WorldWideScience

Sample records for activating intrinsic pathway

  1. Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells

    Grunnet, Lars G; Aikin, Reid; Tonnesen, Morten F;

    2009-01-01

    OBJECTIVE: Proinflammatory cytokines are cytotoxic to beta-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced beta-cell death is unclear. Here, cytokine activation of the...... intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in beta-cells. RESEARCH DESIGN AND METHODS: Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1beta, interferon-gamma, and/or tumor necrosis...... factor-alpha). Activation of Bad was determined by Ser136 dephosphorylation, mitochondrial stress by changes in mitochondrial metabolic activity and cytochrome c release, downstream apoptotic signaling by activation of caspase-9 and -3, and DNA fragmentation. The inhibitors FK506 and V5 were used to...

  2. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions.

    Thangam, Ramar; Sathuvan, Malairaj; Poongodi, Arasu; Suresh, Veeraperumal; Pazhanichamy, Kalailingam; Sivasubramanian, Srinivasan; Kanipandian, Nagarajan; Ganesan, Nalini; Rengasamy, Ramasamy; Thirumurugan, Ramasamy; Kannan, Soundarapandian

    2014-07-17

    Essential oils of Cymbopogon citratus were already reported to have wide ranging medical and industrial applications. However, information on polysaccharides from the plant and their anticancer activities are limited. In the present study, polysaccharides from C. citratus were extracted and fractionated by anion exchange and gel filtration chromatography. Two different polysaccharide fractions such as F1 and F2 were obtained, and these fractions were found to have distinct acidic polysaccharides as characterized by their molecular weight and sugar content. NMR spectral analysis revealed the presence of (1→4) linked b-d-Xylofuranose moiety in these polysaccharides. Using these polysaccharide fractions F1 and F2, anti-inflammatory and anticancer activities were evaluated against cancer cells in vitro and the mechanism of action of the polysaccharides in inducing apoptosis in cancer cells via intrinsic pathway was also proposed. Two different reproductive cancer cells such as Siha and LNCap were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation, changes in mitochondrial membrane potential, and profiles of gene and protein expression in response to treatment of cells by the polysaccharide fractions. These polysaccharide fractions exhibited potential cytotoxic and apoptotic effects on carcinoma cells, and they induced apoptosis in these cells through the events of up-regulation of caspase 3, down-regulation of bcl-2 family genes followed by cytochrome c release. PMID:24702929

  3. Photodynamic therapy activated STAT3 associated pathways: Targeting intrinsic apoptotic pathways to increase PDT efficacy in human squamous carcinoma cells.

    Qiao, Li; Xu, Chengshan; Li, Qiang; Mei, Zhusong; Li, Xinji; Cai, Hong; Liu, Wei

    2016-06-01

    5-Aminolaevulinic acid-based photodynamic therapy (ALA-PDT) has been used for part of squamous cell carcinoma (premalignant conditions or in situ cutaneous SCC-Bowen disease). However, mechanism of ALA-PDT is not fully understood yet on the cell apoptosis pathway. The aim of this study was to further investigate the effect and mechanism of 5-ALA-PDT on human squamous carcinoma A431cells. Apoptosis and cell viability after PDT were evaluated using Annexin V-FITC apoptosis detection kit and MTT assay. The mRNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Our data showed that 5-ALA-PDT significantly inhibited cell proliferation (p<0.05), but there was no significant difference when the photosensitizer reached to 4.8mM. The inhibition in cell proliferation after 5-ALA-PDT treatment was correlated to more cells being arrested in the G0/G1 phase of the cell cycle (p<0.01). Immunocytochemical observations using anti-active caspase-3 antibodies showed active caspase-3 was translocated from cytoplasm to nuclear during apoptosis. STAT3 and its downstream gene Bax and BCL-2 were changed after 5-ALA-PDT treatment for the mRNA and protein expression. Our studies confirmed that 5-ALA-PDT might be an effective treatment for human squamous carcinoma by inhibiting the tumor cell A431growth and for the first time demonstrated that the expression of STAT3 was significantly reduced at 24h after 5-ALA-PDT treatment. PMID:26607555

  4. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells.

    Joo, Joung Hyuck; Ueda, Eiichiro; Bortner, Carl D; Yang, Xiao-Ping; Liao, Grace; Jetten, Anton M

    2015-10-01

    In this study, we demonstrate that treatment of T lymphoblastic leukemic Molt4 cells with farnesol activates the apoptosome via the intrinsic pathway of apoptosis. This induction was associated with changes in the level of intracellular potassium and calcium, the dissipation of the mitochondrial and plasma membrane potential, release of cytochrome c, activation of several caspases, and PARP cleavage. The induction of apoptosis by farnesol was inhibited by the addition of the pan-caspase inhibitor Z-VAD-fmk and by the exogenous expression of the anti-apoptotic protein Bcl2. Analysis of the gene expression profiles by microarray analysis revealed that farnesol increased the expression of several genes related to the unfolded protein response (UPR), including CHOP and CHAC1. This induction was associated with the activation of the PERK-eIF2α-ATF3/4 cascade, but not the XBP-1 branch of the UPR. Although farnesol induced activation of the ERK1/2, p38, and JNK pathways, inhibition of these MAPKs had little effect on farnesol-induced apoptosis or the induction of UPR-related genes. Our data indicate that the induction of apoptosis in leukemic cells by farnesol is mediated through a pathway that involves activation of the apoptosome via the intrinsic pathway and induction of the PERK-eIF2α-ATF3/4 cascade in a manner that is independent of the farnesol-induced activation of MAPKs. PMID:26275811

  5. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAsIII) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAsIII induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAsIII in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAsIII can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  6. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure

    Advanced squamous cervical cancer, one of the most commonly diagnosed cancers in women, still remains a major problem in oncology due to treatment failure and distant metastasis. Antitumor therapy failure is due to both intrinsic and acquired resistance; intrinsic resistance is often decisive for treatment response. In this study, we investigated the specific pathways and molecules responsible for baseline therapy failure in locally advanced squamous cervical cancer. Twenty-one patients with locally advanced squamous cell carcinoma were enrolled in this study. Primary biopsies harvested prior to therapy were analyzed for whole human gene expression (Agilent) based on the patient’s 6 months clinical response. Ingenuity Pathway Analysis was used to investigate the altered molecular function and canonical pathways between the responding and non-responding patients. The microarray results were validated by qRT-PCR and immunohistochemistry. An additional set of 24 formalin-fixed paraffin-embedded cervical cancer samples was used for independent validation of the proteins of interest. A 2859-gene signature was identified to distinguish between responder and non-responder patients. ‘DNA Replication, Recombination and Repair’ represented one of the most important mechanisms activated in non-responsive cervical tumors, and the ‘Role of BRCA1 in DNA Damage Response’ was predicted to be the most significantly altered canonical pathway involved in intrinsic resistance (p = 1.86E-04, ratio = 0.262). Immunohistological staining confirmed increased expression of BRCA1, BRIP1, FANCD2 and RAD51 in non-responsive compared with responsive advanced squamous cervical cancer, both in the initial set of 21 cervical cancer samples and the second set of 24 samples. Our findings suggest that FA/BRCA pathway plays an important role in treatment failure in advanced cervical cancer. The assessment of FANCD2, RAD51, BRCA1 and BRIP1 nuclear proteins could provide important information

  7. Intrinsic and extrinsic pathway signaling during neuronal apoptosis

    Putcha, Girish V.; Harris, Charles A; Moulder, Krista L.; Easton, Rachael M.; Thompson, Craig B.; Johnson, Eugene M.

    2002-01-01

    Trophic factor deprivation (TFD)-induced apoptosis in sympathetic neurons requires macromolecular synthesis–dependent BAX translocation, cytochrome c (cyt c) release, and caspase activation. Here, we report the contributions of other intrinsic and extrinsic pathway signals to these processes. Sympathetic neurons expressed all antiapoptotic BCL-2 proteins examined, yet expressed only certain BH3-only and multidomain proapoptotic BCL-2 family members. All coexpressed proapoptotic proteins did n...

  8. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe2O4-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe2O4-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe2O4-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT2 Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p 2O4-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe2O4-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe2O4-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe2O4-NPs in cells of placental origin • WISH cells treated with ZnFe2O4-NPs exhibited cytoplasmic localization of NPs. • ZnFe2O4-NPs induce DNA damage and mitochondrial dysfunction in WISH cells. • ZnFe2O4-NPs activate

  9. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T. [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  10. Ouabain Enhances ADPKD Cell Apoptosis via the Intrinsic Pathway.

    Venugopal, Jessica; Blanco, Gustavo

    2016-01-01

    Progression of autosomal dominant polycystic kidney disease (ADPKD) is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3 nM) also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells). This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key "executioner" caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells). Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression. PMID:27047392

  11. Ouabain enhances ADPKD cell apoptosis via the intrinsic pathway

    Gustavo eBlanco

    2016-03-01

    Full Text Available Progression of autosomal dominant polycystic kidney disease (ADPKD is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3nM also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells. This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key executioner caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells. Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression.

  12. Intrinsic transcript cleavage activity of RNA polymerase.

    Orlova, M; Newlands, J; Das, A; Goldfarb, A; Borukhov, S

    1995-01-01

    The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage cons...

  13. The restless brain: how intrinsic activity organizes brain function.

    Raichle, Marcus E

    2015-05-19

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  14. Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27

    Karimian H

    2014-09-01

    Full Text Available Hamed Karimian,1 Soheil Zorofchian Moghadamtousi,2 Mehran Fadaeinasab,3 Shahram Golbabapour,2 Mahboubeh Razavi,1 Maryam Hajrezaie,2 Aditya Arya,1 Mahmood Ameen Abdulla,4 Syam Mohan,5 Hapipah Mohd Ali,2 Mohamad Ibrahim Noordin1 1Department of Pharmacy, Faculty of Medicine, 2Institute of Biological Sciences, Faculty of Science, 3Department of Chemistry, 4Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 5Medical Research Centre, Jazan University, Jazan, Saudi Arabia Abstract: Ferulago angulata is a medicinal plant that is traditionally known for its ­anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50 value of 5.3±0.82 µg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence

  15. Multiple oxygen entry pathways in globin proteins revealed by intrinsic pathway identification method

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2015-12-01

    Each subunit of human hemoglobin (HbA) stores an oxygen molecule (O2) in the binding site (BS) cavity near the heme group. The BS is buried in the interior of the subunit so that there is a debate over the O2 entry pathways from solvent to the BS; histidine gate or multiple pathways. To elucidate the O2 entry pathways, we executed ensemble molecular dynamics (MD) simulations of T-state tetramer HbA in high concentration O2 solvent to simulate spontaneous O2 entry from solvent into the BS. By analyzing 128 independent 8 ns MD trajectories by intrinsic pathway identification by clustering (IPIC) method, we found 141 and 425 O2 entry events into the BS of the α and β subunits, respectively. In both subunits, we found that multiple O2 entry pathways through inside cavities play a significant role for O2 entry process of HbA. The rate constants of O2 entry estimated from the MD trajectories correspond to the experimentally observed values. In addition, by analyzing monomer myoglobin, we verified that the high O2 concentration condition can reproduce the ratios of each multiple pathway in the one-tenth lower O2 concentration condition. These indicate the validity of the multiple pathways obtained in our MD simulations.

  16. Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway.

    Elumalai, P; Gunadharini, D N; Senthilkumar, K; Banudevi, S; Arunkumar, R; Benson, C S; Sharmila, G; Arunakaran, J

    2012-11-30

    We aimed to investigate the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human breast cancer cells. The molecular mechanisms involved in the apoptotic activity exerted by nimbolide were studied on the estrogen dependent (MCF-7) and estrogen independent (MDA-MB-231) human breast cancer cell lines. The growth inhibitory effect of nimbolide was assessed by MTT assay. Apoptosis induction by nimbolide treatment was determined by JC-1 mitochondrial membrane potential staining, cytochrome c release, caspase activation, cleavage of PARP and AO/EtBr dual staining. The modulation of apoptotic proteins (intrinsic pathway: Bax, bad, Bcl-2, Bcl-xL, Mcl-1, XIAP-1 and caspase-3, 9; extrinsic pathway: TRAIL, FasL, FADDR and Caspase-8) were studied by western blot and real time PCR analysis. Treatment with nimbolide resulted in dose and time-dependent inhibition of growth of MCF-7 and MDA-MB-231 cells. The occurrence of apoptosis in these cells was indicated by JC-1 staining, modulation of both intrinsic and extrinsic apoptotic signaling molecules expression and further apoptosis was confirmed by AO/EtBr dual staining. These events were associated with: increased levels of proapoptotic proteins Bax, Bad, Fas-L, TRAIL, FADDR, cytochrome c and reduced levels of the anti-apoptotic proteins Bcl-2, Bcl-xL, Mcl-1 and XIAP-1. Nimbolide induces the cleavage of pro-caspase-8, pro-caspase-3 and PARP. The above data suggest that nimbolide induces apoptosis by both the intrinsic and extrinsic pathways. With evidence of above data it is suggested that nimbolide exhibit anticancer effect through its apoptosis-inducing property. Thus, nimbolide raises new hope for its use in anticancer therapy. PMID:23089555

  17. Longitudinal Pathways from Math Intrinsic Motivation and Achievement to Math Course Accomplishments and Educational Attainment

    Gottfried, Adele Eskeles; Marcoulides, George A.; Gottfried, Allen W.; Oliver, Pamella H.

    2013-01-01

    Across 20 years, pathways from math intrinsic motivation and achievement (ages 9-17) to high school math course accomplishments and educational attainment (age 29) were analyzed. Academic intrinsic motivation was the theoretical foundation. To determine how initial status and change in motivation and achievement related to course accomplishments…

  18. Methyl angolensate, a natural tetranortriterpenoid induces intrinsic apoptotic pathway in leukemic cells.

    Chiruvella, Kishore K; Kari, Vijayalakshmi; Choudhary, Bibha; Nambiar, Mridula; Ghanta, Rama Gopal; Raghavan, Sathees C

    2008-12-10

    Methyl angolensate (MA), a natural tetranortriterpenoid, purified from Soymida febrifuga is examined for the first time for its anticancer properties. We find that MA inhibits growth of T-cell leukemia and chronic myelogenous leukemia cells in a time- and dose-dependent manner. Accumulation of cells in the subG1 peak, annexin V binding and DNA fragmentation suggested induction of apoptosis. Besides, upregulation of BAD (proapoptotic) and downregulation of BCL2 (antiapoptotic) gene products further supported induction of apoptosis. Loss of mitochondrial membrane potential, activation of caspase 9, caspase 3, cleavage of PARP, downregulation of Ku70/80 and phosphorylation of MAP kinases suggested that MA could induce intrinsic pathway of apoptosis in leukemic cells. PMID:19022252

  19. The roles of intrinsic disorder in orchestrating the Wnt-pathway.

    Xue, Bin; Dunker, A Keith; Uversky, Vladimir N

    2012-01-01

    The canonical Wnt-pathway plays a number of crucial roles in the development of organism. Malfunctions of this pathway lead to various diseases including cancer. In the inactivated state, this pathway involves five proteins, Axin, CKI-α, GSK-3β, APC, and β-catenin. We analyzed these proteins by a number of computational tools, such as PONDR(r)VLXT, PONDR(r)VSL2, MoRF-II predictor and Hydrophobic Cluster Analysis (HCA) to show that each of the Wnt-pathway proteins contains several intrinsically disordered regions. Based on a comprehensive analysis of published data we conclude that these disordered regions facilitate protein-protein interactions, post-translational modifications, and signaling. The scaffold protein Axin and another large protein, APC, act as flexible concentrators in gathering together all other proteins involved in the Wnt-pathway, emphasizing the role of intrinsically disordered regions in orchestrating the complex protein-protein interactions. We further explore the intricate roles of highly disordered APC in regulation of β-catenin function. Intrinsically disordered APC helps the collection of β-catenin from cytoplasm, facilitates the b-catenin delivery to the binding sites on Axin, and controls the final detachment of β-catenin from Axin. PMID:22292947

  20. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A.; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4′-trimethoxy-2′-hydroxy-chalcone (CH1) and 3′-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas. PMID:26907262

  1. Apoptosis Cell Death Effect of Scrophularia Variegata on Breast Cancer Cells via Mitochondrial Intrinsic Pathway

    Azadmehr, Abbas; Hajiaghaee, Reza; Baradaran, Behzad; Haghdoost-Yazdi, Hashem

    2015-01-01

    Purpose: Scrophularia variegata M. Beib. (Scrophulariaceae) is an Iranian medicinal plant which is used for various inflammatory disorders in traditional medicine. In this study we evaluated the anti-cancer and cytotoxic effects of the Scrophularia variegata (S. variegata) ethanolic extract on the human breast cancer cell line. Methods: The cytotoxicity effect of the extract on MCF-7 cells was evaluated by MTT assay. In addition, Caspase activity, DNA ladder and Cell death were evaluated by ELISA, gel electrophoresis and Annexin V-FITC/PI staining, respectively. Results: The S. variegata extract showed significant effect cytotoxicity on MCF-7 human breast cancer cell line. Treatment with the extract induced apoptosis on the breast cancer cells by cell cycle arrest in G2/M phase. The results indicated that cytotoxicity activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation as well as an increase of the amount of caspase 3 and caspase 9. In addition, the phytochemical assay showed that the extract had antioxidant capacity and also flavonoids, phenolic compounds and phenyl propanoids were presented in the extract. Conclusion: Our findings indicated that S. variegata extract induced apoptosis via mitochondrial intrinsic pathway on breast cancer by cell cycle arrest in G2/M phase and an increase of caspase 3 and caspase 9. However future studies are needed. PMID:26504768

  2. Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis

    Recent studies suggest the potential benefits of statins as anti-cancer agents. Mechanisms by which statins induce apoptosis in cancer cells are not clear. We previously showed that simvastatin inhibit prostate cancer cell functions and tumor growth. Molecular mechanisms by which simvastatin induce apoptosis in prostate cancer cells is not completely understood. Effect of simvastatin on PC3 cell apoptosis was compared with docetaxel using apoptosis, TUNEL and trypan blue viability assays. Protein expression of major candidates of the intrinsic pathway downstream of simvastatin-mediated Akt inactivation was analyzed. Gene arrays and western analysis of PC3 cells and tumor lysates were performed to identify the candidate genes mediating extrinsic apoptosis pathway by simvastatin. Data indicated that simvastatin inhibited intrinsic cell survival pathway in PC3 cells by enhancing phosphorylation of Bad, reducing the protein expression of Bcl-2, Bcl-xL and cleaved caspases 9/3. Over-expression of PC3 cells with Bcl-2 or DN-caspase 9 did not rescue the simvastatin-induced apoptosis. Simvastatin treatment resulted in increased mRNA and protein expression of molecules such as TNF, Fas-L, Traf1 and cleaved caspase 8, major mediators of intrinsic apoptosis pathway and reduced protein levels of pro-survival genes Lhx4 and Nme5. Our study provides the first report that simvastatin simultaneously modulates intrinsic and extrinsic pathways in the regulation of prostate cancer cell apoptosis in vitro and in vivo, and render reasonable optimism that statins could become an attractive anti-cancer agent

  3. Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway.

    Rahman, Md Ataur; Bishayee, Kausik; Huh, Sung-Oh

    2016-02-29

    Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy. PMID:26674967

  4. Parkia javanica Extract Induces Apoptosis in S-180 Cells via the Intrinsic Pathway of Apoptosis.

    Patra, Kartick; Jana, Samarjit; Sarkar, Arnab; Karmakar, Subrata; Jana, Jagannath; Gupta, Mradu; Mukherjee, Gopeswar; De, Utpal Chandra; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2016-01-01

    Parkia javanica is a leguminous tree, various parts of which are used as food and folklore medicine by the ethnic groups of northeastern India. The present study investigates the in vitro and in vivo anticancer effect of aqueous methanol extract of P. javanica fruit (PJE). HPLC analysis was done to establish the fingerprint chromatogram of PJE and its in vitro radical scavenging activity was measured. PJE caused significant cytotoxicity in sarcoma-180 (S-180), A549, AGS, and MDA-MB435S cancer cells in vitro. Exploration of the mechanistic details in S-180 cells suggested that the reduced cell viability was mediated by induction of apoptosis. Increased expression of proapoptotic proteins such as p53, p21, Bax/Bcl2, cytochrome c (Cyt c), caspase 9, and cleaved poly(ADP-ribose) polymerase, and decrease in proliferative and antiapoptotic markers (Ki-67, Proliferating Cell Nuclear Antigen [PCNA], Bcl-2) validated the anticancer effect of PJE. A decline in the relative fluorescence emission upon staining S-180 cells with Rhodamine 123 (Rh 123), enhanced expression of cytosolic Cyt c and mitochondrial Bax, and inhibition of apoptosis in the presence of caspase-9 inhibitor in PJE-treated cells indicated intrinsic pathway of apoptosis. Liver function test and hepatic antioxidant enzymes demonstrated non-toxicity of PJE. Finally, the detection of PJE in sera by HPLC confirmed its bioavailability. PMID:27144503

  5. Hypercholesterolemic diet induces vascular smooth muscle cell apoptosis in sympathectomized rats via intrinsic pathway.

    Hachani, Rafik; Dab, Houcine; Feriani, Anouar; Saber, Sami; Sakly, Mohsen; Vicaut, Eric; Callebert, Jacques; Sercombe, Richard; Kacem, Kamel

    2014-07-01

    In this study, we intend to investigate the role of hypercholesterolemic diet, a high risk factor for atherosclerosis, on vascular cell apoptosis in rats that have been previously sympathectomized. Thus, newborn male Wistar rats received injections of guanethidine for sympathectomy. Sham received injections of vehicle. The two groups were fed 1% cholesterol diet for 3months. Sympathectomy alone group was also exploited. Apoptosis in abdominal aortic tissue was identified by TUNEL method and conventional agarose gel electrophoresis to detect specific DNA fragmentation. Caspases 3 and 9, Bcl-2, Bax and cytochrome c were examined by immunoblotting. Oil Red O staining was used to reveal lipid in the arterial wall. Vascular smooth muscle cells (VSMCs) and macrophages were identified by immunostaining for α-smooth muscle actin and rat macrophage marker (ED1), respectively. The efficacy of sympathectomy was evaluated by analysis of perivascular sympathetic fibers. Our study showed that hypercholesterolemic diet, when performed in rats with neonatal sympathectomy, 1) increased aortic TUNEL-positive cells compared to sham and sympathectomy alone groups, 2) illustrated a typical apoptotic DNA ladder on agarose gel electrophoresis, 3) induced Bax translocation from cytosol to mitochondria, 4) enhanced cytochrome c release from mitochondria to cytosol, 5) increased expression of active caspases 3 and 9, and 6) decreased Bcl-2 expression. VSMCs are identified as the major cell type exhibiting apoptosis in this model. Taken together, it can be concluded that hypercholesterolemic diet, when performed in rats with neonatal sympathectomy, induces vascular cell apoptosis in an intrinsic pathway. PMID:24708922

  6. Rhein induces apoptosis of human gastric cancer SGC-7901 cells via an intrinsic mitochondrial pathway

    Yiwen Li

    2012-11-01

    Full Text Available Rhein is a primary anthraquinone found in the roots of a traditional Chinese herb, rhubarb, and has been shown to have some anticancer effects. The aim of the present study was to investigate the effect of rhein on the apoptosis of the human gastric cancer line SGC-7901 and to identify the mechanism involved. SGC-7901 cells were cultured and treated with rhein (0, 50, 100, 150, and 200 µM for 24, 48, or 72 h. Relative cell viability assessed by the MTT assay after treatment was 100, 99, 85, 79, 63% for 24 h; 100, 98, 80, 51, 37% for 48 h, and 100, 97, 60, 36, 15% for 72 h, respectively. Cell apoptosis was detected with TUNEL staining and quantified with flow cytometry using annexin FITC-PI staining at 48 h after 100, 200 and 300 µm rhein. The percentage of apoptotic cells was 7.3, 21.9, 43.5%, respectively. We also measured the mRNA levels of caspase-3 and -9 using real-time PCR. Treatment with 100 µM rhein for 48 h significantly increased mRNA expression of caspase-3 and -9. The levels of apoptosis-related proteins including Bcl-2, Bax, Bcl-xL, and pro-caspase-3 were evaluated in rhein-treated cells. Rhein increased the Bax:Bcl-2 ratio but decreased the protein levels of Bcl-xL and pro-caspase-3. Moreover, rhein significantly increased the expression of cytochrome c and apoptotic protease activating factor 1, two critical components involved in mitochondrial pathway-mediated apoptosis. We conclude that rhein inhibits SGC-7901 proliferation by inducing apoptosis and this antitumor effect of rhein is mediated in part by an intrinsic mitochondrial pathway.

  7. Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy

    Miao Shen

    2013-01-01

    Full Text Available Background. Hepatic ischemia-reperfusion (I/R injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. Methods. Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg were administered 1 h before a model of segmental (70% hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h. Results. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg. Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6. Conclusion. Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.

