WorldWideScience

Sample records for activation chemical

  1. Active Chemical Sampling System for Underwater Chemical Source Localization

    Ryuichi Takemura; Hiromi Sakata; Hiroshi Ishida

    2016-01-01

    This paper investigates the effect of active water sampling to enhance chemical reception for small underwater robots. The search for a chemical source in a stagnant water environment is not an easy task because the chemical solution released from the source stays in the close vicinity of the source. No signal is obtained even if a robot with chemical sensors is placed a few centimeters from the chemical source. In the system under study, four electrochemical sensors are aligned in front of a...

  2. Linking algal growth inhibition to chemical activity

    Schmidt, Stine N.; Mayer, Philipp

    chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity with the...

  3. Inorganic chemically active adsorbents (ICAAs)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  4. Activated coconut shell charcoal carbon using chemical-physical activation

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  5. Chemical activation of molecules during coordination

    Activation processes of N2, O2, NO molecules in transition metal complexes and electron reconstructions of coordination sphere of compounds, related with it, were considered on tha basis of single-parameter approximation of vibronic activation theory. A special attention is paid to CO molecule activation in carbonyl complexes of transition metals (V, Nb, Mo, W, Tc, Re, Ru and others) and lanthanides. The effect of metal oxidation degree, the nature of metal and ligand, complex structure on chemical activation processes is analyzed

  6. Linking algal growth inhibition to chemical activity

    Schmidt, Stine N.; Mayer, Philipp

    2015-01-01

    Recently, high-quality data were published on the algal growth inhibition caused by 50 non-polar narcotic compounds, of which 39 were liquid compounds with defined water solubility. In the present study, the toxicity data for these liquids were applied to challenge the chemical activity range for...

  7. Activity Therapy Services and Chemical Dependency Rehabilitation.

    James, Mark R.; Townsley, Robin K.

    1989-01-01

    Discusses how music, occupational, and recreation therapies can contribute to comprehensive treatment programs for chemical dependency. Sees prime contribution of activity therapy as lying in nature of experiential education, applying insight gained in counseling sessions and discussion groups to practical real-life situations. (Author/NB)

  8. Service activities of chemical analysis division

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  9. Collective Surfing of Chemically Active Particles

    Masoud, Hassan; Shelley, Michael J.

    2014-03-01

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  10. Antitumor activity of chemical modified natural compounds

    Marilda Meirelles de Oliveira

    1991-01-01

    Full Text Available Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1. Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.

  11. Preparation of activated carbon by chemical activation under vacuum.

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  12. Foundational aspects of the concept of chemical activity

    Mayer, Philipp

    The chemical activity of an organic chemical quantifies its potential for spontaneous physicochemical processes, such as diffusion, sorption, and partitioning. For instance, the chemical activity of a sediment contaminant determines its equilibrium partitioning concentration in sediment......-dwelling organisms and differences in chemical activity determine the direction and extent of diffusion between environmental compartments [1,2]. This makes chemical activity a meaningfull and well-defined exposure parameter that is closely linked to fugacity and freely dissolved concentration [2]. Classical...... toxicological studies have provided the first indication that narcosis occurs within a relatively narrow band of chemical activity [3-5], and during the last 10 years several studies have confirmed this for the „baseline toxicity“ of non-polar organic chemicals and their mixtures [6-8]. The first aim of this...

  13. Genus Mikania: chemical composition and phytotherapeutical activity

    Luciane C. Rufatto

    2012-12-01

    Full Text Available The genus Mikania ranks high in the list of best-selling natural products in the world. Its main distribution is in South America, but some species are found in Asia, North America and Africa. It is used for treating fever, rheumatism, colds and respiratory diseases, as well as snake bites and scorpion stings, due to its broad spectrum of action. There are approximately 430 species of this genus and only 12% have been studied, highlighting their chemical and pharmacological diversity. The main chemical groups are: coumarins and derivatives, sesquiterpenes, sesquiterpenes lactones, diterpenes, phytosterols/terpenoids and flavonoids. This review aims to supply useful references for scientists interested in natural products and the search for new compounds, from over the 300 already described for the genus.

  14. ILO activities in the area of chemical safety.

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety. PMID:12909402

  15. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  16. Constructing Global Production Activity Indices: The Chemical Industry

    Saswati Mahapatra; Thomas K Swift

    2012-01-01

    This article first presents the challenges involved in constructing consistent, timely, and reliable short-term measures of national, regional, and global industry activity. The chemical industry is used as a case study. Second, this article presents the comparison of the movement or fluctuations in industrial production indices and chemical production indices that aid in determining if production in the chemical industry can be used as a proxy for total production in an economy. The American...

  17. Active Emulsions: Synchronization of Chemical Oscillators

    Fraden, Seth

    2012-02-01

    We explore the dynamical behavior of emulsions consisting of nanoliter volume droplets of the oscillatory Belousov-Zhabotinsky (BZ) reaction separated by a continuous oil phase. Some of the aqueous BZ reactants partition into the oil leading to chemical coupling of the drops. We use microfluidics to vary the size, composition and topology of the drops in 1D and 2D. Addition of a light sensitive catalyst to the drops and illumination with a computer projector allows each drop to be individually perturbed. A variety of synchronous regimes are found that systematically vary with the coupling strength and whether coupling is dominated by activatory or inhibitory species. In 1D we observe in- and anti-phase oscillations, stationary Turing patterns in which drops stop oscillating, but form spatially periodic patterns of drops in the oxidized and reduced states, and more complex combinations of stationary and oscillatory drops. In 2D, the attractors are more complex and vary with network topology and coupling strength. For hexagonal lattices as a function of increasing coupling strength we observe right and left handed rotating oscillations, mixed oscillatory and Turing states and finally full Turing states. Reaction -- diffusion models based on a simplified description of the BZ chemistry and diffusion of messenger species reproduce a number of the experimental results. For a range of parameters, a simplified phase oscillator model provides an intuitive understanding of the complex synchronization patterns. [4pt] ``Coupled oscillations in a 1D emulsion of Belousov--Zhabotinsky droplets,'' Jorge Delgado, Ning Li, Marcin Leda, Hector O. Gonzalez-Ochoa, Seth Fraden and Irving R. Epstein, Soft Matter, 7, 3155 (2011).

  18. Guiding catalytically active particles with chemically patterned surfaces

    Uspal, W E; Dietrich, S; Tasinkevych, M

    2016-01-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either "dock" at the chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governi...

  19. Quantitative genetic activity graphical profiles for use in chemical evaluation

    Waters, M.D. [Environmental Protection Agency, Washington, DC (United States); Stack, H.F.; Garrett, N.E.; Jackson, M.A. [Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  20. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Kanniah Rajasekaran; Jian Chen; BECNEL, JAMES J.; Natasha M. Agramonte; Bernier, Ulrich R.; Maia Tsikolia; Kemal Husnu Can Baser; Betul Demirci; David E. Wedge; Nurhayat Tabanca; Sampson, Blair J.; Hamidou F. Sakhanokho; James M. Spiers

    2013-01-01

    The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum...

  1. Chemical and structural features influencing the biological activity of curcumin.

    Priyadarsini, K Indira

    2013-01-01

    Curcumin, a polyphenolic natural product, exhibits therapeutic activity against a number of diseases, attributed mainly to its chemical structure and unique physical, chemical, and biological properties. It is a diferuloyl methane molecule [1,7-bis (4-hydroxy-3- methoxyphenyl)-1,6-heptadiene-3,5-dione)] containing two ferulic acid residues joined by a methylene bridge. It has three important functionalities: an aromatic o-methoxy phenolic group, α, β-unsaturated β-diketo moiety and a seven carbon linker. Extensive research in the last two decades has provided evidence for the role of these different functional groups in its crucial biological activities. A few highlights of chemical structural features associated with the biological activity of curcumin are: The o-methoxyphenol group and methylenic hydrogen are responsible for the antioxidant activity of curcumin, and curcumin donates an electron/ hydrogen atom to reactive oxygen species. Curcumin interacts with a number of biomolecules through non-covalent and covalent binding. The hydrogen bonding and hydrophobicity of curcumin, arising from the aromatic and tautomeric structures along with the flexibility of the linker group are responsible for the non-covalent interactions. The α, β-unsaturated β-diketone moiety covalently interacts with protein thiols, through Michael reaction. The β-diketo group forms chelates with transition metals, there by reducing the metal induced toxicity and some of the metal complexes exhibit improved antioxidant activity as enzyme mimics. New analogues with improved activity are being developed with modifications on specific functional groups of curcumin. The physico-chemical and structural features associated with some of the biological activities of curcumin and important analogues are summarized in this article. PMID:23116315

  2. Structure activity relationships to assess new chemicals under TSCA

    Auletta, A.E. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  3. Chemical composition and antimicrobial activity of Polish herbhoneys.

    Isidorov, V A; Bagan, R; Bakier, S; Swiecicka, I

    2015-03-15

    The present study focuses on samples of Polish herbhoneys (HHs), their chemical composition and antimicrobial activity. A gas chromatography-mass spectrometry (GC-MS) method was used to analyse eight samples of herbal honeys and three samples of nectar honeys. Their antimicrobial activities were tested on selected Gram-positive (Bacillus cereus, Staphylococcus aureus, Staphylococcus schleiferi) and Gram-negative (Escherichia coli) bacteria, as well as on pathogenic fungi Candida albicans. Ether extracts of HHs showed significant differences in composition but the principal groups found in the extracts were phenolics and aliphatic hydroxy acids typical of royal jelly and unsaturated dicarboxylic acids. In spite of the differences in chemical composition, antimicrobial activity of the extracts of HHs against all the tested microorganisms except E. coli was observed. PMID:25308646

  4. Dynamics of self-propelled nanomotors in chemically active media

    Thakur, Snigdha; Kapral, Raymond

    2011-07-01

    Synthetic chemically powered nanomotors often rely on the environment for their fuel supply. The propulsion properties of such motors can be altered if the environment in which they move is chemically active. The dynamical properties of sphere dimer motors, composed of linked catalytic and noncatalytic monomers, are investigated in active media. Chemical reactions occur at the catalytic monomer and the reactant or product of this reaction is involved in cubic autocatalytic or linear reactions that take place in the bulk phase environment. For these reactions, as the bulk phase reaction rates increase, the motor propulsion velocity decreases. For the cubic autocatalytic reaction, this net effect arises from a competition between a reduction of the nonequilibrium concentration gradient that leads to smaller velocity and the generation of fuel in the environment that tends to increase the motor propulsion. The role played by detailed balance in determining the form of the concentration gradient in the motor vicinity in the active medium is studied. Simulations are carried out using reactive multiparticle collision dynamics and compared with theoretical models to obtain further insight into sphere dimer dynamics in active media.

  5. Advances in mechanisms of activation and deactivation of environmental chemicals.

    Goldstein, J A; Faletto, M B

    1993-01-01

    Environmental chemicals are both activated and detoxified by phase I and phase II enzymes. The principal enzymes involved in phase I reactions are the cytochrome P-450s. The phase II enzymes include hydrolase and the conjugative enzymes such as glucuronyltransferases, glutathione transferases, N-acetyltransferase, and sulfotransferase. Although other phase I and phase II enzymes exist, the present review is limited to these enzymes. Once thought to be a single enzyme, multiple cytochrome P-45...

  6. Mining Chemical Activity Status from High-Throughput Screening Assays

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  7. CHEMICAL COMPOSITION AND ANTI-INFLAMMATORY ACTIVITY OF Roldana platanifolia

    Amira Arciniegas

    2015-11-01

    Full Text Available The chemical study of Roldana platanifolia led to the isolation of β-caryophyllene, five eremophilanolides, chlorogenic acid, and a mixture of β-sitosterol-stigmasterol, β-sitosteryl glucopyranoside, and sucrose. The anti-inflammatory activities of the extracts and isolated products were tested using the 12-O-tetradecanoylphorbol-13-acetate (TPA model of induced acute inflammation. The acetone and methanol extracts showed dose dependent activities (ID50 0.21 and 0.32 mg/ear, respectively, while none of the isolated compounds exhibited relevant edema inhibition. The active extracts were also evaluated with the myeloperoxidase assay technique (MPO to determine their ability to prevent neutrophil infiltration. Results showed that the anti-inflammatory activity was related to the compound’s ability to inhibit pro-inflammatory mediators such as neutrophils.

  8. Risk assessment of endocrine active chemicals: identifying chemicals of regulatory concern.

    Bars, Remi; Fegert, Ivana; Gross, Melanie; Lewis, Dick; Weltje, Lennart; Weyers, Arnd; Wheeler, James R; Galay-Burgos, Malyka

    2012-10-01

    The European regulation on plant protection products (1107/2009) (EC, 2009a), the revisions to the biocides Directive (COM[2009]267) (EC, 2009b), and the regulation concerning chemicals (Regulation (EC) No. 1907/2006 'REACH') (EC.2006) only support the marketing and use of chemical products on the basis that they do not induce endocrine disruption in humans or wildlife species. In the absence of agreed guidance on how to identify and evaluate endocrine activity and disruption within these pieces of legislation a European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) task force was formed to provide scientific criteria that may be used within the context of these three legislative documents. The resulting ECETOC technical report (ECETOC, 2009a) and the associated workshop (ECETOC, 2009b) presented a science-based concept on how to identify endocrine activity and disrupting properties of chemicals for both human health and the environment. The synthesis of the technical report and the workshop report was published by the ECETOC task force (Bars et al., 2011a,b). Specific scientific criteria for the determination of endocrine activity and disrupting properties that integrate information from both regulatory (eco)toxicity studies and mechanistic/screening studies were proposed. These criteria combined the nature of the adverse effects detected in studies which give concern for endocrine toxicity with an understanding of the mode of action of toxicity so that adverse effects can be explained scientifically. A key element in the data evaluation is the consideration of all available information in a weight-of-evidence approach. However, to be able to discriminate chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes), the task force recognised that the concept needed further refinement. Following a discussion of the key factors at a second workshop of invited regulatory, academic and industry scientists

  9. Improvement of Chemically-activated Luciferase Gene Expression Bioassay for Detection of Dioxin-like Chemicals

    2002-01-01

    To improve the chemically-activated luciferase expression (CALUX)bioassay for detection of dioxin-like chemicals (DLCs) based on the toxicity mechanisms of DLCs. Method A recombinant vector was constructed and used to transfect human hepatoma (HepG2). The expression of this vector was 10-100 folds higher than that of pGL2used in previous experiments. The transfected cells showed aromatic hydrocarbon receptor (AhR)-meditated luciferase gene expression. The reliability of luciferase induction in this cell line as a reporter of AhR-mediated toxicity was evaluated, the optimal detection time was examined and a comparison was made by using the commonly used ethoxyresoufin-Odeethylase (EROD) activity induction assay. Result The results suggested that the luciferase activity in recombinant cells was peaked at about 4 h and then decreased to a stable activity by 14 h after TCDD treatment. The detection limit of this cell line was 0.1 lpmol/L, or 10-fold lower than in previous studies, with a linear range from 1 to 100pmol/L, related coefficient of 0.997, and the coefficient of variability (CV) of 15-30%,Conclusion The luciferase induction is 30-fold more sensitive than EROD induction, the detection time is 68 h shorter and the detection procedure is also simpler.

  10. Metabolic activation of chemical carcinogens to reactive electrophiles

    Ionizing radiations and ultraviolet light constitute the principal known physical carcinogens. Likewise, a great variety and large number of chemicals and over 50 DNA and RNA viruses comprise the known chemical and viral carcinogens. These three categories of carcinogenic agents include the great majority of extrinsic agents known to induce cancer in mammals. Man is clearly susceptible to the action of physical and chemical carcinogens and, indeed, was the first species in which the activities of some of these agents were demonstated. It seems certain that viral carcinogenic information is involved in the etiology of at least some human tumors, but ethical and methodological problems have made it difficult to obtain unequivocal data. Given the long availability of experimental carcinogens of these three classes, there is surprisingly little known of their interrelationships in the production of cancer in experimental animals. The objective of this brief review is to present some salient aspects of experimental chemical carcinogenesis and an analysis of how some of these features relate to the mechanisms of action of radiation carcinogens

  11. Sila-fulleranes: promising chemically active fullerene analogs

    Marsusi, Farah; Qasemnazhand, Mohammad

    2016-07-01

    Density-functional theory (DFT) was applied to investigate the geometry and electronic properties of bare Si60 and H-terminated Si-fullerene. DFT predicts outward sites on a bare Si60 cage. By using π-orbital axis analysis (POAV), it is shown that these sites result from a strong tendency of silicon atoms to form sp3 hybridization bonds. Natural bond orbital (NBO) analysis confirms the sp3 hybridization nature of Si–Si bonds in Si-fulleranes. The quantum confinement effect (QCE) does not affect band gap (BG) so strongly in the size between 1 and 1.7 nm. In contrast, the geometry and symmetry of the cage have a significant influence on the BG. In contrast to their carbon analogs, pentagon rings increase the stability of the cages. Functionalized Si-cages are stable and can be chemically very active. The electronic properties are highly sensitive to the surface chemistry via functionalization with different chemical groups. As a result, BGs and chemical activities of these cages can be drastically tuned through the chemistry of the surface.

  12. ANTICANCER ACTIVITY OF ISOLATED CHEMICAL CONSTITUENTS FROM MILIUSA SMITHIAE

    Chonthicha Naphong

    2013-01-01

    Full Text Available Miliusa plants belonging to the family Annonaceae are found in Thailand and have been used as Thai traditional medicines. There have been a few previously reports on the chemical constituents of plants in this genus, describing the presence of aporphine alkaloids, terpenoids, flavonoids, phenylpropanoids, styrylpyrones, bis-styryls and homogentisic acid derivatives. Miliusa smithiae, a new species for Thailand and world, has not been studied chemical composition. The present study described phytochemical study of the leaves and twigs of M. smithiae together with their cytotoxicity. The M. smithiae was selected and percolated with hexane, ethyl acetate, acetone and methanol. The extracts were purified and elucidated chemical structures. The constituent of ethyl acetate extract of M. smithiae has been investigated. We isolated and identified two flavonoid derivatives, 5-hydroxy-3,7,4′-trimetoxyflavone (1 and 5,3′-dihydroxy-3,7,4′-trimetoxyflavone (2. The structures of these compounds were elucidated on the basis of spectroscopic evidence. Studies on ethyl acetate extract of M. smithiae has now resulted the isolation and structural characterization of two flavonoids. Their anticancer activities were evaluated using SRB assays. In this method, compound 2 showed potential activity in cell lines.

  13. Simaroubaceae family: botany, chemical composition and biological activities

    Iasmine A.B.S. Alves

    2014-08-01

    Full Text Available The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicide, antiparasitic and herbicidal. Although the chemical and pharmacological potential of Simaroubaceae family as well as its participation in official compendia; such as British, German, French and Brazilian pharmacopoeias, and patent registration, many of its species have not been studied yet. In order to direct further investigation to approach detailed botanical, chemical and pharmacological aspects of the Simaroubaceae, the present work reviews the information regarding the main genera of the family up to 2013.

  14. Chemical constituents from Swietenia macrophylla bark and their antioxidant activity.

    Falah, S; Suzuki, T; Katayama, T

    2008-08-15

    Chemical constituents of the bark of Swietenia macrophylla King (Meliaceae) was investigated not only to develop further bark utilization but also to understand the biochemical function of the bark in the forest environment. A new phenylpropanoid-substituted catechin, namely, swietemacrophyllanin [(2R*,3S*,7"R*)-catechin-8,7"-7,2"-epoxy-(methyl 4",5"-dihydroxyphenylpropanoate)] (1) was isolated from the bark of S. macrophylla together with two known compounds, catechin (2) and epicatechin (3). The structure of 1 was elucidated by spectroscopic data and by comparison of the NMR data with those of catiguanins A and B, phenylpropanoid-substituted epicatechins. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of the isolated compounds indicated that all of the three compounds have strong activity compared with trolox as a reference. Swietemacrophyllanin (1) had the strongest activity with a 50% inhibitory concentration (IC50) value of 56 microg mL(-1). PMID:19266907

  15. Chemical Signaling and Functional Activation in Colloidosome-Based Protocells.

    Sun, Shiyong; Li, Mei; Dong, Faqin; Wang, Shengjie; Tian, Liangfei; Mann, Stephen

    2016-04-01

    An aqueous-based microcompartmentalized model involving the integration of partially hydrophobic Fe(III)-rich montmorillonite (FeM) clay particles as structural and catalytic building blocks for colloidosome membrane assembly, self-directed membrane remodeling, and signal-induced protocell communication is described. The clay colloidosomes exhibit size- and charge-selective permeability, and show dual catalytic functions involving spatially confined enzyme-mediated dephosphorylation and peroxidase-like membrane activity. The latter is used for the colloidosome-mediated synthesis and assembly of a temperature-responsive poly(N-isopropylacrylamide)(PNIPAM)/clay-integrated hybrid membrane. In situ PNIPAM elaboration of the membrane is coupled to a glucose oxidase (GOx)-mediated signaling pathway to establish a primitive model of chemical communication and functional activation within a synthetic "protocell community" comprising a mixed population of GOx-containing silica colloidosomes and alkaline phosphatase (ALP)-containing FeM-clay colloidosomes. Triggering the enzyme reaction in the silica colloidosomes gives a hydrogen peroxide signal that induces polymer wall formation in a coexistent population of the FeM-clay colloidosomes, which in turn generates self-regulated membrane-gated ALP-activity within the clay microcompartments. The emergence of new functionalities in inorganic colloidosomes via chemical communication between different protocell populations provides a first step toward the realization of interacting communities of synthetic functional microcompartments. PMID:26923794

  16. Transient assembly of active materials fueled by a chemical reaction

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  17. Chemical Modifications of Hyaluronan using DMTMM-Activated Amidation

    Rydergren, Sara

    2013-01-01

    An alternative approach to chemically modifying hyaluronan (HA) has been investigated. The triazine derivative 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM) has been used to activate carboxylic groups on HA, which react further to form stable amide bonds with primary and secondary amines. The reaction can either be used to couple monoamines to HA or to produce hydrogels by using diamines that form crosslinks between the HA chains. The reaction between HA and DMTMM has been...

