in austenitic stainless steel welds is known to be beneficial in avoiding hot cracking problems. In particular, the primary delta ferrite mode of solidification is important. For alloy compositions in which primary ferrite forms, it has been shown that up to approximately 40% ferrite may exist in the as-solidified structures. With further cooling, the ferrite becomes unstable, transforming to austenite. However, under typical welding conditions, the cooling rate is sufficiently high to suppress the complete transformation of ferrite and some residual ferrite is retained. For example, for Type 308 austenitic stainless steel filler metal, gas-tungsten arc welds contain 6 to 10% ferrite, although under equilibrium conditions at elevated temperatures, this same alloy can be homogenized into a fully austenitic structure. Thus, it is clear the retained ferrite in such duplex structure welds is unstable and transforms during elevated temperature applications. The stability of ferrite was investigated by measuring its composition after several different thermal treatments. The composition was measured by means of analytical electron microscopy of thinned foils, and only the major constituents, iron, chromium, and nickel, were analyzed. The composition of ferrite was measured as a function of aging time and temperature. It was found that, during aging, the ferrite composition changes and approaches a metastable equilibrium limit before eventually transforming to sigma phase or austenite. This limiting composition was determined as a function of temperature

  6. Electron Beam Welding of Reduced Activation Ferritic Martensitic ODS-EUROFER Steel for Application in Helium Cooled Modular Divertor Concepts

    For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered Reduced Activation Ferritic Martensitic (RAFM) steels as structural material by suitable oxide dispersion strengthened (ODS) ferritic martensitic or ferritic steels would allow a substantial increase of the operating temperature from ∼ 550 oC to about 650 oC. In all cases appropriate joining technologies have to be developed. Diffusion welding techniques to perform similar and dissimilar joints have been studied successfully. Friction Stir Welding (FSW) has shown a good potential but application is limited due to geometrical restrictions and needs further development. For the advanced helium-cooled modular divertor concept various joining techniques are required for joining the complex structural parts made of different materials. First attempts have been made for joining the divertor structures of ODS EUROFER by means of the Electron beam welding process with its highly concentrated energy input. This welding is widely used to produce high quality-high integrity welded similar and dissimilar joints of a large variety of materials. For this purpose, samples of ODS-EUROFER steel were welded using a PTR 150 kV/15 kW EB welding facility. Two different post-weld heat treatments (PWHT) were applied to investigate their influence on the mechanical and microstructural properties of the welded joints. Miniaturised tensile specimens were used to determine the tensile behaviour in the temperature range between RT and 700 oC. KLST specimens were used for Charpy impact tests. The microstructure of the weld and heat affected zone was examined using optical and scanning electron microscopy. Transmission electron microscopical methods were applied to investigate the size and spatial distribution of the dispersed oxides and potential segregation phenomena. (author)

  7. Depth-dependent nanoindentation hardness of reduced-activation ferritic steels after MeV Fe-ion irradiation

    Highlights: • We investigate nanoindentation hardness of reduced-activation ferritic steels after ion irradiation. • We model the depth-dependent bulk-equivalent hardness with considering indentation size effect. • We examine a film/substrate model to explain softer substrate effect. • Damage gradient effect is terminated by the appearance of softer substrate effect. • The critical depth of softer substrate effect depends on the amount of irradiation hardening. - Abstract: The irradiation hardening behavior of F82H reduced-activation ferritic steels after MeV Fe-ion beam irradiation experiments was investigated with a nanoindentation test. Two sets of ion-irradiation experiments were conducted at 270 °C with 10.5 MeV Fe3+ ions up to 5 dpa at a 1000 nm depth at TIARA facility and at 290 °C with 6.4 MeV Fe3+ ions up to 3 dpa at a 600 nm depth at DuET facility, respectively. The measured nanoindentation hardness was converted to the depth-dependent bulk-equivalent hardness based on a combination of the Nix–Gao model to explain the indentation size effect and the film/substrate model to explain the damage gradient effect in the ion-irradiated region and softer substrate effect of the non-irradiated region beyond the irradiated depth range

  8. Effects of Grit Blasting and Annealing on the High-Temperature Oxidation Behavior of Austenitic and Ferritic Fe-Cr Alloys

    Proy, M.; Utrilla, M. V.; Otero, E.; Bouchaud, B.; Pedraza, F.

    2014-08-01

    Grit blasting (corundum) of an austenitic AISI 304 stainless steel (18Cr-8Ni) and of a low-alloy SA213 T22 ferritic steel (2.25Cr-1Mo) followed by annealing in argon resulted in enhanced outward diffusion of Cr, Mn, and Fe. Whereas 3 bar of blasting pressure allowed to grow more Cr2O3 and Mn x Cr3- x O4 spinel-rich scales, higher pressures gave rise to Fe2O3-enriched layers and were therefore disregarded. The effect of annealing pre-oxidation treatment on the isothermal oxidation resistance was subsequently evaluated for 48 h for both steels and the results were compared with their polished counterparts. The change of oxidation kinetics of the pre-oxidized 18Cr-8Ni samples at 850 °C was ascribed to the growth of a duplex Cr2O3/Mn x Cr3- x O4 scale that remained adherent to the substrate. Such a positive effect was less marked when considering the oxidation kinetics of the 2.25Cr-1Mo steel but a more compact and thinner Fe x Cr3- x O4 subscale grew at 650 °C compared to that of the polished samples. It appeared that the beneficial effect is very sensitive to the experimental blasting conditions. The input of Raman micro-spectroscopy was shown to be of ground importance in the precise identification of multiple oxide phases grown under the different conditions investigated in this study.

  9. Recent activities on the compatibility of the ferritic steel wall with the plasma in the JFT-2M tokamak

    Tsuzuki, K.; Sato, M.; Kawashima, H.; Isei, N.; Kimura, H.; Ogawa, H.; Miyachi, K.; Yamamoto, M.; Shibata, T.

    2002-12-01

    The compatibility of the low activation ferritic steel with a fusion plasma has been investigated in the JFT-2M tokamak. The program consists of three stages. In the first stage, the reduction of fast ion losses was well demonstrated by ferritic steel plates (FPs) outside the vacuum vessel (VV). In the second stage, 20% of the inner surface of the VV was covered by the FPs. The plasma control, stability, and impurity release were preliminary investigated. No deteriorative effect on the plasma was observed at least in the following conditions: partial covering of 20% and the normalized beta value less than 2.8. First boronization was applied to JFT-2M leading to a remarkable decrease of the oxygen impurity. After the boronization, plasmas with the highest normalized beta in JFT-2M were obtained. Thus encouraging results were gained for this stage. In the third stage, the VV was fully covered by FPs, where the ripple reduction and the plasma stability will be investigated as a full scale testing.

  10. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel

    In this work, the phase transformation and impact properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic (RAFM) steel are investigated. The HAZs were experimentally simulated using a Gleeble simulator. The base steel consisted of tempered martensite through normalizing at 1000 °C and tempering at 750 °C, while the HAZs consisted of martensite, δ-ferrite and a small volume of autotempered martensite. The impact properties using a Charpy V-notch impact test revealed that the HAZs showed poor impact properties due to the formation of martensite and δ-ferrite as compared with the base steel. In addition, the impact properties of the HAZs further deteriorated with an increase in the δ-ferrite fraction caused by increasing the peak temperature. The impact properties of the HAZs could be improved through the formation of tempered martensite after post weld heat treatment (PWHT), but they remained lower than that of the base steel because the δ-ferrite remained in the tempered HAZs

  11. Articles comprising ferritic stainless steels

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  12. Influence of Zr and nano-Y2O3 additions on thermal stability and improved hardness in mechanically alloyed Fe base ferritic alloys

    The motivation of this work was driven to improve the thermal stability in systems where polymorphic transformations can result in an additional driving force, upsetting the expected thermodynamic stability. In this study, Fe92Ni8 alloys with Zr and nano-Y2O3 additions were produced by ball milling and then annealed at high temperatures. Emphasis was placed on understanding the effects of dispersed nano-Y2O3 particle additions and their effect on microstructural stability at and above the bcc-to-fcc transformation occurring at 700 °C in Fe–Ni systems. Results reveal that microstructural stability and hardness can be promoted by a combination of Zr and Y2O3 additions, that being mostly effective for stability before and after phase transition, respectively. The mechanical strength of these alloys is achieved by a unique microstructure comprised a ultra-fine grain Fe base matrix, which contains dispersions of both nano-scale in-situ formed Zr base intermetallics and ex-situ added Y2O3 secondary oxide phases. Both of these were found to be essential for a combination of high thermal stability and high mechanical strength properties. - Highlights: • Polymorphic transformations can limit the processing of nanostructured powders. • It causes a rapid grain growth and impairs the improved mechanical properties. • We aim to improve the hardness and thermal stability above the phase transformation. • Thermal stability is achieved by a combination of Zr and Y2O3 additions. • Hardness is promoted by in-situ formed and ex-situ added secondary nano phases

  13. Experimental evidence and thermodynamics analysis of high magnetic field effects on the austenite to ferrite transformation temperature in Fe-C-Mn alloys

    The non-isothermal decomposition of austenite into ferrite and pearlite in Fe-xC-1.5 wt.% Mn steels with x = 0.1, 0.2 and 0.3 wt.% C is investigated by in situ dilatometry and microstructure characterization in magnetic fields up to 16 T. The global shift towards higher temperatures of the respective austenite, ferrite + austenite and ferrite + pearlite stability regions is experimentally quantified. A systematic increase in the ferrite area fraction and proportional reduction of the Vickers hardness values with the magnetic field intensity are also reported. Moreover, the steels' magnetizations, measured up to 3.5 T and 1100 K, are used to calculate the magnetic contribution to the free energy of the transformation and to account thermodynamically for the field dependence of the transformation temperature. The impact of magnetic field is found to be greater with increasing carbon content in the steels.

  14. Experimental evidence and thermodynamics analysis of high magnetic field effects on the austenite to ferrite transformation temperature in Fe-C-Mn alloys

    Garcin, T., E-mail: thomas.garcin@grenoble.cnrs.fr [CNRS/CRETA, 25 rue des martyrs BP166, 38042 Grenoble CEDEX 9 (France); Rivoirard, S. [CNRS/CRETA, 25 rue des martyrs BP166, 38042 Grenoble CEDEX 9 (France); Elgoyhen, C. [CRM Gent, Technologiepark 903c, B-9052 Zwijnaarde (Belgium); Beaugnon, E. [CNRS/CRETA, 25 rue des martyrs BP166, 38042 Grenoble CEDEX 9 (France)

    2010-04-15

    The non-isothermal decomposition of austenite into ferrite and pearlite in Fe-xC-1.5 wt.% Mn steels with x = 0.1, 0.2 and 0.3 wt.% C is investigated by in situ dilatometry and microstructure characterization in magnetic fields up to 16 T. The global shift towards higher temperatures of the respective austenite, ferrite + austenite and ferrite + pearlite stability regions is experimentally quantified. A systematic increase in the ferrite area fraction and proportional reduction of the Vickers hardness values with the magnetic field intensity are also reported. Moreover, the steels' magnetizations, measured up to 3.5 T and 1100 K, are used to calculate the magnetic contribution to the free energy of the transformation and to account thermodynamically for the field dependence of the transformation temperature. The impact of magnetic field is found to be greater with increasing carbon content in the steels.

  15. Experimental study on activating welding for aluminum alloys

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  16. Superficial effects during the activation of zirconium AB2 alloys

    The activation of zirconium nickel alloys with and without the addition of chromium and titanium is investigated through electrochemical and optical techniques.These alloys show high hydrogen absorption capacity and are extensively used in metal hydride batteries.Recent investigations in aqueous 1 M KOH indicate oxide layer growth and occlusion of hydrogen species in the alloys during the application of different cathodic potential programmes currently used in the activation process.In this research several techniques such as voltammetry, ellipsometry, energy dispersive analysis of X-rays EDAX, and scanning electron microscopy SEM are applied on the polished massive alloy Zr1-xTix, x=0.36 y 0.43, and Zr1-xTixCrNi, x=0.1,0.2 y 0.4.Data analysis shows that the stability, compactness and structure of the passive layers are strongly dependent on the applied potential programme.The alloy activation depends on the formation of deepen crevices that remain after a new polishing. Microscopic observation shows increase in the crevices thickness after the cathodic sweep potential cycling, which produces fragmentation of the grains and oxide growth during the activation process.This indicates metal breaking and intergranular dissolution that take place together with oxide and hydride formation.In some cases the resultant crevice thickness is one or two orders higher than that of the superficial oxide growth indicating intergranular localised corrosion

  17. Effect of pre-strain on susceptibility of Indian Reduced Activation Ferritic Martensitic Steel to hydrogen embrittlement

    Sonak, Sagar; Tiwari, Abhishek; Jain, Uttam; Keskar, Nachiket; Kumar, Sanjay; Singh, Ram N.; Dey, Gautam K.

    2015-10-01

    The role of pre-strain on hydrogen embrittlement susceptibility of Indian Reduced Activation Ferritic Martensitic Steel was investigated using constant nominal strain-rate tension test. The samples were pre-strained to different levels of plastic strain and their mechanical behavior and mode of fracture under the influence of hydrogen was studied. The effect of plastic pre-strain in the range of 0.5-2% on the ductility of the samples was prominent. Compared to samples without any pre-straining, effect of hydrogen was more pronounced on pre-strained samples. Prior deformation reduced the material ductility under the influence of hydrogen. Up to 35% reduction in the total strain was observed under the influence of hydrogen in pre-strained samples. Hydrogen charging resulted in increased occurrence of brittle zones on the fracture surface. Hydrogen Enhanced Decohesion (HEDE) was found to be the dominant mechanism of fracture.

  18. Evaluation of hardening behaviour of ion irradiated reduced activation ferritic/martensitic steels by an ultra-micro-indentation technique

    The evaluation of the temperature dependence of irradiation hardening in a reduced activation ferritic/martensitic steel (RAFs), F82H (Fe-8Cr-2W-V-Ta) and Ni-doped (1%, 2%) F82H, was performed using single/dual-beam ion irradiation and ultra-micro-indentation technique. In analyzing the load-displacement curve, it was assumed that the elastic modulus did not exceed the original value due to irradiation-induced damage because micro-hardness was defined as a function of composite elastic modulus. Secondly, micro-structural evolution was characterized for irradiation conditions where significant changes in micro-hardness in RAFs were found. Finally, based on these results, the plastic deformation behavior of F82H steels with the irradiation hardening was investigated

  19. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    Tang, Wei [ORNL; Chen, Gaoqiang [ORNL; Chen, Jian [ORNL; Yu, Xinghua [ORNL; Frederick, David Alan [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  20. Ferritic steels for French LMFBR steam generators

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 5300C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  1. On crystallochemical mechanism of small alloying addition effect on dissolution process of corrosion-resistant steels in active state

    Regularities of component dissolution and the changes of the surface layer composition of the Fe-Cr and Fe-Cr-Mo steels are studied. The investigations have been carried out taking as an example high-purity ferrite steels of the FeCr18 and FeCr26 type with Mo content from O to 1.7 and from 0 to 1.2 at. % in 1n H2SO4 respectively at room temperature. The notions of dissolution character of energetically heterogeneous alloy surface are developed. A conclusion is made on the mechanism of inhibitting effect of molybdenum on the anode process of steel dissolution in the active state and on the mechanism of its effect on steel passivation capacity

  2. Microstructure and toughness of Cr-W and Cr-V ferritic steels

    In order to obtain an optimum alloy composition of reduced-activation Cr-W-V ferritic steels, the microstructural evolution during thermal aging at 823-973 K and its effect on the toughness were investigated for simple Cr-W and Cr-V steels by means of transmission electron microscopy and Charpy impact testing. The microstructural evolution of the Cr-W steels was similar to that of the conventional Cr-Mo steels. Carbides precipitated in the martensite and the intermetallic compound Fe2W precipitated in the δ-ferrite of the Cr-W steels. On the other hand, only carbides precipitated in both the martensite and the δ-ferrite of the Cr-V steels. The effect of Cr, W and V on the thermal embrittlement is discussed by taking account of the precipitation behavior. (orig.)

  3. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr

  4. Microstructure and mechanical properties in the weld heat affected zone of 9Cr-2W-VTa reduced activation ferritic/martensitic steel for fusion

    Reduced activation ferritic/martensitic (RAFM) steel demonstrated excellent resistance to the neutron irradiation and mechanical properties. The investigation of weldability in company with the development of RAFM steel is essential for construction of the fusion reactor. Generally, the superior mechanical properties of the RAFM steel can be upset during welding process due to microstructural change by rapid heating and cooling in the weld heat affected zone (HAZ). The phase transformation and mechanical properties in the weld HAZ of RAFM steel were investigated. The base steel consisted of tempered martensite and two carbides. During rapid welding thermal cycle, the microstructure of the base steel was transformed into martensite and δ-ferrite. In addition, the volume fraction of δ-ferrite and grain size increased with increase in the peak temperature and heat input. The strength of the HAZs was higher than that of the base steel due to the formation of martensite, whereas the impact properties of the HAZs deteriorated as compared with the base steel due to the formation of δ-ferrite. The PWHT improved the impact properties of the HAZs, resulting from the formation of tempered martensite

  5. Microstructure and mechanical properties in the weld heat affected zone of 9Cr-2W-VTa reduced activation ferritic/martensitic steel for fusion

    Moon, Joonoh; Lee, Changhoon; Lee, Taeho; Jang, Minho; Park, Mingu [Korea Institute of Materials Science, Changwon (Korea, Republic of); Kim, Hyoung Chan [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Reduced activation ferritic/martensitic (RAFM) steel demonstrated excellent resistance to the neutron irradiation and mechanical properties. The investigation of weldability in company with the development of RAFM steel is essential for construction of the fusion reactor. Generally, the superior mechanical properties of the RAFM steel can be upset during welding process due to microstructural change by rapid heating and cooling in the weld heat affected zone (HAZ). The phase transformation and mechanical properties in the weld HAZ of RAFM steel were investigated. The base steel consisted of tempered martensite and two carbides. During rapid welding thermal cycle, the microstructure of the base steel was transformed into martensite and δ-ferrite. In addition, the volume fraction of δ-ferrite and grain size increased with increase in the peak temperature and heat input. The strength of the HAZs was higher than that of the base steel due to the formation of martensite, whereas the impact properties of the HAZs deteriorated as compared with the base steel due to the formation of δ-ferrite. The PWHT improved the impact properties of the HAZs, resulting from the formation of tempered martensite.

  6. Hydrogen and helium effects on reduced activation Fe-Cr ferrite-martensite and ODS steels

    Malitckii, Evgenii

    2015-01-01

    Significant amounts of hydrogen and helium are generated in the structural materials of the nuclear reactor systems by the interaction of the alloying elements with both fast and thermal neutrons. Hydrogen can also be effectively absorbed by other environmental processes. Helium and hydrogen stabilize the small vacancy clusters and facilitate the further formation of the voids that causes the swelling of the structural steels. At the same time, hydrogen plays an important role in degradation ...

  7. One-step pickling-activation before magnesium alloy plating

    WANG Xin-juan; YU Gang; OUYANG Yue-jun; HE Xiao-mei; ZHANG Jun; YE Li-yuan

    2009-01-01

    A one-step pickling-activation process was proposed as an environmental friendly pretreatment method in phosphate-permanganate solution before electroplating on magnesium alloys. The effects of pickling-activation on qualities of coating were assessed by adhesion and porosity testing of copper plating. The interfacial reactions between specimen and solution were analyzed with SEM, EDX and XRD. The results show that the developed process of pickling-activation can equalize the potentials on substrate surface. The compacted zinc film can be obtained by zinc immersion after treating magnesium alloy in the pH 4-6 phosphate-permanganate solution for 3-5 min. The adhesion and corrosion resistance of copper plating are enhanced. The one-step pickling-activation can replace the existing two-step process of acid pickling and activation which contains a great deal of chromium and fluorine. The procedure of surface pretreatment is simplified and the production environment is improved.

  8. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  9. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  10. Rapid solidification of candidate ferritic steels

    HT-9 and 9Cr-1Mo steels were rapidly solidified by the liquid dynamic compaction process and 2-1/4Cr-1Mo steel was prepared by the ultrasonic gas atomization process. The consolidation was performed in the ferritic temperature range in order to minimize segregation. These alloys will be tested at ORNL using 1/3 CVN test specimens and the results will be compared with those for conventially processed alloys

  11. Development and characterization of advanced 9Cr ferritic/martensitic steels for fission and fusion reactors

    Saroja, S., E-mail: saroja@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Dasgupta, A.; Divakar, R.; Raju, S.; Mohandas, E.; Vijayalakshmi, M. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Bhanu Sankara Rao, K. [School of Engineering Sciences, University of Hyderabad, Hyderabad (India); Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2011-02-15

    This paper presents the results on the physical metallurgy studies in 9Cr Oxide Dispersion Strengthened (ODS) and Reduced Activation Ferritic/Martensitic (RAFM) steels. Yttria strengthened ODS alloy was synthesized through several stages, like mechanical milling of alloy powders and yttria, canning and consolidation by hot extrusion. During characterization of the ODS alloy, it was observed that yttria particles possessed an affinity for Ti, a small amount of which was also helpful in refining the dispersoid particles containing mixed Y and Ti oxides. The particle size and their distribution in the ferrite matrix, were studied using Analytical and High Resolution Electron Microscopy at various stages. The results showed a distribution of Y{sub 2}O{sub 3} particles predominantly in the size range of 5-20 nm. A Reduced Activation Ferritic/Martensitic steel has also been developed with the replacement of Mo and Nb by W and Ta with strict control on the tramp and trace elements (Mo, Nb, B, Cu, Ni, Al, Co, Ti). The transformation temperatures (A{sub c1}, A{sub c3} and M{sub s}) for this steel have been determined and the transformation behavior of the high temperature austenite phase has been studied. The complete phase domain diagram has been generated which is required for optimization of the processing and fabrication schedules for the steel.

  12. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  13. Application of thermoelectricity to NDE of thermally aged cast duplex stainless steels and neutron irradiated ferritic steels

    The thermoelectric power (TEP) of an alloy depends mainly on its temperature, its chemical composition and its atomic arrangement. The TEP measurement technique is used in order to study and follow two degradation phenomena affecting some components of the primary loop of Pressurized Water Reactors (PWR). The first degradation phenomenon is the thermal aging of cast duplex stainless steel components. The de-mixing of the ferritic Fe-Cr-Ni slid solution is responsible for the decreasing of the mechanical characteristics. Laboratory studies have shown the sensitivity of TEP to the de-mixing phenomenon. TEP increases linearly with the ferrite content and with and Arrhenius-type aging parameter depending on time, temperature and activation energy. TEP is also correlated to mechanic characteristics. The second degradation phenomenon is the aging of ferritic steels due to neutron irradiation at about 290 deg C. In this case, the degradation mechanism is the formation of clusters of solute atoms and/or copper rich precipitates that causes the hardening of the material. As a first approach, a study of binary Fe-Cu alloys irradiated by electrons at 288 deg C has revealed the possibility of following the copper depletion of the ferritic matrix. Moreover, the recovery of the mechanical properties of the alloy by annealing can be monitored. Finally, a correlation between Vickers hardness and TEP has been established. (author)

  14. Ferrite-guided cyclotron-resonance maser.

    Jerby, Eli; Kesar, A; Aharony, A; Breitmeier, G

    2002-06-01

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement. PMID:12188841

  15. Ferrite-guided cyclotron-resonance maser

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement

  16. Control of substrate oxidation in MOD ceramic coating on low-activation ferritic steel with reduced-pressure atmosphere

    Tanaka, Teruya, E-mail: teru@nifs.ac.jp; Muroga, Takeo

    2014-12-15

    Highlights: • A Cr{sub 2}O{sub 3} layer was produced on a ferritic steel substrate with a reduced-pressure. • The Cr{sub 2}O{sub 3} layer prevents further substrate oxidation in following coating process. • The Cr{sub 2}O{sub 3} layer has a function as a hydrogen permeation barrier. • A smooth MOD Er{sub 2}O{sub 3} coating was successfully made on the Cr{sub 2}O{sub 3} layer by dip coating. • The Cr{sub 2}O{sub 3} layer would enhance flexibility in MOD coating process and performances. - Abstract: An Er{sub 2}O{sub 3} ceramic coating fabricated using the metal–organic decomposition (MOD) method on a Cr{sub 2}O{sub 3}-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr{sub 2}O{sub 3} layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10{sup −3} Pa and 5 Pa. The Cr{sub 2}O{sub 3} layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe{sub 2}O{sub 3}, which has been considered to degrade coating performance. An MOD Er{sub 2}O{sub 3} coating with a smooth surface was successfully obtained on a Cr{sub 2}O{sub 3}-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr{sub 2}O{sub 3} layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr{sub 2}O{sub 3} layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr{sub 2}O{sub 3} and MOD oxide ceramic.

  17. Application of Mechanochemistry in Ferrite Materials Technology

    Kaczmarek, W.; Ninham, B.

    1997-01-01

    An overview of progress and implications of recent technological advances in mechanochemical processing of ferrites is presented. We discuss the potential for applications of mechanical activation by induced phase transformations and chemical reactions in soft and hard ferrite materials through enhancement of structural and magnetic properties.

  18. Creep property measurements of welded joint of reduced-activation ferritic steel by the small-punch creep test

    The small-punch (SP) test and the SP creep test were carried out by using a further miniaturized plate-type specimen (3 mm diameter x 0.25 mm thick). Those tests were applied to the electron-beam welded joint of reduced-activation ferritic steel for evaluating the distribution of high-temperature strength in the joint. The experimental results revealed that the distribution of the maximum load measured by the SP test at 873 K was very similar to that obtained from Vickers hardness, and the fusion zone was relatively devoid of high-temperature ductility. In addition, the ratio of the load of SP creep test to the stress of standard uniaxial creep test was calculated so that both the creep rupture curves were overlapped to convert the results of SP creep test into those of standard test. As a result, the ratio was determined to be 0.43 for the base metal and this load-stress conversion coefficient is in good agreement with that obtained from finite element analysis.

  19. High heat flux test of a HIP-bonded first wall panel of reduced activation ferritic steel F-82H

    Reduced activation ferritic steel F-82H is a primary candidate structural material of DEMO fusion reactors. In fabrication technology, development of the DEMO blanket in JAERI, a hot isostatic pressing (HIP) bonding method, especially for the first wall structure with built-in cooling tubes has been proposed. A HIP-bonded F-82H first wall panel was successfully fabricated with selected manufacturing parameters. A high heat flux test of the HIP-bonded F-82H first wall panel has been performed to examine the thermo-mechanical performance of the panel including the integrity of the HIP-bonded interfaces and the fatigue behavior. A maximum heat flux of 2.7 MW/m2 was applied to accelerate the fatigue test up to 5000 cycles in test blanket inserted ITER. The maximum temperature of the panel was ∼450 deg. C under this heat flux. Through this test campaign, no damage such as cracks was observed on the surface of the panel, and no degradation in heat removal performance was observed either from the temperature responses. The thermal fatigue lifetime of the panel was found to be longer than the fatigue data obtained by mechanical testing

  20. Dynamic Strain Aging and Oxidation Effects on the Thermomechanical Fatigue Deformation of Reduced Activation Ferritic-Martensitic Steel

    Nagesha, A.; Kannan, R.; Srinivasan, V. S.; Sandhya, R.; Choudhary, B. K.; Laha, K.

    2016-03-01

    Thermomechanical fatigue (TMF) behavior of a reduced activation ferritic-martensitic steel was investigated under in-phase (IP) and out-of-phase (OP) conditions under different mechanical strain amplitudes and temperature regimes. OP TMF was generally observed to result in the lowest cyclic lives compared to both IP TMF and isothermal low cycle fatigue (IF) at the maximum temperature ( T max). The stress-strain hysteresis loops under TMF were marked by extensive serrations associated with dynamic strain aging (DSA) at the strain amplitudes of ±0.4 and ±0.6 pct. The serrations were noticed during the downward ramp of temperature that resulted in IP and OP TMF exhibiting jerky flow in the compressive and tensile portions, respectively. However, no evidence of serrated flow was seen under IF cycling at any of the temperatures within the TMF cycle. The stress response during IP TMF was marked by a near-saturation regime over 65 to 70 pct of life in contrast to continuous cyclic softening in the case of OP TMF. The marked life reduction observed under OP cycling at the strain amplitudes of ±0.4 and ±0.6 pct was attributed to the deleterious influence associated with oxidation, DSA, and tensile mean stress. The findings assume importance in the context of elevated temperature fatigue design, considering the fact that the IF data at T max are deemed adequately conservative in traditional design approaches.