  8. Intrinsic optical signals of the nervous tissue during neuronal activation

    Konopková, Renata; Otáhal, Jakub

    Brno : Brno University of Technology, 2006 - (Burša, J.; Fuis, V.). s. 124-125 ISBN 80-214-3232-2. [Human Biomechanics 2006 : international conference /11./. 13.11.2006-16.11.2006, Hrotovice] R&D Projects: GA AV ČR(CZ) 1QS501210509 Institutional research plan: CEZ:AV0Z50110509 Keywords : intrinsic optical signals * neuronal activation * light transmission Subject RIV: ED - Physiology

  9. Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways.

    Kossmehl, Peter; Shakibaei, Mehdi; Cogoli, Augusto; Infanger, Manfred; Curcio, Francesco; Schönberger, Johann; Eilles, Christoph; Bauer, Johann; Pickenhahn, Holger; Schulze-Tanzil, Gundula; Paul, Martin; Grimm, Daniela

    2003-09-01

    Apoptosis plays a pivotal role in development, tissue homeostasis, cancer, immune defense, and response to weightlessness. It can be initiated by external signals via death receptors, but may also emerge from mitochondria. We exposed mitochondria-rich thyroid carcinoma cells (ONCO-DG1 cell line) and normal thyroid cells (HTU-5) to conditions of simulated microgravity. After 24 h, 10% of the cancer cells had entered a Fas-dependent apoptotic pathway, but destruction and redistribution of mitochondria, microtubuli disruption, and caspase-3 activation were also detected, demonstrating the activation of extrinsic as well as intrinsic pathways. Furthermore, ONCO-DG1 cells grown on the clinostat showed elevated amounts of Bax, but reduced quantities of bcl-2. In addition, signs of apoptosis became detectable, as assessed by terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick end labeling, 4',6-diamidino-2-phenylindole staining, and 85-kDa apoptosis-related cleavage fragments. These fragments resulted from enhanced 116-kDa poly(ADP-ribose)polymerase activity and apoptosis. Apoptosis was also detected in normal HTU-5 cells, as demonstrated by electron microscopy, activation of caspase-3, increases in Fas and Bax, and elevation of 85-kDa apoptosis-related cleavage fragments resulting from enhanced poly(ADP-ribose) polymerase activity. Gravitational unloading affects the mitochondria and thereby may trigger apoptosis in thyroid cells subjected to weightlessness by clinorotation. PMID:12933692

  10. Radiation Sensitivity in a Preclinical Mouse Model of Medulloblastoma Relies on the Function of the Intrinsic Apoptotic Pathway.

    Crowther, Andrew J; Ocasio, Jennifer K; Fang, Fang; Meidinger, Jessica; Wu, Jaclyn; Deal, Allison M; Chang, Sha X; Yuan, Hong; Schmid, Ralf; Davis, Ian; Gershon, Timothy R

    2016-06-01

    While treatments that induce DNA damage are commonly used as anticancer therapies, the mechanisms through which DNA damage produces a therapeutic response are incompletely understood. Here we have tested whether medulloblastomas must be competent for apoptosis to be sensitive to radiotherapy. Whether apoptosis is required for radiation sensitivity has been controversial. Medulloblastoma, the most common malignant brain tumor in children, is a biologically heterogeneous set of tumors typically sensitive to radiation and chemotherapy; 80% of medulloblastoma patients survive long-term after treatment. We used functional genetic studies to determine whether the intrinsic apoptotic pathway is required for radiation to produce a therapeutic response in mice with primary, Shh-driven medulloblastoma. We found that cranial radiation extended the survival of medulloblastoma-bearing mice and induced widespread apoptosis. Expression analysis and conditional deletion studies showed that Trp53 (p53) was the predominant transcriptional regulator activated by radiation and was strictly required for treatment response. Deletion of Bax, which blocked apoptosis downstream of p53, was sufficient to render tumors radiation resistant. In apoptosis-incompetent, Bax-deleted tumors, radiation activated p53-dependent transcription without provoking cell death and caused two discrete populations to emerge. Most radiated tumor cells underwent terminal differentiation. Perivascular cells, however, quickly resumed proliferation despite p53 activation, behaved as stem cells, and rapidly drove recurrence. These data show that radiation must induce apoptosis in tumor stem cells to be effective. Mutations that disable the intrinsic apoptotic pathways are sufficient to impart radiation resistance. We suggest that medulloblastomas are typically sensitive to DNA-damaging therapies, because they retain apoptosis competence. Cancer Res; 76(11); 3211-23. ©2016 AACR. PMID:27197166

  11. Measure of synchrony in the activity of intrinsic cardiac neurons

    Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way to the study of population dynamics of intrinsic cardiac neurons. These data provide critical insights into the role of local processing that these ganglia play in the regulation of cardiac function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and pulmonary systems and artifacts generated by myocardial activity create new constraints not present in brain recordings for which almost all neuronal analysis techniques have been developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust and computationally efficient tool for assessing the level and statistical significance of SI between cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and the phase in the cardiac and respiratory cycles. The method was validated on firing time series from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to 0.66, with 23 pairs of neurons with SI > 0.1. The estimated bias due to artifacts was typically <1%. Strongly cardiovascular- and pulmonary-related neurons (SI > 0.5) were found. Results support the use of jitter-based SI in the context of intrinsic cardiac neurons. (paper)

  12. Robust Active Binocular Vision through Intrinsically Motivated Learning

    Luca eLonini

    2013-11-01

    Full Text Available The efficient coding hypothesis posits that sensory systems of animals strive to encode sensory signals efficiently by taking into account the redundancies in them. This principle has been very successful in explaining response properties of visual sensory neurons as adaptations to the statistics of natural images. Recently, we have begun to extend the efficient coding hypothesis to active perception through a form of intrinsically motivated learning: a sensory model learns an efficient code for the sensory signals while a reinforcement learner generates movements of the sense organs to improve the encoding of the signals. To this end, it receives an intrinsically generated reinforcement signal indicating how well the sensory model encodes the data. This approach has been tested in the context of binocular vison, leading to the autonomous development of disparity tuning and vergence control. Here we systematically investigate the robustness of the new approach in the context of a binocular vision system implemented on a robot. Robustness is an important aspect that reflects the ability of the system to deal with unmodeled disturbances or events, such as an insult to the system that displace the stereo cameras. To demonstrate the robustness of our method and its ability to self-calibrate, we introduce various perturbations and test if and how the system recovers from them. We find that 1 the system can fully recover from a perturbation that can be compensated through the system's motor degrees of freedom, 2 performance degrades gracefully if the system cannot use its motor degrees of freedom to compensate for the perturbation, and 3 recovery from a perturbation is improved if both the sensory encoding and the behavior policy can adapt to the perturbation. Overall, this work demonstrates that our intrinsically motivated learning approach for efficient coding in active perception gives rise to a self-calibrating perceptual system of high robustness.

  13. Robust active binocular vision through intrinsically motivated learning.

    Lonini, Luca; Forestier, Sébastien; Teulière, Céline; Zhao, Yu; Shi, Bertram E; Triesch, Jochen

    2013-01-01

    The efficient coding hypothesis posits that sensory systems of animals strive to encode sensory signals efficiently by taking into account the redundancies in them. This principle has been very successful in explaining response properties of visual sensory neurons as adaptations to the statistics of natural images. Recently, we have begun to extend the efficient coding hypothesis to active perception through a form of intrinsically motivated learning: a sensory model learns an efficient code for the sensory signals while a reinforcement learner generates movements of the sense organs to improve the encoding of the signals. To this end, it receives an intrinsically generated reinforcement signal indicating how well the sensory model encodes the data. This approach has been tested in the context of binocular vison, leading to the autonomous development of disparity tuning and vergence control. Here we systematically investigate the robustness of the new approach in the context of a binocular vision system implemented on a robot. Robustness is an important aspect that reflects the ability of the system to deal with unmodeled disturbances or events, such as insults to the system that displace the stereo cameras. To demonstrate the robustness of our method and its ability to self-calibrate, we introduce various perturbations and test if and how the system recovers from them. We find that (1) the system can fully recover from a perturbation that can be compensated through the system's motor degrees of freedom, (2) performance degrades gracefully if the system cannot use its motor degrees of freedom to compensate for the perturbation, and (3) recovery from a perturbation is improved if both the sensory encoding and the behavior policy can adapt to the perturbation. Overall, this work demonstrates that our intrinsically motivated learning approach for efficient coding in active perception gives rise to a self-calibrating perceptual system of high robustness. PMID:24223552

  14. Pulchrin A, a New Natural Coumarin Derivative of Enicosanthellum pulchrum, Induces Apoptosis in Ovarian Cancer Cells via Intrinsic Pathway

    Nordin, Noraziah; Fadaeinasab, Mehran; Mohan, Syam; Mohd Hashim, Najihah; Othman, Rozana; Karimian, Hamed; Iman, Venus; Ramli, Noorlela; Mohd Ali, Hapipah; Abdul Majid, Nazia

    2016-01-01

    Drug resistance presents a challenge in chemotherapy and has attracted research interest worldwide and particular attention has been given to natural compounds to overcome this difficulty. Pulchrin A, a new compound isolated from natural products has demonstrated novel potential for development as a drug. The identification of pulchrin A was conducted using several spectroscopic techniques such as nuclear magnetic resonance, liquid chromatography mass spectrometer, infrared and ultraviolet spectrometry. The cytotoxicity effects on CAOV-3 cells indicates that pulchrin A is more active than cisplatin, which has an IC50 of 22.3 μM. Significant changes in cell morphology were present, such as cell membrane blebbing and formation of apoptotic bodies. The involvement of phosphatidylserine (PS) in apoptosis was confirmed by Annexin V-FITC after a 24 h treatment. Apoptosis was activated through the intrinsic pathway by activation of procaspases 3 and 9 as well as cleaved caspases 3 and 9 and ended at the executioner pathway, with the occurrence of DNA laddering. Apoptosis was further confirmed via gene and protein expression levels, in which Bcl-2 protein was down-regulated and Bax protein was up-regulated. Furthermore, the CAOV-3 cell cycle was disrupted at the G0/G1 phase, leading to apoptosis. Molecular modeling of Bcl-2 proteins demonstrated a high- binding affinity, which inhibited the function of Bcl-2 proteins and led to cell death. Results of the current study can shed light on the development of new therapeutic agents, particularly, human ovarian cancer treatments. PMID:27136097

  15. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy

    Putinski, Charis; ABDUL-GHANI, MOHAMMAD; Stiles, Rebecca; Brunette, Steve; Dick, Sarah A.; Fernando, Pasan; Lynn A. Megeney

    2013-01-01

    Cardiac hypertrophy is a pathologic enlargement of the heart, an alteration that leads to contractile dysfunction and eventual organ failure. The hypertrophy phenotype originates from concentric growth of heart muscle cells and shares many biochemical features with programmed cell death, implying a common molecular origin. Here, we show cell-autonomous activation of a mitochondrial cell death pathway during initial stages of muscle cell hypertrophy, a signal that is essential and sufficient t...

  16. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  17. Ultrasonication processed Panax ginseng berry extract induces apoptosis through an intrinsic apoptosis pathway in HepG2 cells.

    Jung, Hyunwoo; Bae, Jinhyung; Ko, Sung Kwon; Sohn, Uy Dong

    2016-06-01

    Ginseng's major active components, ginsenosides, have been known to show anti-cancer, neuroprotective, and anti-inflammatory activities. Ultrasonication processed Panax ginseng berry extract (UGB) contains various ginsenosides. The components are different from Panax ginseng berry extract (GBE). This study was aimed to investigate the cytotoxic mechanism of UGB in HepG2 cells, human hepatocellular carcinoma cell line. HepG2 cells were treated with UGB (0, 10, 20 μg/ml). Cell growth and cellular apoptosis were evaluated by MTT assay and Annexin V/Pi staining, respectively. Intracellular Reactive oxygen species (ROS) levels were also determined by 2', 7'-dichlorofluorescin diacetate (DCFDA) staining. The expressions of Bax, Bcl-2 and caspase-3, the apoptotic markers, were evaluated by Western Blot. UGB dose-dependently inhibited cell growth and induced apoptotic cell death. Intracellular ROS levels were increased. UGB increased the expression of the cleaved form of caspase-3. Furthermore, UGB induced apoptosis of HepG2 cells through Bax activation and Bcl-2 inhibition. In conclusion, UGB induced apoptosis through an intrinsic pathway in HepG2 cells suggesting that UGB might play a role as a novel substance for anti-cancer effect. PMID:27233905

  18. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice.

    Ranganatha R Somasagara

    Full Text Available BACKGROUND: The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties. METHODOLOGY/PRINCIPAL FINDINGS: Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB fruits in leukaemia (CEM and breast cancer (T47D cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated. CONCLUSIONS/SIGNIFICANCE: The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

  19. Oxytocin Neurones: Intrinsic Mechanisms Governing the Regularity of Spiking Activity.

    Maícas Royo, J; Brown, C H; Leng, G; MacGregor, D J

    2016-04-01

    Oxytocin neurones of the rat supraoptic nucleus are osmoresponsive and, with all other things being equal, they fire at a mean rate that is proportional to the plasma sodium concentration. However, individual spike times are governed by highly stochastic events, namely the random occurrences of excitatory synaptic inputs, the probability of which is increased by increasing extracellular osmotic pressure. Accordingly, interspike intervals (ISIs) are very irregular. In the present study, we show, by statistical analyses of firing patterns in oxytocin neurones, that the mean firing rate as measured in bins of a few seconds is more regular than expected from the variability of ISIs. This is consistent with an intrinsic activity-dependent negative-feedback mechanism. To test this, we compared observed neuronal firing patterns with firing patterns generated by a leaky integrate-and-fire model neurone, modified to exhibit activity-dependent mechanisms known to be present in oxytocin neurones. The presence of a prolonged afterhyperpolarisation (AHP) was critical for the ability to mimic the observed regularisation of mean firing rate, although we also had to add a depolarising afterpotential (DAP; sometimes called an afterdepolarisation) to the model to match the observed ISI distributions. We tested this model by comparing its behaviour with the behaviour of oxytocin neurones exposed to apamin, a blocker of the medium AHP. Good fits indicate that the medium AHP actively contributes to the firing patterns of oxytocin neurones during non-bursting activity, and that oxytocin neurones generally express a DAP, even though this is usually masked by superposition of a larger AHP. PMID:26715365

  20. Maggot excretion products from the blowfly Lucilia sericata contain contact phase/intrinsic pathway-like proteases with procoagulant functions.

    Kahl, M; Gökçen, A; Fischer, S; Bäumer, M; Wiesner, J; Lochnit, G; Wygrecka, M; Vilcinskas, A; Preissner, K T

    2015-08-01

    For centuries, maggots have been used for the treatment of wounds by a variety of ancient cultures, as part of their traditional medicine. With increasing appearance of antimicrobial resistance and in association with diabetic ulcers, maggot therapy was revisited in the 1980s. Three mechanisms by which sterile maggots of the green bottle fly Lucilia sericata may improve healing of chronic wounds have been proposed: Biosurgical debridement, disinfecting properties, and stimulation of the wound healing process. However, the influence of maggot excretion products (MEP) on blood coagulation as part of the wound healing process has not been studied in detail. Here, we demonstrate that specific MEP-derived serine proteases from Lucilia sericata induce clotting of human plasma and whole blood, particularly by activating contact phase proteins factor XII and kininogen as well as factor IX, thereby providing kallikrein-bypassing and factor XIa-like activities, both in plasma and in isolated systems. In plasma samples deficient in contact phase proteins, MEP restored full clotting activity, whereas in plasma deficient in either factor VII, IX, X or II no effect was seen. The observed procoagulant/intrinsic pathway-like activity was mediated by (chymo-) trypsin-like proteases in total MEP, which were significantly blocked by C1-esterase inhibitor or other contact phase-specific protease inhibitors. No significant influence of MEP on platelet activation or fibrinolysis was noted. Together, MEP provides contact phase bypassing procoagulant activity and thereby induces blood clotting in the context of wound healing. Further characterisation of the active serine protease(s) may offer new perspectives for biosurgical treatment of chronic wounds. PMID:25948398

  1. Intrinsic quality assurance aspects of neutron activation analysis

    Full text: Neutron activation analysis (NAA) is an extremely valuable tool for the certification of Certified Reference Materials (CRMs) for a number of reasons. First, the method itself has characteristics that inherently provide few sources of error compared to many other analytical techniques. In addition, the intrinsic quality assurance characteristics of the method often allow the analytical values to be internally evaluated and cross checked. For example, most spectroscopic techniques separate the signals of the different excited species (analytes and interferences) by a single parameter, i.e. energy, mass, wavelength, time, etc. NAA can separate the signals of excited species (radionuclides) via two different parameters, energy and time (half-life). The ability to perform gamma ray spectrometry on the same sample after different decay times often provides the capability of verifying the absence of many sources of error such as interferences, incorrect pileup corrections, incorrect dead-time corrections, use of an erroneous half-life, etc. In addition, quantification using multiple gamma rays of the same isotope, and in some cases entirely different isotopes of the same element, can provide a powerful tool to minimize the possibility of errors due to interferences. Finally, counting both samples and standards at multiple geometries can provide insight into the importance of counting geometry effects. This presentation will describe ways to take advantage of some of the unique QA characteristics of Naca to observe and eliminate a number of potential sources of error. (author)

  2. Oxytocin hyperpolarizes cultured duodenum myenteric intrinsic primary afferent neurons by opening BK(Ca) channels through IP₃ pathway.

    Che, Tongtong; Sun, Hui; Li, Jingxin; Yu, Xiao; Zhu, Dexiao; Xue, Bing; Liu, Kejing; Zhang, Min; Kunze, Wolfgang; Liu, Chuanyong

    2012-05-01

    Oxytocin (OT) is clinically important in gut motility and constitutively reduces duodenum contractility. Intrinsic primary afferent neurons (IPANs), whose physiological classification is as AH cells, are the 1st neurons of the peristaltic reflex pathway. We set out to investigate if this inhibitory effect is mediated by IPANs and to identify the ion channel(s) and intracellular signal transduction pathway that are involved in this effect. Myenteric neurons were isolated from the longitudinal muscle myenteric plexus (LMMP) preparation of rat duodenum and cultured for 16-24 h before electrophysiological recording in whole cell mode and AH cells identified by their electrophysiological characteristics. The cytoplasmic Ca²⁺ concentration ([Ca²⁺](i) ) of isolated neurons was measured using calcium imaging. The concentration of IP(3) in the LMMP and the OT secreted from the LMMP were measured using ELISA. The oxytocin receptor (OTR) and large-conductance calcium-activated potassium (BK(Ca)) channels, as well as the expression of OT and the IPAN marker calbindin 28 K, on the myenteric plexus neurons were localized using double-immunostaining techniques. We found that administration of OT (10⁻⁷ to 10⁻⁵ M) dose dependently hyperpolarized the resting membrane potential and increased the total outward current. The OTR antagonist atosiban or the BK(Ca) channel blocker iberiotoxin (IbTX) blocked the effects of OT suggesting that the increased outward current resulted from BK(Ca) channel opening. OTR and the BK(Ca) α subunit were co-expressed on a subset of myenteric neurons at the LMMP. NS1619 (10⁻⁵ M, a BK(Ca) channel activator) increased the outward current similar to the effect of OT. OT administration also increased [Ca²⁺](i) and the OT-evoked outward current was significantly attenuated by thapsigargin (10⁻⁶ M) or CdCl₂. The effect of OT on the BK(Ca) current was also blocked by pre-treatment with the IP₃ receptor antagonist 2-APB (10⁻⁴ M

  3. Distinct and atypical intrinsic and extrinsic cell death pathways between photoreceptor cell types upon specific ablation of Ranbp2 in cone photoreceptors.

    Kyoung-In Cho

    2013-06-01

    Full Text Available Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2, a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+ -apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct

  4. THE EFFECTS OF COACHING ACTIVITIES ON INTRINSIC MOTIVATION OF EMPLOYEES AND TRUST IN MANAGER

    EREN, Müfide Şule; AKYÜZ, Bülent

    2014-01-01

    The aim of this study is to investigate the effects of coaching activities on employees’intrinsic motivation and trust in manager and also the effects of these variables on employees’ job performance. To this end, data was obtained from a field survey of a sample of employees working in a pharmaceutical company in Turkey via a structured questionnaire derived from literature. Results revealed that coaching activities positively affect intrinsic motivation of employees, and trust in manager. B...

  5. Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides: a novel antithrombotic strategy with lowered bleeding risk

    H. Zhang; E.C. Löwenberg; J.R. Crosby; A.R. Macleod; C. Zhao; D. Gao; C. Black; A.S. Revenko; J.C.M. Meijers; E.S. Stroes; M. Levi; B.P. Monia

    2010-01-01

    Existing anticoagulants effectively inhibit the activity of coagulation factors of the extrinsic and common pathway but have substantial limitations and can cause severe bleeding complications. Here we describe a novel therapeutic approach to thrombosis treatment. We have developed and characterized

  6. Differential Contributions of Intrinsic and Extrinsic Pathways to Thrombin Generation in Adult, Maternal and Cord Plasma Samples

    Rice, Nicklaus T.; Szlam, Fania; Varner, Jeffrey D.; Bernstein, Peter S.; Szlam, Arthur D.; Tanaka, Kenichi A.

    2016-01-01

    Background Thrombin generation (TG) is a pivotal process in achieving hemostasis. Coagulation profiles during pregnancy and early neonatal period are different from that of normal (non-pregnant) adults. In this ex vivo study, the differences in TG in maternal and cord plasma relative to normal adult plasma were studied. Methods Twenty consented pregnant women and ten consented healthy adults were included in the study. Maternal and cord blood samples were collected at the time of delivery. Platelet-poor plasma was isolated for the measurement of TG. In some samples, anti-FIXa aptamer, RB006, or a TFPI inhibitor, BAX499 were added to elucidate the contribution of intrinsic and extrinsic pathway to TG. Additionally, procoagulant and inhibitor levels were measured in maternal and cord plasma, and these values were used to mathematically simulate TG. Results Peak TG was increased in maternal plasma (393.6±57.9 nM) compared to adult and cord samples (323.2±38.9 nM and 209.9±29.5 nM, respectively). Inhibitory effects of RB006 on TG were less robust in maternal or cord plasma (52% vs. 12% respectively) than in adult plasma (81%). Likewise the effectiveness of BAX499 as represented by the increase in peak TG was much greater in adult (21%) than in maternal (10%) or cord plasma (12%). Further, BAX499 was more effective in reversing RB006 in adult plasma than in maternal or cord plasma. Ex vivo data were reproducible with the results of the mathematical simulation of TG. Conclusion Normal parturient plasma shows a large intrinsic pathway reserve for TG compared to adult and cord plasma, while TG in cord plasma is sustained by extrinsic pathway, and low levels of TFPI and AT. PMID:27196067

  7. Differential Contributions of Intrinsic and Extrinsic Pathways to Thrombin Generation in Adult, Maternal and Cord Plasma Samples.

    Nicklaus T Rice

    Full Text Available Thrombin generation (TG is a pivotal process in achieving hemostasis. Coagulation profiles during pregnancy and early neonatal period are different from that of normal (non-pregnant adults. In this ex vivo study, the differences in TG in maternal and cord plasma relative to normal adult plasma were studied.Twenty consented pregnant women and ten consented healthy adults were included in the study. Maternal and cord blood samples were collected at the time of delivery. Platelet-poor plasma was isolated for the measurement of TG. In some samples, anti-FIXa aptamer, RB006, or a TFPI inhibitor, BAX499 were added to elucidate the contribution of intrinsic and extrinsic pathway to TG. Additionally, procoagulant and inhibitor levels were measured in maternal and cord plasma, and these values were used to mathematically simulate TG.Peak TG was increased in maternal plasma (393.6±57.9 nM compared to adult and cord samples (323.2±38.9 nM and 209.9±29.5 nM, respectively. Inhibitory effects of RB006 on TG were less robust in maternal or cord plasma (52% vs. 12% respectively than in adult plasma (81%. Likewise the effectiveness of BAX499 as represented by the increase in peak TG was much greater in adult (21% than in maternal (10% or cord plasma (12%. Further, BAX499 was more effective in reversing RB006 in adult plasma than in maternal or cord plasma. Ex vivo data were reproducible with the results of the mathematical simulation of TG.Normal parturient plasma shows a large intrinsic pathway reserve for TG compared to adult and cord plasma, while TG in cord plasma is sustained by extrinsic pathway, and low levels of TFPI and AT.

  8. Intrinsic Brain Activity in Altered States of Consciousness

    Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.

    2010-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474

  9. Classroom Activity and Intrinsic Motivationin EFL Teaching and Learning

    郑玉全

    2015-01-01

    The question of how to motivate language learners has been a neglected area in L2 motivation research, and even thefew available analyses lack an adequate research base. This article presents the results of an empirical survey aimed at initiatinginterviews and conducting follow-up questionnaire to obtain classroom data on motivational classroom teaching activities and theactual effect of these strategies. This current study provides new insights into English classroom teaching with further researchinvestigation and teaching implication to promote students' integrative motivation through classroom teaching activities.