  18. Active membrane having uniform physico-chemically functionalized ion channels

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  19. Physico-chemical characterization of powdered activated carbons obtained by thermo-chemical conversion of brown municipal waste

    Momčilović Milan Z.; Purenović Milovan M.; Miljković Milena N.; Bojić Aleksandar Lj.; Zarubica Aleksandra R.; Ranđelović Marjan S.

    2011-01-01

    Cones of the European Black pine and Horse chestnut kernel, regarded as brown municipal waste, was utilized in this work as a precursor for powdered activated carbons. Chemical activation was employed at 500°C in inert atmosphere of nitrogen. Standard physico-chemical analyses were performed to examine obtained products. FTIR method was employed to determine fuctional groups which were found to be typical for activated carbons. Acidic oxygen groups were quantitatively determined using B...

  20. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Juraithip Wungsintaweekul

    2010-12-01

    Full Text Available Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candida spp. with the MICs ranging from 0.5-0.6 mg/ml. The O. sanctum volatile oil showed a considerableactivity against only Candida spp. with the MICs ranging from 0.8-1.4 mg/ml. Interestingly, growth of Mycobacteriumphlei was inhibited by the volatiles of O. americanum, C. hystrix peel, and C. zedoaria with MIC of 1.7, 3.5 and 1.2 mg/ml,respectively. For antioxidant activity evaluation, the methanol extracts of C. hystrix (leaf and peel and K. parviflora hadpotent antioxidant activity by the radical-scavenging DPPH method with IC50 of 24.6, 66.3 and 61.5 mg/ml, respectively.GC-MS analysis revealed the typical chemical profiles of the volatile oils. The major component showed the characteristicsof the volatile oils and was probably responsible for the antimicrobial effect.

  1. Improvement of activity and stability of chloroperoxidase by chemical modification

    Wang Min

    2007-05-01

    Full Text Available Abstract Background Enzymes show relative instability in solvents or at elevated temperature and lower activity in organic solvent than in water. These limit the industrial applications of enzymes. Results In order to improve the activity and stability of chloroperoxidase, chloroperoxidase was modified by citraconic anhydride, maleic anhydride or phthalic anhydride. The catalytic activities, thermostabilities and organic solvent tolerances of native and modified enzymes were compared. In aqueous buffer, modified chloroperoxidases showed similar Km values and greater catalytic efficiencies kcat/Km for both sulfoxidation and oxidation of phenol compared to native chloroperoxidase. Of these modified chloroperoxidases, citraconic anhydride-modified chloroperoxidase showed the greatest catalytic efficiency in aqueous buffer. These modifications of chloroperoxidase increased their catalytic efficiencies for sulfoxidation by 12%~26% and catalytic efficiencies for phenol oxidation by 7%~53% in aqueous buffer. However, in organic solvent (DMF, modified chloroperoxidases had lower Km values and higher catalytic efficiencies kcat/Km than native chloroperoxidase. These modifications also improved their thermostabilities by 1~2-fold and solvent tolerances of DMF. CD studies show that these modifications did not change the secondary structure of chloroperoxidase. Fluorescence spectra proved that these modifications changed the environment of tryptophan. Conclusion Chemical modification of epsilon-amino groups of lysine residues of chloroperoxidase using citraconic anhydride, maleic anhydride or phthalic anhydride is a simple and powerful method to enhance catalytic properties of enzyme. The improvements of the activity and stability of chloroperoxidase are related to side chain reorientations of aromatics upon both modifications.

  2. Influences of chemical activators on incinerator bottom ash.

    Qiao, X C; Cheeseman, C R; Poon, C S

    2009-02-01

    This research has applied different chemical activators to mechanically and thermally treated fine fraction (material. IBA has been milled and thermally treated at 800 degrees C (TIBA). The TIBA produced was blended with Ca(OH)(2) and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na(2)SO(4), K(2)SO(4), Na(2)CO(3), K(2)CO(3), NaOH, KOH and CaCl(2) into 100g of binder (TIBA+Ca(OH)(2)). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca(2)Al(2)SiO(7)), wollastonite (CaSiO(3)) and mayenite (Ca(12)Al(14)O(33)) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na(2)CO(3) can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na(2)SO(4), K(2)SO(4), K(2)CO(3), NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl(2) has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca(4)Al(2)O(6)(CO(3))(0.67)(SO(3))(0.33)(H(2)O)(11)) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl(2). PMID:18718749

  3. Influences of chemical activators on incinerator bottom ash

    This research has applied different chemical activators to mechanically and thermally treated fine fraction (2 and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na2SO4, K2SO4, Na2CO3, K2CO3, NaOH, KOH and CaCl2 into 100 g of binder (TIBA+Ca(OH)2). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca2Al2SiO7), wollastonite (CaSiO3) and mayenite (Ca12Al14O33) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na2CO3 can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na2SO4, K2SO4, K2CO3, NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl2 has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca4Al2O6(CO3)0.67(SO3)0.33(H2O)11) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl2

  4. Instrumental neutron activation analysis. A valuable link in chemical metrology

    A systematic experimental approach to the demonstration of viability of instrumental neutron activation analysis (INAA) in chemical metrology is provided. The practical approach was derived from a complete survey of uncertainty components that affect the INAA measurement process. These uncertainty components were classified by their magnitude and origin and subsequently minimized by appropriate steps in the INAA process. The process was tested with the INAA determination of Cr in SRM 1152A stainless steel; the Cr value is certified at 17.76% with an estimated uncertainty of 0.04% (0.23% relative). The INAA results from this procedure are in agreement with these specifications. Similar procedures have been applied to INAA multi-element determinations in a high temperature alloy. Agreement with available consensus values was demonstrated in the alloy. The guidelines on the determination of uncertainty were fully met, providing through INAA a valuable independent non-destructive tool in chemical measurements of metrological value such as required in the CCQM key comparisons. (author)

  5. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x1011ncm-2s-1. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g-1. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  6. Biphasic flow in a chemically active porous medium

    Darmon, Alexandre; Salez, Thomas; Dauchot, Olivier

    2014-01-01

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species -- in a one-dimensional macroscopic description --, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy's law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements fo...

  7. Chemical weapons detection by fast neutron activation analysis techniques

    A neutron diagnostic experimental apparatus has been tested for nondestructive verification of sealed munitions. Designed to potentially satisfy a significant number of van-mobile requirements, this equipment is based on an easy to use industrial sealed tube neutron generator that interrogates the munitions of interest with 14 MeV neutrons. Gamma ray spectra are detected with a high purity germanium detector, especially shielded from neutrons and gamma ray background. A mobile shell holder has been used. Possible configurations allow the detection, in continuous or in pulsed modes, of gamma rays from neutron inelastic scattering, from thermal neutron capture, and from fast or thermal neutron activation. Tests on full scale sealed munitions with chemical simulants show that those with chlorine (old generation materials) are detectable in a few minutes, and those including phosphorus (new generation materials) in nearly the same time. (orig.)

  8. Chemical profiling of Centella asiatica under different extraction solvents and its antibacterial activity, antioxidant activity

    Supawan Rattanakom; Patchanee Yasurin

    2015-01-01

    Centella asiatica (L) urban, synonym Hydrocotyle asiatica, is found almost all over the world. This plant is famous in Ayurvedic medicine and used in the management of central nervous system, skin and gastrointestinal disorder. Thus this research had been done to evaluate the effect of solvent extraction (Ethanol, Chloroform and Hexane) of C. asiatica on chemical profile, antioxidant activity and antibacterial activity against some foodborne pathogens. The result showed that all solvents (et...

  9. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    European and International mechanism of handling safety- and risk-related matters. So, the Organisation for Economic Co-operation and Development's (OECD) core objective on risk management is to support Member countries' efforts to develop national policies and actions, and, where appropriate, to develop and implement international risk management measures. In support of this objective, the OECD Risk Management Programme focuses on two areas: (1) developing methods and technical tools that can be used by OECD and Member countries to enhance their current risk management programmes; and (2) identifying specific chemical exposures of concern in Member countries and evaluating possible risk management opportunities. The current paper highlights the EU legislation on major accident hazards related to the chemical industry, differences in the national approaches to risk analyses in the process industry and European-scale activity in improving the understanding of the sources of uncertainty in risk assessments

  10. Chemical Composition and Antioxidant Activity of Walnut Pollen Samples

    Sina COSMULESCU

    2015-12-01

    Full Text Available Chemical composition of pollen is highly varied depending on the plant species from which it comes and has been the subject of numerous comparative studies. The aim of this study was to determine chemical composition and antioxidant activity of walnut pollen samples and compare them with those of bee pollen. Total phenols content, total flavonoids content, antioxidant activity and mineral composition were studied using walnut pollen samples from three walnut genotypes cultivated in Romania. Total phenols content was determined by colorimetric assay and their amount varied between 10.8 and 17.64 mgGAE/g per genotype. Determination of flavonoids was done by aluminium nitrate colorimetric method and total flavonoid contents in walnut pollen ranged from 7.32 to 7.95 mgQE/g. The antioxidant capacity of pollen extracts was assessed through the scavenging effects on DPPH and a concentration-dependent genotype, and it varied between 13.78 and 15.04 mg Trolox/g. In terms of mineral composition, walnut pollen appears to be a good source of potassium (859.14 mg/100 g, magnesium (263.77 mg/100 g, calcium (71.72 mg/100 g, iron (27.19 mg/100 g, sodium (10.52 mg/100 g, zinc (5.69 mg/100 g, manganese (3.98 mg/100 g, copper (1.28 mg/100 g, chromium (0.39 mg/100 g and selenium (0.036 mg/100 g. The results obtained indicate that walnut pollen is an important source of total phenols showing antioxidant properties and mineral composition that could be beneficial to human health.

  11. Active sampling technique to enhance chemical signature of buried explosives

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  12. Dynamic model for selective metabolic activation in chemical carcinogenesis

    Selkirk, J.K.; MacLeod, M.C.

    1980-01-01

    Theoretical calculations predict the relative ease of formation of carbonium ions from 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene-9,10-oxide or from either of the 2 symmetrical bay regions of B(e)P, and suggest their attraction to cellular nucleophiles. When both isomers were metabolized by hamster embryo fibroblasts (HEF) and the products analyzed, the results showed that the probable reason for benzo(e)pyrene's lack of carcinogenicity was its metabolic preference to attack the molecule away from the bay-region area. Particularly striking was the absence of any evidence for the formation of a significant amount of B(e)P-9,10-dihydrodiol. This suggests a metabolic basis for the relative lack of carcinogenic and mutagenic activity of B(e)P. The reason for this is not clear but may be due to physical or chemical factors such as membrane solubility or stereochemical requirements of the active site of the enzyme. The bay-region theory of PAH carcinogenesis predicts that carbonium ion formation from 9,10-dihydro-9,10-dihydroxybenzo(e)pyrene-11, 12-oxide, if formed, would be energetically favorable. Thus, the inability of HEF and microcomes to form B(e)P-9,10-dihydrodiol, the precursor of its potentially highly reactive diol-epoxide, would explain the relative inertness of B(e)P in several biological systems. As the subtle biochemical interactions of the various carcinogen intermediates become clarified, it becomes apparent that susceptibility and resistance to malignant transformation are based on a complex set of both chemical and physical parameters. It is becoming clear that metabolism kinetics, membrane interaction, and the role of nuclear metabolism help dictate the passage of the carcinogen and its reactive intermediates into and through the metabolic machinery of the cell. (ERB)

  13. Preparation and Characterization of Sisal Fiber-based Activated Carbon by Chemical Activation with Zinc Chloride

    Sisal fiber, an agricultural resource abundantly available in China, has been used as raw material to prepare activated carbon with high surface area and huge pore volume by chemical activation with zinc chloride. The orthogonal test was designed to investigate the influence of zinc chloride concentration, impregnation ratio, activation temperature and activation time on preparation of activated carbon. Scanning electron micrograph, Thermo-gravimetric, N2-adsorption isotherm, mathematical models such as t-plot, H-K equation, D-R equation and BJH methods were used to characterize the properties of the prepared carbons and the activation mechanism was discussed. The results showed that ZnCl2 changed the pyrolysis process of sisal fiber. Characteristics of activated carbon are: BET surface area was 1628 m2/g, total pore volume was 1.316 m3/g and ratio of mesopore volume to total pore volume up to 94.3%. These results suggest that sisal fiber is an attractive source to prepare mesoporous high-capacity activated carbon by chemical activation with zinc chloride

  14. Chemically Induced and Light-Independent Cryptochrome Photoreceptor Activation

    Gesa Rosenfeldt; Rafael Mu(n)oz Viana; Henning D.Mootz; Albrecht G.Von Arnim; Alfred Batschauer

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  15. Chemical Composition and Biological Activities of Gerbera anandria

    Fa He

    2014-04-01

    Full Text Available Gerbera anandria (Compositae was extracted with 75% ethanol and the residue was fractionated using light petroleum, chloroform and ethyl acetate. The constituents of the extracts were separated by column chromatography employing solvents of different polarity. Column chromatography of the light petroleum fraction resulted in the isolation of methyl hexadecanoate, while the chloroform fraction afforded xanthotoxin, 2-hydroxy-6-methylbenzoic acid, 7-hydroxy-1(3H-isobenzofuranone, a mixture of β-sitosterol and stigmasterol, and 8-methoxysmyrindiol and the ethyl acetate fraction gave gerberinside, apigenin-7-O-β-d-glucopyranoside and quercetin. A new coumarin, 8-methoxysmyrindiol, was found. The chemical structures of the isolated compounds were established by MS and NMR (HSQC, HMBC. Free radical scavenging and cytotoxic activities of crude extracts and 8-methoxysmyrindiol were further investigated. The ethyl acetate phase exerted the strongest DPPH free radical scavenging activity in comparison to the other fractions. The coumarin 8-methoxysmyrindiol demonstrated cytotoxicity against multiple human cancer cell lines, with the highest potency in HepG2 cells.

  16. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  17. Salacia crassifolia (Celastraceae: CHEMICAL CONSTITUENTS AND ANTIMICROBIAL ACTIVITY

    Vanessa G. Rodrigues

    2015-02-01

    Full Text Available The phytochemical study of hexane extract from leaves of Salacia crassifolia resulted in the isolation of 3β-palmitoxy-urs-12-ene, 3-oxofriedelane, 3β-hydroxyfriedelane, 3-oxo-28-hydroxyfriedelane, 3-oxo-29-hydroxyfriedelane, 28,29-dihydroxyfriedelan-3-one, 3,4-seco-friedelan-3-oic acid, 3β-hydroxy-olean-9(11:12-diene and the mixture of α-amirin and β-amirin. β-sitosterol, the polymer gutta-percha, squalene and eicosanoic acid were also isolated. The chemical structures of these constituents were established by IR, 1H and 13C NMR spectral data. Crude extracts and the triterpenes were tested against Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis and no activity was observed under the in vitro assay conditions. The hexane, chloroform, ethyl acetate and ethanol crude extracts, and the constituent 3,4-seco-friedelan-3-oic acid and 28,29-dihydroxyfriedelan-3-one showed in vitro antimicrobial activity against Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Streptococcus sanguinis and Candida albicans.

  18. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    . In this respect there is a European and International mechanism of handling safety- and risk-related matters. So, the Organisation for Economic Co-operation and Development's (OECD) core objective on risk management is to support Member countries' efforts to develop national policies and actions, and, where appropriate, to develop and implement international risk management measures. In support of this objective, the OECD Risk Management Programme focuses on two areas: (1) developing methods and technical tools that can be used by OECD and Member countries to enhance their current risk management programmes; and (2) identifying specific chemical exposures of concern in Member countries and evaluating possible risk management opportunities. The current paper highlights the EU legislation on major accident hazards related to the chemical industry, differences in the national approaches to risk analyses in the process industry and European-scale activity in improving the understanding of the sources of uncertainty in risk assessments.

  19. Chaotic Temperatures vs Coefficients of Thermodynamic Activity The Advantage of the Method of Chemical Dynamics

    Zilbergleyt, B

    2002-01-01

    The article compares traditional coefficients of thermodynamic activity as a parameter related to individual chemical species to newly introduced reduced chaotic temperatures as system characteristics, both regarding their usage in thermodynamic simulation of open chemical systems. Logical and mathematical backgrounds of both approaches are discussed. It is shown that usage of reduced chaotic temperatures and the Method of Chemical Dynamics to calculate chemical and phase composition in open chemical systems is much less costly, easier to perform and potentially leads to better precision.

  20. Secondary organic aerosols. Chemical aging, hygroscopicity, and cloud droplet activation

    Buchholz, Angela

    2011-07-06

    functional groups in this compound was adjusted to reproduce the observed growth curves. However, further information on surface tension and the ratio of the molecular mass and density of the solute is needed to predict activation behavior from hygroscopic growth measurements. A dependence of {kappa} on the ratio of primarily produced OH to initial VOC level was observed. The higher {kappa} values for low precursor concentrations could be attributed to a higher OH/VOC level. The detailed chemical composition of the gas-phase precursors had only little effect on {kappa}. In long term experiments there was no significant effect of the observed chemical aging of the particles on {kappa}. The observed low variability of {kappa} for biogenic SOA particles simplifies their treatment in global models as an average value of {kappa} = 0.1 can be used. (orig.)

  1. The versatility of hot-filament activated chemical vapor deposition

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  2. Chemical synthesis and immunosuppressive activity of dipalmitoyl phosphatidylinositol hexamannoside.

    Ainge, Gary D; Compton, Benjamin J; Hayman, Colin M; Martin, William John; Toms, Steven M; Larsen, David S; Harper, Jacquie L; Painter, Gavin F

    2011-06-17

    Phosphatidylinositol mannosides (PIMs) isolated from mycobacteria have been identified as an important class of phosphoglycolipids with significant immune-modulating properties. We present here the synthesis of dipalmitoyl phosphatidylinositol hexamannoside (PIM(6)) 1 and the first reported functional biology of a synthetic PIM(6). Key steps in the synthetic protocol included the selective glycosylation of an inositol 2,6-diol with a suitably protected mannosyl donor and construction of the glycan core utilizing a [3 + 4] thio-glycosylation strategy. The target 1 was purified by reverse phase chromatography and characterized by standard spectroscopic methods, HPLC, and chemical modification by deacylation to dPIM(6). The (1)H NMR spectrum of synthetic dPIM(6) obtained from 1 matched that of dPIM(6) obtained from nature. PIM(6) (1) exhibited dendritic cell-dependent suppression of CD8(+) T cell expansion in a human mixed lymphocyte reaction consistent with the well established immunosuppressive activity of whole mycobacteria. PMID:21574597

  3. Heat-activated Plasmonic Chemical Sensors for Harsh Environments

    Carpenter, Michael [SUNY Polytechnic Inst., Albany, NY (United States); Oh, Sang-Hyun [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-12-01

    A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold film using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting

  4. Microbial dechlorination activity during and after chemical oxidant treatment

    Doğan-Subaşı, Eylem [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Bastiaens, Leen, E-mail: leen.bastiaens@vito.be [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Boon, Nico [Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Dejonghe, Winnie [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium)

    2013-11-15

    Highlights: • Combined treatment was possible below 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8}. • By-products SO{sub 4}{sup 2−} and MnO{sub 2(s)} had inhibitory effects on dehalogenating bacteria. • Oxidation reduction potential (ORP) was identified as a crucial parameter for recovery of oxidant exposed cells. • Bioaugmentation is a necessity at 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8} and above. -- Abstract: Potassium permanganate (PM) and sodium persulfate (PS) are used in soil remediation, however, their compatibility with a coinciding or subsequent biotreatment is poorly understood. In this study, different concentrations of PM (0.005–2 g/L) and PS (0.01–4.52 g/L) were applied and their effects on the abundance, activity, and reactivation potential of a dechlorinating enrichment culture were investigated. Expression of the tceA, vcrA and 16S rRNA genes of Dehalococcoides spp. were detected at 0.005–0.01 g/L PM and 0.01–0.02 g/L PS. However, with 0.5–2 g/L PM and 1.13–4.52 g/L PS no gene expression was recorded, neither were indicator molecules for total cell activity (Adenosine triphosphate, ATP) detected. Dilution did not promote the reactivation of the microbial cells when the redox potential was above −100 mV. Similarly, inoculated cells did not dechlorinate trichloroethene (TCE) above −100 mV. When the redox potential was decreased to −300 mV and the reactors were bioaugmented for a second time, dechlorination activity recovered, but only in the reactors with 1.13 and 2.26 g/L PS. In conclusion, our results show that chemical oxidants can be combined with a biotreatment at concentrations below 0.5 g/L PM and 1 g/L PS.