  1. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition

  2. Improvement of catalytic activity in selective oxidation of styrene with H2O2 over spinel Mg–Cu ferrite hollow spheres in water

    Graphical abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. Solid spinel Mg0.5Cu0.5Fe2O4 ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods for comparison. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg0.5Cu0.5Fe2O4 hollow spheres, obvious improvement on catalytic activity was observed and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was observed when reused in six consecutive runs. - Highlights: • Uniform spinel ferrite hollow spheres were prepared by a simple method. • The catalyst has been proved much more efficient for styrene oxidation than the reported analogues. • The catalyst can be easily separated by external magnetic field and has exhibited excellent reusability. • The catalytic system is environmentally friendly. - Abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. For comparison, solid Mg–Cu ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods. All the samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM) and N2 physisorption. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg0.5Cu0.5Fe2O4 hollow spheres, obvious improvement on catalytic activity was observed, and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was

  3. Structure and properties of hard-magnetic barium, strontium and lead ferrites

    Structure and properties of compact articles of magnetically hard barium, strontium and lead ferrites produced by self-propagating high-temperature synthesis (SHS) are under study. Ferrites of carious structural defect density and internal microstresses are obtained by varying ferritizing (burning) temperature and comminution time. It is states that powder activity has a favourable effect on electromagnetic and mechanical properties of ferrites

  4. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    Baraliya, Jagdish D., E-mail: jdbaraliya@yahoo.co.in; Joshi, Hiren H., E-mail: jdbaraliya@yahoo.co.in [Department of Physics, Saurashtra University, Rajkot - 360 005, Gujarat (India)

    2014-04-24

    We report the results of biological study on core-shell structured MFe{sub 2}O{sub 4} (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe{sub 2}O{sub 4} nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  5. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    We report the results of biological study on core-shell structured MFe2O4 (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe2O4 nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria

  6. Development of HIP bonding procedure and mechanical properties of HIP bonded joints for reduced activation ferritic steel F-82H

    Structural materials of blanket components in fusion DEMO reactors will receive a neutron wall load more than 3-5MW/m2 as well as exposed by surface heat flux more than 0.5MW/m2. A reduced activation ferritic steel F-82H has been developed by JAERI in collaboration with NKK from viewpoints of resistance for high temperature and neutron loads and lower radioactivity. This study intends to obtain basic performance of F-82H to establish the fabrication procedure of the first wall and blanket box by using Hot Isostatic Pressing (HIP) bonding. Before HIP bonding tests, effects of heat treatment temperature and surface roughness on mechanical properties of joints were investigated in the heat treatment tests and diffusion bonding tests, respectively. From these results, the optimum HIP bonding conditions and the post heat treatment were selected. Using these conditions, the HIP bonding tests were carried out to evaluate HIP bondability and to obtain mechanical properties of the joints. Sufficient HIP bonding performance was obtained under the temperature of 1040degC, the compressive stress of 150MPa, the holding time of 2h, and the surface roughness ∼μ m. Mechanical properties of HIP bonded joints with these conditions were similar to those of as-received base metal. An oxide formation on the surface to be bonded would need to be avoided for sufficient bonding. The bonding ratio, Charpy impact value and fatigue performance of the joints strongly depended on the HIP conditions, especially temperature, while micro-structure, Vickers hardness and tensile properties had little dependence on the HIP temperature. The surface roughness strongly affected the bonding ratio and would be required to be in the level of a few μ m. In the HIP bonding test of the welded material, the once-melted surface could be jointed by the HIP bonding under the above-mentioned procedure. (J.P.N.)

  7. Hydrogen permeation measurement of the reduced activation ferritic steel F82H by the vacuum thermo-balance method

    Hydrogen permeation fluxes of the reduced activation ferritic steel F82H were quantitatively measured by a newly proposed method, vacuum thermo-balance method, for a precise estimation of tritium leakage in a fusion reactor. We prepared sample capsules made of F82H, which enclosed hydrogen gas. The hydrogen in the capsules permeated through the capsule wall, and subsequently desorbed from the capsule surface during isothermal heating. The vacuum thermo-balance method allows simultaneous measurement of the hydrogen permeation flux by two independent methods, namely, the net weight reduction of the sample capsule and exhaust gas analysis. Thus the simultaneous measurements by two independent methods increase the reliability of the permeability measurement. When the gas pressure of enclosed hydrogen was 0.8 atm at the sample temperature of 673 K, the hydrogen permeation flux of F82H obtained by the net weight reduction and the exhaust gas analysis was 0.75x1018 (H2/m2s) and 2.2x1018 (H2/m2s), respectively. The ratio of the hydrogen permeation fluxes obtained by the net weight reduction to that measured by the exhaust gas analysis was in the range from 1/4 to 1/1 in this experiment. The temperature dependence of the estimated permeation flux was similar in both methods. Taking the uncertainties of both measurements into consideration, both results are supposed to be consistent. The enhancement of hydrogen permeation flux was observed from the sample of which outer surface was mechanically polished. Through the present experiments, it has been demonstrated that the vacuum thermo-balance method is effective for the measurement of hydrogen permeation rate of F82H. (author)

  8. Ferrites and ceramic composites

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  9. Chromium Activity Measurements in Nickel Based Alloys for Very High Temperature Reactors: Inconel 617, Haynes 230, and Model Alloys

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHXs) of (very) high temperature reactors ((V)-HTRs). The behavior under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra- and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer. The alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow (Rouillard, F., 2007, 'Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR, Ph.D. thesis, Ecole des Mines de Saint-Etienne, France). To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T approximate to 1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617, and model alloys 1178, 1181, and 1201. This coupling makes it possible for the thermodynamic equilibrium to be obtained between the vapor phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (I) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared with that of the pure substance (Cr) at the same temperature

  10. Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on eight reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on the steels irradiated to 26-29 dpa. Irradiation was in the Fast Flux Test Facility at 365{degrees}C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15-17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20000 h at 365{degrees}C. Thermal aging had little effect on the tensile behavior or the ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in the upper-shelf energy (USE). After {approx}7 dpa, the strength of the steels increased and then remained relatively unchanged through 26-29 dpa (i.e., the strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness, as measured by an increase in DBTT and a decrease in the USE, remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels were the most irradiation resistant.

  11. Ferritic steel strengthening for nuclear application

    Ferritic alloys were studied in view of their application as canning materials for fast reactor fuel. Their creep strength has to be equal to or better than that of AISI 316 at 700 deg C. A Fe-Cr base alloy with addition of Mo and Ti was chosen. The requested properties have been obtained on hot worked alloys, the structure of which can be described as a bamboo structure. Cold working destroys the structure and the mechanical properties are lost. It is however not the case when the alloy is made by powder metallurgy methods with addition of a ceramic oxide. In this case only, heat treatments can rebuild the bamboo structure and the alloy recovers the good mechanical properties

  12. Low-crystalline β-FeOOH and vanadium ferrite for positive active materials of lithium secondary cells

    Funabiki, Atsushi; Yasuda, Hideo; Yamachi, Masanori

    Low-crystalline β-FeOOH and vanadium ferrite were prepared by a simple hydrolysis method. XRD measurement revealed that the former material had a framework of β-FeOOH with somewhat amorphous structure, and that the latter one gave a crystalline structure analogous to that of the hydrated iron orthovanadate. From the electrochemical measurements, it was found that the low-crystalline β-FeOOH positive electrode showed a discharge capacity of 230 mAh/g in the potential range of 4.3 V and 1.6 V versus Li/Li +, and better cycle performance than the high-crystalline one. The vanadium ferrite positive electrode also showed a high discharge capacity over 300 mAh/g and superior cycle performance.

  13. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    Kawashima, Asahi; Hashimoto, Koji

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  14. Precipitation of Nb in Ferrite After Austenite Conditioning. Part II: Strengthening Contribution in High-Strength Low-Alloy (HSLA) Steels

    Altuna, M. A.; Iza-Mendia, Amaia; Gutiérrez, I.

    2012-12-01

    Often, Nb contributes to the strength of a microalloyed steel beyond the expected level because of the grain size strengthening resulting from thermomechanical processing. Two different mechanisms are behind this phenomenon, and both of them have to do with the amount of Nb remaining in solution after hot rolling. The first of them is the increase of the hardenability of the steel as a result of Nb, and the second one is the fine precipitation of NbC in ferrite. Three Nb microalloyed steels were thermomechanically processed in the laboratory and coiled at different temperatures to investigate the effect of Nb content on the tensile properties. The extra strength was linearly related to the Nb remaining in solution after the hot working. The maximum contribution from Nb was reached for a coiling temperature of 873 K (600 °C).

  15. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  16. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  17. Activation experiments on vanadium alloy NIFS-HEAT-2

    In the present study, activation analysis of impurities and evaluation of activation properties were performed on NIFS-HEAT-2 by DT neutron irradiation at FNS facility. Similar analysis and evaluation were performed on US and Chinese V-4Cr-Ti samples for comparison. For impurity analysis and direct evaluation of activation properties of vanadium alloys, activation experiments with DT neutron irradiations were performed on NIFS-HEAT-2 and Round-Robin samples from the US and China. Eight nuclides of 24Na, 28Al, 54Mn, 56Mn, 57Co, 58Co, 89Zr and 92mNb were identified form analysis of the gamma peaks and concentrations of Al, Si, Mn, Fe, Ni, Co, Zr, Nb and Mo were evaluated. It was confirmed that the concentration of Al in NIFS-HEAT-2, which is harmful for low activation property, was lower than the criteria required for recycling of used material after reactor shutdown. The results were almost consistent with those by chemical analysis. Until ∼8 months after irradiation, significant influence of impurities was not observed in the decay heat measurement. Results of decay heat measurement with the Whole Energy Absorption Spectrometer and those of calculation with MNCP-4C, ACT-4 and JENDL Activation File were consistent within ∼ 15%. Activation calculation considering impurity concentrations from the present analysis indicated that decay heat of 60Co transmuted from Ni impurity will be dominant ∼6 years after irradiation. (author)

  18. Study of the precipitation and of the hardening microscopic mechanisms under irradiation in dilute ferritic alloys; Etude de la precipitation et des mecanismes microscopiques de durcissement sous irradiation dans des alliages ferritiques dilues

    Mathon, M.H

    1995-07-01

    The copper precipitation plays a significant role in the embrittlement process of reactor vessel steels under neutron irradiation at 300 deg C. In order to understand the copper precipitation mechanisms, we have studied model ferritic binary FeCu and ternary alloys FeCuX (X=Mn,Ni, Cr, P). These materials have been either Irradiated with 2.5 MeV electrons In the 175-360 deg C temperature range or thermal aged at 500 deg C. The evolution of materials has been followed by resistivity measurements under irradiation, by small angle neutron scattering and by Vickers microhardness measurements. We have shown the similarity of copper precipitation under thermally ageing at 500 deg C and electron Irradiation at 300 deg C, in FeCu{sub 1,34%}. This result confirms that the main effect of electronic irradiation is to accelerate precipitation. Nevertheless, we have observed that irradiation induces an additional contribution to hardening attributed to point defect clusters. Concerning the ternary alloys, we observed that at 300 deg C the addition of a third element has no significant effect on the copper precipitation kinetic under irradiation but that at lower temperature manganese slows down precipitation kinetic. In order to reproduce the experimental results obtained on FeCu{sub 1,34%} by using a cluster kinetics model, we have to suppose that the precipitation is heterogeneous and controlled by interface reactions for the small size clusters. In addition, neutron or electron irradiated industrial steels have been studied by small angle neutron scattering. The results revealed the presence of nano-metric solute clusters which contain few copper atoms and which are not linked to the formation of displacement cascades. (author)

  19. Understanding of copper precipitation under electron or ion irradiations in FeCu0.1 wt% ferritic alloy by combination of experiments and modelling

    This work is dedicated to the understanding of the basic processes involved in the formation of copper enriched clusters in low alloyed FeCu binary system (FeCu0.1 wt%) under irradiation at temperature close to 300 deg. C. Such an alloy was irradiated with electrons or with ions (Fe+ or He+) in order to deconvolute the effect of displacement cascades and the associated generation of point defect clusters (ion irradiations), and the super-saturation of mono-vacancies and self-interstitial atoms (electron irradiation). The microstructure of this alloy was characterised by tomographic atom probe. Experimental results were compared with results obtained with cluster dynamic model giving an estimation of the evolution of point defects (free or agglomerated) under irradiation on the one hand and describing homogeneous enhanced precipitation of copper on the other hand. The comparison between the results obtained on the different irradiation conditions and the model suggests that the point defect clusters (dislocation loops and/or nano-voids) created in displacement cascades play a major role in copper clustering in low copper alloy irradiated at 573 K

  20. Impaired bacterial attachment to light activated Ni-Ti alloy

    Ni-Ti alloy due to its unique mechanical properties, is used for many types of implants. Failure of these implants can be attributed to many different factors; however infections are a common problem. In this paper, the attachment of the bacteria, Staphylococcus aureus, to the Ni-Ti surface modified by a range of processes with and without of light activation (used to elicit antimicrobial properties of materials) was assessed and related to different surface characteristics. Before the light activation the number of bacterial colony forming units was the greatest for the samples thermally oxidised at 600 deg. C. This sample and the spark oxidised samples showed the highest photocatalytic activity but only the thermally oxidised samples at 600 deg. C showed a significant drop of S. aureus attachment. The findings in this study indicate that light activation and treating samples at 600 deg. C is a promising method for Ni-Ti implant applications with inherent antimicrobial properties. Light activation was shown to be an effective way to trigger photocatalytic reactions on samples covered with relatively thick titanium dioxide via accumulation of photons in the surface and a possible increase in defects which may result in free oxygen. Moreover, light activation caused an increase in the total surface energy.

  1. Impaired bacterial attachment to light activated Ni-Ti alloy

    Chrzanowski, Wojciech; Valappil, Sabeel P. [UCL Eastman Dental Institute, Division of Biomaterials and Tissue Engineering, 256 Gray' s In Road, WC1X 8LD, London (United Kingdom); Dunnill, Charles W. [University College London, Centre for Materials Chemistry, Chemistry Department, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Abou Neel, Ensanya A. [UCL Eastman Dental Institute, Division of Biomaterials and Tissue Engineering, 256 Gray' s In Road, WC1X 8LD, London (United Kingdom); Lee, Kevin [London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Parkin, Ivan P. [University College London, Centre for Materials Chemistry, Chemistry Department, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Wilson, Michael [UCL Eastman Dental Institute, Division of Microbial Diseases, 256 Gray' s In Road, WC1X 8LD, London (United Kingdom); Armitage, David A. [De Montfort University, Leicester School of Pharmacy, The Gateway, Leicester, LE1 9BH (United Kingdom); Knowles, Jonathan C., E-mail: j.knowles@eastman.ucl.ac.uk [UCL Eastman Dental Institute, Division of Biomaterials and Tissue Engineering, 256 Gray' s In Road, WC1X 8LD, London (United Kingdom)

    2010-01-30

    Ni-Ti alloy due to its unique mechanical properties, is used for many types of implants. Failure of these implants can be attributed to many different factors; however infections are a common problem. In this paper, the attachment of the bacteria, Staphylococcus aureus, to the Ni-Ti surface modified by a range of processes with and without of light activation (used to elicit antimicrobial properties of materials) was assessed and related to different surface characteristics. Before the light activation the number of bacterial colony forming units was the greatest for the samples thermally oxidised at 600 deg. C. This sample and the spark oxidised samples showed the highest photocatalytic activity but only the thermally oxidised samples at 600 deg. C showed a significant drop of S. aureus attachment. The findings in this study indicate that light activation and treating samples at 600 deg. C is a promising method for Ni-Ti implant applications with inherent antimicrobial properties. Light activation was shown to be an effective way to trigger photocatalytic reactions on samples covered with relatively thick titanium dioxide via accumulation of photons in the surface and a possible increase in defects which may result in free oxygen. Moreover, light activation caused an increase in the total surface energy.

  2. Ferrite Nanoparticles in Pharmacological Modulation of Angiogenesis

    Deshmukh, Aparna; Radha, S.; Khan, Y.; Tilak, Priya

    2011-07-01

    Nanoparticles are being explored in the targeted drug delivery of pharmacological agents : angiogenesis being one such novel application which involves formation of new blood vessels or branching of existing ones. The present study involves the use of ferrite nanoparticles for precise therapeutic modulation of angiogenesis. The ferrite nanoparticles synthesized by co-precipitation of ferrous and ferric salts by a suitable base, were found to be 10-20 nm from X-ray diffraction and TEM measurements. The magnetization measurements showed superparamagnetic behavior of the uncoated nanoparticles. These ferrite nanoparticles were found to be bio-compatible with lymphocytes and neural cell lines from the biochemical assays. The chick chorioallantoic membrane(CAM) from the shell of fertile white Leghorn eggs was chosen as a model to study angiogenic activity. An enhancement in the angiogenic activity in the CAM due to addition of uncoated ferrite nanoparticles was observed.

  3. Ultra-Pure Ferritic Stainless Steels-Grade, Refining Operation, and Application

    YOU Xiang-mi; JIANG Zhou-hua; LI Hua-bing

    2007-01-01

    The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.

  4. Thermally activated retainer means utilizing shape memory alloy

    Grimaldi, Margaret E. (Inventor); Hartz, Leslie S. (Inventor)

    1993-01-01

    A retainer member suitable for retaining a gap filler placed in gaps between adjacent tile members is presented. One edge of the retainer member may be attached to the gap filler and another edge may be provided with a plurality of tab members which in an intermediate position do not interfere with placement or removal of the gap filler between tile members. The retainer member may be fabricated from a shape memory alloy which when heated to a specified memory temperature will thermally activate the tab members to predetermined memory positions engaging the tile members to retain the gap filler in the gap. This invention has particular application to the thermal tiles on space vehicles such as the Space Shuttle Orbiter.

  5. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  6. Development of low activation vanadium alloys. Final report for period 1992-1994

    In the period 92-94 ECN carried out a task tilted 'Development of low activation alloys' in the frame of the European Fusion Technology Programme. The work included helium implantation, neutron irradiation and post-irradiation mechanical testing of eight vanadium alloys and three purities of vanadium. Helium and oxygen affect the mechanical properties. Helium injection followed by neutron irradiation has the most embrittling effect. Quantitative modelling of the alloy behaviour needs improvement to explain the observed phenomena. (orig.)

  7. Measurement of Activity of Indium in Liquid Bi-In-Sn Alloys by EMF Method

    Kumar, M. R.; Mohan, S.; Behera, C. K.

    2016-05-01

    The electrochemical technique based on a molten salt electrolyte galvanic cell has been used to measure the activity of indium in liquid Bi-In-Sn alloys in the temperature range of 723 K to 855 K along three ternary sections. The activity of tin in Bi-Sn binary alloys has also been measured by the same technique in the above temperature range. The activity of indium in Bi-In-Sn alloys shows negative deviation from Raoult's law for most of the compositions and slight positive deviations for a few indium-rich compositions. The ternary excess molar free energies have been calculated by Darken's treatment. Isoactivity curves at 813 K in the ternary Bi-In-Sn alloys were derived by combining the activity data of In-Sn and Bi-In alloys. The values of excess molar free energy obtained in this study are compared with those calculated from the Muggianu model at 813 K.

  8. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties; Alliages ferritiques 14/20% de chrome renforces par dispersion d`oxydes. Effets des procedes de mise en forme sur les textures de deformation, la recristallisation et les proprietes de traction

    Regle, H.

    1994-12-31

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. (Abstract Truncated)

  9. Study of MHD Corrosion and Transport of Corrosion Products of Ferritic/Martensitic Steels in the Flowing PbLi and its Application to Fusion Blanket

    Saeidi, Sheida

    2014-01-01

    Two important components of a liquid breeder blanket of a fusion power reactor are the liquid breeder/coolant and the steel structure that the liquid is enclosed in. One candidate combination for such components is Lead-Lithium (PbLi) eutectic alloy and advanced Reduced Activation Ferritic/Martensitic (RAFM) steel. Implementation of RAFM steel and PbLi in blanket applications still requires material compatibility studies as many questions related to physical/chemical interactions in the RAFM...

  10. XXIst Century Ferrites

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Oersted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the down sizing of ceramics microstructure to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba2+Fe12O19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  11. Monte Carlo simulation of spinodal decomposition in a ternary alloy within a three-phases field: comparison to phase transformation of ferrite in duplex stainless steels

    Emo, Jonathan; Pareige, Cristelle; Saillet, Sébastien; Domain, Christophe; Pareige, Philippe

    2014-06-01

    This work proposes to model phase transformations occurring in duplex stainless steels using atomistic kinetic Monte Carlo in a ternary model alloy. Kinetics are simulated in the three-phase field of a ternary system. Influence of the precipitation of the third phase on the kinetic of spinodal decomposition between the two other phases is studied in order to understand the synergy between spinodal decomposition and G-phase precipitation which exists in duplex stainless steels. Simulation results are compared to experimental data obtained with atom probe tomography.

  12. Tensile and impact behaviour of BATMAN II steels, Ti-bearing reduced activation martensitic alloys

    Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.; Pilloni, L.

    Two series of Reduced Activation Ferrous alloys (RAF) have been produced and studied by Casaccia's Laboratories. These martensitic alloys are named BATMAN steels. They are among the few presently developed RAF materials to exploit Ti as a carbide forming and grain size stabilizing element instead of Ta. In this work their mechanical properties are illustrated.

  13. Abnormal Austenite-Ferrite Transformation Behaviors of Fe-Si:Dilatometric Measurements

    LIU Yong-chang; ZHANG Zhe-ping; ZHAO Kai; LI Bao-yin

    2004-01-01

    The isochronal γ→α transformation of Fe-1Si alloy was measured by high-resolution dilatometry. According to the variation of the ferrite formation rate, an abnormal γ→α phase transformation was recognized, while normal reaction,i.e. one peak continuous reaction, was also detected. The occurrence the one or the other type of γ→α transformation strongly depends on the grain size: the transformation type changes from abnormal to normal with decreasing grain size. In the abnormal transformation process the first stage of the transformation corresponds to the first peaks in the transformation rate, which are not thermally activated.

  14. Production and qualification for fusion applications, a steel of low activity ferritic-martensitic ASTURFER; Produccion y cualificacion, para aplicaciones de fusion, de un acero de baja actividad ferritico-martensitico, ASTURFER

    Moran, A.; Belzunce, J.; Artimez, J. M.

    2011-07-01

    This article details the work carried out in the design and development pilot plant scale of a steel ferritic-martensitic of reduced activity, Asturfer, with a chemical composition and metallurgical properties similar to steel Eurofer. We describe the different stages of steel production and the results of the characterizations made in the context of an extensive test program.

  15. Elemental analysis of brazing alloy samples by neutron activation technique

    Two brazing alloy samples (C P2 and C P3) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 1011 n/cm2/s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 1012 n/cm2/s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab

  16. Oxidation Behavior of Some Cr Ferritic Steels for High Temperature Fuel Cells

    The oxidation behavior of three high Cr ferritic steels designated 1Al, RA and 5Al with different levels of Al, Si, Mn and Hf has been investigated in the present work. These steels have been developed as candidates for Solid Oxide Fuel Cell (SOFC) interconnect. Specimens of these alloys have been subjected to isothermal as well as cyclic oxidation in air. Isothermal oxidation tests are conducted in the temperature range 800 - 1000 degree C for time periods up to 1000 h. cyclic oxidation tests were carried out at 800 and 1000 degree C for twenty 25 - h cycles giving a total cyclic exposure time of 500 h. The growth rate of the oxide scales was found to follow a parabolic law over a certain oxidation period which changed with alloy composition and oxidation temperature. The value of the parabolic rate constant increased with increasing oxidation temperature. At 800 and 900 degree C alloy 1Al exhibited higher oxidation resistance compared to the other two alloys. Alloy RA showed spalling behavior when oxidized at 900 degree C and the extent of spalling increased with increasing the oxidation temperature to 1000 degree C. Alloy 5Al oxidized at 1000 degree C showed the highest oxidation resistance among the investigated alloys. Alloy 1Al and RA showed similar scale morphology and composition. X- ray diffraction analysis revealed that the scales developed on these alloys consist of Cr2O3 with an outer layer of MnCr2O4 and a minor amount of FeCr2O4 spinels. Alloy 5Al developed scale consisting of γ- Al2O3 at 800 degree C and γ and α- Al2O3 at 900 degree C. Oxidation of alloy 5Al at 1000 degree C led to formation of a scale consisting mainly of the protective phase α Al2O3. The presence of 0.84 wt% Al and 0.95 wt % Si in alloy 1Al enhanced its oxidation resistance compared to alloy RA which contains only 0.29 wt% Si and is Al - free. This enhancement was attributed to formation of internal oxidation zone in alloy 1Al just beneath the oxide / alloy interface. This zone

  17. Temperature- and frequency-activated semiconductor-to-metal transition in soft ferromagnetic Li0.5Mn0.5Fe2O4 ferrite

    We prepared Li0.5Mn0.5Fe2O4 ferrite through chemical reaction in a highly acidic solution and the subsequent sintering of the chemical routed powder at temperatures not ≧ 800 °C. Surface morphology showed a plastoferrite character for a sintering temperature >1000 °C. The mechanical softening of metal–oxygen bonds at higher measurement temperatures stimulated a delocalization of charge carriers, which were strongly localized in the A and B sites of the spinel structure at lower temperatures. The charge delocalization process activated a semiconductor-to-metal transition in the ac conductivity curves, obeyed by the Jonscher power law and Drude equation. A metallic state is also confirmed by the frequency dependence of the dielectric constant curves. (papers)

  18. On the Role of Alloy Composition and Sintering Parameters in the Bimodal Grain Size Distribution and Mechanical Properties of ODS Ferritic Steels

    García-Junceda, Andrea; Campos, Mónica; García-Rodríguez, Nerea; Torralba, José Manuel

    2016-04-01

    A sintered 14Cr-5Al-3W oxide dispersion strengthened steel was produced by mechanical alloying and consolidated by field-assisted hot pressing. First, a nanostructured powder was developed thanks to the high-energy milling used for introducing 0.4Ti-0.25Y2O3-0.6ZrO2 into the prealloyed Fe-Cr-Al-W powder, and then the processed powders were consolidated under a low diffusive technique to better retain the microstructure inherited from milling. The effect of the addition of zirconia and of the pressure applied during sintering on the final bimodal grain microstructure and mechanical properties is assessed. Both parameters are responsible for the refinement of the microstructure by increasing the volume fraction of the ultrafine grains (0 to 400 nm), leading to an enhancement of the mechanical properties, such as the microhardness and tensile strength.

  19. Monte Carlo simulation of spinodal decomposition in a ternary alloy within a three-phases field: comparison to phase transformation of ferrite in duplex stainless steels

    Duplex stainless steels (DSS) are largely used for industrial purposes due to their good corrosion resistance, mechanical properties and also due to their ability to be cast. They are notably used as cast elbows in primary circuits of pressurized water reactors. However these steels are subject to ageing at service temperature (285 C degrees - 323 C degrees). This work proposes to model phase transformations occurring in duplex stainless steels using atomistic kinetic Monte Carlo in a ternary model alloy. Kinetics are simulated in the three-phase field of a ternary system. Influence of the precipitation of the third phase on the kinetic of spinodal decomposition between the two other phases is studied in order to understand the synergy between spinodal decomposition and G-phase precipitation which exists in duplex stainless steels. Simulation results are compared to experimental data obtained with atom probe tomography

  20. The Effect of Interfacial Element Partitioning on Ferrite and Bainite Formation

    Chen, Hao; van der Zwaag, Sybrand

    2016-05-01

    The formation of bainitic ferrite and that of grain boundary ferrite in low alloy steels have been two of the most important and interesting research topics in the field of solid state ferrous phase transformation for several decades, and various aspects of these two transformations have been discussed extensively in the literature. Recently, a so-called Gibbs energy balance (GEB) model was proposed by the authors to evaluate alloying element effects on the growth of bainitic ferrite and grain boundary ferrite. The model predicts a growth mode transition from paraequilibrium, negligible partitioning to partitioning during the isothermal formation of bainitic ferrite and grain boundary ferrite. Transformation stasis and bay phenomenon are well explained by the GEB model and both of them are found to be due to alloying element diffusion at the interface. This overview gives a summary of the authors' recent progress in the understanding of the growth of bainitic ferrite and grain boundary ferrite, with particular focus on the growth mode transition, the transformation stasis phenomenon and the bay phenomenon.