  10. Effect of Autaptic Activity on Intrinsic Coherence Resonance in Newman-Watts Networks of Stochastic Hodgkin-Huxley Neurons

    Wang, Qi; Gong, Yubing

    2016-06-01

    In this paper, we study the effect of autaptic activity on intrinsic coherence resonance (CR) induced by channel noise in Newman-Watts (NW) networks of stochastic Hodgkin-Huxley (HH) neurons. It is found that autaptic strength and autaptic delay have a big effect on the intrinsic CR. As autaptic strength increases, there is optimal autaptic strength by which the intrinsic CR is most highly enhanced. Autaptic delay can enhance, reduce, or destroy the intrinsic CR, depending on the delay length. Moreover, there are optimal coupling strength and network randomness by which autaptic activity can most highly enhance the intrinsic CR. These results show that autaptic activity has different effects on the intrinsic CR in the neuronal networks, and it can most highly enhance the intrinsic CR at optimal coupling strength and network randomness. These findings could find potential implications of channel noise and autaptic activity for the information processing and transmission in neural systems.

  11. Flavonoids of Korean Citrus aurantium L. Induce Apoptosis via Intrinsic Pathway in Human Hepatoblastoma HepG2 Cells.

    Lee, Seung Hwan; Yumnam, Silvia; Hong, Gyeong Eun; Raha, Suchismita; Saralamma, Venu Venkatarame Gowda; Lee, Ho Jeong; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won-Sup; Kim, Eun-Hee; Park, Hyeon Soo; Kim, Gon Sup

    2015-12-01

    Korean Citrus aurantium L. has long been used as a medicinal herb for its anti-inflammatory, antioxidant, and anticancer properties. The present study investigates the anticancer role of flavonoids extracted from C. aurantium on human hepatoblastoma cell, HepG2. The Citrus flavonoids inhibit the proliferation of HepG2 cells in a dose-dependent manner. This result was consistent with the in vivo xenograft results. Apoptosis was detected by cell morphology, cell cycle analysis, and immunoblot. Flavonoids decreased the level of pAkt and other downstream targets of phosphoinositide-3-kinase/Akt pathway - P-4EBP1 and P-p70S6K. The expressions of cleaved caspase 3, Bax, and Bak were increased, while those of Bcl-2 and Bcl-xL were decreased with an increase in the expression of Bax/Bcl-xL ratio in treated cells. Loss of mitochondrial membrane potential was also observed in flavonoid-treated HepG2 cells. It was also observed that the P-p38 protein level was increased both dose and time dependently in flavonoid-treated cells. Collectively, these results suggest that flavonoid extracted from Citrus inhibits HepG2 cell proliferation by inducing apoptosis via an intrinsic pathway. These findings suggest that flavonoids extracted from C. aurantium L. are potential chemotherapeutic agents against liver cancer. PMID:26439681

  12. The induction of apoptosis in HepG-2 cells by ruthenium(II) complexes through an intrinsic ROS-mediated mitochondrial dysfunction pathway.

    Zeng, Chuan-Chuan; Lai, Shang-Hai; Yao, Jun-Hua; Zhang, Cheng; Yin, Hui; Li, Wei; Han, Bing-Jie; Liu, Yun-Jun

    2016-10-21

    Four new ruthenium(II) polypyridyl complexes [Ru(N-N)2(dhbn)](ClO4)2 (N-N = dmb: 4,4'-dimethyl-2,2'-bipyridine 1; bpy = 2,2'-bipyridine 2; phen = 1,10-phenanthroline 3; dmp = 2,9-dimethyl-1,10-phenanthroline 4) were synthesized and characterized. The cytotoxicity in vitro of the ligand and complexes toward HepG-2, HeLa, MG-63 and A549 were assayed by MTT method. The IC50 values of the complexes against the above cells range from 17.7 ± 1.1 to 45.1 ± 2.8 μM. The cytotoxic activity of the complexes against HepG-2 cells follows the order of 4 > 2 > 3 > 1. Ligand shows no cytotoxic activity against the selected cell lines. Cellular uptake, apoptosis, comet assay, reactive oxygen species, mitochondrial membrane potential, cell cycle arrest, and the expression of proteins involved in apoptosis pathway induced by the complexes were investigated. The results indicate that complexes 1-4 induce apoptosis in HepG-2 cells through an intrinsic ROS-mediated mitochondrial dysfunction pathway. PMID:27344489

  13. Lung carcinoma signaling pathways activated by smoking

    Jing Wen; Jian-Hua Fu; Wei Zhang; Ming Guo

    2011-01-01

    Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the smoking-activated signaling pathways involved in lung cancer.

  14. Crosstalk between tumor suppressors p53 and PKCδ: Execution of the intrinsic apoptotic pathways.

    Dashzeveg, Nurmaa; Yoshida, Kiyotsugu

    2016-07-28

    p53 and PKCδ are tumor suppressors that execute apoptotic mechanisms in response to various cellular stresses. p53 is a transcription factor that is frequently mutated in human cancers; it regulates apoptosis in transcription-dependent and -independent ways in response to genotoxic stresses. PKCδ is a serine/threonine protein kinase and mutated in human cancers. Available evidence shows that PKCδ activates p53 by direct and/or indirect mechanisms. Moreover, PKCδ is also implicated in the transcriptional regulation of p53 in response to DNA damage. Recent findings demonstrated that p53, in turn, binds onto the PKCδ promoter and induces its expression upon DNA damage to facilitate apoptosis. Both p53 and PKCδ are associated with the apoptotic mechanisms in the mitochondria by regulating Bcl-2 family proteins to provide mitochondrial outer membrane permeabilization. This review discusses the crosstalk between p53 and PKCδ in the context of apoptotic cell death and cancer therapy. PMID:27130668

  15. KATP channels modulate intrinsic firing activity of immature entorhinal cortex layer III neurons

    Maria S. Lemak

    2014-08-01

    Full Text Available Medial temporal lobe structures are essential for memory formation which is associated with coherent network oscillations. During ontogenesis, these highly organized patterns develop from distinct, less synchronized forms of network activity. This maturation process goes along with marked changes in intrinsic firing patterns of individual neurons. One critical factor determining neuronal excitability is activity of ATP-sensitive K+ channels (KATP channels which coupled electrical activity to metabolic state. Here, we examined the role of KATP channels for intrinsic firing patterns and emerging network activity in the immature medial entorhinal cortex (mEC of rats. Western blot analysis of Kir6.2 (a subunit of the KATP channel confirmed expression of this protein in the immature entorhinal cortex. Neuronal activity was monitored by field potential (fp and whole-cell recordings from layer III of the mEC in horizontal brain slices obtained at postnatal day (P 6-13. Spontaneous fp-bursts were suppressed by the KATP channel opener diazoxide and prolonged after blockade of KATP channels by glibenclamide. Immature mEC LIII principal neurons displayed two dominant intrinsic firing patterns, prolonged bursts or regular firing activity, respectively. Burst discharges were suppressed by the KATP channel openers diazoxide and NN414, and enhanced by the KATP channel blockers tolbutamide and glibenclamide. Activity of regularly firing neurons was modulated in a frequency-dependent manner: the diazoxide-mediated reduction of firing correlated negatively with basal frequency, while the tolbutamide-mediated increase of firing showed a positive correlation. These data are in line with an activity-dependent regulation of KATP channel activity. Together, KATP channels exert powerful modulation of intrinsic firing patterns and network activity in the immature mEC.

  16. Momordica charantia seed extract exhibits strong anticoagulant effect by specifically interfering in intrinsic pathway of blood coagulation and dissolves fibrin clot.

    Manjappa, Bhagyalakshmi; Gangaraju, Sowmyashree; Girish, Kesturu S; Kemparaju, Kempaiah; Gonchigar, Sathish J; Shankar, Rohit L; Shinde, Manohar; Sannaningaiah, Devaraja

    2015-03-01

    The current study explores the anticoagulant and fibrin clot-hydrolyzing properties of Momordica charantia seed extract (MCSE). MCSE hydrolyzed casein with the specific activity of 0.780 units/mg per min. Interestingly, it enhanced the clot formation process of citrated human plasma from control 146 to 432 s. In addition, the intravenous injection of MCSE significantly prolonged the bleeding time in a dose-dependent manner from control 150 to more than 800 s, and strengthened its anticoagulant activity. Interestingly, MCSE specifically prolonged the clotting time of only activated partial thromboplastin time, but not prothrombin time, and revealed the participation of MCSE in the intrinsic pathway of the blood coagulation cascade. Furthermore, MCSE completely hydrolyzed both Aα and Bβ chains of the human fibrinogen and partially hydrolyzed the γ chain. However, it hydrolyzed all the chains (α polymer, α chain, β chain and γ-γ dimmers) of partially cross-linked human fibrin clot. The proteolytic activity followed by the anticoagulant effect of the MCSE was completely abolished by the 1,10-phenanthroline and phenyl methyl sulphonyl fluoride, but iodoacetic acid, EDTA, and ethylene glycol-N,N,N',N'-tetra acetic acid did not. Curiously, MCSE did not hydrolyze any other plasma proteins except the plasma fibrinogen. Moreover, MCSE was devoid of RBC lysis, edema and hemorrhagic properties, suggesting its nontoxic nature. Taken together, MCSE may be a valuable candidate in the treatment of blood clot/thrombotic disorders. PMID:25192240

  17. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathwa...ys activated by microorganisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  18. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway)

    Ganesh Kumar, C.; Poornachandra, Y.; Chandrasekhar, Cheemalamarri

    2015-11-01

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2

  19. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536]. PMID:26246284

  20. Activation of cell death pathways in the inner ear of the aging CBA/J mouse

    Sha, Su-Hua; CHEN, FU-QUAN; Schacht, Jochen

    2009-01-01

    We have previously demonstrated that oxidative stress increases in the inner ear of aging CBA/J mice and might contribute to the loss of function of the sensory system. We now investigate the activation of cell death pathways in the cochlea of these animals. Middle-aged (12 months) and old (18-26 months) mice with hearing deficits displayed outer hair cell nuclei with apoptotic and, to a lesser extent, necrotic features. Both intrinsic and extrinsic cell death pathways were activated by trans...

  1. Changes in At-Risk Boys' Intrinsic Motivation toward Physical Activity: A Three-Year Longitudinal Study

    Liu, Jiling; Xiang, Ping; McBride, Ron E.; Su, Xiaoxia; Juzaily, Nasnoor

    2015-01-01

    Intrinsic motivation (IM) is an important predictor of children's physical activity participation. The present 3-year longitudinal study examined changes in IM toward physical activity among a group of at-risk boys (N = 92) at a summer sports camp. Results showed the boys were intrinsically motivated in their first camp year, but their IM levels…

  2. A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd2 [S(-)C2, N-dmpa]2 (μ-dppe)Cl2} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. The cyclopalladated C7a complex is an

  3. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    Moon, Kevin R.; Li, Jimmy J.; Delouille, Véronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O.

    2016-01-01

    Context. The flare productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. Aims: We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. Methods: We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from magnetogram to analyze separately the core part of an active region from its surrounding part. Results: We find relationships between the complexity of an active region as measured by its Mount Wilson classification and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. Conclusions: Intrinsic dimension has the potential to distinguish simple from complex active regions. These results also pave the way for patch-based dictionary learning with a view toward automatic clustering of active regions.

  4. Toxoplasma gondii: demonstration of intrinsic peroxidase activity during lacto-peroxidase mediated radioiodination of tachyzoites

    Tachyzoites of Toxoplasma gondii have been radioiodinated under various conditions with or without lactoperoxidase, with glucose oxidase being used to generate hydrogen peroxide. Erythrocytes were iodinated simultaneously as a control. In our conditions, tachyzoites were more intensely labelled in the absence of lactoperoxidase. This result can be explained by the existence of an intrinsic peroxidase activity which interfere with the exogenously added enzyme during surface radioiodination

  5. Intrinsic activity in the fly brain gates visual information during behavioral choices.

    Shiming Tang

    Full Text Available The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals.

  6. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB)

    Méndez-Lorenzo, Luz; Jaime R Porras-Domínguez; Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín

    2015-01-01

    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particul...

  7. Toxoplasma gondii: demonstration of intrinsic peroxidase activity during lacto-peroxidase mediated radioiodination of tachyzoites

    Gallois, Y.; Tricaud, A.; Foussard, F.; Hodbert, J.; Girault, A.; Mauras, G.; Dubremetz, J.F.

    1986-01-01

    Tachyzoites of Toxoplasma gondii have been radioiodinated under various conditions with or without lactoperoxidase, with glucose oxidase being used to generate hydrogen peroxide. Erythrocytes were iodinated simultaneously as a control. In our conditions, tachyzoites were more intensely labelled in the absence of lactoperoxidase. This result can be explained by the existence of an intrinsic peroxidase activity which interfere with the exogenously added enzyme during surface radioiodination.

  8. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  9. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Yakunina, Natalia [Kangwon National University, Institute of Medical Science, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kang, Eun Kyoung [Kangwon National University Hospital, Department of Rehabilitation Medicine, Chuncheon (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of); Min, Ji-Hoon [University of Michigan, Department of Biopsychology, Cognition, and Neuroscience, Ann Arbor, MI (United States); Kim, Sam Soo [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Radiology, Chuncheon (Korea, Republic of); Nam, Eui-Cheol [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of)

    2015-10-15

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  10. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  11. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by 14C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 μg kg-1) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk

  12. Retinoic acid activates two pathways required for meiosis in mice.

    Jana Koubova

    2014-08-01

    Full Text Available In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid (RA, the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for chromosome synapsis and segregation. This RA induction of Rec8 occurs in parallel with the induction of Stra8, and independently of Stra8 function, and it is conserved between the sexes. Further, RA induction of Rec8, like that of Stra8, requires the germ-cell-intrinsic competence factor Dazl. Our findings strengthen the importance of RA and Dazl in the meiotic transition, provide important details about the Stra8 pathway, and open avenues to investigate early meiosis through analysis of Rec8 induction and function.

  13. On the intrinsic disorder status of the major players in programmed cell death pathways [v1; ref status: indexed, http://f1000r.es/1me

    Alexey V Uversky

    2013-09-01

    Full Text Available Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a wide array of modern bioinformatics tools it was concluded that disordered regions of PCD-related proteins are involved in a multitude of biological functions and interactions with various partners, possess numerous posttranslational modification sites, and have specific evolutionary patterns (Peng et al. 2013. This study extends our previous work by providing information on the intrinsic disorder status of some of the major players of the three major PCD pathways: apoptosis, autophagy, and necroptosis. We also present a detailed description of the disorder status and interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathways.

  14. Intrinsic survival advantage of social insect queens depends on reproductive activation.

    Rueppell, O; Königseder, F; Heinze, J; Schrempf, A

    2015-12-01

    The central trade-off between reproduction and longevity dominates most species' life history. However, no mortality cost of reproduction is apparent in eusocial species, particularly social insects in the order Hymenoptera: one or a few individuals (typically referred to as queens) in a group specialize on reproduction and are generally longer lived than all other group members (typically referred to as workers), despite having the same genome. However, it is unclear whether this survival advantage is due to social facilitation by the group or an intrinsic, individual property. Furthermore, it is unknown whether the correlation between reproduction and longevity is due to a direct mechanistic link or an indirect consequence of the social role of the reproductives. To begin addressing these questions, we performed a comparison of queen and worker longevity in the ant Cardiocondyla obscurior under social isolation conditions. Survival of single queens and workers was compared under laboratory conditions, monitoring and controlling for brood production. Our results indicate that there is no intrinsic survival advantage of queens relative to workers unless individuals are becoming reproductively active. This interactive effect of caste and reproduction on life expectancy outside of the normal social context suggests that the positive correlation between reproduction and longevity in social insect queens is due to a direct link that can activate intrinsic survival mechanisms to ensure queen longevity. PMID:26348543

  15. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    Moon, Kevin R; Delouille, Veronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O

    2015-01-01

    Complexity of an active region is related to its flare-productivity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from the magnetogram to analyze separately the core part of an active region fr...

  16. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-01-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75mM) and high-dose (5.5mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin...

  17. Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway.

    Dorothee Gramatzki

    Full Text Available BACKGROUND/AIMS: Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. METHODS: Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II-IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. RESULTS: Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. CONCLUSION: Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS

  18. p210 Bcr-Abl confers overexpression of inosine monophosphate dehydrogenase : an intrinsic pathway to drug resistance mediated by oncogene.

    Gharehbaghi, K.; Burgess, G. S.; Collart, F. R.; Litz-Jackson, S.; Huberman, E.; Jayaram, H. N.; Boswell, H. S.; Center for Mechanistic Biology and Biotechnology; Lab. for Experimental Oncology; Indiana Univ. School of Medicine

    1994-01-01

    The p210 bcr-abl fusion protein tyrosine kinase oncogene has been implicated in the pathogenesis of chronic granulocytic leukemia (CGL). Specific intracellular functions performed by p210 bcr-abl have recently been delineated. We considered the possibility that p210 bcr-abl may also regulate the abundance of inosine 5'-monophosphate dehydrogenase (IMPDH) which is a rate-limiting enzyme for de novo guanylate synthesis. We performed studies of the inhibition of IMPDH by tiazofurin, which acts as a competitive inhibitor through its active species that mimics nicotinamide adenine dinucleotide (NAD), i.e. thiazole-4-carboxamide adenine dinucleotide (TAD). The mean inhibitory concentration (IC50) of tiazofurin for cellular proliferation inhibition was 2.3-2.8-fold greater in cells expressing p210 bcr-abl than in their corresponding parent cells proliferating under the influence of growth factors or in growth factor-independent derivative cells not expressing detectable p210 bcr-abl. IMPDH activity was 1.5-2.3-fold greater within cells expressing p210 bcr-abl than in their parent cells. This increase in enzyme activity was a result of 2-fold increased IMPDH protein as determined by immunoblotting. In addition, an increase in the Km value for NAD utilization by IMPDH was observed in p210 bcr-abl transformed cells, but this increase was within the range of resident NAD concentrations observed in the cells. Increased IMPDH protein in p210 bcr-abl transformed cells was traced to an increased level of IMP dehydrogenase II messenger RNA. Thus, regulation of IMPDH gene expression is mediated at least in part by the bcr-abl gene product and may therefore be indicative of a specific mechanism of intrinsic resistance to tiazofurin.

  19. p210 bcr-abl confers overexpression of inosine monophosphate dehydrogenase: an intrinsic pathway to drug resistance mediated by oncogene.

    Gharehbaghi, K; Burgess, G S; Collart, F R; Litz-Jackson, S; Huberman, E; Jayaram, H N; Boswell, H S

    1994-08-01

    The p210 bcr-abl fusion protein tyrosine kinase oncogene has been implicated in the pathogenesis of chronic granulocytic leukemia (CGL). Specific intracellular functions performed by p210 bcr-abl have recently been delineated. We considered the possibility that p210 bcr-abl may also regulate the abundance of inosine 5'-monophosphate dehydrogenase (IMPDH) which is a rate-limiting enzyme for de novo guanylate synthesis. We performed studies of the inhibition of IMPDH by tiazofurin, which acts as a competitive inhibitor through its active species that mimics nicotinamide adenine dinucleotide (NAD), i.e. thiazole-4-carboxamide adenine dinucleotide (TAD). The mean inhibitory concentration (IC50) of tiazofurin for cellular proliferation inhibition was 2.3-2.8-fold greater in cells expressing p210 bcr-abl than in their corresponding parent cells proliferating under the influence of growth factors or in growth factor-independent derivative cells not expressing detectable p210 bcr-abl. IMPDH activity was 1.5-2.3-fold greater within cells expressing p210 bcr-abl than in their parent cells. This increase in enzyme activity was a result of 2-fold increased IMPDH protein as determined by immunoblotting. In addition, an increase in the Km value for NAD utilization by IMPDH was observed in p210 bcr-abl transformed cells, but this increase was within the range of resident NAD concentrations observed in the cells. Increased IMPDH protein in p210 bcr-abl transformed cells was traced to an increased level of IMP dehydrogenase II messenger RNA. Thus, regulation of IMPDH gene expression is mediated at least in part by the bcr-abl gene product and may therefore be indicative of a specific mechanism of intrinsic resistance to tiazofurin. PMID:7520100

  20. Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity

    The human glucocorticoid receptor (GR) gene produces C-terminal GRβ and GRα isoforms through alternative use of specific exons 9β and α, respectively. We explored the transcriptional activity of GRβ on endogenous genes by developing HeLa cells stably expressing EGFP-GRβ or EGFP. Microarray analyses revealed that GRβ had intrinsic gene-specific transcriptional activity, regulating mRNA expression of a large number of genes negatively or positively. Majority of GRβ-responsive genes was distinct from those modulated by GRα, while GRβ and GRα mutually modulated each other's transcriptional activity in a subpopulation of genes. We did not observe in HCT116 cells nuclear translocation of GRβ and activation of this receptor by RU 486, a synthetic steroid previously reported to bind GRβ and to induce nuclear translocation. Our results indicate that GRβ has intrinsic, GRα-independent, gene-specific transcriptional activity, in addition to its previously reported dominant negative effect on GRα-induced transactivation of GRE-driven promoters.

  1. Influenza A Virus and Influenza B Virus Can Induce Apoptosis via Intrinsic or Extrinsic Pathways and Also via NF-κB in a Time and Dose Dependent Manner

    Ibrahim El-Sayed; Khalid Bassiouny; Aziz Nokaly; Abdelghani, Ahmed S.; Wael Roshdy

    2016-01-01

    Influenza viruses are able to cause annual epidemics and pandemics due to their mutation rates and reassortment capabilities leading to antigenic shifts and drifts. To identify host response to influenza A and B viruses on A549 and MDCK II cells at low and high MOIs, expressions of MxA and caspases 3, 8, and 9 and BAD, TNFα, and IκBα genes were measured in the cells supernatants. H1N1 and H3N2 prefer to initially enhance the intrinsic pathway, determined by higher caspase 9 activity in MDCK I...

  2. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  3. 1-Benzyl-2-Phenylbenzimidazole (BPB, a Benzimidazole Derivative, Induces Cell Apoptosis in Human Chondrosarcoma through Intrinsic and Extrinsic Pathways

    Ju-Fang Liu

    2012-12-01

    Full Text Available In this study, we investigated the anticancer effects of a new benzimidazole derivative, 1-benzyl-2-phenyl -benzimidazole (BPB, in human chondrosarcoma cells. BPB-mediated apoptosis was assessed by the MTT assay and flow cytometry analysis. The in vivo efficacy was examined in a JJ012 xenograft model. Here we found that BPB induced apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 but not in primary chondrocytes. BPB induced upregulation of Bax, Bad and Bak, downregulation of Bcl-2, Bid and Bcl-XL and dysfunction of mitochondria in chondrosarcoma. In addition, BPB also promoted cytosolic releases AIF and Endo G. Furthermore, it triggered extrinsic death receptor-dependent pathway, which was characterized by activating Fas, FADD and caspase-8. Most importantly, animal studies revealed a dramatic 40% reduction in tumor volume after 21 days of treatment. Thus, BPB may be a novel anticancer agent for the treatment of chondrosarcoma.

  4. Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles

    Kristiansen, S; Youn, J; Richter, Erik

    1996-01-01

    vanadate (NaVO3) on glucose transporter (GLUT4) intrinsic activity (V(max) = intrinsic activity x [GLUT4 protein]) was studied in muscle plasma membrane giant vesicles. Giant vesicles (average diameter 7.6 microns) were produced by collagenase treatment of rat skeletal muscle. The vesicles were incubated......) 55% and 60%, respectively, compared with control. The plasma membrane GLUT4 protein content was not changed in response to vanadate. It is concluded that vanadate decreased glucose transport per GLUT4 (intrinsic activity). This finding suggests that regulation of glucose transport in skeletal muscle......Maximally effective concentrations of vanadate (a phosphotyrosine phosphatase inhibitor) increase glucose transport in muscle less than maximal insulin stimulation. This might be due to vanadate-induced decreased intrinsic activity of GLUT4 accompanying GLUT4 translocation. Thus, the effect of...

  5. A novel cationic lipid with intrinsic antitumor activity to facilitate gene therapy of TRAIL DNA.

    Luo, Cong; Miao, Lei; Zhao, Yi; Musetti, Sara; Wang, Yuhua; Shi, Kai; Huang, Leaf

    2016-09-01

    Metformin (dimethylbiguanide) has been found to be effective for the treatment of a wide range of cancer. Herein, a novel lipid (1,2-di-(9Z-octadecenoyl)-3-biguanide-propane (DOBP)) was elaborately designed by utilizing biguanide as the cationic head group. This novel cationic lipid was intended to act as a gene carrier with intrinsic antitumor activity. When compared with 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP), a commercially available cationic lipid with a similar structure, the blank liposomes consisting of DOBP showed much more potent antitumor effects than DOTAP in human lung tumor xenografts, following an antitumor mechanism similar to metformin. Given its cationic head group, biguanide, DOBP could encapsulate TNF-related apoptosis-inducing ligand (TRAIL) plasmids into Lipid-Protamine-DNA (LPD) nanoparticles (NPs) for systemic gene delivery. DOBP-LPD-TRAIL NPs demonstrated distinct superiority in delaying tumor progression over DOTAP-LPD-TRAIL NPs, due to the intrinsic antitumor activity combined with TRAIL-induced apoptosis in the tumor. These results indicate that DOBP could be used as a versatile and promising cationic lipid for improving the therapeutic index of gene therapy in cancer treatment. PMID:27344367

  6. Intrinsic rotation due to MHD activity in a tokamak with a resistive wall

    MHD activity in a tokamak, in the form of waves and instabilities, generally has a preferred direction for propagation in a two-fluid plasma. When the radial component of magnetic field associated with this activity interacts with a resistive wall, momentum or angular momentum will be given to the wall. The equal and opposite reaction will be on the plasma, in particular, for ideal and resistive modes, at the singular or resonant surfaces for the various modes. In this case the torque exerted is electromagnetic. This is in contrast to other mechanisms for intrinsic or spontaneous rotation which may arise at the plasma boundary. The resistive wall is considered generally, and the thin and thick wall limits found, the latter being relevant to ITER parameters. Remarkably small radial perturbing fields of order 0.1 G could produce a torque comparable in effect to the apparent anomalous toroidal viscosity. (paper)

  7. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  8. Axon Regeneration Is Regulated by Ets–C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways

    Li, Chun; Hisamoto, Naoki; Matsumoto, Kunihiro

    2015-01-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptiona...