  5. Chemical surface tuning electrocatalysis of redox-active nanoparticles

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable immobili...

  6. Advanced deposition model for thermal activated chemical vapor deposition

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  7. Chemical constituents and antihistamine activity of Bixa orellana leaf extract

    Yong Yoke Keong

    2013-02-01

    Full Text Available Abstract Background Bixa orellana L. has been traditionally used in Central and South America to treat a number of ailments, including internal inflammation, and in other tropical countries like Malaysia as treatment for gastric ulcers and stomach discomfort. The current study aimed to determine the major chemical constituents of the aqueous extract of B. orellana (AEBO and to evaluate the antihistamine activity of AEBO during acute inflammation induced in rats. Methods Acute inflammation was produced by subplantar injection of 0.1 mL of 0.1% histamine into the right hind paw of each rat in the control and treatment groups. The degree of edema was measured before injection and at the time points of 30, 60, 120, 180, 240 and 300 min after injection. Changes of peritoneal vascular permeability were studied using Evans blue dye as a detector. Vascular permeability was evaluated by the amount of dye leakage into the peritoneal cavity in rats. To evaluate the inhibitory effect of AEBO on biochemical mediators of vascular permeability, the levels of nitric oxide (NO and vascular endothelial growth factor (VEGF were determined in histamine-treated paw tissues. The major constituents of AEBO were determined by gas chromatography–mass spectrometry (GC-MS analysis. Results AEBO produced a significant inhibition of histamine-induced paw edema starting at 60 min time point, with maximal percentage of inhibition (60.25% achieved with a dose of 150 mg/kg of AEBO at 60 min time point. Up to 99% of increased peritoneal vascular permeability produced by histamine was successfully suppressed by AEBO. The expression of biochemical mediators of vascular permeability, NO and VEGF, was also found to be downregulated in the AEBO treated group. Gas chromatography–mass spectrometry (GC-MS analysis revealed that the major constituent in AEBO was acetic acid. Conclusions The experimental findings demonstrated that the anti-inflammatory activity of AEBO was

  8. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.

  9. Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling

    Grančič, Peter; Štěpánek, František

    2011-08-01

    The multibody dynamics of a system of chemical swarm robots in a porous environment is investigated. The chemical swarm robots are modeled as Brownian particles capable of delivering an encapsulated chemical payload toward a given target location and releasing it in response to an external stimulus. The presence of chemical signals (chemo-attractant) in the system plays a crucial role in coordinating the collective movement of the particles via chemotaxis. For a number of applications, such as distributed chemical processing and targeted drug delivery, the understanding of factors that govern the collective behavior of the particles, especially their ability to localize a given target, is of immense importance. A hybrid modeling methodology based on the combination of the Brownian dynamics method and diffusion problem coupled through the chemotaxis phenomena is used to analyze the impact of a varying signaling threshold and the strength of chemotaxis on the ability of the chemical robots to fulfill their target localization mission. The results demonstrate that the selected performance criteria (the localization half time and the success rate) can be improved when an appropriate signaling process is chosen. Furthermore, for an optimum target localization strategy, the topological complexity of the porous environment needs to be reflected.

  10. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003. PMID:24791478

  11. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-01

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems. PMID:27168079

  12. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, XP (g H3PO4/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77 K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m2/g) and high pore volume (up to 1.19 cm3/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R2) and the normalized standard deviation Δq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB and phenol

  13. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation

    Altenor, Sandro [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); LAQUE, Universite Quisqueya d' Haiti, Port-au-Prince (Haiti); Carene, Betty [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Emmanuel, Evens [LAQUE, Universite Quisqueya d' Haiti, Port-au-Prince (Haiti); Lambert, Jacques; Ehrhardt, Jean-Jacques [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS-Nancy Universities, 405 rue de Vandoeuvre, F 54600 Villers-les-Nancy Cedex (France); Gaspard, Sarra, E-mail: sgaspard@univ-ag.fr [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France)

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X{sub P} (g H{sub 3}PO{sub 4}/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77 K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m{sup 2}/g) and high pore volume (up to 1.19 cm{sup 3}/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R{sup 2}) and the normalized standard deviation {Delta}q (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse

  14. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  15. CHEMICALS

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  16. Physico-chemical characterization of powdered activated carbons obtained by thermo-chemical conversion of brown municipal waste

    Momčilović Milan Z.

    2011-01-01

    Full Text Available Cones of the European Black pine and Horse chestnut kernel, regarded as brown municipal waste, was utilized in this work as a precursor for powdered activated carbons. Chemical activation was employed at 500°C in inert atmosphere of nitrogen. Standard physico-chemical analyses were performed to examine obtained products. FTIR method was employed to determine fuctional groups which were found to be typical for activated carbons. Acidic oxygen groups were quantitatively determined using Boehm titrations. It was established that carboxylic groups on pine cone activated carbon, and phenolic groups on chestnut kernel activated carbon were dominant from all acidic oxygen groups. Since both contact pH and pHPZC were determined to be fairly acidic, it could be concluded that obtained activated carbons belong to L-type. Shape and layout of micrometer dimensioned particles were observed by scanning electron microscopy. Particles of different shapes and dimensions along with small cracks and wide crevices and voids were noticed. Textural analysis was used to determine specific surface area and pore distribution of obtained activated carbons. Obtained products possess highly developed surface area and wide pore distribution.

  17. Evaluation of Kinase Activity Profiling Using Chemical Proteomics.

    Ruprecht, Benjamin; Zecha, Jana; Heinzlmeir, Stephanie; Médard, Guillaume; Lemeer, Simone; Kuster, Bernhard

    2015-12-18

    Protein kinases are important mediators of intracellular signaling and are reversibly activated by phosphorylation. Immobilized kinase inhibitors can be used to enrich these often low-abundance proteins, to identify targets of kinase inhibitors, or to probe their selectivity. It has been suggested that the binding of kinases to affinity beads reflects a kinase's activation status, a concept that is under considerable debate. To assess the merits of the idea, we performed a series of experiments including quantitative phosphoproteomics and purification of kinases by single or mixed affinity matrices from signaling activated or resting cancer cells. The data show that mixed affinity beads largely bind kinases independent of their activation status, and experiments using individual immobilized kinase inhibitors show mixed results in terms of preference for binding the active or inactive conformation. Taken together, activity- or conformation-dependent binding to such affinity resins depends (i) on the kinase, (ii) on the affinity probe, and (iii) on the activation status of the lysate or cell. As a result, great caution should be exercised when inferring kinase activity from such binding data. The results also suggest that assaying kinase activity using binding data is restricted to a limited number of well-chosen cases. PMID:26378887

  18. Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples permafrost-formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  19. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Juraithip Wungsintaweekul; Worapan Sitthithaworn; Waraporn Putalun; Hartwig W. Pfeifhoffer; Adelheid Brantner

    2010-01-01

    Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candid...

  20. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities.

    Muschin, Tegshi; Budragchaa, Davaanyam; Kanamoto, Taisei; Nakashima, Hideki; Ichiyama, Koji; Yamamoto, Naoki; Shuqin, Han; Yoshida, Takashi

    2016-08-01

    Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8μg/mL and 0.2-1.1μg/mL, compared to those curdlan sulfates, 0.1μg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities. PMID:27154517

  1. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  2. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  3. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics

    The chemical characterization of oxo-biodegradable plastic bags was performed by neutron activation analysis. The presence of several chemical elements (As, Br, Ca, Co, Cr, Fe, Hf, K, La, Na, Sb, Sc, Ta and Zn) with large variability of mass fractions amongst samples indicates that these plastics receive additives and may have been contaminated during manufacturing process thereby becoming potential environmental pollutants. (author)

  4. Mathematical Modeling of Tin-Free Chemically-Active Antifouling Paint Behavior

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim;

    2006-01-01

    Mathematical modeling has been used to characterize and validate the working mechanisms of tin-free, chemically-active antifouling (AF) paints. The model-based analysis of performance data from lab-scale rotary experiments has shown significant differences between antifouling technologies as rega...... of Chemical Engineers....

  5. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined. Anti

  6. Incorporating Nondrug Social & Recreational Activities in Outpatient Chemical Dependency Treatment

    Siporin, Sheldon; Baron, Lisa

    2012-01-01

    "Contingency Management programs (CMP) and non-drug social and recreational activities (NDSRA) are interventions premised on behavior theory that rely on external sources of reinforcement alternative to drug-based forms to decrease drug use. CMP usually employs vouchers as reinforcement for negative toxicologies. Despite research support, CMP…

  7. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  8. Chemical constituents and biological activities of Garcinia cowa Roxb.

    Thunwadee Ritthiwigrom

    2013-06-01

    Full Text Available Garcinia cowa is an abundant source of bioactive phytochemicals. Phytochemical investigations of the plant parts indicated that the fruit, twig and stem are the best source of secondary metabolites, providing flavonoids, phloroglucinols and xanthones respectively. Seventy-eight of these compounds have been identified from the plant and several have interesting pharmacological activities.

  9. Chemical constituents and biological activities of Garcinia cowa Roxb.

    Thunwadee Ritthiwigrom

    2013-01-01

    Garcinia cowa is an abundant source of bioactive phytochemicals. Phytochemical investigations of the plant parts indicated that the fruit, twig and stem are the best source of secondary metabolites, providing flavonoids, phloroglucinols and xanthones respectively. Seventy-eight of these compounds have been identified from the plant and several have interesting pharmacological activities.

  10. Antimicrobial activity and chemical investigation of Brazilian Drosera.

    Ferreira, Dalva Trevisan; Andrei, César Cornélio; Saridakis, Halha Ostrensky; Faria, Terezinha de Jesus; Vinhato, Elisângela; Carvalho, Kátia Eliane; Daniel, Juliana Feijó Souza; Machado, Sílvio Luiz; Saridakis, Dennis Panayotis; Braz-Filho, Raimundo

    2004-11-01

    The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol) obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 ) were tested against Staphylococcus aureus (ATCC 25923), Enterococcus faecium (ATCC23212), Pseudomonas aeruginosa (ATCC27853), Escherichia coli (ATCC11229), Salmonella choleraesuis (ATCC10708), Klebsiella pneumoniae (ATCC13883), and Candida albicans (a human isolate). Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin); long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa. PMID:15654434

  11. Antimicrobial activity and chemical investigation of Brazilian Drosera

    Dalva Trevisan Ferreira

    2004-11-01

    Full Text Available The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 were tested against Staphylococcus aureus (ATCC 25923, Enterococcus faecium (ATCC23212, Pseudomonas aeruginosa (ATCC27853, Escherichia coli (ATCC11229, Salmonella choleraesuis (ATCC10708, Klebsiella pneumoniae (ATCC13883, and Candida albicans (a human isolate. Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin; long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa.

  12. Chemical study of Sinningia allagophylla guided by antiproliferative activity assays

    Activity guided fractionation of Sinningia allagophylla (Mart.) Wiehler ethanolic extract yielded a new benzochromene 8-methoxylapachenol, besides seven known compounds: lapachenol, sitosteryl oleate, sitosteryl linoleate, stigmasteryl oleate, stigmasteryl linoleate, dunniol and tectoquinone. Extract, fractions, and compounds lapachenol, 8-methoxylapachenol, and dunniol were tested in vitro against human cancer cell lines U251 (glioma, CNS), MCF-7 (breast), NCI-ADR/RES (drug-resistant ovarian), 786-0 (kidney), NCI-H460 (lung, no small cells), PC-3 (prostate), OVCAR-3 (ovarian), HT-29 (colon), K562 (leukemia) and against VERO, a normal cell line. The most active compound was dunniol, which inhibited the growth of U251, MCF-7, NCI-ADR/RES, OVCAR-3 and K562 cell lines. (author)

  13. Chemical study and antifouling activity of Caribbean octocoral Eunicea laciniata

    The bioassay guided purification of the octocoral Eunicea laciniata organic extract, collected at Santa Marta bay, Colombia, allowed the isolation of the new compound (-)-3β-pregna-5,20-dienyl-β-D-arabinopyranoside (1), along with the known compounds 1(S*),11(R*)-dolabell-3(E),7(E),12(18)-triene (2), 13-keto-1(S),11(R)-dolabell-3(E),7(E),12(18)-triene (3), cholest- 5,22-dien-3β-ol (4), cholesterol (5), y brassicasterol (6). The structure and absolute configuration of 1 was determined on based spectroscopic analyses (NMR and CD). The extract showed antifouling activity against five strains of marine bacteria associated to heavy fouled surfaces. Also showed activity against the cypris of the cosmopolitan barnacle Balanus amphitrite, and low toxicity in Artemia salina test. (author)

  14. Hangman Catalysis for Photo- and Photoelectro- Chemical Activation of Water

    Nocera, Daniel

    2014-04-15

    The focus of this DOE program is solar fuels – specifically the chemistry for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) from water and the oxygen reduction reaction (ORR) to water These three reactions are at the heart of renewable energy conversion. The bond-making and bond-breaking chemistry that underpins these transformations is not well understood. We are developing insight into such chemistry by creating a series of ligand constructs that poise an acid-base functionality over a redox active metal platform. These “hangman” ligands utilize the acid-base functionality to form a secondary coordination sphere that can assist proton movement and facilitate substrate assembly and activation within the molecular cleft. The grant period funding cycle focused on synthesis and reactivity of hangman porphyrins and corroles for HER, OER and ORR.

  15. Antimicrobial Activity and Chemical Composition of Albanian Oregano

    EDLIRA NEZA

    2015-12-01

    Full Text Available ATCC 25922, Staphylococcus aureus ATCC 6538, Pseudomonas spp, Candida albicans ATCC 10231, Listeria monocytogenes ATCC 19111 and Salmonella typhimurium ATCC 14028. Antimicrobial activity of oregano essential oil was also tested against: E. coli, P. aeruginosa, S. aureus and C. albicans. Only oregano essential oil was active against microorganisms selected. Essential oil of oregano was analysed by GC-MS. Eighteen components were identified representing 99.48 % of the oil. Monoterpenes phenols and derivatives (borneol, 4-terpineol, carvacrol methyl ether, thymoquinone, thymol, carvacrol represented 74.66 % of essential oil. Carvacrol, p-cymene, thymol and γ-terpinene were the main components. Sesquiterpenes such as trans-caryophyllene, α-humulene, β-bisabolene, δ- Cadinene, caryophyllene oxide were also found.

  16. Antimicrobial activity and chemical investigation of Brazilian Drosera

    Dalva Trevisan Ferreira; César Cornélio Andrei; Halha Ostrensky Saridakis; Terezinha de Jesus Faria; Elisângela Vinhato; Kátia Eliane Carvalho; Juliana Feijó de Souza Daniel; Sílvio Luiz Machado; Dennis Panayotis Saridakis; Raimundo Braz-Filho

    2004-01-01

    The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol) obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 ) were tested against Staphylococcus aureus (ATCC 25923), Enterococcus faecium (ATCC23212), Pseudomonas aeruginosa (ATCC27853), Escherichia coli (ATCC11229), Salmonella choleraesuis (ATCC10708), Klebsiella pneumoniae (ATCC1...

  17. Simaroubaceae family: botany, chemical composition and biological activities

    Iasmine A.B.S. Alves; Henrique M. Miranda; Luiz A. L. Soares; Karina P. Randau

    2014-01-01

    The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicid...

  18. Orientation of sustainable management of chemical company with international activity

    Valéria da Veiga Dias; Marcelo da Silva Schuster; Renato Rodrigues Dias

    2013-01-01

    The search for new business possibilities, either through international activities and capture niche markets appear as a distinct trend among organizations that target growth. For this growing number of organizations intent on investing in new issues related to values such as citizenship, ethics and environmental concerns. There is the adoption of a more responsive to the community or even the acceptance of responsibility for the impacts of their production processes, inserting themselves in ...

  19. Chemical Inhibitors for Biomass Yield Reduction in Activated Sludge

    Mayhew, Maxine Eleanor

    1999-01-01

    Increasing legislation and rising treatment and disposal costs have promoted optimisation of the activated sludge process to encompass reduction of waste biomass. Manipulation of process control such as increasing sludge age and decreasing food to microorganism ratio can lower waste sludge production, but capital works as well as increased operating costs in the form of power requirement for oxygen supply may be required. The need for a cost effective method of biomass reductio...

  20. Chemicals profiling and antioxidants activities of Acacia seeds

    Ennajeh, Imen; Laajel, Mejda; Khouja, Mohamed-Larbi; Ferchichi, Ali; Nasri, Nizar

    2011-01-01

    This study reported investigations on phytochemical screening and antioxidants activities of seeds from seven Acacia species. Storage proteins and mineral contents were determined. The seed extracts of Acacia species were evaluated for their total phenols, flavonoids, carotenoids contents and total antioxidant capacity assessed by 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Total protein content ranged from 99.49 (Acacia cyclops...

  1. Antiproliferative Activity and Chemical Constituents of Hypericum dyeri. Rehder

    The antiproliferative activity of hexane (F1), ethyl acetate (F2), butanol (F3) and water (F4) extracts of Hypericum dyeri were tested in vitro for their anti- proliferative (anticancer) activity on the cell lines: HT-29 human colon adenocarcinoma, NCI-H460 human non-small cell lung carcinoma, MCF-7 human breast cancer, OVCAR-3 human ovarian adenocarcinoma and RXF-393 human renal cell carcinoma with etoposide as positive control. Among the various extracts the F1 showed relatively potent anti-proliferative activity (IC50, 17.20 +- 4.80 micro g/mL) on NCI-H460 human non-small cell lung carcinoma cell growth. Six compounds were also isolated for the first time from this source. These phytochemicals were identified as 1-Octatriacontanol (1), Hexacosyl tetracosanoate (2), Geddic acid (3), Octacosanoic acid (4), Ceric acid (5) and Sitosterol (6) on the basis of spectroscopic studies such as 1H NMR ,13C NMR, 2D NMR and Mass spectroscopy as well as established with help of reported literature. (author)

  2. Effect of chemicals on fungal alpha-amylase activity.

    Ali, F S; Abdel-Moneim, A A

    1989-01-01

    The effect of 8 growth regulators at concentrations of 1,000, 5,000 and 10,000 ppm on the activity of fungal (Aspergillus flavus var. columnaris) alpha-amylase was studied. Indol acetic acid (IAA) and naphthalene acetic acid (NAA) inhibited alpha-amylase activity by 2% and 7% at 1,000 ppm. The other 6 growth regulators, indol butyric acid (IBA), gibberellic acid, cumarin, cycocel (CCC), atonik-G and kylar, did not inhibit but stimulated alpha-amylase activity (0 to 9%) at 1,000 ppm. All growth regulators studied inhibited alpha-amylase activity at 5,000 and 10,000 ppm concentration except kylar. The effect of organic acids and formaldehyde at 0.01, 0.005, and 0.001 M was studied. Acetic acid stimulated alpha-amylase at all concentrations, but formic acid, oxalic acid, lactic acid and citric acid inhibited alpha-amylase activity by 91, 100, 100 and 79%, respectively, at a concentration of 0.01 M, while by 31, 100, 15 and 20%, respectively, at 0.005 M. Formaldehyde induced 7, 3 and 2% inhibition at 0.01, 0.005 and 0.001 M, respectively. At 0.01 M either sorbitol or fructose inhibited alpha-amylase by 8%, Maltose 7%, sucrose 6%, phenol, glucose and galactose each by 5%, ethanol, glycerol, arabinose and sodium benzoate each by 4%, isopropanol and mannitol 1%, but methanol and ammonium citrate dibasic did not inhibit alpha-amylase. The results indicate that CuCl2, SnCl2, AgNO3 and Fe2(SO4)3 were the strongest inhibitors, followed by Cd(C2H3O2), HgCl2, Na2-EDTA, Na2HPO4, and CaCl2 in decreasing order. NaCl, NaBr and Mn SO4 did not inhibit alpha-amylase at concentrations from 10 mM to 0.01 mM. PMID:2515680

  3. Chemical Constituents in Essential Oils from Elsholtzia ciliata and Their Antimicrobial Activities

    TIAN Guang-hui

    2013-01-01

    Objective To compare the chemical constituents in the essential oils from the leaves,flowers,and seeds of Elsholtzia ciliata and their antimicrobial activities.Methods The chemical constituents in essential oils were extracted by the hydro-distillation method and analyzed by GC-MS.The chemical constituents in essential oils were identified on the basis of comparison on their retention indices and MS spectrum with published data.Moreover,the antimicrobial activities of the chemical constituents in the oils against the growth of six bacteria strains and one pathogenic yeast strain were evaluated by using minimum inhibitory concentration and minimum bactericidal concentration methods.Results A total of 58 compounds were identified,while compounds 31,35,and 36 were identified in the essential oils from the leaves,flowers,and seeds,respectively.Fifteen compounds were identified as shared constituents in the leaves,flowers,and seeds.The chemical constituents in the essential oils showed the inhibitory activities against the six bacteria strains and the yeast strain.Conclusion The major constituents are different in the essential oils of the leaves,flowers,and seeds.The major chemical constituents in the essential oils are monoterpenoids and sesquiterpenoids.And the chemical constituents in the essential oils obtained from the leaves show higher inhibitory activities especially against Bacillus subtillis CMCC63501 and Escherichia coli ATCC25922.