  1. Radiation resistance and thermal creep of ODS ferritic steels

    Oxide dispersion strengthened (ODS) ferritic steels containing 0.38-0.39 wt% Y2O3 have been produced by mechanical alloying. After thermo-mechanical treatment, the structure of ODS steels includes polygonized extended grains and a great number (to ∼1016-1017 cm-3) of ultrafine complex yttrium oxides ∼2-3 nm in diameter. Irradiation by fast neutrons to 4.5x1026 n/m2 (340 K) and 1.5x1022 n/m2 (77 K) leads to strengthening and plasticity decreasing in ODS alloys. The advantages of ODS ferritic steels in creep resistance and strength against ferritic-martensitic steel 12Cr-2Mo-Nb-B-V and austenitic steel 16Cr-15Ni-3Mo-Ti-V display obviously when creep rate is approximately 10-2 h-1 and fracture time is longer than 1000 h

  2. Investigation on different oxides as candidates for nano-sized ODS particles in reduced-activation ferritic (RAF) steels

    Hoffmann, Jan; Rieth, Michael; Lindau, Rainer; Klimenkov, Michael; Möslang, Anton; Sandim, Hugo Ricardo Zschommler

    2013-11-01

    Future generation reactor concepts are based on materials that can stand higher temperatures and higher neutron doses in corrosive environments. Oxide dispersion strengthened steels with chromium contents ranging from 9 to 14 wt.% - produced by mechanical alloying - are typical candidate materials for future structural materials in fission and fusion power plants.

  3. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies

  4. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  5. Modern Ferrite Technology

    Goldman, Alex

    2006-01-01

    Modern Ferrite Technology, 2nd Ed. offers the readers an expert overview of the latest ferrite advances as well as their applications in electronic components. This volume develops the interplay among material properties, component specification and device requirements using ferrites. Throughout, emphasis is placed on practical technological concerns as opposed to mathematical and physical aspects of the subject. The book traces the origin of the magnetic effect in ferrites from the level of the simplest particle and then increases the scope to include larger hierarchies. From the desired magnetic properties, the author deduces the physical and chemical material parameters, taking into consideration major chemistry, impurity levels, ceramic microstructures and grain boundary effects. He then discusses the processing conditions and associated conditions required for implementation. In addition to conventional ceramic techniques, he describes non-conventional methods such as co-precipitation, co-spray roasting ...

  6. Determination of nickel in finished product alloys by instrumental neutron activation analysis and spectrophotometry

    Nickel contents in different finished product alloys were determined using a k0-based internal monostandard instrumental neutron activation analysis (IM-INAA) method. Five stainless steels (SS) and three high nickel alloys were analyzed by IM-INAA. BCS CRMs 225/1 (low alloy steel) and 466 (austenitic SS) and NIST SRM 247 (high Ni alloy) were analyzed to evaluate the accuracy of the method. The results of CRMs and SS were found to be in good agreement with certified or specified values. The Ni contents in the high nickel alloys were also determined by relative method of NAA for verification. Nickel contents in BCS CRM 466 and SS 316M were determined by UV-Visible spectrophotometry and the values were found to be in good agreement with IM-INAA results. (author)

  7. A hierarchical microstructure due to chemical ordering in the bcc lattice: Early stages of formation in a ferritic Fe–Al–Cr–Ni–Ti alloy

    A hierarchical microstructure is obtained in an alloy with composition Fe–8.1Al–12.2Cr–1.9Mo–18.2Ni–2.0Ti (wt.%) processed by melt-spinning. The evolution of the precipitation pathways is investigated using transmission electron microscopy (TEM) techniques, atom probe tomography (APT) and first-principles thermodynamic calculations. As-solidified ribbons exhibit a random dispersion of B2-ordered precipitates (NiAl-type) in an Fe-based matrix. Subsequent aging at 700 °C yields nucleation and growth of the L21-phase (Ni2TiAl-type) within the primary B2-precipitates, leading to a microstructure exhibiting three types of hierarchy: (i) a structural hierarchy due to chemical ordering, with a chemically disordered matrix of bcc-Fe (A2), the nearest-neighbor (NN) ordered B2-precipitates (NiAl-type) and the next nearest-neighbor (NNN) ordered L21-precipitates (Ni2TiAl-type) within B2, (ii) a dimensional hierarchy with a continuous bcc-Fe matrix, coherently embedded B2-precipitates, with a size range of 60–200 nm and the coherent precipitate substructure, with L21-phase and dimensions of 15–20 nm. (iii) A spatial hierarchy where B2-precipitates are embedded in the bcc-Fe matrix and L21-precipitates nucleate and grow only within B2-precipitates. In addition, it is verified that the interface between B2 and L21 is coherent and adopts a diffuse structural profile. Monte-Carlo simulations reproduce these observations and it is found that interface energies of B2 and L21 reduce from 50 mJ/m2 at 0 K to 11 mJ/m2 at 973 K. Kinetic-Monte-Carlo simulations support the interpretation of the experimental results that the L21 nucleates within the B2 phase

  8. Effect of loading mode on the fracture toughness of a reduced activation ferritic/martensitic stainless steel

    The critical J integrals of mode I (JIC), mixed-mode I/III (JMC), and mode III (JIIIC) were examined for a ferritic stainless steel (F-82H) at ambient temperature. A determination of JMC was made using modified compact-tension specimens. Different ratios of tension/shear stress were achieved by varying the principal axis of the crack plane between 0 and 55 degrees from the load line. The results showed that JMCs and tearing moduli (TM) varied with the crack angles and were lower than their mode I and mode III counterparts. Both the minimum JMC and TM occurred at a crack angle between 40 and 50 degrees, where σi/σiii was 1.2 to 0.84. The Jmin was 240 kJ/m2, and ratios of JIC/Jmin and JIIIC/Jmin were about 2.1 and 1.9, respectively. Morphology of fracture surfaces was consistent with the change of JMC and TM values. While the upper shelf-fracture toughness of F-82H depends on loading mode, the Jmin remains very high. Other important considerations include the effect of mixed-mode loading on the DBT temperature, and effects of hydrogen and irradiation on Jmin

  9. Solvothermal synthesis of Pt-Pd alloys with selective shapes and their enhanced electrocatalytic activities

    Zhang, Zhi-Cheng; Hui, Jun-Feng; Guo, Zhen-Guo; Yu, Qi-Yu; Xu, Biao; Zhang, Xin; Liu, Zhi-Chang; Xu, Chun-Ming; Gao, Jin-Sen; Wang, Xun

    2012-03-01

    Pt-Pd bimetallic alloy nanostructures with highly selective morphologies such as cube, bar, flower, concave cube, and dendrite have been achieved through a facile one-pot solvothermal synthesis. The effects of shape-controllers (sodium dodecyl sulfate (SDS), ethylenediamine-tetraacetic acid disodium salt (EDTA-2Na), NaI) and solvents (water/DMF) on the morphologies were systematically investigated. The electrocatalytic activities of these Pt-Pd alloy nanostructures toward formic acid oxidation were tested. The results indicated that these alloy nanocrystals exhibited enhanced and shape-dependent electrocatalytic activity toward formic acid oxidation compared to commercial Pt black and Pt/C catalysts.Pt-Pd bimetallic alloy nanostructures with highly selective morphologies such as cube, bar, flower, concave cube, and dendrite have been achieved through a facile one-pot solvothermal synthesis. The effects of shape-controllers (sodium dodecyl sulfate (SDS), ethylenediamine-tetraacetic acid disodium salt (EDTA-2Na), NaI) and solvents (water/DMF) on the morphologies were systematically investigated. The electrocatalytic activities of these Pt-Pd alloy nanostructures toward formic acid oxidation were tested. The results indicated that these alloy nanocrystals exhibited enhanced and shape-dependent electrocatalytic activity toward formic acid oxidation compared to commercial Pt black and Pt/C catalysts. Electronic supplementary information (ESI) available: See DOI: 10.1039/c2nr12135b

  10. Low Activation Vanadium Alloys for Fusion Power Reactors - the RF Results

    Full text: The Results of development and researches of functional properties of low activation vanadium alloys (V-Ti-Cr and V-Cr-W-Zr-C systems) being developed for the cores of nuclear fusion and fission (Gen-IV, space) power reactors are presented. Scientific and technological problems of the investigations are related with enhancement of functional properties based on: 1. Special optimized thermal (TT), thermomechanical (TMT) and thermochemical (TCT) treatments of V-4Ti-4Cr alloys. 2. Development of new (V-Cr-W-Zr-C system) vanadium alloys. The TMT and TCT regimes ensuring the capability of significant (up to 2 times) enhancement of yield strength in the temperature range up to 800°C keeping relatively high plasticity reserve have been found for alloys. The results of the theoretical, modeling and simulating studies of characteristics of self-point defects and dislocations, their interactions and mobility are presented. Nuclear physics characteristics (primary radiation damage, activation, transmutation, postreactor cooling) of alloys irradiated for a long time in neutron spectra of the fusion reactor DEMO-RF (15.3 dpa/year) and fast power reactor BN-600 (80 dpa/year) are calculated. The interaction characteristics of V-4Ti-4Cr alloy with hydrogen and the influence of hydrogen on mechanical properties of the alloy (impact toughness, internal friction) have been studied. Obtained results allows one to recommend the vanadium alloys for applications in nuclear reactors at operating temperature window 300 - 800(850)°C. The planes of high-dose and high- temperature reactor tests of vanadium alloys are scheduled at material science assemblies of reactor BN-600 (2013 - 2015, doses 50 - 200 dpa, irradiation temperatures 400 - 800°C). (author)

  11. Effect of activity differences on hydrogen migration in dissimilar titanium alloy welds

    The effect of alloy composition on hydrogen activity was measured for seven titanium alloys as a means to determine the tendency for hydrogen migration within dissimilar metal welds. The alloys were: Ti-CP (unalloyed Ti), Ti-3Al-2.5V, Ti-3Al-2.5V-3Zr, Ti-3Al-2Nb-1Ta, Ti-6Al, Ti-6Al-4V, and Ti-6Al-2Nb-1Ta-0.8Mo. Hydrogen pressure-hydrogen concentration relationships were determined for temperatures from 600 C to 800 C and hydrogen concentrations up to approximately 3.5 at. pct (750 wppm). Fusion welds were made between Ti-CP and Ti-CP and between Ti-CP and Ti-6Al-4V to observe directly the hydrogen redistribution in similar and dissimilar metal couples. Hydrogen activity was found to be significantly affected by alloying elements, particularly Al in solid solution. At a constant Al content and temperature, an increase in the volume fraction of β reduced the activity of hydrogen in α-β alloys. Activity was also found to be strongly affected by temperature. The effect of temperature differences on hydrogen activity was much greater than the effects resulting from alloy composition differences at a given temperature. Thus, hydrogen redistribution should be expected within similar metal couples subjected to extreme temperature gradients, such as those peculiar to fusion welding. Significant hydrogen redistribution in dissimilar alloy weldments also can be expected for many of the compositions in this study. Hydride formation stemming from these driving forces was observed in the dissimilar couple fusion welds. In addition, a basis for estimating hydrogen migration in titanium welds, based on hydrogen activity data, is described

  12. Thermal-stress analysis of IFMIF target back-wall made of reduced-activation ferritic steel and austenitic stainless steel

    Ida, Mizuho [Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan)], E-mail: ida.mizuho@jaea.go.jp; Chida, Teruo [Hitachi Engineering and Services Co., Ltd., 2-1 Saiwai-cho 3-chome, Hitachi, Ibaraki 317-0073 (Japan); Furuya, Kazuyuki [Hachinohe National College of Technology, 16-1 Uwanotai, Tamonoki, Hachinohe, Aomori 039-1192 (Japan); Wakai, Eiichi; Nakamura, Hiroo; Sugimoto, Masayoshi [Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan)

    2009-04-30

    For long time operation of a liquid lithium target of the International Fusion Materials Irradiation Facility, annual replacement of a back-wall, a part of the flow channel, is planned, since the target suffers neutron damage of more than 50 dpa/fpy. Considering irradiation/activation conditions, remote weld on stainless steel 316L between a back-wall and a target assembly was employed. Furthermore, dissimilar weld between the 316L and a reduced-activation ferritic/martensitic steel F82H in the back-wall was employed. The objective of this study is to clarify structures and materials of the back-wall with acceptable thermal-stress under nuclear heating. Thermal-stress analysis was done using a code ABAQUS and data of the nuclear heating. As a result, thermal-stress in the back-wall is acceptable level, if thickness of the stress-mitigation part is more than 5 mm. With results of the analysis, necessity of material data for F82H and 316L under conditions of irradiation tests and mechanical tests are clarified.

  13. PWSCC Preventive Maintenance Activities for Alloy 600 in Japanese PWR Plants

    Because many nuclear plants have been in operation for ages, the importance of preventive maintenance technologies is getting higher. One conspicuous problem found in pressurized water reactor (PWR) plants is the primary water stress corrosion cracking (PWSCC) observed in Alloy 600 (a kind of high nickel based alloy) parts. Alloy 600 was used for butt welds between low alloy steel and stainless steel of nozzles of Reactor Vessel (RV), Steam Generator (SG), and Pressurizer (Pz). As PWSCC occurred at these parts may cause Loss of Coolant Accident (LOCA), preventive maintenance is necessary. PWSCC is considered to be caused by a mixture of three elements: high residual tensile stress on surface, material (Alloy 600) and environment. PWSCC can be prevented by improving one of the elements. MHI has been developing stress improvement methods, for example, Water Jet Peening (WJP), Shot Peening by Ultrasonic vibration (USP), and Laser Stress Improvement Process (L-SIP). According to the situation, appropriate method is applied for each part. WJP has been applied for RV nozzles of a lot of plants in Japan. However PWSCC was observed in RV nozzles during the inspection before WJP in recent years, MHI developed the Advanced INLAY system to improve the material from Alloy 600 to Alloy 690. Alloy 600 on the inner surface of the nozzles is removed and welding with Alloy 690 is performed. In addition, heat treatments for the nozzles are difficult for its structural situation, so ambient temperature temper bead welding technique for RV nozzles was developed to make the heat treatments unnecessary. This paper describes countermeasures against PWSCC and introduces the maintenance activities performed in Japan. (author)

  14. Activation and clearance of vanadium alloys and beryllium multipliers in fusion reactors

    Bartenev, S.A. [V.G. Khlopin Radium Institute, 2nd Murinskij Prospect 28, 194021 St. Petersburg (Russian Federation); Ciampichetti, A. [EURATOM/ENEA Fusion Association, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Firsin, N.G. [V.G. Khlopin Radium Institute, 2nd Murinskij Prospect 28, 194021 St. Petersburg (Russian Federation); Forrest, R. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Kolbasov, B.N. [Nuclear Fusion Institute, Russian Research Centre ' Kurchatov Institute' , pl. Kurchatova 1, 123182 Moscow (Russian Federation); Romanov, P.V. [Federal Agency for Atomic Energy, Bolshaya Ordynka 24-26, 109017 Moscow (Russian Federation); Romanovskij, V.N. [V.G. Khlopin Radium Institute, 2nd Murinskij Prospect 28, 194021 St. Petersburg (Russian Federation); Zucchetti, M. [EURATOM/ENEA Fusion Association, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)], E-mail: zucchetti@polito.it

    2007-10-15

    The possibility of clearance of vanadium-chromium-titanium (V-Cr-Ti) alloys is analysed. These alloys after their service in fusion power plants, have the potential to reach clearance if they are purified from activation products. The extraction part of the technological scheme for radiochemical separation of components of irradiated V-Cr-Ti alloy and their purification from metallic activation products, developed earlier, was tested for the first time in laboratory conditions using activated alloy specimens. The replacement of the acid reextraction of V with peroxide and of acid reextraction of Cr with alkaline improved characteristics of the extraction reprocessing. Duration of the V and Cr reextraction was shortened by about an order of magnitude, the output of these alloy components was increased, V purification from rare-earth metals became two times as great, and Cr decontamination from Co increased by two orders of magnitude. Activation of Be contaminated with trace quantities of uranium is an issue: estimation of Be activation in the blanket of the Power Plant Conceptual Study (PPCS) has suggested that traces of U impurity in Be should be removed - or substantially reduced - prior to use.

  15. A zero-waste option: recycling and clearance of activated vanadium alloys

    The reduction of long-term radioactivity is analysed here in V-Cr-Ti alloys, one of the proposed structural materials for fusion power plants. In particular is explored the possibility of recycling within the nuclear industry and of clearance, that is declassification to non-active material. Vanadium alloys have the potential to reach the dose rate hands-on recycling limit when used in a blanket, if noxious radioactive products coming from impurities activation are eliminated. Clearance is also possible in principle, but only if further separation of activation products of titanium is carried out after service

  16. A zero-waste option: Recycling and clearance of activated vanadium alloys

    The reduction of long-term radioactivity is analysed here in V-Cr-Ti alloys, one of the proposed structural materials for fusion power reactors. In particular, it is explored the possibility of recycling within the nuclear industry or clearance, that is declassification to non-active material. Vanadium alloys have the potential to reach the dose rate hands-on recycling limit when used in a blanket, if noxious radioactive products coming from impurities activation are eliminated. Clearance is possible in principle too, however only if a further separation of activation products of titanium is done after service. (author)

  17. Activity measurement of solid Cu-In alloys by EMF method with solid electrolyte

    Katayama I.

    2002-01-01

    Full Text Available The thermodynamic activity of indium in the solid Cu-In alloys was obtained from the EMF measurement of cell: In,In2O3, ZrO2(+11mol%CaO, Cu-In,In2O3 for 16 alloys in the temperature range 773 to 900K. Activity changes with composition at 823K are very large in the and - phase regions. Activity and free energies of formation are derived and compared with the published data.

  18. Low activation R-tokamak with aluminum alloy

    An aluminum alloy system is considered as an alternative of the first phase design of the R-tokamak. The 1-D calculation showed that the radiation level outside the vacuum vessel could be reduced by a factor of 30 about half a month after a D-T shot, when the aluminum alloy system is adopted instead of a stainless steel system. The aluminum system has weak mechanical strength, is highly conductive, and shows overaging effect at a certain low temperature. Accordingly, it is necessary to overcome these points. The highly conductive aluminum case leads to considerable increase in power consumption. Various problems on the toroidal coils, the vacuum system, and the limiter were studied. The optimization of the device parameters was investigated. (Kato, T.)

  19. Measurement of zinc activity in the ternary In–Zn–Sn alloys by EMF method

    Behera, C.K., E-mail: ckbehera.met@itbhu.ac.in; Sonaye, A.

    2013-09-20

    Highlights: • Activity of zinc in the ternary In–Zn–Sn system has been measured in the temperature range 753–853 K by EMF method. • Isoactivity lines for zinc reflect the positive deviation from the ideality at 813 K. • The activity of indium in In–Sn binary system shows negative deviation from Raoult's law over entire range of composition. • Ternary excess molar free energies at 813 K are computed by Darken's treatment. • Calculated molar excess free energies for the ternary systems are compared with the Chou's theoretical model data. - Abstract: Activity of zinc in liquid In–Zn–Sn alloys has been measured by electrochemical technique based on molten salt electrolyte galvanic cell in the temperature range 753–853 K along three ternary sections of Zn{sub x}(In{sub y}Sn{sub 1−y}){sub 1−x} where y = 0.67, 0.50 and 0.33. The activity of indium in In–Sn binary alloys has also been measured by the same technique in the same temperature range. The activity of Zinc in In–Zn–Sn alloys shows positive deviation from the Raoult's law over entire range of composition. The activity of indium in In–Sn alloys shows negative deviations from ideality for entire composition. The excess molar free energies have been computed by the Darken's treatment of the ternary solutions using In–Sn binary data and ternary data in this study. Isoactivity curves at 813 K in the ternary In–Zn–Sn alloys were derived by combining the activity data of In–Zn and Sn–Zn alloys. The values of excess molar free energy in this study are in good agreement with those calculated from the general model calculation proposed by Chou.

  20. Reduced Activation Ferritic/Martensitic Steel Eurofer 97 as Possible Structural Material for Fusion Devices. Metallurgical Characterization on As-Received Condition and after Simulated Services Conditions

    Metallurgical Characterization of the reduced activation ferritic/martensitic steel Eurofer'97, on as-received condition and after thermal ageing treatment in the temperature range from 400 degree centigree to 600 degree centigree for periods up to 10.000 h, was carried out. The microstructure of the steel remained stable (tempered martensite with M23 C6 and MX precipitates) after the thermal ageing treatments studied in this work. In general, this stability was also observed in the mechanical properties. The Eurofer'97 steel exhibited similar values of hardness, ultimate tensile stress, 0,2% proof stress, USE and T03 regardless of the investigated material condition. However, ageing at 600 degree centigree for 10.000 ha caused a slight increase in the DBTT, of approximately 23 . In terms of creep properties, the steel shows in general adequate creep rupture strength levels for short rupture times. However, the results obtained up to now for long time creep rupture tests at 500 degree centigree suggests a change in the deformation mechanisms. (Author) 62 refs

  1. Microstructural characterization of a diffusion-bonded joint for 9Cr-ODS and JLF-1 reduced activation ferritic/martensitic steels

    Bonding of oxide dispersion strengthened (ODS) steels to non-ODS reduced activation ferritic/martensitic (RAFM) steels is essential to their application to blanket systems. In the present study, a diffusion-bonded joint of the candidate 9Cr-ODS steel and JLF-1 RAFM steel was fabricated using hot isostatic pressing (HIP). The effect of post-bond heat treatments (PBHTs) was studied by hardness measurement and microstructural analysis. The results indicated that, after normalization and tempering (N and T), the hardness and microstructures of 9Cr-ODS and JLF-1 base metals recovered to levels similar to those before HIP. However, a soft region was observed across the bonding interfaces for all specimens containing the as-HIPed condition and those after PBHTs. This was due to coarser micro-carbides (M3C in as-HIPed condition and M23C6 in N and T conditions) near the interfaces than in the base metals for both 9Cr-ODS and JLF-1. Energy Dispersive X-ray Spectroscopy (EDS) analysis confirmed that carbon, tungsten, and chromium in the matrix near the interfaces are transferred to the micro-carbides, making them coarser there. Ti diffused from the 9Cr-ODS side to the JLF-1 side forming Ti-rich carbides after tempering, especially at high temperature to 1073 K

  2. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    Vej-Hansen, Ulrik Grønbjerg

    essential for wide-spread use of this technology. platinum alloys have shown great promise as more active catalysts, which are still stable under reaction conditions. We have investigated these systems on multiple scales, using either Density Functional Theory (DFT) or Effective Medium Theory (EMT......In this thesis I present our work on theoretical modelling of platinum alloys as catalysts for the Oxygen Reduction Reaction (ORR). The losses associated with the kinetics of the ORR is the main bottleneck in low-temperature fuel cells for transport applications, and more active catalysts are...... increased activity that has been seen experimentally. We show how the platinum-platinum distance at the surface is decreased for a variety of alloy phases in the core, with greater compression of the overlayer for core phases with lattice parameters which are either much smaller or much larger than pure...

  3. A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels

    Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, Sunil; Mathew, M. D.

    2012-04-01

    Evaluations of creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb steels with Alloy 800 at 823 K were carried out. The joints were fabricated by a fusion welding process employing an INCONEL 182 weld electrode. All the joints displayed lower creep rupture strength than their respective ferritic steel base metals, and the strength reduction was greater in the 2.25Cr-1Mo steel joint and less in the 9Cr-1Mo steel joint. Failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of the heat-affected zone (HAZ) of the ferritic steel (type IV cracking) with the decrease in stress. At still lower stresses, the failure in the joints occurred at the ferritic/austenitic weld interface. The stress-life variation of the joints showed two-slope behavior and the slope change coincided with the occurrence of ferritic/austenitic weld interface cracking. Preferential creep cavitation in the soft intercritical HAZ induced type IV failure, whereas creep cavitation at the interfacial particles induced ferritic/austenitic weld interface cracking. Micromechanisms of the type IV failure and the ferritic/austenitic interface cracking in the dissimilar weld joint of the ferritic steels and relative cracking susceptibility of the joints are discussed based on microstructural investigation, mechanical testing, and finite element analysis (FEA) of the stress state across the joint.

  4. Ferrite loaded rf cavity

    The mechanism of a ferrite-loaded rf cavity is explained from the point of view of its operation. Then, an analysis of the automatic cavity-tuning system is presented using the transfer function; and a systematic analysis of a beam-feedback system using transfer functions is also presented. (author)

  5. Fracture toughness behaviour of ferritic ductile cast iron

    The static rate fracture toughness of a series of eight heats of ductile cast iron has been measured. Samples from each heat were tested in a heat treated condition which produced a fully ferritic matrix. The chemical composition and the microstructural feature size has also been measured directly from each specimen tested. A multiple linear regression method was used to establish a simple mathematical relationship between fracture toughness and the composition and microstructure. Fracture toughness was found to be strongly associated with the spacing (or size) of the graphite nodules in these fully ferritic ductile cast irons. Other features, including the composition, the ferrite grain size, or the amount of graphite (over the ranges examined), did not strongly influence the fracture toughness. Fracture toughness also did not correlate with tensile properties (i.e. strength or ductility) in these alloys. (author)

  6. Effects of Solute Nb Atoms and Nb Precipitates on Isothermal Transformation Kinetics from Austenite to Ferrite

    Wang, Li; Parker, Sally; Rose, Andrew; West, Geoff; Thomson, Rachel

    2016-05-01

    Nb is a very important micro-alloying element in low-carbon steels, for grain size refinement and precipitation strengthening, and even a low content of Nb can result in a significant effect on phase transformation kinetics from austenite to ferrite. Solute Nb atoms and Nb precipitates may have different effects on transformation behaviors, and these effects have not yet been fully characterized. This paper examines in detail the effects of solute Nb atoms and Nb precipitates on isothermal transformation kinetics from austenite to ferrite. The mechanisms of the effects have been analyzed using various microscopy techniques. Many solute Nb atoms were found to be segregated at the austenite/ferrite interface and apply a solute drag effect. It has been found that solute Nb atoms have a retardation effect on ferrite nucleation rate and ferrite grain growth rate. The particle pinning effect caused by Nb precipitates is much weaker than the solute drag effect.

  7. Electrocatalytic activity of Rh-Ru alloys in electroreduction process

    The authors study the kinetics of cathodic hydrogen evolution in 1 N H2SO4 and of maleic acid electroreduction in C4H4O4 solutions of different concentrations in 1 N H2SO4 as a base electrolyte at Rh-Ru alloy ingots prepared by vacuum arc melting. The results of polarization measurements for cathodic hydrogen evolution were analyzed in semilogarithmic plots of overvoltage against the logarithm of current density. Over the range of current densities from 10-5 to 10-3 A/cm2, the polarization curves exhibit distinctly linear sections and can be described by the Tafel equation

  8. Optimization of production and properties of the nanoscaled ferritic ODS-alloy 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2} and characterization of structure and property correlations; Eigenschaftsoptimierung der nanoskaligen ferritischen ODS-Legierung 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}, metallkundliche Charakterisierung und Bestimmung von Struktur-Eigenschaftskorrelationen

    Eiselt, Charles Christopher

    2010-01-15

    Fusion power reactors next to renewable energy sources shall form an important basis for a future energy scenario avoiding damaging emissions due to the lack of fossil primary energy carriers. An efficient operation of such reactors necessitate temperatures >700 C, which require new kinds of structural materials. Today only reduced activated oxide dispersion-strengthened (ODS-) materials based on iron, which have high strengths at elevated temperatures, offer the possibility to meet those criterias, which are developed in internationally coordinated programs. Therefore a nearly industrial production process based on the powdermetallurgical route is iteratively and systematically optimized to produce the ferritic ODS-alloy 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}. Through TEM elemental analyses of mechanically alloyed steel powder it is confirmed, that the additives Y{sub 2}O{sub 3} and TiH{sub 2} dissolve completely in the powder and form the ODS-particles during the HIP-cycle. Detailed studies of powder contamination during mechanical alloying reveal correlations between the contamination behaviour of certain elements and the milling parameters. A specially designed procedure of powder encapsulation and sealing leads to a successful powder compaction to the ODS-material 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}. Detailed TEM studies show a bimodal grain size distribution within the material at first. The alloy's recrystallization behaviour is the main reason for this phenomenon and is therefore discussed in detail. A high dispersion of ODS-particles as the decisive material's component with particle sizes von 3-5nm within grains and 12-36nm at the grain boundaries is successfully reached and verified by numerous TEM-Elemental Mappings. By applying hot rolling as an additional step during production a more even grain structure by equally maintaining the fine nanoskaled particle dispersion is set up. The microstructure is highly stable, since no grain- or

  9. Irradiation embrittlement of ferritic stainless steels

    The characteristics of the irradiation embrittlement of some ferritic stainless steels were examined by tensile tests. Steels selected in this investigation were classified into three groups: chi phase, precipitation hardened Fe-13Cr steels; tempered martensitic Fe-12Cr steels; and low alloy steels. The latter steels were chosen in order to compare the irradiation embrittlement characteristics with those of stainless steels. The stainless steels were superior to the low alloy steels with regard to the irradiation embrittlement (the changes in both ductile-brittle transition temperature (DBTT) and unstable plastic flow transition temperature (UPFTT)), irrespective of whether these stainless steels had chi phase precipitated structures or tempered martensitic structures. The suppression of the DBTT increase owing to irradiation results from low yield stress increase Δσsub(y) and high |[dσsub(y)(u)/dT]|, where u denotes unirradiated, in the stainless steels. The suppression of the UPFTT results from the high work hardening rate or the high work exponent and the low Lueders strain in the stainless steels. These characteristics of irradiation embrittlement in the ferritic stainless steels are thought to be caused by the defect structure, which is modified by Cr atoms. (author)

  10. Determination of trace impurities of chlorine in zirconium-alloy matrices using neutron activation technique

    Naik, H.; Nathaniel, T. Newton [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.; Sant, V.L. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Fuel Chemistry Div.; Suryanarayana, S.V. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Nuclear Physics Div.; Prajapati, P.M. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Physics Design Div.