  9. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    Ahmed, Maha A.E., E-mail: mahapharm@yahoo.com

    2015-02-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  10. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  11. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB).

    Méndez-Lorenzo, Luz; Porras-Domínguez, Jaime R; Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín

    2015-01-01

    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final

  12. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB.

    Luz Méndez-Lorenzo

    Full Text Available Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that

  13. A Subtype of Inhibitory Interneuron with Intrinsic Persistent Activity in Human and Monkey Neocortex

    Bo Wang

    2015-03-01

    Full Text Available A critical step in understanding the neural basis of human cognitive functions is to identify neuronal types in the neocortex. In this study, we performed whole-cell recording from human cortical slices and found a distinct subpopulation of neurons with intrinsic persistent activity that could be triggered by single action potentials (APs but terminated by bursts of APs. This persistent activity was associated with a depolarizing plateau potential induced by the activation of a persistent Na+ current. Single-cell RT-PCR revealed that these neurons were inhibitory interneurons. This type of neuron was found in different cortical regions, including temporal, frontal, occipital, and parietal cortices in human and also in frontal and temporal lobes of nonhuman primate but not in rat cortical tissues, suggesting that it could be unique to primates. The characteristic persistent activity in these inhibitory interneurons may contribute to the regulation of pyramidal cell activity and participate in cortical processing.

  14. The additional loss of Bak and not the lack of the protein tyrosine kinase p56/Lck in one JCaM1.6 subclone caused pronounced apoptosis resistance in response to stimuli of the intrinsic pathway.

    Rudner, J; Mueller, A-C; Matzner, N; Huber, S M; Handrick, R; Belka, C; Jendrossek, V

    2009-05-01

    Ionising radiation, hypoxia, and the cyclooxygenase-2 inhibitor Celecoxib are known agonists of the intrinsic apoptosis pathway that involves mitochondrial damage upstream of caspase activation. Mitochondrial integrity is regulated by the pro-apoptotic Bcl-2 protein family members Bak and Bax. Upstream of the mitochondria, many kinases and phosphatases control the apoptotic response. However, the role of the non-receptor tyrosine kinase p56/Lck during apoptosis is controversial. The present investigation demonstrate the existence of two JCaM1.6 subclones, one expressing and one deficient for Bak. The lack of p56/Lck expression in JCaM1.6 cells per se did hardly affect apoptosis induced by ionising radiation, hypoxia, or Celecoxib. Only the additional loss of Bak expression, as observed in one JCaM1.6 subclone, rendered the cells resistant. siRNA-mediated downregulation of Bak and p56/Lck mimicked the observed effects in the subclones. Earlier experiments performed with the Bak-negative clone might have lead to the wrong assumption that lack of p56/Lck alone, and not the additonal loss of Bak, was responsible for reduced sensitivity towards stimuli of the intrinsic apoptosis pathway. PMID:19343496

  15. Activation of the hedgehog pathway in advanced prostate cancer

    McCormick Frank; Chen Kai; He Nonggao; Chi Sumin; Zhang Xiaoli; Li Chengxin; Sheng Tao; Gatalica Zoran; Xie Jingwu

    2004-01-01

    Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that ...

  16. Case study of an approved corrective action integrating active remediation with intrinsic remediation

    Parsons Engineering Science, Inc., performed UST removals and/or site assessments at UST system locations at a former US Air Force Base (AFB) in Denver, Colorado. Four UST systems, incorporating 17 USTs, were located within the petroleum, oils, and lubricants bulk storage yard (POL Yard) of the former AFB. During the tank removals and subsequent site investigations, petroleum hydrocarbon contamination was found in soils at each site. Significant releases from two of the UST systems resulted in a dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) plume in the groundwater, and smear-zone contamination of soils beneath the majority of the POL Yard. Because of the close proximity of the UST systems, and the presence of the groundwater plume beneath the POL Yard, a corrective action plan (CAP) was prepared that encompassed all four UST systems. An innovative, risk-based CAP integrated active remediation of petroleum-contaminated soils with intrinsic remediation of groundwater. A natural attenuation evaluation for the dissolved BTEX was performed to demonstrate that natural attenuation processes are providing adequate remediation of groundwater and to predict the fate of the groundwater plume. BTEX concentrations versus distance were regressed to obtain attenuation rates, which were then used to calculate BTEX degradation rates using a one-dimensional, steady-state analytical solution. Additionally, electron acceptor concentrations in groundwater were compared to BTEX concentrations to provide evidence that natural attenuation of BTEX compounds was occurring. The natural attenuation evaluation was used in the CAP to support the intrinsic remediation with long-term monitoring alternative for groundwater, thereby avoiding the installation of an expensive groundwater remediation system

  17. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo.

    Girola, Natalia; Figueiredo, Carlos R; Farias, Camyla F; Azevedo, Ricardo A; Ferreira, Adilson K; Teixeira, Sarah F; Capello, Tabata M; Martins, Euder G A; Matsuo, Alisson L; Travassos, Luiz R; Lago, João H G

    2015-11-27

    Natural monoterpenes were isolated from the essential oil of Piper cernuum Vell. (Piperaceae) leaves. The crude oil and the individual monoterpenes were tested for cytotoxicity in human tumor cell lineages and B16F10-Nex2 murine melanoma cells. In the present work we demonstrate the activity of camphene against different cancer cells, with its mechanism of action being investigated in vitro and in vivo in murine melanoma. Camphene induced apoptosis by the intrinsic pathway in melanoma cells mainly by causing endoplasmic reticulum (ER) stress, with release of Ca(2+) together with HmgB1 and calreticulin, loss of mitochondrial membrane potential and up regulation of caspase-3 activity. Importantly, camphene exerted antitumor activity in vivo by inhibiting subcutaneous tumor growth of highly aggressive melanoma cells in a syngeneic model, suggesting a promising role of this compound in cancer therapy. PMID:26471302

  18. Essential role of the m2R-RGS6-IKACh pathway in controlling intrinsic heart rate variability.

    Posokhova, Ekaterina; Ng, David; Opel, Aaisha; Masuho, Ikuo; Tinker, Andrew; Biesecker, Leslie G; Wickman, Kevin; Martemyanov, Kirill A

    2013-01-01

    Normal heart function requires generation of a regular rhythm by sinoatrial pacemaker cells and the alteration of this spontaneous heart rate by the autonomic input to match physiological demand. However, the molecular mechanisms that ensure consistent periodicity of cardiac contractions and fine tuning of this process by autonomic system are not completely understood. Here we examined the contribution of the m2R-I(KACh) intracellular signaling pathway, which mediates the negative chronotropic effect of parasympathetic stimulation, to the regulation of the cardiac pacemaking rhythm. Using isolated heart preparations and single-cell recordings we show that the m2R-I(KACh) signaling pathway controls the excitability and firing pattern of the sinoatrial cardiomyocytes and determines variability of cardiac rhythm in a manner independent from the autonomic input. Ablation of the major regulator of this pathway, Rgs6, in mice results in irregular cardiac rhythmicity and increases susceptibility to atrial fibrillation. We further identify several human subjects with variants in the RGS6 gene and show that the loss of function in RGS6 correlates with increased heart rate variability. These findings identify the essential role of the m2R-I(KACh) signaling pathway in the regulation of cardiac sinus rhythm and implicate RGS6 in arrhythmia pathogenesis. PMID:24204714

  19. Enhanced Intrinsic Catalytic Activity of λ-MnO2 by Electrochemical Tuning and Oxygen Vacancy Generation.

    Lee, Sanghan; Nam, Gyutae; Sun, Jie; Lee, Jang-Soo; Lee, Hyun-Wook; Chen, Wei; Cho, Jaephil; Cui, Yi

    2016-07-18

    Chemically prepared λ-MnO2 has not been intensively studied as a material for metal-air batteries, fuel cells, or supercapacitors because of their relatively poor electrochemical properties compared to α- and δ-MnO2 . Herein, through the electrochemical removal of lithium from LiMn2 O4 , highly crystalline λ-MnO2 was prepared as an efficient electrocatalyst for the oxygen reduction reaction (ORR). The ORR activity of the material was further improved by introducing oxygen vacancies (OVs) that could be achieved by increasing the calcination temperature during LiMn2 O4 synthesis; a concentration of oxygen vacancies in LiMn2 O4 could be characterized by its voltage profile as the cathode in a lithiun-metal half-cell. λ-MnO2-z prepared with the highest OV exhibited the highest diffusion-limited ORR current (5.5 mA cm(-2) ) among a series of λ-MnO2-z electrocatalysts. Furthermore, the number of transferred electrons (n) involved in the ORR was >3.8, indicating a dominant quasi-4-electron pathway. Interestingly, the catalytic performances of the samples were not a function of their surface areas, and instead depended on the concentration of OVs, indicating enhancement in the intrinsic catalytic activity of λ-MnO2 by the generation of OVs. This study demonstrates that differences in the electrochemical behavior of λ-MnO2 depend on the preparation method and provides a mechanism for a unique catalytic behavior of cubic λ-MnO2 . PMID:27254822

  20. Activation of the MAPK/ERK Cell-Signaling Pathway in Uterine Smooth Muscle Cells of Women With Adenomyosis.

    Streuli, Isabelle; Santulli, Pietro; Chouzenoux, Sandrine; Chapron, Charles; Batteux, Frédéric

    2015-12-01

    We investigated whether the myometrium might be intrinsically different in women with adenomyosis. We studied whether the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPKs/ERKs) and phosphoinositide 3-kinase/mammalian target of rapamycin/AKT (PI3K/mTOR/AKT) cell-signaling pathways, implicated in the pathogenesis of endometriosis, might also be activated in uterine smooth muscle cells (uSMCs) of women with adenomyosis and measured the production of reactive oxygen species (ROS), proinflammatory mediators that modulate cell proliferation and have been shown to activate the MAPK/ERK pathway in endometriosis. The uSMC cultures were derived from myometrium biopsies obtained during hysterectomy or myomectomy in women with adenomyosis and controls with leiomyoma. Proliferation of uSMCs and in vitro activation of the MAPK/ERK cell-signaling pathway were increased in women with adenomyosis compared to controls. The activation of the PI3K/mTOR/AKT pathway was not significant. The ROS production and ROS detoxification pathways were not different between uSMCs of women with adenomyosis and controls suggesting an ROS-independent activation of the MAPK/ERK pathway. Our results also provide evidence that protein kinase inhibitors and the rapanalogue temsirolimus can control proliferation of uSMCs in vitro suggesting an implication of the MAPK/ERK and the PI3K/mTOR/AKT pathways in proliferation of uSMCs in women with adenomyosis and leiomyomas. PMID:26071388

  1. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regulatoryfactor...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of... interferon regulatoryfactor 3. Authors Servant MJ, Grandvaux N, Hiscott J. Publication Biochem Pharmacol. 2

  2. Reddening of the narrow-line regions of active galactic nuclei and the intrinsic Balmer decrement II

    It has recently been claimed (Malkam, 1983) that the intrinsic H-alpha/H-beta ratio for narrow line regions (NLRs) in active galactic nuclei is significantly larger than the standard case B recombination values. Here, the data assembled by Malkan are reexamined, and it is shown that the de-reddened H-alpha/H-Beta ratios are consistent with a value only slightly greater than case B, with no clear evidence for intrinsic variation from object to object. The systematic errors in the methods used are discussed, and some differences between the NLRs of Seyfert 1 and Seyfert 2 galaxies are noted. 22 references

  3. Exercise Ameliorates Renal Cell Apoptosis in Chronic Kidney Disease by Intervening in the Intrinsic and the Extrinsic Apoptotic Pathways in a Rat Model

    Kuan-Chou Chen

    2013-01-01

    Full Text Available We hypothesized that doxorubicin (DR induced chronic kidney disease (CKD could trigger the intrinsic and the extrinsic renal cell apoptotic pathways, while treadmill exercise could help prevent adverse effects. Male Sprague-Dawley rats were subjected to treadmill running exercise at a speed of 30 m/min, 30 or 60 min/day, 3 times per week, for a total period of 11 weeks. The physiological and biochemical parameters were seen substantially improved (DR-CKD control, 30 min, 60 min exercise: the ratio of kidney weight/body weight (0.89, 0.74, and 0.72; the WBC (1.35, 1.08, and 1.42 × 104 cells/μL; RBC (5.30, 6.38, and 6.26 × 106 cells/μL; the platelet count (15.1, 12.8, and 11.3 × 105/μL; serum cholesterol (659, 360, and 75 mg/dL; serum triglyceride (542, 263, and 211 mg/dL; BUN (37, 25, and 22 mg/dL. Bcl-2 and intramitochondrial cytochrome c were upregulated, while the levels of Bax, SOD, MDA, cleaved caspases 9, 3, 8, 12, and calpain were all downregulated in DRCKD groups with exercise. CHOP (GADD153 and GRP78 were totally unaffected. FAS (CD95 was only slightly suppressed in the 60 min exercise DRCKD group. Conclusively, exercise can ameliorate CKD through the regulation of the intrinsic and extrinsic apoptosis pathways. The 60 min exercise yields more beneficial effect than the 30 min counterpart.

  4. PO2-dependent Changes in Intrinsic and Extrinsic Tongue Muscle Activities in the Rat

    Bailey, E. Fiona; Janssen, Patrick L.; Fregosi, Ralph F.

    2005-01-01

    Rationale: Historically, respiratory-related research in sleep apnea has focused exclusively on the extrinsic tongue muscles (i.e., genioglossus, hyoglossus, and styloglossus). Until recently, the respiratory control and function of intrinsic tongue muscles (i.e., inferior and superior longitudinalis, transverses, and verticalis), which comprise the bulk of the tongue, were unknown. Objectives: The current study sought to determine if extrinsic and intrinsic tongue muscles are coactivated in ...

  5. Effects of external contingencies on an actively caring behavior :a field test of intrinsic motivation theory

    Boyce, Thomas E

    1995-01-01

    Reward programs and incentive plans are popular methods of increasing desired behaviors in applied settings. Yet, opponents of "carrot and stick" interventions claim these programs are perceived as controlling and as a result are counterproductive to people's intrinsic motivation to emit a desired response. The current research studied intrinsic motivation theory in a community setting by combining written commitments with external rewards, and manipulating the time at which th...

  6. Wnt pathway activation by ADP-ribosylation.

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)-known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  7. Abnormal intrinsic brain activity patterns in leukoaraiosis with and without cognitive impairment.

    Li, Chuanming; Yang, Jun; Yin, Xuntao; Liu, Chen; Zhang, Lin; Zhang, Xiaochun; Gui, Li; Wang, Jian

    2015-10-01

    The amplitude of low frequency fluctuations (ALFF) from resting-state functional MRI (rs-fMRI) signals can be used to detect intrinsic spontaneous brain activity and provide valuable insights into the pathomechanism of neural disease. In this study, we recruited 56 patients who had been diagnosed as having mild to severe leukoaraiosis. According to the neuropsychological tests, they were subdivided into a leukoaraiosis with cognitive impairment group (n = 28) and a leukoaraiosis without cognitive impairment group (n = 28). 28 volunteers were included as normal controls. We found that the three groups showed significant differences in ALFF in the brain regions of the right inferior occipital gyrus (IOG_R), left middle temporal gyrus (MTG_L), left precuneus (Pcu_L), right superior frontal gyrus (SFG_R) and right superior occipital gyrus (SOG_R). Compared with normal controls, the leukoaraiosis without cognitive impairment group exhibited significantly increased ALFF in the IOG_R, Pcu_L, SFG_R and SOG_R. While compared with leukoaraiosis without cognitive impairment group, the leukoaraiosis with cognitive impairment group showed significantly decreased ALFF in IOG_R, MTG_L, Pcu_L and SOG_R. A close negative correlation was found between the ALFF values of the MTG_L and the Montreal Cognitive Assessment (MoCA) scores. Our data demonstrate that white matter integrity and cognitive impairment are associated with different amplitude fluctuations of rs-fMRI signals. Leukoaraiosis is related to ALFF increases in IOG_R, Pcu_L, SFG_Orb_R and SOG_R. Decreased ALFF in MTG_L is characteristic of cognitive impairment and may aid in its early detection. PMID:26116811

  8. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity.

    Xing, Shaojun; Li, Fengyin; Zeng, Zhouhao; Zhao, Yunjie; Yu, Shuyang; Shan, Qiang; Li, Yalan; Phillips, Farrah C; Maina, Peterson K; Qi, Hank H; Liu, Chengyu; Zhu, Jun; Pope, R Marshall; Musselman, Catherine A; Zeng, Chen; Peng, Weiqun; Xue, Hai-Hui

    2016-06-01

    The CD4(+) and CD8(+) T cell dichotomy is essential for effective cellular immunity. How individual T cell identity is established remains poorly understood. Here we show that the high-mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4(+) lineage-associated genes including Cd4, Foxp3 and Rorc in CD8(+) T cells. Tcf1- and Lef1-deficient CD8(+) T cells exhibit histone hyperacetylation, which can be ascribed to intrinsic histone deacetylase (HDAC) activity in Tcf1 and Lef1. Mutation of five conserved amino acids in the Tcf1 HDAC domain diminishes HDAC activity and the ability to suppress CD4(+) lineage genes in CD8(+) T cells. These findings reveal that sequence-specific transcription factors can utilize intrinsic HDAC activity to guard cell identity by repressing lineage-inappropriate genes. PMID:27111144

  9. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  10. Activation of multiple apoptotic pathways in human nasopharyngeal carcinoma cells by the prenylated isoflavone, osajin.

    Tsung-Teng Huang

    Full Text Available Osajin is a prenylated isoflavone showing antitumor activity in different tumor cell lines. The underlying mechanism of osajin-induced cancer cell death is not clearly understood. In the present study, the mechanisms of osajin-induced cell death of human nasopharyngeal carcinoma (NPC cells were explored. Osajin was found to significantly induce apoptosis of NPC cells in a dose- and time-dependent manner. Multiple molecular effects were observed during osajin treatment including a significant loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, enhanced expression of Fas ligand (FasL, suppression of glucose-regulated protein 78 kDa (GRP78, and activation of caspases-9, -8, -4 and -3. In addition, up-regulation of proapoptotic Bax protein and down-regulation of antiapoptotic Bcl-2 protein were also observed. Taken together, osajin induces apoptosis in human NPC cells through multiple apoptotic pathways, including the extrinsic death receptor pathway, and intrinsic pathways relying on mitochondria and endoplasmic reticulum stress. Thus, osajin could be developed as a new effective and chemopreventive compound for human NPC.

  11. Nomenclature of the alternative activating pathway of complement*

    1981-01-01

    This terminology note outlines for the first time a standard nomenclature for the alternative activating pathway of complement. It was drafted by a group of experts working under the auspices of the International Union of Immunological Societies (IUIS), and has been approved by the Nomenclature Committee of the IUIS.

  12. Combination phenylbutyrate/gemcitabine therapy effectively inhibits in vitro and in vivo growth of NSCLC by intrinsic apoptotic pathways

    Schniewind Bodo

    2006-11-01

    Full Text Available Abstract Background Standard chemotherapy protocols in NSCLC are of limited clinical benefit. Histone deacetylase (HDAC inhibitors represent a new strategy in human cancer therapy. In this study the combination of the HDAC inhibitor phenylbutyrate (PB and the nucleoside analogue gemcitabine (GEM was evaluated and the mechanisms underlying increased cell death were analyzed. Methods Dose escalation studies evaluating the cytotoxicity of PB (0.01–100 mM, GEM (0.01–100 μg/ml and a combination of the two were performed on two NSCLC cell lines (BEN and KNS62. Apoptotic cell death was quantified. The involvement of caspase-dependent cell death and MAP-kinase activation was analyzed. Additionally, mitochondrial damage was determined. In an orthotopic animal model the combined effect of PB and GEM on therapy was analyzed. Results Applied as a single drug both GEM and PB revealed limited potential to induce apoptosis in KNS62 and Ben cells. Combination therapy was 50–80% (p = 0.012 more effective than either agent alone. On the caspase level, combination therapy significantly increased cleavage of the pro-forms compared to single chemotherapy. The broad spectrum caspase-inhibitor zVAD was able to inhibit caspase cleavage completely, but reduced the frequency of apoptotic cells only by 30%. Combination therapy significantly increased changes in MTP and the release of cyto-c, AIF and Smac/Diabolo into the cytoplasm. Furthermore, the inhibitors of apoptosis c-IAP1 and c-IAP2 were downregulated and it was shown that in combination therapy JNK activation contributed significantly to induction of apoptosis. The size of the primary tumors growing orthotopically in SCID mice treated for 4 weeks with GEM and PB was significantly reduced (2.2–2.7 fold compared to GEM therapy alone. The Ki-67 (KNS62: p = 0.015; Ben: p = 0.093 and topoisomerase IIα (KNS62: p = 0.008; Ben: p = 0.064 proliferation indices were clearly reduced in tumors treated by combination

  13. Activation of the hedgehog pathway in advanced prostate cancer

    McCormick Frank

    2004-10-01

    Full Text Available Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP, are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu protein, a negative regulator of the hedgehog pathway. We find that Su(Fu protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu. Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27. High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3. We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. Conclusion Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have

  14. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    Kevin A Robertson

    2016-03-01

    Full Text Available In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1. Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  15. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    Robertson, Kevin A; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J; Enright, Anton J; Yamamoto, Mami; Pradeepa, Madapura M; Lennox, Kimberly A; Behlke, Mark A; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-03-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway. PMID:26938778

  16. Altered intrinsic properties and bursting activities of neurons in layer IV of somatosensory cortex from Fmr-1 knockout mice.

    Zhang, Linming; Liang, Zhanrong; Zhu, Pingping; Li, Meng; Yi, Yong-Hong; Liao, Wei-Ping; Su, Tao

    2016-06-01

    Neuroadaptations and alterations in neuronal excitability are critical in brain maturation and many neurological diseases. Fragile X syndrome (FXS) is a pervasive neurodevelopmental disorder characterized by extensive synaptic and circuit dysfunction. It is still unclear about the alterations in intrinsic excitability of individual neurons and their link to hyperexcitable circuitry. In this study, whole cell patch-clamp recordings were employed to characterize the membrane and firing properties of layer IV cells in slices of the somatosensory cortex of Fmr-1 knockout (KO) mice. These cells generally exhibited a regular spiking (RS) pattern, while there were significant increases in the number of cells that adopted intrinsic bursting (IB) compared with age-matched wild type (WT) cells. The cells subgrouped according to their firing patterns and maturation differed significantly in membrane and discharge properties between KO and WT. The changes in the intrinsic properties were consistent with highly facilitated discharges in KO cells induced by current injection. Spontaneous activities of RS neurons driven by local network were also increased in the KO cells, especially in neonate groups. Under an epileptiform condition mimicked by omission of Mg(2+) in extracellular solution, these RS neurons from KO mice were more likely to switch to burst discharges. Analysis on bursts revealed that the KO cells tended to form burst discharges and even severe events manifested as seizure-like ictal discharges. These results suggest that alterations in intrinsic properties in individual neurons are involved in the abnormal excitability of cortical circuitry and possibly account for the pathogenesis of epilepsy in FXS. PMID:27048919

  17. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    Paweletz Cloud

    2010-06-01

    Full Text Available Abstract Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90% sensitivity but relatively low (50% specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical

  18. Enhancement of intrinsic antitumor activity in spore-endotoxin mixtures of Bacillus thuringiensis by exposure to ultraviolet radiation

    Irradiation of spore-endotoxin mixtures from Bacillus thuringiensis cultures at 254 nm (60 μW cm-2) enhances their intrinsic antitumor potency as well as that of either component. The extent of enhancement depends on the length of exposure (optimum: 35 min) and may thus be due to photochemical changes of the endotoxin protein or/and to photoproduction of additional compounds with antitumor activity. Antitumor effects, expressed as survival rates of C57BL/6 mice inoculated with Lewis' mouse lung carcinoma and subjected to treatments 24 h later, depended on the number of doses of preparations administered (mixture, separated components). (author)

  19. Grb2 Is a Negative Modulator of the Intrinsic Ras-GEF Activity of hSos1

    Zarich, Natasha; Oliva, José Luis; Martínez, Natalia; Jorge, Rocío; Ballester, Alicia; Gutiérrez-Eisman, Silvia; García-Vargas, Susana; Rojas, José M

    2006-01-01

    hSos1 is a Ras guanine-nucleotide exchange factor. It was suggested that the carboxyl-terminal region of hSos1 down-regulates hSos1 functionality and that the intrinsic guanine-nucleotide exchange activity of this protein may be different before and after stimulation of tyrosine kinase receptors. Using different myristoylated hSos1 full-length and carboxyl-terminal truncated mutants, we show that Grb2 function accounts not only for recruitment of hSos1 to the plasma membrane but also for modu...