  4. Phyto chemical and bio activities research on Tinospora crispa (Patawali)

    The usage of traditional therapeutic medicine is gaining attention as consumption to modern therapeutic medicine can affect health and also causing death. Because of this resurgence of interest, the research on medicinal plant is growing phenomenally in Malaysia as Tinospora crispa is one of the potential candidates and this plant is been use since long time ago as medicine. Solvent extraction method run on Tinospora crispa's stem had resulted 5 extracts which were hexane, chloroform, butanol, aqueous and methanol. Phyto chemical screening of hexane extract showed existence of alkaloid, flavonon, polyphenol substances and steroid type saponins. Chloroform extract consists alkaloid and triterpenoid type saponins while alkaloid, flavon and polyphenol substances found in butanol extract. Aqueous extract consist free acid and steroid type saponins whereas alkaloid, tannin and triterpenoid type saponins were found in methanol extract. Hexane, chloroform, and butanol extracts shows inhibition zone for bacteria gram-positive, Staphylococcus aureus where each extracts give inhibitory zone diameter of 1.5 cm, 1.3 cm, and 1.2 cm. There is no inhibitory zone for methanol and aqueous extract. As observation for bacteria gram-negative, Escherichia coli shows negative result for inhibitory zone. The LC50 acute for hexane, chloroform, butanol, aqueous and methanol extracts are 3162.28 ppm, 7813.71 ppm, 380.72 ppm, 662.87 ppm, dan 1847.85 ppm respectively. LC50 chronic for hexane, chloroform, butanol, aqueous and methanol extracts are 273.84 ppm, 259.29 ppm, 17.78 ppm, 12.02 ppm, dan 15.44 ppm respectively. Butanol, aqueous and methanol extracts gives higher relative toxicity compared to potassium dichromate. Overall, Tinospora crispas extracts are toxic compared with relative toxicity of potassium dichromate. The solvent system of toulene, acetone and chloroform with the proportion of 8: 2: 5 for hexane extract indicated 9 substances where chloroform extract yielded 6 substance

  5. Extended Functional Groups (EFG: An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds

    Elena S. Salmina

    2015-12-01

    Full Text Available The article describes a classification system termed “extended functional groups” (EFG, which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts of the On-line CHEmical database and Modeling (OCHEM environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models.

  6. The effects of activation temperature on physico-chemical characteristics of activated carbons derived from biomass wastes

    Sutrisno, Bachrun; Hidayat, Arif

    2015-12-01

    This research focused on investigating in the effect of activation temperature on the physico-chemical properties of palm empty fruit bunch (PEFB) based activated carbon prepared by physical activation with carbon dioxide. The activation temperature was studied in the range of 400-800°C by keeping the activation temperature at 800°C for 120 min. It was found that the porous properties of activated carbon decreased with an increase in carbonization temperature. The activated carbons prepared at the highest activation temperature at 800°C and activation time of 120 min gave the activated carbon with the highest of BET surface area and pore volume of 938 m2/g and 0.4502 cm3/g, respectively

  7. CO2 adsorption on chemically modified activated carbon.

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively. PMID:23500788

  8. Polysaccharides from Arctium lappa L.: Chemical structure and biological activity.

    Carlotto, Juliane; de Souza, Lauro M; Baggio, Cristiane H; Werner, Maria Fernanda de P; Maria-Ferreira, Daniele; Sassaki, Guilherme L; Iacomini, Marcello; Cipriani, Thales R

    2016-10-01

    The plant Arctium lappa L. is popularly used to relieve symptoms of inflammatory disorders. A crude polysaccharide fraction (SAA) resulting of aqueous extraction of A. lappa leaves showed a dose dependent anti-edematogenic activity on carrageenan-induced paw edema, which persisted for up to 48h. Sequential fractionation by ultrafiltration at 50kDa and 30kDa cut-off membranes yielded three fractions, namely RF50, RF30, and EF30. All these maintained the anti-edematogenic effect, but RF30 showed a more potent action, inhibiting 57% of the paw edema at a dose of 4.9mg/kg. The polysaccharide RF30 contained galacturonic acid, galactose, arabinose, rhamnose, glucose, and mannose in a 7:4:2:1:2:1 ratio and had a Mw of 91,000g/mol. Methylation analysis and NMR spectroscopy indicated that RF30 is mainly constituted by a type I rhamnogalacturonan branched by side chains of types I and II arabinogalactans, and arabinan. PMID:27311502

  9. Physico Chemical Properties and Antioxidant Activity of Roselle Seed Extracts

    Abdoulaye Idrissa Cissouma

    2013-11-01

    Full Text Available The aim of this research was to extract phenolic compounds from defatted Roselle (Hibiscus sabdariffaL. seed and assess their antioxidant potential. Water, ethanol (30%, methanol (30% and acetone (30% were used as solvent for extraction. The proximate composition, total phenolic content and extraction yield were analyzed. Antioxidant efficacies of Roselle seed extract were tested by using 1, 1-Diphenyl-2-Picrylhydrazyl (DPPH, hydroxyl, 2, 2’-azinobis-3-ethylbenzothiaz oline-6-sulfonic acid (ABTS radicals scavenging capacities and reducing power analysis. Roselle seeds were found to be rich in protein (27.745%, carbohydrates (40.45% and oil (20.83%. The total phenolic content ranged from 1.66±0.03 to 1.99±0.01 (GAE mg/g using water and 30% acetone respectively. The highest inhibitory capacity on DPPH and ABTS radicals was observed in 30% acetone extract and was at 3 mg/mL for DPPH and 6 mg/mL for ABTS respectively. Ethanol extract showed the highest hydroxyl radical scavenging ability value of 66.36 at 20 mg/mL, followed by methanol (57.27, acetone (56.36 and water (30. The reducing potential of the different extracts was concentration dependent and increased with increase in concentration. These results indicate that substantial antioxidant activity can be obtained from Roselle seed phenolic compounds extract by using 30% acetone.

  10. Instrumental neutron activation analysis, a valuable link in chemical metrology

    Instrumental neutron activation analysis (INAA) is sufficiently versatile to establish a direct link to the amount of substance determined. The inherent quality parameters of INAA, such as being virtually free of blank, having fully accountable effects of matrix and physical form, and operating over a huge range of amounts, allows the comparison of a mole (or its fraction) of a pure element with the amount of substance in the sample analyzed with the same direct relationship as a beam balance provides. Indeed, varieties of this approach are in common use in INAA in the comparator methods of quantitation. To eliminate possible perturbations of the traceability chain as they may occur in common INAA practice, experimental measurements have been set up that only involve the fraction of a mole of the element(s) of interest in form of the pure element, compound or certified standard and the unknown sample. This principle has been used in INAA measurements for certification value assignment of high temperature alloy SRMs. To further demonstrate the performance parameters of INAA, we selected the determination of chromium in SRM 1152a Stainless Steel by direct non-destructive comparison with the pure metal in form of crystalline chromium. The measurements were validated with weighed aliquots of SRM 3112a dried on filter paper pellets. The experimental results do not show deviations beyond the uncertainties of the SRMs (≤ 0.2 % relative), and the assessment of the uncertainty budget indicates that expanded uncertainties of ≤ 0.3 % are achievable. The measurements demonstrate that INAA can meet the CCQM definition of a primary ratio method of analysis

  11. Orientation of sustainable management of chemical company with international activity

    Valéria da Veiga Dias

    2013-04-01

    Full Text Available The search for new business possibilities, either through international activities and capture niche markets appear as a distinct trend among organizations that target growth. For this growing number of organizations intent on investing in new issues related to values such as citizenship, ethics and environmental concerns. There is the adoption of a more responsive to the community or even the acceptance of responsibility for the impacts of their production processes, inserting themselves in what was initially called the Social Responsibility within the business context and developed the concept of Elkington (1998 generated a discussion about a new movement that was called a sustainable paradigm. It was observed generally that sustainable management is still very close to supporting tools and not as part of the construction of corporate strategy although it is possible to realize that they seek a greater involvement in this direction when they start to review their strategies. This question can be perceived at different levels between the companies, but which shows the issue is the lack of direct indicators for investment and sustainable return. Sustainable management proved to be a source of opportunity for overseas business for the companies studied, as preparation for work with environmental legislation, global requirements, raw materials and environmentally friendly processes organizations prepared to market in the global sphere, and Brazil note that the innovative products for their production process and / or alternative raw material still do not get the spotlight. Acting in a sustainable manner enables the development of strategies agreed with conscious posture and changes in cultural terms in general, which can create new opportunities for those who can keep up with the global business scenario.

  12. "SimChemistry" as an Active Learning Tool in Chemical Education

    Bolton, Kim; Saalman, Elisabeth; Christie, Michael; Ingerman, Ake; Linder, Cedric

    2008-01-01

    The publicly available free computer program, "SimChemistry," was used as an active learning tool in the chemical engineering curriculum at the University College of Boras, Sweden. The activity involved students writing their own simulation programs on topics in the area of molecular structure and interactions. Evaluation of the learning…

  13. Investigation of the chemical composition-antibacterial activity relationship of essential oils by chemometric methods.

    Miladinović, Dragoljub L; Ilić, Budimir S; Mihajilov-Krstev, Tatjana M; Nikolić, Nikola D; Miladinović, Ljiljana C; Cvetković, Olga G

    2012-05-01

    The antibacterial effects of Thymus vulgaris (Lamiaceae), Lavandula angustifolia (Lamiaceae), and Calamintha nepeta (Lamiaceae) Savi subsp. nepeta var. subisodonda (Borb.) Hayek essential oils on five different bacteria were estimated. Laboratory control strain and clinical isolates from different pathogenic media were researched by broth microdilution method, with an emphasis on a chemical composition-antibacterial activity relationship. The main constituents of thyme oil were thymol (59.95%) and p-cymene (18.34%). Linalool acetate (38.23%) and β-linalool (35.01%) were main compounds in lavender oil. C. nepeta essential oil was characterized by a high percentage of piperitone oxide (59.07%) and limonene (9.05%). Essential oils have been found to have antimicrobial activity against all tested microorganisms. Classification and comparison of essential oils on the basis of their chemical composition and antibacterial activity were made by utilization of appropriate chemometric methods. The chemical principal component analysis (PCA) and hierachical cluster analysis (HCA) separated essential oils into two groups and two sub-groups. Thyme essential oil forms separate chemical HCA group and exhibits highest antibacterial activity, similar to tetracycline. Essential oils of lavender and C. nepeta in the same chemical HCA group were classified in different groups, within antibacterial PCA and HCA analyses. Lavender oil exhibits higher antibacterial ability in comparison with C. nepeta essential oil, probably based on the concept of synergistic activity of essential oil components. PMID:22389175

  14. Metal Oxide Nanoparticle Growth on Graphene via Chemical Activation with Atomic Oxygen

    Johns, James E.; Alaboson, Justice M. P.; Patwardhan, Sameer; Ryder, Christopher R.; Schatz, George C.; Hersam, Mark C.

    2013-01-01

    Chemically interfacing the inert basal plane of graphene with other materials has limited the development of graphene-based catalysts, composite materials, and devices. Here, we overcome this limitation by chemically activating epitaxial graphene on SiC(0001) using atomic oxygen. Atomic oxygen produces epoxide groups on graphene, which act as reactive nucleation sites for zinc oxide nanoparticle growth using the atomic layer deposition precursor diethyl zinc. In particular, exposure of epoxid...

  15. Chemical composition and antioxidant activities of Jeddah corniche algae, Saudi Arabia

    Al-Amoudi, Omar A.; Mutawie, Hawazin H.; Patel, Asmita V.; Blunden, Gerald

    2009-01-01

    The increased use of natural product in the pharmaceutical industry has led to an increase in demand for screening for bioactive compounds in marine algae. An important economic algae, through chemical composition analysis and their antioxidant activities were investigated in this study. Chemical composition analysis of three algal samples from the Chlorophyta Ulva lactuca (U), Phaeophyta Sargassum crassifolia (S) and Rhodophyta Digenea simplex (D) was tested. Main components were sugars (57....

  16. Chemical Composition, Antimicrobial and Antioxidant Activities of Hyssop (Hyssopus officinalis L.) Essential Oil

    KIZIL, Süleyman; HAŞİMİ, Nesrin; TOLAN, Veysel; Ersin KILININÇ; Karataş, Hakan

    2010-01-01

    The essential oil of hyssop is widely used in food, pharmaceutical and cosmetic industries throughout the world. Therefore, it is very important to know the chemical characteristics of the oil for economic use and enhanced performance of the end products. This study was carried out to determine antimicrobial and antioxidant activities of the essential oil of Hyssopus officinalis (L.) (Lamiaceae) collected from wild in the Southeast Anatolian, Turkey. Chemical compositions of hydrodistilled es...

  17. Activity profiles of 309 ToxCastTM chemicals evaluated across 292 biochemical targets

    Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The present study is a performance evaluation and critical analysis of assay results for an array of 292 high-throughput cell-free assays aimed at preliminary toxicity evaluation of 320 environmental chemicals in EPA's ToxCastTM project (Phase I). The chemicals (309 unique, 11 replicates) were mainly precursors or the active agent of commercial pesticides, for which a wealth of in vivo toxicity data is available. Biochemical HTS (high-throughput screening) profiled cell and tissue extracts using semi-automated biochemical and pharmacological methodologies to evaluate a subset of G-protein coupled receptors (GPCRs), CYP450 enzymes (CYPs), kinases, phosphatases, proteases, HDACs, nuclear receptors, ion channels, and transporters. The primary screen tested all chemicals at a relatively high concentration 25 μM concentration (or 10 μM for CYP assays), and a secondary screen re-tested 9132 chemical-assay pairs in 8-point concentration series from 0.023 to 50 μM (or 0.009-20 μM for CYPs). Mapping relationships across 93,440 chemical-assay pairs based on half-maximal activity concentration (AC50) revealed both known and novel targets in signaling and metabolic pathways. The primary dataset, summary data and details on quality control checks are available for download at (http://www.epa.gov/ncct/toxcast/).

  18. Effect of various chemicals on the aldehyde dehydrogenase activity of the rat liver cytosol.

    Marselos, M; Vasiliou, V

    1991-01-01

    The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis. PMID:2060039

  19. Phyto chemical and biological studies of certain plants with potential radioprotective activity

    One of the promising directions of radiation protection development is the search for natural radioprotective agents.The present work includes: I- Screening of certain edible and medicinal plants growing in Egypt for their radioprotective activities. II- Detailed phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla endl. comprising: A-Phyto chemical screening and proximate analysis. B-Investigation of lipoidal matter. C- Isolation, characterization and structure elucidation of phenolic constituents. D- Isolation, characterization and structure elucidation of saponin constituents. E- Evaluation of radioprotective and antitumor activities. I- Evaluation of potential radioprotective activities of certain herbs: In vivo biological screening designed to investigate the radioprotective role of 70% ethanol extract of 11 different herbals was carried out by measuring the lipid peroxide content, as well as the activities of two antioxidant enzymes; viz glutathione, and superoxide dismutase in blood and liver tissues 1 and 7 days after radiation exposure. II : Phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla Endl A : preliminary phyto chemical screening, determination and TLC examination of successive extractives. B : Investigation of lipoidal matter. GLC of unsaponifiable matter (USM)

  20. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities. PMID:25686854

  1. Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells

    The effects of activation temperature on the textural and chemical properties of the activated carbons prepared from pistachio-nut shells using zinc chloride activation under both inert nitrogen gas atmosphere and vacuum condition were studied. Relatively low temperature of 400 deg. C was beneficial for the development of pore structures. Too high an activation temperature would lead to sintering of volatiles and shrinkage of the carbon structure. The microstructures and microcrystallinity of the activated carbons prepared were examined by scanning electron microscope and powder X-ray diffraction techniques, respectively, while Fourier transform infrared spectra determined the changes in the surface functional groups at the various stages of preparation

  2. Screening chemicals for thyroid-disrupting activity: A critical comparison of mammalian and amphibian models.

    Pickford, Daniel B

    2010-11-01

    In order to minimize risks to human and environmental health, chemical safety assessment programs are being reinforced with toxicity tests more specifically designed for detecting endocrine disrupters. This includes the necessity to detect thyroid-disrupting chemicals, which may operate through a variety of modes of action, and have potential to impair neurological development in humans, with resulting deficits of individual and social potential. Mindful of these concerns, the consensus favors in vivo models for both hazard characterization (testing) and hazard identification (screening) steps, in order to minimize false negatives. Owing to its obligate dependence on thyroid hormones, it has been proposed that amphibian metamorphosis be used as a generalized vertebrate model for thyroid function in screening batteries for detection of thyroid disrupters. However, it seems unlikely that such an assay would ever fully replace in vivo mammalian assays currently being validated for human health risk assessment: in its current form the amphibian metamorphosis screening assay would not provide capacity for reliably detecting other modes of endocrine-disrupting activity. Conversely, several candidate mammalian screening assays appear to offer robust capacity to detect a variety of modes of endocrine-disrupting activity, including thyroid activity. To assess whether omission of an amphibian metamorphosis assay from an in vivo screening battery would generate false negatives, the response of amphibian and mammalian assays to a variety known thyroid disrupters, as reported in peer-reviewed literature or government agency reports, was critically reviewed. Of the chemicals investigated from the literature selected (41), more had been tested in mammalian studies with thyroid-relevant endpoints (32) than in amphibian assays with appropriate windows of exposure and developmental endpoints (27). One chemical (methoxychlor) was reported to exhibit thyroid activity in an appropriate

  3. Advances in Methane Activation Studies at Dalian Institute of Chemical Physics

    2008-01-01

    @@ Following successful implementation of selective oxida-tion of methane into methanol at low temperature (80℃) through setting up a circulating system of multiple electron pairs the Dalian Institute of Chemical Physics (DICP) has made new stride in the fundamental research on direct acti-vation of methane. This institute by means of collaboration with the US West Pacific National Laboratory has acquired the complete information on the structure of active centers of solid catalysts with the relevant results published in the latest issue of Journal of American Chemical Society.

  4. Study on the chemical species of platinum group elements in geological samples by molecular activation analysis

    The chemical species of platinum group elements in some upper mantle-derived xenoliths from Eastern China are studied by molecular activation analysis, in which the chemical stepwise dissolution, nickel fire assay preconcentration and neutron activation analysis are jointly applied. The weighted sums of platinum group elements in 6 phases are in agreement with their total contents. The distribution patterns of platinum group elements in sulphides show that sulphide segregation is one of the important mechanisms for the fractionation of platinum group elements in upper mantle-derived material during partial melting

  5. Chemical constituents and antibacterial activity of the leaf essential oil of Feronia limonia

    Kumar, A. Senthil; V. Venkatesalu; Kannathasan, K.; Chandrasekaran, M.

    2010-01-01

    The essential oil from the leaves of Feronia limonia was extracted and the chemical constituents and antibacterial activity were studied. The GC and GC-MS analyses revealed that the leaf essential oil of F. limonia contained fourteen compounds representing about 98.4% of the total oil. The major chemical compounds identified were Eudesma-4 (14).11-dine (46.3%), carvacrol (29.6%) and 1,5-cyclodecandine (13.4%). The essential oil was screened for its antibacterial activity against different cli...

  6. Analysis and classification of physical and chemical methods of fuel activation

    Fedorchak Viktoriya

    2015-12-01

    Full Text Available The offered article explores various research studies, developed patents in terms of physical and chemical approaches to the activation of fuel. In this regard, national and foreign researches in the field of fuels activators with different principles of action were analysed, evaluating their pros and cons. The article also intends to classify these methods and compare them regarding diverse desired results and types of fuels used. In terms of physical and chemical influences on fuels and the necessity of making constructive changes in the fuel system of internal combustion engines, an optimal approach was outlined.