    2011-07-01

    Trace impurities of chlorine in the zircaloy-2 and Zr-2.5% Nb alloy matrix have been determined using neutron activation analysis (NAA) and off-line {gamma}-ray spectrometric technique. The results have been compared with the values obtained from pyrohydrolysis-IC and spark source mass spectrometric method. The limit of internal precision error from the neutron activation technique is 6.7% for zircaloy-2 and 9% for Zr-2.5% Nb alloy, which are lower than that of pyrohydrolysis-IC and spark source mass spectrometric measurements respectively. For both alloys the results from present work based on NAA technique are slightly higher than the results based on the other two methods but are comparable within the uncertainty. Read More: http://www.oldenbourg-link.com/doi/abs/10.1524/ract.2011.1863 (orig.)

  11. Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment

    This study is aimed at making clear the effect of Mn and Cr on the microstructure and toughness of an Fe-Cr-Mn alloy which is considered as one of the candidate alloys for reduced activation materials for the first wall application of the fusion reactor. The microstructures of Fe-12% Cr-(5∼30)% Mn(mass%) alloys after solution treatment at 1373 K for 3.6 ks are markedly varied with Mn contents; α'(martensite) + δ(ferrite) in 5% Mn alloy, α' + δ + ε(martensite) + γ(austenite) in the 10% Mn alloy, α' + ε + γ in 15% Mn alloy, ε + γ in the 20% Mn alloy, and ε + γ +δ in the 25% Mn alloy, and γ + δ in the 30% Mn alloy. It is to be noted that the δ phase increases with increasing Mn content when the Fe-12% Cr alloy contains more than 25% Mn, which suggests that Mn plays the role of a ferrite former. In Fe-15% Mn-Cr alloy, the δ phase is not observed in the range of Cr contents up to 12%, whereas it is markedly increased with the addition of 16% Cr. C, N and Ni are very helpful in forming the γ phase in these alloys as generally known in Fe-Cr-Ni alloys. The toughness evaluated by the Charpy impact test at 273 K and room temperature is very low in the 5% Mn alloy which consists of the α' and δ phases. It is, however, significantly improved by a small amount of the γ phase and increases with increase of γ phase stability. (author)

  12. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  13. Swelling behavior of a simple ferritic alloy

    The swelling behavior which results from simulated fusion environment irradiation of Fe-10% Cr has been characterized with transmission electron microscopy. Specimens were bombarded at 850 K with: a triple-beam of He+, D+2, and 4 MeV Fe++ ions to 0.3, 1, 3, 10, 30, and 100 dpa, a dual-beam of He+ and 4 MeV Fe++ ions to 30 and 100 dpa; and a single-beam of 4 MeV Fe++ ions to 30 dpa. The helium and hydrogen injection rates were approx. 10 appm He/dpa and approx. 40 appm D/dpa. Cavities were observed for damage levels of 3 dpa and greater. The swelling was 111approx. =0.8 γ100 for these cavities. At 30 dpa, the cavities in the specimen irradiated with the single-beam technique were larger and had a lower concentration than the specimens irradiated with specimens irradiated with the dual- and triple-ion beams suggests that deuterium has an effect on the damage microstructures in Fe-10% Cr

  14. Electrocatalytic activity and electrochemical hydrogen storage of Ni-La alloy prepared by electrodeposition from aqueous electrolyte

    陈卫祥; 成旦红; 刘淑兰; 郭鹤桐

    2002-01-01

    Ni-La alloy coating was prepared by electrodeposition.The effect of cathodic current density on the La content of the alloy coatings was discussed.It is found that the content of La in the alloy increases with increasing the cathodic current density.The microstructures and codeposition mechanism of Ni-La alloy coatings were investigated by means of X-ray diffraction (XRD) and cyclic voltammetry (CV).The results demonstrate that the Ni-La alloy is FCC and codeposited by the induced mechanism.The hydrogen evolution reaction (HER) on the electrodeposited Ni-La alloy electrodes in alkaline solution was evaluated by Tafel polarization curves.It is found that La-Ni alloy coating exhibites much higher exchange current density for HER than pure Ni electrode,and that the exchange current density increases with increasing the La content of alloys.The good electrocatalytic activity for HER of this Ni-La alloy is attributed to the synergism of the electronic structure of La and Ni.The electrodeposited La-Ni alloys have a certain electrochemical hydrogen storage capacity of 34~143 mAh/g,which increases with increasing the La content of alloys.

  15. Fracture mechanics of pseudoelastic NiTi alloys: review of the research activities carried out at University of Calabria

    E. Sgambitterra

    2013-01-01

    Full Text Available This paper reports a brief review of the research activities on fracture mechanics of nickel-titanium based shape memory alloys carried out at University of Calabria. In fact, this class of metallic alloys show a unusual fracture response due to the reversible stress-induced and thermally phase transition mechanisms occurring in the crack tip region as a consequence of the highly localized stresses. The paper illustrates the main results concerning numerical, analytical and experimental research activities carried out by using commercial NiTi based pseudoelastic alloys. Furthermore, the effect of several thermo-mechanical loading conditions on the fracture properties of NiTi alloys are illustrated.

  16. Microstructural evolution of delta ferrite in SAVE12 steel under heat treatment and short-term creep

    This research focused on the formation and microstructural evolution of delta ferrite phase in SAVE12 steel. The formation of delta ferrite was due to the high content of ferrite forming alloy elements such as Cr, W, and Ta. This was interpreted through either JMatPro-4.1 computer program or Creq calculations. Delta ferrite was found in bamboo-like shape and contained large amount of MX phase. It was surrounded by Laves phases before creep or aging treatment. Annealing treatments were performed under temperatures from 1050 °C to 1100 °C and various time periods to study its dissolution kinetics. The result showed that most of the delta ferrite can be dissolved by annealing in single phase austenitic region. Dissolution process of delta ferrite may largely depend on dissolution kinetic factors, rather than on thermodynamic factors. Precipitation behavior during short-term (1100 h) creep was investigated at temperature of 600 °C under a stress of 180 MPa. The results demonstrated that delta ferrite became preferential nucleation sites for Laves phase at the early stage of creep. Laves phase on the boundary around delta ferrite showed relatively slower growth and coarsening rate than that inside delta ferrite. - Highlights: ► Delta ferrite is systematically studied under heat treatment and short-term creep. ► Delta ferrite contains large number of MX phase and is surrounded by Laves phases before creep or aging treatment. ► Formation of delta ferrite is interpreted by theoretical and empirical methods. ► Most of the delta ferrite is dissolved by annealing in single phase austenitic region. ► Delta ferrite becomes preferential nucleation sites for Laves phase at the early stage of creep.

  17. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Hu, Wenhui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Luo, Fengfeng; Li, Tiecheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-04-15

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He{sup +} beam and sequential He{sup +} and H{sup +} beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.

  18. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He+ beam and sequential He+ and H+ beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C

  19. Lattice-parameter change induced by accommodation of precipitate/matrix misfit; misfitting nitrides in ferrite

    Upon nitriding of iron-based alloys, development of misfitting coherent nitride precipitates in a ferrite matrix induces an overall expansion of the ferrite lattice. This lattice expansion was quantitatively determined by X-ray diffraction from the change of the lattice parameter of ferrite of homogenously nitrided Fe−Cr and Fe−V alloys. Adopting the experimentally verified (by X-ray diffraction and transmission electron microscopy) notion that the misfitting precipitates diffract coherently with the matrix, the extent of this hydrostatic lattice-strain component could be calculated, in general, as function of the precipitate/matrix misfit, the volume fraction of precipitates and the elastic properties of the matrix and precipitates. The experimentally observed and the predicted dependencies of lattice dilatation agree very well for both nitrided Fe−Cr and Fe−V alloys. This is the first time that this type of lattice expansion was experimentally identified and quantitatively explained

  20. Development of manufacturing technology for high purity low activation vanadium alloys

    Vanadium alloys are promising candidate low activation materials for structural components of fusion reactors. Establishment of industrial infrastructure is, however, remaining to be a critical issue because of lack of other large scale commercial applications. In the present study, technologies for large scale manufacturing of high purity V-4Cr-4Ti alloy were developed by improving the present commercial production processes of vanadium metal, and optimizing alloying, plating, sheeting and wiring techniques. Efforts were focused on reducing carbon, nitrogen and oxygen impurities, which are known to deteriorate workability, weldability and radiation resistance of vanadium alloys. Especially, improvements were made in atmospheric control during calcination, aluminothermic reduction, vacuum arc remelting, and hot forging and rolling. A medium size (30kg) high purity V-4Cr-4Ti ingot was produced and designated as NIFS-HEAT-1. The specimens produced out of the ingot are being submitted to Round-robin tests by Japanese universities. Two larger ingots of 166kg in total weight were produced recently (NIFS-HEAT-2(A) and (B)). By these efforts, technology for fabricating large V-4Cr-4Ti alloy products with <100ppm C, ∼100ppm N and 100∼200ppm O was demonstrated. (author)

  1. Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys

    Barlow, P.; Leffers, Torben

    1977-01-01

    irradiation temperatures corresponding to the highest source densities is approximately 350°–500°C. The climb sources are not related to any pre-existing dislocations resolved in the microscope. The sources emit three types of loop: ‘rectangular’ loops with a100 Burgers vector and {100} habit plane, normal...... prismatic loops with Burgers vector a/2110, and Frank loops. There is no significant difference between the apparent activation energy for growth of the three types of loops. The source points are suggested to be submicroscopic nickel precipitates-with reference to the existing evidence that......Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of...

  2. Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling

    Abhijit Banerjee; Srinjoy Bid; Hema Dutta; Sandeep Chaudhuri; Dipankar Das; Swapan Kumar Pradhan

    2012-01-01

    Zn-ferrite nanoparticles were synthesized at room temperature by mechanical alloying the stoichiometric (1:1 mol%) mixture of ZnO and α-Fe2O3 powder under open air. Formation of both normal and inverse spinel ferrite phases was noticed after 30 minutes and 2.5 hours ball milling respectively and the content of inverse spinel phase increased with increasing milling time. The phase transformation kinetics towards formation of ferrite phases and microstructure characterization of ball mille...

  3. Mn-Zn soft magnetic ferrite nanoparticles synthesized from spent alkaline Zn-Mn batteries

    Research highlights: → This manuscript reports for the first time to prepare Mn-Zn soft magnetic ferrite nanoparticles using spent alkaline Zn-Mn batteries as raw material by multi-step processes including acid leaching, chemical treatment of battery iron shells and citrate-nitrate precursor auto-combustion. → Synthesized Mn0.5Zn0.5Fe2O4 ferrite nanoparticles have pure ferrite phase, larger saturation magnetization and lower coercivity compared with the same composition ferrites prepared by other techniques due to better crystallinity. → Auto-combustion Mn-Zn ferrite nanoparticles synthesis method presents a viable alternative for alkaline Zn-Mn batteries recycling due to its target product is not a single metal or its oxide. → It is original and not currently submitted for review to any other journal and their intent is to publish the article in the Journal of Alloys and Compounds. - Abstract: Using spent alkaline Zn-Mn batteries as raw material, Mn-Zn soft magnetic ferrite nanoparticles are prepared by multi-step processes including acid leaching, chemical treatment of battery iron shells and citrate-nitrate precursor auto-combustion. Acid leaching and chemical treatment mechanisms are investigated. Dried gels thermal decomposition process, auto-combustion, phase composition, morphological and magnetic properties of as-prepared Mn-Zn ferrite nanoparticles are characterized by thermogravimetric and differential thermal analysis, X-ray powder diffraction, transmission electron microscopy and vibrating sample magnetometer. Synthesized Mn-Zn ferrite nanoparticles (Mn0.5Zn0.5Fe2O4) have pure ferrite phase, larger saturation magnetization (Ms = 60.62 emu g-1) and lower coercivity (Hc = 30 Oe) compared with the same composition ferrites prepared by other techniques due to better crystallinity. Mn-Zn ferrite nanoparticles synthesis method presents a viable alternative for alkaline Zn-Mn batteries recycling.

  4. Long term creep properties and microstructural evolution of ferritic and austenitic grades for USC power plants

    Caminada, S.; Cumino, G. [Tenaris, Dalmine (BG) (Italy); Cipolla, L.; Di Gianfrancesco, A. [Centro Sviluppo Materiali SpA, Material and Product Directorate, Rome (Italy); Minami, Y.; Ono, T. [TenarisNKKt, R and D, Kawasaki, Kanagawa (Japan)

    2007-07-01

    The steam parameters in the new high efficiency fossil fuel power plants are continuously increasing, requiring new advanced materials with enhanced creep strength able to operate on the most severe temperature and pressure conditions. Tenaris focused on the development of ferritic-martensitic and austenitic grades for tubes and pipes applications. The product development in TenarisDalmine for the ferritic-martensitic grades has been focused on: low alloyed ASTM Grade 23 as substitute of Grade 22 for components operating at relatively low temperatures, containing 1.5% W and with quite good weldability and creep properties up to 580 C and a competitive cost; high alloyed ASTM Grade 92, an improved version of the well known Grade 91 for the superheaters, headers and other parts of the boiler operating at temperatures up to 620 C: its tempered martensitic structure offers very high creep strength and long term stability. The product development in TenarisNKKt R and D on austenitic grades has been focused on: TEMPALOY AA-1 as improved version of 18Cr8NiNbTi with the 3%Cu, showing high creep and corrosion properties, TEMPALOY A-3: a 20Cr-15Ni-Nb-N showing good creep behaviour and corrosion properties better than AA-1 due to the higher Cr content. This paper describes the Tenaris products, the process routes and the main characteristics of these steels, including the effect of shot blasting on steam oxidation properties of the austenitic grades, as well as, the R and D activities in the field of alloy design, creep tests, data assessment, microstructural analysis and damage modelling, conducted with the support of the Centro Sviluppo Materiali. (orig.)

  5. Conditions, mechanism of formation and morphology of ferrite supersaturated with carbon (chernovite)

    A study was made into the mechanism of formation and structure of a specific alpha-phase (chernovite) in a number of carbon and low alloy steels. It is shown that the chernovite constitutes a ferrite supersaturated with carbon and is formed directly from austenite in a subcritical temperature range in the form of plates or equiaxial grains. The isothermal tempering results in chernovite transformation into equilibrium ferrite and dispersed carbides and in a hardness decrease. Alloying elements promote an increase of hardness and decelerate chernovite tempering. The quantity of chernovite in the steel depends on the temperature of phase transition and carbon concentration. 10 refs.; 6 figs.; 2 tabs

  6. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe2O4-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe2O4-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe2O4-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT2 Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p 2O4-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe2O4-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe2O4-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe2O4-NPs in cells of placental origin • WISH cells treated with ZnFe2O4-NPs exhibited cytoplasmic localization of NPs. • ZnFe2O4-NPs induce DNA damage and mitochondrial dysfunction in WISH cells. • ZnFe2O4-NPs activate

  7. Variation of mechanical properties with addition of Al in low activity ferritic/martensitic heat resistant steels

    The effect of aluminum on mechanical properties in low activation martensitic steel has been studied. Impact test and tensile test were performed at high temperature. Aluminum is in solid solution state after normalizing so the grain size of prior austenite was not changed. AlN was precipitated during tempering treatment. The size of Cr2N precipitates were decreased due to the precipitation of AlN in 0.10wt.%N steel. But the precipitation of nitride such as V(C,N) and Cr2N was suppressed by the formation of AlN in 0.08wt.%N steel. The addition of aluminum have little effect on the impact properties such as DBTT and upper shelf energy. The increase of tensile strength and yield strength by addition of aluminum appeared in 0.10wt.%N steel, but not in 0.08wt.%N steel. But the tensile and yield strength of aluminum added 0.10wt.%N steel is not higher than that of 0.08wt.%N steel

  8. Pack cementation coatings for alloys

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  9. Chromium activity measurements in nickel based alloys for very high temperature reactors: Inconel 617, haynes 230 and model alloys - HTR2008-58147

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHX) of (V)-HTR reactors. The behaviour under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer Then, the alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow [1]. To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T∼1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617 and model alloys 1178, 1181, 1201. This coupling makes it possible thermodynamic equilibrium to be obtained between the vapour phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (/) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared to that of the pure substance (Cr) at the same temperature. These calculations provide thermodynamic data characteristic of the chromium behaviour in these alloys. These activity results call into question those previously measured by Hilpert [2], largely used in the literature. (authors)

  10. Transverse Impedance of Ferrite Elements

    Burov, A

    2004-01-01

    A specific feature of ferrites is that these materials behave either as metals or magneto-dielectrics, depending on the frequency range. Their magnetic permeability is a function of frequency as well. In this paper, the transverse impedance of a ferrite kicker is calculated. The method suggested in Ref. [1] is generalized here for ferrites. Namely, in [1] it is assumed that the electric field of the beam charge dipole is always perfectly shielded. In fact, this assumption requires the conductivity being high compared with the frequency. This is not necessarily true for the high frequencies of a proton single-bunch spectrum. That is why the dynamics of the electric shielding has to be taken into account for ferrite kickers. The generalized analytic result is applied for the ferrite MKE kickers at the CERN SPS, and a fairly good agreement with observations [2] is found.

  11. Pack cementation diffusion coatings for iron-base alloys

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1995-02-01

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels. The Cr-Si ferrite layers have proven to be very resistant to high temperature cyclic oxidation and to pitting in aqueous solutions. The process has been patented, and is being transferred for industrial application, e.g. for water walls of utility boilers, etc. In the proposed extension of this project, the use of mixed pure metal powders in the pack will be extended to achieve similar ferrite Fe-Cr-Al coatings with excellent oxidation resistance, with the eventual transfer of the technology to industry. In other recent studies, Ni-base alloy rods were aluminized by the halide-activated pack cementation process to bring their average composition to that for the ORNL-developed Ni{sub 3}Al, for use as a welding rod. A similar effort to develop a welding rod for the ORNL Fe{sub 3}Al alloy did not yield reproducible coating compositions or growth kinetics. The continued effort to produce Duriron-type (Fe-18Si-5Cr) coatings on steels was not successful. Literature for the intrinsic diffusion coefficients suggests that this task cannot be achieved.

  12. Studies on the preparation of active oxygen-deficient copper ferrite and its application for hydrogen production through thermal chemical water splitting

    2008-01-01

    Hydrogen generation through thermal chemical water splitting technology has recently received in- creasingly international interest in the nuclear hydrogen production field. Besides the main known sulfur-iodine (S-I) cycle developed by the General Atomics Company and the UT3 cycle (iron, calcium, and bromine) developed at the University of Tokyo, the thermal cycle based on metal oxide two-step water splitting methods is also receiving research and development attention worldwide. In this work, copper ferrite was prepared by the co-precipitation method and oxygen-deficient copper ferrite was synthesized through first and second calcination steps for the application of hydrogen production by a two-step water splitting process. The crystal structure, properties, chemical composition and δ were investigated in detail by utilizing X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal analysis (DTA), atomic absorption spectrometer (AAS), ultraviolet spectrophotometry (UV), gas chro- matography (GC), and so on. The experimental two-step thermal chemical cycle reactor for hydrogen generation was designed and developed in this lab. The hydrogen generation process of water splitting through CuFe2O4-δ and the cycle performance of copper ferrite regeneration were firstly studied and discussed.

  13. Studies on the preparation of active oxygen-deficient copper ferrite and its application for hydrogen production through thermal chemical water splitting

    YU Bo; ZHANG Ping; ZHANG Lei; CHEN Jing; XU JingMing

    2008-01-01

    Hydrogen generation through thermal chemical water splitting technology has recently received in-creasingly international interest in the nuclear hydrogen production field. Besides the main known sulfur-iodine (S-I) cycle developed by the General Atomics Company and the UT3 cycle (iron, calcium, and bromine) developed at the University of Tokyo, the thermal cycle based on metal oxide two-step water splitting methods is also receiving research and development attention worldwide. In this work, copper ferrite was prepared by the co-precipitation method and oxygen-deficient copper ferrite was synthesized through first and second calcination steps for the application of hydrogen production by a two-step water splitting process. The crystal structure, properties, chemical composition and δwere investigated in detail by utilizing X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal analysis (DTA), atomic absorption spectrometer (AAS), ultraviolet spectrophotometry (UV), gas chro-matography (GC), and so on. The experimental two-step thermal chemical cycle reactor for hydrogen generation was designed and developed in this lab. The hydrogen generation process of water splitting through CuFe2O4-δ and the cycle performance of copper ferrite regeneration were firstly studied and discussed.

  14. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results

  15. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  16. Creep lifetime assessements of ferritic pipeline welds

    The low alloy ferritic steam pipework in Advanced Gas Cooled reactor (AGR) power stations operates at temperatures in the creep range. An inspection strategy for continued operation of the pipework has been developed based on estimation of the creep rupture life of pipework weldments and fracture mechanics for demonstrating acceptance of defects. This strategy is described in outline. The estimation of creep rupture life is described in more detail. Validation for the approach is illustrated by comparison with pressure vessel tests and with metallographic examination of components removed from service. The fracture mechanics methods are also described. It is shown that the amount of creep crack growth is dependent on the life fraction at which the assessment is made; crack growth being rapid as the creep rupture life is approached. (author). 3 refs., 5 figs., 1 tab

  17. Grain boundary diffusion of Fe in ultrafine-grained nanocluster-strengthened ferritic steel

    Grain boundary diffusion of Fe in nanocluster-strengthened ferritic steel (Fe-14Cr-3W-0.4Ti-0.25Y2O3 in wt.%) has been investigated. The steel was produced by mechanical alloying followed by hot extrusion. The final grain size was ∼200 nm. The diffusivity of Fe was measured within the temperature range 423-820 K. The grain boundary penetration at lower temperatures revealed a specific time dependence, which indicates a residual interconnected porosity in the ferritic steel. In order to quantify the percolating porosity, conventional radiotracer (59Fe) diffusion measurements were combined with a study of room temperature penetration of liquid 110mAg solution to distinguish between solid-state diffusion along boundaries and penetration along the surface of interconnected cavities. The presence of porosity affected the diffusion process, introducing a hierarchy of internal interfaces. The grain boundary diffusion coefficient and the diffusivity along internal surfaces were determined in the so-called type C-C, C-B and B-B kinetic regimes of interface diffusion in a hierarchical microstructure. Using the residual activity method and a 65Zn tracer, the volume fraction of the percolating porosity was estimated to be 0.6%.

  18. Application of advanced austenitic alloys to fossil power system components

    Swindeman, R.W.

    1996-06-01

    Most power and recovery boilers operating in the US produce steam at temperatures below 565{degrees}C (1050{degrees}F) and pressures below 24 MPa (3500 psi). For these operating conditions, carbon steels and low alloy steels may be used for the construction of most of the boiler components. Austenitic stainless steels often are used for superheater/reheater tubing when these components are expected to experience temperatures above 565{degrees}C (1050{degrees}F) or when the environment is too corrosive for low alloys steels. The austenitic stainless steels typically used are the 304H, 321H, and 347H grades. New ferritic steels such as T91 and T92 are now being introduced to replace austenitic: stainless steels in aging fossil power plants. Generally, these high-strength ferritic steels are more expensive to fabricate than austenitic stainless steels because the ferritic steels have more stringent heat treating requirements. Now, annealing requirements are being considered for the stabilized grades of austenitic stainless steels when they receive more than 5% cold work, and these requirements would increase significantly the cost of fabrication of boiler components where bending strains often exceed 15%. It has been shown, however, that advanced stainless steels developed at ORNL greatly benefit from cold work, and these steels could provide an alternative to either conventional stainless steels or high-strength ferritic steels. The purpose of the activities reported here is to examine the potential of advanced stainless steels for construction of tubular components in power boilers. The work is being carried out with collaboration of a commercial boiler manufacturer.

  19. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  20. Ferritic Steel Interconnectors and Their Interactions with Ni Base Anodes in Solid Oxide Fuel Cells (SOFC)

    Froitzheim, J.

    2008-01-01

    In recent years high Cr ferritic steels such as Crofer 22 APU became the most widespread construction materials for solid oxide fuel cell (SOFC) interconnects mainly due to low cost and the ease of fabrication compared to ceramic materials. It was shown that optimum properties with respect to oxide scale growth and adherence could only be obtained by very low, carefully controlled concentrations of minor alloying additions such as Al and Si. This required sophisticated alloy manufacturing met...

  1. Investigation of corrosion of alloys using neutron activation and gamma-ray spectrometry. Pt. 1

    A simple procedure is proposed for studying differential (selective) corrosion of alloys using the radioactive tracer technique. This procedure is based on the neutron activation of samples, and the measurement of the γ-ray spectra of irradiated samples and their corrosion products. The reliability of the given method has been demonstrated by application to conventional and spheroidal dental amalgams. The method can produce useful results for studying the various factors affecting the properties of dental amalgams as well as other alloys. A week after end of irradiation of dental amalgam only the isotopes 65Zn, sup(110m)Ag, 113Sn and 203Hg are excepted to have significant activites. Samples were irradiated in the Egyptian Reactor (RR-I) at Inshas for 5 hours. The neutron flux was approximately 1x1013n cm-2s-1. (F.G.)

  2. Oxygen reduction reaction activity on Pt{111} surface alloys.

    Attard, Gary A; Brew, Ashley; Ye, Jin-Yu; Morgan, David; Sun, Shi-Gang

    2014-07-21

    PtM overlayers (where M=Fe, Co or Ni) supported on Pt{111} are prepared via thermal annealing in either a nitrogen/water or hydrogen ambient of dilute aqueous droplets containing M(Z+) cations directly attached to the electrode. Two different PtM phases are detected depending on the nature of the post-annealing cooling environment. The first of these consists of small (hydroxides. The second type of PtM phase is prepared by cooling in a stream of hydrogen gas. Although this second phase also consists of numerous microcrystals covering the Pt{111} electrode surface, these are both flatter than before and moreover are entirely metallic in character. A positive shift in the onset of PtM oxide formation correlates with increased activity towards the oxygen reduction reaction (ORR), which we ascribe to the greater availability of platinum metallic sites under ORR conditions. PMID:24986646

  3. Impact of increasing the enrichment of 15N in reduced-activation ferritic steels on 14C production of tokamak reactors

    The impact of increasing the enrichment of 15N in F82H of a fusion reactor has been investigated in order to increase the fraction of shallow land burial. In Japan, the radioactive waste having any single radionuclide, exceeding the limit concentration value determined by the Nuclear Safety Commission, will not qualify as a low level waste (LLW), which can be disposed by shallow land burial. The regulation of carbon-14, which has a half life of 5730 years, was 37 kBq/g. Low activation ferritic steel is the most promising structural materials under research for fusion because of its good irradiation properties at high temperature and low activation. From the viewpoint of toughness and reliability, it is preferable to mix more than 200 ppm nitrogen in F82H. In DT fusion neutron environment, 14C is produced by 14N(n,p)14C nuclear reaction. The natural abundance of nitrogen isotopes is 99.63% of 14N and 0.37% of 15N. Then increasing 15N enrichment is effective to reduce the production of 14C. SlimCS, which is a compact demonstration reactor characterized by low aspect ratio (A) and reduced-size center solenoid (CS), has been designed in JAEA. The reactor has a major radius of 5.5 m and aspect ratio of 2.6. It produces a fusion output of 2.95 GW, which corresponds to a neutron wall loading of 3.6 MW/m2. A tritium breeding blanket in outboard side consists of both 30 cm thick replaceable blanket and 50 cm thick permanent blanket. In the inboard side, it has only replaceable blanket of 30 cm thickness to realize low-A. Neutron transport calculations have been performed using ANISN with nuclear cross sections from the FUSION-40 based on JENDL 3.1. The concentration of nitrogen in F82H is 200 ppm. The enrichment of 15N was varied from natural abundance of 0.37% to 95%. After thirty years operation with the operating rate of 50%, the 14C concentrations in F82H of the surface of outboard permanent blanket decreased from 78 kBq/g to 10 kBq/g by increasing the enrichment of 15N

  4. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T. [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  5. Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy

    A new method has been developed for separation and purification of fission 99Mo from neutron activated uranium–aluminum alloy. Alkali dissolution of the irradiated target (100 mg) results in aluminum along with 99Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of 99Mo was carried out using anion exchange method. The radiochemical yield of fission 99Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. - Highlights: • 99Mo separation, purification method developed from neutron activation of 100 g U–Al alloy. • Uranium, fission, activation product decontamination by alkali dissolution of activated target. • Purification by Al(OH)3, AgI/AgIO3, Mo-α-benzoin oxime precipitation and anion exchange. • Very high decontamination factors for alpha activity obtained. • Final 99Mo product (recovery >80%) complied with international pharmacopoeia standards

  6. Understanding the effect of steps, strain, poisons, and alloying: Methane activation on Ni surfaces

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    It is shown that a single parameter characterizing the electronic structure of a transition metal surface, the d-band center (epsilon(d)), can be used to provide a unified description of a range of phenomena in heterogeneous catalysis. Using methane activation on Ni surfaces as an example, we show...... that variations in epsilon(d) can be used to quantitatively describe variations in the activation energy when the surface structure is changed, when the coverage of carbon is changed, when the surface is strained, when the surface is alloyed, and when the surface is poisoned by sulfur. The d...