  20. Active microrheology of Chaetopterus mucus determines three intrinsic lengthscales that govern material properties

    Weigand, W J; Deheyn, D D; Morales-Sanz, A; Blair, D L; Urbach, J S; Robertson-Anderson, R M

    2016-01-01

    We characterize the scale-dependent rheological properties of mucus from the Chaetopterus marine worm and determine the intrinsic lengthscales controlling distinct rheological and structural regimes. Mucus produced by this ubiquitous filter feeder serves a host of roles including filtration, protection and trapping nutrients. The ease of clean mucus extraction coupled with similarities to human mucus rheology also make Chaetopterus mucus a potential model system for elucidating human mucus mechanics. We use optically trapped microsphere probes of 2-10 microns, to induce oscillatory strains and measure mucus stress response. We show that viscoelastic properties are highly dependent on the strain scale (l) with three distinct regimes emerging: microscale: l_110 microns. While mucus response is similar to water for l_1 indicating that probes rarely contact the mucus mesh, for l_2 the response is distinctly more viscous and independent of probe size, demonstrating that the mucus behaves as a continuum. However, t...

  1. Intrinsic and chemo-sensitizing activity of SMAC-mimetics on high-risk childhood acute lymphoblastic leukemia.

    Schirmer, M; Trentin, L; Queudeville, M; Seyfried, F; Demir, S; Tausch, E; Stilgenbauer, S; Eckhoff, S M; Meyer, L H; Debatin, K-M

    2016-01-01

    SMAC-mimetics represent a targeted therapy approach to overcome apoptosis resistance in many tumors. Here, we investigated the efficacy of the SMAC-mimetic BV6 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In ALL cell lines, intrinsic apoptosis sensitivity was associated with rapid cIAP degradation, NF-κB activation, TNF-α secretion and induction of an autocrine TNF-α-dependent cell death loop. This pattern of responsiveness was also observed upon ex vivo analysis of 40 primograft BCP-ALL samples. Treatment with BV6 induced cell death in the majority of ALL primografts including leukemias with high-risk and poor-prognosis features. Inhibition of cell death by the TNF receptor fusion protein etanercept demonstrated that BV6 activity is dependent on TNF-α. In a preclinical NOD/SCID/huALL model of high-risk ALL, marked anti-leukemia effectivity and significantly prolonged survival were observed upon BV6 treatment. Interestingly, also in vivo, intrinsic SMAC-mimetic activity was mediated by TNF-α. Importantly, BV6 increased the effectivity of conventional induction therapy including vincristine, dexamethasone and asparaginase leading to prolonged remission induction. These data suggest SMAC-mimetics as an important addendum to efficient therapy of pediatric BCP-ALL. PMID:26775704

  2. Differences and the Relationship in Default Mode Network Intrinsic Activity and Functional Connectivity in Mild Alzheimer's Disease and Amnestic Mild Cognitive Impairment

    Weiler, Marina; Teixeira, Camila Vieira Ligo; Nogueira, Mateus Henrique; de Campos, Brunno Machado; Damasceno, Benito Pereira; Cendes, Fernando; Balthazar, Marcio Luiz Figueredo

    2014-01-01

    There is evidence that the default mode network (DMN) functional connectivity is impaired in Alzheimer's disease (AD) and few studies also reported a decrease in DMN intrinsic activity, measured by the amplitude of low-frequency fluctuations (ALFFs). In this study, we analyzed the relationship between DMN intrinsic activity and functional connectivity, as well as their possible implications on cognition in patients with mild AD and amnestic mild cognitive impairment (aMCI) and healthy control...

  3. Pathways to URM Retention: IBP's Professional Development and Mentoring Activities

    Johnson, A.; Williamson Whitney, V.; Ricciardi, L.; Detrick, L.; Siegfried, D.; Fauver, A.; Ithier-Guzman, W.; Thomas, S. H.; Valaitis, S.

    2013-05-01

    As a not for profit organization, the Institute for Broadening Participation (IBP) hosts a variety of initiatives designed to increase the retention of underrepresented minority (URM) students pursuing pathways in STEM. IBP also assists with formative program evaluation design and implementation to help strengthen URM recruitment and retention elements. Successful initiatives include virtual and face-to-face components that bring together URM students with established URM and other scientists in academia, government and industry. These connections provide URMs with mentoring, networking opportunities, and professional skill development contributing to an improved retention rate of URM students. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science and Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Earth System Science (ESS) Professional Development Program. The NASA OSSI recruits and facilitates student engagement in NASA education and employment opportunities. Pathways to Ocean Science connects and supports URM students with Ocean Science REU programs and serves as a resource for REU program directors. Pathways to Engineering has synthesized mentoring resources into an online mentoring manual for URM students that has been extensively vetted by mentoring experts throughout the country. The mentoring manual, which is organized by roles, provides undergraduates, graduates, postdocs, faculty and project directors with valuable resources. MS PHD'S, one of IBP's longest running and most successful initiatives, focuses on increasing the retention rate of URM students receiving advanced degrees in ESS. The program addresses barriers to retention in ESS including isolation, lack of preparation and professional development, and lack of mentoring. Program activities center on peer-to-peer community building, professional development exercises, networking experiences, one

  4. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs. PMID:25556853

  5. Activation of the TGFβ pathway impairs endothelial to haematopoietic transition.

    Vargel, Özge; Zhang, Yang; Kosim, Kinga; Ganter, Kerstin; Foehr, Sophia; Mardenborough, Yannicka; Shvartsman, Maya; Enright, Anton J; Krijgsveld, Jeroen; Lancrin, Christophe

    2016-01-01

    The endothelial to haematopoietic transition (EHT) is a key developmental process where a drastic change of endothelial cell morphology leads to the formation of blood stem and progenitor cells during embryogenesis. As TGFβ signalling triggers a similar event during embryonic development called epithelial to mesenchymal transition (EMT), we hypothesised that TGFβ activity could play a similar role in EHT as well. We used the mouse embryonic stem cell differentiation system for in vitro recapitulation of EHT and performed gain and loss of function analyses of the TGFβ pathway. Quantitative proteomics analysis showed that TGFβ treatment during EHT increased the secretion of several proteins linked to the vascular lineage. Live cell imaging showed that TGFβ blocked the formation of round blood cells. Using gene expression profiling we demonstrated that the TGFβ signalling activation decreased haematopoietic genes expression and increased the transcription of endothelial and extracellular matrix genes as well as EMT markers. Finally we found that the expression of the transcription factor Sox17 was up-regulated upon TGFβ signalling activation and showed that its overexpression was enough to block blood cell formation. In conclusion we showed that triggering the TGFβ pathway does not enhance EHT as we hypothesised but instead impairs it. PMID:26891705

  6. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade

  7. In-vivo imaging of stimulus-evoked intrinsic optical signals correlated with retinal activation in anesthetized frog

    Yao, Xin-Cheng; Zhang, Qiu-Xiang; Li, Yang-Guo

    2011-09-01

    Intrinsic optical signal imaging (IOS) promises a noninvasive method for high resolution examination of retinal function. Using freshly isolated animal retinas, we have conducted a series of experiments to test fast IOSs which have time courses comparable to electrophysiological kinetics. In this article, we demonstrate the feasibility of in vivo imaging of fast IOSs correlated with retinal activation in anesthetized frog (Rana Pipiens). A rapid (68,000 lines/s) line-scan confocal ophthalmoscope was constructed to achieve high-speed (200 frames/s) near infared (NIR) recording of fast IOSs. By rejecting out-of-focus background light, the line-scan confocal imager provided enough resolution to differentiate individual photoreceptors in vivo. With visible light stimulation, NIR confocal images disclosed transient IOSs with time courses comparable to retinal ERG kinetics. High-resolution IOS images revealed both positive (increasing) and negative (decreasing) light responses, with sub-cellular complexity, in the activated retina.

  8. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Star-forming Galaxies from the Sloan Digital Sky Survey

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine S.; Hainline, Kevin N.; DiPompeo, Michael A.; Goulding, Andy D.

    2016-07-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGNs). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test whether or not an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work suggesting that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGNs using a broad, instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observed galaxies via their positions on an emission line excitation diagram and Eddington ratio distributions. We present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that for optically selected AGNs in young galaxies, the intrinsic Eddington ratio distribution is consistent with a possibly universal, broad power law with an exponential cutoff, as this distribution is observed in old, optically selected galaxies and X-rays.

  9. Complement alternative pathway activation in human nonalcoholic steatohepatitis.

    Filip M Segers

    Full Text Available The innate immune system plays a major role in the pathogenesis of nonalcoholic steatohepatitis (NASH. Recently we reported complement activation in human NASH. However, it remained unclear whether the alternative pathway of complement, which amplifies C3 activation and which is frequently associated with pathological complement activation leading to disease, was involved. Here, alternative pathway components were investigated in liver biopsies of obese subjects with healthy livers (n = 10 or with NASH (n = 12 using quantitative PCR, Western blotting, and immunofluorescence staining. Properdin accumulated in areas where neutrophils surrounded steatotic hepatocytes, and colocalized with the C3 activation product C3c. C3 activation status as expressed by the C3c/native C3 ratio was 2.6-fold higher (p<0.01 in subjects with NASH despite reduced native C3 concentrations (0.94±0.12 vs. 0.57±0.09; p<0.01. Hepatic properdin levels positively correlated with levels of C3c (rs = 0.69; p<0.05 and C3c/C3 activation ratio (rs = 0.59; p<0.05. C3c, C3 activation status (C3c/C3 ratio and properdin levels increased with higher lobular inflammation scores as determined according to the Kleiner classification (C3c: p<0.01, C3c/C3 ratio: p<0.05, properdin: p<0.05. Hepatic mRNA expression of factor B and factor D did not differ between subjects with healthy livers and subjects with NASH (factor B: 1.00±0.19 vs. 0.71±0.07, p = 0.26; factor D: 1.00±0.21 vs. 0.66±0.14, p = 0.29;. Hepatic mRNA and protein levels of Decay Accelerating Factor tended to be increased in subjects with NASH (mRNA: 1.00±0.14 vs. 2.37±0.72; p = 0.22; protein: 0.51±0.11 vs. 1.97±0.67; p = 0.28. In contrast, factor H mRNA was downregulated in patients with NASH (1.00±0.09 vs. 0.71±0.06; p<0.05 and a similar trend was observed with hepatic protein levels (1.12±0.16 vs. 0.78±0.07; p = 0.08. Collectively, these data suggest a role for alternative

  10. Heterogeneous Effects of Direct Hypoxia Pathway Activation in Kidney Cancer.

    Rafik Salama

    Full Text Available General activation of hypoxia-inducible factor (HIF pathways is classically associated with adverse prognosis in cancer and has been proposed to contribute to oncogenic drive. In clear cell renal carcinoma (CCRC HIF pathways are upregulated by inactivation of the von-Hippel-Lindau tumor suppressor. However HIF-1α and HIF-2α have contrasting effects on experimental tumor progression. To better understand this paradox we examined pan-genomic patterns of HIF DNA binding and associated gene expression in response to manipulation of HIF-1α and HIF-2α and related the findings to CCRC prognosis. Our findings reveal distinct pan-genomic organization of canonical and non-canonical HIF isoform-specific DNA binding at thousands of sites. Overall associations were observed between HIF-1α-specific binding, and genes associated with favorable prognosis and between HIF-2α-specific binding and adverse prognosis. However within each isoform-specific set, individual gene associations were heterogeneous in sign and magnitude, suggesting that activation of each HIF-α isoform contributes a highly complex mix of pro- and anti-tumorigenic effects.

  11. A novel cisplatin mediated apoptosis pathway is associated with acid sphingomyelinase and FAS proapoptotic protein activation in ovarian cancer.

    Maurmann, L; Belkacemi, L; Adams, N R; Majmudar, P M; Moghaddas, S; Bose, R N

    2015-07-01

    Platinum-based anticancer drugs, including cisplatin and carboplatin, have been cornerstones in the treatment of solid tumors. We report here that these DNA-damaging agents, particularly cisplatin, induce apoptosis through plasma membrane disruption, triggering FAS death receptor via mitochondrial (intrinsic) pathways. Our objectives were to: quantify the composition of membrane metabolites; and determine the potential involvement of acid sphingomyelinase (ASMase) in the FAS-mediated apoptosis in ovarian cancer after cisplatin treatment. The resulting analysis revealed enhanced apoptosis as measured by: increased phosphocholine, and glycerophosphocholine; elevated cellular energetics; and phosphocreatine and nucleoside triphosphate concentrations. The plasma membrane alterations were accompanied by increased ASMase activity, leading to the upregulation of FAS, FASL and related pro-apoptotic BAX and PUMA genes. Moreover FAS, FASL, BAX, PUMA, CASPASE-3 and -9 proteins were upregulated. Our findings implicate ASMase activity and the intrinsic pathways in cisplatin-mediated membrane demise, and contribute to our understanding of the mechanisms by which ovarian tumors may become resistant to cisplatin. PMID:25846011

  12. Activation and signaling of the p38 MAP kinase pathway

    Tyler ZARUBIN; Jiahuai HAN

    2005-01-01

    The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.

  13. Hesperetin Induces Apoptosis in Breast Carcinoma by Triggering Accumulation of ROS and Activation of ASK1/JNK Pathway.

    Palit, Shreyasi; Kar, Susanta; Sharma, Gunjan; Das, Pijush K

    2015-08-01

    Hesperetin, a flavanone glycoside predominantly found in citrus fruits, exhibits a wide array of biological properties. In the present study hesperetin exhibited a significant cytotoxic effect in human breast carcinoma MCF-7 cells in a concentration- and time-dependent manner without affecting normal (HMEC) as well as immortalized normal mammary epithelial cells (MCF-10A). The cytotoxic effect of hesperetin was due to the induction of apoptosis as evident from the phosphatidyl-serine externalization, DNA fragmentation, caspase-7 activation, and PARP cleavage. Apoptosis was associated with caspase-9 activation, mitochondrial membrane potential loss, release of cytochrome c, and increase in Bax:Bcl-2 ratio. Pre-treatment with caspase-9 specific inhibitor (Z-LEHD-fmk) markedly attenuated apoptosis suggesting an involvement of intrinsic mitochondrial apoptotic cascade. Further, DCFDA flow-cytometric analysis revealed triggering of ROS in a time-dependent manner. Pre-treatment with ROS scavenger N-acetylcysteine (NAC) and glutathione markedly abrogated hesperetin-mediated apoptosis whereas carbonyl cyanide m-chlorophenylhydrazone (CCCP) pretreatment along with DHR123-based flow-cytometry indicated the generation of cytosolic ROS. Profiling of MAPKs revealed activation of JNK upon hesperetin treatment which was abrogated upon NAC pre-treatment. Additionally, inhibition of JNK by SP600125 significantly reversed hesperetin-mediated apoptosis. The activation of JNK was associated with the activation of ASK1. Silencing of ASK1 resulted in significant attenuation of JNK activation as well as reversed the hesperetin-mediated apoptosis suggesting that hesperetin-mediated apoptosis of MCF-7 cells involves accumulation of ROS and activation of ASK1/JNK pathway. In addition, hesperetin also induced apoptosis in triple negative breast cancer MDA-MB-231 cells via intrinsic pathway via activation of caspase -9 and -3 and increase in Bax:Bcl-2 ratio. PMID:25204891

  14. Active Learning of Inverse Models with Intrinsically Motivated Goal Exploration in Robots

    Baranes, Adrien; Oudeyer, Pierre-Yves

    2013-01-01

    International audience We introduce the Self-Adaptive Goal Generation - Robust Intelligent Adaptive Curiosity (SAGG-RIAC) architecture as an intrinsi- cally motivated goal exploration mechanism which allows active learning of inverse models in high-dimensional redundant robots. This allows a robot to efficiently and actively learn distributions of parameterized motor skills/policies that solve a corresponding distribution of parameterized tasks/goals. The architecture makes the robot sampl...

  15. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO2 alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C3S), blended C3S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C3S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements

  16. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    White, Claire E., E-mail: whitece@princeton.edu [Department of Civil and Environmental Engineering, Princeton University, Princeton (United States); Andlinger Center for Energy and the Environment, Princeton University, Princeton (United States); Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos (United States); Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos (United States); Daemen, Luke L.; Hartl, Monika; Page, Katharine [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos (United States)

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  17. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Star-forming Galaxies from the Sloan Digital Sky Survey

    Jones, M L; Black, C S; Hainline, K N; DiPompeo, M A; Goulding, A D

    2016-01-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGN). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test if an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work that suggests that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGN using a broad instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observe...

  18. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-08-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed.

  19. Intervention-induced enhancement in intrinsic brain activity in healthy older adults

    Shufei Yin; Xinyi Zhu; Rui Li; Yanan Niu; Baoxi Wang; Zhiwei Zheng; Xin Huang; Lijuan Huo; Juan Li

    2014-01-01

    This study examined the effects of a multimodal intervention on spontaneous brain activity in healthy older adults. Seventeen older adults received a six-week intervention that consisted of cognitive training, Tai Chi exercise, and group counseling, while 17 older adults in a control group attended health knowledge lectures. The intervention group demonstrated enhanced memory and social support compared to the control group. The amplitude of low frequency fluctuations (ALFF) in the middle fro...

  20. Readout of the intrinsic and extrinsic properties of stimuli from unexperienced neuronal activities

    Farbod Kia, Sabaa; Astrand, Elaine; Ibos, Guilhem; Ben Hamed, Suliann

    2010-01-01

    While sensory and motor systems have attracted most of the research effort in Brain-Computer Interfaces (BCI), little attention has been devoted to higher order cortical processes (Andersen et al., 2004). Here, we propose to apply BCIs to the study and manipulation of visuospatial attention, an endogenous process at the interface between sensory and motor functions. As a first step to this aim, we investigate whether the activity of a population of frontal eye field neurons (FEF) in response ...

  1. Reflection of disease activity in rheumatoid arthritis by indices of activation of the classical complement pathway.

    Makinde, V A; Senaldi, G; Jawad, A S; Berry, H; Vergani, D

    1989-01-01

    Levels of C4d, a fragment of C4 generated during activation of the classical complement pathway, were measured in the plasma of 77 patients with rheumatoid arthritis and 30 healthy subjects. Disease activity was judged according to Ritchie's articular index to be mildly active in 31 (group 1), moderately active in 29 (group 2), and severely active in 17 patients (group 3). Plasma levels of C3d, a fragment of C3, and serum levels of C4, C3, and immune complexes were also measured. The ratios C...

  2. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway--the fifth lectin pathway initiation complex

    Ma, Ying Jie; Skjoedt, Mikkel-Ole; Garred, Peter

    2013-01-01

    complement pathway regulator MAP-1. Furthermore, we found that complex formation between recombinant collectin-11 and recombinant MASP-2 on Candida albicans leads to deposition of C4b. Native collectin-11 in serum mediated complement activation and deposition of C4b and C3b, and formation of the terminal...... complement complex on C. albicans. Moreover, spiking collectin-11-depleted serum, which did not mediate complement activation, with recombinant collectin-11 restored the complement activation capability. These results define collectin-11 as the fifth recognition molecule in the lectin complement pathway in...

  3. really intrinsic

    Goldsmith Brendan

    2015-10-01

    Full Text Available The intrinsic algebraic entropy ent(ɸ of an endomorphism ɸ of an Abelian group G can be computed using fully inert subgroups of ɸ-invariant sections of G, instead of the whole family of ɸ-inert subgroups. For a class of groups containing the groups of finite rank, aswell as those groupswhich are trajectories of finitely generated subgroups, it is proved that only fully inert subgroups of the group itself are needed to comput ent(ɸ. Examples show how the situation may be quite different outside of this class.

  4. Effects of preterm birth on intrinsic fluctuations in neonatal cerebral activity examined using optical imaging.

    Yutaka Fuchino

    Full Text Available Medical advancements in neonatology have significantly increased the number of high-risk preterm survivors. However, recent long-term follow-up studies have suggested that preterm infants are at risk for behavioral, educational, and emotional problems. Although clear relationships have been demonstrated between preterm infants and developmental problems during childhood and adolescence, less is known about the early indications of these problems. Recently, numerous studies on resting-state functional connectivity (RSFC have demonstrated temporal correlations of activity between spatially remote cortical regions not only in healthy adults but also in neuropathological disorders and early childhood development. In order to compare RSFC of the cerebral cortex between preterm infants at term-equivalent ages and full-term neonates without any anatomical abnormality risk during natural sleep, we used an optical topography system, which is a recently developed extension of near-infrared spectroscopy. We clarified the presence of RSFC in both preterm infants and full-term neonates and showed differences between these groups. The principal differences were that on comparison of RSFC between the bilateral temporal regions, and bilateral parietal regions, RSFC was enhanced in preterm infants compared with full-term neonates; whereas on comparison of RSFC between the left temporal and left parietal regions, RSFC was enhanced in full-term neonates compared with preterm infants. We also demonstrated a difference between the groups in developmental changes of RSFC related to postmenstrual age. Most importantly, these findings suggested that preterm infants and full-term neonates follow different developmental trajectories during the perinatal period because of differences in perinatal experiences and physiological and structural development.

  5. DART: Denoising Algorithm based on Relevance network Topology improves molecular pathway activity inference

    Purushotham Arnie

    2011-10-01

    Full Text Available Abstract Background Inferring molecular pathway activity is an important step towards reducing the complexity of genomic data, understanding the heterogeneity in clinical outcome, and obtaining molecular correlates of cancer imaging traits. Increasingly, approaches towards pathway activity inference combine molecular profiles (e.g gene or protein expression with independent and highly curated structural interaction data (e.g protein interaction networks or more generally with prior knowledge pathway databases. However, it is unclear how best to use the pathway knowledge information in the context of molecular profiles of any given study. Results We present an algorithm called DART (Denoising Algorithm based on Relevance network Topology which filters out noise before estimating pathway activity. Using simulated and real multidimensional cancer genomic data and by comparing DART to other algorithms which do not assess the relevance of the prior pathway information, we here demonstrate that substantial improvement in pathway activity predictions can be made if prior pathway information is denoised before predictions are made. We also show that genes encoding hubs in expression correlation networks represent more reliable markers of pathway activity. Using the Netpath resource of signalling pathways in the context of breast cancer gene expression data we further demonstrate that DART leads to more robust inferences about pathway activity correlations. Finally, we show that DART identifies a hypothesized association between oestrogen signalling and mammographic density in ER+ breast cancer. Conclusions Evaluating the consistency of prior information of pathway databases in molecular tumour profiles may substantially improve the subsequent inference of pathway activity in clinical tumour specimens. This de-noising strategy should be incorporated in approaches which attempt to infer pathway activity from prior pathway models.

  6. Angiotensin II activates different calcium signaling pathways in adipocytes.

    Dolgacheva, Lyudmila P; Turovskaya, Maria V; Dynnik, Vladimir V; Zinchenko, Valery P; Goncharov, Nikolay V; Davletov, Bazbek; Turovsky, Egor A

    2016-03-01

    Angiotensin II (Ang II) is an important mammalian neurohormone involved in reninangiotensin system. Ang II is produced both constitutively and locally by RAS systems, including white fat adipocytes. The influence of Ang II on adipocytes is complex, affecting different systems of signal transduction from early Са(2+) responses to cell proliferation and differentiation, triglyceride accumulation, expression of adipokine-encoding genes and adipokine secretion. It is known that white fat adipocytes express all RAS components and Ang II receptors (АТ1 and АТ2). The current work was carried out with the primary white adipocytes culture, and Са(2+) signaling pathways activated by Ang II were investigated using fluorescent microscopy. Са(2+)-oscillations and transient responses of differentiated adipocytes to Ang II were registered in cells with both small and multiple lipid inclusions. Using inhibitory analysis and selective antagonists, we now show that Ang II initiates periodic Са(2+)-oscillations and transient responses by activating АТ1 and АТ2 receptors and involving branched signaling cascades:In these cascades, AT1 receptors play the leading role. The results of the present work open a perspective of using Ang II for correction of signal resistance of adipocytes often observed during obesity and type 2diabetes. PMID:26850364

  7. Spontaneous Activity, Economy of Activity, and Resistance to Diet-Induced Obesity in Rats Bred for High Intrinsic Aerobic Capacity

    Novak, Colleen M.; Escande, Carlos; Burghardt, Paul R.; Zhang, Minzhi; Barbosa, Maria Teresa; Chini, Eduardo N.; Britton, Steven L.; Koch, Lauren G.; Akil, Huda; James A Levine

    2010-01-01

    Though obesity is common, some people remain resistant to weight gain even in an obesogenic environment. The propensity to remain lean may be partly associated with high endurance capacity along with high spontaneous physical activity and the energy expenditure of activity, called non-exercise activity thermogenesis (NEAT). Previous studies have shown that high-capacity running rats (HCR) are lean compared to low-capacity runners (LCR), which are susceptible to cardiovascular disease and meta...