  7. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    Tahir, D., E-mail: dtahir@fmipa.unhas.ac.id; Halide, H., E-mail: dtahir@fmipa.unhas.ac.id; Kurniawan, D. [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Wahab, A. W. [Department of Chemistry, Hasanuddin University, Makassar 90245 (Indonesia)

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  8. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied. - Highlights: • The gamma irradiation treatment reduces lipoxygenases activity of soybean. • Independently of soybean cultivar, treatment 10 kGy exhibited higher percentages of reduction of lipoxygenase. • Gamma irradiation interfered few in the chemical composition of soybean. • The lipid and protein content remained stable regardless of radiation dose applied to the soybean

  9. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L.

    Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.

    2014-09-01

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  10. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals

  11. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  12. Chemical composition and antibacterial activity of essential oil and extracts of Citharexylum spinosum flowers from Thailand.

    Mar, Ae; Pripdeevech, Patcharee

    2014-05-01

    The chemical composition and antibacterial and antioxidant activities of the essential oil and various solvent extracts of Citharexylum spinosum flowers are reported. The chemical compositions were determined by GC-MS with 151 volatile constituents identified. Methyl benzoate, piperitone, maltol, and maple furanone were the major constituents. All extracts were tested for their antibacterial activity against eight microorganisms. The flower oil had the greatest antibacterial activity against all bacterial strains (MIC values of 31.2 microg/mL), while the other solvent extracts had MIC values ranging from 31.2 to 1000 microg/mL. The essential oil had the highest antioxidant activity and total phenol content with IC50 values of 62.7 and 107.3 microg/mL, respectively. PMID:25026728

  13. Chemical Composition, Antimicrobial and Antioxidant Activities of the Volatile Oil of Ganoderma pfeifferi Bres

    Mohamed Al-Fatimi; Martina Wurster; Ulrike Lindequist

    2016-01-01

    In a first study of the volatile oil of the mushroom basidiomycete Ganoderma pfeifferi Bres., the chemical composition and antimicrobial and antioxidant activities of the oil were investigated. The volatile oil was obtained from the fresh fruiting bodies of Ganoderma pfeifferi Bres. By hydrodistillation extraction and analyzed by GC-MS. The antimicrobial activity of the oil was evaluated against five bacteria strains and two types of fungi strains, using disc diffusion and broth microdilution...

  14. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    M. Sokovic; Marin, P.D.; Brkic, D.; Griensven, van, L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined. Antibacterial activity of these oils and their components; i.e. linalyl acetate, linalool, limonene, pinene, ß-pinene, 1,8-cineole, camphor, carvacrol, thymol and menthol were assayed against a variety...

  15. The Dynamics of fluid flow and associated chemical fluxes at active continental margins

    Solomon, Evan Alan

    2007-01-01

    Active fluid flow plays an important role in the geochemical, thermal, and physical evolution of the Earth’s crust. This dissertation investigates the active fluid flow and associated chemical fluxes at two dynamic continental margins: The Costa Rica subduction zone and the northern Gulf of Mexico hydrocarbon province, using novel seafloor instrumentation for continuous monitoring of fluid flow rates and chemistry. Traditional pore fluid sampling methods and flow rate models only provide a ...

  16. Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume

    Hasnah Mohd Sirat; Khong Heng Yen; Farediah Ahmad; Wan Mohd Nuzul Hakimi Wan Salleh

    2011-01-01

    Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9%) and stems (87.0%) oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil sh...

  17. Treatment of Active Acne Vulgaris by Chemical Peeling Using 88% Lactic Acid

    Khalifa E Sharquie; Adil A Noaimi; Entesar A. Al-Janabi

    2014-01-01

    Introduction: The etiopathogenesis of acne vulgaris is multifactorial, and its therapy is prolonged course that might be not accepted by many patients. Most recently TCA 35% one session peeling gave complete clearance and full remission for active acne vulgaris. Lactic acid has been used effectively as therapeutic topical agents for many skin diseases. Aim: To evaluate the efficacy and safety of chemical peeling using 88% lactic acid solution in the treatment of active acne vulgaris. ...

  18. Chemical Analysis and Antioxidant Activity in vitro of Polysaccharides Extracted from Lower Grade Green Tea

    Ping Chen; Yongjun Zhang; Liyun Zhu; Hui Jin; Gaofan Zhang; Dongyang Su; Jia Li

    2013-01-01

    Tea is a well-known and important agricultural product in the world. The Crude Polysaccharides from tea leaves (CP) probably have good antioxidant activities. However, whether or not the antioxidant abilities of CP depend on tea polyphenols in the CP is not understanded. In this study, four CP fractions (TPF30, TPF50, TPF70 and TPF90) were isolated from CP and their antioxidant activities were compared. Meanwhile, Chemical and physical characteristics of CP and four CP fractions were investig...

  19. Chemical Composition of Propolis from Different Regions in Java and their Cytotoxic Activity

    Syamsudin; Sudjaswadi Wiryowidagdo; Partomuan Simanjuntak; Wan Lelly Heffen

    2009-01-01

    Problem statement: Propolis samples from tropical zones, such as Java (Indonesia) with its vast biodiversity, have become a subject of increasing scientific and economic attention. The association of the chemical composition of propolis from different geographic regions with cytotoxic activities lead to the identification of active principles, a fundamental tool to achieve standardization of this bee product. Approach: The purpose of this research was evaluate the quality of propolis collecte...

  20. Chemical properties population of nitrites oxidizers, urease and phosphatase activities in sewage sludge-amended soils

    Bonmati Pont, Manuel; Pujolà Cunill, Montserrat; Saña Vilaseca, Josep; Soliva Torrentó, Montserrat; Felipó, Ma. Teresa (María Teresa); Garau, M; B. Ceccanti; P. Nannipieri

    1985-01-01

    The aim of this work has been to determine the effect of sterilized and non-sterilized, aerobically or anaerobically digested sewage sludges on urease and phosphatase aetivities, on populations of nitrite oxidizers and on some chemical properties in laboratory conditions and for long incubation periods. Both urease an phosphatase activities were affected when anaerobic sludges were added to the soil. The inhibitory effects on both enzyme activities attributed to the presence of...

  1. Chemical and biological evolution of (U-14C)phenol sorbed on activated carbon

    Methods describing the chemical and biological evolution of (U-14C)phenol adsorbed on activated carbon are given with or without the use of bacteria. Without bacteria, the (U-14C)phenol initially adsorbed is not removed from the carbon after adding a solution of unlabelled phenol through the column for eight days. With bacteria, the (U-14C)phenol initially present, is removed (60-70%) from activated carbon with a solution containing unlabelled phenol, nitrogen and phosphorus. (author)

  2. Determination of antibacterial, antifungal activity and chemical composition of essential oil portion of unani formulation kulzam

    K Ashok Kumar; Ram Kumar Choudhary; Bheemachari Joshi; V.Ramya; V Sahithi; Veena, P.

    2011-01-01

    Kulzam is a popular unani, liquid formulation; indicated for several minor ailments like cough, cold, running nose, sore throat, insect bites, earache, tooth ache, etc. by the manufacturer. However, this over the counter formulation has not been scientifically evaluated for its claimed uses. Hence in the present study an attempt has been to check the chemical composition, antibacterial and antifungal activity as most of the above-mentioned conditions are underpinned by microbial activity. The...

  3. Effect of Separation Method on Chemical Composition and Insecticidal Activity of Lamiaceae Isolates

    Sajfrtová, Marie; Sovová, Helena; Karban, Jindřich; Rochová, Kristina; Pavela, R.; Barnet, M.

    2013-01-01

    Roč. 47, MAY (2013), s. 69-77. ISSN 0926-6690 R&D Projects: GA MŠk 2B06049; GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * iInsecticidal activity * lamiaceae Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.208, year: 2013

  4. EFFECT OF WATER POLLUTANTS AND OTHER CHEMICALS UPON THE ACTIVITY OF LIPASE 'IN VITRO'

    Lipase preparations were treated in vitro with 100 chemicals of various classes, many of which are environmental pollutants, to determine their effect upon enzyme activity. The greatest inhibition was caused by mercuric ion and certain heavy metal cations; almost as inhibiting we...

  5. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  6. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation

    Taxvig, Camilla; Sørensen, Karin Dreisig; Boberg, Julie;

    2012-01-01

    differentiation although PPARγ activation is neither a requirement nor a guarantee for stimulation. Four out of the eleven chemicals (bisphenol A, mono-ethylhexyl phthalate, butylparaben, PCB 153) caused increased adipogenesis. The release of adipocyte-secreted hormones was sometimes but not always correlated...

  7. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  8. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch; Undeland, Ingrid; Baron, Caroline P.

    2014-01-01

    Brines generated during the last marination step in the production of marinated herring (Clupea harengus) were chemically characterized and analyzed for antioxidant and enzyme activities. The end-products were vinegar cured, spice cured and traditional barrel-salted herring with either salt or...

  9. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae [Chungbuk National Univ., Chungju (Korea, Republic of)

    2013-06-15

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m{sup 2}/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn{sub 2}O{sub 4}, LiCoO{sub 2} as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF{sub 6}, TEABF{sub 4}) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn{sub 2}O{sub 4}/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

  10. TEXTURAL AND CHEMICAL CHARACTERISATION OF ACTIVATED CARBONS PREPARED FROM RICE HUSK (ORYZA SATIVA USING A TWO- STAGE ACTIVATION PROCESS

    JOSEPH G. COLLIN

    2008-12-01

    Full Text Available Activated carbons from agro-industrial wastes; rice husk; were prepared by physical and chemical activation using phosphoric acid as the dehydrating agent. A two-stage activation process method was used; with semi-carbonisation stage at 200oC for 15 minutes as the first stage followed by an activation stage at 500oC for 45 minutes as the second stage. The precursor material with the impregnation agent was exposed straightaway to semi-carbonization and activation temperature unlike the specific temperature progression as reported in the literature. All experiments were conducted in a laboratory scale muffle furnace under static conditions in a self generated atmosphere covering process parameters such as impregnation ratios. We found that by using this method, the AC5 had the highest iodine number and methylene blue adsorption capacity which was 506.6 mg/g and 319.0 mg/g respectively.

  11. Seasonal Variation, Chemical Composition and Antioxidant Activity of Brazilian Propolis Samples

    Érica Weinstein Teixeira

    2010-01-01

    Full Text Available Total phenolic contents, antioxidant activity and chemical composition of propolis samples from three localities of Minas Gerais state (southeast Brazil were determined. Total phenolic contents were determined by the Folin–Ciocalteau method, antioxidant activity was evaluated by DPPH, using BHT as reference, and chemical composition was analyzed by GC/MS. Propolis from Itapecerica and Paula Cândido municipalities were found to have high phenolic contents and pronounced antioxidant activity. From these extracts, 40 substances were identified, among them were simple phenylpropanoids, prenylated phenylpropanoids, sesqui- and diterpenoids. Quantitatively, the main constituent of both samples was allyl-3-prenylcinnamic acid. A sample from Virginópolis municipality had no detectable phenolic substances and contained mainly triterpenoids, the main constituents being α- and β-amyrins. Methanolic extracts from Itapecerica and Paula Cândido exhibited pronounced scavenging activity towards DPPH, indistinguishable from BHT activity. However, extracts from Virginópolis sample exhibited no antioxidant activity. Total phenolic substances, GC/MS analyses and antioxidant activity of samples from Itapecerica collected monthly over a period of 1 year revealed considerable variation. No correlation was observed between antioxidant activity and either total phenolic contents or contents of artepillin C and other phenolic substances, as assayed by CG/MS analysis.

  12. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    Popescu, M N; Dietrich, S

    2016-01-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g., the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate "point-particle" analysis, we show analytically that -- owing to this kind of induced active response (chemi-osmosis) of the wall -- such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial "swimmers" exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change ...

  13. Aerobic Damage to [FeFe]-Hydrogenases: Activation Barriers for the Chemical Attachment of O2**

    Kubas, Adam; De Sancho, David; Best, Robert B; Blumberger, Jochen

    2014-01-01

    [FeFe]-hydrogenases are the best natural hydrogen-producing enzymes but their biotechnological exploitation is hampered by their extreme oxygen sensitivity. The free energy profile for the chemical attachment of O2 to the enzyme active site was investigated by using a range-separated density functional re-parametrized to reproduce high-level ab initio data. An activation free-energy barrier of 13 kcal mol−1 was obtained for chemical bond formation between the di-iron active site and O2, a value in good agreement with experimental inactivation rates. The oxygen binding can be viewed as an inner-sphere electron-transfer process that is strongly influenced by Coulombic interactions with the proximal cubane cluster and the protein environment. The implications of these results for future mutation studies with the aim of increasing the oxygen tolerance of this enzyme are discussed. PMID:24615978

  14. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive. PMID:24650181

  15. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  16. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydro-distillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (...

  17. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    Hong Chen

    Full Text Available The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS, play vital roles in the normal operation of wastewater treatment plants (WWTPs. The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm, but different observation were made at higher CuNPs concentrations (30 and 50 ppm. At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  18. Chemical composition of the volatile oil from Zanthoxylum avicennae and antimicrobial activities and cytotoxicity

    Yin Lin

    2014-01-01

    Full Text Available Background: Through literature retrieval, there has been no report on the research of the chemical components in Zanthoxylum avicennae (Lam. DC. This paper extracted and determined the chemical components of the volatile oil in Z. avicennae, and at the same time, measured and evaluated the bioactivity of the volatile oil in Z. avicennae. Materials and Methods: We extract the volatile oil in Z. avicennae by steam distillation method, determined the chemical composition of the volatile oil by GC-MS coupling technique, and adopt the peak area normalization method to measured the relative percentage of each chemical composition in the volatile oil. Meanwhile, we use the Lethal-to-prawn larva bioactivity experiment to screen the cytotoxicity activities of the volatile oil in Z. avicennae, and using the slanting test-tube experiment to determine and evaluate its antibacterial activities in vitro for the eight kinds of plant pathogenic fungi in the volatile oil of the Z. avicennae. Results: The results show that 68 kinds of compounds are determined from the volatile oil of Z. avicennae. The determined part takes up 97.89% of the total peak area. The main ingredients in the volatile oil of Z. avicennae are sesquiterpenoids and monoterpene. The test results show that the volatile oil in Z. avicennae has strong antibacterial activities and cytotoxicity, with the strongest antibacterial activity against the Rhizoctonia solani AG1-1A. Conclusion: This research results will provide reference data for understanding the chemical composition of the volatile oil in the aromatic plant of Z. avicennae and its bioactivity, and for its further development and application.

  19. Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide

    Okman, Irem; Karagöz, Selhan; Tay, Turgay; Erdem, Murat

    2014-02-01

    Activated carbons were produced from grape seed using either potassium carbonate (K2CO3) or potassium hydroxide (KOH). The carbonization experiments were accomplished at 600 and 800 °C. The effects of the experimental conditions (i.e., type of activation reagents, reagent concentrations, and carbonization temperatures) on the yields and the properties of these activated carbons were analyzed under identical conditions. An increase in the temperature at the same concentrations for both K2CO3 and KOH led to a decrease in the yields of the activated carbons. The lowest activated carbon yields were obtained at 800 °C at the highest reagent concentration (100 wt%) for both K2CO3 and KOH. The activated carbon with the highest surface area of 1238 m2g-1 was obtained at 800 °C in K2CO3 concentration of 50 wt% while KOH produced the activated carbon with the highest surface area of 1222 m2g-1 in a concentration of 25wt% at 800 °C. The obtained activated carbons were mainly microporous.

  20. Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation

    In this work, pistachio nut shell, a biomass residue abundantly available from the pistachio nut processing industries, was utilized as a feedstock for the preparation of activated carbon (PSAC) via microwave assisted KOH activation. The activation step was performed at the microwave input power of 600 W and irradiation time of 7 min. The porosity, functional and surface chemistry were featured by means of low temperature nitrogen adsorption, scanning electron microscopy and Fourier transform infrared spectroscopy. Result showed that the BET surface area, Langmuir surface area, and total pore volume of PSAC were 700.53 m2 g-1, 1038.78 m2 g-1 and 0.375 m3 g-1, respectively. The adsorptive property of PSAC was tested using methylene blue dye as the targeted adsorbate. Equilibrium data was best fitted by the Langmuir isotherm model, showing a monolayer adsorption capacity of 296.57 mg g-1. The study revealed the potentiality of microwave-induced activation as a viable activation method. -- Highlights: → Pistachio nut shell activated carbon (PSAC) was prepared via microwave assisted KOH activation. → The activation step was performed at the microwave input power of 600 W and irradiation time of 7 min. → BET surface area of PSAC was 700.53 m2/g. → Monolayer adsorption capacity of PSAC for MB was 296.57 mg/g.

  1. Offgas Analysis and Pyrolysis Mechanism of Activated Carbon from Bamboo Sawdust by Chemical Activation With KOH

    TIAN Yong; LIU Ping; WANG Xiufang; ZHONG Guoying; CHEN Guanke

    2011-01-01

    Bamboo sawdust was used as the precursor for the multipurpose use of waste.Offgases released during the activation process of bamboo by KOH were investigated quantitatively and qualitatively by a gas analyzer. TG/DTG curves during the pyrolysis process with different impregnation weight ratios (KOH to bamboo) were obtained by a thermogravimetric analyzer. Pyrolysis mechanism of bamboo was proposed. The results showed that the offgases were composed of CO, NO,SO2 and hydrocarbon with the concentration of 1 372, 37, 86, 215 mg/L, respectively. Thermogravimetric analysis indicated that the pyrolytic process mainly experienced two steps. The first was the low temperature activation step (lower than 300 ℃), which was the pre-activation and induction period.The second was the high temperature activation step(higher than 550 ℃), which was a radial activation followed by pore production. The second process was the key to control the pore distribution of the final product.

  2. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis

    Muthusamy Ravichandiran

    2013-11-01

    Full Text Available Objective: To study the chemical constituents and the anti-tuberculosis activity of methanol and chloroform ink extracts of Sepiella inermis. Methods: Pulverized ink powder was extracted separately with chloroform and methanol. Chemical analysis was carried out by UV-VIS spectrophotometer, FT-IR and GC-MS. Crude extracts were tested in vitro for their activity against Mycobacterium tuberculosis using Lowenstein Jensen (L-J medium. Activity in L-J medium was assessed by mean reduction in number of colonies on extract containing bottles as compared to extract free controls. Results: GC-MS of methanol extract revealed four compounds viz. hexadecanoic acid, 9, 12- octadecadienoic acid, 9-octadecenoic acid and octadecanoic acid. The chloroform extract containing fourteen compounds. The methanol extract exhibited anti-tuberculosis activity in L-J medium at 64 µg/mL with the observed inhibition of 14 CFU. Chloroform extract displayed a weak activity against Mycobacterium tuberculosis. Conclusions: This investigation showed the methanol extract exhibited significant activity against Mycobacterium tuberculosis than chloroform extract. Since ink of sepia is available abundantly as a waste material, further studies aimed at isolation and efficacy of active substances pave the way for new anti-tuberculosis drugs.

  3. Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent

    Thaís V. Souza

    2016-03-01

    Full Text Available CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.

  4. Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    Gonos Efstathios

    2011-06-01

    Full Text Available Abstract Background Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated. Results Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique. Conclusions The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile.

  5. Chemical Composition, Antimicrobial and Antioxidant Activities of Hyssop (Hyssopus officinalis L. Essential Oil

    Süleyman KIZIL

    2010-12-01

    Full Text Available The essential oil of hyssop is widely used in food, pharmaceutical and cosmetic industries throughout the world. Therefore, it is very important to know the chemical characteristics of the oil for economic use and enhanced performance of the end products. This study was carried out to determine antimicrobial and antioxidant activities of the essential oil of Hyssopus officinalis (L. (Lamiaceae collected from wild in the Southeast Anatolian, Turkey. Chemical compositions of hydrodistilled essential oils obtained from hyssop leaves were analyzed by gas chromatography-mass spectrometry (GC-MS. For antimicrobial activity, disc diffusion tests were carried out on Escherichia coli line ATCC25922, Pseudomonas aeroginosa line ATCC27853, Staphylococcus aureus line 25923, Staphylococcus pyogenes line ATCC19615 and Candida albicans line ATCC10231, and the antioxidant activity was determined by using the diphenylpicrylhydrazyl (DPPH radical-scavenging method. It was determined that hyssop essential oil contained isopinocamphone (57.27%, (--?-pinene (7.23%, (--terpinen-4-ol (7.13%, pinocarvone (6.49%, carvacrol (3.02%, p-cymene (2.81% and myrtenal (2.32% as major components. As shown by treatments with 5 and 10 ?l of oil; which exhibited strong antimicrobial activity against S. pyogenes, S. aureus, C. albicans and E. coli, but not against P. aeruginosa. The antioxidant activity of H. officinalis essential oil was lower compared to butylated hydroxytoluene (BHT and ascorbic acid. These results demonstrated that hyssop essential oil has relatively low antioxidant activity and good antimicrobial activity against some test organisms.