  7. Titanium-Nickel Shape Memory Alloy Spring Actuator for Forward-Looking Active Catheter

    Shozo Inoue; Takahiro Miki; Takafumi Tsurui; Hiroyuki Nagasawa; Mamoru Komatsubara; Takahiro Namazu

    2011-01-01

    The fabrication and characterization of forward-looking active catheter actuated by titanium-nickel (Ti-Ni) shape memory alloy (SMA) springs are described. The catheter has been designed for wide-range observation of an affected area inside a blood vessel when the blood vessel is occluded. The developed active catheter consists of eight Ti-Ni SMA spring actuators for actuation of catheter tip, an ultrasonic transducer for forward-looking, a guide wire, a polyurethane tube for coating, and spi...

  8. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 (China)

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Grain boundary premelting and activated sintering in binary refractory alloys

    Shi, Xiaomeng

    Quasi-liquid intergranular film (IGF) which has been widely observed in ceramic systems can persist into sub-solidus region whereby an analogy to Grain boundary (GB) premelting can be made. In this work, a grain boundary (GB) premelting/prewetting model in a metallic system was firstly built based on the Benedictus' model and computational thermodynamics, predicting that GB disordering can start at 60-85% of the bulk solidus temperatures in selected systems. This model quantitatively explains the long-standing mystery of subsolidus activated sintering in W-Pd, W-Ni, W-Co, W-Fe and W-Cu, and it has broad applications for understanding GB-controlled transport kinetics and physical properties. Furthermore, this study demonstrates the necessity of developing GB phase diagrams as a tool for materials design. Subsequently, Grain boundary (GB) wetting and prewetting in Ni-doped Mo are systematically evaluated via characterizing well-quenched specimens and thermodynamic modeling. In contrast to prior reports, the delta-NiMo phase does not wet Mo GBs in the solid state. In the solid-liquid two-phase region, the Ni-rich liquid wets Mo GBs completely. Furthermore, high-resolution transmission electron microscopy demonstrates that nanometer-thick quasi-liquid IGFs persist at GBs into the single-phase region where the bulk liquid phase is no longer stable; this is interpreted as a case of GB prewetting. An analytical thermodynamic model is developed and validated, and this model can be extended to other systems. Furthermore, the analytical model was refined based upon Beneditus' model with correction in determining interaction contribution of interfacial energy. A calculation-based GB phase diagram for Ni-Mo binary system was created and validated by comparing with GB diffusivities determined through a series of controlled sintering experiments. The dependence of GB diffusivity on doping level and temperature was examined and compared with model-predicted GB phase diagram. The

  10. Microwave applications of soft ferrites

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  11. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  12. Mechanical characterization of a reduced activation 9 Cr ferritic/martensitic steel of spanish production; Caracterizacion mecanica de un acero ferritico/martenitico de activacion reducida de produccion espanola

    Rodriguez, D.; Serrano, M.

    2012-07-01

    This paper shows the first results concerning the characterization of two heats of a reduced activation 9 Cr ferritic/martensitic steel (RAFM) made in Spain, called AF1B and AF2A. The results of this characterization are compared with their European counterparts, EUROFER97-2, which was chosen as reference material. All activities described were performed in the Structural Materials Unit of CIEMAT, within the national project TECNO-FUS CONSOLIDER INGENIO.The two Spanish heats have the same production process and heat treatment. Both heats have a similar tensile behaviour similar to EUROFER97-2, but on the other hand impact properties are lower. The microstructure of AF1B reveals large biphasic inclusions that affecting its mechanical properties, especially the impact properties. AF2A casting was free of these inclusions. (Author) 24 refs.

  13. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa

    Maloy, S. A.; Saleh, T. A.; Anderoglu, O.; Romero, T. J.; Odette, G. R.; Yamamoto, T.; Li, S.; Cole, J. I.; Fielding, R.

    2016-01-01

    Tensile test results at 25 and 300 °C on five 9-12Cr tempered martensitic steels and one 14Cr oxide dispersion strengthened alloy, that were side-by side irradiated to 6.5 dpa at 295 °C in the Advanced Test Reactor (ATR), are reported. The engineering stress-strain curves are analyzed to provide true stress-strain constitutive σ(ɛ) laws for all of these alloys. In the irradiated condition, the σ(ɛ) fall into categories of: strain softening, nearly perfectly plastic and strain hardening. Increases in yield stress (Δσy) and reductions in uniform strain ductility (eu) are observed, where the latter can be understood in terms of the alloy's σ(ɛ) behavior. Increases in the average σ(ɛ) in the range of 0-10% strain are smaller than the corresponding Δσy, and vary more from alloy to alloy. The data are also analyzed to establish relations between Δσy and coupled changes in the ultimate stresses as well as the effects of both test temperature and the unirradiated yield stress (σyu). The latter shows that higher σyu correlates with lower Δσy. In five out of six cases the effects of irradiation are generally consistent with previous observations on these alloys. However, the particular heat of the 12Cr HT-9 tempered martensitic steel in this study has a much higher eu than observed for earlier heats. The reasons for this improved behavior are not understood and may be microstructural in origin. However, it is noted that the new heat of HT-9, which was procured under modern quality assurance standards, has lower interstitial nitrogen than previous heats. Notably lower interstitial solute contents correlate with improved ductility and homogenous deformation in broadly similar steels.

  14. Influence of strain rate on the twin and slip activity of a magnesium alloy containing neodymium

    Dudamell, N.V. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Hidalgo-Manrique, P., E-mail: paloma.hidalgo@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Chakkedath, A.; Chen, Z.; Boehlert, C.J. [Michigan State University, East Lansing, MI 48824-1226 (United States); Gálvez, F. [ETS Ingenieros de Caminos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Yi, S.; Bohlen, J.; Letzig, D. [Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht (Germany); Pérez-Prado, M.T. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain)

    2013-10-20

    The mechanical behavior of an extruded magnesium–manganese alloy containing 1 wt% of neodymium (MN11) has been investigated at temperatures ranging from room temperature to 400 °C at both quasi-static and dynamic rates. Conventional ex-situ tests, carried out in compression along the extrusion axis (EA), have been combined with in-situ tests in a scanning electron microscope (SEM) in order to elucidate the effect of a rare earth (RE) addition on the dominant deformation mechanisms. An unusually large activity of twinning was observed at room temperature in a wide range of quasi-static rates. Furthermore, the twinning activity has been found to increase at temperatures around 250 °C, where clear signs of dynamic strain aging (DSA) are also apparent. The enhanced twinning activity compared to conventional Mg alloys, not containing RE elements, is attributed to an increase in the critical resolved shear stress of basal slip (CRSS{sub basal}) due to the presence of intermetallic RE-containing particles and to the Nd atoms in solid solution. The surprising decrease of the twinning activity at dynamic rates (∼10{sup 3} s{sup −1}) may be explained by a decrease in the CRSS{sub basal} as the intermetallic RE-containg particles and the Nd solid solution strengthening become less effective with increasing strain rate.

  15. Influence of strain rate on the twin and slip activity of a magnesium alloy containing neodymium

    The mechanical behavior of an extruded magnesium–manganese alloy containing 1 wt% of neodymium (MN11) has been investigated at temperatures ranging from room temperature to 400 °C at both quasi-static and dynamic rates. Conventional ex-situ tests, carried out in compression along the extrusion axis (EA), have been combined with in-situ tests in a scanning electron microscope (SEM) in order to elucidate the effect of a rare earth (RE) addition on the dominant deformation mechanisms. An unusually large activity of twinning was observed at room temperature in a wide range of quasi-static rates. Furthermore, the twinning activity has been found to increase at temperatures around 250 °C, where clear signs of dynamic strain aging (DSA) are also apparent. The enhanced twinning activity compared to conventional Mg alloys, not containing RE elements, is attributed to an increase in the critical resolved shear stress of basal slip (CRSSbasal) due to the presence of intermetallic RE-containing particles and to the Nd atoms in solid solution. The surprising decrease of the twinning activity at dynamic rates (∼103 s−1) may be explained by a decrease in the CRSSbasal as the intermetallic RE-containg particles and the Nd solid solution strengthening become less effective with increasing strain rate

  16. Activation energies for oxygen reduction on platinum alloys: theory and experiment.

    Anderson, Alfred B; Roques, Jérôme; Mukerjee, Sanjeev; Murthi, Vivek S; Markovic, Nenad M; Stamenkovic, Vojislav

    2005-01-27

    A combined theoretical and experimental analysis of the electrode potential dependencies of activation energies is presented for the first step in oxygen reduction over platinum and platinum alloy catalysts in both polycrystalline and carbon supported form. Tafel data for several of the catalysts are used to predict potential-dependent activation energies for oxygen reduction over the 0.6-0.9 V range in strong and weak acid. Comparisons with the theoretical curve show good agreement above 0.8 V, suggesting a fairly constant preexponential factor. Arrhenius determinations of activation energies over the 0.7-0.9 V range yield little trend for weak acid, possibly because of the larger uncertainties in the Arrhenius fits, but the strong acid results have smaller uncertainties and for them the measured activation energies trend up with potential. PMID:16851081

  17. Influence of tempering on mechanical properties of ferritic martensitic steels

    In the mid-1980s research programs for development of low activation materials began. This is based on the US Nuclear Regulatory Commission Guidelines (10CFR part 61) that were developed to reduce long-lived radioactive isotopes, which allows nuclear reactor waste to be disposed of by shallow land burial when removed from service. Development of low activation materials is also key issue in nuclear fusion systems, as the structural components can became radioactive due to nuclear transmutation caused by exposure to high dose neutron irradiation. Reduced-activation ferritic martensitic (RAFM) steels have been developed in the leading countries in nuclear fusion technology, and are now being considered as primary candidate material for the test blanket module (TBM) in the international thermonuclear experiment reactor (ITER). RAFM steels developed so far (e.g., EUROFER 97 and F82H) meet the requirement for structural application in the ITER. However, if such alloys are used in the DEMO or commercial fusion reactor is still unclear, as the reactors are designed to operate under much severe conditions (i.e., higher outlet coolant temperature and neutron fluences). Such harsh operating conditions lead to development of RAFM steels with better creep and irradiation resistances. Mechanical properties of RAFM steels are strongly affected by microstructural features including the distribution, size and type of precipitates, dislocation density and grain size. For a given composition, such microstructural characteristics are determined mainly by thermo-mechanical process employed to fabricate the final product, and accordingly a final heat treatment, i.e., tempering is the key step to control the microstructure and mechanical properties. In the present work, we investigated mechanical properties of the RAFM steels with a particular attention being paid to effects of tempering on impact and creep properties

  18. A method to determine the active particle nucleation undercooling distribution in a refined alloy

    We propose a method to determine the active particle distribution of nucleation undercooling in a refined alloy. The experimental data used in this work are inferred from solidification experiments on a refined Al-3.5 wt% Ni alloy performed with X-ray radiography at the European Synchrotron Radiation Facility. These in situ and real time observations allow the accurate and direct determination of the grain origin (heterogeneous nucleation on particles or fragmentation), of the density and of the equiaxed front growth rate. The LGK classical dendrite growth model is used to evaluate the front undercooling (ΔTC) corresponding to the measured equiaxed front growth rate. Then, the corresponding cumulative distribution of active refining particles is determined. From this cumulative distribution, we derive the corresponding Gaussian and log-normal laws to obtain the nucleation undercooling distribution of active particles. Results are discussed and compared to available measurements in the literature. The standard particle distribution parameters (density of nuclei, mean nucleation undercooling and standard deviation) are determined. We plan to use the determined nucleation undercooling particle distribution in a stochastic CAFE model for the grain structure without preliminary adjustment of the nucleation undercooling.

  19. Surface structure and catalytic activity of electrodeposited Ni-Fe-Co-Mo alloy electrode by partially leaching Mo and Fe

    LUO Bei-ping; GONG Zhu-qing; REN Bi-ye; YANG Yu-fang; CHEN Meng-jun

    2006-01-01

    Ni-Fe-Mo-Co alloy electrode was prepared in a citrate solution by electrodeposition, and then Mo and Fe were partially leached out from the electrode in 30% KOH solution. The unique surface micromorphology of a hive-like structure was obtained with an average pore size of about 50 nm. The electrode has a very large real surface area and a stable structure. The effects of sodium molybdate concentration on the composition, surface morphology, and structure of electrodes were analyzed by EDS, SEM and XRD. The polarization curves of the different electrodes show that the catalytic activity of electrodes is strongly correlated with the mole fraction of alloy elements (Ni, Fe, Mo, Co), and the addition of cobalt element to Ni-Fe-Mo alloy improves the catalytic activity. The Ni35.63Fe24.67Mo23.52Co16.18 electrode has the best activity for hydrogen evolution reaction(HER), with an over-potential of 66.2 mV, in 30% KOH at 80 ℃ and 200 mA/cm2. The alloy maintains its good catalytic activity for HER during continuous or intermittent electrolysis. Its electrochemical activity and catalytic stability are much higher than the other iron-group with Mo alloy electrodes.

  20. Electrical and thermal behavior of PS/ferrite composite

    This work aims to study the effect of gamma radiation on the structure, thermal and electrical properties of PS/ferrite composite. The Ni0.6Cd0.4Fe2−xSmxO4 was prepared using a conventional sintering ceramic process. Ferrite powder and Styrene was mixed and achieve polymerization process by gamma irradiation at 50 kGy. The composite samples have single spinel phase structure. Stability of the crystalline structure and no phase transition due to irradiation are found. The bulk density decreases whereas X-ray density increases with increasing Sm contents for both ferrite and PS/ferrite. The tetrahedral radii rA remains constant with Sm content but octahedral radii rB increases for both ferrite and PS/ferrite composite. The grain size shows increasing trend for PS/ferrite composite. The PS nearly coat the grains and so their boundaries become faint and not sharp. The gamma radiation transfer Fe3+ to Fe2+ due to its ionizing effect.The Fe2+ occupy octahedral site and the stretching vibration of its bond with oxygen (Fe2+–O2−) gives absorption at about 392 cm−1, near octahedral absorption at 462 cm−1.The PS/Ni0.6Cd0.4SmxFe2−xO4 composite becomes thermally more stable than pure polystyrene. The activation energy of conduction Eσ has a small values and in the range of hopping conduction mechanism. - Highlights: • Composite of was successfully obtained as follows: ferrite powder and styrene was mixed and achieve polymerization process by gamma irradiation at 50 kGy. • Stability of the crystalline structure and no phase transition due to irradiation are found. The grain size shows increasing trend for PS/ferrite composite. • The PS/Ni0.6Cd0.4SmxFe2−xO4 composite becomes thermally more stable than pure polystyrene. • The activation energy of conduction Eσ has a small values and in the range of hopping conduction mechanism

  1. Effect of applied tensile stress on the transformation behavior of medium carbon low alloy steels. Chutanso tei gokinko no hentai kyodo ni oyobosu hippari oryoku fuka no koka

    Kanetsuki, Y.; Katsumata, M.; Kaida, O.; Kaiso, M. (Kobe Steel, Ltd., Tokyo (Japan))

    1991-06-01

    Techniques of controlled rolling and cooling are actively being used as the manufacturing process of high strength and high tenacity steel plates. The reason behind this is that the ferrite-pearlite texture can be made very finely. However, with regard to low alloy carbon steel bars with enhanced hardenability, its texture becomes hard bainite texture in the cooling process after rolling, hence its workability is not good. In this research, in lieu of controlled rolling, the possibility of the process that the tensile stress, whose effect of facilitating transformation is known, is applied before the transformation and its texture is controlled to the ferrite-pearlite texture at the cooling rate of air cooling. In other words, with regard to medium carbon low alloy steels, its transformation behavior was studied by a tensile test in which additional stress was controlled during its continuous cooling. The results are as follows: It was found that by adding stress, the ferrite transformation was expedited. This was because the nuclei formation of ferrite, which was enhanced by inner stress, was facilitated. Furthermore, when the above transformation took place at the same time of deformation, an uniform elongation about 60% was obtained. 13 refs., 13 figs., 1 tab.

  2. Ferrite attenuator modulation improves antenna performance

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  3. Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol

    Huang, Yung-Han; Wang, Sea-Fue; Tsai, An-Pang; Kameoka, Satoshi

    2015-05-01

    In this study, Fe3O4-supported Cu and Ni catalysts are prepared through reduction of Cu-Ni (Ni1-xCuxFe2O4) ferrites. The Cu-Ni ferrites, synthesized using a solid-state reaction method, are reduced at temperatures from 240 °C to 500 °C in a H2 atmosphere. All ferrites are characterized with granular morphology and a smooth particle surface before reduction. For the CuFe2O4, Ni0.5Cu0.5Fe2O4 and NiFe2O4 ferrites reduced at 240, 300, and 400 °C, respectively, nanosized Cu and/or Ni particles (5-32 nm) and mesopores (5-30 nm) are distributed and adhered on the surfaces of Fe3O4 supports. After increasing the reduction temperature of NiFe2O4 ferrite to 500 °C, the Ni particles and mesopores disappear from the Fe3O4 surfaces, which is due to the formation of a Fe-Ni alloy covering on the Fe3O4 surfaces. The CuFe2O4 ferrite after H2 reduction at 240 °C exhibits the highest H2 production rate of 149 ml STP/min g-cat at 360 °C. The existence of Ni content in the Cu-Ni ferrites enhances the reverse water gas shift reaction, and raises the CO selectivity while reducing the CO2 selectivity. Formation of a Fe-Ni alloy exaggerates the trend and poisons the H2 production rate.

  4. The influence of Cr content on the mechanical properties of ODS ferritic steels

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  5. Optimization and testing results of Zr-bearing ferritic steels

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tyburska-Puschel, Beata [Univ. of Wisconsin, Madison, WI (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  6. Low activated materials as plasma facing component

    Low activated materials such as ferritic steel, vanadium alloy and SiC/SiC composite have to be developed for realization of a fusion demonstration reactor. Major issues concerning these low activated materials have been evaluation of neutron irradiation effects and feasibility as blanket materials. Since these are also in-vessel materials, issues of plasma material interactions have to be investigated. Ferritic steel, F82H, is well oxidized in the atmosphere. Thus, pre-baking is necessary before installation. The required baking temperature is higher than 900 K. Vanadium alloy, V-4Cr-4Ti, absorbs hydrogen well and hydrogen embrittlement takes place when the hydrogen concentration exceeds a critical level. In order to avoid hydrogen absorption, the formation of an oxide layer on the alloy was found to be very useful. In JFT-2M, the vanadium alloy was exposed to a deuterium discharge environment for 9 months. On the alloy surface, an oxide deposition layer with a thickness of 200 nm was formed. The deuterium concentration observed was very low, only 1.3 wppm. SiC/SiC composite may be employed as divertor plates in addition to its use as blanket material. Fuel hydrogen retention was very similar to that of graphite but the chemical erosion was negligibly small. (author)

  7. Precipitation hardening of biodegradable Fe-Mn-Pd alloys

    This work presents a phenomenological description of the precipitation controlled hardening of a new biodegradable Fe-based alloy developed to fulfill the requirements of temporary implant applications. Pronounced strengthening of the solution-treated martensitic Fe-10Mn-1Pd (in wt.%) alloy upon isothermal aging at temperatures within the ferrite-austenite phase field is observed and attributed to the thermally activated formation of coherent plate-like Pd-rich precipitates on {1 0 0} planes of the matrix. The onset and the early stages of alloy decomposition were studied using two complementary techniques: transmission electron microscopy and three-dimensional atom probe analysis. Three distinct regions of the hardening kinetics are recognized and closely correlated to the evolution of the alloy microstructure. Upon aging, clustering of Pd atoms within the Fe-Mn solid solution occurs. The very small clusters grow, coarsen and adopt a plate-like shape, rearranging mutually to reduce the overall elastic strain energy. The elastic interaction of the dislocation substructure with Pd-rich precipitates of evolving morphology affects the dislocation mobility and is responsible for the hardness evolution of the alloy. A study of the hardening kinetics shows that the process exhibits all the features characteristic of maraging steels.

  8. Magnetic resonance in superparamagnetic zinc ferrite

    Jitendra Pal Singh; Gagan Dixit; R C Srivastava; Hemant Kumar; H M Agrawal; Prem Chand

    2013-08-01

    In the present work, we have synthesized zinc ferrite nanoparticles by nitrate method. Presence of almost zero value of coercivity and remanence in the hysteresis of these samples shows the superparamagnetic nature at room temperature. Electron paramagnetic resonance spectroscopy performed on these samples in the temperature range 120–300 K indicates the systematic variation of the line-shapes of the spectra with temperature. Both gvalue and peak-to-peak linewidth decrease with increase in temperature. The variation of g-values and peak-topeak linewidth with temperature has been fitted with existing models and we observed different values of activation energies of the spins for both the samples.

  9. Fe-rich border and activation energy of phase decomposition in a Fe–Cr alloy

    Dubiel, S.M., E-mail: Stanislaw.Dubiel@fis.agh.edu.pl; Żukrowski, J.

    2013-08-15

    Concentration of Cr in the Fe-rich α-phase, x, resulted from a phase decomposition caused by an isothermal annealing at T = 415 and 450 °C of a non-irradiated (NR) Fe–Cr14 EFDA sample and that of a He-ions irradiated one (IR) annealed at 415 °C was determined with Mossbauer spectroscopy. The x-value in the latter was by ∼3 at% higher than the one in the NR-counterpart. The activation energy for the phase decomposition in the NR-sample was 122 kJ mol{sup −1}. In the IR-sample its value was by 12 kJ mol{sup −1} lower. Avrami exponents for the NR-samples were close to 0.5, and that the IR-sample had a value of about 1. - Highlights: • Fe-rich border of miscibility gap in Fe–Cr alloys at 415 and 450 °C was determined. • In the He-ion irradiated alloy the miscibility gap at 415 °C was narrower by 3 at%. • Activation energy for the phase separation in non-irradiated samples was 122 kJ mol{sup −1}. • Avrami exponent was 0.5 and 1.0 for non-irradiated and irradiated samples, respectively.

  10. Multifunctional metal ferrite nanoparticles for MR imaging applications

    Magnetic Resonance Imaging (MRI) is a very powerful non-invasive tool for in vivo imaging and clinical diagnosis. With rapid advancement in nanoscience and nanotechnology, there is rapid growth in nanoparticles-based contrast agents. Progress in synthetic protocols enable synthesis of multifunctional nanoparticles which facilitated efforts toward the development of multimodal contrast agents. In this review, recent developments in metal ferrite-based MR contrast agents have been described. Specifically, effect of size, shape, composition, assembly and surface modification of metal ferrite nanoparticles on their T2 contrast have been discussed. The review further outlines the effect of leaching on MRI contrast and other various factors which affect the multimodal ability of the (T1–T2 and T2-thermal activation) metal ferrite nanoparticles.

  11. Multifunctional metal ferrite nanoparticles for MR imaging applications

    Joshi, Hrushikesh M., E-mail: hmjoshi@gmail.com [Research and Development Centre, Hindustan Polyamides and Fibers Limited (India)

    2013-01-15

    Magnetic Resonance Imaging (MRI) is a very powerful non-invasive tool for in vivo imaging and clinical diagnosis. With rapid advancement in nanoscience and nanotechnology, there is rapid growth in nanoparticles-based contrast agents. Progress in synthetic protocols enable synthesis of multifunctional nanoparticles which facilitated efforts toward the development of multimodal contrast agents. In this review, recent developments in metal ferrite-based MR contrast agents have been described. Specifically, effect of size, shape, composition, assembly and surface modification of metal ferrite nanoparticles on their T{sub 2} contrast have been discussed. The review further outlines the effect of leaching on MRI contrast and other various factors which affect the multimodal ability of the (T{sub 1}-T{sub 2} and T{sub 2}-thermal activation) metal ferrite nanoparticles.

  12. Fast photoresponse of zinc ferrite nanotube arrays fabricated by electrodeposition

    Although nano-sized zinc ferrite materials exhibit excellent visible light activity, their photoresponse characteristics as photodetectors have rarely been investigated. In this paper, zinc ferrite nanotube arrays were fabricated using electrodeposition with the aid of zinc oxide nanowire arrays as a template. These nanotube arrays showed tens of milliseconds-response photocurrents under the irradiation of a 532 nm solid-state laser, and the magnitudes of the photocurrents were linearly increased with increasing laser power. These features of ZnFe2O4 nanotube arrays revealed their potential applications in high-frequency or high-speed photodevices. (paper)

  13. Development of low activation vanadium steel for fusion applications

    Proposed fusion reactors may enjoy significant advantages regarding public safety and waste disposal over current fission reactors. Neutron activation to the structural materials can be minimized by the appropriate choice of alloys. Unfortunately, commercially developed alloys for high temperature applications become activated with neutron absorption leading to sometimes very long decay chains. The present paper discusses the results of a new ''low activation'' ferritic alloy (UCVS-1) developed at UCLA. This new alloy, which contains vanadium instead of molybdenum for high temperature strength, shows very promising combinations of strength, ductility and low long-term radioactive products. It is shown in this paper that the strength and ductility of UCVS-1 are comparable to 2 1/4 Cr-1 Mo up to 4000C, achieving significant advantages regarding safety and radioactive waste disposal

  14. Effect of ion-plasma treatment on oxidation-reduction processes in lithium-titanium-zinc ferrites

    Surzhikov, A. P.; Lysenko, E. N.; Gyngazov, S. A.; Frangulyan, T. S.; Lamonova, S. A.

    2015-04-01

    We examined the effect of nitrogen, oxygen and argon plasma on the diffusion- controlled oxidation-reduction processes in lithium-titanium-zinc ferrite ceramics by measuring the activation energy of electrical conductivity in the depth of the sample. The experimental results show that the high-temperature treatment in polycrystalline ferrites by nitrogen or argon ion plasma greatly accelerates the oxidation-reduction processes in ferrites and changes the process direction depending on the partial pressure of oxygen.

  15. Nature of anisotropy of impact toughness of structural steels with ferrite-pearlite structure

    Goritskii, V. M.; Shneyderov, G. R.; Lushkin, M. A.

    2013-10-01

    The anisotropy of the impact toughness of low-alloy steels of various compositions and purities with a ferrite-pearlite structure has been investigated using samples of type 11 according to the Russian Standard GOST 9454-78. It has been established that the anisotropy coefficient of the impact toughness depends on the anisotropy coefficient of the work of crack propagation and is independent of the degree of striation of the ferrite-pearlite structure and the work for nucleation of the ductile crack.