  8. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    Onuma, Hirohisa; Inukai, Kouichi, E-mail: kinukai@ks.kyorin-u.ac.jp; Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  9. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A 31P NMR study

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by 31P NMR. 31P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are -0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by 31P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A

  10. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  11. Early Years Education: Are Young Students Intrinsically or Extrinsically Motivated Towards School Activities? A Discussion about the Effects of Rewards on Young Children's Learning

    Theodotou, Evgenia

    2014-01-01

    Rewards can reinforce and at the same time forestall young children's willingness to learn. However, they are broadly used in the field of education, especially in early years settings, to stimulate children towards learning activities. This paper reviews the theoretical and research literature related to intrinsic and extrinsic motivational…

  12. Intrinsic Motivation and Engagement as "Active Ingredients" in Garden-Based Education: Examining Models and Measures Derived from Self-Determination Theory

    Skinner, Ellen A.; Chi, Una

    2012-01-01

    Building on self-determination theory, this study presents a model of intrinsic motivation and engagement as "active ingredients" in garden-based education. The model was used to create reliable and valid measures of key constructs, and to guide the empirical exploration of motivational processes in garden-based learning. Teacher- and…

  13. Deficient activity of the alternative pathway of complement in beta thalassemia major.

    Corry, J M; Marshall, W C; Guthrie, L A; Peerless, A G; Johnston, R B

    1981-06-01

    Patients with thalassemia major suffer frequent and serious infections, especially after splenectomy. To explore the basis for this susceptibility, we examined activity of the complement system in sera from 24 patients. All sera had normal or increased activity of the classic complement pathway. However, six of the 24 (three with and three without splenectomy) had abnormal alternative pathway function, and mean alternative pathway activity was significantly decreased in both splenectomized and nonsplenectomized patients. Mean concentrations of C3, factor B, properdin, and immunoglobulins were normal. Defective alternative pathway function, especially in conjunction with asplenia, could contribute to the propensity to infection that exists in thalassemia. PMID:6908998

  14. Understanding disease mechanisms with models of signaling pathway activities

    Sebastian-Leon, Patricia; Vidal, Enrique; Minguez, Pablo; Conesa, Ana; Tarazona, Sonia; Amadoz, Alicia; Armero, Carmen; Salavert, Francisco; VIDAL-PUIG, Antonio; Montaner, David; Dopazo, Joaquín

    2014-01-01

    Background Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine. Results Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements in...

  15. Benzofuroxan derivatives N-Br and N-I induce intrinsic apoptosis in melanoma cells by regulating AKT/BIM signaling and display anti metastatic activity in vivo

    Farias, C. F.; Massaoka, M. H.; Girola, N.; R.A. Azevedo; Ferreira, A. K.; Jorge, S. D.; Tavares, L C; Figueiredo, C. R.; Travassos, L R

    2015-01-01

    Background Malignant melanoma is an aggressive type of skin cancer, and despite recent advances in treatment, the survival rate of the metastatic form remains low. Nifuroxazide analogues are drugs based on the substitution of the nitrofuran group by benzofuroxan, in view of the pharmacophore similarity of the nitro group, improving bioavailability, with higher intrinsic activity and less toxicity. Benzofuroxan activity involves the intracellular production of free-radical species. In the pres...

  16. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules

    Elucidating the activation pattern of molecular pathways across a given tumour type is a key challenge necessary for understanding the heterogeneity in clinical response and for developing novel more effective therapies. Gene expression signatures of molecular pathway activation derived from perturbation experiments in model systems as well as structural models of molecular interactions ('model signatures') constitute an important resource for estimating corresponding activation levels in tumours. However, relatively few strategies for estimating pathway activity from such model signatures exist and only few studies have used activation patterns of pathways to refine molecular classifications of cancer. Here we propose a novel network-based method for estimating pathway activation in tumours from model signatures. We find that although the pathway networks inferred from cancer expression data are highly consistent with the prior information contained in the model signatures, that they also exhibit a highly modular structure and that estimation of pathway activity is dependent on this modular structure. We apply our methodology to a panel of 438 estrogen receptor negative (ER-) and 785 estrogen receptor positive (ER+) breast cancers to infer activation patterns of important cancer related molecular pathways. We show that in ER negative basal and HER2+ breast cancer, gene expression modules reflecting T-cell helper-1 (Th1) and T-cell helper-2 (Th2) mediated immune responses play antagonistic roles as major risk factors for distant metastasis. Using Boolean interaction Cox-regression models to identify non-linear pathway combinations associated with clinical outcome, we show that simultaneous high activation of Th1 and low activation of a TGF-beta pathway module defines a subtype of particularly good prognosis and that this classification provides a better prognostic model than those based on the individual pathways. In ER+ breast cancer, we find that

  17. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC.

    Occhi, Gianluca; Barollo, Susi; Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-10-13

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice. PMID:26392334

  18. Intrinsic n

    ZnO typifies a class of materials that can be doped via native defects in only one way: either n type or p type. We explain this asymmetry in ZnO via a study of its intrinsic defect physics, including ZnO, Zni, VO, Oi, and VZn and n-type impurity dopants, Al and F. We find that ZnO is n type at Zn-rich conditions. This is because (i) the Zn interstitial, Zni, is a shallow donor, supplying electrons; (ii) its formation enthalpy is low for both Zn-rich and O-rich conditions, so this defect is abundant; and (iii) the native defects that could compensate the n-type doping effect of Zni (interstitial O, Oi, and Zn vacancy, VZn), have high formation enthalpies for Zn-rich conditions, so these ''electron killers'' are not abundant. We find that ZnO cannot be doped p type via native defects (Oi,VZn) despite the fact that they are shallow (i.e., supplying holes at room temperature). This is because at both Zn-rich and O-rich conditions, the defects that could compensate p-type doping (VO,Zni,ZnO) have low formation enthalpies so these ''hole killers'' form readily. Furthermore, we identify electron-hole radiative recombination at the VO center as the source of the green luminescence. In contrast, a large structural relaxation of the same center upon double hole capture leads to slow electron-hole recombination (either radiative or nonradiative) responsible for the slow decay of photoconductivity

  19. The down-stream effects of mannan-induced lectin complement pathway activation depend quantitatively on alternative pathway amplification

    Harboe, Morten; Garred, Peter; Karlstrøm, Ellen;

    2009-01-01

    of AP was not observed even at high mannan concentrations since addition of the inhibiting anti-MBL mAb 3F8 completely abolished generation of the terminal C5b-9 complex (TCC). However, selective blockade of AP by anti-factor D inhibited more than 80% of TCC release into the fluid phase after LP...... activation showing that AP amplification is quantitatively responsible for the final effect of initial specific LP activation. TCC generation on the solid phase was distinctly but less inhibited by anti-fD. C2 bypass of the LP pathway could be demonstrated, and AP amplification was also essential during C2...... bypass in LP as shown by complete inhibition of TCC generation in C2-deficient serum by anti-fD and anti-properdin antibodies. In conclusion, the down-stream effect of LP activation depends strongly on AP amplification in normal human serum and in the C2 bypass pathway....

  20. 教师专业自主发展:内涵、意义及内在路径%The Connotation,Significance and Intrinsic Pathway Concerning Teachers' Self-directed Professional Development

    刘黎明

    2012-01-01

    Teachers' professional development means that the teachers have self-developmental sense and ability,which include subjective consciousness,development awareness,and innovation sense.It also calls for teachers to bear the responsibilities of professional development actively and consciously.It means that the teachers can improve their educational ability and achieve their self-development featuring plurality,diversity,and creativity through their incessant study,practice,reflection,criticism,and innovation.The significance of this lies in the fact that it can promote teachers' initiative and creativity,students' autonomic learning and development,and increase teachers' sense of happiness.The intrinsic pathway to help realize teachers' professional development is to promote education professional spirit of teachers.It also helps if the teachers can improve themselves through self-reflection and research,cooperation and mutual aid.In order to realize the goal,teachers should keep reading to practise life-long learning.%教师的专业自主发展是指教师具有自我发展的意识和能力,包括主体意识、发展意识、创新意识和能力,能够主动地自觉地承担专业发展的主要责任,通过不断地学习、实践、反思、批判、创新,提升自己的教育教学能力,从而实现发展的多元性、差异性和创造性。它的意义在于:促进教师生活的主动性和创造性;促进学生自主学习和成长;提升教师的幸福感。实现教师的专业自主发展的内在路径是:提升教育专业精神;在自我反思和研究中成长;在合作、互动中成长;终身学习:教师的阅读。

  1. Angiogenic activity of sesamin through the activation of multiple signal pathways

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125FAK-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  2. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    Ovacik, Meric A. [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Sen, Banalata [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709 (United States); Euling, Susan Y. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Gaido, Kevin W. [U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Division of Human Food Safety, Rockville, MD 20855 (United States); Ierapetritou, Marianthi G. [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Androulakis, Ioannis P., E-mail: yannis@rci.rutgers.edu [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Biomedical Engineering Department, Rutgers University, NJ 08854 (United States)

    2013-09-15

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.

  3. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data

  4. Aripiprazole and Haloperidol Activate GSK3β-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats.

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-01-01

    Aripiprazole, a dopamine D₂ receptor (D₂R) partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β)-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC), nucleus accumbens (NAc), and caudate putamen (CPu), in comparison with haloperidol (a D₂R antagonist) and bifeprunox (a D₂R partial agonist). Rats were orally administrated aripiprazole (0.75 mg/kg), bifeprunox (0.8 mg/kg), haloperidol (0.1 mg/kg) or vehicle three times per day for one week. The levels of protein kinase B (Akt), p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl)-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D₂Rs. PMID:27043526

  5. Aripiprazole and Haloperidol Activate GSK3β-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats

    Bo Pan

    2016-03-01

    Full Text Available Aripiprazole, a dopamine D2 receptor (D2R partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC, nucleus accumbens (NAc, and caudate putamen (CPu, in comparison with haloperidol (a D2R antagonist and bifeprunox (a D2R partial agonist. Rats were orally administrated aripiprazole (0.75 mg/kg, bifeprunox (0.8 mg/kg, haloperidol (0.1 mg/kg or vehicle three times per day for one week. The levels of protein kinase B (Akt, p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D2Rs.

  6. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer ☆

    Emilia Kansanen; Suvi M. Kuosmanen; Hanna Leinonen; Anna-Liisa Levonen

    2013-01-01

    The Keap1-Nrf2 pathway is the major regulator of cytoprotective responses to oxidative and electrophilic stress. Although cell signaling pathways triggered by the transcription factor Nrf2 prevent cancer initiation and progression in normal and premalignant tissues, in fully malignant cells Nrf2 activity provides growth advantage by increasing cancer chemoresistance and enhancing tumor cell growth. In this graphical review, we provide an overview of the Keap1-Nrf2 pathway and its dysregulatio...

  7. Sunlight UV-induced skin cancer relies upon activation of the p38α signaling pathway

    LIU, KANGDONG; Yu, Donghoon; Cho, Yong-Yeon; Ann M Bode; Ma, Weiya; Yao, Ke; Li, Shengqing; Li, Jixia; Bowden, G. Tim; Dong, Ziming; Dong, Zigang

    2013-01-01

    The activation of cellular signal transduction pathways by solar ultraviolet (SUV) irradiation plays a vital role in skin tumorigenesis. Although many pathways have been studied using pure ultraviolet A (UVA) or ultraviolet B (UVB) irradiation, the signaling pathways induced by SUV (i.e., sunlight) are not understood well enough to permit improvements for prevention, prognosis and treatment. Here we report parallel protein kinase array studies aimed at determining the dominant signaling pathw...

  8. Enzyme activity demonstrates multiple pathways of innate immunity in Indo-Pacific anthozoans

    Palmer, C. V.; Bythell, J. C.; Willis, B. L.

    2012-01-01

    Coral reefs are threatened by increasing levels of coral disease and the functional loss of obligate algal symbionts (bleaching). Levels of immunity relate directly to susceptibility to these threats; however, our understanding of fundamental aspects of coral immunology is lacking. We show that three melanin-synthesis pathway components (mono-phenoloxidase, ortho-diphenoloxidase (tyrosinase-type pathway) and para-diphenoloxidase (laccase-type pathway)) are present in both their active (phenol...

  9. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals.

    Frostig, R D; Lieke, E E; Ts'o, D Y; Grinvald, A

    1990-01-01

    We have shown previously the existence of small, activity-dependent changes in intrinsic optical properties of cortex that are useful for optical imaging of cortical functional architecture. In this study we introduce a higher resolution optical imaging system that offers spatial and temporal resolution exceeding that achieved by most alternative imaging techniques for imaging cortical functional architecture or for monitoring local changes in cerebral blood volume or oxygen saturation. In ad...

  10. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity

  11. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  12. Second-site suppressors of HIV-1 capsid mutations: restoration of intracellular activities without correction of intrinsic capsid stability defects

    Yang Ruifeng; Shi Jiong; Byeon In-Ja L; Ahn Jinwoo; Sheehan Jonathan H; Meiler Jens; Gronenborn Angela M; Aiken Christopher

    2012-01-01

    Abstract Background Disassembly of the viral capsid following penetration into the cytoplasm, or uncoating, is a poorly understood stage of retrovirus infection. Based on previous studies of HIV-1 CA mutants exhibiting altered capsid stability, we concluded that formation of a capsid of optimal intrinsic stability is crucial for HIV-1 infection. Results To further examine the connection between HIV-1 capsid stability and infectivity, we isolated second-site suppressors of HIV-1 mutants exhibi...

  13. Chromospheric mass motions and intrinsic sunspot rotations for NOAA Active Regions 10484, 10486, and 10488 using ISOON data

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-01-01

    This work utilizes Improved Solar Observing Optical Network (ISOON: Neidig et al. 2003) continuum (630.2 nm) and H{\\alpha} (656.2 nm) data to: 1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, 2) identify and measure chromospheric filament mass motions, and 3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from October 27-29, 2003, using the techniques of Brown et al. (2003), indicate significant counter...

  14. Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner

    Yao, Rutao; Ma, Tianyu; Shao, Yiping

    2008-08-01

    This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts—the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications.

  15. Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner

    This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts-the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications

  16. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  17. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Aguado, Andrea [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Zhenyukh, Olha; Briones, Ana María [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Alonso, María Jesús [Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón (Spain); Vassallo, Dalton Valentim [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402 (Brazil); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain)

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  18. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover

    Hong, Xin; Nguyen, Thanh Hung; Chen, Qingfeng;

    2014-01-01

    Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of...

  19. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro.

    Li, Yali; Yang, Fangfang; Zheng, Weidong; Hu, Mingxing; Wang, Juanxiu; Ma, Sisi; Deng, Yuanle; Luo, Yi; Ye, Tinghong; Yin, Wenya

    2016-05-01

    Most conventional treatments on non-small cell lung carcinoma always accompany with awful side effects, and the incidence and mortality rates of this cancer are increasing rapidly worldwide. The objective of this study was to examine the anticancer effects of extract of Punica granatum (pomegranate) leaves extract (PLE) on the non-small cell lung carcinoma cell line A549, H1299 and mouse Lewis lung carcinoma cell line LL/2 in vitro, and explore its mechanisms of action. Our results have shown that PLE inhibited cell proliferation in non-small cell lung carcinoma cell line in a concentration- and time-dependent manner. Flow cytometry (FCM) assay showed that PLE affected H1299 cell survival by arresting cell cycle progression in G2/M phase in a dose-dependent manner and inducing apoptosis. Moreover, PLE could also decrease the reactive oxygen species (ROS) and the mitochondrial membrane potential (ΔYm), indicating that PLE may induce apoptosis via mitochondria-mediated apoptotic pathway. Furthermore, PLE blocked H1299 cell migration and invasion, and the reduction of matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed in vitro. These results suggested that PLE could be an effective and safe chemotherapeutic agent in non-small cell lung carcinoma treatment by inhibiting proliferation, inducing apoptosis, cell cycle arrest and impairing cell migration and invasion. PMID:27133061

  20. Relaxin activates peroxisome proliferator-activated receptor γ (PPARγ) through a pathway involving PPARγ coactivator 1α (PGC1α).

    Singh, Sudhir; Simpson, Ronda L; Bennett, Robert G

    2015-01-01

    Relaxin activation of its receptor RXFP1 triggers multiple signaling pathways. Previously, we have shown that relaxin activates PPARγ transcriptional activity in a ligand-independent manner, but the mechanism for this effect was unknown. In this study, we examined the signaling pathways of downstream of RXFP1 leading to PPARγ activation. Using cells stably expressing RXFP1, we found that relaxin regulation of PPARγ activity requires accumulation of cAMP and subsequent activation of cAMP-dependent protein kinase (PKA). The activated PKA subsequently phosphorylated cAMP response element-binding protein (CREB) at Ser-133 to activate it directly, as well as indirectly through mitogen activated protein kinase p38 MAPK. Activated CREB was required for relaxin stimulation of PPARγ activity, while there was no evidence for a role of the nitric oxide or ERK MAPK pathways. Relaxin increased the mRNA and protein levels of the coactivator protein PGC1α, and this effect was dependent on PKA, and was completely abrogated by a dominant-negative form of CREB. This mechanism was confirmed in a hepatic stellate cell line stably that endogenously expresses RXFP1. Reduction of PGC1α levels using siRNA diminished the regulation of PPARγ by relaxin. These results suggest that relaxin activates the cAMP/PKA and p38 MAPK pathways to phosphorylate CREB, resulting in increased PGC1α levels. This provides a mechanism for the ligand-independent activation of PPARγ in response to relaxin. PMID:25389293

  1. Relaxin Activates Peroxisome Proliferator-activated Receptor γ (PPARγ) through a Pathway Involving PPARγ Coactivator 1α (PGC1α)*

    Singh, Sudhir; Simpson, Ronda L.; Bennett, Robert G.

    2015-01-01

    Relaxin activation of its receptor RXFP1 triggers multiple signaling pathways. Previously, we have shown that relaxin activates PPARγ transcriptional activity in a ligand-independent manner, but the mechanism for this effect was unknown. In this study, we examined the signaling pathways of downstream of RXFP1 leading to PPARγ activation. Using cells stably expressing RXFP1, we found that relaxin regulation of PPARγ activity requires accumulation of cAMP and subsequent activation of cAMP-dependent protein kinase (PKA). The activated PKA subsequently phosphorylated cAMP response element-binding protein (CREB) at Ser-133 to activate it directly, as well as indirectly through mitogen activated protein kinase p38 MAPK. Activated CREB was required for relaxin stimulation of PPARγ activity, while there was no evidence for a role of the nitric oxide or ERK MAPK pathways. Relaxin increased the mRNA and protein levels of the coactivator protein PGC1α, and this effect was dependent on PKA, and was completely abrogated by a dominant-negative form of CREB. This mechanism was confirmed in a hepatic stellate cell line stably that endogenously expresses RXFP1. Reduction of PGC1α levels using siRNA diminished the regulation of PPARγ by relaxin. These results suggest that relaxin activates the cAMP/PKA and p38 MAPK pathways to phosphorylate CREB, resulting in increased PGC1α levels. This provides a mechanism for the ligand-independent activation of PPARγ in response to relaxin. PMID:25389293

  2. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer☆

    Kansanen, Emilia; Kuosmanen, Suvi M.; Leinonen, Hanna; Levonen, Anna-Liisa

    2013-01-01

    The Keap1-Nrf2 pathway is the major regulator of cytoprotective responses to oxidative and electrophilic stress. Although cell signaling pathways triggered by the transcription factor Nrf2 prevent cancer initiation and progression in normal and premalignant tissues, in fully malignant cells Nrf2 activity provides growth advantage by increasing cancer chemoresistance and enhancing tumor cell growth. In this graphical review, we provide an overview of the Keap1-Nrf2 pathway and its dysregulation in cancer cells. We also briefly summarize the consequences of constitutive Nrf2 activation in cancer cells and how this can be exploited in cancer gene therapy. PMID:24024136

  3. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer

    Emilia Kansanen

    2013-01-01

    Full Text Available The Keap1-Nrf2 pathway is the major regulator of cytoprotective responses to oxidative and electrophilic stress. Although cell signaling pathways triggered by the transcription factor Nrf2 prevent cancer initiation and progression in normal and premalignant tissues, in fully malignant cells Nrf2 activity provides growth advantage by increasing cancer chemoresistance and enhancing tumor cell growth. In this graphical review, we provide an overview of the Keap1-Nrf2 pathway and its dysregulation in cancer cells. We also briefly summarize the consequences of constitutive Nrf2 activation in cancer cells and how this can be exploited in cancer gene therapy.

  4. Abnormal intrinsic brain activity in amnestic mild cognitive impairment revealed by amplitude of low-frequency fluctuation: a resting-state functional magnetic resonance imaging study

    XI Qian; ZHAO Xiao-hu; WANG Pei-jun; GUO Qi-hao; HE Yong

    2013-01-01

    Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients.However,alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood.This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls.Methods In the present study,resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients,18 mild AD patients and 20 healthy elderly subjects.And amplitude of low-frequency fluctuation (ALFF) method was used.Results Compared with healthy elderly subjects,aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex,left lateral temporal cortex,and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL).Mild AD patients showed decreased ALFF in the left TPJ,posterior IPL (plPL),and dorsolateral prefrontal cortex compared with aMCI patients.Mild AD patients also had decreased ALFF in the right posterior cingulate cortex,right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects.Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients.Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients.These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.

  5. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway.

    Prasad N Paradkar

    2014-04-01

    Full Text Available Despite their importance as vectors of human and livestock diseases, relatively little is known about innate antiviral immune pathways in mosquitoes and other insects. Previous work has shown that Culex Vago (CxVago, which is induced and secreted from West Nile virus (WNV-infected mosquito cells, acts as a functional homolog of interferon, by activating Jak-STAT pathway and limiting virus replication in neighbouring cells. Here we describe the Dicer-2-dependent pathway leading to WNV-induced CxVago activation. Using a luciferase reporter assay, we show that a NF-κB-like binding site in CxVago promoter region is conserved in mosquito species and is responsible for induction of CxVago expression following WNV infection. Using dsRNA-based gene knockdown, we show that the NF-κB ortholog, Rel2, plays significant role in the signaling pathway that activates CxVago in mosquito cells in vitro and in vivo. Using similar approaches, we also show that TRAF, but not TRAF-3, is involved in activation of Rel2 after viral infection. Overall the study shows that a conserved signaling pathway, which is similar to mammalian interferon activation pathway, is responsible for the induction and antiviral activity of CxVago.

  6. Minor grove binding ligands disrupt PARP-1 activation pathways

    Kirsanov, Kirill I.; Kotova, Elena; Makhov, Petr; Golovine, Konstantin; Lesovaya, Ekaterina A.; Kolenko, Vladimir M.; Yakubovskaya, Marianna G.; Tulin, Alexei V.

    2014-01-01

    PARP-1 is a nuclear enzyme regulating transcription, chromatin restructuring, and DNA repair. PARP-1 is activated by interaction with NAD+, DNA, and core histones. Each route of PARP-1 activation leads to somewhat different outcomes. PARP-1 interactions with core histones control PARP-1 functions during transcriptional activation in euchromatin. DNA-dependent regulation of PARP-1 determines its localization in heterochromatin and PARP-1-dependent silencing. Here we address the biological sign...

  7. Second-site suppressors of HIV-1 capsid mutations: restoration of intracellular activities without correction of intrinsic capsid stability defects

    Yang Ruifeng

    2012-04-01

    Full Text Available Abstract Background Disassembly of the viral capsid following penetration into the cytoplasm, or uncoating, is a poorly understood stage of retrovirus infection. Based on previous studies of HIV-1 CA mutants exhibiting altered capsid stability, we concluded that formation of a capsid of optimal intrinsic stability is crucial for HIV-1 infection. Results To further examine the connection between HIV-1 capsid stability and infectivity, we isolated second-site suppressors of HIV-1 mutants exhibiting unstable (P38A or hyperstable (E45A capsids. We identified the respective suppressor mutations, T216I and R132T, which restored virus replication in a human T cell line and markedly enhanced the fitness of the original mutants as revealed in single-cycle infection assays. Analysis of the corresponding purified N-terminal domain CA proteins by NMR spectroscopy demonstrated that the E45A and R132T mutations induced structural changes that are localized to the regions of the mutations, while the P38A mutation resulted in changes extending to neighboring regions in space. Unexpectedly, neither suppressor mutation corrected the intrinsic viral capsid stability defect associated with the respective original mutation. Nonetheless, the R132T mutation rescued the selective infectivity impairment exhibited by the E45A mutant in aphidicolin-arrested cells, and the double mutant regained sensitivity to the small molecule inhibitor PF74. The T216I mutation rescued the impaired ability of the P38A mutant virus to abrogate restriction by TRIMCyp and TRIM5α. Conclusions The second-site suppressor mutations in CA that we have identified rescue virus infection without correcting the intrinsic capsid stability defects associated with the P38A and E45A mutations. The suppressors also restored wild type virus function in several cell-based assays. We propose that while proper HIV-1 uncoating in target cells is dependent on the intrinsic stability of the viral capsid, the

  8. Fresh tar (from biomass gasification) destruction with downstream catalysts: comparison of their intrinsic activity with a realistic kinetic model

    Corella, J.; Narvaez, I.; Orio, A. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A model for fresh tar destruction over catalysts placed downstream a biomass gasifier is presented. It includes the stoichio-metry and the calculation of the kinetic constants for the tar destruction. Catalysts studied include commercial Ni steam reforming catalysts and calcinated dolomites. Kinetic constants for tar destruction are calculated for several particle sizes, times- on-stream and temperatures of the catalyst and equivalence ratios in the gasifier. Such intrinsic kinetic constants allow a rigorous or scientific comparison of solids and conditions to be used in an advanced gasification process. (orig.) 4 refs.