  6. Chemical Analysis and Antioxidant Activity in vitro of Polysaccharides Extracted from Lower Grade Green Tea

    Ping Chen

    2013-10-01

    Full Text Available Tea is a well-known and important agricultural product in the world. The Crude Polysaccharides from tea leaves (CP probably have good antioxidant activities. However, whether or not the antioxidant abilities of CP depend on tea polyphenols in the CP is not understanded. In this study, four CP fractions (TPF30, TPF50, TPF70 and TPF90 were isolated from CP and their antioxidant activities were compared. Meanwhile, Chemical and physical characteristics of CP and four CP fractions were investigated by the combination of chemical and instrumental analysis methods. Their antioxidant activities were investigated in vitro systems, including hydroxyl radical assay, 1, 1-Diphenyl-2-Picrylhydrazyl (DPPH• scavenging activity, reducing power and chelating activity. Among CP and these four polysaccharides, TPF90 showed more significant DPPH• scavenging activity and highest reducing power, chelating activity and inhibitory effects on hydroxyl radical. Thus, it can be concluded that polysaccharides extracted from the lower grade green tea might be employed as ingredients in healthy and functional food to alleviate the oxidative stress.

  7. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  8. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. PMID:27344951

  9. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  10. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus.

    Ma, Lishuai; Chen, Haixia; Zhang, Yu; Zhang, Ning; Fu, Lingling

    2012-06-20

    Chemical modification polysaccharides exerted potent biological property which was related to the physicochemical properties. In the present study, polysaccharides from Inonotus obliquus were modified by suflation, acetylation and carboxymethylation. The physicochemical and antioxidant properties of I. obliquus polysaccharide (IOPS) and its derivatives were comparatively investigated by chemical methods, gas chromatography, size exclusion chromatography, scanning electron micrograph, infrared spectra and circular dichroism spectra, and ferric reducing power assay and lipid peroxidation inhibition assay, respectively. Results showed that physicochemical and antioxidant properties of IOPS were differed each other after the chemical modification of suflation, acetylation and carboxymethylation. Among the three derivatives, acetylationed polysaccharide (Ac-IOPS) resulted in lower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, higher antioxidant abilities on ferric-reducing power and lipid peroxidation inhibition activity compared with the native polysaccharide IOPS. Ac-IOPS might be explored as a novel potential antioxidant for human consumption. PMID:24750732

  11. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  12. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  13. Chemical Structure-Biological Activity Models for Pharmacophores' 3D-Interactions.

    Putz, Mihai V; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners' (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  14. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  15. [Salt resistance and its mechanism of cucumber under effects of exogenous chemical activators].

    Song, Shiqing; Liu, Wei; Guo, Shirong; Shang, Qingmao; Zhang, Zhigang

    2006-10-01

    With root injection and foliar spray, this paper studied the effects of different concentrations salicylic acid, brassinolide, chitosan and spermidine on the growth, morphogenesis, and physiological and biochemical characters of cucumber ( Cucumis sativus L. ) seedlings under 200 mmol x L(-1) NaCl stress. The results showed that at proper concentrations, these four exogenous chemical activators could markedly decrease the salt stress index and mortality of cucumber seedlings, and the decrement induced by 0. 01 mg x L (-1) brassinolide was the largest, being 63. 0% and 75. 0% , respectively. The activities of superoxide dismutase (SOD) , peroxidase (POD) and catalase (CAT) increased significantly, resulting in a marked decrease of malondialdehyde (MDA) content and electrolyte leakage. The dry weight water content and morphogenesis of cucumber seedlings improved, and the stem diameter, leaf number, and healthy index increased significantly. All of these suggested that exogenous chemical activators at proper concentrations could induce the salt resistance of cucumber, and mitigate the damage degree of salt stress. The salt resistance effect of test exogenous chemical activators decreased in the sequence of 0.005 -0.05 mg (L-1) brassinolide, 150 -250 mg x L (-1) spermidine, 100 -200 mg x L(-1) chitosan, and 50 -150 mg x L(-1) salicylic acid. PMID:17209385

  16. Chemical composition, antimicrobial activity and antiviral activity of essential oil of Carum copticum from Iran

    Reza Kazemi Oskuee; Javad Behravan; Mohammad Ramezani

    2011-01-01

    Objectives: Evaluation of therapeutic effects of Carum copticum (C. copticum) has been the subject of several studies in recent years. Thymol the major component of C. copticum is a widely known anti-microbial agent. In this study, the antibacterial and anti viral activities of essential oil of C. copticum fruit were determined. Materials and Methods: Essential oil of C. copticum was analyzed by means of gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity of the oil wa...

  17. Immobilization of chemically modified horse radish peroxidase within activated alginate beads

    Spasojević Dragica

    2014-01-01

    Full Text Available Immobilization of horse radish peroxidase (HRP within alginate beads was improved by chemical modification of the enzyme and polysaccharide chains. HRP and alginate were oxidized by periodate and subsequently modified with ethylenediamine. Highest specific activity of 0.43 U/ml of gel and 81 % of bound enzyme activity was obtained using aminated HRP and alginate oxidized by periodate. Immobilized enzyme retained 75 % of original activity after 2 days of incubation in 80 % (v/v dioxane and had increased activity at basic pH values compared to native enzyme. During repeated use in batch reactor for pyrogallol oxidation immobilized peroxidase retained 75 % of original activity. [Projekat Ministarstva nauke Republike Srbije, br. ON173017 i br. ON172049

  18. Chemical Constituents and Antimicrobial Activity of Indian Green Leafy Vegetable Cardiospermum halicacabum.

    Jeyadevi, R; Sivasudha, T; Ilavarasi, A; Thajuddin, N

    2013-06-01

    The present study was carried out to analyze chemical constituents and antibacterial activity of ethanolic leaf extract of Cardiospermum halicacabum (ECH). The FT-IR spectrum confirmed the presence of alcohols, phenols, alkanes, alkynes, aliphatic ester and flavonoids in ECH. The GC-MS analysis revealed that ECH contained about twenty four compounds. The major chemical compounds identified were cyclohexane-1, 4, 5-triol-3-one-1-carboxylic acid, benzene acetic acid, caryophyllene, phytol and neophytadiene. The ECH was screened for its antibacterial activity against different bacterial strains and anti fungal activity against Candida albicans by agar well diffusion and minimum inhibitory concentration (MIC) assay. ECH exhibited antibacterial and antifungal activity. All the tested bacterial strains showed MIC values ranging from 80 to 125 μg of extract/ml and C. albicans showed 190 μg of extract/ml as a MIC. The maximum activity ECH was observed against human pathogen Staphylococcus aureus followed by Escherichia coli and the fish pathogen Aeromonas hydrophila. ECH exhibited moderate activity against some of the tested multidrug resistant strains. PMID:24426110

  19. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production. PMID:27536531

  20. Preparation of activated carbon from acacia arabica by chemical activation for possible use in the treatment of chemical activation for possible use in the treatment of textile effluents

    Wood of Acacia Arabica syn. A. Nilotica, a locally available tree was used for the preparation of porous activated carbon for adsorption of dyes from aqueous solutions. The broken pieces of wood (6-10 mm size) were semicarbonized at 350 degree C in an atmosphere of N/sub 2/ gas and then impregnated with varying concentration of ZnCl/sub 2/ solution. The dried samples were sieved and carbonized under nitrogen atmosphere at various temperatures for activation. The porosity of the resulting carbon increased with the carbonization temperature to a maximum and then started decreasing with further increase in temperature. The optimum conditions for the production of activated carbon from kikar wood were observed to be carbonization temperature of 700 degree C for one hour with impregnation of wood to ZnCl/sub 2/ ratio of 1:2.5. The prepared activated carbon was evaluated with standard test methods and found to have high active surface area (Maximum Iodine No. 890). The possible industrial utility of the produced activated carbon was examined by adsorption of Congo red dye from its solutions. Different parameters including agitation time, adsorbent dose and temperature of adsorption were studied for finding the optimum conditions for maximum adsorption of the dye. Maximum removal of the dye (99%) was observed at 80 degree C with agitation time of 30min and activated carbon dose of 0.5g/100 ml solution for an initial concentrations of 100 mg/l of the dye. (author)

  1. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.

    Park, Kyung-Won; Sung, Yung-Eun

    2005-07-21

    Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state. PMID:16852701

  2. Can clouds enhance long-range transport of low volatile, ionizable and surface-active chemicals?

    Franco, Antonio; Trapp, Stefan

    2011-01-01

    potential of non-volatile substances. The liquid water content of clouds and the high specific surface of frozen or liquid cloud droplets can significantly contribute to the total activity capacity (i.e. the capacity to sorb chemicals) of the atmosphere for non-volatile, ionizable and surface active...... volatile or ionizable chemicals to investigate the potential of clouds to enhance the atmospheric transport potential. Probability density functions were derived for input substance properties and environmental parameters to quantify uncertainty and variability and probabilistic simulations at steady state...... were run for a constant emission to the atmospheric boundary layer to identify key model inputs. The degradation rate, the duration of dry and wet periods and the parameters describing air-water bulk partitioning (KAW and T) and ionization (pKa and pH) determine the residence time in the ABL. In the...

  3. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    Nouara Ait Mimoune

    2013-08-01

    Full Text Available Objective: To investigate the antimicrobial activity and chemical composition of essential oils of Pinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay. Results: Twenty-three components have been identified. β-caryophyllene (30.9% and β-selinene (13.45% were predominant compounds. The essential oil exhibited a moderate activity against Staphylococcus aureus, Bacillus subtilis and Escherichia coli, but did not affect the growth of Erwinia amylovora. Aspergillus flavus and Aspergillus niger were not inhibited by maritime pine essential oils. Conclusions: The essential oils from Pinus pinaster can be used as an antibacterial agent.

  4. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids

    Changho Jhin; Keum Taek Hwang

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were...

  5. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4

    Highlights: • Activated carbons were produced from reedy grass leaves by activation with phosphoric acid. • The activated carbons have a large number of oxygen- and phosphorus-containing surface groups. • The structure of activated carbons was bight fibers features on the surface and the external surface of the activated carbons was slightly corrugated and abundant pores. - Abstract: Activated carbons were produced from reedy grass leaves by chemical activation with H3PO4 in N2 atmosphere and their characteristics were investigated. The effects of activation temperature and time were examined. Adsorption capacity was demonstrated with BET and iodine number. Micropore volume and pore size distribution of activated carbons were characterized by N2 adsorption isotherms. The surface area and iodine number of the activated carbons produced at 500 °C for 2 h were 1474 m2/g and 1128 mg/g, respectively. Thermal decomposition of pure reedy grass leaves and H3PO4-impregnated reedy grass leaves have been investigated with thermogravimetric/mass spectroscopy (TG–MS) technique. It was found that the temperature and intensity of maximum evolution of H2O and CO2 of H3PO4-impregnated reedy grass leaves were lower than that of pure reedy grass leaves. This implies that H3PO4 as an activating reagent changed the thermal degradation of the reedy grass leaves, stabilized the cellulose structure, leading to a subsequent change in the evolution of porosity. The results of X-ray photoelectron spectroscopy and Fourier-infrared spectroscopy analysis indicate that the produced activated carbons have rich functional groups on surface

  6. Chemical Constituents and Antibacterial and Antifungal Activities of Two Aglaia Species

    WANG,Bin-Gui; LI,Xiao-Ming; PROKSCH,Peter

    2004-01-01

    @@ In the course of searching bioactive natural products from the plant genus Aglaia, we selected two species, A. cordata and A. testicularis, for further chemical study. Totally twenty natural compounds were obtained and structurally elucidated with which eleven of them were discovered for the first time. Among these compounds, lignans, rocaglamides,aglains and bisamides were the main constituents of the two plant species. The results from a bioactive screening indicated that some of the lignans possess potent antibacterial and antifungal activity.

  7. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.)

    Giulia Gigliarelli; Becerra, Judith X.; Massimo Curini; Maria Carla Marcotullio

    2015-01-01

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  8. Chemical composition, antitumor and antimicrobial activity of Thymus vulgaris and T. algeriensis essential oils

    Nikolic, Milos; Glamočlija, Jasmina; Ćirić, Ana; Ferreira, Isabel C.F.R.; Ricardo C. Calhelha; Perić, Tamara; Marković, Dejan; Giweli, Abdulhamed; Soković, Marina

    2013-01-01

    Plants from genus Thymus are often used in traditional medicine. Some of these species are important medicinal plants that are used in ethnomedicine. In this work, analysis of phytochemicals and bioactivity evaluation of Thymus vulgaris and T. algericnsis essential oils were done. The chemical composition of oils were evaluated using GC/MS; cytotoxic activity was tested against five human tumor cell lines MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), ...

  9. Chemical Constituents from Andrographis echioides and Their Anti-Inflammatory Activity

    De-Yang Shen; Shin-Hun Juang; Ping-Chung Kuo; Guan-Jhong Huang; Yu-Yi Chan; Damu, Amooru G.; Tian-Shung Wu

    2012-01-01

    Phytochemical investigation of the whole plants of Andrographis echioides afforded two new 2'-oxygenated flavonoids (1) and (2), two new phenyl glycosides (3) and (4), along with 37 known structures. The structures of new compounds were elucidated by spectral analysis and chemical transformation studies. Among the isolated compounds, (1–2) and (6–19) were subjected into the examination for their iNOS inhibitory bioactivity. The structure-activity relationships of the ...

  10. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components

    Patricia Escobar; Sandra Milena Leal; Laura Viviana Herrera; Jairo Rene Martinez; Elena Stashenko

    2010-01-01

    The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major com...

  11. CHEMICAL ANALYSIS AND ANTIOXIDANT ACTIVITY OF âNERIUM OLEANDERâ LEAVES

    Lakhmili Siham; Obraim Saida; Taourirte Moha; Seddiqi Nadia; Amraoui Hakima

    2014-01-01

    The phenolic products of medicinal plants have a great pharmacological interest. This product gives the powers of medicinal plants. They are the source of several active principles widely used in modern medicine. The use of Nerium oleander in Moroccan traditional medicine is very common. Few studies have focused on the chemical analysis and phenolic compounds of this plant. For this, we investigated the mineral composition and phenolic combination of the leaves oleander and the study of the a...

  12. SEM characterization of carbon nanotubes based active layers of chemical sensors

    Knápek, Alexandr; Mika, Filip; Prášek, J.; Majzlíková, P.

    Piscataway : IEEE, 2014, s. 361-364. ISBN 978-1-4799-4455-2. [International Spring Seminar on Electronics Technology /37./. Dresden (DE), 07.05.2014-11.05.2014] R&D Projects: GA MŠk(CZ) LO1212; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : SEM * carbon nanotubes * active layers of chemical sensor s Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  13. Chemical constituents of Phragmanthera austroarabica A. G. Mill and J. A. Nyberg with potent antioxidant activity

    Jihan M. Badr

    2015-01-01

    Background: Phragmanthera austroarabica A.G. Mill. and J. A. Nyberg is a semi parasitic plant belonging to family Loranthaceae. It was collected from Saudi Arabia. It is widely used in folk medicine among the kingdom in treatment of various diseases including diabetes mellitus. Objective: The total alcoholic extract of P. austroarabica collected from Saudi Arabia was investigated for the chemical structure and prominent biological activity of the main constituents. Materials and Methods: Isol...

  14. A Soil-free System for Assaying Nematicidal Activity of Chemicals

    Preiser, F. A.; Babu, J. R.; Haidri, A. A.

    1981-01-01

    A biological assay system for studying the nematicidal activity of chemicals has been devised using a model consisting of cucumber (Cucumis sativus L. cv. Long Marketer) seedlings growing in the diSPo® growth-pouch apparatus. Meloidogyne incognita was used as the test organism. The response was quantified in terms of the numbers of galls produced. Statistical procedures were applied to estimate the ED50 values of currently available nematicides. This system permits accurate quantification of ...

  15. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.

    Giulia Gigliarelli

    2015-12-01

    Full Text Available Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  16. Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: a birth cohort study

    Park Hye-Youn; Hertz-Picciotto Irva; Sovcikova Eva; Kocan Anton; Drobna Beata; Trnovec Tomas

    2010-01-01

    Abstract Background Polychlorinated biphenyls (PCBs) are ubiquitous environmental toxins. Although there is growing evidence to support an association between PCBs and deficits of neurodevelopment, the specific mechanisms are not well understood. The potentially different roles of specific PCB groups defined by chemical structures or hormonal activities e.g., dioxin-like, non-dioxin like, or anti-estrogenic PCBs, remain unclear. Our objective was to examine the association between prenatal ex...

  17. The Polyphenols Stability, Enzyme Activity and Physico-Chemical Parameters During Producing Wild Elderberry Concentrated Juice

    Ante Galić; Verica Dragović-uzelac; Branka Levaj; Danijela Bursać Kovačević; Stjepan Pliestić; Sabina Arnautović

    2009-01-01

    The influence of processing wild elderberry into concentrated juice on polyphenols (total phenols, flavonoids, non-flavonoids, anthocyanins, flavan-3-ols, hydrolysed tannins) stability, activity of polyphenol oxidase (PPO) and peroxidase (POD), and changes of physico-chemical parameters (total and soluble dry matter, total acidity, pH, sugars) were investigated. The amounts of total phenols, flavonoids, non-flavonoids, falvan-3-ols and hydrolysed tannins were analyzed using Folin-Ciocalteu co...

  18. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?

    Hartmann, Jens; Jansen, N; Dürr, H. H.; Kempe, S.; Köhler, Peter

    2009-01-01

    CO2-consumption by chemical weathering of silicates and resulting silicate/carbonate weathering ratios influences the terrestrial lateral inorganic carbon flux to the ocean and long-term climate changes. However, little is known of the spatial extension of highly active weathering regions and their proportion of global CO2-consumption. As those regions may be of significant importance for global climate change, global CO2-consumption is calculated here at high resolution, to adequately repres...

  19. Chemical Constituents of the Fruiting Bodies of Clitocybe nebularis and Their Antifungal Activity

    Kim, Young-Sook; Lee, In-Kyoung; Seok, Soon-Ja; Yun, Bong-Sik

    2008-01-01

    During a continuing search for antimicrobial substances from Korean native wild mushroom extracts, we found that the methanolic extract of the fruiting body of Clitocybe nebularis exhibited mild antifungal activity against pathogenic fungi. Therefore we evaluated the antifungal substances and other chemical components of the fruiting body of Clitocybe nebularis, which led to the isolation of nebularine, phenylacetic acid, purine, uridine, adenine, uracil, benzoic acid, and mannitol. Nebularin...

  20. Chemical composition and antifungal activity of essential oil from Eucalyptus smithii against dermatophytes

    Edilene Bolutari Baptista; Danielle Cristina Zimmermann-Franco; Alexandre Augusto Barros Lataliza; Nádia Rezende Barbosa Raposo

    2015-01-01

    ABSTRACT INTRODUCTION: In this study, we evaluated the chemical composition of a commercial sample of essential oil from Eucalyptus smithii R.T. Baker and its antifungal activity against Microsporum canis ATCC 32903, Microsporum gypseum ATCC 14683, Trichophyton mentagrophytes ATCC 9533, T. mentagrophytes ATCC 11480, T. mentagrophytes ATCC 11481, and Trichophyton rubrum CCT 5507. METHODS: Morphological changes in these fungi after treatment with the oil were determined by scanning electron ...

  1. Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species

    Heleno, Sandrina A.;; Barros, Lillian; Martins, Anabela; Queiroz, Maria João R. P.; Morales, Patricia; Fernández-Ruiz, Virginia; Ferreira, Isabel C. F. R.

    2015-01-01

    Mushrooms are rich sources of bioactive compounds such as phenolic acids. When ingested, these molecules have to be released from the matrix to be transformed/absorbed by the organism, so that they can exert their bioactivity. Several in vitro methodologies have been developed in order to evaluate the bioavailability of bioactive compounds. Herein, two Hericium species were analyzed for their chemical composition and antioxidant activity. Furthermore, an in vitro digestion of the mushrooms an...

  2. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”

    Glamočlija, Jasmina; Ćirić, Ana; Nikolić, Miloš; Fernandes, Ângela; Barros, Lillian; Ricardo C. Calhelha; Ferreira, Isabel C.F.R.; Soković, Marina; Van Griensven, Leo J. L. D.

    2015-01-01

    Chemical composition and biological properties of aqueous and ethanolic extracts of Inonotus obliquus (Pers.:Fr.) Pilat from different origins, i.e. of Finland, Russia, and Thailand, were studied. Concerning biological activity, antimicrobial, antiqourum, antioxidative, and antitumor and cytotoxic effects were tested. Oxalic acid was found as the main organic acid, with the highest amount in Russian aqueous extract. Gallic, protocatechuic and p-hydroxybenzoic acids were detected in all sample...