  16. A novel active fire protection approach for structural steel members using NiTi shape memory alloy

    A novel active fire protection approach, based on integrating a shape memory alloy, NiTi, with a steel structure, was proposed to satisfy the fire resistance requirements in structural design. To demonstrate the principles of this approach, a simple structure in the form of a simply supported steel beam was used. The internal action of the beam due to a transverse applied load was reduced by utilizing the shape memory effect in the NiTi alloy at rising temperatures. As a result, the net internal action from the load design was kept below the deteriorated load capacity of the beam during the fire scenario for period of time that was longer than that of the original beam without the NiTi alloy. By integrating the NiTi alloy into the beam system, the structure remained stable even though the steel temperature exceeded the critical temperature which may have caused the original beam structure to collapse. Prior to testing the composite NiTi–steel beam under simulated fire conditions, the NiTi alloy specimens were characterized at high temperatures. At 300 °C, the stiffness of the specimens increased by three times and its strength by four times over that at room temperature. The results obtained from the high-temperature characterization highlighted the great potential of the alloy being used in fire engineering applications. (paper)

  17. Effect of VN precipitates on formation of grain boundary and intragranular ferrite in a high N-V bearing steel; V-N tenkako no ryukai oyobi ryunai ferrite hentai ni oyobosu austenite chu no VN sekishutsu no eikyo

    Omori, A.; Oi, K.; Kawabata, F.; Amano, K. [Kawasaki Steel Corp., Tokyo (Japan)

    1998-11-01

    The enhancement of ferrite nucleation owing to vanadium nitride (VN) precipitated in the austenite phase was studied for a 0.14%C- 1.45%Mn-0.06%V-0.009%N steel and the isothermal ferrite transformation behavior associated with VN precipitation was also quantitatively discussed. Vanadium nitrides precipitate on the austenite grain boundary in preference to the grain interior and increase the density of grain boundary ferrites. On the other hand, VN precipitates in austenite grain interior are less effective to intragranular ferrite nucleation. The calculation based on the classical nucleation theory shows that the activation energy of VN precipitates for a critical ferrite nucleus formation is one-fifth lower than that in case of no precipitate. The ferrite nucleation potency of VN precipitates is kept high even in higher temperature range above 700degreeC. (author)

  18. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions

    Fu, Shaofang; Zhu, Chengzhou; Shi, Qiurong; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-02-01

    Morphology control is a promising strategy to improve the catalytic performance of Pt-based catalysts. In this work, we reported a facile synthesis of PtCu bimetallic alloy nanodendrites using Brij 58 as a template. The highly branched structures and porous features offer relatively large surface areas, which is beneficial to the enhancement of the catalytic activity for oxygen reduction reactions in fuel cells. In addition, the elimination of carbon supports showed an important effect on the stability of the catalysts. By tuning the ratio of Pt and Cu precursors, PtCu nanodendrites were almost four times more active on the basis of an equivalent Pt mass for oxygen reduction reactions than the commercial Pt/C catalyst.Morphology control is a promising strategy to improve the catalytic performance of Pt-based catalysts. In this work, we reported a facile synthesis of PtCu bimetallic alloy nanodendrites using Brij 58 as a template. The highly branched structures and porous features offer relatively large surface areas, which is beneficial to the enhancement of the catalytic activity for oxygen reduction reactions in fuel cells. In addition, the elimination of carbon supports showed an important effect on the stability of the catalysts. By tuning the ratio of Pt and Cu precursors, PtCu nanodendrites were almost four times more active on the basis of an equivalent Pt mass for oxygen reduction reactions than the commercial Pt/C catalyst. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07682j

  19. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope.

    Le, Viet Ha; Hernando, Leon-Rodriguez; Lee, Cheong; Choi, Hyunchul; Jin, Zhen; Nguyen, Kim Tien; Go, Gwangjun; Ko, Seong-Young; Park, Jong-Oh; Park, Sukho

    2015-03-01

    Recently, capsule endoscopes have been used for diagnosis in digestive organs. However, because a capsule endoscope does not have a locomotive function, its use has been limited to small tubular digestive organs, such as small intestine and esophagus. To address this problem, researchers have begun studying an active locomotive intestine capsule endoscope as a medical instrument for the whole gastrointestinal tract. We have developed a capsule endoscope with a small permanent magnet that is actuated by an electromagnetic actuation system, allowing active and flexible movement in the patient's gut environment. In addition, researchers have noted the need for a biopsy function in capsule endoscope for the definitive diagnosis of digestive diseases. Therefore, this paper proposes a novel robotic biopsy device for active locomotive intestine capsule endoscope. The proposed biopsy device has a sharp blade connected with a shape memory alloy actuator. The biopsy device measuring 12 mm in diameter and 3 mm in length was integrated into our capsule endoscope prototype, where the device's sharp blade was activated and exposed by the shape memory alloy actuator. Then the electromagnetic actuation system generated a specific motion of the capsule endoscope to extract the tissue sample from the intestines. The final biopsy sample tissue had a volume of about 6 mm(3), which is a sufficient amount for a histological analysis. Consequently, we proposed the working principle of the biopsy device and conducted an in-vitro biopsy test to verify the feasibility of the biopsy device integrated into the capsule endoscope prototype using the electro-magnetic actuation system. PMID:25834001

  20. Cobalt ferrite nanoparticles under high pressure

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe2O4) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B0 = 204 GPa) is considerably larger than the value previously reported for bulk CoFe2O4 (B0 = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B0 = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible

  1. Cobalt ferrite nanoparticles under high pressure

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  2. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach

    Research highlights: → Synthesis of novel nanosized copper-silver alloys of different compositions. → Completely green approach for synthesis of water soluble bimetallic nanoparticle. → Interesting anti-bacterial activity of as synthesized metal and alloy nanoparticle. -- Abstract: Metallic and bimetallic nanoparticles of copper and silver in various proportions were prepared by microwave assisted chemical reduction in aqueous medium using the biopolymer, starch as a stabilizing agent. Ascorbic acid was used as the reducing agent. The silver and copper nanoparticles exhibited surface plasmon absorption resonance maxima (SPR) at 416 and 584 nm, respectively; while SPR for the Cu-Ag alloys appeared in between depending on the alloy composition. The SPR maxima for bimetallic nanoparticles changes linearly with increasing copper content in the alloy. Transmission electron micrograph (TEM) showed monodispersed particles in the range of 20 ± 5 nm size. Both silver and copper nanoparticles exhibited emission band at 485 and 645 nm, respectively. The starch-stabilized nanoparticles exhibited interesting antibacterial activity with both gram positive and gram negative bacteria at micromolar concentrations.

  3. Corrosion behaviour of stainless steel alloys in molten (Na,K)NO{sub 3} eutectic mixture

    Attia, A.A. [Zagazik Univ. (Egypt). Chem. Dept.; Ali, A.-H.; Masri, A.N.A.; Baraka, A.M. [High Technological Inst., Ramadan Tenth City (Egypt)

    1999-09-01

    In the present article it is aimed to study the corrosion (oxidation) behaviour of two types of stainless steel alloys, ferritic (15.03% Cr) and austenitic (20.45% Cr, 8.37% Ni), in molten (Na, K)NO{sub 3} mixture at different temperatures ranging from 400-600 C. In this investigation the technique of potential-time and current-time under the open-circuit conditions is employed. The variation of potential with time at different temperatures was explained in terms of propagation and thickening of oxide film with a rate which depends on the temperature. It is assumed that the oxide film thickens according to a solid state mechanism under high field strength. The activation energy of the corrosion process was estimated using Arrhenius plots. The calculated values are found to be 21.36 KJ/mol for the ferritic stainless steel alloy and 23.3 KJ/mol for the austenitic one. The low value of activation energy signifies diffusion controlled process occurring in the oxide matrix. The corrosion products formed on the surface of stainless steel alloys are identified by X-ray diffraction analysis. Also the melt is chemically analysed to detect the amount of Fe, Cr and Ni in the melt after the completion of experiment. (orig.)

  4. Corrosion behaviour of some cast stainless steels and high alloy white irons in scrubber solutions of flue gas desulfurization plants

    Weight loss and electrochemical measurements have been used to determine the ranges of applicability of cast austenitic stainless steel Werkstoff No. 1.4408, of two special cast ferritic-austenitic stainless steels NORIDUR 9.4460 and NORICLOR NC 246 and of two high alloy Cr and CrMo white irons in scrubber solutions of Flue Gas Desulfurization (FGD) plants. Whereas the Werkstoff No. 1.4408 cannot be used due to its insufficient resistance to general and localized corrosion, NORIDUR 9.4460 can be used in scrubber solutions with pH > 2.5 and chloride concentrations up to 80 g/l, NORICLOR NC 246 with 5% Mo even in liquids with pH > 1.5 and chlorides up to 100 g/l. At lower pH-values both duplex stainless steels show active corrosion of either the austenite or the ferrite depending on the contents of hydrochloric acid in the solution. At higher chloride concentrations pitting occurs on the passive materials. The CrMo white iron NORILOY NL 252 with 25% Cr and 2% Mo can be used in scrubber liquids with pH > 3.5. As the ferritic matrix is cathodically protected by the precipitated carbides, there is no sensitivity of this alloy to chlorides. In liquids with pH < 3.5 there is selective corrosion of the ferritic matrix. For practical application of all these cast alloys the limits for purely corrosive attack have to be modified to assure resistance to a superposition of corrosion, erosion/abrasion and cavitation on parts exposed to real flow conditions in FGD scrubbers. (orig.)

  5. Evaluation of the transformation mechanisms and mechanical properties of ferrite: martensite microalloyed steels

    Ovri Henry

    2008-03-01

    Full Text Available The influence of starting point microstructures on the transformation mechanisms and mechanical properties of a micro alloyed steel after annealing in the alpha + gamma region have been investigated. Three different microstructures: austenite, pearlite in a ferrite matrix and martensite were used as starting point microstructures for the production of dual (alpha + phase structures in the test steel. Photomicrographs obtained from metallographic examination of the heat treated samples were used as criteria for the assessment of results obtained from impact toughness and hardness testing. The results obtained showed that the transformation mechanisms and hence the morphology of ferrite - martensite microalloyed steels are strongly influenced by their initial microstructural details. Ferrite - martensite structures produced via the intercritical quench (IQ treatment, with martensite as the starting point microstructure, have the best combination of hardness and impact energy.

  6. Rupture character of steels with ferrite-pearlite structure under influence of liquid metallic media

    Influence of liquid metal environment (gallium base alloy with melting point of 5 deg C) on mechanical properties and fracture mode was studied for ferritic-pearlitic steels with 0.03-0.8 % C under static and cyclic loading. Liquid metal medium was found to assist plastic deformation in a surface layer and to change fracture mode. It was revealed that the liquid of metal deteriorated steel properties in case of static loads but this effect weakened when passing from ferrite to pearlite. In ferritic steel under cycling loading the liquid metal affected so that shifted cracking resistance value to the region of lower stress intensity factors and promoted transition from intragranular fracture to intergranular one. Pearlitic steels behaved alike under cyclic loading both in liquid metal and in the air

  7. Activation Energy Measurement of Oxygen Ordering in a Nb-Ti Alloy by Anelastic Relaxation

    Niemeyer T.C.

    2002-01-01

    Full Text Available Metals with bcc structure are able to dissolve large amounts of interstitial element atoms in the form of oxygen. These atoms diffuse through the lattice by jumping into octahedral sites with equivalent symmetry, causing strong alterations in the anelastic behavior. This paper reports on a study of Snoek relaxation in Nb-Ti alloys with oxygen in solid solution, based on internal friction as a function of temperature. The internal friction measurements were taken in a torsion pendulum operating at temperatures in the range of 350 to 650 K, with frequencies varying from 6 to 36 Hz. The results show relaxation spectra in which thermally activated relaxation peaks produced by the stress-induced ordering of oxygen atoms around niobium atoms of the metallic matrix were identified.

  8. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan;

    2015-01-01

    of Au with mixed Pt/Pd skins. The activity of the binary and ternary catalysts is explained through weakening of the OH binding energy caused by solute elements. However, given the low alloy formation energies it may be difficult to tune and retain the composition under operating conditions. This is...

  9. Ferrites – what is new?

    R Ranganathan; Anindita Ray

    2002-05-01

    Ferrites, combining insulating and ferrimagnetic properties, have long been used in technology. The aim of this paper is to focus on new features in these materials. In the classical theory of ferrimagnets, Neel had predicted the unusual thermal variation of the spontaneous magnetization, such as, the disappearance of the magnetization at a temperature which was not the Curie temperature but at a point where there was compensation of the spontaneous magnetization of the two sublattices. We show experimentally that temperature (K) in spinel oxide is different under the ZFC and FC magnetization method. To our knowledge, only limited attempt has been made to study K as very few systems exhibit such behavior. In general, some of the ferrites have specific semiconducting properties, e.g., a very low carrier mobility. We discuss the anomalies of the magneto-resistance in ferrites that occur at order–disorder and order–order magnetic phase transition along with our ac and dc conductivity data near the spin compensation temperature. Another notable feature of the ferrites is that, upon irradiation of heavy ions, one can tune the magnetic ordering on bulk sample without destructive effects, i.e., irradiation-induced magnetization. It is interesting to note that spinel ferrite (nano) particle is an ideal small particle magnetic system as the crystal chemistry issue can be controlled, unlike pure metal particle systems where the crystal chemistry issues are basically fixed. In relevance to this, we will also discuss the future prospects, namely, the effect of irradiation on small particle magnetism, as, so far, only a limited attempt has been made in this field.

  10. Activation energy analysis of secondary phase precipitate In Zr-%Nb-1%Sn-1%Fe alloy

    The objective of this research is to analyze of activation energies in Zr-1%Nb-1%Sn-1%Fe alloy as the product of the synthesis. The ingot was prepared by single spark melting. The samples then anneal at temperature 400°C, 500°C, 600°C, 700°C dan 800°C for 2 hours. The analyzed was focused on secondary phase precipitate/ SPP. The activation energies was identified based on X-rays diffraction pattern and supported by Joint Committee Powder Diffraction File/ JCPDF. The Result of diffraction pattern with the data were analyzed by manual, it was not done by direct meet with the JCPDF data because of the distortion of the SPP. The analyzed results were concluded as follow: The nucleation of the secondary phase precipitate/ SPP was good at the anneal temperature of 400°C, 500°C, and 700°C. The Zr-1%Nb-1%Sn-1%Fe alloy at temperature in between 400°C to 800°C were found the precipitates Fe2Nb, ZrSn2,FeSn, SnZr, NbSn2, Zr0.68Nb0.25Fe0.08, Fe2Nb0.4Zr0.6, Fe37Nb9Zr54, and ω-Zr. At temperature anneal 800°C was good for the precipitate stabilization, at temperature in between 500°C to 600°C was good for the precipitate growth, at temperature anneal 700°C was good for minimizing the precipitate size. It was found that activation energy of Fe2Nb was -7,0083 kJ/mol, activation energy of FeSn was -2,2858 kJ/mol, activation energy of NbSn2 was -3,1498 kJ/mol and activation energy of α-Zr nano crystallite was 0,0077 kJ/mol. (author)

  11. Vanadium effect on ductility of nickelless ferrite stainless steels

    Examined were the structure, properties, and the process characteristics of a new 08Kh18F2T1 nickel-free stainless steel, which differs from 08Kh18T1 steel by the additional alloying with vanadium in an amount of up to 1.5%. It has been established that the elongation of the specimens made of 0Kh18F2T1 steel increases noticeably (on the average of 7%) with a certain increase in its strength, as compared with the elongation of 0.8Kh18T1 steel. By varying the modes of the thermal treatment of cold-rolled sheet, the mechanical strength of 0318F2T1 steel may be increased up to 53 to 55.5 kgf/mm2, while the elongation of the steel is preserved within the range of 39 to 41%. It is shown that the additional alloying with vanadium completely suppresses α reversible γ transformation, and cleans the boundaries of ferrite grain. This is substantiated by the measurement of the microhardness at the grain boundaries. Stabilization of ferrite occurs owing to the binding of carbon into titanium carbides and to the introduction of vanadium into the solid solution, and it considerably reduces the absolute and the relative difference between the central portion and the boundaries of grains

  12. Precipitation of K phase in austenitic alloys of Fe-Mn-Al system

    The kinetics of austenite decomposition in a fully austenitic Fe-Mn-Al-Si-C alloy aged for up to 400 hours at 500, 550, 600 and 6500C was investigated. Mettalographic studies using optical and scanning electron microscopy, microprobe analysis and X-ray diffraction showed the presence only of the K-phase in the aged samples. Ferrite and other phases such as β-Mn were not detected at the aging temperatures employed. The activation energy for the K phase precipitation was evaluated by means of the evaluation of hardness peaks associated to the early stages of precipitation. (author)

  13. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  14. Neutron activation studies of the in-body corrosion of hip-joint prostheses made of Co-Cr alloys

    Using instrumental neutron activation analysis (INAA) the trace element composition of 18 elements was investigated in human tissues (articular capsule and fascia lata) of 36 persons after removal of hip-joint prostheses made of Co-Cr alloys. Normal trace element concentrations were determined studying a group of 26 patients before receiving their first artificial hip-joint. The tissues of patients with metal implants exhibited a heavy burdening by corrosion products (Co, Cr, Ni) from the prostheses as well as by Zr, Hf and Ba from the bone cements. Moreover, changes in the distribution of trace elements not contained in the steel were also observed. A comparison of the analytical results with those of model experiments of the corrosion of Co-Cr alloy in Ringer's solution demonstrates that the distribution pattern of corrosion products in the tissues are influenced by both, the biochemical properties as well as by selective dissolution of the alloy constituents. (author)

  15. Versatility of electrospinning in the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic and photocatalytic activities.

    Bharathkumar, S; Sakar, M; K, Rohith Vinod; Balakumar, S

    2015-07-21

    This study demonstrates the fabrication of electrospun bismuth ferrite (BiFeO3/BFO) fiber mat and fibrous mesh nanostructures consisting of aligned and random fibers respectively. The formation of these one dimensional (1D) nanostructures was mediated by the drum and plate collectors in the electrospinning process that yielded aligned and random nanofibers of BFO respectively. The single phase and rhombohedral crystal structure of the fabricated 1D BFO nanostructures are confirmed through X-ray diffraction (XRD) studies. X-ray photoelectron spectroscopy (XPS) studies indicated that the fabricated fibers are stoichiometric BFO with native oxidation states +3. The surface texture and morphology are analyzed using the field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) techniques. The average size of fibers in mat and mesh nanostructures is found to be 200 nm and 150 nm respectively. The band gap energy of BFO mat and mesh deduced from their UV diffuse reflectance spectra (UV-DRS) was found to be 2.44 eV and 2.39 eV, respectively, which evidenced the improved visible light receptivity of BFO mesh compared to that of the mat. Magnetization studies using a super conducting quantum interference device (SQUID) magnetometer revealed the weak ferromagnetic properties of BFO mesh and mat nanostructures that could emerge due to the dimension induced suppression of cycloidal spin structures. The photocatalytic degradation properties of the fibrous mesh are found to be enhanced compared to that of the mat. This could be attributed to the reduced band gap energy and an improved semiconductor band-bending phenomenon in the mesh that favoured the transportation of excited charge carriers to the photocatalyst-dye interfaces and the production of more number of reactive species that lead to the effective degradation of the dye molecules. PMID:26083677

  16. Investigation on retained delta ferrite occurrence and its influence on HSS and Semi HSS Strengthening after thermomecanical routes

    Tchuindjang, Jérôme Tchoufack; Lecomte-Beckers, Jacqueline

    2008-01-01

    The present work deals with use of DTA tests in order to understand the crystallisation behaviour of semi-HSS and HSS alloys, and to enhance their solid state transformations. Emphasis is laid on the decomposition of the unexpected retained delta ferrite during thermal and thermomechanical treatment.

  17. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    2010-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  18. Magneto-optical Kerr spectra and magnetic properties of Co-substituted M-type strontium ferrites

    Highlights: ► Prepare single phase ferrites by substituted with Co2+. ► The magnetic properties were remarkably modified. ► A very noticeable Kerr activity was obtained for the Co-substituted ferrites. - Abstract: M-type strontium ferrites SrFe12−xCoxO19 (x = 0, 0.05, 0.10, 0.15, 0.20) were prepared by the conventional ceramic technology. The structure, magnetic properties and magneto-optical Kerr activity of the samples were investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and magneto-optical ellipsometry, respectively. X-ray diffraction showed that all the samples were single phase ferrites. The magnetic properties, especially the coercive field, were remarkably modified due to the substitution of cobalt. Most importantly, a noticeable Kerr activity was demonstrated in the Co-substituted M-type strontium ferrites with x = 0.20.

  19. High coercivity in mechanically alloyed BaFe10Al2O19

    Al-substituted Ba-ferrite in the form of BaFe10Al2O19 was prepared by mechanical alloying and subsequent heat treatment. Their structure and magnetic properties were investigated in comparison with Ba-ferrite without Al substitution. After annealing at 1100 deg. C, a coercivity as high as 9.3 kOe was measured, while the coercivity values of the Ba-ferrite samples without Al substitution with a similar particle size were observed in the range of 5-6 kOe. A significant reduction of saturation magnetization was observed as compared to pure barium ferrite

  20. Titanium-Nickel Shape Memory Alloy Spring Actuator for Forward-Looking Active Catheter

    Takahiro Namazu

    2011-01-01

    Full Text Available The fabrication and characterization of forward-looking active catheter actuated by titanium-nickel (Ti-Ni shape memory alloy (SMA springs are described. The catheter has been designed for wide-range observation of an affected area inside a blood vessel when the blood vessel is occluded. The developed active catheter consists of eight Ti-Ni SMA spring actuators for actuation of catheter tip, an ultrasonic transducer for forward-looking, a guide wire, a polyurethane tube for coating, and spiral wirings for realization of various flexure motions of catheter tip using Ti-Ni SMA actuators. The size of the catheter is 3.5 mm in diameter and 60 mm in length of the sum of transducer and actuator sections. Ti-Ni SMA springs were fabricated from a Ti-50.9at.%Ni sheet by electrochemical etching with a mixed solution of ethanol and lithium chloride. The catheter was assembled by hand under a stereomicroscope. The tip of the produced catheter was able to move in parallel toward at least eight directions by controlling an applied current to Ti-Ni SMA springs. We have confirmed that the active catheter was able to observe an object settled in the front.

  1. Design optimization study of a shape memory alloy active needle for biomedical applications.

    Konh, Bardia; Honarvar, Mohammad; Hutapea, Parsaoran

    2015-05-01

    Majority of cancer interventions today are performed percutaneously using needle-based procedures, i.e. through the skin and soft tissue. The difficulty in most of these procedures is to attain a precise navigation through tissue reaching target locations. To overcome this challenge, active needles have been proposed recently where actuation forces from shape memory alloys (SMAs) are utilized to assist the maneuverability and accuracy of surgical needles. In the first part of this study, actuation capability of SMA wires was studied. The complex response of SMAs was investigated via a MATLAB implementation of the Brinson model and verified via experimental tests. The isothermal stress-strain curves of SMAs were simulated and defined as a material model in finite element analysis (FEA). The FEA was validated experimentally with developed prototypes. In the second part of this study, the active needle design was optimized using genetic algorithm aiming its maximum flexibility. Design parameters influencing the steerability include the needle's diameter, wire diameter, pre-strain and its offset from the needle. A simplified model was presented to decrease the computation time in iterative analyses. Integration of the SMA characteristics with the automated optimization schemes described in this study led to an improved design of the active needle. PMID:25782329

  2. High-Q ferrite-tuned cavity

    Rapid cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Initial tests of a small (10-cm-diam) quarter-wave singly re-entrant cavity tuned by several different ferrites indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity

  3. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    Torres C.

    2013-01-01

    Full Text Available Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer’s formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  4. Magnetocaloric effect in ferrite nanoparticles

    Poddar, P.; Gass, J.; Rebar, D. J.; Srinath, S.; Srikanth, H.; Morrison, S. A.; Carpenter, E. E.

    2006-12-01

    A comparative study of the magnetocaloric effect (MCE) is reported in two different types of chemically synthesized magnetic nanoparticle systems—cobalt ferrite and manganese zinc ferrite with mean size around 5 and 15 nm, respectively. While CoFe 2O 4 nanoparticles were synthesized using co-precipitation, the Mn 0.68Zn 0.25Fe 2.07O 4 (MZFO) nanoparticles were prepared by reverse micelle technique using AOT as surfactant. Our results indicate that the change in entropy with the change in applied magnetic field (d S/d H) is reasonably large for this class of nanoparticles and has a wide distribution over a broad temperature range covering the region above and below the blocking temperature. The maximum entropy change is influenced by the particle size, overall distribution in anisotropy and magnetic moments.

  5. Direct dyes removal using modified magnetic ferrite nanoparticle

    Mahmoodi, Niyaz Mohammad; Abdi, Jafar; Bastani, Dariush

    2014-01-01

    The magnetic adsorbent nanoparticle was modified using cationic surface active agent. Zinc ferrite nanoparticle and cetyl trimethylammonium bromide were used as an adsorbent and a surface active agent, respectively. Dye removal ability of the surface modified nanoparticle as an adsorbent was investigated. Direct Green 6 (DG6), Direct Red 31 (DR31) and Direct Red 23 (DR23) were used. The characteristics of the adsorbent were studied using Fourier transform infrared (FTIR), scanning electron mi...

  6. Hydrogen embrittlement of ferritic steels

    Hydrogen embrittlement (HE) of ferritic and duplex stainless steels (SS) has been studied by charging annealed or quenched specimens with hydrogen through cathodic polarization. Cathodic charge has been found to reduce severely the ductility of these materials. Using microscopic observations (TEM and SEM and optical) attempts have been made to clarify the initial stage of microstructural changes which are induced by hydrogen charging in these steels. (author)

  7. Microwave Ferrites for Cryogenic Applications

    Dionne, G.

    1997-01-01

    Recent advances in microwave ferrite device technology have seen the introduction of superconductivity that virtually eliminates insertion losses due to electrical conduction in microstrip circuits. The conventional ferrimagnetic spinel and garnet compositions, however, are not generally optimized for temperatures in the vicinity of 77 K and may require chemical redesign in order to realize the full potential of these devices. For microwave transmission, absorption losses may be reduced by a ...

  8. Vanadium-base alloys for fusion reactor applications

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  9. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE present...... in the stainless steel alloys. The presented computational approach for alloy design enables “screening” of hundreds of thousands hypothetical alloy systems by use of Thermo-Calc. Promising compositions for new stainless steel alloys can be selected based on imposed criteria, i.e. facilitating easy...

  10. Modeling of austenite to ferrite transformation

    Mohsen Kazeminezhad

    2012-06-01

    In this research, an algorithm based on the -state Potts model is presented for modeling the austenite to ferrite transformation. In the algorithm, it is possible to exactly track boundary migration of the phase formed during transformation. In the algorithm, effects of changes in chemical free energy, strain free energy and interfacial energies of austenite–austenite, ferrite–ferrite and austenite–ferrite during transformation are considered. From the algorithm, the kinetics of transformation and mean ferrite grain size for different cooling rates are calculated. It is found that there is a good agreement between the calculated and experimental results.

  11. Microwave dielectric properties of nanostructured nickel ferrite

    John Jacob; M Abdul Khadar; Anil Lonappan; K T Mathew

    2008-11-01

    Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured nickel ferrite samples of three different average grain sizes and those of two sintered samples were studied. The parameters like dielectric constant, dielectric loss and heating coefficient of the nanoparticles samples are studied in the frequency range from 2.4 to 4 GHz. The values of these parameters are compared with those of sintered pellets of the same samples. All these parameters show size dependent variations.

  12. Evaluation of the transformation mechanisms and mechanical properties of ferrite: martensite microalloyed steels

    Ovri Henry; Kamma Celestine Monde

    2008-01-01

    The influence of starting point microstructures on the transformation mechanisms and mechanical properties of a micro alloyed steel after annealing in the alpha + gamma region have been investigated. Three different microstructures: austenite, pearlite in a ferrite matrix and martensite were used as starting point microstructures for the production of dual (alpha + ) phase structures in the test steel. Photomicrographs obtained from metallographic examination of the heat treated samples were ...

  13. Experimental study on ferritic stainless steel RHS and SHS beam-columns

    Arrayago Luquin, Itsaso; Real Saladrigas, Esther; Mirambell Arrizabalaga, Enrique

    2015-01-01

    Ferritic stainless steels, with their lower nickel content, supplement the desirable features offered by different stainless steel grades with a more controlled and lower initial investment requirements, which have encouraged the use of these materials in construction. The nonlinear behaviour of stainless steel grades is not usually considered when extending design expressions codified for carbon steel to these alloyed materials, leading to overconservative design approaches and the applicabi...

  14. Ferritic stainless steel composite slabs : Experimental study of longitudinal shear transfer

    Ferrer Ballester, Miquel; Marimón Carvajal, Federico; Arrayago Luquin, Itsaso; Mirambell Arrizabalaga, Enrique

    2014-01-01

    The objective of this work is to carry out the procedure described in Eurocode 4 to evaluate the longitudinal shear transfer capability of conventional steel sheeting open-rib profile with embossments, usually rolled in conventional galvanized steel, being rolled now in ferritic stainless steel 1.4003 alloy. Finally, the results of both composite floor slabs are compared. Two methodologies have been used to evaluate the longitudinal shear resistance in composite slabs, the m-k method and t...

  15. Corrosion of Ferritic-Martensitic steels in high temperature water: A literature Review

    Available literature concerning corrosion of high-chromium ferritic/martensitic steel in high temperature water as reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, environmentally assisted cracking (EAC) including stress corrosion cracking (SCC), corrosion fatigue and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS). Are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. (Author)

  16. Precipitation of niobium carbonitrides in ferrite: chemical composition measurements and thermodynamic modelling

    Perez, Michel; Courtois, E.; Acevedo, D.; T. Epicier; Maugis, Philippe

    2007-01-01

    High-resolution transmission electron microscopy and electron-energy loss spectroscopy have been used to characterize the structure and chemical composition of niobium carbonitrides in the ferrite of a Fe–Nb–C–N model alloy at different precipitation stages. Experiments seem to indicate the coexistence of two types of precipitates: pure niobium nitrides and mixed substoichiometric niobium carbonitrides. In order to understand the chemical composition of these precipitates, a thermodynamic for...

  17. Study of surface modification of alloys by photoelectron spectroscopy and neutron activation analysis: application to the study of a gold-copper alloy

    Ion erosion etching is generally used to prepare surfaces for electron spectroscopy (ESCA and AES). During etching, selective interactions occur between ions and various elements from which the solid is constituted. The surface studied therefore undergoes modifications. Modifications of this type in the surface of a gold-copper alloy have been studied. The characteristics of an ion beam generated by a commercial gun without sweeping have been determined for low energy ions (beam shape, ion density distribution). These characteristics are then related to the effects observed (crater shape, etching rate). Neutron activation analysis has been used to determine the quantity of sputtered matter and subsequently the sputtering rate. Finally, a sequential analysis of sputtered matter (activation analysis) and studies of the characteristics of the eroded surface have confirmed the existence of a transient regime and enabled a correlation to be etablished between the composition of the surface layer for a stationary regime and the model used to describe the sputtering

  18. In vivo degradation behavior and biological activity of some new Mg-Ca alloys with concentration's gradient of Si for bone grafts

    Trincă, Lucia Carmen; Fântânariu, Mircea; Solcan, Carmen; Trofin, Alina Elena; Burtan, Liviu; Acatrinei, Dumitru Mihai; Stanciu, Sergiu; Istrate, Bogdan; Munteanu, Corneliu

    2015-10-01

    Magnesium based alloys, especially Mg-Ca alloys, are biocompatible substrates with mechanical properties similar to those of bones. The biodegradable alloys of Mg-Ca provide sufficient mechanical strength in load carrying applications as opposed to biopolymers and also they avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. The main issue facing a biodegradable Mg-Ca alloy is the fast degradation in the aggressive physiological environment of the body. The alloy's corrosion is proportional with the dissolution of the Mg in the body: the reaction with the water generates magnesium hydroxide and hydrogen. The accelerated corrosion will lead to early loss of the alloy's mechanical integrity. The degradation rate of an alloy can be improved mainly through tailoring the composition and by carrying out surface treatments. This research focuses on the ability to adjust degradation rate of Mg-Ca alloys by an original method and studies the biological activity of the resulted specimens. A new Mg-Ca alloy, with a Si gradient concentration from the surface to the interior of the material, was obtained. The surface morphology was investigated using scanning electron microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffraction (X'Pert equipment) and energy dispersive X-ray (Bruker EDS equipment). In vivo degradation behavior, biological compatibility and activity of Mg-Ca alloys with/without Si gradient concentration were studied with an implant model (subcutaneous and bony) in rats. The organism response to implants was characterized by using radiological (plain X-rays and computed tomography), biochemical and histological methods of investigation. The results sustained that Si gradient concentration can be used to control the rate of degradation of the Mg-Ca alloys for enhancing their biologic activity in order to facilitate bone tissue repair.

  19. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  20. Dilution and Ferrite Number Prediction in Pulsed Current Cladding of Super-Duplex Stainless Steel Using RSM

    Eghlimi, Abbas; Shamanian, Morteza; Raeissi, Keyvan

    2013-12-01

    Super-duplex stainless steels have an excellent combination of mechanical properties and corrosion resistance at relatively low temperatures and can be used as a coating to improve the corrosion and wear resistance of low carbon and low alloy steels. Such coatings can be produced using weld cladding. In this study, pulsed current gas tungsten arc cladding process was utilized to deposit super-duplex stainless steel on high strength low alloy steel substrates. In such claddings, it is essential to understand how the dilution affects the composition and ferrite number of super-duplex stainless steel layer in order to be able to estimate its corrosion resistance and mechanical properties. In the current study, the effect of pulsed current gas tungsten arc cladding process parameters on the dilution and ferrite number of super-duplex stainless steel clad layer was investigated by applying response surface methodology. The validity of the proposed models was investigated by using quadratic regression models and analysis of variance. The results showed an inverse relationship between dilution and ferrite number. They also showed that increasing the heat input decreases the ferrite number. The proposed mathematical models are useful for predicting and controlling the ferrite number within an acceptable range for super-duplex stainless steel cladding.

  1. Creep behaviour of candidate tubular ferritic oxide-dispersion-strengthened heat exchanger components

    Rees, M. [Commission of the European Communities, Petten (Netherlands). Joint Research Centre; Hurst, R.C.; Healy, J.C.; Parker, J.D. [University Coll. of Swansea (United Kingdom)

    1996-11-01

    The circumferential creep behaviour of two ferritic oxide dispersion stengthened (Fe-ODS) alloys, MA 956 and ODM 751, was studied by subjecting tubular components to constant internal pressure at 1100 {sup o}C. The grain aspect ratio and grain size governed the creep strength of these materials. The mechanisms of creep failure were investigated by optical microscopy and transmission electron microscopy. In spite of the inferior creep properties in the hoop direction compared to the longitudinal direction, these initial results indicate that, with proper control of the microstructure, tubular Fe-ODS alloys could be considered as candidate materials for heat exchanger components operating at elevated temperatures. (Author)

  2. Corrosion resistance of modern austenitic-ferritic (duplex) stainless steel. Corrosion of special types. (Review)

    Recent data on resistance of modern corrosion-resistant austenitic-ferritic steels to different types of corrosion are generalized. It is shown that these steels are characterized by high resistance to general corrosion in acid, alkali, chloride and other solutions, are not inclined to intercrystalline, pitting and crevice corrosion and are noted for high resistance to corrosion cracking and corrosion fatigue. All this is combined with technological and economical effectiveness. It is advisible to use these steels instead of highly-alloyed and expensive steels and alloys in chemical, power and other industries. 59 refs.; 2 tabs

  3. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    Zaharieva, Katerina, E-mail: zaharieva@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Rives, Vicente, E-mail: vrives@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Tsvetkov, Martin, E-mail: mptsvetkov@gmail.com [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Cherkezova-Zheleva, Zara, E-mail: zzhel@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Kunev, Boris, E-mail: bkunev@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Trujillano, Raquel, E-mail: rakel@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Mitov, Ivan, E-mail: mitov@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Milanova, Maria, E-mail: nhmm@wmail.chem.uni-sofia.bg [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2015-06-15

    Nanosized copper ferrite-type materials (Cu{sub x}Fe{sub 3–x}O{sub 4}, 0 ≤ x ≤ 1) have been prepared by combination of co-precipitation and mechanochemical activation and/or thermal treatment. The crystalline structure and morphology of the obtained ferrite nanopowders have been characterized by different instrumental methods, such as Powder X-ray diffraction (PXRD), Mössbauer and FT-IR spectroscopies, specific surface area and porosity measurements, thermal analyses (Differential Thermal Analysis and Thermogravimetric Analysis) and Temperature-Programmed Reduction. The average crystallite size of copper ferrites ranged between 7.8 and 14.7 nm and show a superparamagnetic and collective magnetic excitations nature. The photocatalytic decolorization of Malachite green oxalate under different UV illumination intervals was examined using these copper ferrites as photocatalysts. The results indicate that the prepared nanostructured copper ferrites showed enhanced photocatalytic activity and amount adsorbed Malachite Green dye. The co-precipitated nanosized copper ferrite powder with a low content of copper metal ions in a magnetite host structure (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) showed an apparent pseudo-first-order rate constant 15.4 × 10{sup −3} min{sup −1} and an amount adsorbed Malachite Green as model organic dye pollutant per 1 g catalyst of 33.4 ppm/g after the dark period. The results confirm that the copper ferrites can be suitable for photocatalytic treatment of wastewaters containing organic dyes. The new aspect of presented investigations is to study the influence of different degree of incorporation of copper ions into the magnetite host structure and preparation methods on the photocatalytic properties of nanosized copper ferrite materials and obtaining of potential photocatalyst (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) with higher photocatalytic activity (15.4 × 10{sup −3} min{sup −1}) than that of the standard referent Degussa P25 (12 × 10

  4. Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete

    The thermomechanical properties of a new type of shape memory alloy (SMA), FeNiCoTi, are explored in this paper with the aim of examining the feasibility of using this new material as transverse reinforcement for concrete structures subjected to earthquake loading. One advantage of using FeNiCoTi alloy is its cost effectiveness compared to commonly studied NiTi alloy. Differential scanning calorimetry (DSC) tests are conducted to investigate the transformation temperatures of FeNiCoTi alloy under different heat treatment methods and prestrain schemes. First, a heat treatment method is established to produce FeNiCoTi alloy with wide thermal hysteresis that is pertinent to civil structural applications. Next, recovery stress tests are conducted to explore the effect of parameters including heating method, heating temperature, heating rate, heating protocol and prestrain level on the recovery stress. An optimum prestrain level is determined based on the recovery stress results. Moreover, cyclic tests are carried out to examine the cyclic response of FeNiCoTi alloy after stress recovery. Thermal cyclic tests are also carried out on the FeNiCoTi alloy to better understand the effect of temperature variation on the recovery stress. In addition, reheating of the FeNiCoTi alloy after deformation is conducted to examine the reusability of the material after being subjected to excessive deformation. Test results of the FeNiCoTi alloy indicate that this cost-effective SMA can potentially be a promising new material for civil structural applications. (paper)

  5. Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete

    Chen, Qiwen; Andrawes, Bassem; Sehitoglu, Huseyin

    2014-05-01

    The thermomechanical properties of a new type of shape memory alloy (SMA), FeNiCoTi, are explored in this paper with the aim of examining the feasibility of using this new material as transverse reinforcement for concrete structures subjected to earthquake loading. One advantage of using FeNiCoTi alloy is its cost effectiveness compared to commonly studied NiTi alloy. Differential scanning calorimetry (DSC) tests are conducted to investigate the transformation temperatures of FeNiCoTi alloy under different heat treatment methods and prestrain schemes. First, a heat treatment method is established to produce FeNiCoTi alloy with wide thermal hysteresis that is pertinent to civil structural applications. Next, recovery stress tests are conducted to explore the effect of parameters including heating method, heating temperature, heating rate, heating protocol and prestrain level on the recovery stress. An optimum prestrain level is determined based on the recovery stress results. Moreover, cyclic tests are carried out to examine the cyclic response of FeNiCoTi alloy after stress recovery. Thermal cyclic tests are also carried out on the FeNiCoTi alloy to better understand the effect of temperature variation on the recovery stress. In addition, reheating of the FeNiCoTi alloy after deformation is conducted to examine the reusability of the material after being subjected to excessive deformation. Test results of the FeNiCoTi alloy indicate that this cost-effective SMA can potentially be a promising new material for civil structural applications.

  6. Calorimetry studies on U-Cr alloys

    A calorimetric study of Uranium-Chromium system is of interest on both basic and applied fronts. With the advent of U-Pu-Zr alloy as the fuel, in combination with ferritic-martensitic steel as the cladding material, the metal fuelled fast reactors constitute the second major step in Indian nuclear power program. In such a context, a fundamental investigation on the high temperature phase stability of U-Cr alloys is of particular relevance in getting further insight in to the complex issue of the metallurgical compatibility of ferritic steels with metallic Uranium-Zirconium fuel. It may be added that following U-Fe, and U-Zr binaries, the U-Cr constitutes one of the important subsystems of the complex U-Zr-Pu-Fe- Cr-Mn-Si-V-Nb-C-N multinary system. In the current study, the results of calorimetry investigations on U, U-2, 3, 7, 15wt. % Cr alloys are presented

  7. Suppression of Ms temperature by carbon partitioning from carbon-supersaturated ferrite to metastable austenite during intercritical annealing

    Highlights: • DP980/1180 were produced by gas-jet cooling and Quenching, respectively. • The martensite formation of G-steel happened below tempering temperature. • The martensite formation of Q-steel occurred above tempering temperature. • The carbon partitioning caused by carbon-supersaturated ferrite decreased Ms. - Abstract: Three various cooling patterns including gas-jet cooling (∼25 °C/s), Fast spraying water cooling (∼60 °C/s) and Water quenching (∼1700 °C/s) were chosen to study the effects of carbon partitioning on martensitic transformation and mechanical properties in a low carbon dual phase steel. The suppression of Ms temperature by decreasing the cooling rate was investigated by dilatometer experiments. The results show that the Ms suppression was closely associated with the carbon partitioning between carbon-supersaturated ferrite and metastable austenite before martensitic transformation, which leads to the enrichment of alloy elements in austenite. Since no carbon partitioning occurred during water quenching process, more interstitial solid solution of carbon will segregate to the dislocations and thus contribute to the increase in ferritic strength in the quenched steel. The decrease of Ms temperature, the change of martensitic microstructure and the increase of ferritic strength were also used to verify the presence of carbon partition. Besides, the increase in yield and ultimate tensile strengths at higher cooling rate was mainly attributed to the ferrite and interfaces strengthening as well as the suppression of ferritic transformation

  8. Development of ODS ferritic-martensitic steels for application to high temperature and irradiation environment

    Iron oxide dispersion strengthened alloys are candidate for nuclear fuel cladding. Therefore, it is crucial to control their microstructure in order to optimise their mechanical properties at temperatures up to 700 deg C. The industrial candidates, ODS ferritic alloys, present an anisotropic microstructure which induces a weakening of mechanical properties in transversal direction as well as the precipitation of brittle phases under thermal aging and irradiation. For this purpose, we tried to develop a material with isotropic properties. We studied several 9Cr-1Mo ferritic/martensitic alloys, strengthened or not by oxide dispersion. The mechanical alloying was performed by attribution and powders were consolidated by hot extrusion. In this work, different metallurgical characterisation techniques and modelling were used to optimise a new martensitic ODS alloy. Microstructural and chemical characterization of matrix has been done. The effect of austenitizing and isochronal tempering treatments on microstructure and hardness has been studied. Oxide distribution, size and chemical composition have been studied before and after high temperature thermal treatment. The study of phase transformation upon heating has permitted the extrapolation to the equilibrium temperature formation of austenite. Phase transformation diagrams upon cooling have been determined and the transformation kinetics have been linked to austenite grain size by a simple relation. Fine grain size is unfavourable for the targeted application, so a particular thermal treatment inducing a coarser grain structure has been developed. Finally, tensile properties have been determined for the different microstructures. (author)

  9. Design of martensitic/ferritic heat-resistant steels for application at 650 deg. C with supporting thermodynamic modelling

    Knezevic, V.; Balun, J. [Max-Planck-Institut fuer Eisenforschung GmbH, 40074 Duesseldorf (Germany); Sauthoff, G. [Max-Planck-Institut fuer Eisenforschung GmbH, 40074 Duesseldorf (Germany)], E-mail: g.sauthoff@mpie.de; Inden, G.; Schneider, A. [Max-Planck-Institut fuer Eisenforschung GmbH, 40074 Duesseldorf (Germany)

    2008-03-25

    In view of developing novel heat-resisting steels for applications in conventional power plants with service temperatures of 650 deg. C, a series of martensitic/ferritic model steels with 12 wt.%Cr were studied to achieve an increased creep resistance through additional alloying with various elements for controlled precipitation of M{sub 23}C{sub 6} carbides, MX carbonitrides and intermetallic Laves phase. The alloy design relied on thermodynamic simulation calculations using Thermo-Calc and DICTRA. The mechanical testing concentrated on creep at 650 deg. C for up to 8000 h. The alloy optimization resulted in creep rupture strengths above those of the martensitic/ferritic P92 steel. The work was part of a cooperative project within the German MARCKO program.

  10. Design of martensitic/ferritic heat-resistant steels for application at 650 deg. C with supporting thermodynamic modelling

    In view of developing novel heat-resisting steels for applications in conventional power plants with service temperatures of 650 deg. C, a series of martensitic/ferritic model steels with 12 wt.%Cr were studied to achieve an increased creep resistance through additional alloying with various elements for controlled precipitation of M23C6 carbides, MX carbonitrides and intermetallic Laves phase. The alloy design relied on thermodynamic simulation calculations using Thermo-Calc and DICTRA. The mechanical testing concentrated on creep at 650 deg. C for up to 8000 h. The alloy optimization resulted in creep rupture strengths above those of the martensitic/ferritic P92 steel. The work was part of a cooperative project within the German MARCKO program

  11. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.

    Tan, XueHai; Wang, Liya; Zahiri, Beniamin; Kohandehghan, Alireza; Karpuzov, Dimitre; Lotfabad, Elmira Memarzadeh; Li, Zhi; Eikerling, Michael H; Mitlin, David

    2015-01-01

    A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface. PMID:25470445

  12. Elemental investigation of (Al-Cu) alloys and some geological samples using neutron activation and XRF analysis techniques

    Neutron activation analysis (NAA) using k0 - standardization (k0-NAA) is well known method for multi-elemental analysis. The method is used to analyze different samples belonging to different fields. In addition, X- ray fluorescence (XRF) is also used for multi-elemental analysis. XRF complements NAA methods. Both methods were used for investigation of some iron ores and aluminum- cupper alloy (Al-Cu) samples. Elemental concentration of Iron ores and Al-Cu alloy samples were determined by k0 - NAA and XRF methods. The iron ore samples were collected from Wadi Kareim and Umm Nar sites (the Eastern desert of Egypt). Six and two samples representing the ores of Wadi Kareim and Umm Nar, respectively altogether with the standard samples consisting of Fe, Au , Zr and W and the certified reference sample IAEA Soil-7 were irradiated in one of the irradiated boxes at the Second Egyptian Research Reactor (ETRR- 2). The induced activities were counted using an efficiency calibrated HPGe detector systems. The neutron spectrum parameters α and f characterizing the neutron irradiation position that are needed in applying k0-NAA method were determined using the activation product of Zr , Au, Fe and W and found α≅ - 0.048 ±0.002 and f ≅ 38± k0 -NAA method was applied to determine the elemental concentrations in the two iron ore samples. The concentrations determined were found to vary erratically form one sample to another. The results were discussed and compared with similar results in literature. The accuracy of the k0 - NAA method was checked by determining the elemental concentration in the IAEA-Soil 7 reference sample. The obtained results are compared with the recommended values. Good agreements were found within 10 %. Short time neutron activation analysis (STNAA) was carried out to determine concentration of major elements in Al-Cu alloy samples. Three (Al-Cu) alloys samples with different concentrations of Cu (2, 3.5 and 5 %) altogether. Au standard sample (bare

  13. Impact property of low-activation vanadium alloy after laser welding and heavy neutron irradiation

    Nagasaka, Takuya, E-mail: nagasaka@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu (Japan); The Graduate University for Advanced Studies, Toki, Gifu (Japan); Muroga, Takeo [National Institute for Fusion Science, Toki, Gifu (Japan); The Graduate University for Advanced Studies, Toki, Gifu (Japan); Watanabe, Hideo [Research Institute for Applied Mechanics, Kyushu University, Kasuga (Japan); Miyazawa, Takeshi [The Graduate University for Advanced Studies, Toki, Gifu (Japan); Yamazaki, Masanori [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki (Japan); Shinozaki, Kenji [Department of Mechanical System Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima (Japan)

    2013-11-15

    Weld specimens of the reference low activation vanadium alloy, NIFS-HEAT-2, were irradiated up to a neutron fluence of 1.5 × 10{sup 25} n m{sup −2} (E > 0.1 MeV) (1.2 dpa) at 670 K and 1.3 × 10{sup 26} n m{sup −2} (5.3 dpa) at 720 K in the JOYO reactor in Japan. The base metal exhibited superior irradiation resistance with the ductile-to-brittle transition temperature (DBTT) much lower than room temperature (RT) for both irradiation conditions. The weld metal kept the DBTT below RT after the 1.2 dpa irradiation; however, it showed enhanced irradiation embrittlement with much higher DBTT than RT after the 5.3 dpa irradiation. The high DBTT for the weld metal was effectively recovered by a post-irradiation annealing at 873 K for 1 h. Mechanisms of the irradiation embrittlement and its recovery are discussed, based on characterization of the radiation defects and irradiation-induced precipitation.

  14. Thermal desorption of gases from aluminum alloy Al 6061, their rates and activation energies

    The use of Al in the construction of the vacuum chamber of intersecting proton storage rings has several advantages over the use of stainless steel. We have, therefore, undertaken UHV studies on long pipes made of Al alloy 6061 to see whether this material could be used in the proposed proton intersecting storage accelerator facility ISABELLE at Brookhaven. The outgassing rates, measured by two different methods, are compared for several surface treatments and three bakeout temperatures. The lowest outgassing rate of less than 1x10-14 Torr l s-1cm-2 was obtained with Ar and O2 discharge cleaning. The residual gas in the pipe contained more than 99% H2 with traces of CO and CO2. By observing the temperature dependence of the desorption of these gases, we have measured the heat of diffusion of H2 (E/sub H/2=10.5+-1.0 kcal/mole) and the thermal activation energies of CO (E/sub CO/=29+-2 kcal/mole) and CO2 (E/sub CO/2=25+-2 kcal/mole). Ar, with a peak desorption at 280degree--300 degreeC, also appears to be embedded in the metal. Since all commercially available UHV equipment uses stainless steel flanges, we have investigated the behavior of the stainless steel to Al transitions up to 350degreeC

  15. High temperature oxidation of iron-chromium alloys

    Mikkelsen, Lars

    2003-06-15

    The high temperature oxidation of the ferritic alloy Fe78Cr22 has been investigated in the present work. The effect of small alloying additions of cerium and/or silicon was also investigated. The alloys were oxidized at 973, 1173 and 1373 K in either air or a hydrogen/argon mixture. The various reaction atmospheres contained between 0.02 and 50% water vapour. The oxide scales formed on the various alloys at 973 K consisted of thin chromia layers. The oxide scales grown on the alloys at 1173 K also consisted of a chromia layer. The microstructure of the chromia scales was found to depend on the reaction atmosphere. The chromia scales grown in hydrogen/argon atmospheres formed oxide whiskers and oxide ridges at the surface of the scales, while the chromia scales grown in air formed larger oxide grains near the surface. This difference in oxide microstructure was due to the vaporization of chromium species from the chromia scales grown in air. Two different growth mechanisms are proposed for the growth of oxide whiskers. The growth rate of the chromia scales was independent of the oxygen activity. This is explained by a growth mechanism of the chromia scales, where the growth is governed by the diffusion of interstitial chromium. The addition of silicon to the iron-chromium alloy resulted in the formation of silica particles beneath the chromia scale. The presence of silicon in the alloy was found to decrease the growth rate of the chromia scale. This is explained by a blocking mechanism, where the silica particles beneath the chromia scale partly block the outwards diffusion of chromium from the alloy to the chromia scale. The addition of cerium to the iron-chromium alloy improved the adhesion of the chromia scale to the alloy and decreased the growth rate of chromia. It was observed that the minimum concentration of cerium in the alloy should be 0.3 at.% in order to observe an effect of the cerium addition. The effect of cerium is explained by the &apos

  16. One-pot synthesis of platinum–palladium–cobalt alloyed nanoflowers with enhanced electrocatalytic activity for ethylene glycol oxidation

    Graphical abstract: A facile one-pot solvothermal method was developed for synthesis of Pt–Pd–Co alloyed nanoflowers using oleylamine as the solvent, surfactant and reducing agents, along with cetylpyridinium chloride (CPC) as the co-surfactant and shape-directing agents. The nanocrystals displayed highly electrocatalytic activity and stability toward EG oxidation. Display Omitted - Highlights: • Pt–Pd–Co alloyed nanoflowers were prepared by a facile one-pot solvothermal method. • Oleylamine was used as the solvent, surfactant and reducing agents. • CPC was employed as the co-surfactant and shape-directing agents. • Pt–Pd–Co nanocrystals exhibited improved electrocatalytic activity and high stability for EG oxidation. - Abstract: In this work, three-dimensional trimetallic Pt–Pd–Co alloyed nanoflowers are fabricated by a facile one-pot solvothermal strategy, with the assistance of oleylamine as the solvent, surfactant, and reducing agents, along with cetylpyridinium chloride (CPC) as the co-surfactant and shape-directing agents. Their morphology and crystal structure were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning transmission electron microscope (STEM), and X-ray photoelectron spectra (XPS) in details. The respective electrochemically active surface area (ECSA) is estimated to be 32.53 m2 g−1, and current density is 132.91 mA cm−2 for the electrooxidation of ethylene glycol (EG). These values are much higher than those of PtPdCo nanoparticles, PtPd nanoparticles, commercial Pt black, and Pd black under the identical conditions, showing the improved catalytic activity of Pt–Pd–Co nanoflowers. The excellent performances are attributed to the specific structure and synergistic interactions of the trimetallic alloy. The as-prepared nanoflowers can serve as a promising electrocatalyst in fuel cells

  17. ENVIRONMENTALLY COMPLIANT CORROSION-ACTIVATED INHIBITOR SYSTEM FOR ALUMINUM ALLOYS - PHASE I

    The federal government is estimated to spend $1 billion on painting/repainting aircraft annually. Aircraft have surfaces composed of aluminum alloys that are highly susceptible to corrosion and must be protected with corrosion-preventative treatments that typically conta...

  18. Effects of Hard Surface Grinding and Activation on Electroless-Nickel Plating on Cast Aluminium Alloy Substrates

    Olawale Olarewaju Ajibola

    2014-01-01

    Full Text Available This work examined effects of hard surface polishing grits and activation on electroless-nickel (EN plating on cast aluminium alloy substrates in sodium hypophosphite baths. As-received aluminium alloy sample sourced from automobile hydraulic brake master cylinder piston was melted in electric furnace and sand cast into rod. The cast samples were polished using different grits (60 μm–1200 μm before plating. The effects on adhesion, appearance, and quantity of EN deposits on substrates were studied. Observation shows that the quantity of EN deposit is partly dependent on the alloy type and roughness of the surface of the substrates, whereas the adhesion and brightness are not solely controlled by the degree of surface polishing. The best yield in terms of adhesion and appearance was obtained from the activation in zincate and palladium chloride solutions. Higher plating rates (g/mm2/min of 3.01E-05, 2.41E-05, and 2.90E-05 were obtained from chromate, zincate, and chloride than 8.49E-06, 8.86E-06, and 1.69E-05 as obtained from HCl etched, NaOH, and H2O activated surfaces, respectively.

  19. The effect of dissolved stainless steel alloy elements on the activity and growth of SRB

    F. A. Lopes; Morin, P.; Oliveira, Rosário; Melo, L. F.

    2000-01-01

    Sulphate reducing bacteria have an important role in the sulphur cycle, and therefore in wastewater treatment systems. They are able to form biofilms on metallic surfaces, leading to fouling and corrosion problems. These bacteria are among the micro-organisms most frequently implicated in microbial corrosion of iron and ferrous alloys. Alloying elements added to steels for the improvement of their corrosion resistance such as molybdenum and nickel can be dissolved in bulk liqui...

  20. Antimicrobial Activity of Copper Alloys Against Invasive Multidrug-Resistant Nosocomial Pathogens.

    Eser, Ozgen Koseoglu; Ergin, Alper; Hascelik, Gulsen

    2015-08-01

    The emergence and spread of antibiotic resistance demanded novel approaches for the prevention of nosocomial infections, and metallic copper surfaces have been suggested as an alternative for the control of multidrug-resistant (MDR) bacteria in surfaces in the hospital environment. This study aimed to evaluate the antimicrobial activity of copper material for invasive MDR nosocomial pathogens isolated over time, in comparison to stainless steel. Clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) (n:4), OXA-23 and OXA-58 positive, MDR Acinetobacter baumannii (n:6) and Pseudomonas aeruginosa (n:4) were evaluated. The antimicrobial activity of coupons containing 99 % copper and a brass alloy containing 63 % copper was assessed against stainless steel. All the materials demonstrated statistically significant differences within each other for the logarithmic reduction of microorganisms. Among the three materials, the highest reduction of microorganisms was seen in 99 % copper and the least in stainless steel. The result was statistically significant especially for 0, 2, and 4 h (P = 0.05). 99 % copper showed a bactericidal effect at less than 1 h for MRSA and at 2 h for P. aeruginosa. 63 % copper showed a bactericidal effect at 24 h for P. aeruginosa strains only. Stainless steel surfaces exhibited a bacteriostatic effect after 6 h for P. aeruginosa strains only. 99 % copper reduced the number of bacteria used significantly, produced a bactericidal effect and was more effective than 63 % copper. The use of metallic copper material could aid in reducing the concentration of bacteria, especially for invasive nosocomial pathogens on hard surfaces in the hospital environment. PMID:26044991

  1. Rapid and facile preparation of zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    Anchieta, Chayene G.; Severo, Eric C.; Rigo, Caroline; Mazutti, Marcio A. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Kuhn, Raquel C., E-mail: raquelckuhn@yahoo.com.br [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Muller, Edson I.; Flores, Erico M.M. [Department of Chemistry, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Moreira, Regina F.P.M. [Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis (Brazil); Foletto, Edson L. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil)

    2015-06-15

    In this work zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe{sub 2}O{sub 4} oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe{sub 2}O{sub 4} oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe{sub 2}O{sub 4} particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe{sub 2}O{sub 4} was synthesized by microwave-solvothermal method. • ZnFe{sub 2}O{sub 4} was prepared by different microwave heating times and powers. • ZnFe{sub 2}O{sub 4} was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe{sub 2}O{sub 4} was highly efficient to degrade textile dye under visible light.

  2. Rapid and facile preparation of zinc ferrite (ZnFe2O4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    In this work zinc ferrite (ZnFe2O4) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe2O4 oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe2O4 oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe2O4 particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe2O4 was synthesized by microwave-solvothermal method. • ZnFe2O4 was prepared by different microwave heating times and powers. • ZnFe2O4 was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe2O4 was highly efficient to degrade textile dye under visible light

  3. Three-dimensional hierarchical porous platinum-copper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation

    Fan, Yang; Liu, Pei-Fang; Zhang, Zong-Wen; Cui, Ying; Zhang, Yan

    2015-11-01

    Porous Pt-Cu alloy networks are synthesized through a one-pot hydrothermal process, with ethylene glycol as the reducing agent and the block copolymer Pluronic F127 as structure-directing agent. The structure, porosity and surface chemical state of as-prepared Pt-Cu alloy with different composition are characterized. The formation mechanism of the porous structure is investigated by time sequential experiments. The obtained Pt53Cu47 alloy possesses a unique 3D hierarchical porous network structure assembled by interconnected nanodendrites as building blocks. Because of the high surface area, concave surface topology and open porous structure, the Pt53Cu47 alloy catalyst exhibits enhanced catalytic activity towards methanol and ethanol electro-oxidation in comparison with commercial Pt black and the Pt73Cu27 alloy synthesized following the same process as Pt53Cu47.

  4. Cation distribution in ferrites and its effects on the chemical dissolution behaviour

    Ferrites are formed on the steel surfaces as a protective corrosion oxide film on the heat transport surfaces in the water cooled nuclear reactors. These oxides film acts as a host to many neutron activated corrosion products (ACPs) leading to man-rem problem during the service maintenance. Understanding of chemical dissolution kinetics of these ferrites is important aspect in the development of decontamination process with aim of good decontamination factors. Ferrite shows a cation distribution as a function of parameter like metal ion substitution, crystallite size and temperature. Change in the cation distribution in ferrite can effect its dissolution process. The following three ferrites namely CoFe2O4/ZnFe2O4/MgFe2O4 were studied for its chemical dissolution behaviour as a function of the cation distribution. CoFe2O4, MgFe2O4 and ZnFe2O4 shows an inversion parameters of 0.95, 0.46 and 0.06 respectively. The above ferrites with different cation distribution were achieved by the thermal treatment. The variation of cation distribution in ferrite was monitored/characterised by the Raman spectroscopy. Chemical dissolution of these ferrites were carried out in NAC formulation. Dissolution process was monitored by the metal ion dissolution in the solution. Dissolution data was fitted to the following two models 'Shrinking sphere model' and 'Factual chain mechanism model' to elucidate the kinetic parameter. We tried to establish correlation between the cation distribution in the ferrite and the dissolution kinetics of ferrites. ZnFe2O4 ('δ'= ∼ 0.06) showed k80obs(Fe) = 1.250 x 10-3 min-1and ZnFe2O4 ('δ' = ∼ 0.30) showed k80obs(Fe) =2.295 x 10-3min-1, indicating ZnFe2O4 with high inversion parameter showed higher dissolution rate. Activation energy for the ZnFe2O4 ('δ'= ∼ 0.30) and ZnFe2O4 ('δ'= ∼ 0.06) in NAC formulation was 58.4 and 61.5 kJ mol-1 respectively. CoFe2O4 and MgFe2O4 also showed the

  5. Microstructure of polymer composite with barium ferrite powder

    R. Nowosielski

    2008-12-01

    Full Text Available Purpose: The aim of the paper is the microstructure characterization of commercial BaFe12O19 powder and its composite material in polymer matrix; XRD (X-Ray Diffraction and SEM (Scanning Electron Microscopy methods were applied.Design/methodology/approach: The Rietveld method appeared to be very useful in the verification of the qualitative phase composition and in the determination of phase abundance. Hill and Howard procedure was applied for quantitative phase analysis. The parameters of the individual diffraction line profiles were determined by PRO-FIT Toraya procedure. The morphology of barium ferrite powders and a fracture surface of the examined composite material was analyzed using the scanning electron microscope.Findings: The X-ray diffraction analysis enabled the identification of BaFe12O19 and Fe2O3 phases in examined material. Basing on Rietveld and Toraya methods the determination of lattice parameters, crystallite size and the lattice distortion was performed. Distribution of powders of barium ferrite in polymer matrix is irregular and powder particles are of irregular shapes and different sizes.Research limitations/implications: Maked researches are limited only to characterization the microstructure of commercial material, because obtained results will be helpful to prepare barium ferrite powders by mechanical alloying and subsequent annealing in the future. As prepared BaFe12O19 powders will be used as the starting material for magnets bonded with polymer material.Originality/value: The obtained results of investigations by different methods of structure analysis confirm their useful in the microstructure analysis of powder materials.

  6. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    The Fe-14Cr-2W-0.3Ti-0.3Y2O3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 deg. C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 deg. C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 deg. C).

  7. Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications

    Yang, Zhenguo; Xia, Guan-Guang; Wang, Chong-Min; Nie, Zimin; Templeton, Joshua; Stevenson, Jeffry W.; Singh, Prabhakar

    As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, both bare AISI441 and AISI441 coated with (Mn,Co) 3O 4 protection layers were studied in terms of its metallurgical characteristics, oxidation behavior, and electrical performance. The addition of minor alloying elements, in particular Nb, led to formation of Laves phases both inside grains and along grain boundaries. In particular, the Laves phase which precipitated out along grain boundaries during exposure at intermediate SOFC operating temperatures was found to be rich in both Nb and Si. The capture of Si in the Laves phase minimized the Si activity in the alloy matrix and prevented formation of an insulating silica layer at the scale/metal interface, resulting in a reduction in area-specific electrical resistance (ASR). However, the relatively high oxidation rate of the steel, which leads to increasing ASR over time, and the need to prevent volatilization of chromium from the steel necessitates the application of a conductive protection layer on the steel. In particular, the application of a Mn 1.5Co 1.5O 4 spinel protection layer substantially improved the electrical performance of the 441 by reducing the oxidation rate.

  8. Kinetics of niobium carbide precipitation in ferrite

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  9. Long-term high temperature oxidation behavior of ODS ferritics

    Pint, B.A. E-mail: pintba@ornl.gov; Wright, I.G

    2002-12-01

    Four oxide dispersion strengthened Fe-(13-14 at.%) Cr ferritic compositions were exposed in air and air with 10 vol.% water vapor for up to 10 000 h at 700-1100 deg. C. At 700-800 deg. C in air, the reaction rates were very low for all of the alloys compared to stainless steels. At 900 deg. C, a dispersion of Y{sub 2}O{sub 3}, compared to Al{sub 2}O{sub 3}, showed a distinct benefit in improving the oxidation resistance, due to a reactive element effect. However, failure occurred after 7000 h at 900 deg. C when only 13% Cr was present. The absence of Ti and W in one alloy appeared to result in a thinner reaction product after oxidation at 800 deg. C. One composition was exposed in 10 vol.% water vapor at 800 and 900 deg. C and in air at 1000 and 1100 deg. C. Under both of these conditions, there was a significant increase in the rates of oxidation. With the relatively low Cr contents in these alloys, their corrosion-limited operating temperature in air is near 900 deg. C.

  10. Long-term high temperature oxidation behavior of ODS ferritics

    Four oxide dispersion strengthened Fe-(13-14 at.%) Cr ferritic compositions were exposed in air and air with 10 vol.% water vapor for up to 10 000 h at 700-1100 deg. C. At 700-800 deg. C in air, the reaction rates were very low for all of the alloys compared to stainless steels. At 900 deg. C, a dispersion of Y2O3, compared to Al2O3, showed a distinct benefit in improving the oxidation resistance, due to a reactive element effect. However, failure occurred after 7000 h at 900 deg. C when only 13% Cr was present. The absence of Ti and W in one alloy appeared to result in a thinner reaction product after oxidation at 800 deg. C. One composition was exposed in 10 vol.% water vapor at 800 and 900 deg. C and in air at 1000 and 1100 deg. C. Under both of these conditions, there was a significant increase in the rates of oxidation. With the relatively low Cr contents in these alloys, their corrosion-limited operating temperature in air is near 900 deg. C

  11. Mechanical and Electrochemical Behavior of a High Strength Low Alloy Steel of Different Grain Sizes

    Ghosh, K. S.; Mondal, D. K.

    2013-08-01

    Various heat treatments applied to a fine-grained high strength low alloy (HSLA) steel resulted in producing different grain sizes. Optical and scanning electron microstructures of the different alloy states exhibited varying ferrite grains which have increased with the increase of annealing time and decrease of cooling rates. TEM structures of the as-received HSLA steel displayed characteristics microstructural features, distribution, and morphology of microalloy precipitates. Hardness and tensile strength values have decreased with the increase of grain sizes. Potentiodynamic electrochemical polarization of the different alloy states in 3.5 wt pct NaCl solution showed typical active metal/alloy behavior. Tensile specimens of the as-received and heat-treated alloy cathodically charged with hydrogen, followed by tensile testing, did not indicate any noticeable loss of ductility. FESEM fractographs of hydrogen-charged samples showed a few chain of voids in the presence of cup and cone ductile fracture features in tensile-tested samples without hydrogen charging as well.

  12. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values

  13. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Cao, G., E-mail: gcao@wisc.edu; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.

    2013-10-15

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  14. Thin slab processing of acicular ferrite steels with high toughness

    Reip, Carl-Peter; Hennig, Wolfgang; Hagmann, Rolf [SMS Demag Aktiengesellschaft, Duesseldorf (Germany); Sabrudin, Bin Mohamad Suren; Susanta, Ghosh; Weng Lan Lee [Megasteel Sdn Bhd, Banting (Malaysia)

    2005-07-01

    Near-net-shape casting processes today represent an important option in steelmaking. High productivity and low production cost as well as the variety of steel grades that can be produced plus an excellent product quality are key factors for the acceptance of such processes in markets all over the world. Today's research focuses on the production of pipe steel with special requirements in terms of toughness at low temperatures. The subject article describes the production of hot strip made from acicular ferritic / bainitic steel grades using the CSP thin-slab technology. In addition, the resulting strength and toughness levels as a function of the alloying concepts are discussed. Optimal control of the CSP process allows the production of higher-strength hot-rolled steel grades with a fine-grain acicular-ferritic/bainitic microstructure. Hot strip produced in this way is characterized by a high toughness at low temperatures. In a drop weight tear test, transition temperatures of up to -50 deg C can be achieved with a shear-fracture share of 85%. (author)

  15. Preparation of AZ91D magnesium alloy semi-solid billet by new strain induced melt activated method

    JIANG Ju-fu; LUO Shou-jing; ZOU Jing-xiang

    2006-01-01

    New strain induced melt activated (new SIMA) method for preparing AZ91D magnesium alloy semi-solid billet is introduced by applying equal channel angular extrusion into strain induced step in SIMA method, by which semi-solid billet with fine spheroidal grains and average grain size of 18 μm can be prepared. Furthermore, average grain size of semi-solid billet is reduced with increasing extrusion pass of AZ91D magnesium alloy obtained in ECAE process. By using semi-solid billet prepared by new SIMA, thixoforged magazine plates component with high mechanical properties such as yield strength of 201.4 MPa, ultimate tensile strength of 321.8 MPa and elongation of 15.3%, can be obtained.

  16. Decomposition Kinetics of Ferrite in Isothermally Aged SAF 2507-Type Duplex Stainless Steel

    Berecz, Tibor; Fazakas, Éva; Mészáros, István; Sajó, István

    2015-12-01

    Decomposition of the ferritic phase is studied in isothermally aged SAF 2507 superduplex stainless steel (SDSS) by means of different examination methods. The ferritic phase ( δ) undergoes an eutectoid transformation into secondary austenite ( γ 2) and σ-phase between 650 and 1000 °C. Samples were treated at 900 °C because the incubation time of this transformation is the shortest at this temperature. In order to follow the microstructural changes, x-ray diffraction analysis (XRD), automated electron backscatter diffraction (EBSD), applied magnetic investigation [vibrating sample magnetometer (VSM)], micro-hardness tests, and differential thermal analysis (DTA) were used. The results of XRD and EBSD methods for phase quantification showed nearly the same amounts for all three phases. The results of applied magnetic investigation for the fraction of ferritic phase were also in good agreement with the corresponding results of XRD and EBSD methods. Decomposition of ferrite is similarly well-traceable on EBSD phase maps where the coherent ferritic areas gradually broke into pieces with increasing time of heat treatment. According to the EBSD measurements the σ-phase grains appeared and started to grow after 2 min aging time in the ferritic-austenitic matrix, usually on the boundaries of ferritic and austenitic grains. After 15 min treating time, the microstructure consisted of mainly σ- and austenitic (primary and secondary) phases with negligible amount of ferrite. Chemical composition of the σ-phase was measured by energy-dispersive x-ray spectroscopy (EDS) at different aging times. Activation energies of σ-phase precipitation and α'-phase formation were determined by the Kissinger plot, through DTA measurements; they are 243 and 261 kJ/mol, respectively. Using the results of phase quantifications, the Johnson-Mehl-Avrami equation was fitted.

  17. Current status and recent research achievements in ferritic/martensitic steels

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe–Cr alloys, the chromium range was narrowed to 7–9% and the first RAFM was industrially produced in Japan (F82H: Fe–8%Cr–2%W–TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe–9%Cr–1%W–TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx

  18. Current status and recent research achievements in ferritic/martensitic steels

    Tavassoli, A.-A. F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H.

    2014-12-01

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe-Cr alloys, the chromium range was narrowed to 7-9% and the first RAFM was industrially produced in Japan (F82H: Fe-8%Cr-2%W-TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe-9%Cr-1%W-TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  19. Effect of vanadium addition on the microstructure and mechanical properties of the ODS ferritic steels

    In this work, the effects of vanadium addition in the range of 0.3–3% (in weight percent) for an oxide dispersion strengthened reduced activation ferritic (ODS RAF) steel were investigated. Samples of the V-modified steel have been prepared using elemental (Fe, Cr, W, Ti) and Y2O3 powders with the nominal composition of Fe–14Cr–2W–0.3Ti–0.3Y2O3. Consolidated and heat treated samples were investigated using Scanning Electron Microscopy and Scanning Transmission Electron Microscopy equipped with Electron Energy Loss Spectroscopy detector. Hardness and Charpy impact tests (KLST specimens) were also performed. The microstructure investigations revealed numerous particles of the size up to 0.5 μm. They are primarily Ti–Cr–V oxides located at the grain boundaries and inside the grains. These particles increase hardness and significantly reduce fracture resistance of the ODS RAF alloys developed here. However, it should be noted that the 0.3% V-ODS steel has unexpectedly the lowest transition temperature of about 282 K and that the 1–3% V-ODS steels, in spite of the transition temperature about 373 K, exhibit almost two times higher the lower shelf energy values in comparison with the 0.3% V-ODS and 0% V-ODS steels

  20. Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel

    Pasebani, Somayeh [Univ. of Idaho, Moscow, ID (United States). Dept. of Chemical and Materials Engineering; Center for Advanced Energy Studies, Idaho Falls, ID (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States). Dept. of Chemical and Materials Engineering; Center for Advanced Energy Studies, Idaho Falls, ID (United States); Burns, Jatuporn [Center for Advanced Energy Studies, Idaho Falls, ID (United States); Boise State Univ., ID (United States). Dept. of Materials Science and Engineering; Alsagabi, Sultan [Univ. of Idaho, Moscow, ID (United States). Dept. of Chemical and Materials Engineering; King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia). Atomic Energy Research Inst.; Butt, Darryl P. [Center for Advanced Energy Studies, Idaho Falls, ID (United States); Boise State Univ., ID (United States). Dept. of Materials Science and Engineering; Cole, James I. [Center for Advanced Energy Studies, Idaho Falls, ID (United States); Idaho National Lab. (INL), Idaho Falls, ID (United States); Price, Lloyd M. [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Shao, Lin [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2015-07-01

    Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ≥50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.

  1. Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel

    Pasebani, Somayeh; Charit, Indrajit; Burns, Jatuporn; Alsagabi, Sultan; Butt, Darryl P.; Cole, James I.; Price, Lloyd M.; Shao, Lin

    2015-07-01

    Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ⩾50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.

  2. Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel

    Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ≥50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.

  3. Constitutive modeling of the mechanical behavior of high strength ferritic steels for static and dynamic applications

    Abed, Farid H.

    2010-11-01

    A constitutive relation is presented in this paper to describe the plastic behavior of ferritic steel over a broad range of temperatures and strain rates. The thermo-mechanical behavior of high strength low alloy (HSLA-65) and DH-63 naval structural steels is considered in this study at strains over 40%. The temperatures and strain rates are considered in the range where dynamic strain aging is not effective. The concept of thermal activation analysis as well as the dislocation interaction mechanism is used in developing the flow model for both the isothermal and adiabatic viscoplastic deformation. The flow stresses of the two steels are very sensitive to temperature and strain rate, the yield stresses increase with decreasing temperatures and increasing strain rates. That is, the thermal flow stress is mainly captured by the yield stresses while the hardening stresses are totally pertained to the athermal component of the flow stress. The proposed constitutive model predicts results that compare very well with the measured ones at initial temperature range of 77 K to 1000 K and strain rates between 0.001 s-1 and 8500 s-1 for both steels.

  4. Nano-ferrites for water splitting: Unprecedented high photocatalytic hydrogen production under visible light

    Mangrulkar, Priti A.

    2012-01-01

    In the present investigation, hydrogen production via water splitting by nano-ferrites was studied using ethanol as the sacrificial donor and Pt as co-catalyst. Nano-ferrite is emerging as a promising photocatalyst with a hydrogen evolution rate of 8.275 μmol h -1 and a hydrogen yield of 8275 μmol h -1 g -1 under visible light compared to 0.0046 μmol h -1 for commercial iron oxide (tested under similar experimental conditions). Nano-ferrites were tested in three different photoreactor configurations. The rate of hydrogen evolution by nano-ferrite was significantly influenced by the photoreactor configuration. Altering the reactor configuration led to sevenfold (59.55 μmol h -1) increase in the hydrogen evolution rate. Nano-ferrites have shown remarkable stability in hydrogen production up to 30 h and the cumulative hydrogen evolution rate was observed to be 98.79 μmol h -1. The hydrogen yield was seen to be influenced by several factors like photocatalyst dose, illumination intensity, irradiation time, sacrificial donor and presence of co-catalyst. These were then investigated in detail. It was evident from the experimental data that nano-ferrites under optimized reaction conditions and photoreactor configuration could lead to remarkable hydrogen evolution activity under visible light. Temperature had a significant role in enhancing the hydrogen yield. © 2012 The Royal Society of Chemistry.

  5. Simulation of the kinetics of precipitation reactions in ferritic steels

    Computer simulations of diffusion-controlled phase transformations in model alloys of Fe-Cr-C, Fe-Cr-W-C, Fe-Cr-Si-C, and Fe-Cr-Co-V-C are presented. The compositions considered are typical for ferritic steels. The simulations are performed using the software DICTRA and the thermodynamic calculations of phase equilibria are performed using Thermo-Calc. The thermodynamic driving forces and the kinetics of diffusion-controlled precipitation reactions of M23C6, M7C3, cementite and Laves-phase (Fe, Cr)2W are discussed. The simultaneous growth of stable and metastable phases is treated in a multi-cell approach. The results show remarkable effects on the growth kinetics due to the competition during simultaneous growth

  6. Activity and Stability of Rare Earth-Based Hydride Alloys as Catalysts of Hydrogen Absorption-Oxidation Reactions

    Ying Taokai(应桃开); Gao Xueping(高学平); Hu Weikang(胡伟康); Noréus Dag

    2004-01-01

    Rare earth-based AB5-type hydrogen storage alloys as catalysts of hydrogen-diffusion electrodes for hydrogen absorption and oxidation reactions in alkaline fuel cells were investigated. It is demonstrated that the meta-hydride hydrogen-diffusion electrodes could be charged by hydrogen gas and electrochemically discharged at the same time to retain a stable oxidation potential for a long period. The catalytic activities and stability are almost comparable with a Pt catalyst on the active carbon. Further improvement of performances is expected via reduction of catalyst size into nanometers.

  7. Activity of hydrogen in metal-hydrogen systems: strontium, thorium-nitrogen, and vanadium alloys

    The dissolution of H gas has been studied using pressure-composition isotherms in Sr, Th-N and V alloys containing either Nb, Cr or Ti. Direct H equilibrium vapor pressure measurements were performed in the Sr-H and Th-N-H systems at 973 to 11730K and 623 to 11230K, respectively. Isopiestic solubility was used to measure the H equilibrium pressures for the V alloys at 223 to 4730K. In all the alloys studied, the reaction of hydrogen with the metal phase was exothermic and hydrogen followed Sieverts' law over a considerable range of hydrogen concentration. The enthalpy of solution of H in the Sr and the enthalpy of formation of ThNH/sub x/ are -14.3 +- 1.2 kcal;/mol H and -16.3 +- 1.5 kcal/mol H2, respectively. Enthalpies of solution of H for the V alloys ranged from -8.0 to -10.5 +- 0.3 kcal/mol H. Additions of T to V dramatically enhanced the isopiestic solubility of H, Cr significantly reduced the solubility and Nb moderately increased the solubility. Sieverts' law behavior for H in the V alloys showed that substitutional atoms did not act as deep traps for H

  8. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  9. Ferritic/martensitic steels - overview of recent results

    Klueh, R. L.; Gelles, D. S.; Jitsukawa, S.; Kimura, A.; Odette, G. R.; van der Schaaf, B.; Victoria, M.

    2002-12-01

    Considerable research work has been conducted on the ferritic/martensitic steels since the last International Conference on Fusion Reactor Materials in 1999. Since only a limited amount of that work can be reviewed in this paper, four areas will be emphasized: (1) the international collaboration under the auspices of the International Energy Agency (IEA) to address potential problems with ferritic/martensitic steels and to prove their feasibility for fusion, (2) the major uncertainty that remains concerning the effect of transmutation helium on mechanical properties of the steels when irradiated in a fusion neutron environment, (3) development of new reduced-activation steels beyond the F82H and JLF-1 steels studied in the IEA collaboration, and (4) work directed at developing oxide dispersion-strengthened steels for operation above 650 °C.

  10. Corrosion of an austenite and ferrite stainless steel weld

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  11. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1979

    Ashdown, B.G. (comp.)

    1980-04-01

    Progress is reported concerning preparation of a materials handbook for fusion, creep-fatigue of first-wall structural materials, test results on miniature compact tension fracture toughness specimens, austenitic stainless steels, Fe-Ni-Cr alloys, iron-base alloys with long-range crystal structure, ferritic steels, irradiation experiments, corrosion testing, and hydrogen permeation studies. (FS)

  12. High-temperature thermodynamic activities of zirconium in platinum alloys determined by nitrogen-nitride equilibria

    A high-temperature nitrogen-nitride equilibrium apparatus is constructed for the study of alloy thermodynamics to 23000C. Zirconium-platinum alloys are studied by means of the reaction 9ZrN + 11Pt → Zr9Pt11 + 9/2 N2. Carful attention is paid to the problems of diffusion-limited reaction and ternary phase formation. The results of this study are and a/sub Zr//sup 19850C/ = 2.4 x 10-4 in Zr9Pt11 ΔG/sub f 19850C/0 Zr9Pt11 less than or equal to -16.6 kcal/g atom. These results are in full accord with the valence bond theory developed by Engel and Brewer; this confirms their prediction of an unusual interaction of these alloys

  13. The activation/depassivation of nickel–chromium–molybdenum alloys in bicarbonate solution: Part I

    Electrochemical and surface analytical techniques (X-ray photoelectron and Auger spectroscopies) were used to characterize the influence of potential on the properties of the oxide film formed on the Hybrid BC-1 (a Ni–Cr–Mo) alloy in chloride solutions containing bicarbonate. In the passive region the film possesses the expected bilayer structure with a Cr(III)-dominated barrier layer containing mixed oxidation states of Mo and an outer dominantly-hydroxide layer. At more positive potentials the Cr/Mo content of the film decreases when bicarbonate is present and the alloy becomes covered by a thick (>100 nm), and only partially protective, Ni(OH)2 layer

  14. Crevice corrosion of support alloys in the secondary environment of nuclear steam generators

    Zero impedance ammeters were used to study the initiation and early stages of corrosion induced by the crevice/galvanic junction of alloy 600 tubes and various support structure alloys, under conditions that prevail in nuclear steam generators. The effect of oxidant concentration, pH, anion type, temperature, alloy composition and crevice geometry were studied. Empirical relationships were developed for the effects of pH, temperature and alloy type on the measured galvanic corrosion rate. The following materials were selected as representative of those in use or under consideration for support structures in nuclear steam generators: 1018 Carbon steel, 508 Carbon steel, 430 Modified (slightly higher chromium) ferritic stainless steel, 410 Martensitic stainless steel, 409 Ferritic stainless steel, 405 Ferritic stainless steel, and 347 Austenitic stainless steel

  15. Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites

    M R Anantharaman; K A Malini; S Sindhu; E M Mohammed; S K Date; S D Kulkarni; P A Joy; Philip Kurian

    2001-12-01

    Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine the magnetic and dielectric properties. The validity of these equations is verified and they are found to be in good agreement. These equations are useful in tailoring the magnetic and dielectric properties of these composites with predetermined properties.

  16. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy

    Ding, W.F. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)]. E-mail: dingwf2000@vip.163.com; Xu, J.H. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Shen, M. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Su, H.H. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Fu, Y.C. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Xiao, B. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2006-08-25

    In order to develop new generation brazed CBN grinding wheels, the joining experiments of CBN abrasive grains and medium carbon steel using the powder mixture of Ag-Cu alloy and pure Ti as active brazing alloy are carried out at elevated temperature under high vacuum condition. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining behavior among the CBN grains, the filler layer and the steel substrate, are investigated extensively by means of differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The results show that, similar to Ag-Cu-Ti filler alloy, Ag-Cu/Ti powder mixture exhibits good soakage capability to CBN grains during brazing. Moreover, Ti in the powder mixture concentrates preferentially on the surface of the grains to form a layer of needlelike Ti-N and Ti-B compounds by chemical metallurgic interaction between Ti, N and B at high temperature. Additionally, based on the experimental results, the brazing and joining mechanism is deeply discussed in a view of thermodynamic criterion and phase diagram of Ti-B-N ternary system.

  17. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance

    Duan, Huimei; Xu, Caixia

    2016-06-01

    Nanoporous (NP) PdZr alloy with controllable bimetallic ratio is successfully fabricated by a simple dealloying method. By leaching out the more reactive Al from PdZrAl precursor alloy, NP-PdZr alloy with smaller ligament size was generated, characterized by the nanoscaled interconnected network skeleton and hollow channels extending in all three dimensions. Upon voltammetric scan in acid solution, the dissolution of surface Zr atoms generates the highly active Pd-Zr surface alloy with a nearly pure Pd surface and Pd-Zr alloy core. The NP-Pd80Zr20 surface alloy exhibits markedly enhanced specific and mass activities as well as higher catalytic stability toward oxygen reduction reaction (ORR) compared with NP-Pd and the state-of-the-art Pt/C catalysts. In addition, the NP-Pd80Zr20 surface alloy shows a better selectivity for ORR than methanol in the 0.1 M HClO4 and 0.1 M methanol mixed solution. X-ray photoelectron spectroscopy and density functional theory calculations both demonstrate that the weakened Pd-O bond and improved ORR performances in turn depend on the downshifted d-band center of Pd due to the alloying Pd with Zr (20 at.%). The as-made NP-PdZr alloy holds prospective applications as a cathode electrocatalyst in fuel-cell-related technologies with the advantages of superior overall ORR performances, unique structure stability, and easy preparation.

  18. Microstructure feature of friction stir butt-welded ferritic ductile iron

    Highlights: • Defect-free ferritic ductile iron joints is fabricated by FSW. • The welding nugget is composed of graphite, martensite, and recrystallized ferrite. • The graphite displays a striped pattern in the surface and advancing side. • The ferritic matrix transforms into martensite structure during welding. • High degree of plastic deformation is found on the advancing side. - Abstract: This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation

  19. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argon atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness

  20. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    R, Shashanka, E-mail: shashankaic@gmail.com; Chaira, D., E-mail: chaira.debasis@gmail.com

    2015-01-15

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argon atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.