  9. Antibody constant region peptides can display immunomodulatory activity through activation of the Dectin-1 signalling pathway.

    Elena Gabrielli

    Full Text Available We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc of human IgG(1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules.

  10. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose

    Highlights: • The highly intrinsic peroxidase-like catalytic activity of N-GQDs is revealed. • The activity of N-GQDs depended on pH, temperature and H2O2 concentration. • The activity of N-GQDs has been used to the detection of H2O2 and glucose. • This assay was suitable for the detection of glucose concentrations in real samples. - Abstract: In this paper, the highly intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots (N-GQDs) is revealed. This activity was greatly dependent on pH, temperature and H2O2 concentration. The experimental results showed that the stable N-GQDs could be used for the detection of H2O2 and glucose over a wide range of pH and temperature, offering a simple, highly selective and sensitive approach for their colorimetric sensing. The linearity between the analyte concentration and absorption ranged from 20 to 1170 μM for H2O2 and 25 to 375 μM for glucose with a detection limit of 5.3 μM for H2O2 and 16 μM for glucose. This assay was also successfully applied to the detection of glucose concentrations in diluted serum and fruit juice samples

  11. Inhibition of zymosan-induced alternative complement pathway activation by concanavalin A.

    Smith, M. C.; Pensky, J.; Naff, G. B.

    1982-01-01

    Zymosan, a polysaccharide composed primarily of glucan and mannan residues, activates the complement system through the alternative complement pathway. We showed that zymosan-induced complement activation is inhibited by zymosan-bound lectins with carbohydrate specificities for mannosyl and glycosyl residues. Lectins unable to bind mannosyl or glucosyl residues did not inhibit zymosan-induced complement activation.

  12. Sequential Activation and Inactivation of Dishevelled in the Wnt/β-Catenin Pathway by Casein Kinases

    Bernatik, Ondrej; Ganji, Ranjani Sri; Dijksterhuis, Jacomijn P.; Konik, Peter; Cervenka, Igor; Polonio, Tilman; Krejci, Pavel; Schulte, Gunnar; Bryja, Vitezslav

    2011-01-01

    Dishevelled (Dvl) is a key component in the Wnt/β-catenin signaling pathway. Dvl can multimerize to form dynamic protein aggregates, which are required for the activation of downstream signaling. Upon pathway activation by Wnts, Dvl becomes phosphorylated to yield phosphorylated and shifted (PS) Dvl. Both activation of Dvl in Wnt/β-catenin signaling and Wnt-induced PS-Dvl formation are dependent on casein kinase 1 (CK1) δ/ϵ activity. However, the overexpression of CK1 was shown to dissolve Dv...

  13. Bacterial recognition pathways that lead to inflammasome activation

    Storek, Kelly M.; Monack, Denise M.

    2015-01-01

    Inflammasomes are multi-protein signaling platforms that upon activation trigger the maturation of the pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18, and cell death. Inflammasome sensors detect microbial and host-derived molecules. Here, we review the mechanisms of inflammasome activation triggered by bacterial infection, primarily focusing on two model intracellular bacterial pathogens, Francisella novicida and Salmonella typhimurium. We discuss the complex relationship betwee...

  14. Thermal Decomposition of Benzyl Radical via Multiple Active Pathways

    Buckingham, Grant; Robichaud, David; Ormond, Thomas; Nimlos, Mark R.; Daily, John W.; Ellison, Barney

    2014-06-01

    The thermal decomposition of benzyl radical (C6H5CH2) has been investigated using a combination infrared absorption spectroscopy in a neon matrix and 118.2 (10.487 eV) photoionization mass spectrometry. Both techniques are coupled with a heated tubular reactor to allow temperature control over the decomposition to indicate relative barrier heights of fragmentation pathways. Three possible chemical mechanisms have been considered. 1) Ring expansion to cycloheptatrienyl radical (C7H7) with subsequent breakdown to HCCH and C5H5, 2) isomerization to the substituted five-membered ring fulvenallene (C5H4=C=CH2), which is of interest to kinetic theorists and finally 3) hydrogen shift to form methyl-substituted phenyl radical, which can then form ortho-benzyne, diacetylene and other fragments. Benzyl radical is generated from two precursors, C6H5CH2CH3 and C6H5CH2Br, and both lead to the appearance of HCCH and C5H5. At slightly hotter temperatures peaks are observed at m/z 90, presumed to be C5H4=C=CH2, and 89, potentially the substituted propargyl C5H4=C=CH. Additionally, decomposition of isotopically substituted parent molecules C6H5CD2CD3 and C6D5CH2CH3 indicates C7H7 as an intermediate due to H/D ratios in fragment molecules.

  15. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region.

    Venkatakrishnan, A J; Deupi, Xavier; Lebon, Guillaume; Heydenreich, Franziska M; Flock, Tilman; Miljus, Tamara; Balaji, Santhanam; Bouvier, Michel; Veprintsev, Dmitry B; Tate, Christopher G; Schertler, Gebhard F X; Babu, M Madan

    2016-08-25

    Class A G-protein-coupled receptors (GPCRs) are a large family of membrane proteins that mediate a wide variety of physiological functions, including vision, neurotransmission and immune responses. They are the targets of nearly one-third of all prescribed medicinal drugs such as beta blockers and antipsychotics. GPCR activation is facilitated by extracellular ligands and leads to the recruitment of intracellular G proteins. Structural rearrangements of residue contacts in the transmembrane domain serve as 'activation pathways' that connect the ligand-binding pocket to the G-protein-coupling region within the receptor. In order to investigate the similarities in activation pathways across class A GPCRs, we analysed 27 GPCRs from diverse subgroups for which structures of active, inactive or both states were available. Here we show that, despite the diversity in activation pathways between receptors, the pathways converge near the G-protein-coupling region. This convergence is mediated by a highly conserved structural rearrangement of residue contacts between transmembrane helices 3, 6 and 7 that releases G-protein-contacting residues. The convergence of activation pathways may explain how the activation steps initiated by diverse ligands enable GPCRs to bind a common repertoire of G proteins. PMID:27525504

  16. Myocardial Ablation of G Protein-Coupled Receptor Kinase 2 (GRK2 Decreases Ischemia/Reperfusion Injury through an Anti-Intrinsic Apoptotic Pathway.

    Qian Fan

    Full Text Available Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2 activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R injury. To do this we utilized two independent lines of GRK2 knockout (KO mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.

  17. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover.

    Hong, Xin; Nguyen, Hung Thanh; Chen, Qingfeng; Zhang, Rui; Hagman, Zandra; Voorhoeve, P Mathijs; Cohen, Stephen M

    2014-11-01

    Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of tumorigenesis in vivo. Here, we provide evidence that the Hippo tumor suppressor pathway is a key barrier to Ras-mediated cellular transformation. The Hippo pathway targets YAP1 for degradation via the βTrCP-SCF ubiquitin ligase complex. In contrast, the Ras pathway acts oppositely, to promote YAP1 stability through downregulation of the ubiquitin ligase complex substrate recognition factors SOCS5/6. Depletion of SOCS5/6 or upregulation of YAP1 can bypass the requirement for oncogenic Ras in anchorage independent growth in vitro and tumor formation in vivo. Through the YAP1 target, Amphiregulin, Ras activates the endogenous EGFR pathway, which is required for transformation. Thus, the oncogenic activity of Ras(V12) depends on its ability to counteract Hippo pathway activity, creating a positive feedback loop, which depends on stabilization of YAP1. PMID:25180228

  18. Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells

    Mycotoxin citrinin (CTN) is commonly found in foods and feeds that are contaminated/inoculated with Penicillium, Aspergillus and Monascus species. The exposure of human embryonic kidney (HEK293) and HeLa cells to CTN resulted in a dose-dependent increase in the phosphorylation of two major mitogen-activated protein kinases (MAPKs), ERK1/2 and JNK. In HEK293 cultures, the administering of CTN increased both the mRNA and protein levels of egr-1, c-fos and c-jun genes; additionally, the ERK1/2 pathway contributed to the upregulation of Egr-1 and c-Fos protein expression. CTN treatment also induced the transcription activity of Egr-1 and AP-1 proteins, as evidenced by luciferase reporter assays. Bioinformatic analyses indicated two genes Gadd45β and MMP3 have Egr-1 and AP-1 response elements in their promoters, respectively. Furthermore, co-exposure of HEK293 cells to CTN and MAPK pathway inhibitors demonstrated that CTN increased the levels of Gadd45β mRNA through ERK1/2 signaling pathway and up-regulated the MMP3 transcripts majorly via JNK pathway. Finally, CTN-triggered caspase 3 activity was significantly reduced in the presence of MAPK inhibitors. Our results suggest that CTN positively regulates ERK1/2 and JNK pathways as well as their downstream effectors in human cells; activated MAPK pathways are also involved in CTN-induced apoptosis.

  19. Effect of pH on the denitrifying enzyme activity in pasture soils in relation to the intrinsic differences in denitrifier communities

    Čuhel, Jiří

    2011-01-01

    The effects of pH on denitrifying enzyme activity (DEA) and on the ratio of the denitrification products, N2O and N2, were determined in three pasture soils differing in cattle impact. The linkage between intrinsic differences in the denitrifying communities and pH effects on relative N2O production was also assessed. The soils were therefore analyzed for DEA and N2O production over a range of pH values and for the kinetic constants of NO3- and N2O reductions.

  20. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and Hα (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare

  1. Activation of the alternative complement pathway in canine normal serum by Paracoccidioides brasiliensis.

    Bianchini, A A C; Petroni, T F; Fedatto, P F; Bianchini, R R; Venancio, E J; Itano, E N; Ono, M A

    2009-04-01

    The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis, a human granulomatous disease. Recently the first case of natural disease in dogs was reported. The complement system is an important effector component of humoral immunity against infectious agents. Therefore, the aim of this study was to evaluate the activation of the dog alternative complement pathway by P. brasiliensis. Initially, the ability of erythrocytes of guinea pig, rabbit, sheep, chicken and swine to activate the dog alternative pathway was evaluated. The guinea pig erythrocytes showed the greatest capacity to activate dog alternative pathway. The alternative (AH50) hemolytic activity was evaluated in 27 serum samples from healthy dogs and the mean values were 87.2 AH50/ml. No significant differences were observed in relation to sex and age. The alternative pathway activation by P. brasiliensis was higher in serum samples from adult dogs when compared to puppies and aged dogs (p ≤ 0.05). This is the first report of dog alternative complement pathway activation by P. brasiliensis and suggests that it may play a protective role in canine paracoccidioidomycosis. PMID:24031350

  2. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence.

    Thompson, Keyata N; Whipple, Rebecca A; Yoon, Jennifer R; Lipsky, Michael; Charpentier, Monica S; Boggs, Amanda E; Chakrabarti, Kristi R; Bhandary, Lekhana; Hessler, Lindsay K; Martin, Stuart S; Vitolo, Michele I

    2015-11-01

    A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN-/-KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common. PMID:26497685

  3. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection

    Ali, Youssif M; Lynch, Nicholas J; Haleem, Kashif S;

    2012-01-01

    pathways of complement in fighting streptococcal infection, little is known about the role of the lectin pathway, mainly due to the lack of appropriate experimental models of lectin pathway deficiency. We have recently established a mouse strain deficient of the lectin pathway effector enzyme mannan......The complement system plays a key role in host defense against pneumococcal infection. Three different pathways, the classical, alternative and lectin pathways, mediate complement activation. While there is limited information available on the roles of the classical and the alternative activation......-binding lectin associated serine protease-2 (MASP-2) and shown that this mouse strain is unable to form the lectin pathway specific C3 and C5 convertases. Here we report that MASP-2 deficient mice (which can still activate complement via the classical pathway and the alternative pathway) are highly susceptible...

  4. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis

    Tort, F.; Bartkova, J.; Sehested, M.;

    2006-01-01

    culture models with differential defects of retinoblastoma pathway components, as overexpression of cyclin D1 or lack of p16(Ink4a), either alone or combined, did not elicit detectable DDR. In contrast, inactivation of pRb, the key component of the pathway, activated the DDR in cultured human or mouse...... hierarchical positions along the retinoblastoma pathway. Our data provide new insights into oncogene-evoked DDR in human tumorigenesis, with potential implications for individualized management of tumors with elevated cyclin D1 versus cyclin E, due to their distinct clinical variables and biological behavior....

  5. HIF-1α Activation Attenuates IL-6 and TNF-α Pathways in Hippocampus of Rats Following Transient Global Ischemia

    Jihong Xing

    2016-07-01

    Full Text Available Background/Aims: This study was to examine the role played by hypoxia inducible factor-1 (HIF-1α in regulating pro-inflammatory cytokines (PICs pathway in the rat hippocampus after cardiac arrest (CA induced-transient global ischemia followed by cardiopulmonary resuscitation (CPR. Those PICs include interleukin-1β (IL-1β, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Methods: A rat model of CA induced by asphyxia was used in the current study. Following CPR, the hippocampus CA1 region was obtained for ELISA to determine the levels of HIF-1α and PICs; and Western Blot analysis to determine the protein levels of PIC receptors. Results: Our data show that IL-1β, IL-6 and TNF-α were significant elevated in the hippocampus after CPR as compared with control group. This was companied with increasing of HIF-1α and the time courses for HIF-1α and PICs were similar. In addition, PIC receptors, namely IL-1R, IL-6R and TNFR1 were upregulated in CA rats. Also, stimulation of HIF-1α by systemic administration of ML228, HIF-1α activator, significantly attenuated the amplified IL-6/IL-6R and TNF-α /TNFR1 pathway in the hippocampus of CA rats, but did not modify IL-1β and its receptor. Moreover, ML228 attenuated upregulated expression of Caspase-3 indicating cell apoptosis evoked by CA. Conclusion: Transient global ischemia induced by CA increases the levels of IL-1β, IL-6 and TNF-α and thereby leads to enhancement in their respective receptor in the rat hippocampus. Stabilization of HIF-1α plays a role in attenuating amplified expression IL-6R, TNFR1 and Caspase-3 in the processing of transient global ischemia. Results of our study suggest that PICs contribute to cerebral injuries evoked by transient global ischemia and in this pathophysiological process activation of HIF-1α improves tissues against ischemic injuries. Our data revealed specific signaling pathways in alleviating CA-evoked global cerebral ischemia by elucidating that

  6. DMPD: A pervasive role of ubiquitin conjugation in activation and termination ofIkappaB kinase pathways. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15809659 A pervasive role of ubiquitin conjugation in activation and termination of.... PubmedID 15809659 Title A pervasive role of ubiquitin conjugation in activation...IkappaB kinase pathways. Krappmann D, Scheidereit C. EMBO Rep. 2005 Apr;6(4):321-6. (.png) (.svg) (.html) (....csml) Show A pervasive role of ubiquitin conjugation in activation and termination ofIkappaB kinase pathways

  7. Glucose pathways adaptation supports acquisition of activated microglia phenotype

    Gimeno-Bayon, Javier; López-López, A.; Rodríguez Allué, Manuel José; Mahy Gehenne, Josette Nicole

    2014-01-01

    With its capacity to survey the environment and phagocyte debris, microglia assume a diversity of phenotypes to respond specifically through neurotrophic and toxic effects. Although these roles are well accepted, the underlying energetic mechanisms associated with microglial activation remain largely unclear. This study investigates microglia metabolic adaptation to ATP, NADPH, H(+) , and reactive oxygen species production. To this end, in vitro studies were performed with BV-2 cells before a...

  8. Activation of a suppressor T-cell pathway by interferon.

    Aune, T M; Pierce, C. W.

    1982-01-01

    In addition to antiviral activities, murine fibroblast (type I) interferon (IFN-beta) suppresses immune responses. The mechanism(s) by which IFN-beta suppresses antibody responses by murine spleen cells to sheep erythrocytes in vitro has been investigated. IFN-beta-mediated suppression is partially or completely prevented by catalase, 2-mercaptoethanol, and certain peroxidase substrates (ascorbic acid, potassium iodide, and tyrosine). These same reagents also block suppression by mediators fr...

  9. An assay for the mannan-binding lectin pathway of complement activation

    Petersen, Steen Vang; Thiel, S; Jensen, L;

    2001-01-01

    ). When bound to microorganisms, the MBL complex activates the complement components C4 and C2, thereby generating the C3 convertase and leading to opsonisation by the deposition of C4b and C3b fragments. This C4/C2 cleaving activity is shared with the C1 complex of the classical pathway of complement...

  10. Depressed activation of the lectin pathway of complement in hereditary angioedema

    Varga, L; Széplaki, G; Laki, J; Kocsis, A; Kristóf, K; Gál, P; Bajtay, Z; Wieslander, J; Daha, M R; Garred, P; Madsen, H O; Füst, G; Farkas, H

    2008-01-01

    ) in three complement activation pathways. Functional activity of the CP, LP and AP were measured in the sera of 68 adult patients with hereditary angioedema (HAE) and 64 healthy controls. In addition, the level of C1q, MBL, MBL-associated serine protease-2 (MASP-2), C4-, C3- and C1INH was measured by...

  11. Lack of telomerase activity in rabbit bone marrow stromal cells during differentiation along neural pathway

    CHEN Zhen-zhou; XU Ru-xiang; JIANG Xiao-dan; TENG Xiao-hua; LI Gui-tao; ZHOU Yü-xi

    2006-01-01

    Objective: To investigate telomerase activity in rabbit bone marrow stromal cells (BMSCs) during their committed differentiation in vitro along neural pathway and the effect of glial cell line-derived neurotrophic factor (GDNF) on the expression of telomerase.Methods: BMSCs were acquired from rabbit marrow and divided into control group, GDNF (10 ng/ml) group.No. ZL02134314. 4) supplemented with 10% fetal bovine serum (FBS) was used to induce BMSCs differentiation along neural pathway. Fluorescent immunocytochemistry was employed to identify the expressions of Nestin, neuronspecific endase (NSE), and gial fibrillary acidic protein (GFAP). The growth curves of the cells and the status of cell cycles were analyzed, respectively. During the differentiation, telomerase activitys were detected using the telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (TRAP-ELISA).Results: BMSCs were successfully induced to differentiate along neural pathway and expressed specific markers of fetal neural epithelium, mature neuron and glial cells. Telomerase activities were undetectable in BMSCs during differentiation along neural pathway. Similar changes of cell growth curves, cell cycle status and telomerase expression were observed in the two groups.Conclusions: Rabbit BMSCs do not display telomerase activity during differentiation along neural pathway. GDNF shows little impact on proliferation and telomerase activity of BMSCs.

  12. Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli.

    Zhu, Li-Wen; Li, Xiao-Hong; Zhang, Lei; Li, Hong-Mei; Liu, Jian-Hua; Yuan, Zhan-Peng; Chen, Tao; Tang, Ya-Jie

    2013-11-01

    For the first time, glyoxylate pathway in the biosynthesis of succinate was activated without the genetic manipulations of any gene related with glyoxylate pathway. Furthermore, the inactivation of succinate biosynthesis by-products genes encoding acetate kinase (ackA) and phosphotransacetylase (pta) was proven to be the key factor to activate glyoxylate pathway in the metabolically engineered Escherichia coli under anaerobic conditions. In order to enhance the succinate biosynthesis specifically, the genes (i.e., ldhA, ptsG, ackA-pta, focA-pflB, adhE) that disrupt by-products biosynthesis pathways were combinatorially deleted, while the E. coli malate dehydrogenase (MDH) was overexpression. The highest succinate production of 150.78 mM was obtained with YJ003 (ΔldhA, ptsG, ackA-pta), which were 5-folds higher than that obtained with wild type control strain DY329 (25.13 mM). For further understand the metabolic response as a result of several genetic manipulations, an anaerobic stoichiometric model that takes into account the glyoxylate pathway have successfully been implemented to estimate the intracellular fluxes in various recombinant E. coli. The fraction to the glyoxylate pathway from OAA in DY329 was 0 and 31% in YJ003, which indicated that even without the absence of the iclR mutation; the glyoxylate pathway was also activated by deleting the by-products biosynthetic genes, and to be responsible for the higher succinate yields. For further strengthen glyoxylate pathway, a two-stage fed-batch fermentation process was developed by using a 600 g l(-1) glucose feed to achieve a cell growth rate of 0.07 h(-1) in aerobic fermentation, and using a 750 g l(-1) glucose feed to maintain the residual glucose concentration around 40 g l(-1) when its residual level decreased to 10gl(-1) in anaerobic fermentation. The best mutant strain YJ003/pTrc99A-mdh produces final succinate concentration of 274 mM by fed-batch culture, which was 10-folds higher than that obtained

  13. Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

    Raquel Rodrigues-Diez

    2014-01-01

    Full Text Available Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β. Epithelial mesenchymal transition (EMT is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2 with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription. The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.

  14. AKT–THE MAMMALIAN TARGET OF RAPAMYCIN (MTOR PATHWAY INHIBITION INCREASES CERVICAL CANCER CELL CHEMOSENSITIVITY TO ACTIVE FORM OF IRINOTECAN (SN-38

    Leri Septiani

    2015-07-01

    Full Text Available Objective: To investigate the molecular pathway of the cytotoxic effect of SN-38 in human cervical cancer cell lines. Methods: Two human cervical cancer cell lines were treated with various concentrations of irinotecan for 24–72 hours and the sensitivity was analysed using the MTT assay. Apoptosis was further observed through microscopic examinations. The protein expression was determined using Western blot analysis. Results: CaSki cells demonstrated the highest sensitivity to SN-38, whereas HeLa cells showed the lowest. In cervical cancer cells, SN-38 induced apoptosis through an intrinsic- and extrinsic-pathways. In addition, we showed that SN-38 downregulated the phosphorylation of Akt-mTOR pathways in CaSki cells, but not in HeLa cells. Interestingly, in HeLa cells, which were more suggestive of a resistant phenotype, pre-treatment with LY294002 and rapamycin inhibited activation of Akt-mTOR signaling and significantly enhanced the sensitivity of HeLa cells to SN-38. Conclusions: Irinotecan exerts its anti-neoplastic effects on cervical cancer cells by inducing apoptosis through caspase-cascade. Inhibition of Akt-mTOR, LY294002 and rapamycin, which is targeted to Akt-mTOR pathways, may sensitize irinotecan-resistant cervical cancer cells.

  15. Protein S blocks the extrinsic apoptotic cascade in tissue plasminogen activator/N-methyl D-aspartate-treated neurons via Tyro3-Akt-FKHRL1 signaling pathway

    Freeman Robert S

    2011-02-01

    Full Text Available Abstract Background Thrombolytic therapy with tissue plasminogen activator (tPA benefits patients with acute ischemic stroke. However, tPA increases the risk for intracerebral bleeding and enhances post-ischemic neuronal injury if administered 3-4 hours after stroke. Therefore, combination therapies with tPA and neuroprotective agents have been considered to increase tPA's therapeutic window and reduce toxicity. The anticoagulant factor protein S (PS protects neurons from hypoxic/ischemic injury. PS also inhibits N-methyl-D-aspartate (NMDA excitotoxicity by phosphorylating Bad and Mdm2 which blocks the downstream steps in the intrinsic apoptotic cascade. To test whether PS can protect neurons from tPA toxicity we studied its effects on tPA/NMDA combined injury which in contrast to NMDA alone kills neurons by activating the extrinsic apoptotic pathway. Neither Bad nor Mdm2 which are PS's targets and control the intrinsic apoptotic pathway can influence the extrinsic cascade. Thus, based on published data one cannot predict whether PS can protect neurons from tPA/NMDA injury by blocking the extrinsic pathway. Neurons express all three TAM (Tyro3, Axl, Mer receptors that can potentially interact with PS. Therefore, we studied whether PS can activate TAM receptors during a tPA/NMDA insult. Results We show that PS protects neurons from tPA/NMDA-induced apoptosis by suppressing Fas-ligand (FasL production and FasL-dependent caspase-8 activation within the extrinsic apoptotic pathway. By transducing neurons with adenoviral vectors expressing the kinase-deficient Akt mutant AktK179A and a triple FKHRL1 Akt phosphorylation site mutant (FKHRL1-TM, we show that Akt activation and Akt-mediated phosphorylation of FKHRL1, a member of the Forkhead family of transcription factors, are critical for FasL down-regulation and caspase-8 inhibition. Using cultured neurons from Tyro3, Axl and Mer mutants, we show that Tyro3, but not Axl and Mer, mediates

  16. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B4 (LTB4) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB4 production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB4. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB4, subsequent MMP-9 production and plaque rupture.