  3. Effect of chemical activation of 10% carbamide peroxide gel in tooth bleaching.

    Batista, Graziela Ribeiro; Arantes, Paula Tamiao; Attin, Thomas; Wiegand, Annette; Torres, Carlos Rocha

    2013-01-01

    This study aimed to evaluate the efficacy of chemical agents to increase the bleaching effectiveness of 10% carbamide peroxide. Two hundred and ninety enamel-dentin discs were prepared from bovine incisors. The color measurement was performed by a spectrophotometer using the CIE L*a*b*system. The groups were divided according to the bleaching treatment: negative control group (NC): without bleaching; positive control group (PC): bleached with 10% carbamide peroxide gel without any chemical activator; Manganese gluconate (MG); Manganese chloride (MC); Ferrous gluconate (FG); Ferric chloride (FC); and Ferrous sulphate (FS). Three different concentrations (MG, MC, FG, FC: 0.01, 0.02 and 0.03% w/w; FS: 0.001, 0.002 and 0.003% w/w) for each agent were tested. The bleaching gel was applied on the specimens for 8 h, after which they were immersed in artificial saliva for 16 h, during 14 days. Color assessments were made after 7 and 14 days. The data were analyzed by repeated measures analysis of variance and Tukey's test (5%). Generally, the test groups were unable to increase the bleaching effect (ΔE) significantly compared to the PC group. Only for ΔL, significant higher values compared to the PC group could be seen after 7 days in groups MG (0.02%), and FS (0.002 and 0.003%). The NC group showed significantly lower values than all tested groups. It was concluded that for home bleaching procedures, the addition of chemical activators did not produce a bleaching result significantly higher than the use of 10% carbamide peroxide without activation, and that the concentration of chemical activators used did not significantly influence the effectiveness of treatment. PMID:23390623

  4. Chemical composition, antioxidative and antimicrobial activity of essential oil Ocimum sanctum L.

    Beatović Damir V.; Jelačić Slavica Ć.; Oparnica Čedo D.; Krstić-Milošević Dijana B.; Glamočlija Jasmina M.; Ristić Mihailo S.; Šiljegović Jovana D.

    2013-01-01

    Ocimum sanctum L. (Lamiaceae) sin. Ocimum tenuiflorum L. or Tulsi basil is a plant originating from tropical and subtropical areas of India. It is used in both the traditional and official medicine in India. Tulsi is a type of basil that is insufficiently explored and studied in Europe. The goal of this paper is to determine the chemical composition, antioxidative, and antimicrobial activity of the essential oil Ocimum sanctum L. grown in Serbia. The quantity of essential oil in 100 g o...

  5. Comparison of different methods for extraction from Tetraclinis articulata: Yield, chemical composition and antioxidant activity

    Herzi, Nejia; Bouajila, Jalloul; Camy, Séverine; Romdhane, Mehrez; Condoret, Jean-Stéphane

    2013-01-01

    International audience In the present study, three techniques of extraction: hydrodistillation (HD), solvent extraction (conventional 'Soxhlet' technique) and an innovative technique, i.e., the supercritical fluid extraction (SFE), were applied to ground Tetraclinis articulata leaves and compared for extraction duration, extraction yield, and chemical composition of the extracts as well as their antioxidant activities. The extracts were analyzed by GC-FID and GC-MS. The antioxidant activit...

  6. CHEMICAL, PHYSICAL AND SENSORY ANALYSIS OF ACTIVITY DIFFERENT YEAST SPECIES ON IDENTICAL SUBSTRATE IN WINE PRODUCTION

    Vladimír Vietoris; Hana Balková,Tatiana Bojňanská; Ľubomír Bennár; Peter Czako

    2013-01-01

    Rizling vlašský is the second most important variety in Slovakia. The science of wine production includes a summary of knowledge and experience in the field of grape growing and wine making, or the production of different types of wines using specific methods of production. Wine quality is the result of the interaction between yeast, bacteria and microscopic funguses. In this research, we studied the effects of active dry wine yeasts on chemical, physical and sensory parameters in wine produc...

  7. Chemical composition analysis, antioxidant and antibacterial activity evaluation of essential oil of Atalantia monophylla Correa

    Ramaraj Thirugnanasampandan; Ramya Gunasekar; Madhusudhanan Gogulramnath

    2015-01-01

    Background: Atalantia monophylla Correa. a small tree belongs to the family Rutaceae. It is distributed throughout India and in Tamil Nadu the species is commonly seen in foothills of dry vegetation. Objective: The aim was to hydrodistillate and analyze the chemical composition of essential oil from the fresh leaves of A. monophylla Correa. collected in two different seasons (December, 2013 and May, 2014) and to evaluate antioxidant and antibacterial activities of isolated essential oil. Mate...

  8. Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) Essential oil

    Mohaddese Mahboubi; Nastaran Kazempour

    2014-01-01

    Peppermint with antiseptic and known healing properties is a plant from the Labiatae family. In this study, we analyzed the chemical composition of essential oil from the flowering aerial part of peppermint by GC and GC/MS. Its antimicrobial activity was evaluated against bacteria, fungi and yeast by micro broth dilution assay. The fractional inhibitory concentration (FIC) and FIC Index (FICI) and related isobologram curve were determined by check board micro titer assay. The results...

  9. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    Neveen Helmy Abou El-Soud; Mohamed Deabes; Lamia Abou El-Kassem; Mona Khalil

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and anal...

  10. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged be...

  11. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  12. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses high acidity and high –SO3H density. • It

  13. Tracking SERS-active nanoprobe intracellular uptake for chemical and biological sensing

    Gregas, Molly K.; Yan, Fei; Scaffidi, Jonathan; Wang, Hsin-Neng; Khoury, Christopher; Zhang, Yan; Vo-Dinh, Tuan

    2007-09-01

    A critical aspect of the use of nanoprobes for intracellular studies in chemical and biological sensing involves a fundamental understanding of their uptake and trajectory in cells. In this study, we describe experiments using surface-enhanced Raman scattering (SERS) spectroscopy and mapping to track cellular uptake of plasmonics-active labeled nanoparticles. Three different Raman-active labels with positive, negative, and neutral charges were conjugated to silver colloidal nanoparticles with the aim of spatially and temporally profiling intracellular delivery and tracking of nanoprobes during uptake in single mammalian cells. 1-D Raman spectra and 2-D Raman mapping are used to identify and locate the probes via their SERS signal intensities. Because Raman spectroscopy is very specific for identification of chemical and molecular signatures, the development of functionalized plasmonics-active nanoprobes capable of exploring intracellular spaces and processes has the ability to provide specific information on the effects of biological and chemical pollutants in the intracellular environment. The results indicate that this technique will allow study of when, where, and how these substances affect cells and living organisms.

  14. Chemical composition, antimicrobial activity and antiviral activity of essential oil of Carum copticum from Iran

    Reza Kazemi Oskuee

    2011-09-01

    Conclusion: The essential oil showed an antiviral activity against phage when phage was pre-incubated with the essential oil prior to its exposure to B. cereus and without any pre-incubation with the phage, suggesting that the oil directly inactivated virus particles.

  15. Chemical and biochemical activities of sonochemically synthesized poly(N-isopropyl acrylamide)/silica nanocomposite

    Chowdhury, Pranesh; Saha, Swadhin Kr; Guha, Arun; Saha, Samar Kr

    2012-11-01

    Poly(N-isopropyl acrylamide) (PNIPA) grafted mesoporous silica nanoparticles (MPSNP) leading to novel inorganic/organic core-shell nanocomposite has been synthesized sonochemically in an aqueous medium without additives like cross-linker, hydrophobic agent, organic solvent. The colloidal stability of MPSNP is enhanced significantly due to encapsulation of the polymer. The composites are characterized by TEM, FTIR and TGA. The chemical and biochemical activities of the sonochemically synthesized materials have been studied in the light of reaction with acid-base, protein adsorption, antimicrobial activity, biocompatibility and nonthrombogenic property. Advantages of sonochemical synthesis compared to other techniques have been evaluated.

  16. Chemical Composition and Biological Activities of Essential Oil from the Rhizomes of Iris bulleyana

    DENG Guo-bin; ZHANG Han-bo; XUE Hong-fen; CHEN Shan-na; CHEN Xiao-lan

    2009-01-01

    Iris bulleyana has long been used as a remedy for detoxication and detumescence.Hydrodistillation was used to extract the essential oil from its rhizomes,and 0.23% oil yield was obtained.Using gas chromatography-mass spectrometry (GCMS) analysis,31 chemicals including aristolone,euparene,β-gurjunene,δ-amorphene,α-muurolene,α-cadinol,camphor,γ-elemene,and τ-eadinol were identified.The essential oil exhibited antibacterial activity against Acetobacter calcoacetica,Bacillus subtillis,Clostridium sporogenes,Clostridium perfringens,Escherichia coli,Salmonella typhii,Staphylococcus aureus,and Yersinia enterocolitica.Its antifungal and antioxidant activities were also tested.

  17. CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF ESSENTIAL OIL FROM CURCUMA AMADA ROXB.

    Vishnupriya M; Nishaa.S; Sasikumar.J.M; Teepica Priya Darsini.D; Hephzibah Christabel P; Gopalakrishnan V.K

    2012-01-01

    This study was designed to examine the chemical composition and in vitro antioxidant activity of essential oil of Curcuma amada Roxb. The GC- MS analysis of the oil resulted in the identification of 12 compounds. β-myrcene (63.85%) and α-asarone (30.27%) were the two major components identified. The sample was subjected to screening for their possible antioxidant activity by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical, ABTS radical, Ferric reducing antioxidant power and β-Carotene ble...

  18. Omani propolis: chemical profiling, antibacterial activity and new propolis plant sources

    2013-01-01

    Background Propolis (bee glue) is a resinous honeybee product having a long history of application in many countries as a traditional remedy for treating wounds, burns, soar throat, stomach disorders, etc. It has been proved to possess beneficial biological effects, including antimicrobial, antioxidant, anti-inflammatory, cytotoxic, antiulcer, and many others. Bees gather propolis from diverse resinous plant parts and in different phytogeographic regions its chemical composition might vary significantly. In this article we report the results of the first study on the chemical profiles of propolis from Oman, its plant origin and antibacterial activity. Results The chemical profiles of Omani propolis extracts were obtained by GC-MS analysis after silylation. Over 50 individual compounds were identified in the samples, belonging to different compound types: sugars, polyols, hydroxy acids, fatty acids, cardanols and cardols, anacardic acids, flavan derivatives, triterpenes, prenylated flavanones and chalcones. The profiles were dissimilar from other known propolis types. They demonstrate that although Oman is not a large country, the plant sources of propolis vary significantly, even in the same apiary and the same season. Based on chemical profiles, and isolation and identification of major marker compounds (new propolis constituents), new plant sources of propolis were found: Azadiracta indica (neem tree) and Acacia spp. (most probably A. nilotica). The ethanol extracts of the studied propolis samples demonstrated activity against S. aureus (MIC < 100 μg. mL-1) and E. coli (MIC < 380 μg. mL-1). Conclusion Omani propolis is different form the known propolis types and demonstrates significant chemical diversity. Its most important plant source is the resin of Azadirachta indica, and as a result its typical components are С5-prenyl flavanones. Other plant sources have been identified, too, playing some role in resin collection by bees in Oman: Acacia spp

  19. Relationship between redox activity and chemical speciation of size-fractionated particulate matter

    Cho Arthur K

    2007-06-01

    Full Text Available Abstract Background Although the mechanisms of airborne particulate matter (PM related health effects remain incompletely understood, one emerging hypothesis is that these adverse effects derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS within affected cells. Typically, ROS are formed in cells through the reduction of oxygen by biological reducing agents, with the catalytic assistance of electron transfer enzymes and redox active chemical species such as redox active organic chemicals and metals. The purpose of this study was to relate the electron transfer ability, or redox activity, of the PM samples to their content in polycyclic aromatic hydrocarbons and various inorganic species. The redox activity of the samples has been shown to correlate with the induction of the stress protein, hemeoxygenase-1. Results Size-fractionated (i.e. Conclusion The results of this work demonstrate the utility of the dithiothreitol assay for quantitatively assessing the redox potential of airborne particulate matter from a wide range of sources. Studies to characterize the redox activity of PM from various sources throughout the Los Angeles basin are currently underway.

  20. Chemical Composition, Antimicrobial and Antioxidant Activities of the Volatile Oil of Ganoderma pfeifferi Bres

    Mohamed Al-Fatimi

    2016-04-01

    Full Text Available In a first study of the volatile oil of the mushroom basidiomycete Ganoderma pfeifferi Bres., the chemical composition and antimicrobial and antioxidant activities of the oil were investigated. The volatile oil was obtained from the fresh fruiting bodies of Ganoderma pfeifferi Bres. By hydrodistillation extraction and analyzed by GC-MS. The antimicrobial activity of the oil was evaluated against five bacteria strains and two types of fungi strains, using disc diffusion and broth microdilution methods. In addition, the antioxidant activity of the oil was determined using DPPH assay. Four volatile compounds representing 90.5% of the total oil were identified. The majority of the essential oil was dominated by 1-octen-3-ol (amyl vinyl carbinol 1 (73.6% followed by 1-octen-3-ol acetate 2 (12.4%, phenylacetaldehyde 3 (3.0% and 6-camphenol 4 (1.5%. The results showed that the Gram-positive bacteria species are more sensitive to the essential oil than Gram-negative bacteria. The oil showed strong antimicrobial activity against Staphylococcus aureus as well as Candida albicans. Moreover, the oil exhibited strong radical scavenging activity in the DPPH assay. This first report on the chemical composition and biological properties of G. pfeifferi volatile oil makes its pharmaceutical uses rational and provides a basis in the biological and phytochemical investigations of the volatile oils of Ganodermataceae species.

  1. Chemical Signals of Synthetic Disaccharide Derivatives Dominate Rhamnolipids at Controlling Multiple Bacterial Activities.

    Singh, Nischal; Shetye, Gauri S; Zheng, Hewen; Sun, Jiayue; Luk, Yan-Yeung

    2016-01-01

    Microbes secrete molecules that modify their environment. Here, we demonstrate a class of synthetic disaccharide derivatives (DSDs) that mimics and dominates the activity of naturally secreted rhamnolipids by Pseudomonas aeruginosa. The DSDs exhibit the dual function of activating and inhibiting the swarming motility through a concentration-dependent activity reversal that is characteristic of signaling molecules. Whereas DSDs tethered with a saturated farnesyl group exhibit inhibition of both biofilm formation and swarming motility, with higher activities than rhamnolipids, a saturated farnesyl tethered with a sulfonate group only inhibits swarming motility but promote biofilm formation. These results identified important structural elements for controlling swarming motility, biofilm formation, and bacterial adhesion and suggest an effective chemical approach to control intertwined signaling processes that are important for biofilm formation and motilities. PMID:26511780

  2. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    Kovtun, Maxim, E-mail: max.kovtun@up.ac.za; Kearsley, Elsabe P., E-mail: elsabe.kearsley@up.ac.za; Shekhovtsova, Julia, E-mail: j.shekhovtsova@gmail.com

    2015-06-15

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator.

  3. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator

  4. CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF ESSENTIAL OIL FROM CURCUMA AMADA ROXB.

    Vishnupriya.M

    2012-06-01

    Full Text Available This study was designed to examine the chemical composition and in vitro antioxidant activity of essential oil of Curcuma amada Roxb. The GC- MS analysis of the oil resulted in the identification of 12 compounds. β-myrcene (63.85% and α-asarone (30.27% were the two major components identified. The sample was subjected to screening for their possible antioxidant activity by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH radical, ABTS radical, Ferric reducing antioxidant power and β-Carotene bleaching assay. Results showed that the essential oil possessed a strong degree of antioxidant activity in terms of β-Carotene bleaching capacity followed by ABTS radical, ferric reducing power and a moderate DPPH radical scavenging activity. This study concludes that the essential oil from Curcuma amada Roxb could serve as an important bioresource of antioxidants for using in food and pharmaceutical industry.

  5. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China

    Linghong Liang

    2012-01-01

    Full Text Available Background: Mulberry (Morus, Moraceae is widely distributed in the temperate, subtropical, or tropical regions of the world, while there are no conclusive reports on the chemical composition, nutritional value, and antioxidant properties of mulberry cultivars from China. Objective: To investigate chemical properties and to determine proximate nutritive compounds of the eight mulberry cultivars. Materials and Methods: Chemical properties (including moisture, ash, total dry matter, total soluble solids, pH, and total titratable acidity of the eight mulberry cultivars were investigated. Proximate nutritive compounds (including crude protein, crude fat, mineral elements, total anthocyanins, total polyphenols, total flavonoids, and total sugars were also determined. Results: The results indicated that the moisture contents were 70.0-87.4%, the crude protein contents 1.62-5.54%, and the crude fat contents from 1.23-2.23%. The major fatty acids in mulberry fruits were linoleic acid (C 18:2 and palmitic acid (C 16:0 , 26.40-74.77% and 9.29-22.26%, respectively. Mulberry fruit is also a good source of minerals and the potassium content (521.37-1718.60 mg/100g DW is especially higher than that of other elements. Compared with other species, the Morus atropurpurea Roxb. had relatively high total polyphenols content (189.67-246.00 mg GAE/100mg and anthocyanins content (114.67-193.00 mg/100mg. There was a good linear correlation between antioxidant activity and total polyphenols content. Conclusion: Significant differences of the chemical composition, nutritional value, and antioxidant activities among the mulberry cultivars were observed, the Morus atropurpurea Roxb. showed considerable high nutritional value and antioxidant activity which could be developed for functional food that benefits human health.

  6. Can vaccinia virus be replaced by MVA virus for testing virucidal activity of chemical disinfectants?

    Rapp Ingrid

    2010-06-01

    Full Text Available Abstract Background Vaccinia virus strain Lister Elstree (VACV is a test virus in the DVV/RKI guidelines as representative of the stable enveloped viruses. Since the potential risk of laboratory-acquired infections with VACV persists and since the adverse effects of vaccination with VACV are described, the replacement of VACV by the modified vaccinia Ankara strain (MVA was studied by testing the activity of different chemical biocides in three German laboratories. Methods The inactivating properties of different chemical biocides (peracetic acid, aldehydes and alcohols were tested in a quantitative suspension test according to the DVV/RKI guideline. All tests were performed with a protein load of 10% fetal calf serum with both viruses in parallel using different concentrations and contact times. Residual virus was determined by endpoint dilution method. Results The chemical biocides exhibited similar virucidal activity against VACV and MVA. In three cases intra-laboratory differences were determined between VACV and MVA - 40% (v/v ethanol and 30% (v/v isopropanol are more active against MVA, whereas MVA seems more stable than VACV when testing with 0.05% glutardialdehyde. Test accuracy across the three participating laboratories was high. Remarkably inter-laboratory differences in the reduction factor were only observed in two cases. Conclusions Our data provide valuable information for the replacement of VACV by MVA for testing chemical biocides and disinfectants. Because MVA does not replicate in humans this would eliminate the potential risk of inadvertent inoculation with vaccinia virus and disease in non-vaccinated laboratory workers.

  7. MORPHO-CHEMICAL DESCRIPTION AND ANTIMICROBIAL ACTIVITY OF DIFFERENT OCIMUM SPECIES

    KAKARAPARTHI PANDU SASTRY

    2012-12-01

    Full Text Available Basil is a popular medicinal and culinary herb, and its essential oils have been used extensively for many years in food products, perfumery, dental and oral products. Basil essential oils and their principal constituents were found to exhibit antimicrobial activity against a wide range of Gram-negative and Gram-positive bacteria, yeast, and mould. The essential oils obtained from aerial parts of three different species of Ocimum comprising twenty one germplasm lines were investigated for their essential oil composition and antimicrobial activity during 2010. Essential oils from seventeen germplasm lines in Ocimum basilicum and two each in Ocimum tenuiflorum and Ocimum gratissimum were investigated for anti-microbial activity against four bacterial strains (Staphylococcus aureus, Bacillus sps., Escherichia coli and Pseudomonas aeruginosa. The morpho-chemotypes exhibited wide variability for morphological and chemical traits. Anti-bacterial activity was found to be high for Staphylococcus aureus, moderate for Escherichia coli, low for Bacillus and Pseudomonas aeruginosa was highly resistant. The essential oils of Pale Green-Broad Leaves (O. basilicum and CIM Ayu (O. gratissimum exhibited significant antibacterial activity against both S. aureus and E. coli signifying them promising for anti-bacterial activity. No relationship was observed between chemotype specificity and anti-bacterial activity, indicating that apart from major components of essential oil, minor components and other factors may be responsible for anti-microbial activities.

  8. Effects of chemical activation and season on birth efficiency of cloned pigs

    2009-01-01

    The effects of chemical activation on birth efficiency of cloned pigs were studied by investigating the developmental process from porcine oocyte activation to birth of cloned pigs.Three different activation methods were used:(i) Electroporation(Ele);(ii) Ele followed by incubation with 6-dimethylaminopurine(6-DMAP);and(iii) Ele followed by a treatment with cycloheximide(CHX).In experiment 1,the rates of cleavage,developmental rates and cell number of porcine parthenogenetic(PA) embryos were investigated in the three treatment groups.In experiment 2,NT embryos produced by the three different activation treatments were compared for the rates of cleavage,development and cell number.Finally,the effects of Ele and Ele+CHX activation methods on birth efficiency of cloned pigs were compared.The activated oocytes treated by combination activation generally showed a higher(P<0.05) blastocyst rate and produced more expanded blastocysts than oocytes activated with Ele.The rates of cleavage and total cell number of parthenotes were not significantly different.Parthenogenetic embryos activated with 6-DMAP developed into blastocyst and expanded blastocyst stages at a significantly(P<0.05) higher rate than those treated with Ele,but the developmental capability was dramatically decreased in NT embryos.With the CHX activation method,the NT embryo blastocyst rate was substantially(P<0.05) increased although the production of expanded blastocysts was not significantly different from that by the other two methods.The birth rate of cloned pigs increased in the CHX group,though the rate was not significantly different from Ele.The effects of season on developmental rate of the porcine PA embryos and birth rate of cloned pigs were also examined in our study.Porcine oocytes collected in the spring had higher developmental capabilities than those collected in the winter.However,no difference in birth rate of the cloned pigs was found between the oocytes collected in the two seasons

  9. Effects of chemical activation and season on birth efficiency of cloned pigs

    MA YuFang; LI Yan; WEI HengXi; LI QiuYan; FANG Rui; ZHAO Rui; ZHANG Kun; XUE Kai; LOU YanKun; DAI YunPing; LIAN LinSheng; LI Ning

    2009-01-01

    The effects of chemical activation on birth efficiency of cloned pigs were studied by investigating the developmental process from porcine oocyte activation to birth of cloned pigs. Three different activation methods were used: (i) Electroporation (Ele); (ii) Ele followed by incubation with 6-dimethylaminopurine (6-DMAP); and (iii) Ele followed by a treatment with cycloheximide (CHX). In experiment 1, the rates of cleavage, developmental rates and cell number of porcine parthenogenetic (PA) embryos were investigated in the three treatment groups. In experiment 2, NT embryos produced by the three different activation treatments were compared for the rates of cleavage, development and cell number. Finally, the effects of Eie and Ele+CHX activation methods on birth efficiency of cloned pigs were compared. The activated oocytes treated by combination activation generally showed a higher (P<0.05) blastocyst rate and produced more expanded blastocysts than oocytes activated with Ele. The rates of cleavage and total cell number of parthenotes were not significantly different. Parthenogenetic embryos activated with 6-DMAP developed into blastocyst and expanded blsstocyst stages at a significantly (P<0.05) higher rate than those treated with Ele, but the developmental capability was dramatically decreased In NT embryos. With the CHX activation method, the NT embryo blastocyst rate was substantially (P<0.05) increased although the production of expanded blastocysts was not significantly different from that by the other two methods. The birth rate of cloned pigs increased in the CHX group, though the rate was not significantly different from Ele. The effects of season on developmental rate of the porcine PA embryos and birth rate of cloned pigs were also examined in our study. Porcine oocytes collected in the spring had higher developmental capabilities than those collected in the winter. However, no difference in birth rate of the cloned pigs was found between the oocytes

  10. 76 FR 76935 - Impact of Implementing the Chemical Weapons Convention (CWC) on Commercial Activities Involving...

    2011-12-09

    ... Bureau of Industry and Security Impact of Implementing the Chemical Weapons Convention (CWC) on... implementation of the Chemical Weapons Convention (CWC), through the Chemical Weapons Convention Implementation Act (CWCIA), and the Chemical Weapons Convention Regulations (CWCR), has had on commercial...

  11. Metal compounds in zeolites as active components of chemisorption and catalysis. Quantum chemical approach

    A short review of possible catalitic active sites associated with various types of metal species in zoolite is presented. The structural and electronic peculiarity of aluminum ions in zeolite lattice and their distribution in the lattice are discussed on the basis of quantum chemical calculations in connection with the formation of Broensted activity of zeolites. Various molecular models of Lewis Acid Sites associated the extra-lattice oxide-hydroxide aluminum species have been investigated by means of density functional model cluster calculations using CO molecule as a probe. Probable ways of formation of the selective oxidation center in FeZSM-5 by decomposition of dinitrogen monoxide have been studied by ab-initio quantum chemical calculations. The immediate oxidizing site is reasonably represented by the binuclear iron-hydroxide cluster with peroxo-like fragment located between iron atoms. Various probable intermediates of the selective oxidation center formation resulted from interaction of a hydroperoxide molecule with a lattice titanium ion in titanium silicalite have been investigated by quantum chemical calculations. It was concluded that this reaction requires essential structural reconstruction in the vicinity of the titanium ion. Probability of this structural reconstruction is discussed. Possible reasons of an electron-deficient and electron-enriched state of metal particles entrapped in zoolite cavities are discussed. Also, various probable molecular models of such modified metal particles in zeolite are considered

  12. Changes in soil chemical characters and enzyme activities during continuous monocropping of cucumber (cucumis sativus)

    Soil sickness, a phenomenon of negative plant-soil feedback in continuous monocropping systems, can cause severe yield penalty in agricultural production. Changes in soil chemical and biological characters are thought to account for soil sickness. However, changes in soil properties in continuous monocropping systems and links between these changes and plant growth performance are still not clear. In this study, dynamics of soil chemical characters and enzyme activities were monitored in a continuously monocropped cucumber system, in which cucumber was successively monocropped in pots for nine croppings under greenhouse conditions from 2005 to 2009 in the experimental station of Northeast Agricultural University, Harbin, China. Cucumber showed an obvious stunted growth behavior in the seventh cropping and turned better in the ninth cropping. Soil pH decreased from the first cropping to the seventh cropping and increased in the ninth cropping. Contents of soil available nitrogen, phosphorous and potassium were the highest while activities of soil urease, neutral phosphatase and catalase were the lowest in the seventh cropping. Our results suggested that cucumber in the seventh cropping did not absorb enough soil nutrients, which may lead to the decrease in soil pH and changed soil biological properties. Changes in soil chemical and biological characters may be linked to the soil sickness of cucumber. (author)

  13. Activities of the Institute of Chemical Processing of Coal at Zabrze

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  14. Helichrysum gymnocephalum Essential Oil: Chemical Composition and Cytotoxic, Antimalarial and Antioxidant Activities, Attribution of the Activity Origin by Correlations

    François Couderc

    2011-09-01

    Full Text Available Helichrysum gymnocephalum essential oil (EO was prepared by hydrodistillation of its leaves and characterized by GC-MS and quantified by GC-FID. Twenty three compounds were identified. 1,8-Cineole (47.4%, bicyclosesquiphellandrene (5.6%, γ-curcumene (5.6%, α-amorphene (5.1% and bicyclogermacrene (5% were the main components. Our results confirmed the important chemical variability of H. gymnocephalum. The essential oil was tested in vitro for cytotoxic (on human breast cancer cells MCF-7, antimalarial (Plasmodium falciparum: FcB1-Columbia strain, chloroquine-resistant and antioxidant (ABTS and DPPH assays activities. H. gymnocephalum EO was found to be active against MCF-7 cells, with an IC50 of 16 ± 2 mg/L. The essential oil was active against P. falciparum (IC50 = 25 ± 1 mg/L. However, the essential oil exhibited a poor antioxidant activity in the DPPH (IC50 value > 1,000 mg/L and ABTS (IC50 value = 1,487.67 ± 47.70 mg/L assays. We have reviewed the existing results on the anticancer activity of essential oils on MCF-7 cell line and on their antiplasmodial activity against the P. falciparum. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial and anticancer. β-Selinene (R² = 0.76, α-terpinolene (R² = 0.88 and aromadendrene (R² = 0.90 presented a higher relationship with the anti-cancer activity. However, only calamenene (R² = 0.70 showed a significant correlation for the antiplasmodial activity.

  15. Helichrysum gymnocephalum essential oil: chemical composition and cytotoxic, antimalarial and antioxidant activities, attribution of the activity origin by correlations.

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2011-01-01

    Helichrysum gymnocephalum essential oil (EO) was prepared by hydrodistillation of its leaves and characterized by GC-MS and quantified by GC-FID. Twenty three compounds were identified. 1,8-Cineole (47.4%), bicyclosesquiphellandrene (5.6%), γ-curcumene (5.6%), α-amorphene (5.1%) and bicyclogermacrene (5%) were the main components. Our results confirmed the important chemical variability of H. gymnocephalum. The essential oil was tested in vitro for cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum: FcB1-Columbia strain, chloroquine-resistant) and antioxidant (ABTS and DPPH assays) activities. H. gymnocephalum EO was found to be active against MCF-7 cells, with an IC(50) of 16 ± 2 mg/L. The essential oil was active against P. falciparum (IC(50) = 25 ± 1 mg/L). However, the essential oil exhibited a poor antioxidant activity in the DPPH (IC(50) value > 1,000 mg/L) and ABTS (IC(50) value = 1,487.67 ± 47.70 mg/L) assays. We have reviewed the existing results on the anticancer activity of essential oils on MCF-7 cell line and on their antiplasmodial activity against the P. falciparum. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial and anticancer). β-Selinene (R² = 0.76), α-terpinolene (R² = 0.88) and aromadendrene (R² = 0.90) presented a higher relationship with the anti-cancer activity. However, only calamenene (R² = 0.70) showed a significant correlation for the antiplasmodial activity. PMID:21959299

  16. Chemical composition analysis, antioxidant and antibacterial activity evaluation of essential oil of Atalantia monophylla Correa

    Ramaraj Thirugnanasampandan

    2015-01-01

    Full Text Available Background: Atalantia monophylla Correa. a small tree belongs to the family Rutaceae. It is distributed throughout India and in Tamil Nadu the species is commonly seen in foothills of dry vegetation. Objective: The aim was to hydrodistillate and analyze the chemical composition of essential oil from the fresh leaves of A. monophylla Correa. collected in two different seasons (December, 2013 and May, 2014 and to evaluate antioxidant and antibacterial activities of isolated essential oil. Materials and Methods: Chemical composition of isolated essential oil was analyzed by gas chromatography, gas chromatography coupled with mass spectrometry. Antioxidant activity of oil was assessed using five different antioxidant test systems. Antibacterial activity of oil was tested against six pathogenic bacteria by broth dilution method. Results: Essential oil obtained from the leaves collected during May, 2014 had shown more compounds. Antioxidant activity of oil was moderate when compared with positive control. Minimum inhibitory concentration value of oil was ranges between 139.32 ± 0.001 and 541.11 ± 0.003 µg/mL against all the tested bacteria. Conclusion: Result clearly indicates essential oil collected during May, 2014 showed more bioactive compounds.

  17. The chemical origin and catalytic activity of coinage metals: from oxidation to dehydrogenation.

    Syu, Cih-Ying; Yang, Hao-Wen; Hsu, Fu-Hsing; Wang, Jeng-Han

    2014-04-28

    The high oxidation activity of coinage metals (Cu, Ag and Au) has been widely applied in various important reactions, such as oxidation of carbon monoxide, alkenes or alcohols. The catalytic behavior of those inert metals has mostly been attributable to their size effect, the physical effect. In the present study, the chemical effects on their high oxidation activity have been investigated. We mechanistically examine the direct and oxidative dehydrogenation (partial oxidation) reactions of ethanol to acetaldehyde on a series of transition metals (groups 9, 10 and 11) with identical physical characteristics and varied chemical origins using density functional theory (DFT) calculations and electronic structure analyses at the GGA-PW91 level. The energetic results show that coinage metals have much lower activation energies and higher exothermicities for the oxidative dehydrogenation steps although they have higher energy for the direct dehydrogenation reaction. In the electronic structure analyses, coinage metals with saturated d bands can efficiently donate electrons to O* and OH*, or other electronegative adspecies, and better promote their p bands to higher energy levels. The negatively charged O* and OH* with high-lying p bands are responsible for lowering the energies in oxidative steps. The mechanistic understanding well explains the better oxidation activity of coinage metals and provides valuable information on their utilization in other useful applications, for example, the dehydrogenation process. PMID:24626959

  18. Chemical Diversity and Antimicrobial Activity of Salvia multicaulis Vahl Essential Oils.

    Fahed, Layal; Stien, Didier; Ouaini, Naïm; Eparvier, Véronique; El Beyrouthy, Marc

    2016-05-01

    The chemical compositions and antimicrobial activities of the essential oils (EOs) of aerial parts of Salvia multicaulis Vahl, collected during the same week from two different Lebanese regions, were investigated. The EOs were obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC and GC/MS analyses. The minimum inhibitory concentrations of these EOs were determined against one Gram-negative and two Gram-positive bacteria, one yeast, and five dermatophytes using the broth microdilution technique. One EO was notably active against Staphylococcus aureus, methicillin-resistant S. aureus, and all of the Trichophyton species tested. Nerolidol was found to be the major compound in the active oil; nerolidol was also absent from the inactive oil. This study demonstrated that nerolidol shows antimicrobial activity and therefore significantly contributes to the antimicrobial potential of the oil. The chemical diversity of worldwide S. multicaulis EOs was analyzed, revealing that the EOs of this study belong to two different chemotypes found in the literature. The nerolidol chemotype appears to be restricted to Lebanon, and it can be used as antimicrobial agent against external bacterial and fungal infections. PMID:27038067

  19. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis

    Machado, Christiane Schineider; Mokochinski, João Benhur; de Lira, Tatiana Onofre; de Oliveira, Fátima de Cassia Evangelista; Cardoso, Magda Vieira; Ferreira, Roseane Guimarães; Sawaya, Alexandra Christine Helena Frankland; Ferreira, Antonio Gilberto; Pessoa, Cláudia; Cuesta-Rubio, Osmany; Monteiro, Marta Chagas; de Campos, Mônica Soares

    2016-01-01

    The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing 1H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated. PMID:27525023

  20. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent. PMID:23390579

  1. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  2. Chemical contents in Lygeum spartum L. using instrumental neutron activation analysis

    The present investigation was conducted to determine the chemical contents of Lygeum spartum L. (Poaceae). Samples were analyzed in order to determine essential (Ca, K, Na, Fe, Co) and some potentially toxic elements (Eu, Sb, Tb) using instrumental neutron activation analysis (INAA). In general chemical element contents were in substantial amounts to meet adult sheep requirements. Potential intake of Ca, K, Zn, Co and Fe by ruminant weighing 50 kg BW consuming 2.0 kg per day DM was sufficient to satisfy their requirements. However, only Na level was still insufficient to meet the requirements for grazing ruminants. Potential toxic elements in this species were within the safety baseline of all the assayed elements recommended by NRC. Na supplementation would seem to be necessary in this zone, for optimum productivity of grazing animals.

  3. Instrumental neutron activation analysis applied to the chemical composition of steel

    In the technological application of steel, the knowledge of its chemical composition is of fundamental importance as it is directly related to various properties, such as, mechanical properties, corrosion resistance, temperability and others. Instrumental Neutron Activation Analysis, INAA, is an appropriate technique in the evaluation of the chemical composition of steel and other metallurgical materials due to the possibility of simultaneous determination of a great number of elements without the inconvenience of sample dissolution. Element determination is achieved with good accuracy and precision for major and minor constituents as well as for trace elements. In this paper, INAA was used in the determination of As, Co, Cu, Mn, Mo, V and W in steel and iron samples and in certified reference materials. The obtained accuracy and precision were less than 10% for most of the elements confirming the possibility of its use in the study of metallic samples and in the certification of new reference materials. (author)

  4. Chemical contents in Lygeum spartum L. using instrumental neutron activation analysis

    Nedjimi, Bouzid [Djelfa Univ. (Algeria). Lab. of Exploration and Valorization of Steppe Ecosystem; Beladel, Brahim [Djelfa Univ. (Algeria)

    2015-09-01

    The present investigation was conducted to determine the chemical contents of Lygeum spartum L. (Poaceae). Samples were analyzed in order to determine essential (Ca, K, Na, Fe, Co) and some potentially toxic elements (Eu, Sb, Tb) using instrumental neutron activation analysis (INAA). In general chemical element contents were in substantial amounts to meet adult sheep requirements. Potential intake of Ca, K, Zn, Co and Fe by ruminant weighing 50 kg BW consuming 2.0 kg per day DM was sufficient to satisfy their requirements. However, only Na level was still insufficient to meet the requirements for grazing ruminants. Potential toxic elements in this species were within the safety baseline of all the assayed elements recommended by NRC. Na supplementation would seem to be necessary in this zone, for optimum productivity of grazing animals.

  5. Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume

    Hasnah Mohd Sirat

    2011-11-01

    Full Text Available Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9% and stems (87.0% oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil showed the highest inhibitory activity towards lipid peroxidation (114.9 ± 0.9%, compared to BHT (95.5 ± 0.5%, while leaves oil showed significant total phenolic content (27.4 ± 0.5 mg GA/g equivalent to gallic acid. However, the essential oils showed weak activity towards DPPH free-radical scavenging. Evaluation of antimicrobial activity revealed that both oils exhibited strong activity against all bacteria strains with MIC values in the range 62.5 to 250 µg/mL, but weak activity against fungal strains. These findings suggest that the essential oils can be used as antioxidant and antimicrobial agents for therapeutic, nutraceutical industries and food manufactures.

  6. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides. PMID:22422292

  7. The essential oil of Populus balsamifera buds: its chemical composition and cytotoxic activity.

    Piochon-Gauthier, Marianne; Legault, Jean; Sylvestre, Muriel; Pichette, André

    2014-02-01

    The chemical composition of Populus balsamifera essential oils obtained from spring buds, fall buds, and young leaves were determined by GC and GC-MS analyses. The major constituent, (+)-alpha-bisabolol, a rare sesquiterpene, was isolated from spring oil using reverse-phase preparative HPLC. The cytotoxic activity of balsam poplar oils and isolated (+)-alpha-bisabolol was assessed in vitro against human lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines. Essential oils were cytotoxic with IC50 ranging from 35 to 50 microg/mL. (+)-alpha-Bisabolol exhibited pronounced activity (IC50 14 microg/mL) against both cancer cell lines. It also exhibited interesting cytotoxic activity (IC50 23 microg/mL) against human glioma (U251), higher than the one observed for (-)-alpha-bisabolol (IC50 34 microg/mL), which is known for its apoptosis-inducing effect against glioma cells. PMID:24689304

  8. Chemical Composition and Antimicrobial Activity of Thymus praecox Opiz ssp. polytrichus Essential Oil from Serbia

    Nada V. Petrović

    2016-03-01

    Full Text Available Chemical composition and antimicrobial activity of the essential oil of wild growing Thymus praecox Opiz ssp. polytrichus were studied. trans-Nerolidol (19.79%, germacrene D (18.48% and thymol (9.62% were the main components in essential oil. This study is the first report of the antimicrobial activity of essential oil obtained from the T. praecox Opiz ssp. polytrichus. Antimicrobial activity of essential oil was investigated on Bacillus cereus, Micrococcus flavus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Salmonella typhimurium, Aspergillus fumigatus, A. versicolor, A. ochraceus, A. niger, Trichoderma viride, Penicillium funiculosum, P. ochrochloron, and P. verrucosum var. cyclopium strains. In the antimicrobial assays, essential oil showed high antimicrobial potential (MIC 19–150 m g/mL, MBC 39–300 m g/mL for bacteria; and MIC 19.5–39 m g/mL, MFC 39–78 m g/mL for fungi.

  9. Chemical composition and biological activities of the essential oils from two Pereskia species grown in Brazil.

    Souza, Lucéia Fatima; De Barros, Ingrid Bergman Inchausti; Mancini, Emilia; De Martino, Laura; Scandolera, Elia; De Feo, Vincenzo

    2014-12-01

    The chemical composition of the essential oils of Pereskia aculeata Mill. and P. grandifolia Haw. (Cactaceae), grown in Brazil, was studied by means of GC and GC-MS. In all, 37 compounds were identified, 30 for P. aculeata and 15 for P. grandifolia. Oxygenated diterpenes are the main constituents, both in the oil ofP. grandifolia (55.5%) and in that ofP. aculeata (29.4%). The essential oils were evaluated for their in vitro phytotoxic activity against germination and initial radicle growth of Raphanus sativus L., Sinapis arvensis L., and Phalaris canariensis L. seeds. The essential oil of P. grandifolia, at all doses tested, significantly inhibited the radicle elongation of R. sativus. Moreover, the antimicrobial activity of the essential oils was assayed against ten bacterial strains. The essential oils showed weak inhibitory activity against the Gram-positive pathogens. PMID:25632490

  10. Chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits.

    Bi, Shu-Feng; Zhu, Guang-Qi; Wu, Jie; Li, Zhong-Kang; Lv, Yong-Zhan; Fang, Ling

    2016-01-01

    The chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits were studied for the first time. Twenty-two compounds, representing 82.79% of the oil, were identified from the oil. The major compounds were 3-hexen-1-ol (12.9%), linalool (12.3%), 2-methoxy-4-vinylphenol (9.9%), oleic acid (8.0%), furfural (5.8%) and 2,6-di-tert-butyl-4-methylphenol (5.7%). The antioxidant activities of the oil were evaluated using reducing power, metal chelating ability and scavenging capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS) and superoxide anion free radical. The oil exhibited significant antioxidant activities. PMID:26199150