  17. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    Lama Tarayrah

    2015-11-01

    Full Text Available Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid maintains germline stem cell (GSC mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.

  18. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma.

    Yung-Kuo Lee

    Full Text Available Multidrug resistance (MDR, an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi on the β-catenin/GSK-3β pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, β-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp, MDR-associated protein (MRP 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, β-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3β, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3β and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the β-catenin/GSK-3β pathway in human colon cancer cells.

  19. Antiurolithic activity of Origanum vulgare is mediated through multiple pathways

    Khan Aslam

    2011-10-01

    Full Text Available Abstract Background Origanum vulgare Linn has traditionally been used in the treatment of urolithiasis. Therefore, we investigated the crude extract of Origanum vulgare for possible antiurolithic effect, to rationalize its medicinal use. Methods The crude aqueous-methanolic extract of Origanum vulgare (Ov.Cr was studied using the in vitro and in vivo methods. In the in vitro experiments, supersaturated solution of calcium and oxalate, kidney epithelial cell lines (MDCK and urinary bladder of rabbits were used, whereas, in the in vivo studies, rat model of urolithiasis was used for the study of preventive and curative effect. Results In the in vitro experiments, Ov.Cr exhibited a concentration-dependent (0.25-4 mg/ml inhibitory effect on the slope of nucleation and aggregation and also decreased the number of calcium oxalate monohydrate crystals (COM produced in calcium oxalate metastable solutions. It also showed concentration-dependent antioxidant effect against DPPH free radical and lipid peroxidation induced in rat kidney tissue homogenate. Ov.Cr reduced the cell toxicity using MTT assay and LDH release in renal epithelial cells (MDCK exposed to oxalate (0.5 mM and COM (66 μg/cm2 crystals. Ov.Cr relaxed high K+ (80 mM induced contraction in rabbit urinary bladder strips, and shifted the calcium concentration-response curves (CRCs towards right with suppression of the maximum response similar to that of verapamil, a standard calcium channel blocker. In male Wistar rats receiving lithogenic treatment comprising of 0.75% ethylene glycol in drinking water given for 3 weeks along with ammonium chloride (NH4Cl for the first 5 days, Ov.Cr treatment (10-30 mg/kg prevented as well as reversed toxic changes including loss of body weight, polyurea, crystalluria, oxaluria, raised serum urea and creatinine levels and crystal deposition in kidneys compared to their respective controls. Conclusion These data indicating the antiurolithic activity in Ov

  20. Impact of MAPK pathway activation in BRAFV600 melanoma on T cell and Dendritic Cell function

    Patrick Alexander Ott

    2013-10-01

    Full Text Available Constitutive upregulation of the MAPK pathway by a BRAFV600 mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAFV600 mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting CTLA-4 and PD-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAFV600E melanoma cells modulate DC through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  1. In vivo imaging of Hedgehog pathway activation with a nuclear fluorescent reporter.

    John K Mich

    Full Text Available The Hedgehog (Hh pathway is essential for embryonic development and tissue regeneration, and its dysregulation can lead to birth defects and tumorigenesis. Understanding how this signaling mechanism contributes to these processes would benefit from an ability to visualize Hedgehog pathway activity in live organisms, in real time, and with single-cell resolution. We report here the generation of transgenic zebrafish lines that express nuclear-localized mCherry fluorescent protein in a Gli transcription factor-dependent manner. As demonstrated by chemical and genetic perturbations, these lines faithfully report Hedgehog pathway state in individual cells and with high detection sensitivity. They will be valuable tools for studying dynamic Gli-dependent processes in vertebrates and for identifying new chemical and genetic regulators of the Hh pathway.

  2. Mitogen-Activated Protein Kinase Pathway: Genetic Analysis of 95 Adrenocortical Tumors.

    Rubin, Beatrice; Monticelli, Halenya; Redaelli, Marco; Mucignat, Carla; Barollo, Susi; Bertazza, Loris; Mian, Caterina; Betterle, Corrado; Iacobone, Maurizio; Fassina, Ambrogio; Boscaro, Marco; Pezzani, Raffaele; Mantero, Franco

    2015-01-01

    Mitogen-activated protein kinase (MAPK) pathway is often deregulated in adrenocortical tumors (ACT) but with no concrete data confirming alteration rate. The objective of this study was to evaluate genetic alterations in key components of MAPK pathway. We found one BRAF mutation (p.V600E) and four HRAS silent mutations. No alteration was found in NRAS, KRAS, EGFR genes. The patient carrying BRAF mutation was further characterized by investigating his biomolecular and clinico-pathological findings. Therefore, even if MAPK signaling is activated in ACT, our results suggest that genetic alterations do not seem to represent a frequent mechanism of ACT tumorigenesis. PMID:26536286

  3. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation.

    Bunone, G; Briand, P A; Miksicek, R J; Picard, D.

    1996-01-01

    The estrogen receptor (ER) can be activated as a transcription factor either by binding of cognate estrogenic ligand or, indirectly, by a variety of other extracellular signals. As a first step towards elucidating the mechanism of 'steroid-independent activation' of the ER by the epidermal growth factor (EGF), we have mapped the ER target domain and determined the signaling pathway. We show that the N-terminal transcriptional activation function AF-1, but not the C-terminal AF-2, is necessary...

  4. Inhibition of cytokines and JAK-STAT activation by distinct signaling pathways.

    Sengupta, T K; Schmitt, E M; Ivashkiv, L B

    1996-01-01

    An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals ...

  5. B cell antigen receptor-induced activation of an IRAK4-dependent signaling pathway revealed by a MALT1-IRAK4 double knockout mouse model

    Dufner Almut

    2011-03-01

    Full Text Available Abstract Background The B cell antigen receptor (BCR and pathogen recognition receptors, such as Toll-like receptor 4 (TLR4, act in concert to control adaptive B cell responses. However, little is known about the signaling pathways that integrate BCR activation with intrinsic TLR4 stimulation. Antigen receptors initialize activation of the inducible transcription factor nuclear factor-κB (NF-κB via recruitment of the membrane-associated guanylate kinase caspase recruitment domain protein 11 (CARD11, the adapter molecule B cell CLL/lymphoma 10 (BCL10, and the "paracaspase" mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1 into lipid rafts. Upon BCR triggering, this activation strictly depends on BCL10, but not on MALT1, leading to the hypothesis that a MALT1-independent NF-κB activation pathway contributes to BCR-induced NF-κB activation downstream of BCL10. The identity of this pathway has remained elusive. Results Using genetic and biochemical approaches, we demonstrate that the IRAK4- and IRAK1-dependent TLR signaling branch is activated upon BCR triggering to induce partial NF-κB activation. BCR-induced MALT1-independent IκB degradation and B cell proliferation were inhibited in MALT1/IRAK4 double knockout B cells. Moreover, IRAK1 was recruited into lipid rafts upon BCR stimulation and activated following transient recruitment of IRAK4. Conclusion We propose that the observed crosstalk between BCR and TLR signaling components may contribute to the discrimination of signals that emanate from single and dual receptor engagement to control adaptive B cell responses.

  6. DMPD: Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways inmacrophage activation. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17502339 Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways ...May 14. (.png) (.svg) (.html) (.csml) Show Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent ...pathways inmacrophage activation. PubmedID 17502339 Title Crosstalk among Jak-STA...T, Toll-like receptor, and ITAM-dependent pathways inmacrophage activation. Authors Hu X, Chen J, Wang L, Iv... File (.svg) HTML File (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file wit

  7. A Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals.

    Esquivel-Naranjo, Edgardo Ulises; García-Esquivel, Mónica; Medina-Castellanos, Elizabeth; Correa-Pérez, Víctor Alejandro; Parra-Arriaga, Jorge Luis; Landeros-Jaime, Fidel; Cervantes-Chávez, José Antonio; Herrera-Estrella, Alfredo

    2016-06-01

    Cells possess stress-activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression. PMID:26878111

  8. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells

    Beta-irradiation used for systemic radioimmunotherapy (RIT) is a promising treatment approach for high-risk leukaemia and lymphoma. In bone marrow-selective radioimmunotherapy, beta-irradiation is applied using iodine-131, yttrium-90 or rhenium-188 labelled radioimmunoconjugates. However, the mechanisms by which beta-irradiation induces cell death are not understood at the molecular level. Here, we report that beta-irradiation induced apoptosis and activated apoptosis pathways in leukaemia cells depending on doses, time points and dose rates. After beta-irradiation, upregulation of CD95 ligand and CD95 receptor was detected and activation of caspases resulting in apoptosis was found. These effects were completely blocked by the broad-range caspase inhibitor zVAD-fmk. In addition, irradiation-mediated mitochondrial damage resulted in perturbation of mitochondrial membrane potential, caspase-9 activation and cytochrome c release. Bax, a death-promoting protein, was upregulated and Bcl-xL, a death-inhibiting protein, was downregulated. We also found higher apoptosis rates and earlier activation of apoptosis pathways after gamma-irradiation in comparison to beta-irradiation at the same dose rate. Furthermore, irradiation-resistant cells were cross-resistant to CD95 and CD95-resistant cells were cross-resistant to irradiation, indicating that CD95 and irradiation used, at least in part, identical effector pathways. These findings demonstrate that beta-irradiation induces apoptosis and activates apoptosis pathways in leukaemia cells using both mitochondrial and death receptor pathways. Understanding the timing, sequence and molecular pathways of beta-irradiation-mediated apoptosis may allow rational adjustment of chemo- and radiotherapeutic strategies. (orig.)

  9. The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei, and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

    Trump, Jonathan R; Zeimann, Gregory R; Luck, Cuyler; Bridge, Joanna S; Grier, Catherine J; Hagen, Alex; Juneau, Stephanie; Montero-Dorta, Antonio; Rosario, David J; Brandt, W Niel; Ciardullo, Robin; Schneider, Donald P

    2015-01-01

    We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that "star formation dilution" by HII regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically-motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent Lbol/L[OIII] bolometric correction, and the observed Mbh-sigma relation. These simulations indicate that, in massive (log(M*/Msun) > 10) galaxies, AGN accretion is correlated with specific star formation rate but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass (log(M*/Msun) < 10) hosts, although o...

  10. Older but still fluent? Insights from the intrinsically active baseline configuration of the aging brain using a data driven graph-theoretical approach.

    Muller, Angela M; Mérillat, Susan; Jäncke, Lutz

    2016-02-15

    A major part of our knowledge about the functioning of the aging brain comes from task-induced activation paradigms. However, the aging brain's intrinsic functional organization may be already a limiting factor for the outcome of an actual behavior. In order to get a better understanding of how this functional baseline configuration of the aging brain may affect cognitive performance, we analyzed task-free fMRI data of older 186 participants (mean age=70.4, 97 female) and their performance data in verbal fluency: First, we conducted an intrinsic connectivity contrast analysis (ICC) for the purpose of evaluating the brain regions whose degree of connectedness was significantly correlated with fluency performance. Secondly, using connectivity analyses we investigated how the clusters from the ICC functionally related to the other major resting-state networks. Apart from the importance of intact fronto-parietal long-range connections, the preserved capacity of the DMN for a finely attuned interaction with the executive-control network and the language network seems to be crucial for successful verbal fluency performance in older people. We provide further evidence that the right frontal regions might be more prominently affected by age-related decline. PMID:26721381

  11. Intrinsic Brain Activity in Altered States of Consciousness: How Conscious Is the Default Mode of Brain Function?

    Boly, M; Phillips, C.; Tshibanda, L; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P; Laureys, S.

    2008-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positro...

  12. Activation of the classical and alternative pathways of complement by Treponema pallidum subsp. pallidum and Treponema vincentii.

    Fitzgerald, T J

    1987-01-01

    Both in vivo and in vitro studies have indicated that complement plays an important role in the syphilitic immune responses. Few quantitative data are available concerning activation of the classical pathway by Treponema pallidum subsp. pallidum, and no information is available on treponemal activation of the alternative pathway. Activation of both pathways was compared by using T. pallidum subsp. pallidum and the nonpathogen T. vincentii. With rabbit and human sources of complement, both org...

  13. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  14. Investigations on Inhibitors of Hedgehog Signal Pathway: A Quantitative Structure-Activity Relationship Study

    Zhiwei Cao

    2011-05-01

    Full Text Available The hedgehog signal pathway is an essential agent in developmental patterning, wherein the local concentration of the Hedgehog morphogens directs cellular differentiation and expansion. Furthermore, the Hedgehog pathway has been implicated in tumor/stromal interaction and cancer stem cell. Nowadays searching novel inhibitors for Hedgehog Signal Pathway is drawing much more attention by biological, chemical and pharmological scientists. In our study, a solid computational model is proposed which incorporates various statistical analysis methods to perform a Quantitative Structure-Activity Relationship (QSAR study on the inhibitors of Hedgehog signaling. The whole QSAR data contain 93 cyclopamine derivatives as well as their activities against four different cell lines (NCI-H446, BxPC-3, SW1990 and NCI-H157. Our extensive testing indicated that the binary classification model is a better choice for building the QSAR model of inhibitors of Hedgehog signaling compared with other statistical methods and the corresponding in silico analysis provides three possible ways to improve the activity of inhibitors by demethylation, methylation and hydroxylation at specific positions of the compound scaffold respectively. From these, demethylation is the best choice for inhibitor structure modifications. Our investigation also revealed that NCI-H466 served as the best cell line for testing the activities of inhibitors of Hedgehog signal pathway among others.

  15. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway.

    Donyo, Maya; Hollander, Dror; Abramovitch, Ziv; Naftelberg, Shiran; Ast, Gil

    2016-04-01

    Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD. PMID:26769675

  16. Intrinsic Connectivity of the Rat Subiculum: II. Properties of Synchronous Spontaneous Activity and a Demonstration of Multiple Generator Regions

    HARRIS, ELANA; Stewart, Mark

    2001-01-01

    Brain structures that can generate epileptiform activity possess excitatory interconnections among principal cells and a subset of these neurons that can be spontaneously active (“pacemaker” cells). We describe electrophysiological evidence for excitatory interactions among rat subicular neurons. Subiculum was isolated from presubiculum, CA1, and entorhinal cortex in ventral horizontal slices. Nominally zero magnesium perfusate, picrotoxin (100 μM), or NMDA (20 μM) was used to induce spontane...

  17. Electromagnetic pulse activated brain microglia via the p38 MAPK pathway.

    Yang, Long-Long; Zhou, Yan; Tian, Wei-Dong; Li, Hai-Juan; Kang-Chu-Li; Miao, Xia; An, Guang-Zhou; Wang, Xiao-Wu; Guo, Guo-Zhen; Ding, Gui-Rong

    2016-01-01

    Previously, we found that electromagnetic pulses (EMP) induced an increase in blood brain barrier permeability and the leakage of albumin from blood into brain tissue. Albumin is known to activate microglia cells. Thus, we hypothesised that microglia activation could occur in the brain after EMP exposure. To test this hypothesis, the morphology and secretory function of microglia cells, including the expression of OX-42 (a marker of microglia activation), and levels of TNF-α, IL-10, IL-1β, and NO were determined in the rat cerebral cortex after EMP exposure. In addition, to examine the signalling pathway of EMP-induced microglia activation, protein and phosphorylated protein levels of p38, JNK and ERK were determined. It was found that the expression of OX-42increased significantly at 1, 6 and 12h (paffect its secretory function both in vivo and in vitro, and the p38 pathway is involved in this process. PMID:26688329

  18. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  19. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Paolo Cossu-Rocca

    Full Text Available Triple Negative Breast Cancer (TNBC accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  20. Comparison of Three Different Methods for Measuring Classical Pathway Complement Activity

    Jaskowski, Troy D; Martins, Thomas B; Litwin, Christine M.; Hill, Harry R.

    1999-01-01

    The complement system plays an important role in host defense against infection and in most inflammatory processes. The standard 50% hemolytic complement (CH50) assay is the most commonly used method of screening patient sera for functional activity of the classical complement pathway. Our objective in this study was to compare two newer methods (the enzyme immunoassay and the liposome immunoassay) to a commercial CH50 assay for measuring total classical complement activity. We conclude that ...

  1. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle.

    Aronson, D; Violan, M A; Dufresne, S D; Zangen, D; FIELDING, R.A.; Goodyear, L J

    1997-01-01

    Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pat...

  2. Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia.

    Santosh K Panda

    Full Text Available Sepsis is a consequence of systemic bacterial infections leading to hyper activation of immune cells by bacterial products resulting in enhanced release of mediators of inflammation. Endotoxin (LPS is a major component of the outer membrane of Gram negative bacteria and a critical factor in pathogenesis of sepsis. Development of antagonists that inhibit the storm of inflammatory molecules by blocking Toll like receptors (TLR has been the main stay of research efforts. We report here that a filarial glycoprotein binds to murine macrophages and human monocytes through TLR4 and activates them through alternate pathway and in the process inhibits LPS mediated classical activation which leads to inflammation associated with endotoxemia. The active component of the nematode glycoprotein mediating alternate activation of macrophages was found to be a carbohydrate residue, Chitohexaose. Murine macrophages and human monocytes up regulated Arginase-1 and released high levels of IL-10 when incubated with chitohexaose. Macrophages of C3H/HeJ mice (non-responsive to LPS failed to get activated by chitohexaose suggesting that a functional TLR4 is critical for alternate activation of macrophages also. Chitohexaose inhibited LPS induced production of inflammatory molecules TNF-α, IL-1β and IL-6 by macropahges in vitro and in vivo in mice. Intraperitoneal injection of chitohexaose completely protected mice against endotoxemia when challenged with a lethal dose of LPS. Furthermore, Chitohexaose was found to reverse LPS induced endotoxemia in mice even 6/24/48 hrs after its onset. Monocytes of subjects with active filarial infection displayed characteristic alternate activation markers and were refractory to LPS mediated inflammatory activation suggesting an interesting possibility of subjects with filarial infections being less prone to develop of endotoxemia. These observations that innate activation of alternate pathway of macrophages by chtx through TLR4 has

  3. The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

    Trump, Jonathan R.; Sun, Mouyuan; Zeimann, Gregory R.; Luck, Cuyler; Bridge, Joanna S.; Grier, Catherine J.; Hagen, Alex; Juneau, Stephanie; Montero-Dorta, Antonio; Rosario, David J.; Brandt, W. Niel; Ciardullo, Robin; Schneider, Donald P.

    2015-09-01

    We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that “star formation (SF) dilution” by H ii regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent {L}{bol}/L[{{O}} {{III}}] bolometric correction, and the observed {M}{BH}-σ relation. These simulations indicate that, in massive ({log}({M}*/{M}⊙ )≳ 10) galaxies, AGN accretion is correlated with specific star formation rate (SFR) but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass ({log}({M}*/{M}⊙ )≲ 10) hosts, although our modeling is limited by uncertainties in measuring and interpreting the velocity dispersions of low-mass galaxies. The presence of SF dilution means that AGNs contribute little to the observed strong optical emission lines (e.g., [{{O}} {{III}}] and {{H}}α ) in low-mass and star-forming hosts. However the AGN population recovered by our modeling indicates that feedback by typical (low- to moderate-accretion) low-redshift AGNs has nearly uniform efficiency at all stellar masses, SFRs, and morphologies. Taken together, our characterization of the observational bias and resultant AGN occupation function suggest that AGNs are unlikely to be the dominant source of SF quenching in galaxies, but instead are fueled by the same gas which drives SF activity.

  4. Activation of Sonic Hedgehog Signaling Pathway in S-type Neuroblastoma Cell Lines

    周昱男; 戴若连; 毛玲; 夏远鹏; 姚玉芳; 杨雪; 胡波

    2010-01-01

    The effects of Sonic hedgehog(Shh) signaling pathway activation on S-type neuroblastoma(NB) cell lines and its role in NB tumorigenesis were investigated.Immunohistochemistry was used to detect the expression of Shh pathway components- Patched1(PTCH1) and Gli1 in 40 human primary NB samples.Western blotting and RT-PCR were used to examine the protein expression and mRNA levels of PTCH1 and Gli1 in three kinds of S-type NB cell lines(SK-N-AS,SK-N-SH and SHEP1),respectively.Exogenous Shh was administrated to ...

  5. Science education: intrinsic and extrinsic factors that limit the use of experimental activities by elementary school teachers

    Luciana Bandeira da Costa Ramos

    2008-12-01

    Full Text Available In this paper we discuss the reasons by which teachers of the Brazilian primary school do not make use of experiments in their regular classroom activities. In order to investigate this problem, we have conducted a qualitative research making use of a questionnaire, interviews and an analysis of the textbooks used by the teachers. Our results show that the absence of pedagogical orientation by the staff of the school and insufficient science content in the preparatory teacher courses are the main reasons appointed by the teachers to justify the absence of experimental activities as a component of the regular classroom work.

  6. Gonadotropins Activate Oncogenic Pathways to Enhance Proliferation in Normal Mouse Ovarian Surface Epithelium

    Joanna E. Burdette

    2013-02-01

    Full Text Available Ovarian cancer is the most lethal gynecological malignancy affecting American women. The gonadotropins, follicle stimulating hormone (FSH and luteinizing hormone (LH, have been implicated as growth factors in ovarian cancer. In the present study, pathways activated by FSH and LH in normal ovarian surface epithelium (OSE grown in their microenvironment were investigated. Gonadotropins increased proliferation in both three-dimensional (3D ovarian organ culture and in a two-dimensional (2D normal mouse cell line. A mouse cancer pathway qPCR array using mRNA collected from 3D organ cultures identified Akt as a transcriptionally upregulated target following stimulation with FSH, LH and the combination of FSH and LH. Activation of additional pathways, such as Birc5, Cdk2, Cdk4, and Cdkn2a identified in the 3D organ cultures, were validated by western blot using the 2D cell line. Akt and epidermal growth factor receptor (EGFR inhibitors blocked gonadotropin-induced cell proliferation in 3D organ and 2D cell culture. OSE isolated from 3D organ cultures stimulated with LH or hydrogen peroxide initiated growth in soft agar. Hydrogen peroxide stimulated colonies were further enhanced when supplemented with FSH. LH colony formation and FSH promotion were blocked by Akt and EGFR inhibitors. These data suggest that the gonadotropins stimulate some of the same proliferative pathways in normal OSE that are activated in ovarian cancers.

  7. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.

    Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min

    2016-09-01

    The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance. PMID:27398742

  8. The Effects of Acupuncture at Real or Sham Acupoints on the Intrinsic Brain Activity in Mild Cognitive Impairment Patients

    Baohui Jia

    2015-01-01

    Full Text Available Accumulating neuroimaging studies in humans have shown that acupuncture can modulate a widely distributed brain network in mild cognitive impairment (MCI and Alzheimer’s disease (AD patients. Acupuncture at different acupoints could exert different modulatory effects on the brain network. However, whether acupuncture at real or sham acupoints can produce different effects on the brain network in MCI or AD patients remains unclear. Using resting-state fMRI, we reported that acupuncture at Taixi (KI3 induced amplitude of low-frequency fluctuation (ALFF change of different brain regions in MCI patients from those shown in the healthy controls. In MCI patients, acupuncture at KI3 increased or decreased ALFF in the different regions from those activated by acupuncture in the healthy controls. Acupuncture at the sham acupoint in MCI patients activated the different brain regions from those in healthy controls. Therefore, we concluded that acupuncture displays more significant effect on neuronal activities of the above brain regions in MCI patients than that in healthy controls. Acupuncture at KI3 exhibits different effects on the neuronal activities of the brain regions from acupuncture at sham acupoint, although the difference is only shown at several regions due to the close distance between the above points.

  9. IL-12 and IL-4 activate a CD39-dependent intrinsic peripheral tolerance mechanism in CD8(+) T cells.

    Noble, Alistair; Mehta, Hema; Lovell, Andrew; Papaioannou, Eleftheria; Fairbanks, Lynette

    2016-06-01

    Immune responses to protein antigens involve CD4(+) and CD8(+) T cells, which follow distinct programs of differentiation. Naïve CD8 T cells rapidly develop cytotoxic T-cell (CTL) activity after T-cell receptor stimulation, and we have previously shown that this is accompanied by suppressive activity in the presence of specific cytokines, i.e. IL-12 and IL-4. Cytokine-induced CD8(+) regulatory T (Treg) cells are one of several Treg-cell phenotypes and are Foxp3(-) IL-10(+) with contact-dependent suppressive capacity. Here, we show they also express high level CD39, an ecto-nucleotidase that degrades extracellular ATP, and this contributes to their suppressive activity. CD39 expression was found to be upregulated on CD8(+) T cells during peripheral tolerance induction in vivo, accompanied by release of IL-12 and IL-10. CD39 was also upregulated during respiratory tolerance induction to inhaled allergen and on tumor-infiltrating CD8(+) T cells. Production of IL-10 and expression of CD39 by CD8(+) T cells was independently regulated, being respectively blocked by extracellular ATP and enhanced by an A2A adenosine receptor agonist. Our results suggest that any CTL can develop suppressive activity when exposed to specific cytokines in the absence of alarmins. Thus negative feedback controls CTL expansion under regulation from both nucleotide and cytokine environment within tissues. PMID:26990545

  10. Activation of the canonical Wnt/β-catenin pathway enhances monocyte adhesion to endothelial cells

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/β-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3β or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/β-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/β-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules