WorldWideScience

Sample records for activating delayed rectifier

  1. Contribution of delayed rectifier potassium currents to the electrical activity of murine colonic smooth muscle

    Science.gov (United States)

    Koh, S D; Ward, S M; Dick, G M; Epperson, A; Bonner, H P; Sanders, K M; Horowitz, B; Kenyon, J L

    1999-01-01

    We used intracellular microelectrodes to record the membrane potential (Vm) of intact murine colonic smooth muscle. Electrical activity consisted of spike complexes separated by quiescent periods (Vm≈−60 mV). The spike complexes consisted of about a dozen action potentials of approximately 30 mV amplitude. Tetraethylammonium (TEA, 1–10 mM) had little effect on the quiescent periods but increased the amplitude of the action potential spikes. 4-Aminopyridine (4-AP, ⋧ 5 mM) caused continuous spiking.Voltage clamp of isolated myocytes identified delayed rectifier K+ currents that activated rapidly (time to half-maximum current, 11.5 ms at 0 mV) and inactivated in two phases (τf = 96 ms, τs = 1.5 s at 0 mV). The half-activation voltage of the permeability was −27 mV, with significant activation at −50 mV.TEA (10 mM) reduced the outward current at potentials positive to 0 mV. 4-AP (5 mM) reduced the early current but increased outward current at later times (100–500 ms) consistent with block of resting channels relieved by depolarization. 4-AP inhibited outward current at potentials negative to −20 mV, potentials where TEA had no effect.Qualitative PCR amplification of mRNA identified transcripts encoding delayed rectifier K+ channel subunits Kv1.6, Kv4.1, Kv4.2, Kv4.3 and the Kvβ1.1 subunit in murine colon myocytes. mRNA encoding Kv 1.4 was not detected.We find that TEA-sensitive delayed rectifier currents are important determinants of action potential amplitude but not rhythmicity. Delayed rectifier currents sensitive to 4-AP are important determinants of rhythmicity but not action potential amplitude. PMID:10050014

  2. Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes

    DEFF Research Database (Denmark)

    Stengl, Milan; Volders, Paul G A; Thomsen, Morten Bækgaard

    2003-01-01

    In guinea-pig ventricular myocytes, in which the deactivation of slowly activating delayed rectifier potassium current (IKs) is slow, IKs can be increased by rapid pacing as a result of incomplete deactivation and subsequent current accumulation. Whether accumulation of IKs occurs in dogs, in which...

  3. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    Science.gov (United States)

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Pharmacological modulations of cardiac ultra-rapid and slowly activating delayed rectifier currents: potential antiarrhythmic approaches.

    Science.gov (United States)

    Islam, Mohammed A

    2010-01-01

    Despite the emerging new insights into our understandings of the cellular mechanisms underlying cardiac arrhythmia, medical therapy for this disease remains unsatisfactory. Atrial fibrillation (AF), the most prevalent arrhythmia, is responsible for significant morbidity and mortality. On the other hand, ventricular fibrillation results in sudden cardiac deaths in many instances. Prolongation of cardiac action potential (AP) is a proven principle of antiarrhythmic therapy. Class III antiarrhythmic agents prolong AP and QT interval by blocking rapidly activating delayed rectifier current (I(Kr)). However, I(Kr) blocking drugs carry the risk of life-threatening proarrhythmia. Recently, modulation of atrial-selective ultra-rapid delayed rectifier current (I(Kur)), has emerged as a novel therapeutic approach to treat AF. A number of I(Kur) blockers are being evaluated for the treatment of AF. The inhibition of slowly activating delayed rectifier current (I(Ks)) has also been proposed as an effective and safer antiarrhythmic approach because of its distinguishing characteristics that differ in remarkable ways from other selective class III agents. Selective I(Ks) block may prolong AP duration (APD) at rapid rates without leading to proarrhythmia. This article reviews the pathophysiological roles of I(Kur) and I(Ks) in cardiac repolarization and the implications of newly developed I(Kur) and I(Ks) blocking agents as promising antiarrhythmic approaches. Several recent patents pertinent to antiarrhythmic drug development have been discussed. Further research will be required to evaluate the efficacy and safety of these agents in the clinical setting.

  5. Cardiac Delayed Rectifier Potassium Channels in Health and Disease

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J.; Kass, Robert S.

    2016-01-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  6. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Enhancement of delayed-rectifier potassium conductance by low concentrations of local anaesthetics in spinal sensory neurones

    Science.gov (United States)

    Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V

    2002-01-01

    Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132

  8. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  9. Antiarrhythmic properties of a rapid delayed-rectifier current activator in rabbit models of acquired long QT syndrome

    DEFF Research Database (Denmark)

    Diness, Thomas G; Yeh, Yung-Hsin; Qi, Xiao Yan

    2008-01-01

    effect of a novel compound (NS1643) that activates the rapid delayed-rectifier K+ current, I(Kr), in two rabbit models of acquired LQTS. METHODS AND RESULTS: We used two clinically relevant in vivo rabbit models of TdP in which we infused NS1643 or vehicle: (i) three-week atrioventricular block...

  10. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes.

    Science.gov (United States)

    Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G

    2013-09-01

    Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.

  11. Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock.

    Science.gov (United States)

    Farajnia, Sahar; Meijer, Johanna H; Michel, Stephan

    2016-10-01

    One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN), is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light-dark 16:8) and short-day (light-dark 8:16) photoperiods and membrane properties as well as K + currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K + current, that is, the circadian modulation of this ion channel's activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K + currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment. © The Author(s) 2016.

  12. Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock

    Directory of Open Access Journals (Sweden)

    Sahar Farajnia

    2016-09-01

    Full Text Available One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN, is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light–dark 16:8 and short-day (light–dark 8:16 photoperiods and membrane properties as well as K+ currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K+ current, that is, the circadian modulation of this ion channel’s activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K+ currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment.

  13. Inhibitory Effect of Vascular Endothelial Growth Factor on the Slowly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes.

    Science.gov (United States)

    Lin, Zhenhao; Xing, Wenlu; Gao, Chuanyu; Wang, Xianpei; Qi, Datun; Dai, Guoyou; Zhao, Wen; Yan, Ganxin

    2018-01-26

    Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (I K ) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. I K and AP were recorded by the whole-cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3-kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (I K s ) in a concentration-dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P =0.001; 12.73±0.34 versus 9.05±1.20, n=5, P =0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P =0.021). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, eliminated these VEGF-induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (I K r ), resting membrane potential, AP amplitude, or maximal velocity of depolarization. VEGF inhibited I K s in a concentration-dependent manner through a phosphatidylinositol 3-kinase-mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Subcellular localization of the delayed rectifier K(+) channels KCNQ1 and ERG1 in the rat heart

    DEFF Research Database (Denmark)

    Rasmussen, Hanne Borger; Møller, Morten; Knaus, Hans-Günther

    2003-01-01

    In the heart, several K(+) channels are responsible for the repolarization of the cardiac action potential, including transient outward and delayed rectifier K(+) currents. In the present study, the cellular and subcellular localization of the two delayed rectifier K(+) channels, KCNQ1 and ether...

  15. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility.

    Science.gov (United States)

    Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A

    2017-04-01

    Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of

  16. β1-Adrenoceptor autoantibodies affect action potential duration and delayed rectifier potassium currents in guinea pigs.

    Science.gov (United States)

    Zhao, Yuhui; Huang, Haixia; Du, Yunhui; Li, Xiao; Lv, Tingting; Zhang, Suli; Wei, Hua; Shang, Jianyu; Liu, Ping; Liu, Huirong

    2015-01-01

    β1-Adrenoceptor autoantibodies (β1-AAs) affect the action potential duration (APD) in cardiomyocytes and are related to ventricular arrhythmias. The delayed rectifier potassium current (I K) plays a crucial role in APD, but the effects of β1-AAs on I K have not been completely illuminated. This work aimed to observe the effects of β1-AAs on I K and APD and further explore the mechanisms of β1-AA-mediated ventricular arrhythmias. β1-AAs were obtained from sera of patients with coronary heart disease (CHD) and nonsustained ventricular tachycardia. With whole-cell patch clamp technique, action potentials and I K were recorded. The results illustrated 0.1 μmol/L β1-AAs shortened APD at 50 % (APD50) and 90 % (APD90) of the repolarization. However, at 0.01 μmol/L, β1-AAs had no effects on either APD90 or APD50 (P > 0.05). At 0.001 μmol/L, β1-AAs significantly prolonged APD90 and APD50. Moreover, β1-AAs (0.001, 0.01, 0.1 μmol/L) dose-dependently increased the rapidly activating delayed rectifier potassium current (I Kr), but similarly decreased the slowly activating delayed rectifier potassium current (I Ks) and increased L-type calcium currents at the different concentrations. Taken together, the IKr increase induced by high β1-AA concentrations is responsible for a significant APD reduction which would contribute to repolarization changes and trigger the malignant ventricular arrhythmias in CHD patients.

  17. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    Science.gov (United States)

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  18. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    Science.gov (United States)

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  19. Chapter 13 - Active Rectifiers and Their Control

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Abdelhakim, Ahmed

    2018-01-01

    This chapter investigates the control design of active rectifiers and their applications in power electronics-based power system. The harmonic emission and measures are firstly addressed as a basis of evaluating the active rectifier's effectiveness. Furthermore, the importance of new coming...... standards is highlighted. Application-oriented design of active rectifiers as a main reason behind evolvement of different topologies is discussed. Then, the main principle in designing different control schemes in single-phase and three-phase rectifiers is investigated, analyzed, and experimentally...... verified. The influence of nonideal operating conditions with possible solutions is addressed. Finally, future prospective of active rectifiers as a one of the key enabler of carbon-free power system is summarized....

  20. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    Science.gov (United States)

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  1. Quantitative analysis of the Ca2+ -dependent regulation of delayed rectifier K+ current IKs in rabbit ventricular myocytes.

    Science.gov (United States)

    Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M

    2017-04-01

    [Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or

  2. An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications

    Science.gov (United States)

    Lee, Hyung-Min; Ghovanloo, Maysam

    2011-01-01

    We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in offset-control functions in the comparators compensate for both turn-on and turn-off delays in the main rectifying switches, thus maximizing the forward current delivered to the load and minimizing the back current to improve the PCE. We have fabricated this active rectifier in a 0.5-μm 3M2P standard CMOS process, occupying 0.18 mm2 of chip area. With 3.8 V peak ac input at 13.56 MHz, the rectifier provides 3.12 V dc output to a 500 Ω load, resulting in the PCE of 80.2%, which is the highest measured at this frequency. In addition, overvoltage protection (OVP) as safety measure and built-in back telemetry capabilities have been incorporated in our design using detuning and load shift keying (LSK) techniques, respectively, and tested. PMID:22174666

  3. Evidences of the ultrarapid delayed rectifier potassium current (IKur on pacemaker activity in sinoatrial and atrioventricular nodes of Rat

    Directory of Open Access Journals (Sweden)

    Mohammad reza Nikmaram

    2008-09-01

    Full Text Available Background: Sinoatrial node (SAN is the primary pacemaker of the heart. If the SAN activity fails in any way, then the atrioventricular node (AVN immediately starts to regulate the activities of the heart. The aim of this study was to assess the existence or non existence of ultrarapid delayed rectifier potassium current (Ikur and its role on pacemaker activity of two intact SAN and AVN of rat. Methods: The pacemaker activities of distinct intact SAN and AVN by two separate metal microelectrodes that contact the endothelial surface of nodes were recorded and cycle length (CL of action potential was measured. The recording was done before and during 50µM 4-Aminopyridine (4-AP as an Ikur blocker. Results: Compared to control condition, CL of action potentials of SAN and VAN preparations had increased by 17.60 +/-2.9% and 35.90 +/-2.9%, respectively (P<0.05. Conclusion: It is possible to conclude that the Ikur was present in AVN and SAN and the effect of 4-AP on CL of action potential nodes was significantly different.

  4. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    Science.gov (United States)

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  5. Quantitative analysis of the Ca2+‐dependent regulation of delayed rectifier K+ current I Ks in rabbit ventricular myocytes

    Science.gov (United States)

    Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora

    2017-01-01

    Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft

  6. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

    Science.gov (United States)

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan

    2011-10-07

    Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.

  7. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability

    Science.gov (United States)

    Speca, David J.; Ogata, Genki; Mandikian, Danielle; Bishop, Hannah I.; Wiler, Steve W.; Eum, Kenneth; Wenzel, H. Jürgen; Doisy, Emily T.; Matt, Lucas; Campi, Katharine L.; Golub, Mari S.; Nerbonne, Jeanne M.; Hell, Johannes W.; Trainor, Brian C.; Sack, Jon T.; Schwartzkroin, Philip A.; Trimmer, James S.

    2014-01-01

    The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1−/−) mice lacking this channel. Kv2.1−/− mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1−/− mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1−/− mice appears unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1−/− animals. Field recordings from hippocampal slices of Kv2.1−/− mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1−/− mice, long-term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1−/− mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1−/− mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1−/− mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function. PMID:24494598

  8. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    Science.gov (United States)

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  9. Block of the delayed rectifier current (IK) by the 5-HT3 antagonists ondansetron and granisetron in feline ventricular myocytes.

    Science.gov (United States)

    de Lorenzi, F G; Bridal, T R; Spinelli, W

    1994-01-01

    1. We investigated the effects of two 5-HT3 antagonists, ondansetron and granisetron, on the action potential duration (APD) and the delayed rectifier current (IK) of feline isolated ventricular myocytes. Whole-cell current and action potential recordings were performed at 37 degrees C with the patch clamp technique. 2. Ondansetron and granisetron blocked IK with a KD of 1.7 +/- 1.0 and 4.3 +/- 1.7 microM, respectively. At a higher concentration (30 microM), both drugs blocked the inward rectifier (IKl). 3. The block of IK was dependent on channel activation. Both drugs slowed the decay of IK tail currents and produced a crossover with the pre-drug current trace. These results are consistent with block and unblock from the open state of the channel. 4. Granisetron showed an intrinsic voltage-dependence as the block increased with depolarization. The equivalent voltage-dependency of block (delta) was 0.10 +/- 0.04, suggesting that granisetron blocks from the intracellular side at a binding site located 10% across the transmembrane electrical field. 5. Ondansetron (1 microM) and granisetron (3 microM) prolonged APD by about 30% at 0.5 Hz. The prolongation of APD by ondansetron was abolished at faster frequencies (3 Hz) showing reverse rate dependence. 6. In conclusion, the 5-HT3 antagonists, ondansetron and granisetron, are open state blockers of the ventricular delayed rectifier and show a clear class III action. PMID:7834204

  10. Effect of lycium barbarum polysaccharides on high glucose-induced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Ma

    2017-05-01

    Full Text Available Objective: To study the effect of lycium barbarum polysaccharides (LBP on high glucoseinduced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current. Methods: RGC-5 retinal ganglion cell lines were cultured and divided into control group, high glucose group and LBP group that were treated with normal DMEM, highglucose DMEM as well as high-glucose DMEM containing 500 ng/mL LBP respectively. After treatment, the Annexin V-FITC/PI kits were used to measure the number of apoptotic cells, fluorescence quantitative PCR kits were used to determine the expression of apoptosis genes and antioxidant genes, and patch clamp was used to test delayed rectifier potassium current. Results: 12, 24, 36 and 48 h after intervention, the number of apoptotic cells of high glucose group was significantly higher than that of control group, and the number of apoptotic cells of LBP group was significantly lower than that of high glucose group (P<0.05; 24 and 48 h after intervention, c-fos, c-jun, caspase-3, caspase-9, Nrf-2, NQO1 and HO-1 mRNA expression as well as potassium current amplitude (IK and maximum conductance (Gmax of high glucose group were significantly higher than those of control group while half maximum activation voltage (V1/2 was significantly lower than that of control group (P<0.05; c-fos, c-jun, caspase-3 and caspase-9 mRNA expression as well as IK and Gmax of LBP group were significantly lower than those of high glucose group, while Nrf-2, NQO1 and HO-1 mRNA expression as well as V1/2 of LBP group were significantly higher than those of high glucose group (P<0.05. Conclusions: LBP can reduce the high glucose-induced retinal ganglion cell apoptosis and inhibit the delayed rectifier potassium current amplitude.

  11. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.

    Science.gov (United States)

    Yan Lu; Wing-Hung Ki

    2014-06-01

    A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω.

  12. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    Science.gov (United States)

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  13. Rhynchophylline from Uncaria rhynchophylla functionally turns delayed rectifiers into A-Type K+ channels.

    Science.gov (United States)

    Chou, Chun-Hsiao; Gong, Chi-Li; Chao, Chia-Chia; Lin, Chia-Huei; Kwan, Chiu-Yin; Hsieh, Ching-Liang; Leung, Yuk-Man

    2009-05-22

    Rhynchophylline (1), a neuroprotective agent isolated from the traditional Chinese medicinal herb Uncaria rhynchophylla, was shown to affect voltage-gated K(+) (Kv) channel slow inactivation in mouse neuroblastoma N2A cells. Extracellular 1 (30 microM) accelerated the slow decay of Kv currents and shifted the steady-state inactivation curve to the left. Intracellular dialysis of 1 did not accelerate the slow current decay, suggesting that this compound acts extracellularly. In addition, the percent blockage of Kv currents by this substance was independent of the degree of depolarization and the intracellular K(+) concentration. Therefore, 1 did not appear to directly block the outer channel pore, with the results obtained suggesting that it drastically accelerated Kv channel slow inactivation. Interestingly, 1 also shifted the activation curve to the left. This alkaloid also strongly accelerated slow inactivation and caused a left shift of the activation curve of Kv1.2 channels heterologously expressed in HEK293 cells. Thus, this compound functionally turned delayed rectifiers into A-type K(+) channels.

  14. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  15. Temperature-gated thermal rectifier for active heat flow control.

    Science.gov (United States)

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  16. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Nomura, Toshihiro; Musial, Timothy F; Marshall, John J; Zhu, Yiwen; Remmers, Christine L; Xu, Jian; Nicholson, Daniel A; Contractor, Anis

    2017-11-22

    Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS. SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin

  17. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Genetic Algorithm-Based Design of the Active Damping for an LCL-Filter Three-Phase Active Rectifier

    DEFF Research Database (Denmark)

    Liserre, Marco; Aquila, Antonio Dell; Blaabjerg, Frede

    2004-01-01

    Active rectifiers/inverters are becoming used more and more often in regenerative systems and distributed power systems. Typically, the interface between the grid and rectifier is either an inductor or an LCL-filter. The use of an LCL-filter mitigates the switching ripple injected in the grid...... by a three-phase active rectifier. However, stability problems can arise in the current control loop. In order to overcome them, a damping resistor can be inserted, at the price of a reduction of efficiency. The use of active damping by means of control may seem attractive, but it is often limited by the use...

  19. Design and control of an LCL-filter-based three-phase active rectifier

    DEFF Research Database (Denmark)

    Liserre, Marco; Blaabjerg, Frede; Hansen, Steffan

    2005-01-01

    This paper proposes a step-by-step procedure for designing the LCL filter of a front-end three-phase active rectifier. The primary goal is to reduce the switching frequency ripple at a reasonable cost, while at the same time achieving a high-performance front-end rectifier (as characterized...... by a rapid dynamic response and good stability margin). An example LCL filter design is reported and a filter has been built and tested using the values obtained from this design. The experimental results demonstrate the performance of the design procedure both for the LCL filter and for the rectifier...... a powerful tool to design an LCL-filter-based active rectifier while avoiding trial-and-error procedures that can result in having to build several filter prototypes....

  20. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting.

    Science.gov (United States)

    Lu, Shaohua; Boussaid, Farid

    2015-11-19

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier.

  1. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Shaohua Lu

    2015-11-01

    Full Text Available This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier.

  2. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    Science.gov (United States)

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Arylbenzazepines Are Potent Modulators for the Delayed Rectifier K+ Channel: A Potential Mechanism for Their Neuroprotective Effects

    Science.gov (United States)

    Chen, Xue-Qin; Zhang, Jing; Neumeyer, John L.; Jin, Guo-Zhang; Hu, Guo-Yuan; Zhang, Ao; Zhen, Xuechu

    2009-01-01

    (±) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D1-like dopamine receptor agonistic activity. The precise mechanism for the (±) SKF83959-mediated neuroprotection remains elusive. We report here that (±) SKF83959 is a potent blocker for delayed rectifier K+ channel. (±) SKF83959 inhibited the delayed rectifier K+ current (I K) dose-dependently in rat hippocampal neurons. The IC 50 value for inhibition of I K was 41.9±2.3 µM (Hill coefficient = 1.81±0.13, n = 6), whereas that for inhibition of I A was 307.9±38.5 µM (Hill coefficient = 1.37±0.08, n = 6). Thus, (±) SKF83959 is 7.3-fold more potent in suppressing I K than I A. Moreover, the inhibition of I K by (±) SKF83959 was voltage-dependent and not related to dopamine receptors. The rapidly onset of inhibition and recovery suggests that the inhibition resulted from a direct interaction of (±) SKF83959 with the K+ channel. The intracellular application of (±) SKF83959 had no effects of on I K, indicating that the compound most likely acts at the outer mouth of the pore of K+ channel. We also tested the enantiomers of (±) SKF83959, R-(+) SKF83959 (MCL-201), and S-(−) SKF83959 (MCL-202), as well as SKF38393; all these compounds inhibited I K. However, (±) SKF83959, at either 0.1 or 1 mM, exhibited the strongest inhibition on the currents among all tested drug. The present findings not only revealed a new potent blocker of I K , but also provided a novel mechanism for the neuroprotective action of arylbenzazepines such as (±) SKF83959. PMID:19503734

  4. Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors.

    Science.gov (United States)

    Liu, Xueli; Wang, Yuhong; Zhang, Hua; Shen, Li; Xu, Yanfang

    2017-12-01

    Elevated angiotensin II (Ang II) and sympathetic activity contributes to a high risk of ventricular arrhythmias in heart disease. The rapidly activating delayed rectifier K + current (I Kr ) carried by the hERG channels plays a critical role in cardiac repolarization, and decreased I Kr is involved in increased cardiac arrhythmogenicity. Stimulation of α 1A -adrenoreceptors or angiotensin II AT 1 receptors is known to inhibit I Kr via PKC. Here, we have identified the PKC isoenzymes mediating the inhibition of I Kr by activation of these two different GPCRs. The whole-cell patch-clamp technique was used to record I Kr in guinea pig cardiomyocytes and HEK293 cells co-transfected with hERG and α 1A -adrenoreceptor or AT 1 receptor genes. A broad spectrum PKC inhibitor Gö6983 (not inhibiting PKCε), a selective cPKC inhibitor Gö6976 and a PKCα-specific inhibitor peptide, blocked the inhibition of I Kr by the α 1A -adrenoreceptor agonist A61603. However, these inhibitors did not affect the reduction of I Kr by activation of AT 1 receptors, whereas the PKCε-selective inhibitor peptide did block the effect. The effects of angiotensin II and the PKCε activator peptide were inhibited in mutant hERG channels in which 17 of the 18 PKC phosphorylation sites were deleted, whereas a deletion of the N-terminus of the hERG channels selectively prevented the inhibition elicited by A61603 and the cPKC activator peptide. Our results indicated that inhibition of I Kr by activation of α 1A -adrenoreceptors or AT 1 receptors were mediated by PKCα and PKCε isoforms respectively, through different molecular mechanisms. © 2017 The British Pharmacological Society.

  5. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    Science.gov (United States)

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  6. Thermal adaptation of the crucian carp (Carassius carassius) cardiac delayed rectifier current, IKs, by homomeric assembly of Kv7.1 subunits without MinK.

    Science.gov (United States)

    Hassinen, Minna; Laulaja, Salla; Paajanen, Vesa; Haverinen, Jaakko; Vornanen, Matti

    2011-07-01

    Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.

  7. Effects of itopride hydrochloride on the delayed rectifier K+ and L-type CA2+ currents in guinea-pig ventricular myocytes.

    Science.gov (United States)

    Morisawa, T; Hasegawa, J; Hama, R; Kitano, M; Kishimoto, Y; Kawasaki, H

    1999-01-01

    The effects of itopride hydrochloride, a new drug used to regulate motility in the gastrointestinal tract, on the delayed rectifier K+ current (I(K)) and the L-type Ca2+ current (I(Ca)) were evaluated in guinea-pig ventricular myocytes at concentrations of 1, 10 and 100 microM to determine whether the drug has a proarrhythmic effect through blockade of I(K). Itopride did not affect I(K) at concentrations of 100 microM or less, and no significant effects of 1, 10 or 100 microM itopride were observed on the inward rectifier K+ current (I(K1)) responsible for the resting potential and final repolarization phase of the action potential. We next investigated the effects of itopride on L-type Ca2+ current (I(Ca)). Significant inhibition of I(Ca) was observed at itopride concentrations greater than 10 microM. These results suggested that itopride hydrochloride has an inhibitory effect on I(Ca) at concentrations much higher than those in clinical use.

  8. Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats.

    Science.gov (United States)

    Masuda, Kimiko; Takanari, Hiroki; Morishima, Masaki; Ma, FangFang; Wang, Yan; Takahashi, Naohiko; Ono, Katsushige

    2018-01-13

    Men have shorter rate-corrected QT intervals (QTc) than women, especially at the period of adolescence or later. The aim of this study was to elucidate the long-term effects of testosterone on cardiac excitability parameters including electrocardiogram (ECG) and potassium channel current. Testosterone shortened QT intervals in ECG in castrated male rats, not immediately after, but on day 2 or later. Expression of Kv7.1 (KCNQ1) mRNA was significantly upregulated by testosterone in cardiomyocytes of male and female rats. Short-term application of testosterone was without effect on delayed rectifier potassium channel current (I Ks ), whereas I Ks was significantly increased in cardiomyocytes treated with dihydrotestosterone for 24 h, which was mimicked by isoproterenol (24 h). Gene-selective inhibitors of a transcription factor SP1, mithramycin, abolished the effects of testosterone on Kv7.1. Testosterone increases Kv7.1-I Ks possibly through a pathway related to a transcription factor SP1, suggesting a genomic effect of testosterone as an active factor for cardiac excitability.

  9. Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts.

    Science.gov (United States)

    Aflaki, Mona; Qi, Xiao-Yan; Xiao, Ling; Ordog, Balazs; Tadevosyan, Artavazd; Luo, Xiaobin; Maguy, Ange; Shi, Yanfen; Tardif, Jean-Claude; Nattel, Stanley

    2014-03-14

    β-Adrenoceptor activation contributes to sudden death risk in heart failure. Chronic β-adrenergic stimulation, as occurs in patients with heart failure, causes potentially arrhythmogenic reductions in slow delayed-rectifier K(+) current (IKs). To assess the molecular mechanisms of IKs downregulation caused by chronic β-adrenergic activation, particularly the role of exchange protein directly activated by cAMP (Epac). Isolated guinea pig left ventricular cardiomyocytes were incubated in primary culture and exposed to isoproterenol (1 μmol/L) or vehicle for 30 hours. Sustained isoproterenol exposure decreased IKs density (whole cell patch clamp) by 58% (P<0.0001), with corresponding decreases in potassium voltage-gated channel subfamily E member 1 (KCNE1) mRNA and membrane protein expression (by 45% and 51%, respectively). Potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) mRNA expression was unchanged. The β1-adrenoceptor antagonist 1-[2-((3-Carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol dihydrochloride (CGP-20712A) prevented isoproterenol-induced IKs downregulation, whereas the β2-antagonist ICI-118551 had no effect. The selective Epac activator 8-pCPT-2'-O-Me-cAMP decreased IKs density to an extent similar to isoproterenol exposure, and adenoviral-mediated knockdown of Epac1 prevented isoproterenol-induced IKs/KCNE1 downregulation. In contrast, protein kinase A inhibition with a cell-permeable highly selective peptide blocker did not affect IKs downregulation. 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate-AM acetoxymethyl ester (BAPTA-AM), cyclosporine, and inhibitor of nuclear factor of activated T cell (NFAT)-calcineurin association-6 (INCA6) prevented IKs reduction by isoproterenol and INCA6 suppressed isoproterenol-induced KCNE1 downregulation, consistent with signal-transduction via the Ca(2+)/calcineurin/NFAT pathway. Isoproterenol induced nuclear NFATc3/c4

  10. Sensitivity analysis of an LCL-filter-based three-phase active rectifier via a virtual circuit approach

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chiarantoni, Ernesto; Aquila, Antonio Dell’

    2004-01-01

    Three-phase active rectifiers based on the voltage source converter topology can successfully replace traditional thyristor based rectifiers or diode bridge plus chopper in interfacing dc-systems to the grid. However, if the application in which they are employed has a high safety issue......, to the grid side stiffness and to the parameters of the controller has never been detailed considered. In this paper the experimental results of an LCL-filter-based three-phase active rectifier are analysed with the circuit theory approach. A ?virtual circuit? is synthesized in role of the digital controller...

  11. Suppressive effects of diltiazem and verapamil on delayed rectifier K(+)-channel currents in murine thymocytes.

    Science.gov (United States)

    Baba, Asuka; Tachi, Masahiro; Maruyama, Yoshio; Kazama, Itsuro

    2015-10-01

    Lymphocytes predominantly express delayed rectifier K(+)-channels (Kv1.3) in their plasma membranes, and these channels play crucial roles in the lymphocyte activation and proliferation. Since diltiazem and verapamil, which are highly lipophilic Ca(2+) channel blockers (CCBs), exert relatively stronger immunomodulatory effects than the other types of CCBs, they would affect the Kv1.3-channel currents in lymphocytes. Employing the standard patch-clamp whole-cell recording technique in murine thymocytes, we examined the effects of these drugs on the channel currents and the membrane capacitance. Both diltiazem and verapamil significantly suppressed the peak and the pulse-end currents of the channels, although the effects of verapamil were more marked than those of diltiazem. Both drugs significantly lowered the membrane capacitance, indicating the interactions between the drugs and the plasma membranes. This study demonstrated for the first time that CCBs, such as diltiazem and verapamil, exert inhibitory effects on Kv1.3-channels expressed in lymphocytes. The effects of these drugs may be associated with the mechanisms of immunomodulation by which they decrease the production of inflammatory cytokines. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. [Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line].

    Science.gov (United States)

    Zhang, Jiancheng; Lin, Kun; Wei, Zhixiong; Chen, Qian; Liu, Li; Zhao, Xiaojing; Zhao, Ying; Xu, Bin; Chen, Xi; Li, Yang

    2015-08-01

    To study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line. HEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature. The amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation. Allitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.

  13. β1-adrenergic regulation of rapid component of delayed rectifier K+ currents in guinea-pig cardiac myocytes.

    Science.gov (United States)

    Wang, Sen; Xu, Di; Wu, Ting-Ting; Guo, Yan; Chen, Yan-Hong; Zou, Jian-Gang

    2014-05-01

    Human ether-à-go-go-related gene (hERG) potassium channels conduct the rapid component of the delayed rectifier potassium current (IKr), which is crucial for repolarization of cardiac action potential. Patients with hERG‑associated long QT syndrome usually develop tachyarrhythmias during physical and/or emotional stress, both known to stimulate adrenergic receptors. The present study aimed to investigate a putative functional link between β1-adrenergic stimulation and IKr in guinea-pig left ventricular myocytes and to analyze how IKr is regulated following activation of the β1-adrenergic signaling pathway. The IKr current was measured using a whole-cell patch-clamp technique. A selective β1-adrenergic receptor agonist, xamoterol, at concentrations of 0.01-100 µM decreased IKr in a concentration-dependent manner. The 10 µM xamoterol-induced inhibition of IKr was attenuated by the protein kinase A (PKA) inhibitor KT5720, the protein kinase C (PKC) inhibitor chelerythrine, and the phospholipase (PLC) inhibitor U73122, indicating involvement of PKA, PKC and PLC in β1-adrenergic inhibition of IKr. The results of the present study indicate an association between IKr and the β1-adrenergic receptor in arrhythmogenesis, involving the activation of PKA, PKC and PLC.

  14. Synchronous Half-Wave Rectifier

    Science.gov (United States)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  15. A New Class III Antiarrhythmic Drug Niferidil Prolongs Action Potentials in Guinea Pig Atrial Myocardium via Inhibition of Rapid Delayed Rectifier.

    Science.gov (United States)

    Abramochkin, Denis V; Kuzmin, Vladislav S; Rosenshtraukh, Leonid V

    2017-12-01

    A new class III antiarrhythmic drug niferidil (RG-2) has been introduced as a highly effective therapy for cases of persistent atrial fibrillation, but ionic mechanisms of its action are poorly understood. In the present study, the effects of niferidil on action potential (AP) waveform and potassium currents responsible for AP repolarization were investigated in guinea pig atrial myocardium. APs were recorded with sharp glass microelectrodes in multicellular atrial preparations. Whole-cell patch-clamp technique was used to measure K + currents in isolated myocytes. In multicellular atrial preparations, 10 -8  M niferidil effectively prolonged APs by 15.2 ± 2.8% at 90% repolarization level. However, even the highest tested concentrations, 10 -6  M and 10 -5  M failed to prolong APs more than 32.5% of control duration. The estimated concentration of niferedil for half-maximal AP prolongation was 1.13 × 10 -8  M. Among the potassium currents responsible for AP repolarization phase, I K1 was found to be almost insensitive to niferidil. However, another inward rectifier, I KACh , was effectively suppressed by micromolar concentrations of niferidil with IC 50  = 9.2 × 10 -6  M. I KATP was much less sensitive to the drug with IC 50  = 2.26 × 10 -4  M. The slow component of delayed rectifier, I Ks , also demonstrated low sensitivity to niferidil-the highest used concentration, 10 -4  M, decreased peak I Ks density to 46.2 ± 5.5% of control. Unlike I Ks , the rapid component of delayed rectifier, I Kr , appeared to be extremely sensitive to niferidil. The IC 50 was 1.26 × 10 -9  M. I Kr measured in ventricular myocytes was found to be less sensitive to niferidil with IC 50  = 3.82 × 10 -8  M. Niferidil prolongs APs in guinea pig atrial myocardium via inhibition of I Kr .

  16. Aldosterone downregulates delayed rectifier potassium currents through an angiotensin type 1 receptor-dependent mechanism.

    Science.gov (United States)

    Lv, Yankun; Wang, Yanjun; Zhu, Xiaoran; Zhang, Hua

    2018-01-01

    We have previously shown that aldosterone downregulates delayed rectifier potassium currents (I Ks ) via activation of the mineralocorticoid receptor (MR) in adult guinea pig cardiomyocytes. Here, we investigate whether angiotensin II/angiotensin type 1 receptor (AngII/AT1R) and intracellular calcium also play a role in these effects. Ventricular cardiomyocytes were isolated from adult guinea pigs and incubated with aldosterone (1 μmol·L -1 ) either alone or in combination with enalapril (1 μmol·L -1 ), losartan (1 μmol·L -1 ), nimodipine (1 μmol·L -1 ), or BAPTA-AM (2.5 μmol·L -1 ) for 24 h. We used the conventional whole cell patch-clamp technique to record the I Ks component. In addition, we evaluated expression of the I Ks subunits KCNQ1 and KCNE1 using Western blotting. Our results showed that both enalapril and losartan, but not nimodipine or BAPTA-AM, completely reversed the aldosterone-induced inhibition of I Ks and its effects on KCNQ1/KCNE1 protein levels. Furthermore, we found that AngII/AT1R mediates the inhibitory effects of aldosterone on I Ks . Finally, the downregulation of I Ks induced by aldosterone did not occur secondarily to a change in intracellular calcium concentrations. Taken together, our findings demonstrate that crosstalk between MR and AT1R underlies the effects of aldosterone, and provide new insights into the mechanism underlying potassium channels.

  17. EMC Increasing of PWM Rectifier in Comparison with Classical Rectifier

    Directory of Open Access Journals (Sweden)

    R. Dolecek

    2008-12-01

    Full Text Available Pulse width modulated rectifier is a very popular topic nowadays. The modern industrial production demands continuous and lossless conversion of electrical energy parameters. This need leads to wide spread of power semiconductor converters. The rapid development in power electronics and microprocessor technology enables to apply sophisticated control methods that eliminate negative side effects of the power converters on the supply network. The phase controlled thyristor rectifiers overload the supply network with higher harmonics and reactive power consumption. That is why the PWM rectifier is being examined. In comparison with the phase controlled rectifier it can be controlled to consume nearly sinusoidal current with power factor equal to unity. Another advantage is its capability of energy recuperation. The PWM rectifier can assert itself for its good behavior in many applications, for example as an input rectifier in indirect frequency converter, or in traction. Traction vehicles equipped with PWM rectifier do not consume reactive power, do not load the supply network with higher harmonics, and the recuperation is possible. The paper deals with the PWM rectifier functional model realization and examination. Electromagnetic compatibility of PWM rectifier and classical phase controlled rectifier is compared on the basis of the input current harmonic analysis.

  18. Predictive Duty Cycle Control of Three-Phase Active-Front-End Rectifiers

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Chen, Wei

    2016-01-01

    This paper proposed an on-line optimizing duty cycle control approach for three-phase active-front-end rectifiers, aiming to obtain the optimal control actions under different operating conditions. Similar to finite control set model predictive control strategy, a cost function previously...

  19. Stability Improvements of an LCL-filter based Three-phase Active Rectifier

    DEFF Research Database (Denmark)

    Liserre, Marco; Dell'Aquila, Antonio; Blaabjerg, Frede

    2002-01-01

    Three-phase active rectifiers guarantee sinusoidal input currents and controllable dc voltage at the price of a high switching frequency ripple that can disturb and reduce efficiency of other EMI sensitive equipment connected to the grid. This problem could be solved choosing a high value...

  20. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    Science.gov (United States)

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism

  1. Minimum component high frequency current mode rectifier | Sampe ...

    African Journals Online (AJOL)

    In this paper a current mode full wave rectifier circuit is proposed. The current mode rectifier circuit is implemented utilizing a floating current source (FCS) as an active element. The minimum component full wave rectifier utilizes only a single floating current source, two diodes and two grounded resistors. The extremely ...

  2. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Science.gov (United States)

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  3. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium.

    Science.gov (United States)

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-05-01

    Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.

  4. Semi-conductor rectifiers

    International Nuclear Information System (INIS)

    1981-01-01

    A method is described for treating a semiconductor rectifier, comprising: heating the rectifier to a temperature in the range of 100 0 C to 500 0 C, irradiating the rectifier while maintaining its temperature within the said range, and then annealing the rectifier at a temperature of between 280 0 C and 350 0 C for between two and ten hours. (author)

  5. Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons.

    Science.gov (United States)

    Yang, Yoon-Sil; Jeon, Sang-Chan; Kim, Dong-Kwan; Eun, Su-Yong; Jung, Sung-Cherl

    2017-03-01

    Excessive influx and the subsequent rapid cytosolic elevation of Ca 2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca 2+ level in normal as well as pathological conditions. Delayed rectifier K + channels (I DR channels) play a role to suppress membrane excitability by inducing K + outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca 2+ -mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of I DR channels to hyperexcitable conditions induced by high Ca 2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca 2+ -treatment significantly increased the amplitude of I DR without changes of gating kinetics. Nimodipine but not APV blocked Ca 2+ -induced I DR enhancement, confirming that the change of I DR might be targeted by Ca 2+ influx through voltage-dependent Ca 2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated I DR enhancement was not affected by either Ca 2+ -induced Ca 2+ release (CICR) or small conductance Ca 2+ -activated K + channels (SK channels). Furthermore, PP2 but not H89 completely abolished I DR enhancement under high Ca 2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca 2+ -mediated I DR enhancement. Thus, SFKs may be sensitive to excessive Ca 2+ influx through VDCCs and enhance I DR to activate a neuroprotective mechanism against Ca 2+ -mediated hyperexcitability in neurons.

  6. Stability analysis of direct current control in current source rectifier

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...

  7. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  8. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Luis I Angel-Chavez

    Full Text Available In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV. Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  9. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K+ current of human atria by inhibiting EGF receptor tyrosine kinase.

    Science.gov (United States)

    Xiao, Guo-Sheng; Zhang, Yan-Hui; Wu, Wei; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2017-03-01

    The ultra-rapidly activating delayed rectifier K + current I Kur (encoded by K v 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial I Kur and hKv1.5 channels stably expressed in HEK 293 cells. Human atrial I Kur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of I Kur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hK v 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced I Kur and hK v 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hK v 1.5 channels and that the decrease was countered by orthovanadate. The PTK inhibitors genistein and AG556 decrease human atrial I Kur and cloned hK v 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases I Kur and hK v 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial I Kur . © 2017 The British Pharmacological Society.

  10. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier.

    Science.gov (United States)

    Abramochkin, Denis V; Karimova, Viktoria M; Filatova, Tatiana S; Kamkin, Andre

    2017-07-01

    Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10 -4  M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10 -7  M) or selective GIRK channels blocker tertiapin (10 -6  M) completely abolished all Ap5A effects, while P2 blocker PPADS (10 -4  M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh ). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.

  11. The actions of mdivi-1, an inhibitor of mitochondrial fission, on rapidly activating delayed-rectifier K⁺ current and membrane potential in HL-1 murine atrial cardiomyocytes.

    Science.gov (United States)

    So, Edmund Cheung; Hsing, Chung-Hsi; Liang, Chia-Hua; Wu, Sheng-Nan

    2012-05-15

    Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. In whole-cell recordings, the addition of mdivi-1 decreased the amplitude of tail current (I(tail)) for the rapidly activating delayed-rectifier K⁺ current (I(Kr)) in a concentration-dependent manner with an IC₅₀ value at 11.6 μM, a value that resembles the inhibition requirement for mitochondrial division. It shifted the activation curve of I(tail) to depolarized voltages with no change in the gating charge. However, mdivi-1 did not alter the rate of recovery from current inactivation. In cell-attached configuration, mdivi-1 inside the pipette suppressed the activity of acetylcholine-activated K⁺ channels without modifying the single-channel conductance. Mdivi-1 (30 μM) slightly depressed the peak amplitude of Na⁺ current with no change in the overall current-voltage relationship. Under current-clamp recordings, addition of mdivi-1 resulted in prolongation for the duration of action potentials (APs) and to increase the firing of spontaneous APs in HL-1 cells. Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  13. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    Science.gov (United States)

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  14. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers

    Science.gov (United States)

    DiFranco, Marino; Quinonez, Marbella

    2012-01-01

    A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IKV) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IKV displays the canonical hallmarks of KV channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gKV) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IKV. Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IKV, but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IKV records. A two-channel model that faithfully simulates IKV records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gKV, and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IKV1.4 and IKV3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IKV resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IKV records. Normalized peak attenuations showed the same voltage dependence as peak IKV plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IKV and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gKV in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that KV channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IKV

  15. Modeling removal of accumulated potassium from T-tubules by inward rectifier potassium channels

    NARCIS (Netherlands)

    Wallinga, W.; Vliek, M.; Wienk, E.D.; Alberink, M.J.; Ypey, D.L.; Ypey, D.L.

    1996-01-01

    The membrane models of Cannon et al. (1993) and Alberink et al. (1995) for mammalian skeletal muscle fibers are based upon Hodgkin-Huxley descriptions of sodium, potassium delayed rectifier and leak conductances and the capacitive current taking into account fast inactivation of sodium channels. Now

  16. The comprehensive electrophysiological study of curcuminoids on delayed-rectifier K+ currents in insulin-secreting cells.

    Science.gov (United States)

    Kuo, Ping-Chung; Yang, Chia-Jung; Lee, Yu-Chi; Chen, Pei-Chun; Liu, Yen-Chin; Wu, Sheng-Nan

    2018-01-15

    Curcumin (CUR) has been demonstrated to induce insulin release from pancreatic β-cells; however, how curcuminoids (including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)) exert any possible effects on membrane ion currents inherently in insulin-secreting cells remains largely unclear. The effects of CUR and other structurally similar curcuminoids on ion currents in rat insulin-secreting (INS-1) insulinoma cells were therefore investigated in this study. The effects of these compounds on ionic currents and membrane potential were studied by patch-clamp technique. CUR suppressed the amplitude of delayed-rectifier K + current (I K(DR) ) in a time-, state- and concentration-dependent manner in these cells and the inhibition was not reversed by diazoxide, nicorandil or chlorotoxin. The value of dissociation constant for CUR-induced suppression of I K(DR) in INS-1 cells was 1.26μM. Despite the inability of CUR to alter the activation rate of I K(DR) , it accelerated current inactivation elicited by membrane depolarization. Increasing CUR concentrations shifted the inactivation curve of I K(DR) to hyperpolarized potential and slowed the recovery of I K(DR) inactivation. CUR, DMC, and BDMC all exerted depressant actions on I K(DR) amplitude to a similar magnitude, although DMC and BDMC did not increase current inactivation clearly. CUR slightly suppressed the peak amplitude of voltage-gated Na + current. CUR, DMC and BDMC depolarized the resting potential and increased firing frequency of action potentials. The CUR-mediated decrease of I K(DR) and the increase of current inactivation also occurred in βTC-6 INS-1 cells. Taken these results together, these effects may be one of the possible mechanisms contributing their insulin-releasing effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Active and reactive power control of a current-source PWM-rectifier using space vectors

    Energy Technology Data Exchange (ETDEWEB)

    Salo, M.; Tuusa, H. [Tampere University of Technology (Finland). Department of Electrical Engineering, Power Electronics

    1997-12-31

    In this paper the current-source PWM-rectifier with active and reactive power control is presented. The control system is realized using space vector methods. Also, compensation of the reactive power drawn by the line filter is discussed. Some simulation results are shown. (orig.) 8 refs.

  18. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruxi [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Lai, Rixin [General Electric; Ning, Puqi [ORNL; Rajashekara, Kaushik [Rolls Royce

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  19. Inward rectifier potassium current IKir promotes intrinsic pacemaker activity of thalamocortical neurons.

    Science.gov (United States)

    Amarillo, Yimy; Tissone, Angela I; Mato, Germán; Nadal, Marcela S

    2018-06-01

    Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (rectifier potassium current I Kir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of I Kir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of I Kir and hyperpolarization-activated cationic current I h that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that I Kir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with I h and increases the robustness of low threshold-activated calcium current I T -mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current I Kir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that I Kir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current I h ; and increases the robustness of oscillations mediated by the low threshold-activated calcium current I T . Upregulation of I Kir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).

  20. SPS rectifier stations

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The first of the twelves SPS rectifier stations for the bending magnets arrived at CERN at the end of the year. The photograph shows a station with the rectifiers on the left and in the other three cubicles the chokes, capacitors and resistor of the passive filter.

  1. Changes in Inward Rectifier K+ Channels in Hepatic Stellate Cells During Primary Culture

    Science.gov (United States)

    Lee, Dong Hyeon; Kong, In Deok; Lee, Joong-Woo

    2008-01-01

    Purpose This study examined the expression and function of inward rectifier K+ channels in cultured rat hepatic stellate cells (HSC). Materials and Methods The expression of inward rectifier K+ channels was measured using real-time RT-PCR, and electrophysiological properties were determined using the gramicidin-perforated patch-clamp technique. Results The dominant inward rectifier K+ channel subtypes were Kir2.1 and Kir6.1. These dominant K+ channel subtypes decreased significantly during the primary culture throughout activation process. HSC can be classified into two subgroups: one with an inward-rectifying K+ current (type 1) and the other without (type 2). The inward current was blocked by Ba2+ (100 µM) and enhanced by high K+ (140 mM), more prominently in type 1 HSC. There was a correlation between the amplitude of the Ba2+-sensitive current and the membrane potential. In addition, Ba2+ (300 µM) depolarized the membrane potential. After the culture period, the amplitude of the inward current decreased and the membrane potential became depolarized. Conclusion HSC express inward rectifier K+ channels, which physiologically regulate membrane potential and decrease during the activation process. These results will potentially help determine properties of the inward rectifier K+ channels in HSC as well as their roles in the activation process. PMID:18581597

  2. Feedback loop compensates for rectifier nonlinearity

    Science.gov (United States)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  3. Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.

    Science.gov (United States)

    van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A

    2013-09-01

    Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.

  4. Performance enhancement of the single-phase series active filter by employing the load voltage waveform reconstruction and line current sampling delay reduction methods

    DEFF Research Database (Denmark)

    Senturk, O.S.; Hava, A.M.

    2011-01-01

    This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...... current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference-frame-based methods. The analytical, simulation, and experimental studies of a 2.5 k...

  5. Fully controlled 5-phase, 10-pulse, line commutated rectifier

    Directory of Open Access Journals (Sweden)

    Mahmoud I. Masoud

    2015-12-01

    Full Text Available The development and production of multiphase machines either generators or motors, specially five-phase, offers improved performance compared to three-phase counterpart. Five phase generators could generate power in applications such as, but not limited to, wind power generation, electric vehicles, aerospace, and oil and gas. The five-phase generator output requires converter system such as ac–dc converters. In this paper, a fully controlled 10-pulse line commutated rectifier, suitable to be engaged with wind energy applications, fed from five-phase source is introduced. A shunt active power filter (APF is used to improve power factor and supply current total harmonic distortion (THD. Compared to three-phase converters, 6-pulse or 12-pulse rectifiers, the 10-pulse rectifier engaged with 5-phase source alleviate their drawbacks such as high dc ripples and no need for electric gear or phase shifting transformer. MATLAB/SIMULINK platform is used as a simulation tool to investigate the performance of the proposed rectifier.

  6. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    Science.gov (United States)

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Sex differences in repolarization and slow delayed rectifier potassium current and their regulation by sympathetic stimulation in rabbits.

    Science.gov (United States)

    Zhu, Yujie; Ai, Xun; Oster, Robert A; Bers, Donald M; Pogwizd, Steven M

    2013-06-01

    Slow delayed rectifier potassium current (IKs) is important in action potential (AP) repolarization and repolarization reserve. We tested the hypothesis that there are sex-specific differences in IKs, AP, and their regulation by β-adrenergic receptors (β-AR's) using whole-cell patch-clamp. AP duration (APD90) was significantly longer in control female (F) than in control male (M) myocytes. Isoproterenol (ISO, 500 nM) shortened APD90 comparably in M and F, and was largely reversed by β1-AR blocker CGP 20712A (CGP, 300 nM). Inhibition of IKs with chromanol 293B (10 μM) resulted in less APD prolongation in F at baseline (3.0 vs 8.9 %, p < 0.05 vs M) and even in the presence of ISO (5.4 vs 20.9 %, p < 0.05). This suggests that much of the ISO-induced APD abbreviation in F is independent of IKs. In F, baseline IKs was 42 % less and was more weakly activated by ISO (19 vs 68 % in M, p < 0.01). ISO enhancement of IKs was comparably attenuated by CGP in M and F. After ovariectomy, IKs in F had greater enhancement by ISO (72 %), now comparable to control M. After orchiectomy, IKs in M was only slightly enhanced by ISO (23 %), comparable to control F. Pretreatment with thapsigargin (to block SR Ca release) had bigger impact on ISO-induced APD shortening in F than that in M (p < 0.01). In conclusion, we found that there are sex differences in IKs, AP, and their regulation by β-AR's that are modulated by sex hormones, suggesting the potential for sex-specific antiarrhythmic therapy.

  8. Rectifiers

    CERN Document Server

    Visintini, R

    2006-01-01

    In particle accelerators, rectifiers are used to convert the AC voltage into DC or low-frequency AC to supply loads like magnets or klystrons. Some loads require high currents, others high voltages, and others both high current and high voltage. This presentation deals with the particular class of line commutated rectifiers (the switching techniques are treated elsewhere). The basic principles of rectification are presented. The effects of real world parameters are then taken into consideration. Some aspects related to the filtering of the harmonics both on the DC side and on the AC side are presented. Some protection issues associated with the use of thyristors and diodes are also treated. An example of power converter design, referring to a currently operating magnet power supply, is included. An extended bibliography (including some internet links) ends this presentation.

  9. ‘Sleepy’ inward rectifier channels in guinea-pig cardiomyocytes are activated only during strong hyperpolarization

    Science.gov (United States)

    Liu, Gong Xin; Daut, Jürgen

    2002-01-01

    K+ channels of isolated guinea-pig cardiomyocytes were studied using the patch-clamp technique. At transmembrane potentials between −120 and −220 mV we observed inward currents through an apparently novel channel. The novel channel was strongly rectifying, no outward currents could be recorded. Between −200 and −160 mV it had a slope conductance of 42.8 ± 3.0 pS (s.d.; n = 96). The open probability (Po) showed a sigmoid voltage dependence and reached a maximum of 0.93 at −200 mV, half-maximal activation was approximately −150 mV. The voltage dependence of Po was not affected by application of 50 μm isoproterenol. The open-time distribution could be described by a single exponential function, the mean open time ranged between 73.5 ms at −220 mV and 1.4 ms at −160 mV. At least two exponential components were required to fit the closed time distribution. Experiments with different external Na+, K+ and Cl− concentrations suggested that the novel channel is K+ selective. Extracellular Ba2+ ions gave rise to a voltage-dependent reduction in Po by inducing long closed states; Cs+ markedly reduced mean open time at −200 mV. In cell-attached recordings the novel channel frequently converted to a classical inward rectifier channel, and vice versa. This conversion was not voltage dependent. After excision of the patch, the novel channel always converted to a classical inward rectifier channel within 0–3 min. This conversion was not affected by intracellular Mg2+, phosphatidylinositol (4,5)-bisphosphate or spermine. Taken together, our findings suggest that the novel K+ channel represents a different ‘mode’ of the classical inward rectifier channel in which opening occurs only at very negative potentials. PMID:11897847

  10. Inward rectifier potassium currents in mammalian skeletal muscle fibres

    Science.gov (United States)

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-01-01

    most of the properties of IKir in skeletal muscle fibres, the model demonstrates that a substantial proportion of IKir (>70%) arises from the TTS. Overall, our work emphasizes that measured intrinsic properties (inward rectification and external [K] dependence) and localization of Kir channels in the TTS membranes are ideally suited for re-capturing potassium ions from the TTS lumen during, and immediately after, repetitive stimulation under physiological conditions. Key points This paper provides a comprehensive electrophysiological characterization of the external [K+] dependence and inward rectifying properties of Kir channels in fast skeletal muscle fibres of adult mice. Two isoforms of inward rectifier K channels (IKir2.1 and IKir2.2) are expressed in both the surface and the transverse tubular system (TTS) membranes of these fibres. Optical measurements demonstrate that Kir currents (IKir) affect the membrane potential changes in the TTS membranes, and result in a reduction in luminal [K+]. A model of the muscle fibre assuming that functional Kir channels are equally distributed between the surface and TTS membranes accounts for both the electrophysiological and the optical data. Model simulations demonstrate that the more than 70% of IKir arises from the TTS membranes. [K+] increases in the lumen of the TTS resulting from the activation of K delayed rectifier channels (Kv) lead to drastic enhancements of IKir, and to right-shifts in their reversal potential. These changes are predicted by the model. PMID:25545278

  11. Topology optimization of viscoelastic rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2012-01-01

    An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...

  12. Thermally and magnetically controlled superconducting rectifiers

    International Nuclear Information System (INIS)

    Mulder, G.B.J.; TenKate, H.H.J.; Krooshoop, H.J.G.; Van de Klundert, L.J.M.

    1989-01-01

    The switches of a superconducting rectifier can be controlled either magnetically or thermally. The main purpose of this paper is to point out the differences between both methods of switching and discuss the consequences for the operation of the rectifier. The discussion is illustrated by the experimental results of a rectifier which was tested with magnetically as well as thermally controlled switches. It has an input current of 30 A, an output current of more than 1 kA and an operating frequency of a few Hertz. A superconducting magnet connected to this rectifier can be energized at a rate exceeding 1 MJ/hour and an efficiency of about 97%

  13. Reward acts as a signal to control delay-period activity in delayed-response tasks.

    Science.gov (United States)

    Ichihara-Takeda, Satoe; Takeda, Kazuyoshi; Funahashi, Shintaro

    2010-03-31

    Prefrontal delay-period activity represents a neural mechanism for the active maintenance of information and needs to be controlled by some signal to appropriately operate working memory. To examine whether reward-delivery acts as this signal, the effects of delay-period activity in response to unexpected reward-delivery were examined by analyzing single-neuron activity recorded in the primate dorsolateral prefrontal cortex. Among neurons that showed delay-period activity, 34% showed inhibition of this activity in response to unexpected reward-delivery. The delay-period activity of these neurons was affected by the expectation of reward-delivery. The strength of the reward signal in controlling the delay-period activity is related to the strength of the effect of reward information on the delay-period activity. These results indicate that reward-delivery acts as a signal to control delay-period activity.

  14. APOEε4 increases trauma induced early apoptosis via reducing delayed rectifier K(+) currents in neuronal/glial co-cultures model.

    Science.gov (United States)

    Chen, Ligang; Sun, Xiaochuan; Jiang, Yong; Kuai, Li

    2015-06-10

    Traumatic brain injury (TBI) is a commonly encountered emergency and severe neurosurgical injury. Previous studies have shown that the presence of the apolipoprotein E (APOE) ε4 allele has adverse outcomes across the spectrum of TBI severity. Our objective was to evaluate the effects of APOE alleles on trauma induced early apoptosis via modification of delayed rectifier K(+) current (Ik(DR)) in neuronal/glial co-cultures model. An ex vivo neuronal/glial co-cultures model carrying individual APOE alleles (ε2, ε3, ε4) of mechanical injury was developed. Flow cytometry and patch clamp recording were performed to analyze the correlations among APOE genotypes, early apoptosis and Ik(DR). We found that APOEε4 increased early apoptosis at 24h (p<0.05) compared to the ones transfected with APOEε3 and APOEε2. Noticeably, APOEε4 significantly reduced the amplitude of the Ik(DR) at 24h compared to the APOEε3 and APOEε2 (p<0.05) which exacerbate Ca(2+) influx. This indicates a possible effect of APOEε4 on early apoptosis via inhibiting Ik(DR) following injury which may adversely affect the outcome of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier

    DEFF Research Database (Denmark)

    Zaja, Mario; Oprea, Matei-lon; Suárez, Carlos Gómez

    2014-01-01

    for battery charging. Alternatively, charging could be done using the motor windings as grid side inductors and controlling the inverter to operate as an active boost rectifier. The challenge in this approach is the unequal phase inductances which depend on the rotor position. Another problem appears when...... an integrated charger control algorithm to charge the battery through a permanent magnet synchronous machine (PMSM) windings....

  16. Molecular basis and drug sensitivity of the delayed rectifier (IKr) in the fish heart.

    Science.gov (United States)

    Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti

    2015-01-01

    Fishes are increasingly used as models for human cardiac diseases, creating a need for a better understanding of the molecular basis of fish cardiac ion currents. To this end we cloned KCNH6 channel of the crucian carp (Carassius carassius) that produces the rapid component of the delayed rectifier K(+) current (IKr), the main repolarising current of the fish heart. KCNH6 (ccErg2) was the main isoform of the Kv11 potassium channel family with relative transcript levels of 98.9% and 99.6% in crucian carp atrium and ventricle, respectively. KCNH2 (ccErg1), an orthologue to human cardiac Erg (Herg) channel, was only slightly expressed in the crucian carp heart. The native atrial IKr and the cloned ccErg2 were inhibited by similar concentrations of verapamil, terfenadine and KB-R7943 (P>0.05), while the atrial IKr was about an order of magnitude more sensitive to E-4031 than ccErg2 (P<0.05) suggesting that some accessory β-subunits may be involved. Sensitivity of the crucian carp atrial IKr to E-4031, terfenadine and KB-R7943 was similar to what has been reported for the Herg channel. In contrast, the sensitivity of the crucian carp IKr to verapamil was approximately 30 times higher than the previously reported values for the Herg current. In conclusion, the cardiac IKr is produced by non-orthologous gene products in fish (Erg2) and mammalian hearts (Erg1) and some marked differences exist in drug sensitivity between fish and mammalian Erg1/2 which need to be taken into account when using fish heart as a model for human heart. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. 46 CFR 183.360 - Semiconductor rectifier systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...

  18. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  19. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Tang, Lixin [ORNL; Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL; Miller (JNJ), John M. [JNJ-Miller PLC

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.

  20. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...

  1. 46 CFR 120.360 - Semiconductor rectifier systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...

  2. Inhibition of the cardiac inward rectifier potassium currents by KB-R7943.

    Science.gov (United States)

    Abramochkin, Denis V; Alekseeva, Eugenia I; Vornanen, Matti

    2013-09-01

    KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K(+) currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6×10(-6) M and 3.5×10(-6) M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2×10(-7) M for rat and 2.5×10(-7) M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9-3×10(-6) M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1~INCXrectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models. © 2013.

  3. Time-division-multiplex control scheme for voltage multiplier rectifiers

    Directory of Open Access Journals (Sweden)

    Bin-Han Liu

    2017-03-01

    Full Text Available A voltage multiplier rectifier with a novel time-division-multiplexing (TDM control scheme for high step-up converters is proposed in this study. In the proposed TDM control scheme, two full-wave voltage doubler rectifiers can be combined to realise a voltage quadrupler rectifier. The proposed voltage quadrupler rectifier can reduce transformer turn ratio and transformer size for high step-up converters and also reduce voltage stress for the output capacitors and rectifier diodes. An N-times voltage rectifier can be straightforwardly produced by extending the concepts from the proposed TDM control scheme. A phase-shift full-bridge (PSFB converter is adopted in the primary side of the proposed voltage quadrupler rectifier to construct a PSFB quadrupler converter. Experimental results for the PSFB quadrupler converter demonstrate the performance of the proposed TDM control scheme for voltage quadrupler rectifiers. An 8-times voltage rectifier is simulated to determine the validity of extending the proposed TDM control scheme to realise an N-times voltage rectifier. Experimental and simulation results show that the proposed TDM control scheme has great potential to be used in high step-up converters.

  4. A low cost rapid prototype platform for a three phase PFC rectifier application

    DEFF Research Database (Denmark)

    Haase, Frerk; Kouchaki, Alireza; Nymand, Morten

    2015-01-01

    In this paper the design and development of a low cost rapid prototype platform for a Three Phase PFC rectifier application is presented. The active rectifier consists of a SiC-MOSFET based PWM converter and a low cost rapid prototype platform for simulating and implementing the digital control...

  5. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

    Directory of Open Access Journals (Sweden)

    Jan Michalik

    2006-01-01

    Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

  6. Harmonic Distortion of Rectifier Topologies for Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Hansen, Steffan

    This thesis deals with the harmonic distortion of the diode rectifier and a number of alternative rectifier topologies for adjustable speed drives. The main intention of this thesis is to provide models and tools that allow easy prediction of the harmonic distortion of ASD’s in a given system...... rectifier are presented. The first level is an ideal model where the diode rectifier basically is treated as an independent (harmonic) current source. The second level is an empirical model, where simulated (or measured) values of the harmonic currents of the diode rectifier for different parameters......-angle of the individual harmonic currents of different diode rectifier types is analyzed. Four selected rectifier topologies with a high input power factor are presented. It is shown that using ac- or dc-coils is a very simple and efficient method to reduce the harmonic currents compared to the basic diode rectifier...

  7. RTD application in low power UHF rectifiers

    International Nuclear Information System (INIS)

    Sinyakin, V Yu; Makeev, M O; Meshkov, S A

    2016-01-01

    In the current work, the problem of UHF RFID passive tag sensitivity increase is considered. Tag sensitivity depends on HF signal rectifier efficiency and antenna-rectifier impedance matching. Possibility of RFID passive tag sensitivity increase up to 10 times by means of RTD use in HF signal rectifier in comparison with tags based on Schottky barrier diode is shown. (paper)

  8. Current and Voltage Conveyors in Current- and Voltage-Mode Precision Full-Wave Rectifiers

    Directory of Open Access Journals (Sweden)

    J. Koton

    2011-04-01

    Full Text Available In this paper new versatile precision full-wave rectifiers using current and/or voltage conveyors as active elements and two diodes are presented. The performance of these circuit solutions is analysed and compared to the opamp based precision rectifier. To analyze the behavior of the functional blocks, the frequency dependent RMS error and DC transient value are evaluated for different values of input voltage amplitudes. Furthermore, experimental results are given that show the feasibilities of the conveyor based rectifiers superior to the corresponding operational amplifier based topology.

  9. A 62GHz inductor-peaked rectifier with 7% efficiency

    NARCIS (Netherlands)

    Gao, H.; Matters - Kammerer, M.; Milosevic, D.; Roermund, van A.H.M.; Baltus, P.G.M.

    2013-01-01

    This paper presents the first 62 GHz fully onchip RF-DC rectifier in 65nm CMOS technology. The rectifier is the bottleneck in realizing on-chip wireless power receivers. In this paper, efficiency problems of the mm-wave rectifier are discussed and the inductor-peaked rectifier structure is proposed

  10. Rectifier transformer saturation on commutation failure

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1989-01-01

    The rectifier transformer's service differs from the power transformer's service because of the rectifier load. Under certain fault conditions, such as a commutation failure, d.c. magnetization may be introduced into the rectifier transformer cores, resulting in possible saturation of the magnetic circuit, thus in degradation of the performance of the transformer. It is the purpose of this paper to present an approach for evaluating the electromagnetic transient process under such a fault condition. The studies were made on the operating 1000MVA converter system at the Princeton Plasma Physics Laboratory

  11. Phase controlled rectifier study

    International Nuclear Information System (INIS)

    Bronner, G.; Murray, J.G.

    1976-03-01

    This report introduces the results of an engineering study incorporating a computer program to determine the transient and steady-state voltage and current wave shapes for a 12-pulse rectifier system. Generally, rectifier engineering studies are completed by making simplified assumptions and neglecting many circuit parameters. The studies incorporate the 3-phase AC parameters including nonlinear source or generator, 3-winding transformer impedances, and shunt and series capacitors. It includes firing angle control, and DC filter circuits with inductive loads

  12. Performance improvement of three phase rectifier by employing electronic smoothing inductor

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben O.

    2014-01-01

    density of the rectifier. In case of an inverter connected to the output of the rectifier, peak to peak voltage ripples to the front end of the inverter reduces significantly by the ESI, and it increases lifetime of the capacitor connected to the dc link and reduces the voltage stress of the active power...... semiconductors of the inverter. In this paper, an average model of the ESI and its control schemes are presented....

  13. Junction barrier Schottky rectifier with an improved P-well region

    International Nuclear Information System (INIS)

    Wang Ying; Li Ting; Cao Fei; Shao Lei; Chen Yu-Xian

    2012-01-01

    A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H—SiC is proposed to improve the V F —I R trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3×10 −8 times that of the common JBS rectifier at no expense of the forward voltage drop. This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P + grid, resulting in a lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV, that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier. (interdisciplinary physics and related areas of science and technology)

  14. A two-phase full-wave superconducting rectifier

    International Nuclear Information System (INIS)

    Ariga, T.; Ishiyama, A.

    1989-01-01

    A two-phase full-wave superconducting rectifier has been developed as a small cryogenic power supply of superconducting magnets for magnetically levitation trains. Those magnets are operated in the persistent current mode. However, small ohmic loss caused at resistive joints and ac loss induced by the vibration of the train cannot be avoided. Therefore, the low-power cryogenic power supply is required to compensate for the reduction in magnet current. The presented superconducting rectifier consists of two identical full-wave rectifiers connected in series. Main components of each rectifier are a troidal shape superconducting set-up transformer and two thermally controlled switches. The test results using a 47.5 mH load magnet at 0.2 Hz and 0.5 Hz operations are described. To estimate the characteristics of the superconducting rectifier, the authors have developed a simulation code. From the experiments and the simulations, the transfer efficiency is examined. Furthermore, the optimal design of thermally controlled switches based on the finite element analysis is also discussed

  15. Restoration of uridine 5′-triphosphate-suppressed delayed rectifying K+ currents by an NO activator KMUP-1 involves RhoA/Rho kinase signaling in pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Zen-Kong Dai

    2016-12-01

    Full Text Available We have demonstrated that KMUP-1 (7-[2-[4-(2-chlorobenzenepiperazinyl]ethyl]-1,3-dimethylxanthine blunts monocrotaline-induced pulmonary arterial hypertension by altering Ca2+ sensitivity, K+-channel function, endothelial nitric oxide synthase activity, and RhoA/Rho kinase (ROCK expression. This study further investigated whether KMUP-1 impedes uridine 5′-triphosphate (UTP-inhibited delayed rectifying K+ (KDR current in rat pulmonary arteries involved the RhoA/ROCK signaling. Pulmonary artery smooth muscle cells (PASMCs were enzymatically dissociated from rat pulmonary arteries. KMUP-1 (30μM attenuated UTP (30μM-mediated membrane depolarization and abolished UTP-enhanced cytosolic Ca2+ concentration. Whole-cell patch-clamp electrophysiology was used to monitor KDR currents. A voltage-dependent KDR current was isolated and shown to consist of a 4-aminopyridine (5mM-sensitive component and an insensitive component. The 4-aminopyridine sensitive KDR current was suppressed by UTP (30μM. The ROCK inhibitor Y27632 (30μM abolished the ability of UTP to inhibit the KDR current. Like Y27632, KMUP-1 (30μM similarly abolished UTP-inhibited KDR currents. Superfused protein kinase A and protein kinase G inhibitors (KT5720, 300nM and KT5823, 300nM did not affect UTP-inhibited KDR currents, but the currents were restored by adding KMUP-1 (30μM to the superfusate. KMUP-1 reversal of KDR current inhibition by UTP predominantly involves the ROCK inhibition. The results indicate that the RhoA/ROCK signaling pathway plays a key role in eliciting PASMCs depolarization caused by UTP, which would result in pulmonary artery constriction. KMUP-1 blocks UTP-mediated PASMCs depolarization, suggesting that it would prevent abnormal pulmonary vasoconstriction.

  16. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters. 

  17. Nanofibrous p-n Junction and Its Rectifying Characteristics

    Directory of Open Access Journals (Sweden)

    Jian Fang

    2013-01-01

    Full Text Available Randomly oriented tin oxide (SnO2 nanofibers and poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate/polyvinylpyrrolidone (PEDOT:PSS/PVP nanofibers were prepared by a two-step electrospinning technique to form a layered fibrous mat. The current-voltage measurement revealed that the fibrous mat had an obvious diode-rectifying characteristic. The thickness of the nanofiber layers was found to have a considerable influence on the device resistance and rectifying performance. Such an interesting rectifying property was attributed to the formation of a p-n junction between the fibrous SnO2 and PEDOT:PSS/PVP layers. This is the first report that a rectifying junction can be formed between two layers of electrospun nanofiber mats, and the resulting nanofibrous diode rectifier may find applications in sensors, energy harvest, and electronic textiles.

  18. The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs

    Science.gov (United States)

    Ricci, A. J.; Rennie, K. J.; Correia, M. J.

    1996-01-01

    Hair cells were dissociated from the semicircular canal, utricle, lagena and saccule of white king pigeons. Type I hair cells were identified morphologically based on the ratios of neck width to cuticular plate width (NPR rectifier characterized previously in semicircular canal hair cells as IKI.

  19. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier

    Science.gov (United States)

    Liu, Lianxi; Pang, Yanbo; Yuan, Wenzhi; Zhu, Zhangming; Yang, Yintang

    2018-04-01

    The key to self-powered technique is initiative to harvest energy from the surrounding environment. Harvesting energy from an ambient vibration source utilizing piezoelectrics emerged as a popular method. Efficient interface circuits become the main limitations of existing energy harvesting techniques. In this paper, an interface circuit for piezoelectric energy harvesting is presented. An active full bridge rectifier is adopted to improve the power efficiency by reducing the conduction loss on the rectifying path. A parallel synchronized switch harvesting on inductor (P-SSHI) technique is used to improve the power extraction capability from piezoelectric harvester, thereby trying to reach the theoretical maximum output power. An intermittent power management unit (IPMU) and an output capacitor-less low drop regulator (LDO) are also introduced. Active diodes (AD) instead of traditional passive ones are used to reduce the voltage loss over the rectifier, which results in a good power efficiency. The IPMU with hysteresis comparator ensures the interface circuit has a large transient output power by limiting the output voltage ranges from 2.2 to 2 V. The design is fabricated in a SMIC 0.18 μm CMOS technology. Simulation results show that the flipping efficiency of the P-SSHI circuit is over 80% with an off-chip inductor value of 820 μH. The output power the proposed rectifier can obtain is 44.4 μW, which is 6.7× improvement compared to the maximum output power of a traditional rectifier. Both the active diodes and the P-SSHI help to improve the output power of the proposed rectifier. LDO outputs a voltage of 1.8 V with the maximum 90% power efficiency. The proposed P-SSHI rectifier interface circuit can be self-powered without the need for additional power supply. Project supported by the National Natural Science Foundation of China (Nos. 61574103, U1709218) and the Key Research and Development Program of Shaanxi Province (No. 2017ZDXM-GY-006).

  20. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes.

    Science.gov (United States)

    Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang

    2016-10-15

    In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    Science.gov (United States)

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Rectifier cabinet static breaker

    International Nuclear Information System (INIS)

    Costantino, R.A. Jr; Gliebe, R.J.

    1992-01-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs

  3. Rectifier cabinet static breaker

    Science.gov (United States)

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  4. A boron nitride nanotube peapod thermal rectifier

    International Nuclear Information System (INIS)

    Loh, G. C.; Baillargeat, D.

    2014-01-01

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  5. A boron nitride nanotube peapod thermal rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  6. High current and high power superconducting rectifiers

    International Nuclear Information System (INIS)

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  7. Full-wave current conveyor precision rectifier

    Directory of Open Access Journals (Sweden)

    Đukić Slobodan R.

    2008-01-01

    Full Text Available A circuit that provides precision rectification of small signal with low temperature sensitivity for frequencies up to 100 kHz without waveform distortion is presented. It utilizes an improved second type current conveyor based on current-steering output stage and biased silicon diodes. The use of a DC current source to bias the rectifying diodes provides higher temperature stability and lower DC offset level at the output. Proposed design of the precision rectifier ensures good current transfer linearity in the range that satisfy class A of the amplifier and good voltage transfer characteristic for low level signals. Distortion during the zero crossing of the input signal is practically eliminated. Design of the proposed rectifier is realized with standard components.

  8. High Power Factor Hybrid Rectifier | Odeh | Nigerian Journal of ...

    African Journals Online (AJOL)

    This paper presents the analysis of a new single-phase hybrid rectifier with high power factor (PF) and low harmonic distortion current. The proposed rectifier structure is composed of an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of ...

  9. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    Science.gov (United States)

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Synergistic Inhibition of Delayed Rectifier K+ and Voltage-Gated Na+ Currents by Artemisinin in Pituitary Tumor (GH3) Cells.

    Science.gov (United States)

    So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung

    2017-01-01

    Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.

  11. A proton-activated, outwardly rectifying chloride channel in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Ma Zhiyong; Zhang Wei; Chen Liang; Wang Rong; Kan Xiaohong; Sun Guizhen; Liu Chunxi; Li Li; Zhang Yun

    2008-01-01

    Extracellular acidic pH-activated chloride channel I Cl,acid , has been characterized in HEK 293 cells and mammalian cardiac myocytes. This study was designed to characterize I Cl,acid in human umbilical vein endothelial cells(HUVECs). The activation and deactivation of the current rapidly and repeatedly follows the change of the extracellular solution at pH 4.3, with the threshold pH 5.3. In addition, at very positive potentials, the current displays a time-dependent facilitation. pH-response relationship for I Cl,acid revealed that EC 50 is pH 4.764 with a threshold pH value of pH 5.3 and nH of 14.545. The current can be blocked by the Cl - channel inhibitor DIDS (100 μM). In summary, for the first time we report the presence of proton-activated, outwardly rectifying chloride channel in HUVECs. Because an acidic environment can develop in local myocardium under pathological conditions such as myocardial ischemia, I Cl,acid would play a role in regulation of EC function under these pathological conditions

  12. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.

    Science.gov (United States)

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael

    2015-03-01

    A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

  13. Laserlike Vibrational Instability in Rectifying Molecular Conductors

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Hedegård, Per; Brandbyge, Mads

    2011-01-01

    We study the damping of molecular vibrations due to electron-hole pair excitations in donor-acceptor (D-A) type molecular rectifiers. At finite voltage additional nonequilibrium electron-hole pair excitations involving both electrodes become possible, and contribute to the stimulated emission....... We investigate the effect in realistic molecular rectifier structures using first-principles calculations....

  14. Extremal vectors and rectifiability | Enflo | Quaestiones Mathematicae

    African Journals Online (AJOL)

    Extremal vectors and rectifiability. ... The concept of extremal vectors of a linear operator with a dense range but not onto on a Hilbert space was introduced by P. Enflo in 1996 as a new approach to study invariant subspaces ... We show that in general curves that map numbers to backward minimal vectors are not rectifiable.

  15. A Novel High Bandwidth Current Control Strategy for SiC mosfet Based Active Front-End Rectifiers Under Unbalanced Input Voltage Conditions

    DEFF Research Database (Denmark)

    Maheshwari, Ramkrishan; Trintis, Ionut; Török, Lajos

    2017-01-01

    SiC mosfet based converters are capable of high switching frequency operation. In this paper, the converter is operated with 50-kHz switching frequency for an active front-end rectifier application. Due to high switching frequency, the grid-side filter size is reduced, and the possibility of a high...

  16. Structural Optimization of Non-Newtonian Rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin

    When the size of fluidic devices is scaled down, inertial effects start to vanish such that the governing equation becomes linear. Some microfluidic devices rely on the non-linear term related to the inertia of the fluid, and one example is fluid rectifiers (diodes) e.g. related to some micropumps....... These rectifiers rely on the device geometry for their working mechanism, but on further downscaling the inertial effect vanishes and the governing equation starts to show symmetry properties. These symmetry properties reduce the geometry influence to the point where fluid rectifiers cease to function....... In this context it is natural to look for other sources of non-linearity and one possibility is to introduce a non-Newtonian working fluid. Non-Newtonian properties are due to stretching of large particles/molecules in the fluid and this is commonly seen for biological samples in “lab-on-a-chip” systems...

  17. Robust and reliable rectifier based on electronic inductor with improved performance

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben Ole

    2014-01-01

    of the rectifier, peak to peak voltage ripples to the front end of the inverter reduces significantly by the ESI, and it increases lifetime of the capacitor connected at the output and also reduces the voltage stress of the active power semiconductors of the inverter if any connected to the output. In this paper...... harmonic distortions (THDs) of the ac mains current in a three phase diode bridge rectifier. The ESI reduces the low frequency ripples and controls the intermediate dc-link voltage to a dc value and peak value of the mains current also reduces. In case of an inverter connected to the output...

  18. Zero sequence blocking transformers for multi-pulse rectifier in aerospace applications

    DEFF Research Database (Denmark)

    Yao, Wenli; Blaabjerg, Frede; Zhang, Xiaobin

    2014-01-01

    The power electronics technology plays an even more important role in the aerospace applications of More Electric Aircrafts (MEA). AutoTransformer Rectifier Units (ATRU) have been widely adopted in aircrafts due to its simplicity and reliability. In this paper, Zero Sequence Blocking Transformers...... (ZSBT) are employed in the DC link to realize parallel rectifier bridges for ATRU, being the proposed 24-pulse rectifier. A star-connected autotransformer is used in this topology to divide the primary side voltage into four three-phase voltage groups, among which there is a phase shift of 15......°. The autotransformer then feeds the load through rectifier bridges, which are in parallel with ZSBTs. Compared to the traditional method that is using six interphase transformers to parallel the rectifier bridges; the proposed 24-pulse rectifier only requires four ZSBTs. This will contribute to a reduction of weight...

  19. DC Motor Drive with PFC Rectifier

    Directory of Open Access Journals (Sweden)

    Lascu Mihaela

    2008-05-01

    Full Text Available The goal of this work is to study theperformances of a hybrid controller used to controlDC Motor drive with a single-phase power factorcorrection rectifier. This study is made usingcomputer simulation (Simulink. The first part isdevoted to the control system of the DC Motors. Inthe second part, the design of the hybrid controllerwill be presented. The third part is the design ofthe fast response single-phase boost power factorcorrection rectifier. The last parts are devoted tosimulation and experimental results.

  20. Simulation of activation and propagation delay during tripolar neural stimulation

    NARCIS (Netherlands)

    Goodall, E.V.; Goodall, Eleanor V.; Kosterman, L. Martin; Struijk, Johannes J.; Struijk, J.J.; Holsheimer, J.

    1993-01-01

    Computer simulations were perfonned to investigate the influence of stimulus amplitude on cathodal activation delay, propagation delay and blocking during stimulation with a bipolar cuff electrode. Activation and propagation delays were combined in a total delay term which was minimized between the

  1. Direct Power Control for Three-Phase Two-Level Voltage-Source Rectifiers Based on Extended-State Observation

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Yan, Zhuo

    2016-01-01

    This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent characte......This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent...

  2. A perturbation-based model for rectifier circuits

    Directory of Open Access Journals (Sweden)

    Vipin B. Vats

    2006-01-01

    Full Text Available A perturbation-theoretic analysis of rectifier circuits is presented. The governing differential equation of the half-wave rectifier with capacitor filter is analyzed by expanding the output voltage as a Taylor series with respect to an artificially introduced parameter in the nonlinearity of the diode characteristic as is done in quantum theory. The perturbation parameter introduced in the analysis is independent of the circuit components as compared to the method presented by multiple scales. The various terms appearing in the perturbation series are then modeled in the form of an equivalent circuit. This model is subsequently used in the analysis of full-wave rectifier. Matlab simulation results are included which confirm the validity of the theoretical formulations. Perturbation analysis acts a helpful tool in analyzing time-varying systems and chaotic systems.

  3. Single-Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Onar, Omer C [ORNL; Miller, John M [ORNL; Tang, Lixin [ORNL

    2013-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance. To understand the power flow through the system this paper presents a novel approach to the system model and the impact of different control parameters on the load power. The implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation is also discussed.

  4. Boosting the signal: Endothelial inward rectifier K+ channels.

    Science.gov (United States)

    Jackson, William F

    2017-04-01

    Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of K IR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K + channel (K IR ) currents display a region of negative slope conductance at membrane potentials positive to the K + equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting K IR to amplify hyperpolarization induced by other K + channels and ion transporters. Increases in extracellular K + concentration activate K IR allowing them to sense extracellular K + concentration and transduce this change into membrane hyperpolarization. These properties position K IR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of K IR in capillaries in electrically active tissues may allow K IR to sense extracellular K + , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial K IR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future. © 2016 John Wiley & Sons Ltd.

  5. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.

    2016-08-29

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm CMOS technology. The proposed rectifier architecture is compared to the conventional cross-coupled rectifier. It demonstrates an improvement of more than 40% in the rectifier power conversion efficiency (PCE) and an input power range extension of more than 50% relative to the conventional crosscoupled rectifier. A sensitivity of -15.2dBm (30μW) input power for 1V output voltage and a peak power-conversion efficiency of 65% are achieved for a 50kω load. © 2004-2012 IEEE.

  6. Manufacture of the rectifier of the HT-7U PFPS

    International Nuclear Information System (INIS)

    Gao Ge; Fu Peng; Tang Lunjun; Wang Linsen

    2005-01-01

    The rectifiers of the HT-7U poloidal field power supply (PFPS) are introduced. A new control method, four quadrants converter, is brought forward, which overcomes the short-coming of both the circulating current mode and the non-circulating current mode. This control mode also resolves the problem of DC circulating current in the identical phase anti-parallel connection rectifiers when these rectifiers run in the circulating current mode. (authors)

  7. Analysis and control of high power synchronous rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Singh Tejinder.

    1993-01-01

    The description, steady state/dynamic analysis and control design of a high power synchronous rectifier is presented. The proposed rectifier system exploits selective harmonic elimination modulation techniques to minimize filtering requirements, and overcomes the dc voltage limitations of prior art equipment. A detailed derivation of the optimum pulse width modulation switching patterns, in the low frequency range for high power applications is presented. A general mathematical model of the rectifier is established which is non-linear and time-invariant. The transformation of reference frame and small signal linearization techniques are used to obtain closed form solutions from the mathematical model. The modelling procedure is verified by computer simulation. The closed loop design of the synchronous rectifier based on a phase and amplitude control strategy is investigated. The transfer functions derived from this analysis are used for the design of the regulators. The steady-state and dynamic results predicted by computer simulation are verified by PECAN. A systematic design procedure is developed and a detailed design example of a 1 MV-amp rectifer system is presented. 23 refs., 33 figs.

  8. A passive UHF RFID tag with a dynamic-Vth-cancellation rectifier

    International Nuclear Information System (INIS)

    Shen Jinpeng; Wang Bo; Liu Shan; Wang Xin'an; Ruan Zhengkun; Li Shoucheng

    2013-01-01

    This paper presents a passive UHF RFID tag with a dynamic-V th -cancellation (DVC) rectifier. In the rectifier, the threshold voltages of MOSFETs are cancelled by applying gate bias voltages, which are dynamically changed according to the states of the MOSFETs. The DVC rectifier enables both low ON-resistance and small reverse leakage of the MOSFETs, resulting in high power conversion efficiency (PCE). An area-efficient demodulator with a novel average detector is also designed, which takes advantage of the rectifier's first stage as the envelope detector. The whole tag chip is implemented in a 0.18 μm CMOS process with a die size of 880 × 950 μm 2 . Measurement results show that the rectifier achieves a maximum PCE of 53.7% with 80 kΩ resistor load. (semiconductor integrated circuits)

  9. Application data for the PLT stabilizing field rectifier

    International Nuclear Information System (INIS)

    Bronner, G.; Murray, J.G.; Oliaro, G.E.

    1975-11-01

    This paper describes the 12-pulse stabilizing field rectifier used for vertical field production in the Princeton Large Torus (PLT). It is essential that the rectifier be reliable, and protect itself from all faults including induced transient overvoltage produced by switching and plasma instabilities. To this end, computer simulations were run to insure protection under various fault conditions

  10. Wireless power transmission for biomedical implants: The role of near-zero threshold CMOS rectifiers.

    Science.gov (United States)

    Mohammadi, Ali; Redoute, Jean-Michel; Yuce, Mehmet R

    2015-01-01

    Biomedical implants require an electronic power conditioning circuitry to provide a stable electrical power supply. The efficiency of wireless power transmission is strongly dependent on the power conditioning circuitry specifically the rectifier. A cross-connected CMOS bridge rectifier is implemented to demonstrate the impact of thresholds of rectifiers on wireless power transfer. The performance of the proposed rectifier is experimentally compared with a conventional Schottky diode full wave rectifier over 9 cm distance of air and tissue medium between the transmitter and receiver. The output voltage generated by the CMOS rectifier across a 1 KΩ resistive load is around twice as much as the Schottky rectifier.

  11. An overview of self-switching diode rectifiers using green materials

    Science.gov (United States)

    Kasjoo, Shahrir Rizal; Zailan, Zarimawaty; Zakaria, Nor Farhani; Isa, Muammar Mohamad; Arshad, Mohd Khairuddin Md; Taking, Sanna

    2017-09-01

    A unipolar two-terminal nanodevice, known as the self-switching diode (SSD), has recently been demonstrated as a room-temperature rectifier at microwave and terahertz frequencies due to its nonlinear current-voltage characteristic. The planar architecture of SSD not only makes the fabrication process of the device faster, simpler and at a lower cost when compared with other rectifying diodes, but also allows the use of various materials to realize and fabricate SSDs. This includes the utilization of `green' materials such as organic and graphene thin films for environmental sustainability. This paper reviews the properties of current `green' SSD rectifiers with respect to their operating frequencies and rectifying performances, including responsivity and noise-equivalent power of the devices, along with the applications.

  12. Development of Op-Amp Based Piezoelectric Rectifier for Low Power Energy Harvesting Applications

    Directory of Open Access Journals (Sweden)

    Syazmie Bin Sepeeh Muhamad

    2018-01-01

    Full Text Available In this study, the development of operational amplifier (op-amp based rectifier for piezoelectric energy harvesting applications was studied. The two stage op-amp full wave rectifier was used to convert the AC signal to DC signal voltage received by piezoelectric devices. The inverted half wave rectifier integrated with full wave rectifier were designed and simulated using MultiSIM software. The circuit was then fabricated onto a printed circuit board (PCB, using standard fabrication process. The achievement of this rectifier was able to boost up the maximum voltage of 5 V for input voltage of 800 mV. The output of the rectifier was in DC signal after the rectification by the op-amp. In term of power, the power dissipation was reduced consequently the waste power decreases. Future work includes optimization of the rectifying circuit to operate more efficiently can be made to increase the efficiency of the devices.

  13. Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents.

    Science.gov (United States)

    Din, Amad Ud; Chandrathna, Seneke Chamith; Lee, Jong-Wook

    2017-04-19

    Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power P OUT of 564 μW and a rectifier output voltage V RECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a P OUT of 288 μW and a V RECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier.

  14. Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents

    Science.gov (United States)

    Din, Amad Ud; Chandrathna, Seneke Chamith; Lee, Jong-Wook

    2017-01-01

    Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power POUT of 564 μW and a rectifier output voltage VRECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a POUT of 288 μW and a VRECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier. PMID:28422085

  15. MPC-SVM method for Vienna rectifier with PMSG used in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Lee, June-Seok; Bak, Yeongsu; Lee, Kyo-Beum

    2016-01-01

    Using a Vienna rectifier as the machine-side rectifier of back-to-back converter is advantageous in terms of size and cost compared to three-level topologies and for this reason, the Vienna rectifier has been used in Wind Turbine Systems (WTS). This paper proposes a Model Predictive Control (MPC......) method for the Vienna rectifier used in WTS with a Permanent Magnet Synchronous Generator (PMSG). The proposed MPC method considers the feasible eight-voltage vectors of the Vienna rectifier. In addition, the voltage vectors, which are the center voltage vectors of two feasible adjacent voltage vectors...

  16. Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Directory of Open Access Journals (Sweden)

    Saket Kumar Choudhary

    2016-06-01

    Full Text Available Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF neuron in distributed delay framework (DDF is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD. Stationary state probability distribution of membrane potential (SPDV for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1.

  17. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  18. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Directory of Open Access Journals (Sweden)

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  19. Control system for a superconducting rectifier using a microcomputer

    International Nuclear Information System (INIS)

    ten Kate, H.H.J.; Kamphuis, D.A.; Caspari, M.; van de Klundert, L.J.M.; Houkes, Z.

    1981-01-01

    Within the scope of a research program of superconducting rectifiers software is being developed to take care of the control of such systems. The hardware architecture which interferes with the in and output signals is based on a LSI-11/2 microprocessor with sufficient mass storage for data logging, console and printer. The flexibility inherent to this hardware configuration is desired for optimization of the rectifier concerning maximum current, power, efficiency and quench stability. The paper describes the structure of the program and the interaction between both computer hardware and software and the superconducting rectifier. However, because the reliability of computer systems is unsatisfactory, an additional hardware protection system still handles the most important alarms. 2 refs

  20. The energizing of a NMR superconducting coil by a superconducting rectifier

    International Nuclear Information System (INIS)

    Sikkenga, J.; ten Kate, H.H.J.; van der Klundert, L.J.M.; Knoben, J.; Kraaij, G.J.; Spuorenberg, C.J.G.

    1985-01-01

    NMR magnets require a good homogeneity within a certain volume and an excellent field stability. The homogeneity can be met using a superconducting shim coil system. The field stability requires a constant current, although in many cases the current decay time constant is too low, due to imperfections in the superconducting wire and joints. This can be overcome using a rectifier. The rectifier can also be used to load the coil. The combination and interaction of the superconducting NMR coil (2.0 Tesla and 0.35 m cold bore) and the rectifier (20 W / 1 kA) is tested. The safety of the system is discussed. The shim coil system can compensate the strayfield of the rectifier. The field decay compensation will be discussed

  1. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion

    Science.gov (United States)

    Liu, J-H; Bijlenga, P; Fischer-Lougheed, J; Occhiodoro, T; Kaelin, A; Bader, C R; Bernheim, L

    1998-01-01

    The role of K+ channels and membrane potential in myoblast fusion was evaluated by examining resting membrane potential and timing of expression of K+ currents at three stages of differentiation of human myogenic cells: undifferentiated myoblasts, fusion-competent myoblasts (FCMBs), and freshly formed myotubes. Two K+ currents contribute to a hyperpolarization of myoblasts prior to fusion: IK(NI), a non-inactivating delayed rectifier, and IK(IR), an inward rectifier. IK(NI) density is low in undifferentiated myoblasts, increases in FCMBs and declines in myotubes. On the other hand, IK(IR) is expressed in 28 % of the FCMBs and in all myotubes. IK(IR) is reversibly blocked by Ba2+ or Cs+. Cells expressing IK(IR) have resting membrane potentials of −65 mV. A block by Ba2+ or Cs+ induces a depolarization to a voltage determined by IK(NI) (−32 mV). Cs+ and Ba2+ ions reduce myoblast fusion. It is hypothesized that the IK(IR)-mediated hyperpolarization allows FCMBs to recruit Na+, K+ and T-type Ca2+ channels which are present in these cells and would otherwise be inactivated. FCMBs, rendered thereby capable of firing action potentials, could amplify depolarizing signals and may accelerate fusion. PMID:9705997

  2. A Voltage Modulated DPC Approach for Three-Phase PWM Rectifier

    DEFF Research Database (Denmark)

    Gui, Yonghao; Li, Mingshen; Lu, Jinghang

    2018-01-01

    In this paper, a voltage modulated direct power control for three-phase pulse-width modulated rectifier is proposed. With the suggested method, the differential equations describing the rectifier dynamics are changing from a linear time-varying system into a linear time-invariant one. In this way...

  3. Power converter for raindrop energy harvesting application: Half-wave rectifier

    Science.gov (United States)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  4. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling; Xu, Liang; Luo, Kai-Wu

    2014-01-01

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics

  5. Fully superconducting rectifiers and fluxpumps

    International Nuclear Information System (INIS)

    Klundert, L.J.M. van de; Kate, H.H.J. ten

    1981-01-01

    Reviewing the basic principles of operation of fluxpumps, mechanical devices such as flux compressors and dynamos are discussed and electrically driven rectifier fluxpumps, with which current levels of over 10 KA can be obtained with high performance, are considered. 132 references. (U.K.)

  6. An experimental study on the effects of rectifiers on fluid flow

    International Nuclear Information System (INIS)

    Kawashima, G.

    1985-01-01

    This paper reports studies of various combinations of rectifiers and rectifying nets to measure fluid flow and in particular, the measurement of the flow through an orifice or nozzle, since they help to shorten the inlet length

  7. 3-D printed 2.4 GHz rectifying antenna for wireless power transfer applications

    Science.gov (United States)

    Skinner, Matthew

    In this work, a 3D printed rectifying antenna that operates at the 2.4GHz WiFi band was designed and manufactured. The printed material did not have the same properties of bulk material, so the printed materials needed to be characterized. The antenna and rectifying circuit was printed out of Acrylonitrile Butadiene Styrene (ABS) filament and a conductive silver paste, with electrical components integrated into the circuit. Before printing the full rectifying antenna, each component was printed and evaluated. The printed antenna operated at the desired frequency with a return loss of -16 dBm with a bandwidth of 70MHz. The radiation pattern was measured in an anechoic chamber with good matching to the model. The rectifying circuit was designed in Ansys Circuit Simulation using Schottky diodes to enable the circuit to operate at lower input power levels. Two rectifying circuits were manufactured, one by printing the conductive traces with silver ink, and one with traces made from copper. The printed silver ink is less conductive than the bulk copper and therefore the output voltage of the printed rectifier was lower than the copper circuit. The copper circuit had an efficiency of 60% at 0dBm and the printed silver circuit had an efficiency of 28.6% at 0dBm. The antenna and rectifying circuits were then connected to each other and the performance was compared to a fully printed integrated rectifying antenna. The rectifying antennas were placed in front of a horn antenna while changing the power levels at the antenna. The efficiency of the whole system was lower than the individual components but an efficiency of 11% at 10dBm was measured.

  8. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    Science.gov (United States)

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  9. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    OpenAIRE

    Zhijian Fang; Junhua Wang; Shanxu Duan; Liangle Xiao; Guozheng Hu; Qisheng Liu

    2018-01-01

    In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feed...

  10. Electron transport in InAs/AlGaSb ballistic rectifiers

    International Nuclear Information System (INIS)

    Maemoto, Toshihiko; Koyama, Masatoshi; Furukawa, Masashi; Takahashi, Hiroshi; Sasa, Shigehiko; Inoue, Masataka

    2006-01-01

    Nonlinear transport properties of a ballistic rectifier fabricated from InAs/AlGaSb heterostructures are reported. The operation of the ballistic rectifier is based on the guidance of carriers by a square anti-dot structure. The structure was defined by electron beam lithography and wet chemical etching. The DC characteristics and magneto-transport properties of the ballistic rectifier have been measured at 77 K and 4.2 K. Rectification effects relying on the ballistic transport were observed. From the four-terminal resistance measured at low magnetic fields, we also observed magneto-resistance fluctuations corresponding to the electron trajectories and symmetry-breaking electron scattering, which are influenced by the magnetic field strength

  11. The Outwardly Rectifying Current of Layer 5 Neocortical Neurons that was Originally Identified as "Non-Specific Cationic" Is Essentially a Potassium Current.

    Directory of Open Access Journals (Sweden)

    Omer Revah

    Full Text Available In whole-cell patch clamp recordings from layer 5 neocortical neurons, blockade of voltage gated sodium and calcium channels leaves a cesium current that is outward rectifying. This current was originally identified as a "non-specific cationic current", and subsequently it was hypothesized that it is mediated by TRP channels. In order to test this hypothesis, we used fluorescence imaging of intracellular sodium and calcium indicators, and found no evidence to suggest that it is associated with influx of either of these ions to the cell body or dendrites. Moreover, the current is still prominent in neurons from TRPC1-/- and TRPC5-/- mice. The effects on the current of various blocking agents, and especially its sensitivity to intracellular tetraethylammonium, suggest that it is not a non-specific cationic current, but rather that it is generated by cesium-permeable delayed rectifier potassium channels.

  12. Three Phase Six-Switch PWM Buck Rectifier with Power Factor Improvement

    DEFF Research Database (Denmark)

    Zafar Ullah Khan, M; Mohsin Naveed, M.; Hussain, Dil Muhammad Akbar

    2013-01-01

    Conventional Phase Controlled Rectifier injects low order current harmonics into the AC mains. Large size filtering components are required to attenuate these harmonics. In this paper, Three Phase Six-Switch PWM Buck Rectifier[1] is presented which operates at nearly unity power factor and provides...

  13. DEVELOPMENT OF CONTROLLED RECTIFIERS BASED ON THE BIPOLAR WITH STATIC INDUCTION TRANSISTORS (BSIT

    Directory of Open Access Journals (Sweden)

    F. I. Bukashev

    2016-01-01

    Full Text Available Aim. The aim of this study is to develop one of the most perspective semiconductor device suitable for creation and improvement of controlled rectifiers, bipolar static induction transistor.Methods. Considered are the structural and schematic circuit controlled rectifier based on bipolar static induction transistor (BSIT, and the criterion of effectiveness controlled rectifiers - equivalent to the voltage drop.Results. Presented are the study results of controlled rectifier layout on BSIT KT698I. It sets the layout operation at an input voltage of 2.0 V at a frequency up to 750 kHz. The efficiency of the studied layouts at moderate current densities as high as 90 % .Offered is optimization of technological route microelectronic controlled rectifier manufacturing including BSIT and integrated bipolar elements of the scheme management.Conclusion. It is proved that the most efficient use of the bipolar static induction transistor occurs at the low voltage controlled rectifiers 350-400 kHz, at frequencies in conjunction with a low-voltage control circuit.It is proved that the increase of the functional characteristics of the converters is connected to the expansion of the input voltage and output current ranges

  14. New analysis and design of a RF rectifier for RFID and implantable devices.

    Science.gov (United States)

    Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei

    2011-01-01

    New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from -15 dBm to -4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitable to passive UHF RFID tag IC and implantable devices.

  15. Noise rectifier based on the two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Cheremisin, M. V., E-mail: tcher_max@yahoo.com [Ioffe Physical-Technical Institute (Russian Federation)

    2012-09-15

    The dc voltage observed at low temperatures in a 2D electron sample in the absence of noticeable external excitations [1] is accounted by the Schottky contact rectification of the noise generated in the measuring circuit. The rectified voltage is shown to depend on the asymmetry of the contact pair. The dependence of the rectified voltage on the noise amplitude first follows the trivial quadratic law, then exhibits a nearly linear behavior, and finally, levels off.

  16. A high-power magnetically switched superconducting rectifier operating at 5 Hz

    NARCIS (Netherlands)

    Mulder, G.B.J.; Krooshoop, Hendrikus J.G.; Nijhuis, Arend; ten Kate, Herman H.J.; van de Klundert, L.J.M.

    1987-01-01

    Above a certain current level, the use of a superconducting rectifier as a cryogenic current source offers advantages compared to the use of a power supply at room temperature which requires large current feed-throughs into the cryostat. In some cases, the power of such a rectifier is immaterial,

  17. G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization

    DEFF Research Database (Denmark)

    Liang, Bo; Nissen, Jakob D; Laursen, Morten

    2014-01-01

    The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle.......The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle....

  18. Biophysical characterization of inwardly rectifying potassium currents (I(K1) I(K,ACh), I(K,Ca)) using sinus rhythm or atrial fibrillation action potential waveforms

    DEFF Research Database (Denmark)

    Tang, Chuyi; Skibsbye, Lasse; Yuan, Lei

    2015-01-01

    Although several physiological, pathophysiological and regulatory properties of classical inward rectifier K+ current I(K1), G-protein coupled inwardly-rectifying K+ current I(K,ACh) and the small-conductance Ca2+ activated K+ current I(K,Ca) have been identified, quantitative biophysical details...

  19. Superhigh-frequency circuit for the EPR spectrometer with rectifier screening

    International Nuclear Information System (INIS)

    Zhizhchenko, G.A.; Tsvirko, L.V.

    1983-01-01

    The hamodyne SHF circuit of a 3-cm EPR spectrometer with a reflecting resonator is described. The optimum operating mode of SHF-rectifier at a constant phase difference is automatically assured in the circuit. The circuit employs a reflecting p-i-n- attenuator and a SHF-rectifier sereen which simplify the spectrometer tuming. The circuit is used in a miniature EPR radiospectrometer Minsk EPR-6-type

  20. Comparison of thyristor rectifier characteristics with different gate control systems

    International Nuclear Information System (INIS)

    Gula, V.; Cherepakhin, A.A.

    1982-01-01

    Some thyristor gate control systems both synchronous and nonsynchronous ones are described. The experimental results of supply voltage asymmetry influence on spectral contents of rectified. output voltage are quoted. Dynamic and frequency responses of these systems are investigated too. Results of comparison of the spectral content of 100 Hz subharmonic of rectified voltage on loading current showed the advantage of the systems with feedback [ru

  1. Reduction of Harmonics by 18-Pulse Rectifier

    Directory of Open Access Journals (Sweden)

    Stanislav Kocman

    2008-01-01

    Full Text Available Operation of such electrical devices as data processing and electronics devices, adjustable speed drives or uninterruptible power supply can cause problems by generating harmonic currents into the network, from which they are supplied. Effects of these harmonic currents are various, they can get worse the quality of supply voltage in the network or to have negative influences on devices connected to this network. There are various technical solutions for reduction of harmonics. One of them is using of multi-pulse rectifiers, whereas the 18-pulse rectifier in the structure of adjustable speed drive is briefly presented in this paper including some results of its behaviour. The examined experimental measurements confirmed its very good efficiency in the harmonic mitigation.

  2. Dynamic and Control Analysis of Modular Multi-Parallel Rectifiers (MMR)

    DEFF Research Database (Denmark)

    Zare, Firuz; Ghosh, Arindam; Davari, Pooya

    2017-01-01

    This paper presents dynamic analysis of a Modular Multi-Parallel Rectifier (MMR) based on state-space modelling and analysis. The proposed topology is suitable for high power application which can reduce line current harmonics emissions significantly. However, a proper controller is required...... to share and control current through each rectifier. Mathematical analysis and preliminary simulations have been carried out to verify the proposed controller under different operating conditions....

  3. Attenuation of ischemia/reperfusion-induced inhibition of the rapid component of delayed rectifier potassium current by Isosteviol through scavenging reactive oxygen species.

    Science.gov (United States)

    Yin, Chunxia; Chen, Yaoxu; Wu, Huanlin; Xu, Danping; Tan, Wen

    2017-12-01

    Isosteviol has been demonstrated to play a protective role during ischemia reperfusion (I/R) myocardial infarction. However, the underlying electrophysiological mechanisms of isosteviol are still unknown. Our previous study showed that the rapid component of the delayed rectifier potassium channel (I Kr ) plays an important role in the prolongation of I/R-induced QT interval-related arrhythmia. This study aimed to investigate whether isosteviol could attenuate I/R-induced prolongation of the action potential duration (APD) along with inhibition of I Kr , and we aimed to clarify the electrophysiological mechanism of isosteviol to determine its cardioprotective effects in guinea pigs. We observed that the APD 90 were 298.5±41.6ms in control, 528.6±56.7ms during I/R, and reduced to 327.8±40.5ms after 10μmol/L of isosteviol treatment. The I Kr currents were 1.44±0.06 pA·pF -1 in the control group, 0.50±0.07pA·pF -1 during I/R, and recovered to 1.20±0.12pA·pF -1 after 10μmol/L of isoteviol treatment. Moreover, isosteviol reduced the over-production of reactive oxygen species (ROS) during I/R. Importantly, isosteviol does not affect the I Kr and human ether-a-go-go-related gene currents of normal cardiomyocytes. It attenuated the I/R-induced inhibition of I Kr due to reduced over-production of ROS. Furthermore, isosteviol is safe and has no cardiotoxicity, and it might be beneficial for coronary reperfusion therapy. Copyright © 2017. Published by Elsevier B.V.

  4. Investigation on a Novel Discontinuous Pulse-Width Modulation Algorithm for Single-phase Voltage Source Rectifier

    DEFF Research Database (Denmark)

    Qu, Hao; Yang, Xijun; Guo, Yougui

    2014-01-01

    Single-phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). Single-phase VSC...

  5. Torsion angle dependence of the rectifying performance in molecular device with asymmetrical anchoring groups

    International Nuclear Information System (INIS)

    Wang, L.H.; Guo, Y.; Tian, C.F.; Song, X.P.; Ding, B.J.

    2010-01-01

    Using first-principles density functional theory and nonequilibrium Green's function formalism, we investigate the effect of torsion angle on the rectifying characteristics of 4'-thiolate-biphenyl-4-dithiocarboxylate sandwiched between two Au(111) electrodes. The results show that the torsion angle has an evident influence on rectifying performance of such devices. By increasing the dihedral angle between two phenyl rings, namely changing the magnitude of the intermolecular coupling effect, a different rectifying behavior can be observed in these systems. Our findings highlight that the rectifying characteristics are intimately related to dihedral angles and can provide fundamental guidelines for the design of functional molecular devices.

  6. Study of 18-Pulse Rectifier Utilizing Hexagon Connected 3-Phase to 9-Phase Transformer

    Directory of Open Access Journals (Sweden)

    Ahmad Saudi Samosir

    2008-04-01

    Full Text Available The 18-pulse converter, using Y or -connected differential autotransformer, is very interesting since it allows natural high power factor correction. The lowest input current harmonic components are the 17th and 19th. The Transformer is designed to feed three six-pulse bridge rectifiers displaced in phase by 200. This paper present a high power factor three-phase rectifier bases on 3-phase to 9-phase transformer and 18-pulse rectifier. The 9-phase polygon-connected transformer followed by 18-pulse diode rectifiers ensures the fundamental concept of natural power factor correction. Simulation results to verify the proposed concept are shown in this paper.

  7. Detection of vortex-core dynamics using current-induced self-bistable rectifying effect

    International Nuclear Information System (INIS)

    Goto, M; Hata, H; Yamaguchi, A; Miyajima, H; Nozaki, Y; Nakatani, Y; Yamaoka, T

    2011-01-01

    A magnetic vortex core confined in a micron-scale magnetic disk is resonantly excited by spin-polarized radio-frequency (rf) current and rf field. We show that rectifying voltage spectra caused by the vortex core resonance is dependent on the core polarity. Rectifying voltage spectra are given by the superposition of the polarity-dependent term and the polarity-independent term. The sign of the polarity-dependent rectifying voltage reverses when the sign of polarity P or external field H is reversed. This experimental result can be explained by the anisotropic magnetoresistance effect caused by the vortex core motion.

  8. Solid state thermal rectifier

    Science.gov (United States)

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  9. A novel approach to determine the interphase transformer inductance of 18 pulse rectifiers

    International Nuclear Information System (INIS)

    Sefa, Ibrahim; Altin, Necmi

    2009-01-01

    The interphase transformer inductance seriously affects the performance of 18 pulse rectifiers. Low inductance values cause non-characteristic harmonics whereas high inductance values increase the rectifier cost and size. Hence, determination of the interphase transformer inductance value is an important problem in the design of 18 pulse rectifiers. In this paper, an approach to determine the optimum inductance value of an interphase transformer is proposed and a practical formula is introduced. The proposed approach has been validated with simulation and experimental studies carried out with designed capacitive loaded autotransformer based 18 pulse rectifier for different IPT inductance values at different load levels. Experimental and simulation results show that cost effective interphase transformer inductance value can be determined with the proposed approach and this value reduces the line current harmonics and improves power factor drastically.

  10. Time delay effects on large-scale MR damper based semi-active control strategies

    International Nuclear Information System (INIS)

    Cha, Y-J; Agrawal, A K; Dyke, S J

    2013-01-01

    This paper presents a detailed investigation on the robustness of large-scale 200 kN MR damper based semi-active control strategies in the presence of time delays in the control system. Although the effects of time delay on stability and performance degradation of an actively controlled system have been investigated extensively by many researchers, degradation in the performance of semi-active systems due to time delay has yet to be investigated. Since semi-active systems are inherently stable, instability problems due to time delay are unlikely to arise. This paper investigates the effects of time delay on the performance of a building with a large-scale MR damper, using numerical simulations of near- and far-field earthquakes. The MR damper is considered to be controlled by four different semi-active control algorithms, namely (i) clipped-optimal control (COC), (ii) decentralized output feedback polynomial control (DOFPC), (iii) Lyapunov control, and (iv) simple-passive control (SPC). It is observed that all controllers except for the COC are significantly robust with respect to time delay. On the other hand, the clipped-optimal controller should be integrated with a compensator to improve the performance in the presence of time delay. (paper)

  11. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    Science.gov (United States)

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.

  12. A Modular Active Front-End Rectifier with Electronic Phase-Shifting for Harmonic Mitigation in Motor Drive Applications

    DEFF Research Database (Denmark)

    Zare, Firuz; Davari, Pooya; Blaabjerg, Frede

    2017-01-01

    In this paper, an electronic phase-shifting strategy has been optimized for a multi-parallel configuration of line-commutated rectifiers with a common dc-bus voltage used in motor drive application. This feature makes the performance of the system independent of the load profile and maximizes its...

  13. A Theoretical Investigation on Rectifying Performance of a Single Motor Molecular Device

    International Nuclear Information System (INIS)

    Lei Hui; Tan Xun-Qiong

    2015-01-01

    We report ab initio calculations of the transport behavior of a phenyl substituted molecular motor. The calculated results show that the transport behavior of the device is sensitive to the rotation degree of the rotor part. When the rotor part is parallel with the stator part, a better rectifying performance can be found in the current-voltage curve. However, when the rotor part revolves to vertical with the stator part, the currents in the positive bias region decrease slightly. More importantly, the rectifying performance disappears. Thus this offers us a new method to modulate the rectifying behavior in molecular devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Factors associated with delay in trauma team activation and impact on patient outcomes.

    Science.gov (United States)

    Connolly, Rory; Woo, Michael Y; Lampron, Jacinthe; Perry, Jeffrey J

    2017-09-05

    Trauma code activation is initiated by emergency physicians using physiological and anatomical criteria, mechanism of injury, and patient demographic factors. Our objective was to identify factors associated with delayed trauma team activation. We assessed consecutive cases from a regional trauma database from January 2008 to March 2014. We defined a delay in trauma code activation as a time greater than 30 minutes from the time of arrival. We conducted univariate analysis for factors potentially influencing trauma team activation, and we subsequently used multiple logistic regression analysis models for delayed activation in relation to mortality, length of stay, and time to operative management. Patients totalling 846 were included for our analysis; 4.1% (35/846) of trauma codes were activated after 30 minutes. Mean age was 40.8 years in the early group versus 49.2 in the delayed group (p=0.01). Patients were over age 70 years in 7.6% in the early activation group versus 17.1% in the delayed group (p=0.04). There was no significant difference in sex, type of injury, injury severity, or time from injury between the two groups. There was no significant difference in mortality, median length of stay, or median time to operative management. Delayed activation is linked with increasing age with no clear link to increased mortality. Given the severe injuries in the delayed cohort that required activation of the trauma team, further emphasis on the older trauma patient and interventions to recognize this vulnerable population should be made.

  15. Universal Voltage Conveyor and Current Conveyor in Fast Full-Wave Rectifier

    Directory of Open Access Journals (Sweden)

    Josef Burian

    2012-12-01

    Full Text Available This paper deals about the design of a fast voltage-mode full-wave rectifier, where universal voltage conveyor and second-generation current conveyor are used as active elements. Thanks to the active elements, the input and output impedance of the non-linear circuit is infinitely high respectively zero in theory. For the rectification only two diodes and three resistors are required as passive elements. The performance of the circuit is shown on experimental measurement results showing the dynamic range, time response, frequency dependent DC transient value and RMS error for different values of input voltage amplitudes.

  16. 19 rectifiers to supply the coils of the TCV tokamak

    International Nuclear Information System (INIS)

    Fasel, D.; Perez, A.; Depreville, G.; Puchar, F.; Pahud, J.D.

    1990-01-01

    This paper describes the electrical network designed to supply the 19 coils of the TCV (Tokamak a Configuration Variable) tokamak. After a brief description of the main purpose of TCV, the general characteristics of the TCV network are given. Then the technical choices made for the rectifier power stage are detailed. There follows a description of the rectifier digital control electronics. Comments on simulations carried out and the actual status conclude the paper. (author) 3 refs., 5 figs., 2 tabs

  17. Theoretical study on the rectifying performance of organoimido derivatives of hexamolybdates.

    Science.gov (United States)

    Wen, Shizheng; Yang, Guochun; Yan, Likai; Li, Haibin; Su, Zhongmin

    2013-02-25

    We design a new type of molecular diode, based on the organoimido derivatives of hexamolybdates, by exploring the rectifying performances using density functional theory combined with the non-equilibrium Green's function. Asymmetric current-voltage characteristics were obtained for the models with an unexpected large rectification ratio. The rectifying behavior can be understood by the asymmetrical shift of the transmission peak observed under different polarities. It is interesting to find that the preferred electron-transport direction in our studied system is different from that of the organic D-bridge-A system. The results show that the studied organic-inorganic hybrid systems have an intrinsically robust rectifying ratio, which should be taken into consideration in the design of the molecular diodes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    Science.gov (United States)

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  19. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2013-01-01

    Full Text Available This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR or a coupled current-doubler rectifier (CCDR is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  20. Fast switching wideband rectifying circuit for future RF energy harvesting

    Science.gov (United States)

    Asmeida, Akrem; Mustam, Saizalmursidi Md; Abidin, Z. Z.; Ashyap, A. Y. I.

    2017-09-01

    This paper presents the design and simulation of fast switching microwave rectifying circuit for ultra wideband patch antenna over a dual-frequency band (1.8 GHz for GSM and 2.4 GHz for ISM band). This band was chosen due to its high signal availability in the surrounding environment. New rectifying circuit topology with pair-matching trunks is designed using Advanced Design System (ADS) software. These trunks are interfaced with power divider to achieve good bandwidth, fast switching and high efficiency. The power divider acts as a good isolator between the trunks and its straightforward design structure makes it a good choice for a single feed UWB antenna. The simulated results demonstrate that the maximum output voltage is 2.13 V with an input power of -5 dBm. Moreover, the rectifier offers maximum efficiency of 86% for the input power of -5 dBm at given band, which could easily power up wireless sensor networks (WSN) and other small devices sufficiently.

  1. Modelling a single phase voltage controlled rectifier using Laplace transforms

    Science.gov (United States)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  2. Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    International Nuclear Information System (INIS)

    Long Yunze; Yin Zhihua; Hui Wen; Chen Zhaojia; Wan Meixiang

    2008-01-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I – V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. The harmonic composition of the output voltage of a rectifier unit with a PWM voltage booster converter.

    OpenAIRE

    ПАНЧЕНКО, В В

    2015-01-01

    The author investigates a rectifier unit constructed on the basis of cascade connection of the main non-controlled m-pulse rectifier and PWM voltage booster converter. The research presents the analysis of the harmonic composition of the output voltage of a rectifier unit with a PWM voltage booster converter on completely controlled keys. The dependence of the relative harmonic amplitude on the commutation corner is defined. The estimation of a rectifier unit electromagnetic compatibility wit...

  4. A 50–60 GHz mm-wave rectifier with bulk voltage bias in 65-nm CMOS

    NARCIS (Netherlands)

    Gao, H.; Matters-Kammerer, M.; Harpe, P.; Baltus, P.

    2016-01-01

    This letter presents a 50∼60 GHz fully integrated 3-stage rectifier with bulk voltage bias for threshold voltage modulation in a 65-nm CMOS technology, which can be integrated in a mm-wave hybrid rectifier structure as the main rectifier. In this letter, the new technique of bulk voltage bias is

  5. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    International Nuclear Information System (INIS)

    Zhao Peng; Zhang Ying; Wang Pei-Ji; Zhang Zhong; Liu De-Sheng

    2011-01-01

    Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C 60 nanotube caps. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Effect of rotor rectifier on motor performance in slip recovery drives

    Energy Technology Data Exchange (ETDEWEB)

    Al Zahawi, B.A.T.; Jones, B.L.; Drury, W.

    1987-01-01

    The static Kramer system, comprising a slip-ring induction motor and a slip energy recovery circuit, is one of the simplest and most efficient forms of ac variable-speed drive. It is sometimes used to upgrade drives which had originally been designed for fixed speed operation, often with substantial energy savings. In such cases, it is important to know how the inclusion of a rectifier in the slip energy recovery circuit affects motor performance. A satisfactory model for the motor-rectifier combination is also needed to provide a sound basis for assessing alternative forms of recovery systems which aim to overcome the principal shortcomings of the drive, namely the magnitude and variability of its reactive power. Despite its simplicity, the Kramer drive presents a formidable analytical challenge. Rigorous analysis is particularly difficult and there is a need for a simpler form of analysis when calculating ratings and steady-state performance. The approach taken in this paper uses a transformer-type model for the motor, and largely analytical expressions for predicting torque, stator power, stator reactive power and rectifier output voltage. Motor resistances, diode characteristics, and the several possible rectifier overlap modes are included. It is shown that the rectifier has an adverse effect on stator reactive power, power factor, and peak torque, particularly at speeds well below synchronous, requiring some derating of motors designed for resistance control and also requiring additional power factor correction. While the analysis does not cater to variations caused by harmonics at some speeds, it does provide a quick, accurate method of predicting performance over most sections of the operating range. 12 refs., 11 figs.

  7. High Voltage GaN Schottky Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  8. Thirty-six pulse rectifier scheme based on zigzag auto-connected transformer

    Directory of Open Access Journals (Sweden)

    Xiao-Qiang Chen

    2016-03-01

    Full Text Available In this paper, a low kilo-volt-ampere rating zigzag connected autotransformer based 36-pulse rectifier system supplying vector controlled induction motor drives (VCIMD is designed, modeled and simulated. Detailed design procedure and magnetic rating calculation of the proposed autotransformer and interphase reactor is studied. Moreover, the design process of the autotransformer is modified to make it suitable for retrofit applications. Simulation results confirm that the proposed 36-pulse rectifier system is able to suppress less than 35th harmonics in the utility line current. The influence of load variation and load character is also studied to demonstrate the performance and effectiveness of the proposed 36-pulse rectifiers. A set of power quality indices at AC mains and DC link are presented to compare the performance of 6-, 24- and 36-pulse AC-DC converters.

  9. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.

    Science.gov (United States)

    Hashemi, S Saeid; Sawan, Mohamad; Savaria, Yvon

    2012-08-01

    We present, in this paper, a new full-wave CMOS rectifier dedicated for wirelessly-powered low-voltage biomedical implants. It uses bootstrapped capacitors to reduce the effective threshold voltage of selected MOS switches. It achieves a significant increase in its overall power efficiency and low voltage-drop. Therefore, the rectifier is good for applications with low-voltage power supplies and large load current. The rectifier topology does not require complex circuit design. The highest voltages available in the circuit are used to drive the gates of selected transistors in order to reduce leakage current and to lower their channel on-resistance, while having high transconductance. The proposed rectifier was fabricated using the standard TSMC 0.18 μm CMOS process. When connected to a sinusoidal source of 3.3 V peak amplitude, it allows improving the overall power efficiency by 11% compared to the best recently published results given by a gate cross-coupled-based structure.

  10. Design and test of a 2.25-MW transformer rectifier assembly

    Science.gov (United States)

    Cormier, R.; Daeges, J.

    1989-01-01

    A new 2.25-MW transformer rectifier assembly was fabricated for DSS-13 at Goldstone, California. The transformer rectifier will provide constant output power of 2.25 MW at any voltage from 31 kV to 125 kV. This will give a new capability of 1 MW of RF power at X-band, provided appropriate microwave tubes are in the power amplifier. A description of the design and test results is presented.

  11. 75 FR 24747 - SCI, LLC/Zener-Rectifier Operations Division A Wholly Owned Subsidiary of SCI, LLC/ON...

    Science.gov (United States)

    2010-05-05

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,235] SCI, LLC/Zener-Rectifier... Adjustment Assistance on October 19, 2009, applicable to workers of SCI LLC/Zener-Rectifier, Operations... Technical Resources were employed on-site at the Phoenix Arizona location of SCI LLC/Zener-Rectifier...

  12. Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus.

    Science.gov (United States)

    Sommer, M A; Wurtz, R H

    2001-04-01

    Many neurons within prefrontal cortex exhibit a tonic discharge between visual stimulation and motor response. This delay activity may contribute to movement, memory, and vision. We studied delay activity sent from the frontal eye field (FEF) in prefrontal cortex to the superior colliculus (SC). We evaluated whether this efferent delay activity was related to movement, memory, or vision, to establish its possible functions. Using antidromic stimulation, we identified 66 FEF neurons projecting to the SC and we recorded from them while monkeys performed a Go/Nogo task. Early in every trial, a monkey was instructed as to whether it would have to make a saccade (Go) or not (Nogo) to a target location, which permitted identification of delay activity related to movement. In half of the trials (memory trials), the target disappeared, which permitted identification of delay activity related to memory. In the remaining trials (visual trials), the target remained visible, which permitted identification of delay activity related to vision. We found that 77% (51/66) of the FEF output neurons had delay activity. In 53% (27/51) of these neurons, delay activity was modulated by Go/Nogo instructions. The modulation preceded saccades made into only part of the visual field, indicating that the modulation was movement-related. In some neurons, delay activity was modulated by Go/Nogo instructions in both memory and visual trials and seemed to represent where to move in general. In other neurons, delay activity was modulated by Go/Nogo instructions only in memory trials, which suggested that it was a correlate of working memory, or only in visual trials, which suggested that it was a correlate of visual attention. In 47% (24/51) of FEF output neurons, delay activity was unaffected by Go/Nogo instructions, which indicated that the activity was related to the visual stimulus. In some of these neurons, delay activity occurred in both memory and visual trials and seemed to represent a

  13. Activation delay-induced mechanical dyssynchrony in single-ventricle heart disease

    DEFF Research Database (Denmark)

    Forsha, Daniel; Risum, Niels; Barker, Piers

    2017-01-01

    We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome.......We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome....

  14. An RF Energy Harvester System Using UHF Micropower CMOS Rectifier Based on a Diode Connected CMOS Transistor

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shokrani

    2014-01-01

    Full Text Available This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier’s output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.

  15. 2011 NOAA Ortho-rectified Mosaic of Galveston, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  16. Competitive inhibition can linearize dose-response and generate a linear rectifier.

    Science.gov (United States)

    Savir, Yonatan; Tu, Benjamin P; Springer, Michael

    2015-09-23

    Many biological responses require a dynamic range that is larger than standard bi-molecular interactions allow, yet the also ability to remain off at low input. Here we mathematically show that an enzyme reaction system involving a combination of competitive inhibition, conservation of the total level of substrate and inhibitor, and positive feedback can behave like a linear rectifier-that is, a network motif with an input-output relationship that is linearly sensitive to substrate above a threshold but unresponsive below the threshold. We propose that the evolutionarily conserved yeast SAGA histone acetylation complex may possess the proper physiological response characteristics and molecular interactions needed to perform as a linear rectifier, and we suggest potential experiments to test this hypothesis. One implication of this work is that linear responses and linear rectifiers might be easier to evolve or synthetically construct than is currently appreciated.

  17. Exploring the daily activities associated with delayed bedtime of Japanese university students.

    Science.gov (United States)

    Asaoka, Shoichi; Komada, Yoko; Fukuda, Kazuhiko; Sugiura, Tatsuki; Inoue, Yuichi; Yamazaki, Katuo

    2010-07-01

    University students show delayed sleep-wake patterns, i.e., later bed- and rise-times, and this pattern is known to be associated with various malfunctions. There may be a variety of daily activities associated with their delayed sleep patterns, such as watching TV. However, it is unclear to what extent each activity possesses an impact on their sleep patterns. The purpose of this study was to determine the daily activities associated with delayed bedtime in Japanese university students who live with or without their families. Three hundred and thirty-one participants were required to record the timing and duration of their sleep and daily activities, and the data from the 275 students (160 men and 115 women; 19.01 +/- 1.66 years) who completely filled forms were used for analysis. The results of multiple regression analyses suggested that interpersonal communication late at night is one of the major factors leading to the delayed bedtime of students living away from home. Among those living with their families, indoor activities such as watching TV and using the Internet were related to their delayed bedtimes. Attending classes and having a morning meal were related to the earlier bedtimes of the students living away from home, but there were no activities associated with those of the students living with their families. These results suggest that ensuring attendance at morning classes and having appropriate mealtimes, as well as restricting the use of visual media and socializing activities at night, are necessary for preventing late bedtimes in university students.

  18. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  19. Wideband Small-Signal Input dq Admittance Modeling of Six-Pulse Diode Rectifiers

    DEFF Research Database (Denmark)

    Yue, Xiaolong; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper studies the wideband small-signal input dq admittance of six-pulse diode rectifiers. Considering the frequency coupling introduced by ripple frequency harmonics of d-and q-channel switching function, the proposed model successfully predicts the small-signal input dq admittance of six......-pulse diode rectifiers in high frequency regions that existing models fail to explain. Simulation and experimental results verify the accuracy of the proposed model....

  20. Modeling and control of three phase rectifier with electronic smoothing inductor

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben Ole

    2011-01-01

    This paper presents a simple, direct method for deriving the approximate, small-signal, average model and control strategy for three-phase diode bridge rectifier operating with electronic smoothing technique. Electronic smoothing inductor (ESI) performs the function of an inductor that has...... controlled variable impedance. This increases power factor (PF) and reduces total harmonic distortions (THDs) in mains current. The ESI based rectifier enables compact and cost effective design of three phase electric drive as size of passive components is reduced significantly. In order to carry out...

  1. Functions of delay-period activity in the prefrontal cortex and mnemonic scotomas revisited

    Directory of Open Access Journals (Sweden)

    Shintaro eFunahashi

    2015-02-01

    Full Text Available Working memory is one of key concepts to understand functions of the prefrontal cortex. Delay-period activity is an important neural correlate to understand the role of working memory in prefrontal functions. The importance of delay-period activity is that this activity can encode not only visuospatial information but also a variety of information including non-spatial visual features, auditory and tactile stimuli, task rules, expected reward, and numerical quantity. This activity also participates in a variety of information processing including sensory-to-motor information transformation. These mnemonic features of delay-period activity enable to perform various important operations that the prefrontal cortex participates in, such as executive controls, and therefore, support the notion that working memory is an important function to understand prefrontal functions. On the other hand, although experiments using manual versions of the delayed-response task had revealed many important findings, an oculomotor version of this task enabled us to use multiple cue positions, exclude postural orientation during the delay period, and further prove the importance of mnemonic functions of the prefrontal cortex. In addition, monkeys with unilateral lesions exhibited specific impairment only in the performance of memory-guided saccades directed toward visual cues in the visual field contralateral to the lesioned hemisphere. This result indicates that memories for visuospatial coordinates in each hemifield are processed primarily in the contralateral prefrontal cortex. This result further strengthened the idea of mnemonic functions of the prefrontal cortex. Thus, the mnemonic functions of the prefrontal cortex and delay-period activity may not need to be reconsidered, but should be emphasized.

  2. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P 2 ) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial K ACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P 2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P 2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P 2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P 2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.

    Science.gov (United States)

    Goldoni, Dana; Zhao, YouYou; Green, Brian D; McDermott, Barbara J; Collins, Anthony

    2010-11-01

    HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150  mV to 148 µM at -75  mV in 120  mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. © 2010 Wiley-Liss, Inc.

  5. Biradical and triradical organic magnetic molecules as spin filters and rectifiers

    International Nuclear Information System (INIS)

    Zhu, L.; Yao, K.L.; Liu, Z.L.

    2012-01-01

    Graphical abstract: (a) Negative differential resistance (NDR) characteristic and antiparallel spin-current (ASC) rectification; (b) spin-current (SC) rectification and charge-current (CC) rectification properties Display Omitted Highlights: ► Organic magnetic molecules at gold electrodes as spin/charge rectifier. ► Spin diode/rectification stems from length and asymmetry of molecular framework. ► Negative differential resistance, spin-filtering and switching evidenced. - Abstract: We have theoretically investigated the spin-polarized transport properties of molecular junctions consisting of biradical and triradical organic magnetic molecules sandwiched between two symmetric gold electrodes, respectively. It shows that these junctions function as a spin rectifier or a combination of spin and charge rectifiers with high spin rectification ratios exceeding 100, wherein the spin diode/rectification effect stems from the conjugated length and asymmetry of the molecular framework, which is the pre-requisite for electronic asymmetry of the adsorbed species. The negative differential resistance, spin-filtering and switching properties are also unveiled. In particular, it is revealed that the strong couplings between the electrodes and molecules are responsible for the negative differential resistance.

  6. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    Directory of Open Access Journals (Sweden)

    Zhijian Fang

    2018-03-01

    Full Text Available In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feedback inner loop is proposed to increase the control system damping, improving dynamic performance. The modeling and design methodology for the LLC resonant converter are also presented in this paper. A frequency analysis is conducted to verify the accuracy of the simplified model. Finally, a 200 W LLC resonant converter prototype is built to verify the effectiveness of the proposed control strategy. Compared to a traditional single-loop controller, the settling time and voltage droop were reduced from 10.8 ms to 8.6 ms and from 6.8 V to 4.8 V, respectively, using the proposed control strategy.

  7. 2012 NOAA Ortho-rectified Color Mosaic of Astoria, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2011 NOAA Ortho-rectified Mosaic of Intracoastal Waterway, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. 2010 NOAA Ortho-rectified Mosaic of Lake Champlain, Vermont

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    Science.gov (United States)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  11. Experimental investigation of radiative thermal rectifier using vanadium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Nishikawa, Kazutaka; Iizuka, Hideo [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-12-22

    Vanadium dioxide (VO{sub 2}) exhibits a phase-change behavior from the insulating state to the metallic state around 340 K. By using this effect, we experimentally demonstrate a radiative thermal rectifier in the far-field regime with a thin film VO{sub 2} deposited on the silicon wafer. A rectification contrast ratio as large as two is accurately obtained by utilizing a one-dimensional steady-state heat flux measurement system. We develop a theoretical model of the thermal rectifier with optical responses of the materials retrieved from the measured mid-infrared reflection spectra, which is cross-checked with experimentally measured heat flux. Furthermore, we tune the operating temperatures by doping the VO{sub 2} film with tungsten (W). These results open up prospects in the fields of thermal management and thermal information processing.

  12. OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant.

    Science.gov (United States)

    Taylor, Clinton A; An, Sung-Wan; Kankanamalage, Sachith Gallolu; Stippec, Steve; Earnest, Svetlana; Trivedi, Ashesh T; Yang, Jonathan Zijiang; Mirzaei, Hamid; Huang, Chou-Long; Cobb, Melanie H

    2018-04-10

    The with-no-lysine (K) (WNK) signaling pathway to STE20/SPS1-related proline- and alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinase is an important mediator of cell volume and ion transport. SPAK and OSR1 associate with upstream kinases WNK 1-4, substrates, and other proteins through their C-terminal domains which interact with linear R-F-x-V/I sequence motifs. In this study we find that SPAK and OSR1 also interact with similar affinity with a motif variant, R-x-F-x-V/I. Eight of 16 human inward rectifier K + channels have an R-x-F-x-V motif. We demonstrate that two of these channels, Kir2.1 and Kir2.3, are activated by OSR1, while Kir4.1, which does not contain the motif, is not sensitive to changes in OSR1 or WNK activity. Mutation of the motif prevents activation of Kir2.3 by OSR1. Both siRNA knockdown of OSR1 and chemical inhibition of WNK activity disrupt NaCl-induced plasma membrane localization of Kir2.3. Our results suggest a mechanism by which WNK-OSR1 enhance Kir2.1 and Kir2.3 channel activity by increasing their plasma membrane localization. Regulation of members of the inward rectifier K + channel family adds functional and mechanistic insight into the physiological impact of the WNK pathway.

  13. A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density

    Science.gov (United States)

    Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve

    2018-02-01

    Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17  ×  107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13  ×  1012 cm-2 eV-1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.

  14. Impaired Na⁺-dependent regulation of acetylcholine-activated inward-rectifier K⁺ current modulates action potential rate dependence in patients with chronic atrial fibrillation.

    Science.gov (United States)

    Voigt, Niels; Heijman, Jordi; Trausch, Anne; Mintert-Jancke, Elisa; Pott, Lutz; Ravens, Ursula; Dobrev, Dobromir

    2013-08-01

    Shortened action-potential duration (APD) and blunted APD rate adaptation are hallmarks of chronic atrial fibrillation (cAF). Basal and muscarinic (M)-receptor-activated inward-rectifier K(+) currents (IK1 and IK,ACh, respectively) contribute to regulation of human atrial APD and are subject to cAF-dependent remodeling. Intracellular Na(+) ([Na(+)]i) enhances IK,ACh in experimental models but the effect of [Na(+)]i-dependent regulation of inward-rectifier K(+) currents on APD in human atrial myocytes is currently unknown. Here, we report a [Na(+)]i-dependent inhibition of outward IK1 in atrial myocytes from sinus rhythm (SR) or cAF patients. In contrast, IK,ACh activated by carbachol, a non-selective M-receptor agonist, increased with elevation of [Na(+)]i in SR. This [Na(+)]i-dependent IK,ACh regulation was absent in cAF. Including [Na(+)]i dependence of IK1 and IK,ACh in a recent computational model of the human atrial myocyte revealed that [Na(+)]i accumulation at fast rates inhibits IK1 and blunts physiological APD rate dependence in both groups. [Na(+)]i-dependent IK,ACh augmentation at fast rates increased APD rate dependence in SR, but not in cAF. These results identify impaired Na(+)-sensitivity of IK,ACh as one potential mechanism contributing to the blunted APD rate dependence in patients with cAF. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes". Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Comparative Evaluation of Three-Phase Isolated Matrix-Type PFC Rectifier Concepts for High Efficiency 380VDC Supplies of Future Telco and Data Centers

    DEFF Research Database (Denmark)

    Cortes, Patricio; Bortis, Dominik; Pittini, Riccardo

    2014-01-01

    rectifier and in many cases a mains transformer is used to provide galvanic isolation. In order to achieve a high efficiency in the DC voltage generation and to implement the required isolation, a single-stage concept, such as a matrix-type rectifier that enables PFC functionality and galvanic isolation...... in a single conversion, can be beneficial. In addition, due to the fact that with the matrix-type rectifier the galvanic isolation is performed with a high-frequency transformer, this results in a more compact rectifier system compared to conventional systems where the mains-frequency isolation transformer...... is located at the input of the PFC rectifier. In this paper, an overview of isolated matrix-type PFC rectifier topologies is given and a new converter circuit is proposed, analyzed and comparatively evaluated against another promising PFC rectifier concept, the phase-modular IMY-rectifier....

  16. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life

    Science.gov (United States)

    Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.

    2013-01-01

    Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663

  17. Multi-service highly sensitive rectifier for enhanced RF energy scavenging.

    Science.gov (United States)

    Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran

    2015-05-07

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869 MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of -10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments.

  18. Engineered Asymmetric Composite Membranes with Rectifying Properties.

    Science.gov (United States)

    Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei

    2016-01-27

    Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rectifier Design Challenges for RF Wireless Power Transfer and Energy Harvesting Systems

    Directory of Open Access Journals (Sweden)

    A. Collado

    2017-06-01

    Full Text Available The design of wireless power transfer (WPT and energy harvesting (EH solutions poses different challenges towards achieving maximum RF-DC conversion efficiency in these systems. This paper covers several selected challenges when developing WPT and electromagnetic EH solutions, such as the design of multiband and broadband rectifiers, the minimization of the effect that load and input power variations may have on the system performance and finally the most optimum power combining mechanisms that can be used when dealing with multi-element rectifiers.

  20. A Novel Current-Mode Full-Wave Rectifier Based on One CDTA and Two Diodes

    Directory of Open Access Journals (Sweden)

    F. Khateb

    2010-09-01

    Full Text Available Precision rectifiers are important building blocks for analog signal processing. The traditional approach based on diodes and operational amplifiers (OpAmps exhibits undesirable effects caused by limited OpAmp slew rate and diode commutations. In the paper, a full-wave rectifier based on one CDTA and two Schottky diodes is presented. The PSpice simulation results are included.

  1. Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control

    Directory of Open Access Journals (Sweden)

    Jianeng Tang

    2014-01-01

    Full Text Available Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.

  2. Time delay between cardiac and brain activity during sleep transitions

    NARCIS (Netherlands)

    Long, X.; Arends, J.B.A.M.; Aarts, R.M.; Haakma, R.; Fonseca, P.; Rolink, J.

    2015-01-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by

  3. Analysis of Three-Phase Rectifier Systems with Controlled DC-Link Current Under Unbalanced Grids

    DEFF Research Database (Denmark)

    Kumar, Dinesh; Davari, Pooya; Zare, Firuz

    2017-01-01

    Voltage unbalance is the most common disturbance in distribution networks, which give undesirable effects on many grid connected power electronics systems including Adjustable Speed Drive (ASD). Severe voltage unbalance can force three-phase rectifiers into almost single-phase operation, which...... degrades the grid power quality and also imposes a significant negative impact on the ASD system. This major power quality issue affecting the conventional rectifiers can be attenuated by controlling the DC-link current based on an Electronic Inductor (EI) technique. The purpose of this digest...... is to analyze and compare the performance of an EI with a conventional three-phase rectifier under unbalanced grid conditions. Experimental and simulation results validate the proposed mathematical modelling. Further analysis and benchmarking will be provided in the final paper....

  4. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    Science.gov (United States)

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Biradical and triradical organic magnetic molecules as spin filters and rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L. [School of Physics, School of Optoelectronics Science and Engineering, Wuhan Pulsed Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, K.L., E-mail: klyao@hust.edu.cn [School of Physics, School of Optoelectronics Science and Engineering, Wuhan Pulsed Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, Chinese Academy of Science, Shengyang 110015 (China); Liu, Z.L. [School of Physics, School of Optoelectronics Science and Engineering, Wuhan Pulsed Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-03-13

    Graphical abstract: (a) Negative differential resistance (NDR) characteristic and antiparallel spin-current (ASC) rectification; (b) spin-current (SC) rectification and charge-current (CC) rectification properties Display Omitted Highlights: Black-Right-Pointing-Pointer Organic magnetic molecules at gold electrodes as spin/charge rectifier. Black-Right-Pointing-Pointer Spin diode/rectification stems from length and asymmetry of molecular framework. Black-Right-Pointing-Pointer Negative differential resistance, spin-filtering and switching evidenced. - Abstract: We have theoretically investigated the spin-polarized transport properties of molecular junctions consisting of biradical and triradical organic magnetic molecules sandwiched between two symmetric gold electrodes, respectively. It shows that these junctions function as a spin rectifier or a combination of spin and charge rectifiers with high spin rectification ratios exceeding 100, wherein the spin diode/rectification effect stems from the conjugated length and asymmetry of the molecular framework, which is the pre-requisite for electronic asymmetry of the adsorbed species. The negative differential resistance, spin-filtering and switching properties are also unveiled. In particular, it is revealed that the strong couplings between the electrodes and molecules are responsible for the negative differential resistance.

  6. Calibration of the delayed-gamma neutron activation facility

    International Nuclear Information System (INIS)

    Ma, R.; Zhao, X.; Rarback, H.M.; Yasumura, S.; Dilmanian, F.A.; Moore, R.I.; Lo Monte, A.F.; Vodopia, K.A.; Liu, H.B.; Economos, C.D.; Nelson, M.E.; Aloia, J.F.; Vaswani, A.N.; Weber, D.A.; Pierson, R.N. Jr.; Joel, D.D.

    1996-01-01

    The delayed-gamma neutron activation facility at Brookhaven National Laboratory was originally calibrated using an anthropomorphic hollow phantom filled with solutions containing predetermined amounts of Ca. However, 99% of the total Ca in the human body is not homogeneously distributed but contained within the skeleton. Recently, an artificial skeleton was designed, constructed, and placed in a bottle phantom to better represent the Ca distribution in the human body. Neutron activation measurements of an anthropomorphic and a bottle (with no skeleton) phantom demonstrate that the difference in size and shape between the two phantoms changes the total body calcium results by less than 1%. To test the artificial skeleton, two small polyethylene jerry-can phantoms were made, one with a femur from a cadaver and one with an artificial bone in exactly the same geometry. The femur was ashed following the neutron activation measurements for chemical analysis of Ca. Results indicate that the artificial bone closely simulates the real bone in neutron activation analysis and provides accurate calibration for Ca measurements. Therefore, the calibration of the delayed-gamma neutron activation system is now based on the new bottle phantom containing an artificial skeleton. This change has improved the accuracy of measurement for total body calcium. Also, the simple geometry of this phantom and the artificial skeleton allows us to simulate the neutron activation process using a Monte Carlo code, which enables us to calibrate the system for human subjects larger and smaller than the phantoms used as standards. copyright 1996 American Association of Physicists in Medicine

  7. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    Science.gov (United States)

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  8. Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography

    Science.gov (United States)

    Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi

    This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.

  9. Multi-Service Highly Sensitive Rectifier for Enhanced RF Energy Scavenging

    Science.gov (United States)

    Shariati, Negin; Rowe, Wayne S. T.; Scott, James R.; Ghorbani, Kamran

    2015-01-01

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478–496 and 852–869 MHz) and exhibits favorable impedance matching over a broad input power range (−40 to −10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of −10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137

  10. Pharmacological activation of rapid delayed rectifier potassium current suppresses bradycardia-induced triggered activity in the isolated guinea pig heart

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    arrhythmias. We present here data that support that NS3623 affects native I(Kr) and report the effects that activating this potassium current have in the intact guinea pig heart. In Langendorff-perfused hearts, the compound showed a concentration-dependent shortening of action potential duration, which...

  11. Analysis of an inverter-supplied multi-winding transformer with a full-wave rectifier at the output

    International Nuclear Information System (INIS)

    Klopcic, Beno; Dolinar, Drago; Stumberger, Gorazd

    2008-01-01

    This paper deals with the magnetic analysis of an inverter-supplied multi-winding transformer frequently used in resistance spot welding applications. The basic structure of the analyzed system consists of an inverter, a single-phase transformer with two secondary windings and a full-wave rectifier mounted at the output of the transformer, which assure a very short rise time of the welding current. The disturbing current spikes often appear in the transformer's primary in the steady-state operation, which can activate the over-current protection switch-off of the system. The results of numerical analysis performed on the nonlinear model of the discussed system have shown that very strong magnetic saturation of the transformer's iron core, caused by the interaction among the different ohmic resistances of secondary windings and different characteristics of the output rectifier diodes, provokes unwanted current spikes. Magnetic saturation could be efficiently eliminated using very simple passive method proposed in this paper. All findings are confirmed by systematic analysis numerically and experimentally

  12. 2016 NOAA NGS Ortho-rectified Color Mosaic of Anchorage, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. 2016 NOAA NGS Ortho-rectified Color Mosaic of Whittier, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  14. 2016 NOAA NGS Ortho-rectified Color Mosaic of Cleveland, Ohio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  15. 2010 NOAA Ortho-rectified Mosaic of Lake Michigan - West Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  16. Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump.

    Science.gov (United States)

    Wang, Yao-Nan; Tsai, Chien-Hsiung; Fu, Lung-Ming; Lin Liou, Lung-Kai

    2013-01-01

    A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2 m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200 μm and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump.

  17. Countermeasures for electrolytic corrosion - Part II: Implementation of a rapid potential-controlled rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae-Hyun; Kim, Dae-Kyeong; Lee, Hyun-Goo; Ha, Yoon-Cheol; Bae, Jeong-Hyo [Underground Systems Group, Korea Electrotechnology Research Institute, 28-1 Sungju-dong, Changwon, 641-120 (Korea)

    2004-07-01

    In electrolytic interference circumstances such as underground pipelines in the vicinity of DC electrified railroads, drainage method or impressed current cathodic protection method has been widely used as a countermeasure for the electrolytic corrosion. In the former method, forced or polarized drainage is commonly adopted and in the latter, the phase-controlled rectifier with thyristor is in common use. Both methods, however, does not show as the optimal measure for the integrity of the pipeline, since the pipe-to-soil potential fluctuates highly positive to the cathodic protection criterion. In particular, as the potential of the pipeline near the railroad varies rapidly, a new rapidly responding countermeasure is necessary. In this paper, we introduce a new rapid potential controlled rectifier and report the result in field tests. Comparison with the existing forced drainage method is also made. The pipe-to-soil potential data show the effectiveness of the rapid potential-controlled rectifier. (authors)

  18. Control Strategy of PWM Rectifiers Connected to Unbalanced Grids

    Czech Academy of Sciences Publication Activity Database

    Bejvl, Martin; Švec, J.; Tlustý, J.; Valouch, V.

    -, č. 11 (2013) ISSN 2172-038X. [International Conference on Renewable Energies and Power Quality (ICREPQ´13). Bilbao, 20.03.2013-22.03.2013] Institutional support: RVO:61388998 Keywords : electric power system * PWM rectifier * dc voltage ripple Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.

    Science.gov (United States)

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G

    2016-09-01

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. © 2016 Lee et al.

  20. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    DEFF Research Database (Denmark)

    Kouchaki, Alireza

    Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more....... Therefore, current controllers are also important to be investigated in this project. In this PhD research work, a comprehensive design of a two-level three-phase PFC rectifier using silicon-carbide (SiC) switches to achieve high efficiency is presented. The work is divided into two main parts: 1) Optimum...

  1. A thermally switched 9 kA superconducting rectifier fluxpump

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Bunk, Paul B.; Steffens, Harry A.; van de Klundert, Louis J.M.

    1981-01-01

    The feasibility of superconducting rectifier-fluxpumps has to be demonstrated at current levels of 10 - 100 kA, where is asked for in the superconducting devices now being planned. An intensive program has been started at the low temperature division of the University of Twente to construct such

  2. Influence of cavitation bubble growth by rectified diffusion on cavitation-enhanced HIFU

    Science.gov (United States)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2017-11-01

    Cavitation is becoming increasingly important in therapeutic ultrasound applications such as diagnostic, tumor ablation and lithotripsy. Mass transfer through gas-liquid interface due to rectified diffusion is important role in an initial stage of cavitation bubble growth. In the present study, influences of the rectified diffusion on cavitation-enhanced high-intensity focused ultrasound (HIFU) was investigated numerically. Firstly, the mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the result, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Next, the cavitation-enhanced HIFU, which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves, was reproduced by the present simulation. The heating region obtained by the simulation is agree to the treatment region of an in vitro experiment. Additionally, the simulation result shows that the localized heating is enhanced by the increase of the equilibrium bubble size due to the rectified diffusion. This work was supported by JSPS KAKENHI Grant Numbers JP26420125,JP17K06170.

  3. Rectifying calibration error of Goldmann applanation tonometer is easy!

    Directory of Open Access Journals (Sweden)

    Nikhil S Choudhari

    2014-01-01

    Full Text Available Purpose: Goldmann applanation tonometer (GAT is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn′t suffice. We followed the South East Asia Glaucoma Interest Group′s definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively. Results: Twelve out of 29 (41.3% GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6% faulty instruments. Only one (8.3% faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.

  4. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  5. Rectified heat transfer into translating and pulsating vapor bubbles

    NARCIS (Netherlands)

    Hao, Y.; Prosperetti, Andrea

    2002-01-01

    It is well known that, when a stationary vapor bubble is subject to a sufficiently intense acoustic field, it will grow by rectified heat transfer even in a subcooled liquid. The object of this paper is to study how translation, and the ensuing convective effects, influence this process. It is shown

  6. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design

  7. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Xihu-qu, Hangzhou-shi, Zhejiang 300027 (China)

    2008-06-15

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design.

  8. Performance evaluation of a rectifier column using gamma column scanning

    Directory of Open Access Journals (Sweden)

    Aquino Denis D.

    2017-12-01

    Full Text Available Rectifier columns are considered to be a critical component in petroleum refineries and petrochemical processing installations as they are able to affect the overall performance of these facilities. It is deemed necessary to monitor the operational conditions of such vessels to optimize processes and prevent anomalies which could pose undesired consequences on product quality that might lead to huge financial losses. A rectifier column was subjected to gamma scanning using a 10-mCi Co-60 source and a 2-inch-long detector in tandem. Several scans were performed to gather information on the operating conditions of the column under different sets of operating parameters. The scan profiles revealed unexpected decreases in the radiation intensity at vapour levels between trays 2 and 3, and between trays 4 and 5. Flooding also occurred during several scans which could be attributed to parametric settings.

  9. 2016 NOAA NGS Ortho-rectified Near-Infrared Mosaic of Cleveland, Ohio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. 2016 NOAA NGS Ortho-rectified Color Mosaic of Baton Rouge, Louisiana

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  11. 2012 NOAA Ortho-rectified Color Mosaic of Bremerton and Manchester, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. A gate enhanced power U-shaped MOSFET integrated with a Schottky rectifier

    International Nuclear Information System (INIS)

    Wang Ying; Jiao Wen-Li; Hu Hai-Fan; Liu Yun-Tao; Cao Fei

    2012-01-01

    An accumulation gate enhanced power U-shaped metal-oxide-semiconductor field-effect-transistor (UMOSFET) integrated with a Schottky rectifier is proposed. In this device, a Schottky rectifier is integrated into each cell of the accumulation gate enhanced power UMOSFET. Specific on-resistances of 7.7 mΩ·mm 2 and 6.5 mΩ·mm 2 for the gate bias voltages of 5 V and 10 V are achieved, respectively, and the breakdown voltage is 61 V. The numerical simulation shows a 25% reduction in the reverse recovery time and about three orders of magnitude reduction in the leakage current as compared with the accumulation gate enhanced power UMOSFET. (condensed matter: structural, mechanical, and thermal properties)

  13. Rectifier analysis for radio frequency energy harvesting and power transport

    NARCIS (Netherlands)

    Keyrouz, S.; Visser, H.J.; Tijhuis, A.G.

    2012-01-01

    Wireless Power Transmission (WPT) is an attractive powering method for wireless sensor nodes, battery-less sensors, and Radio-Frequency Identification (RFID) tags. The key element on the receiving side of a WPT system is the rectifying antenna (rectenna) which captures the electromagnetic power and

  14. Measurement of Phase Dependent Impedance for 3-phase Diode Rectifier

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2016-01-01

    This paper presents a new method to measure the phase dependent impedance from an experimental set up. Though most of power electronics based system is gradually migrating to IGBT based voltage source converter due to their controllability, the rectifier composed of diode or thyristor components...

  15. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    Science.gov (United States)

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  16. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    International Nuclear Information System (INIS)

    Feng Cun-Fang; Wang Ying-Hai

    2011-01-01

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach. (general)

  17. 2014 NOAA Ortho-rectified Mosaic of Hurricane Sandy Coastal Impact Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles at 0.35m GSD created for NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative in Hurricane Sandy coastal...

  18. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    OpenAIRE

    Anup M. Gakare; Subhash Kamdi

    2014-01-01

    This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of...

  19. Frequency Support from OWPPs connected to HVDC via Diode Rectifiers

    DEFF Research Database (Denmark)

    Saborío-Romano, Oscar; Bidadfar, Ali; Göksu, Ömer

    This paper presents a study assessing the actual capability of an offshore wind power plant (offshore WPP, OWPP) to provide frequency support (FS) to an onshore network, when connected through a high-voltage direct-current (HVDC) link having a diode rectifier (DR) offshore terminal and a voltage...

  20. Designing single phase Current-Programmed-Controlled rectifiers by harmonic currents

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Blaabjerg, Frede

    2002-01-01

    The grid current harmonics of a Current-Programmed-Controlled (CPC) pfc rectifier strongly depends on the choice of switching frequency and switching inductance. This paper describes a new simple and vert fast method to calculate the grid current of a CPC controlled pfc converter. The method...

  1. InGaAs-based planar barrier diode as microwave rectifier

    Science.gov (United States)

    Farhani Zakaria, Nor; Rizal Kasjoo, Shahrir; Zailan, Zarimawaty; Mohamad Isa, Muammar; Arshad, Mohd Khairuddin Md; Taking, Sanna

    2018-06-01

    In this report, we proposed and simulated a new planar nonlinear rectifying device fabricated using InGaAs substrate and referred to as a planar barrier diode (PBD). Using an asymmetrical inverse-arrowhead-shaped structure between the electrodes, a nonuniform depletion region is developed, which creates a triangular energy barrier in the conducting channel. This barrier is voltage dependent and can be controlled by the applied voltage across the PBD, thus resulting in nonlinear diode-like current–voltage characteristics; thus it can be used as a rectifying device. The PBD’s working principle is explained using thermionic emission theory. Furthermore, by varying the PBD’s geometric design, the asymmetry of the current–voltage characteristics can be optimized to realize superior rectification performance. By employing the optimized structural parameters, the obtained cut-off frequency of the device was approximately 270 GHz with a curvature coefficient peak of 14 V‑1 at a low DC bias voltage of 50 mV.

  2. Common rectifier diodes in temperature measurement applications below 50 K

    International Nuclear Information System (INIS)

    Jaervelae, J; Stenvall, A; Mikkonen, R

    2010-01-01

    In this paper we studied the use of common electronic semiconductor diodes in temperature measurements at cryogenic atmosphere. The motivation for this is the high price of calibrated cryogenic temperature sensors since there are some applications, like quench detection, in which a cheaper and a less accurate sensor would suffice. We measured the forward voltage as a function of temperature, V f (T), of several silicon rectifier diodes to determine the accuracy and interchangeability of the diodes. The experimental results confirmed that V f (T) of common rectifier diodes are similar to cryogenic sensor diodes, but the variability between two samples is much larger. The interchangeability of the diodes proved to be poor if absolute temperatures are to be measured. However for sensing changes in temperature they proved to be adequate and thus can be used to measure e.g. quench propagation or sense quench ignition at multiple locations with cheap price.

  3. Effects of different components of serum after radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of myocardial cells

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianmin; Xiao Jiasi

    1997-01-01

    Objective: To study the effects of different components of serum in rats inflicted with radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of cultured myocardial cells. Method: Using patch clamp method to study the action of single ion channel. Results: The low molecular and lipid components of serum after different injuries models could all activate the inward rectifier potassium channel in cultured myocardial cells. The components of serum after combined radiation-burn injury showed the most significant effect, and the way of this effect was different from that from single injury. Conclusion: The serum components post injury altered the electric characteristic of myocardial cells, which may play a role in the combined effect of depressed cardiac function after combined radiation-burn injury

  4. The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels.

    Science.gov (United States)

    Cukras, C A; Jeliazkova, I; Nichols, C G

    2002-09-01

    Approximately half of the NH(2) terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than approximately 30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH(2) terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH(2) terminus, as well as the relationship of the NH(2) terminus with the extended cytoplasmic COOH terminus of the channel.

  5. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Fernando Lazcano-Pérez

    2016-05-01

    Full Text Available The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7, voltage-gated calcium channel (CaV2.2, the A-type transient outward (IA and delayed rectifier (IDR currents of KV channels of the superior cervical ganglion (SCG neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  6. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  7. Aviram–Ratner rectifying mechanism for DNA base-pair sequencing through graphene nanogaps

    International Nuclear Information System (INIS)

    Agapito, Luis A; Gayles, Jacob; Wolowiec, Christian; Kioussis, Nicholas

    2012-01-01

    We demonstrate that biological molecules such as Watson–Crick DNA base pairs can behave as biological Aviram–Ratner electrical rectifiers because of the spatial separation and weak hydrogen bonding between the nucleobases. We have performed a parallel computational implementation of the ab initio non-equilibrium Green’s function (NEGF) theory to determine the electrical response of graphene—base-pair—graphene junctions. The results show an asymmetric (rectifying) current–voltage response for the cytosine–guanine base pair adsorbed on a graphene nanogap. In sharp contrast we find a symmetric response for the thymine–adenine case. We propose applying the asymmetry of the current–voltage response as a sensing criterion to the technological challenge of rapid DNA sequencing via graphene nanogaps. (paper)

  8. Detection of active bile leak with Gd-EOB-DTPA enhanced MR cholangiography: Comparison of 20–25 min delayed and 60–180 min delayed images

    International Nuclear Information System (INIS)

    Cieszanowski, Andrzej; Stadnik, Anna; Lezak, Aleksandra; Maj, Edyta; Zieniewicz, Krzysztof; Rowinska-Berman, Katarzyna; Grudzinski, Ireneusz P.; Krawczyk, Marek; Rowiński, Olgierd

    2013-01-01

    Objectives: The purpose of this study was to assess the value of contrast-enhanced magnetic resonance cholangiography (MRC) performed in different time delays after injection of gadoxetic acid disodium (Gd-EOB-DTPA) for the diagnosis of active bile leak. Methods: This retrospective analysis included Gd-EOB-DTPA enhanced MR images of 34 patients suspected of bile leak. Images were acquired 20–25 min after Gd-EOB-DTPA injection. If there was inadequate contrast in the bile ducts then delayed images after 60–90 min and 150–180 min were obtained. Results were correlated with intraoperative findings, ERCP results, clinical data, laboratory tests, and follow-up examinations. Results: Gd-EOB-DTPA enhanced MRC yielded an overall sensitivity of 96.4%, specificity of 100% and accuracy of 97.1% for the diagnosis of an active bile leak. The sensitivity of 20–25 min delayed MR images was 42.9%, of combined 20–25 min and 60–90 min delayed images was 92.9% and of combined 20–25 min, 60–90 min and 150–180 min delayed images was 96.4%. Conclusions: Gd-EOB-DTPA enhanced MRC utilizing delayed phase images was effective for detecting the presence and location of active bile leaks. The images acquired 60–180 min post-injection enabled identification of bile leaks even in patients with a dilated biliary system or moderate liver dysfunction

  9. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.; Khalil, Waleed; Salama, Khaled N.

    2016-01-01

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm

  10. 28.3THz bowtie antenna integrated rectifier for infrared energy harvesting

    KAUST Repository

    Gadalla, Mena N.; Shamim, Atif

    2014-01-01

    The design, fabrication and characterization of an asymmetric 28.3 THz antenna integrated rectifier (rectenna) using Au/Al2O3/Pt is presented. The rectenna design comprises a sharp tip bowtie antenna and a tunneling Metal-insulator-Metal (MIM) diode

  11. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    International Nuclear Information System (INIS)

    Duan Shukai; Liao Xiaofeng

    2007-01-01

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments

  12. Diode rectifier bridge-based structure for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes a new structure for the doubly-fed induction generator (DFIG)-based wind turbine. The proposed structure consists of a DFIG controlled by a partial rated power converter in the rotor side, a three-phase diode rectifier bridge (DRB) connected to the stator, and a DC/AC full rated...

  13. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants.

    Directory of Open Access Journals (Sweden)

    Toru Kobayashi

    Full Text Available Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K(+ (GIRK, Kir3 channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.

  14. Acute desensitization of acetylcholine and endothelin-1 activated inward rectifier K+ current in myocytes from the cardiac atrioventricular node.

    Science.gov (United States)

    Choisy, Stéphanie C M; James, Andrew F; Hancox, Jules C

    2012-07-06

    The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits 'fade' or desensitization in the AVN, as established for the heart's primary pacemaker--the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1-1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at -120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at -120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Design of the LC+trap filter for a current source rectifier

    DEFF Research Database (Denmark)

    Min, Huang; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    This paper investigates an LC + trap filter for current source converters to improve the switching harmonic attenuation. The resonant frequency characteristics of the filter of current source rectifier are analyzed. A filter design procedure is proposed based on the input power factor, filter...

  16. Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H1 and H2 receptors, Na+ -permeable cation channels, and inward rectifier K+ channels.

    Science.gov (United States)

    Cilz, Nicholas I; Lei, Saobo

    2017-05-01

    In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H 1 , H 2 , and H 3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC 50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca 2+ , and persisted when GDP-β-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H 1 and H 2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H 1 and H 2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na + -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K + channel, although HA also inhibited the delayed rectifier K + channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. N-(2-methoxyphenyl) benzenesulfonamide, a novel regulator of neuronal G protein-gated inward rectifier K+ channels.

    Science.gov (United States)

    Walsh, Kenneth B; Gay, Elaine A; Blough, Bruce E; Geurkink, David W

    2017-11-15

    G protein-gated inward rectifier K + (GIRK) channels are members of the super-family of proteins known as inward rectifier K + (Kir) channels and are expressed throughout the peripheral and central nervous systems. Neuronal GIRK channels are the downstream targets of a number of neuromodulators including opioids, somatostatin, dopamine and cannabinoids. Previous studies have demonstrated that the ATP-sensitive K + channel, another member of the Kir channel family, is regulated by sulfonamide drugs. Therefore, to determine if sulfonamides also modulate GIRK channels, we screened a library of arylsulfonamide compounds using a GIRK channel fluorescent assay that utilized pituitary AtT20 cells expressing GIRK channels along with the somatostatin type-2 and -5 receptors. Enhancement of the GIRK channel fluorescent signal by one compound, N-(2-methoxyphenyl) benzenesulfonamide (MPBS), was dependent on the activation of the channel by somatostatin. In whole-cell patch clamp experiments, application of MPBS both shifted the somatostatin concentration-response curve (EC 50 = 3.5nM [control] vs.1.0nM [MPBS]) for GIRK channel activation and increased the maximum GIRK current measured with 100nM somatostatin. However, GIRK channel activation was not observed when MPBS was applied to the cells in the absence of somatostatin. While the MPBS structural analog 4-fluoro-N-(2-methoxyphenyl) benzenesulfonamide also augmented the somatostatin-induced GIRK fluorescent signal, no increase in the signal was observed with the sulfonamides tolbutamide, sulfapyridine and celecoxib. In conclusion, MPBS represents a novel prototypic GPCR-dependent regulator of neuronal GIRK channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    International Nuclear Information System (INIS)

    Shinohara, Naoki; Hatano, Ken

    2014-01-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation

  19. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    Science.gov (United States)

    Shinohara, Naoki; Hatano, Ken

    2014-11-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.

  20. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Alabama: Eastern Mississippi Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  1. 2010 NOAA Ortho-rectified Near-infrared Mosaic of Port Arthur - Beaumont, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of CHOCTAWHATCHEE BAY

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of CHOCTAWHATCHEE BAY....

  3. 2013 NOAA Ortho-rectified Color Mosaic of California: Port of San Diego

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. 2011 NOAA Ortho-rectified Mosaic of Intracoastal Waterway, Texas (NODC Accession 0105604)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2009 NOAA Ortho-rectified RGB Mosaic of Savannah, Georgia (NODC Accession 0092435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. 2017 NOAA NGS Ortho-rectified Color Mosaic of Houston Ship Channel, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2011 NOAA Ortho-rectified Mosaic of Intracoastal City, Louisiana (NODC Accession 0075831)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2010 NOAA Ortho-rectified Mosaic of Savannah River, Georgia (NODC Accession 0092435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. 2011 NOAA Ortho-rectified Mosaic of Tallaboa, Puerto Rico (NODC Accession 0074381)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. 2016 NOAA NGS Ortho-rectified Color Mosaic of Kenai and Nikiski, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  11. 2015 NOAA NGS Ortho-rectified Near-Infrared Mosaic of Port Canaveral, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Science.gov (United States)

    Margoles, Lindsay M; Mittal, Rohit; Klingensmith, Nathan J; Lyons, John D; Liang, Zhe; Serbanescu, Mara A; Wagener, Maylene E; Coopersmith, Craig M; Ford, Mandy L

    2016-01-01

    Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43) and effector molecules (IFN-γ, TNF) as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  13. Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour

    International Nuclear Information System (INIS)

    Chang Hungwen; Hsu Chengche

    2012-01-01

    In this work, three major problems, namely severe electrode damage, poor plasma stability and excess power consumption, arising in ac-driven plasmas in saline solutions are solved using a rectified power source. Diagnostic studies on the effects of power source polarity and frequency on the plasma behaviour are performed. Examination of I-V characteristics and temporally resolved light emission shows that the polarity significantly influences the current amplitude when the plasma exists, while the frequency alters the bubble dynamics, which in turn affects the plasma ignition voltage. When the plasma is driven by a rectified ac power source, the electrode erosion is reduced substantially. With a low frequency, moderate applied voltage and positively rectified ac power source (e.g. 100 Hz and 350 V), a stable plasma is ignited in nearly every power cycle. (paper)

  14. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of LAKE CHARLES

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of LAKE CHARLES. The...

  15. Effects of Noise and Time Delay Upon Active Control of Combustion Instabilities

    National Research Council Canada - National Science Library

    Zinn, Ben

    2001-01-01

    To improve the performance of practical active control system (ACS) for unstable combustors, the effects of system noise and ACS time delay upon combustion instabilities and the ACS performance were studied...

  16. The effects of physical activity on impulsive choice: Influence of sensitivity to reinforcement amount and delay.

    Science.gov (United States)

    Strickland, Justin C; Feinstein, Max A; Lacy, Ryan T; Smith, Mark A

    2016-05-01

    Impulsive choice is a diagnostic feature and/or complicating factor for several psychological disorders and may be examined in the laboratory using delay-discounting procedures. Recent investigators have proposed using quantitative measures of analysis to examine the behavioral processes contributing to impulsive choice. The purpose of this study was to examine the effects of physical activity (i.e., wheel running) on impulsive choice in a single-response, discrete-trial procedure using two quantitative methods of analysis. To this end, rats were assigned to physical activity or sedentary groups and trained to respond in a delay-discounting procedure. In this procedure, one lever always produced one food pellet immediately, whereas a second lever produced three food pellets after a 0, 10, 20, 40, or 80-s delay. Estimates of sensitivity to reinforcement amount and sensitivity to reinforcement delay were determined using (1) a simple linear analysis and (2) an analysis of logarithmically transformed response ratios. Both analyses revealed that physical activity decreased sensitivity to reinforcement amount and sensitivity to reinforcement delay. These findings indicate that (1) physical activity has significant but functionally opposing effects on the behavioral processes that contribute to impulsive choice and (2) both quantitative methods of analysis are appropriate for use in single-response, discrete-trial procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines

    DEFF Research Database (Denmark)

    Svarcova, Olga; Dinnyes, A.; Polgar, Z.

    2009-01-01

    displayed early NPBs transformation. In conclusion, despite normal onset of EGA in cloned embryos, activation of functional nucleoli was one cell cycle delayed in NT embryos. NT-MEF embryos displayed normal targeting but delayed activation of nucleolar proteins. Contrary, in NT-HM1 embryos, both......Aim of this study was to evaluate and compare embryonic genome activation (EGA) in mouse embryos of different origin using nucleolus as a marker. Early and late 2-cell and late 4-cell stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and nuclear transfer...... ofmouse embryonic fibroblast (MEF) and mouse HM1 emryonic stem cells (HM1), were processed for autoradiography following 3H-uridine incubation (transcriptional activity), transmission electron microscopy (ultrastructure) and immunofluorescence (nucleolar proteins; upstream binding factor, UBF...

  18. Fixture and method for rectifying damaged guide thimble insert sleeves in a reconstitutable fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1987-01-01

    A guide thimble damage-rectifying method is described for use on a reconstitutable fuel assembly being held in a work station with its top nozzle removed to expose a plurality of guide thimbles having one of several different types of damage. The method consists of: (a) providing a base having a plurality of tool positioning openings defined therein in a pattern matched with that of the guide thimbles of the fuel assembly; (b) mounting the base on the work station with its tool positioning openings in alignment with the guide thimbles of the fuel assembly and such that the base is movable toward the guide thimbles; (c) providing a plurality of different tools each operable to rectify one of the different types of guide thimble damage; (d) mounting selected ones of the different tools in respective ones of the openings of the base in alignment with ones of the thimbles having the respective types of guide thimble damage capable of being rectified by the selected tools such that upon movement of the base toward the guide thimbles the respective types of guide thimble damage will be rectified by the selected tools; (e) providing a group of positioning elements; (f) mounting the positioning elements in selected ones of the base openings corresponding to undamaged ones of the guide thimbles such that upon movement of the base toward the guide thimbles the positioning elements become mounted on upper end portions of the corresponding undamaged ones of the guide thimbles for precisely locating the fixture relative to the guide thimble upper end portions for accurate performance of the repairable damage rectifying operation by the tools as the base is moved toward the guide thimbles; and (g) moving the base toward the guide thimbles so as to mount the positioning elements on the corresponding ones of the undamaged guide thimbles and effect rectification of the damaged guide thimbles by the selected tools

  19. Development of a 50-60 Hz thermally switched superconducting rectifier

    NARCIS (Netherlands)

    Chevtchenko, O.A.; ten Kate, Herman H.J.; Krooshoop, Hendrikus J.G.; Markovsky, N.V.; Mulder, G.B.J.; Mulder, G.B.J.

    1993-01-01

    A full-wave thermally switched superconducting rectifier, able to operate directly from the mains at the 50-60-Hz frequency, has been developed. Typical design output values of this device are a current of 300 A, a voltage of up to 1 V, an average power of up to 100 VA, and an efficiency better than

  20. Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization

    Directory of Open Access Journals (Sweden)

    Vinay Kabra

    2014-11-01

    Full Text Available A low cost, highly rectifying, nano heterojunction (p-ZnO/n-Si diode was fabricated using solution-processed, p-type, ZnO nanoparticles and an n-type Si substrate. p-type ZnO nanoparticles were synthesized using a chemical synthesis route and characterized by XRD and a Hall effect measurement system. The device was fabricated by forming thin film of synthesized p-ZnO nanoparticles on an n-Si substrate using a dip coating technique. The device was then characterized by current–voltage (I–V and capacitance–voltage (C–V measurements. The effect of UV illumination on the I–V characteristics was also explored and indicated the formation of a highly rectifying, nano heterojunction with a rectification ratio of 101 at 3 V, which increased nearly 2.5 times (232 at 3 V under UV illumination. However, the cut-in voltage decreases from 1.5 V to 0.9 V under UV illumination. The fabricated device could be used in switches, rectifiers, clipper and clamper circuits, BJTs, MOSFETs and other electronic circuitry.

  1. Atomic Scale Modulation of Self-Rectifying Resistive Switching by Interfacial Defects

    KAUST Repository

    Wu, Xing

    2018-04-14

    Higher memory density and faster computational performance of resistive switching cells require reliable array‐accessible architecture. However, selecting a designated cell within a crossbar array without interference from sneak path currents through neighboring cells is a general problem. Here, a highly doped n++ Si as the bottom electrode with Ni‐electrode/HfOx/SiO2 asymmetric self‐rectifying resistive switching device is fabricated. The interfacial defects in the HfOx/SiO2 junction and n++ Si substrate result in the reproducible rectifying behavior. In situ transmission electron microscopy is used to quantitatively study the properties of the morphology, chemistry, and dynamic nucleation–dissolution evolution of the chains of defects at the atomic scale. The spatial and temporal correlation between the concentration of oxygen vacancies and Ni‐rich conductive filament modifies the resistive switching effect. This study has important implications at the array‐level performance of high density resistive switching memories.

  2. Atomic Scale Modulation of Self-Rectifying Resistive Switching by Interfacial Defects

    KAUST Repository

    Wu, Xing; Yu, Kaihao; Cha, Dong Kyu; Bosman, Michel; Raghavan, Nagarajan; Zhang, Xixiang; Li, Kun; Liu, Qi; Sun, Litao; Pey, Kinleong

    2018-01-01

    Higher memory density and faster computational performance of resistive switching cells require reliable array‐accessible architecture. However, selecting a designated cell within a crossbar array without interference from sneak path currents through neighboring cells is a general problem. Here, a highly doped n++ Si as the bottom electrode with Ni‐electrode/HfOx/SiO2 asymmetric self‐rectifying resistive switching device is fabricated. The interfacial defects in the HfOx/SiO2 junction and n++ Si substrate result in the reproducible rectifying behavior. In situ transmission electron microscopy is used to quantitatively study the properties of the morphology, chemistry, and dynamic nucleation–dissolution evolution of the chains of defects at the atomic scale. The spatial and temporal correlation between the concentration of oxygen vacancies and Ni‐rich conductive filament modifies the resistive switching effect. This study has important implications at the array‐level performance of high density resistive switching memories.

  3. 2014 NOAA Ortho-rectified Mosaic of Delaware Coastline: Hurricane Sandy Impact Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles at 0.10m GSD. This data set was created for NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative in the...

  4. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Directory of Open Access Journals (Sweden)

    Lindsay M Margoles

    Full Text Available Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43 and effector molecules (IFN-γ, TNF as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  5. Detection of active intraabdominal hemorrhage after blunt trauma: value of delayed CT scanning

    Energy Technology Data Exchange (ETDEWEB)

    Sivit, C.J. [Department of Radiology, Rainbow Babies and Children' s Hospital of the University Hospitals of Cleveland and Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH (United States)

    2000-02-01

    Active hemorrhage is a rare finding at CT following blunt abdominal trauma. The time interval between IV contrast administration and scanning the abdomen may impact on the ability to visualize active hemorrhage at CT. We report a case of active hemorrhage associated with splenic injury that was identified only at delayed CT scanning. (orig.)

  6. Detection of active intraabdominal hemorrhage after blunt trauma: value of delayed CT scanning

    International Nuclear Information System (INIS)

    Sivit, C.J.

    2000-01-01

    Active hemorrhage is a rare finding at CT following blunt abdominal trauma. The time interval between IV contrast administration and scanning the abdomen may impact on the ability to visualize active hemorrhage at CT. We report a case of active hemorrhage associated with splenic injury that was identified only at delayed CT scanning. (orig.)

  7. Optical force rectifiers based on PT-symmetric metasurfaces

    Science.gov (United States)

    Alaee, Rasoul; Gurlek, Burak; Christensen, Johan; Kadic, Muamer

    2018-05-01

    We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally.

  8. Comparison of stability of WSiX/SiC and Ni/SiC Schottky rectifiers to high dose gamma-ray irradiation

    International Nuclear Information System (INIS)

    Kim, Jihyun; Ren, F.; Chung, G.Y.; MacMillan, M.F.; Baca, A.G.; Briggs, R.D.; Schoenfeld, D.; Pearton, S.J.

    2004-01-01

    SiC Schottky rectifiers with moderate breakdown voltages of ∼450 V and with either WSi X or Ni rectifying contacts were irradiated with Co-60 γ-rays to doses up to ∼315 Mrad. The Ni/SiC rectifiers show severe reaction of the contact after irradiation at the highest dose, badly degrading the forward current characteristics and increasing the on-state resistance by up to a factor of 6 after irradiation. By sharp contrast, the WSi X /SiC devices show little deterioration of the contact with the same conditions and changes in on-state resistance of X contacts appear promising for applications requiring improved contact stability

  9. Impedance-based Analysis of DC Link Control in Voltage Source Rectifiers

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper analyzes the dynamics influences of the outer dc link control in the voltage source rectifiers based on the impedance model. The ac-dc interactions are firstly presented by means of full order small signal model in dq frame, which shows the input voltage and load condition are the two...

  10. CMOS single-stage input-powered bridge rectifier with boost switch and duty cycle control

    Science.gov (United States)

    Radzuan, Roskhatijah; Mohd Salleh, Mohd Khairul; Hamzah, Mustafar Kamal; Ab Wahab, Norfishah

    2017-06-01

    This paper presents a single-stage input-powered bridge rectifier with boost switch for wireless-powered devices such as biomedical implants and wireless sensor nodes. Realised using CMOS process technology, it employs a duty cycle switch control to achieve high output voltage using boost technique, leading to a high output power conversion. It has only six external connections with the boost inductance. The input frequency of the bridge rectifier is set at 50 Hz, while the switching frequency is 100 kHz. The proposed circuit is fabricated on a single 0.18-micron CMOS die with a space area of 0.024 mm2. The simulated and measured results show good agreement.

  11. Boost Half-Bridge DC-DC Converter with Reconfigurable Rectifier for Ultra-Wide Input Voltage Range Applications

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2018-01-01

    This paper introduces a novel galvanically isolated boost half-bridge dc-dc converter intended for modern power electronic applications where ultra-wide input voltage regulation range is needed. A reconfigurable output rectifier stage performs a transition between the voltage doubler and the full......-bridge diode rectifiers and, by this means, extends the regulation range significantly. The converter features a low number of components and resonant soft switching of semiconductors, which result in high power conversion efficiency over a wide input voltage and load range. The paper presents the operating...

  12. 2012 NOAA Ortho-rectified Near-Infrared MLLW Mosaic of Alabama: Eastern Mississippi Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. 2012 NOAA Ortho-rectified Color Mosaic of Sacramento Deep Water Ship Channel, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  14. 2009 NOAA Near-Infrared Ortho-rectified Mosaic of Brunswick, Georgia (NODC Accession 0092435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  15. 2011 NOAA Ortho-rectified Mosaic of Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  16. 2015 NOAA Ortho-rectified Color Mosaic of the port of Silver Bay, Minnesota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  17. 2012 NOAA Ortho-rectified Near-Infrared Mosaic of Oregon: Lake Umatilla to Clarkson

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  18. UV/ozone assisted local graphene (p)/ZnO(n) heterojunctions as a nanodiode rectifier

    Science.gov (United States)

    Sahatiya, Parikshit; Badhulika, Sushmee

    2016-07-01

    Here we report the fabrication of a novel graphene/ZnO nanodiode by UV/ozone assisted oxidation of graphene and demonstrate its application as a half-wave rectifier to generate DC voltage. The method involves the use of electrospinning for one-step in situ synthesis and alignment of single Gr/ZnO nanocomposite across metal electrodes. On subsequent UV illumination, graphene oxidizes, which induces p type doping and ZnO being an n type semiconductor, thus resulting in the formation of a nanodiode. The as-fabricated device shows strong non-linear current-voltage characteristic similar to that of conventional semiconductor p-n junction diodes. Excellent rectifying behavior with a rectification ratio of ~103 was observed and the nanodiodes were found to exhibit long-term repeatability in their performance. Ideality factor and barrier height, as calculated by the thermionic emission model, were found to be 1.6 and 0.504 eV respectively. Due to the fact that diodes are the basic building blocks in the electronics and semiconductor industry, the successful fabrication of these nanodiodes based on UV assisted p type doping of graphene indicates that this approach can be used for developing highly scalable and efficient components for nanoelectronics, such as rectifiers and logic gates that find applications in numerous fields.

  19. Rectifiability of Line Defects in Liquid Crystals with Variable Degree of Orientation

    Science.gov (United States)

    Alper, Onur

    2018-04-01

    In [2], H ardt, L in and the author proved that the defect set of minimizers of the modified Ericksen energy for nematic liquid crystals consists locally of a finite union of isolated points and Hölder continuous curves with finitely many crossings. In this article, we show that each Hölder continuous curve in the defect set is of finite length. Hence, locally, the defect set is rectifiable. For the most part, the proof closely follows the work of D e L ellis et al. (Rectifiability and upper minkowski bounds for singularities of harmonic q-valued maps, arXiv:1612.01813, 2016) on harmonic Q-valued maps. The blow-up analysis in A lper et al. (Calc Var Partial Differ Equ 56(5):128, 2017) allows us to simplify the covering arguments in [11] and locally estimate the length of line defects in a geometric fashion.

  20. Global Asymptotic Stability of Impulsive CNNs with Proportional Delays and Partially Lipschitz Activation Functions

    Directory of Open Access Journals (Sweden)

    Xueli Song

    2014-01-01

    Full Text Available This paper researches global asymptotic stability of impulsive cellular neural networks with proportional delays and partially Lipschitz activation functions. Firstly, by means of the transformation vi(t=ui(et, the impulsive cellular neural networks with proportional delays are transformed into impulsive cellular neural networks with the variable coefficients and constant delays. Secondly, we provide novel criteria for the uniqueness and exponential stability of the equilibrium point of the latter by relative nonlinear measure and prove that the exponential stability of equilibrium point of the latter implies the asymptotic stability of one of the former. We furthermore obtain a sufficient condition to the uniqueness and global asymptotic stability of the equilibrium point of the former. Our method does not require conventional assumptions on global Lipschitz continuity, boundedness, and monotonicity of activation functions. Our results are generalizations and improvements of some existing ones. Finally, an example and its simulations are provided to illustrate the correctness of our analysis.

  1. Activity of the Delayed Neutron Working Group of JNDC and the International Evaluation Cooperation - WPEC/SG6

    International Nuclear Information System (INIS)

    Yoshida, Tadashi

    1999-01-01

    The Delayed Neutron Working Group was established in April 1997 within the Nuclear Data Subcommittee of JNDC. It has two principal missions. One is to coordinate the Japanese activities toward the WPEC/Subgroup-6 efforts, and the other is to recommend the delayed neutron data for JENDL-3.3. The final report of Subgroup-6, which in one of the subgroups of the NEA International Evaluation Cooperation (WPEC) and is in charge of the delayed neutron data, is to be completed in 1999. Here in Japan, JENDL-3.3 is planned to be released in early 2000. Delayed Neutron Working Group is, then, going to finalize its activity by the end of the fiscal year 1999 after recommending appropriate sets of data as coherently as possible with the of Subgroup-6 efforts. (author)

  2. Interface-dependent rectifying TbMnO3-based heterojunctions

    Directory of Open Access Journals (Sweden)

    Yimin Cui

    2011-12-01

    Full Text Available We report the fabrication and characterizations of oxide heterojunctions composed of TbMnO3 thin films grown on conducting Nb:SrTiO3 substrates. The heterojunctions exhibit rich rectifying characteristics, depending on not only the measurement temperature but also the growth temperature: at 300 K, good rectification appears in both samples; at lower temperatures, the rectification is much smaller in the sample grown at 700 °C, whereas it exhibits a reversed bias dependence and reaches ∼5000 in the sample grown at 780 °C. Regarding to the transport mechanism, the conduction appears to be Schottky-emission-like at high temperatures in both junctions, indicating well-defined band alignment at interface; on the other hand, the space-charge-limited mechanism dictates the low temperature transport. Furthermore, the temperature and frequency dependent capacitance-loss data suggest that the transport dynamics is associated with multiple thermally activated relaxation processes. Finally, transmission electron microscopy studies shed light on the crystalline quality of the junction interfaces, which is believed to dictate the corresponding transport properties.

  3. Positive Temperature Coefficient of Breakdown Voltage in 4H-SiC PN Junction Rectifiers

    National Research Council Canada - National Science Library

    Neudeck, Philip

    1998-01-01

    ...-suited SiC polytype for power device implementation. This paper reports the first experimental measurements of stable positive temperature coefficient behavior observed in 4H-SiC pn junction rectifiers...

  4. Characterization of the chicken inward rectifier K+ channel IRK1/Kir2.1 gene

    Directory of Open Access Journals (Sweden)

    Locke Emily

    2004-11-01

    Full Text Available Abstract Background Inward rectifier potassium channels (IRK contribute to the normal function of skeletal and cardiac muscle cells. The chick inward rectifier K+ channel cIRK1/Kir2.1 is expressed in skeletal muscle, heart, brain, but not in liver; a distribution similar but not identical to that of mouse Kir2.1. We set out to explore regulatory domains of the cIRK1 promoter that enhance or inhibit expression of the gene in different cell types. Results We cloned and characterized the 5'-flanking region of cIRK1. cIRK1 contains two exons with splice sites in the 5'-untranslated region, a structure similar to mouse and human orthologs. cIRK1 has multiple transcription initiation sites, a feature also seen in mouse. However, while the chicken and mouse promoter regions share many regulatory motifs, cIRK1 possesses a GC-richer promoter and a putative TATA box, which appears to positively regulate gene expression. We report here the identification of several candidate cell/tissue specific cIRK1 regulatory domains by comparing promoter activities in expressing (Qm7 and non-expressing (DF1 cells using in vitro transcription assays. Conclusion While multiple transcription initiation sites and the combinatorial function of several domains in activating cIRK1 expression are similar to those seen in mKir2.1, the cIRK1 promoter differs by the presence of a putative TATA box. In addition, several domains that regulate the gene's expression differentially in muscle (Qm7 and fibroblast cells (DF1 were identified. These results provide fundamental data to analyze cIRK1 transcriptional mechanisms. The control elements identified here may provide clues to the tissue-specific expression of this K+ channel.

  5. Effect of Magnetic Activity on Ionospheric Time Delay at Low Latitude

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The purpose of this work is to investigate the effect of magnetic activity on ionospheric time delay at low latitude Station Bhopal (geom. lat. 23.2°N, geom. long. 77.6°E) using ... Space Science Laboratory, Department of Physics, Barkatullah University, Bhopal 462 026, India. National Institute of Technical, ...

  6. Discovery, characterization and structure-activity relationships of an inhibitor of inward rectifier potassium (Kir channels with preference for Kir2.3, Kir3.X and Kir7.1

    Directory of Open Access Journals (Sweden)

    Jerod S Denton

    2011-11-01

    Full Text Available The inward rectifier family of potassium (Kir channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that GIRK (G protein-regulated inward rectifier K channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl+ flux-based high-throughput screen (HTS of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC50 = 1.9 M and 19 M, respectively and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK and Kir3.1/3.4 (cardiac GIRK channels with equal potency and preferentially inhibited GIRK, Kir2.3 and Kir7.1 over Kir1.1 and Kir2.1. Tl+ flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure-activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure-function relationships of these Kir channels.

  7. Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage

    NARCIS (Netherlands)

    Asadi, Kamal; Li, Mengyuan; Stingelin, Natalie; Blom, Paul W. M.; de Leeuw, Dago M.

    2010-01-01

    Cross-talk in memories using resistive switches in a cross-bar geometry can be prevented by integration of a rectifying diode. We present a functional cross bar memory array using a phase separated blend of a ferroelectric and a semiconducting polymer as storage medium. Each intersection acts

  8. Parietal and premotor cortices: activation reflects imitation accuracy during observation, delayed imitation and concurrent imitation.

    Science.gov (United States)

    Krüger, Britta; Bischoff, Matthias; Blecker, Carlo; Langhanns, Christine; Kindermann, Stefan; Sauerbier, Isabell; Reiser, Mathias; Stark, Rudolf; Munzert, Jörn; Pilgramm, Sebastian

    2014-10-15

    This study investigated whether activation within areas belonging to the action observation and imitation network reveals a linear relation to the subsequent accuracy of imitating a bimanual rhythmic movement measured via a motion capturing system. 20 participants were scanned with functional magnetic resonance imaging (fMRI) when asked to imitate observed bimanual movements either concurrently versus with a delay (2s) or simply to observe the movements without imitation. Results showed that action observation relates to activation within classic mirror-related areas. Activation patterns were more widespread when participants were asked to imitate the movement. During observation with concurrent imitation, activation in the left inferior parietal lobe (IPL) was associated negatively with imitation accuracy. During observation in the delayed imitation condition, higher subsequent imitation accuracy was coupled with higher activation in the right superior parietal lobe (SPL) and the left parietal operculum (POp). During the delayed imitation itself, a negative association between imitation accuracy and brain activation was revealed in the right ventral premotor cortex (vPMC). We conclude that the IPL is involved in online comparison and visuospatial attention processes during imitation, the SPL provides a kinesthetic blueprint during movement observation, the POp preserves body identity, and the vPMC recruits motor representations--especially when no concurrent visual guidance is possible. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Current Mode Full-Wave Rectifier Based on a Single MZC-CDTA

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2013-01-01

    Full Text Available This paper presents a current mode full-wave rectifier based on single modified Z copy current difference transconductance amplifier (MZC-CDTA and two switches. The circuit is simple and is suitable for IC implementation. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.

  10. Development of a thermally switched superconducting rectifier for 100 kA

    NARCIS (Netherlands)

    Mulder, G.B.J.; Mulder, G.B.J.; ten Kate, Herman H.J.; Krooshoop, Hendrikus J.G.; van de Klundert, L.J.M.; van de Klundert, L.J.M.

    1991-01-01

    A full-wave superconducting rectifier for 100 kA has been developed. Typical design values of this device are: a secondary current of 100 kA, a primary amplitude of 20 A, an operating frequency of 0.5 Hz, and an average power on the order of 100 W. The rectification is achieved by means of thermally

  11. COST-BENEFIT ANALYSIS OF BIOCONVERSION NEUFCHATEL WHEY INTO RECTIFIED ETHANOL AND ORGANIC LIQUID FERTILIZER IN SEMI PILOT SCALE

    Directory of Open Access Journals (Sweden)

    Gemilang Lara UTAMA

    2015-10-01

    Full Text Available Aims of the study was to determine the cost-benefit analysis in neufchatel whey bioconversion into rectified ethanol and organic liquid fertilizer. Bioconversion whey into rectified ethanol and organic liquid fertilizer has shown great potential as a way to reduce the pollution resulting from cheese-making process. Semi pilot scale experiment was done to ferment 5 L neufchatel whey using 5% K. lactis at 33°C for 24 h in semi anaerobic plastic container without agitation and then distilled into 96.2% purity. Data collected and analyzed descriptively related to benefit cost ratio/BCR, net present value/NPV and internal rate returns/IRR. The result showed that semi pilot scale bioconversion of neufchatel whey resulting in 106.42 ml rectified ethanol and 4404.22 ml distillery residue. Economic benefit could achieved by the support of distillery residue sales as organic liquid fertilizer.

  12. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    Energy Technology Data Exchange (ETDEWEB)

    Duan Shukai [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China); School of Electronic and Information Engineering, Southwest University, Chongqing 400715 (China)], E-mail: duansk@swu.edu.cn; Liao Xiaofeng [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)], E-mail: xfliao@cqu.edu.cn

    2007-09-10

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments.

  13. Inhibition of G-Protein-Activated Inwardly Rectifying K+ Channels by the Selective Norepinephrine Reuptake Inhibitors Atomoxetine and Reboxetine

    Science.gov (United States)

    Kobayashi, Toru; Washiyama, Kazuo; Ikeda, Kazutaka

    2010-01-01

    Atomoxetine and reboxetine are commonly used as selective norepinephrine reuptake inhibitors (NRIs) for the treatment of attention-deficit/hyperactivity disorder and depression, respectively. Furthermore, recent studies have suggested that NRIs may be useful for the treatment of several other psychiatric disorders. However, the molecular mechanisms underlying the various effects of NRIs have not yet been sufficiently clarified. G-protein-activated inwardly rectifying K+ (GIRK or Kir3) channels have an important function in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to be a potential treatment for several neuropsychiatric disorders and cardiac arrhythmias. In this study, we investigated the effects of atomoxetine and reboxetine on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2, GIRK2, or GIRK1/GIRK4 subunits, extracellular application of atomoxetine or reboxetine reversibly reduced GIRK currents. The inhibitory effects were concentration-dependent, but voltage-independent, and time-independent during each voltage pulse. However, Kir1.1 and Kir2.1 channels were insensitive to atomoxetine and reboxetine. Atomoxetine and reboxetine also inhibited GIRK currents induced by activation of cloned A1 adenosine receptors or by intracellularly applied GTPγS, a nonhydrolyzable GTP analogue. Furthermore, the GIRK currents induced by ethanol were concentration-dependently inhibited by extracellularly applied atomoxetine but not by intracellularly applied atomoxetine. The present results suggest that atomoxetine and reboxetine inhibit brain- and cardiac-type GIRK channels, revealing a novel characteristic of clinically used NRIs. GIRK channel inhibition may contribute to some of the therapeutic effects of NRIs and adverse side effects related to nervous system and heart function. PMID:20393461

  14. Mitigating impact of thermal and rectified radio-frequency sheath potentials on edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Gui, B. [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Lawerence Livermore National Lab, Livermore, California 94550 (United States); Xu, X. Q. [Lawerence Livermore National Lab, Livermore, California 94550 (United States); Myra, J. R.; D' Ippolito, D. A. [Lodestar Research Corporation, Boulder, Colorado 80301 (United States)

    2014-11-15

    The mitigating impact of thermal and rectified radio frequency (RF) sheath potentials on the peeling-ballooning modes is studied non-linearly by employing a two-fluid three-field simulation model based on the BOUT++ framework. Additional shear flow and the Kelvin-Helmholtz effect due to the thermal and rectified RF sheath potential are induced. It is found that the shear flow increases the growth rate while the K-H effect decreases the growth rate slightly when there is a density gradient, but the energy loss of these cases is suppressed in the nonlinear phase. The stronger external electrostatic field due to the sheaths has a more significant effect on the energy loss suppression. From this study, it is found the growth rate in the linear phase mainly determines the onset of edge-localized modes, while the mode spectrum width in the nonlinear phase has an important impact on the turbulent transport. The wider mode spectrum leads to weaker turbulent transport and results in a smaller energy loss. Due to the thermal sheath and rectified RF sheath potential in the scrape-off-layer, the modified shear flow tears apart the peeling-ballooning filament and makes the mode spectrum wider, resulting in less energy loss. The perturbed electric potential and the parallel current near the sheath region is also suppressed locally due to the sheath boundary condition.

  15. The structure of the broad-line region in active galactic nuclei. I. Reconstructed velocity-delay maps

    DEFF Research Database (Denmark)

    Grier, C.J.; Peterson, B.M.; Pogge, R.W.

    2013-01-01

    We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C 120, and PG 2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velo...

  16. Phase-rectified signal averaging method to predict perinatal outcome in infants with very preterm fetal growth restriction- a secondary analysis of TRUFFLE-trial

    NARCIS (Netherlands)

    Lobmaier, Silvia M.; Mensing van Charante, Nico; Ferrazzi, Enrico; Giussani, Dino A.; Shaw, Caroline J.; Müller, Alexander; Ortiz, Javier U.; Ostermayer, Eva; Haller, Bernhard; Prefumo, Federico; Frusca, Tiziana; Hecher, Kurt; Arabin, Birgit; Thilaganathan, Baskaran; Papageorghiou, Aris T.; Bhide, Amarnath; Martinelli, Pasquale; Duvekot, Johannes J.; van Eyck, Jim; Visser, Gerard H A; Schmidt, Georg; Ganzevoort, Wessel; Lees, Christoph C.; Schneider, Karl T M; Bilardo, Caterina M.; Brezinka, Christoph; Diemert, Anke; Derks, Jan B.; Schlembach, Dietmar; Todros, Tullia; Valcamonico, Adriana; Marlow, Neil; van Wassenaer-Leemhuis, Aleid

    2016-01-01

    Background Phase-rectified signal averaging, an innovative signal processing technique, can be used to investigate quasi-periodic oscillations in noisy, nonstationary signals that are obtained from fetal heart rate. Phase-rectified signal averaging is currently the best method to predict survival

  17. Phase-rectified signal averaging method to predict perinatal outcome in infants with very preterm fetal growth restriction- a secondary analysis of TRUFFLE-trial

    NARCIS (Netherlands)

    Lobmaier, Silvia M.; Mensing van Charante, Nico; Ferrazzi, Enrico; Giussani, Dino A.; Shaw, Caroline J.; Müller, Alexander; Ortiz, Javier U.; Ostermayer, Eva; Haller, Bernhard; Prefumo, Federico; Frusca, Tiziana; Hecher, Kurt; Arabin, Birgit; Thilaganathan, Baskaran; Papageorghiou, Aris T.; Bhide, Amarnath; Martinelli, Pasquale; Duvekot, Johannes J.; van Eyck, Jim; Visser, Gerard H. A.; Schmidt, Georg; Ganzevoort, Wessel; Lees, Christoph C.; Schneider, Karl T. M.; Bilardo, Caterina M.; Brezinka, Christoph; Diemert, Anke; Derks, Jan B.; Schlembach, Dietmar; Todros, Tullia; Valcamonico, Adriana; Marlow, Neil; van Wassenaer-Leemhuis, Aleid

    2016-01-01

    Phase-rectified signal averaging, an innovative signal processing technique, can be used to investigate quasi-periodic oscillations in noisy, nonstationary signals that are obtained from fetal heart rate. Phase-rectified signal averaging is currently the best method to predict survival after

  18. A transparent diode with high rectifying ratio using amorphous indium-gallium-zinc oxide/SiN{sub x} coupled junction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung-Jea; Kim, Myeong-Ho; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-03

    We introduce a transparent diode that shows both high rectifying ratio and low leakage current at process temperature below 250 °C. This device is clearly distinguished from all previous transparent diodes in that the rectifying behavior results from the junction between a semiconductor (amorphous indium-gallium-zinc oxide (a-IGZO)) and insulator (SiN{sub x}). We systematically study the properties of each junction within the device structure and demonstrate that the a-IGZO/SiN{sub x} junction is the source of the outstanding rectification. The electrical characteristics of this transparent diode are: 2.8 A/cm{sup 2} on-current density measured at −7 V; lower than 7.3 × 10{sup −9} A/cm{sup 2} off-current density; 2.53 ideality factor; and high rectifying ratio of 10{sup 8}–10{sup 9}. Furthermore, the diode structure has a transmittance of over 80% across the visible light range. The operating principle of the indium-tin oxide (ITO)/a-IGZO/SiN{sub x}/ITO device was examined with an aid of the energy band diagram and we propose a preliminary model for the rectifying behavior. Finally, we suggest further directions for research on this transparent diode.

  19. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    Science.gov (United States)

    Long, Yun-Ze; Yin, Zhi-Hua; Hui, Wen; Chen, Zhao-Jia; Wan, Mei-Xiang

    2008-07-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I - V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory.

  20. Generic functional modelling of multi-pulse auto-transformer rectifier units for more-electric aircraft applications

    Directory of Open Access Journals (Sweden)

    Tao YANG

    2018-05-01

    Full Text Available The Auto-Transformer Rectifier Unit (ATRU is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced kVA ratings. Indeed, the ATRU has become a preferred AC/DC solution to supply power to the electric environment control system on-board future aircraft. In this paper, a general modelling method for ATRUs is introduced. The developed model is based on the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs. In this paper, we carry on our research in modelling symmetric 18-pulse ATRUs and develop a generic modelling technique. The developed generic model can study not only symmetric but also asymmetric ATRUs. An 18-pulse asymmetric ATRU is used to demonstrate the accuracy and efficiency of the developed model by comparing with corresponding detailed switching SABER models provided by our industrial partner. The functional models also allow accelerated and accurate simulations and thus enable whole-scale more-electric aircraft electrical power system studies in the future. Keywords: Asymmetric transformer, Functional modelling, More-Electric Aircraft, Multi-pulse rectifier, Transformer rectifier unit

  1. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Pescadero Point to Bodega Bay, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. 2012 NOAA Color Ortho-rectified Mosaic of Corpus Christi to Saint Charles Bay, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of BEAUMONT, ORANGE, PORT AUTHUR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of BEAUMONT, ORANGE,...

  4. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Bodega Bay to Shelter Cove, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2012 NOAA Color MLLW Ortho-rectified Mosaic of Amelia Island and Nassau River, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. 2011 NOAA Color MHW Ortho-rectified Mosaic of Amelia Island and Nassau River, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Lopez Rock to Pescadero Point, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2013 NOAA Ortho-rectified Near-Infrared Mosaic of the Port of Panama City, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. 2015 NOAA Ortho-rectified Near-Infrared Mosaic of the port of Silver Bay, Minnesota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Seal Rock to Lopez Rock, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  11. 2011 NOAA Ortho-rectified Near-Infrared Mosaic of Isle of Shoals, New Hampshire (MHW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. 2010 NOAA Ortho-rectified Mosaic of Louisiana: Mississippi River - Baton Rouge to Southwest Pass

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. Connection of OWPPs to HVDC networks using VSCs and Diode Rectifiers: an Overview

    DEFF Research Database (Denmark)

    Saborío-Romano, Oscar; Bidadfar, Ali; Göksu, Ömer

    This paper provides an overview of two technologies for connecting offshore wind power plants (offshore WPPs, OWPPs) to high-voltage direct current (HVDC) networks: voltage source converters (VSCs) and diode rectifiers (DRs). Current grid code requirements for the connection of such power plants...

  14. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    International Nuclear Information System (INIS)

    Sugioka, Hideyuki

    2016-01-01

    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)

  15. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Hideyuki, E-mail: hsugioka@shinshu-u.ac.jp [Frontier Research Center, Canon Inc. 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan and Department of Mechanical Systems Engineering, Shinshu University 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2016-02-15

    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)].

  16. Status report of the three phase 25 kA, 1.5 kW thermally switched superconducting rectifier, transformer and switches

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Holtslag, A.H.M.; Knoben, J.; Steffens, H.A.; van de Klundert, L.J.M.

    1983-01-01

    A 25 kA, 1.5 kW superconducting rectifier system has been developed. This rectifier system working like an a.c.-d.c, converter with a primary current of 35 A at 0.1Hz, will energize a 25 kA coil with an average power of 5.4 MJ/hr and a proposed energy efficiency of at least 96%. Such a highly

  17. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of PORT OF GEORGETOWN - CSCAP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of PORT OF GEORGETOWN...

  18. Beta-delayed proton activities: 147Dy and 149Er

    International Nuclear Information System (INIS)

    Toth, K.S.; Moltz, D.M.; Schloemer, E.C.; Cable, M.D.; Avignone, F.T. III; Ellis-Akovali, Y.A.

    1984-01-01

    The present paper discusses mainly the β-delayed proton spectra of 147 Dy and of the hitherto unknown isotope, 149 Er. However, following the submittal of the abstract for this conference we have now observed delayed protons following the decay of 145 Dy. Additionally, we have identified a 0.5-s delayed-proton emitter and tentatively assign it to the new isotope, 151 Yb

  19. Au/n-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment

    Science.gov (United States)

    Gu, Q. L.; Cheung, C. K.; Ling, C. C.; Ng, A. M. C.; Djurišić, A. B.; Lu, L. W.; Chen, X. D.; Fung, S.; Beling, C. D.; Ong, H. C.

    2008-05-01

    Au contacts were deposited on n-type ZnO single crystals with and without hydrogen peroxide pretreatment for the ZnO substrate. The Au/ZnO contacts fabricated on substrates without H2O2 pretreatment were Ohmic and those with H2O2 pretreatment were rectifying. With an aim of fabricating a good quality Schottky contact, the rectifying property of the Au/ZnO contact was systemically investigated by varying the treatment temperature and duration. The best performing Schottky contact was found to have an ideality factor of 1.15 and a leakage current of ˜10-7 A cm-2. A multispectroscopic study, including scanning electron microscopy, positron annihilation spectroscopy, deep level transient spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence, showed that the H2O2 treatment removed the OH impurity and created Zn-vacancy related defects hence decreasing the conductivity of the ZnO surface layer, a condition favorable for forming good Schottky contact. However, the H2O2 treatment also resulted in a deterioration of the surface morphology, leading to an increase in the Schottky contact ideality factor and leakage current in the case of nonoptimal treatment time and temperature.

  20. Modulation by endothelin-1 of spontaneous activity and membrane currents of atrioventricular node myocytes from the rabbit heart.

    Directory of Open Access Journals (Sweden)

    Stéphanie C Choisy

    Full Text Available The atrioventricular node (AVN is a key component of the cardiac pacemaker-conduction system. Although it is known that receptors for the peptide hormone endothelin-1 (ET-1 are expressed in the AVN, there is very little information available on the modulatory effects of ET-1 on AVN electrophysiology. This study characterises for the first time acute modulatory effects of ET-1 on AVN cellular electrophysiology.Electrophysiological experiments were conducted in which recordings were made from rabbit isolated AVN cells at 35-37°C using the whole-cell patch clamp recording technique.Application of ET-1 (10 nM to spontaneously active AVN cells led rapidly (within ~13 s to membrane potential hyperpolarisation and cessation of spontaneous action potentials (APs. This effect was prevented by pre-application of the ET(A receptor inhibitor BQ-123 (1 µM and was not mimicked by the ET(B receptor agonist IRL-1620 (300 nM. In whole-cell voltage-clamp experiments, ET-1 partially inhibited L-type calcium current (I(Ca,L and rapid delayed rectifier K(+ current (I(Kr, whilst it transiently activated the hyperpolarisation-activated current (I(f at voltages negative to the pacemaking range, and activated an inwardly rectifying current that was inhibited by both tertiapin-Q (300 nM and Ba(2+ ions (2 mM; each of these effects was sensitive to ET(A receptor inhibition. In cells exposed to tertiapin-Q, ET-1 application did not produce membrane potential hyperpolarisation or immediate cessation of spontaneous activity; instead, there was a progressive decline in AP amplitude and depolarisation of maximum diastolic potential.Acutely applied ET-1 exerts a direct modulatory effect on AVN cell electrophysiology. The dominant effect of ET-1 in this study was activation of a tertiapin-Q sensitive inwardly rectifying K(+ current via ET(A receptors, which led rapidly to cell quiescence.

  1. Energy-harvesting shock absorber with a mechanical motion rectifier

    Science.gov (United States)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  2. Energy-harvesting shock absorber with a mechanical motion rectifier

    International Nuclear Information System (INIS)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-01-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges. (paper)

  3. Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    International Nuclear Information System (INIS)

    Ma, R.; Ellis, K.J.; Shypailo, R.J.; Pierson, R.N. Jr.

    1999-01-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%. (author)

  4. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  5. High-performance digital triggering system for phase-controlled rectifiers

    International Nuclear Information System (INIS)

    Olsen, R.E.

    1983-01-01

    The larger power supplies used to power accelerator magnets are most commonly polyphase rectifiers using phase control. While this method is capable of handling impressive amounts of power, it suffers from one serious disadvantage, namely that of subharmonic ripple. Since the stability of the stored beam depends to a considerable extent on the regulation of the current in the bending magnets, subharmonic ripple, especially that of low frequency, can have a detrimental effect. At the NSLS, we have constructed a 12-pulse, phase control system using digital signal processing techniques that essentially eliminates subharmonic ripple

  6. Highly efficient integrated rectifier and voltage boosting circuits for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    D. Maurath

    2008-05-01

    Full Text Available This paper presents novel circuit concepts for integrated rectifiers and voltage converting interfaces for energy harvesting micro-generators. In the context of energy harvesting, usually only small voltages are supplied by vibration-driven generators. Therefore, rectification with minimum voltage losses and low reverse currents is an important issue. This is realized by novel integrated rectifiers which were fabricated and are presented in this article. Additionally, there is a crucial need for dynamic load adaptation as well as voltage up-conversion. A circuit concept is presented, which is able to obtain both requirements. This generator interface adapts its input impedance for an optimal energy transfer efficiency. Furthermore, this generator interface provides implicit voltage up-conversion, whereas the generator output energy is stored on a buffer, which is connected to the output of the voltage converting interface. As simulations express, this fully integrated converter is able to boost ac-voltages greater than |0.35 V| to an output dc-voltage of 2.0 V–2.5 V. Thereby, high harvesting efficiencies above 80% are possible within the entire operational range.

  7. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

    Directory of Open Access Journals (Sweden)

    Predrag Pejovic

    2013-12-01

    Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

  8. Novel composite resonance DC-DC converter with voltage doubler rectifier

    OpenAIRE

    Kato, Hisatsugu; Matsuo, Hirohumi; Eguchi, Masaki; Sakamoto, Yukitaka; Nakaishi, Masaki

    2009-01-01

    This paper deals with a novel composite resonance DC-DC converter with the voltage doubler rectifier, which is developed to be applied to the power conditioner of the photovoltaic generation system. The proposed DC-DC converter has the current and voltage resonance functions. Therefore, the output voltage regulation can be achieved for the large variations of the input voltage and load. Also, this converter has the high power efficiency. The maximum power efficiency 96.1% can be realized.

  9. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia).

    Science.gov (United States)

    Johnston, Melissa; Anderson, Catrona; Colombo, Michael

    2017-01-15

    We recorded neuronal activity from the nidopallium caudolaterale, the avian equivalent of mammalian prefrontal cortex, and the entopallium, the avian equivalent of the mammalian visual cortex, in four birds trained on a differential outcomes delayed matching-to-sample procedure in which one sample stimulus was followed by reward and the other was not. Despite similar incidence of reward-specific and reward-unspecific delay cell types across the two areas, overall entopallium delay activity occurred following both rewarded and non-rewarded stimuli, whereas nidopallium caudolaterale delay activity tended to occur following the rewarded stimulus but not the non-rewarded stimulus. These findings are consistent with the view that delay activity in entopallium represents a code of the sample stimulus whereas delay activity in nidopallium caudolaterale represents a code of the possibility of an upcoming reward. However, based on the types of delay cells encountered, cells in NCL also code the sample stimulus and cells in ENTO are influenced by reward. We conclude that both areas support the retention of information, but that the activity in each area is differentially modulated by factors such as reward and attentional mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Delayed reactions of active avoidance in white rats under conditions of an alternative choice].

    Science.gov (United States)

    Ioseliani, T K; Sikharulidze, N I; Kadagishvili, A Ia; Mitashvili, E G

    1995-01-01

    It was shown that if the rats had been learned and then tested using conventional pain punishment of erroneous choice they were able to solve the problem of alternative choice only in the period of immediate action of conditioned stimuli. If the pain punishment for erroneously chosen compartment had not been applied in animal learning and testing, rats successfully solved the problem of alternative choice even after 5-second delay. Introduction of pain punishment led to the frustration of earlier elaborated delayed avoidance reactions. Analysis of the obtained results allows us to argue that the apparent incapability of white rats for solving the problems of delayed avoidance is caused by simultaneous action of two different mechanisms, i.e., those of the active and passive avoidance rather than short-term memory deficit.

  11. Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator

    Directory of Open Access Journals (Sweden)

    Liwei Shi

    2015-01-01

    Full Text Available This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experiments were done to gather the energy characteristics with a voltage sensor. The signal is analyzed with 5-layer wavelet packets, and the energy eigenvalue of each frequency band is obtained. Meanwhile, the energy-eigenvalue tolerance was introduced to improve the diagnostic accuracy. With the wavelet packet fault diagnosis, the fault tolerant four-phase DFBLSG can detect the usual open-circuit fault and operate in the fault tolerant mode if there is a fault. The results indicate that the fault analysis techniques in this paper are accurate and effective.

  12. Bubbling in delay-coupled lasers.

    Science.gov (United States)

    Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E

    2009-06-01

    We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.

  13. Influence of load type on power factor and harmonic composition of three-phase rectifier current

    Science.gov (United States)

    Nikolayzin, N. V.; Vstavskaya, E. V.; Konstantinov, V. I.; Konstantinova, O. V.

    2018-05-01

    This article is devoted to research of the harmonic composition of the three-phase rectifier current consumed when it operates with different types of load. The results are compared with Standard requirements.

  14. Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong

    2014-03-01

    In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Active Listening Delays Attentional Disengagement and Saccadic Eye Movements.

    Science.gov (United States)

    Lester, Benjamin D; Vecera, Shaun P

    2017-05-23

    Successful goal-directed visual behavior depends on efficient disengagement of attention. Attention must be withdrawn from its current focus before being redeployed to a new object or internal process. Previous research has demonstrated that occupying cognitive processes with a secondary cellular phone conversation impairs attentional functioning and driving behavior. For example, attentional processing is significantly impacted by concurrent cell phone use, resulting in decreased explicit memory for on-road information. Here, we examined the impact of a critical component of cell-phone use-active listening-on the effectiveness of attentional disengagement. In the gap task-a saccadic manipulation of attentional disengagement-we measured saccade latencies while participants performed a secondary active listening task. Saccadic latencies significantly increased under an active listening load only when attention needed to be disengaged, indicating that active listening delays a disengagement operation. Simple dual-task interference did not account for the observed results. Rather, active cognitive engagement is required for measurable disengagement slowing to be observed. These results have implications for investigations of attention, gaze behavior, and distracted driving. Secondary tasks such as active listening or cell-phone conversations can have wide-ranging impacts on cognitive functioning, potentially impairing relatively elementary operations of attentional function, including disengagement.

  16. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of MISSISSIPPI RIVER - LAPLACE TO VENICE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of MISSISSIPPI RIVER -...

  17. 2012 NOAA Ortho-rectified Near-Infrared MLLW Mosaic of Pescadero Point to Bodega Bay, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  18. 2012 NOAA Ortho-rectified Near-Infrared MLLW Mosaic of Lopez Rock to Pescadero Point, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  19. 2013 NOAA Ortho-rectified Near-Infrared Mosaic of Virginia: Norfolk, Hampton Roads,and Newport News

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  20. 2016 NOAA NGS Ortho-rectified Mean High Water Color Mosaic of Venice Inlet ICW, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  1. 2013 NOAA Ortho-rectified Color Mosaic of Intercoastal Waterway - Calcasieu Lake to Vermillion Bay, Louisiana

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. 2012 NOAA Ortho-rectified Color MHW Mosaic of Washington: Seattle and Lake Washington Ship Canal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. 2012 NOAA Ortho-rectified Color Mosaic of Del Mar Boat Basin and Oceanside Harbor, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. 2012 NOAA Ortho-rectified Near-Infrared MLLW Mosaic of Seal Rock to Lopez Rock, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2013 NOAA Ortho-rectified Color Mosaic of California: Port of Los Angeles and Long Beach

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. Thirty-six pulse rectifier scheme based on zigzag auto-connected transformer

    OpenAIRE

    Xiao-Qiang Chen; Chun-Ling Hao; Hao Qiu; Min Li

    2016-01-01

    In this paper, a low kilo-volt-ampere rating zigzag connected autotransformer based 36-pulse rectifier system supplying vector controlled induction motor drives (VCIMD) is designed, modeled and simulated. Detailed design procedure and magnetic rating calculation of the proposed autotransformer and interphase reactor is studied. Moreover, the design process of the autotransformer is modified to make it suitable for retrofit applications. Simulation results confirm that the proposed 36-pulse re...

  7. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of LAKE CHARLES (NODC Accession 0075827)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of LAKE CHARLES. The...

  8. An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules.

    Science.gov (United States)

    Carter, Michael J; Ste-Marie, Diane M

    2017-03-01

    The learning advantages of self-controlled knowledge-of-results (KR) schedules compared to yoked schedules have been linked to the optimization of the informational value of the KR received for the enhancement of one's error-detection capabilities. This suggests that information-processing activities that occur after motor execution, but prior to receiving KR (i.e., the KR-delay interval) may underlie self-controlled KR learning advantages. The present experiment investigated whether self-controlled KR learning benefits would be eliminated if an interpolated activity was performed during the KR-delay interval. Participants practiced a waveform matching task that required two rapid elbow extension-flexion reversals in one of four groups using a factorial combination of choice (self-controlled, yoked) and KR-delay interval (empty, interpolated). The waveform had specific spatial and temporal constraints, and an overall movement time goal. The results indicated that the self-controlled + empty group had superior retention and transfer scores compared to all other groups. Moreover, the self-controlled + interpolated and yoked + interpolated groups did not differ significantly in retention and transfer; thus, the interpolated activity eliminated the typically found learning benefits of self-controlled KR. No significant differences were found between the two yoked groups. We suggest the interpolated activity interfered with information-processing activities specific to self-controlled KR conditions that occur during the KR-delay interval and that these activities are vital for reaping the associated learning benefits. These findings add to the growing evidence that challenge the motivational account of self-controlled KR learning advantages and instead highlights informational factors associated with the KR-delay interval as an important variable for motor learning under self-controlled KR schedules.

  9. Time delay between cardiac and brain activity during sleep transitions

    Science.gov (United States)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  10. Low-Complexity Model Predictive Control of Single-Phase Three-Level Rectifiers with Unbalanced Load

    DEFF Research Database (Denmark)

    Ma, Junpeng; Song, Wensheng; Wang, Xiongfei

    2018-01-01

    The fluctuation of the neutral-point potential in single-phase three-level rectifiers leads to coupling between the line current regulation and dc-link voltage balancing, deteriorating the quality of line current. For addressing this issue, this paper proposes a low-complexity model predictive...

  11. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.

    Science.gov (United States)

    Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind

    2017-07-26

    Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Development and testing of a 1/10 scale self-rectifying air turbine power conversion system. For period December 1979 to February 1981

    Energy Technology Data Exchange (ETDEWEB)

    White, P.R.S.

    1981-08-01

    In December 1979 the SEA-Lanchester Wave Energy Group started a programme of theoretical and experimental work to investigate the performance of a self-rectifying air turbine based on the idea first proposed by Dr. A.A. Wells. The work was initiated to provide the project team with accurate design data for the power take off in order that the complete system performance could be analysed. It was felt necessary to provide this data in house, as at that time no results were available from the other groups working with self rectifying air turbines. The result of the work described in the report is that a self rectifying turbine of the Wells type provides a very efficient, elegant, simple and therefore reliable, solution to the power take off aspect of the CLAM Wave Energy Converter.

  13. Investigations on contribution of glial inwardly-rectifying K+ current to membrane potential and ion flux: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2015-01-01

    Full Text Available The inwardly rectifying K+ current [IK(IR] allows large inward K+ currents at potentials negative to K+ equilibrium potential (EK and it becomes small outward K+ currents at those positive to EK. How changes of such currents enriched in glial cells can influence the functions of glial cell, neurons, or both is not clearly defined, although mutations of Kir4.1 channels have been demonstrated to cause serious neurological disorders. In this study, we identified the presence of IK(IR in human glioma cells (U373 and U87 cells. The amplitude of IK(IR in U373 cells was subject to inhibition by amitriptyline, arecoline, or BaCl2. The activity of inwardly rectifying K+ channels was also clearly detected, and single-channel conductance of these channels was calculated to be around 23 pS. Moreover, based on a simulation model derived from neuron–glial interaction mediated by ion flux, we further found out that incorporation of glial IK(IR conductance into the model can significantly contribute to regulation of extracellular K+ concentrations and glial resting potential, particularly during high-frequency stimulation. Glial cells and neurons can mutually modulate their expression of ion channels through K+ ions released into the extracellular space. It is thus anticipated that glial IK(IR may be a potential target utilized to influence the activity of neuronal and glial cells as well as their interaction.

  14. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    Science.gov (United States)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  15. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer.

    Science.gov (United States)

    Li, Xing; Meng, Xiaodong; Tsui, Chi-Ying; Ki, Wing-Hung

    2015-12-01

    Wireless power transfer using reconfigurable resonant regulating (R(3)) rectification suffers from limited range in accommodating varying coupling and loading conditions. A primary-assisted regulation principle is proposed to mitigate these limitations, of which the amplitude of the rectifier input voltage on the secondary side is regulated by accordingly adjusting the voltage amplitude Veq on the primary side. A novel current-sensing method and calibration scheme track Veq on the primary side. A ramp generator simultaneously provides three clock signals for different modules. Both the primary equalizer and the R(3) rectifier are implemented as custom integrated circuits fabricated in a 0.35 μm CMOS process, with the global control implemented in FPGA. Measurements show that with the primary equalizer, the workable coupling and loading ranges are extended by 250% at 120 mW load and 300% at 1.2 cm coil distance compared to the same system without the primary equalizer. A maximum rectifier efficiency of 92.5% and a total system efficiency of 62.4% are demonstrated.

  16. Energy Saving in Three-Phase Diode Rectifiers Using EI Technique with Adjustable Switching Frequency Scheme

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Yang, Yongheng

    2016-01-01

    A front-end rectifier can significantly impact a power electronics system performance and efficiency for applications such as motor drive where the system commonly operates under partial loading conditions. This paper proposes an adjustable switching frequency scheme using an electronic inductor...

  17. Superconducting transformers, rectifiers, and switches. (Review paper)

    International Nuclear Information System (INIS)

    Ignatov, V.E.; Koval'kov, G.A.; Moskvitin, A.I.

    Cryogenic rectifiers using power cryotrons have been fabricated by many foreign firms since 1960. Present-day flux pumps require a low voltage power supply (several tens of millivolts) and a high current (kiloamperes). Increasing the power supply voltage will quadratically increase the flux pump losses and, given the limitations of existing materials, are not economically profitable. Present-day, cryotron-type flux pumps can best be used in power systems as a power supply for superconducting magnets, solenoids, storage devices, and superconducting exciting coils for turbogenerators. To increase the voltage of the next generation of transformers for superconducting dc power transmission, a research program must be set up to improve the cryotrons and to develop systems based on a different principle of operation, for example, semiconductor devices based on the principle of the volume effect in the intermediate environment

  18. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability

    Science.gov (United States)

    Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef

    2017-10-01

    We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

  19. Ac loss measurements on a superconducting transformer for a 25 kA superconducting rectifier

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Mulders, J.M.; de Reuver, J.L.; van de Klundert, L.J.M.

    1984-01-01

    Ac loss measurements have been performed on a superconducting transformer. The transformer is a part of a 25 kA thermally switched superconducting rectifier operating at a frequency of 0.1 Hz. The loss measurements have been automatized by means of a microcomputer sampling four relevant signals and

  20. 2010 NOAA Ortho-rectified Color MHW Mosaic of South Carolina: Hilton Head to St. Helena Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  1. 2011 NOAA Ortho-rectified Mosaic of Hampton Harbor to Frost Point, New Hampshire (Mean High Water)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. 2015 NOAA Ortho-rectified Color Mosaic of San Diego, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. 2016 NOAA NGS Ortho-rectified Mean High Water Near-Infrared Mosaic of Venice Inlet ICW, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. 2014 NOAA NGS Ortho-rectified Mean Low Low Water Color Mosaic of Venice Inlet ICW, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2011 NOAA Ortho-rectified Mosaic of Merrimack River and Plum Island Sound, Massachusetts (Mean High Water)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. 2012 NOAA Ortho-rectified Near-Infrared Mosaic of Oregon: Columbia River - Bonneville Dam to Lake Umatilla

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2011 NOAA Ortho-rectified Mosaic of Maine: Reversing Falls at Whiting Bay, Mean Lower Low Water

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2012 NOAA Ortho-rectified Color MLLW Mosaic of Alabama: Bon Secour Bay and Weeks Bay NERR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. 2016 NOAA NGS Ortho-rectified Mean Low Low Water Color Mosaic of St Johns River, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. 2012 NOAA Near Infrared MLLW Ortho-rectified Mosaic of Northeast Point to Murphy Island, South Carolina

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  11. Resonant Full-Bridge Synchronous Rectifier Utilizing 15 V GaN Transistors for Wireless Power Transfer Applications Following AirFuel Standard Operating at 6.78 MHz

    DEFF Research Database (Denmark)

    Jensen, Christopher Have Kiaerskou; Spliid, Frederik Monrad; Hertel, Jens Christian

    2018-01-01

    , this work uses low voltage GaN transistors on the receiver (Rx) side to allow synchronous rectification and soft switching, thereby achieving high efficiency. After analyzing adequate Class-DE rectifier topologies, a ClassDE full-bridge 5 W rectifier using 15 V GaN transistors are designed and implemented...

  12. Thermal analysis and improvement of cascode GaN device package for totem-pole bridgeless PFC rectifier

    International Nuclear Information System (INIS)

    She, Shuojie; Zhang, Wenli; Liu, Zhengyang; Lee, Fred C.; Huang, Xiucheng; Du, Weijing; Li, Qiang

    2015-01-01

    The totem-pole bridgeless power factor correction (PFC) rectifier has a simpler topology and higher efficiency than other boost-type bridgeless PFC rectifiers. Its promising performance is enabled by using high-voltage gallium nitride (GaN) high-electron-mobility transistors, which have considerably better figures of merit (e.g., lower reverse recovery charges and less switching losses) than the state-of-the-art silicon metal-oxide-semiconductor field-effect transistors. Cascode GaN devices in traditional packages, i.e., the TO-220 and power quad flat no-lead, are used in the totem-pole PFC boost rectifier. But the parasitic inductances induced by the traditional packages not only significantly deteriorate the switching characteristics of the discrete GaN device but also adversely affect the performance of the built PFC rectifier. A new stack-die packaging structure with an embedded capacitor has been introduced and proven to be efficient in reducing parasitic ringing at the turn-off transition and achieving true zero-voltage-switching turn-on. However, the thermal dissipation capability of the device packaged in this configuration becomes a limitation on further pushing the operating frequency and the output current level for high-efficiency power conversion. This paper focuses on the thermal analysis of the cascode GaN devices in different packages and the GaN-based multichip module used in a two-phase totem-pole bridgeless PFC boost rectifier. A series of thermal models are built based on the actual structures and materials of the packaged devices to evaluate their thermal performance. Finite element analysis (FEA) simulation results of the cascode GaN device in a flip-chip format demonstrate the possibility of increasing the device switching speed while maintaining the peak temperature of the device below 125 °C. Thermal analysis of the GaN-based power module in a very similar structure is also conducted using the FEA method. Experimental data measured using

  13. Analytical Design of Passive LCL Filter for Three-phase Two-level Power Factor Correction Rectifiers

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper proposes a comprehensive analytical LCL filter design method for three-phase two-level power factor correction rectifiers (PFCs). The high frequency converter current ripple generates the high frequency current harmonics that need to be attenuated with respect to the grid standards...

  14. $L^{p}$-square function estimates on spaces of homogeneous type and on uniformly rectifiable sets

    CERN Document Server

    Hofmann, Steve; Mitrea, Marius; Morris, Andrew J

    2017-01-01

    The authors establish square function estimates for integral operators on uniformly rectifiable sets by proving a local T(b) theorem and applying it to show that such estimates are stable under the so-called big pieces functor. More generally, they consider integral operators associated with Ahlfors-David regular sets of arbitrary codimension in ambient quasi-metric spaces. The local T(b) theorem is then used to establish an inductive scheme in which square function estimates on so-called big pieces of an Ahlfors-David regular set are proved to be sufficient for square function estimates to hold on the entire set. Extrapolation results for L^p and Hardy space versions of these estimates are also established. Moreover, the authors prove square function estimates for integral operators associated with variable coefficient kernels, including the Schwartz kernels of pseudodifferential operators acting between vector bundles on subdomains with uniformly rectifiable boundaries on manifolds.

  15. Design Criteria for DC Link Filters in a Synchronous Generator-Phase Controlled Rectifier-Filter-Load System

    National Research Council Canada - National Science Library

    Greseth, Gregory

    1999-01-01

    .... The proposed Navy DC Zonal Electrical Distribution System (DC ZEDS) being designed for the new DD-21 utilizes a rectified ac generator output which is filtered and stepped to usable voltages by local dc-dc converters...

  16. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    International Nuclear Information System (INIS)

    Hunt, Alan; Tobin, S. J.

    2015-01-01

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  17. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Alan [Idaho State Univ., Pocatello, ID (United States). Idaho Accelerator Center, Dept. of Physics; Reedy, E. T.E. [Idaho State Univ., Pocatello, ID (United States). Dept. of Phyics, Idaho Accelerator Center; Mozin, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, S. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Nonproliferation

    2015-02-12

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  18. A novel MR-compatible sensor to assess active medical device safety: stimulation monitoring, rectified radio frequency pulses, and gradient-induced voltage measurements.

    Science.gov (United States)

    Barbier, Thérèse; Aissani, Sarra; Weber, Nicolas; Pasquier, Cédric; Felblinger, Jacques

    2018-03-30

    To evaluate the function of an active implantable medical device (AIMD) during magnetic resonance imaging (MRI) scans. The induced voltages caused by the switching of magnetic field gradients and rectified radio frequency (RF) pulse were measured, along with the AIMD stimulations. An MRI-compatible voltage probe with a bandwidth of 0-40 kHz was designed. Measurements were carried out both on the bench with an overvoltage protection circuit commonly used for AIMD and with a pacemaker during MRI scans on a 1.5 T (64 MHz) MR scanner. The sensor exhibits a measurement range of ± 15 V with an amplitude resolution of 7 mV and a temporal resolution of 10 µs. Rectification was measured on the bench with the overvoltage protection circuit. Linear proportionality was confirmed between the induced voltage and the magnetic field gradient slew rate. The pacemaker pacing was recorded successfully during MRI scans. The characteristics of this low-frequency voltage probe allow its use with extreme RF transmission power and magnetic field gradient positioning for MR safety test of AIMD during MRI scans.

  19. Rectified factor networks for biclustering of omics data.

    Science.gov (United States)

    Clevert, Djork-Arné; Unterthiner, Thomas; Povysil, Gundula; Hochreiter, Sepp

    2017-07-15

    Biclustering has become a major tool for analyzing large datasets given as matrix of samples times features and has been successfully applied in life sciences and e-commerce for drug design and recommender systems, respectively. actor nalysis for cluster cquisition (FABIA), one of the most successful biclustering methods, is a generative model that represents each bicluster by two sparse membership vectors: one for the samples and one for the features. However, FABIA is restricted to about 20 code units because of the high computational complexity of computing the posterior. Furthermore, code units are sometimes insufficiently decorrelated and sample membership is difficult to determine. We propose to use the recently introduced unsupervised Deep Learning approach Rectified Factor Networks (RFNs) to overcome the drawbacks of existing biclustering methods. RFNs efficiently construct very sparse, non-linear, high-dimensional representations of the input via their posterior means. RFN learning is a generalized alternating minimization algorithm based on the posterior regularization method which enforces non-negative and normalized posterior means. Each code unit represents a bicluster, where samples for which the code unit is active belong to the bicluster and features that have activating weights to the code unit belong to the bicluster. On 400 benchmark datasets and on three gene expression datasets with known clusters, RFN outperformed 13 other biclustering methods including FABIA. On data of the 1000 Genomes Project, RFN could identify DNA segments which indicate, that interbreeding with other hominins starting already before ancestors of modern humans left Africa. https://github.com/bioinf-jku/librfn. djork-arne.clevert@bayer.com or hochreit@bioinf.jku.at. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  20. Delay-dependent stability of neural networks of neutral type with time delay in the leakage term

    International Nuclear Information System (INIS)

    Li, Xiaodi; Cao, Jinde

    2010-01-01

    This paper studies the global asymptotic stability of neural networks of neutral type with mixed delays. The mixed delays include constant delay in the leakage term (i.e. 'leakage delay'), time-varying delays and continuously distributed delays. Based on the topological degree theory, Lyapunov method and linear matrix inequality (LMI) approach, some sufficient conditions are derived ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by the MATLAB LMI toolbox. Even if there is no leakage delay, the obtained results are less restrictive than some recent works. It can be applied to neural networks of neutral type with activation functions without assuming their boundedness, monotonicity or differentiability. Moreover, the differentiability of the time-varying delay in the non-neutral term is removed. Finally, two numerical examples are given to show the effectiveness of the proposed method

  1. Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine

    Czech Academy of Sciences Publication Activity Database

    Bébarová, M.; Matejovič, P.; Pásek, Michal; Hořáková, Z.; Hošek, J.; Šimurdová, M.; Šimurda, J.

    2016-01-01

    Roč. 389, č. 10 (2016), s. 1049-1058 ISSN 0028-1298 Institutional support: RVO:61388998 Keywords : arrhythmias * atrial cardiomyocyte * inward rectifier potasssium current * ethanol * rat atrial cell model Subject RIV: BO - Biophysics Impact factor: 2.558, year: 2016

  2. Delay-Dependent Control for Networked Control Systems with Large Delays

    Directory of Open Access Journals (Sweden)

    Yilin Wang

    2013-01-01

    Full Text Available We consider the problems of robust stability and control for a class of networked control systems with long-time delays. Firstly, a nonlinear discrete time model with mode-dependent time delays is proposed by converting the uncertainty of time delay into the uncertainty of parameter matrices. We consider a probabilistic case where the system is switched among different subsystems, and the probability of each subsystem being active is defined as its occurrence probability. For a switched system with a known subsystem occurrence probabilities, we give a stochastic stability criterion in terms of linear matrix inequalities (LMIs. Then, we extend the results to a more practical case where the subsystem occurrence probabilities are uncertain. Finally, a simulation example is presented to show the efficacy of the proposed method.

  3. A novel delay-dependent criterion for delayed neural networks of neutral type

    International Nuclear Information System (INIS)

    Lee, S.M.; Kwon, O.M.; Park, Ju H.

    2010-01-01

    This Letter considers a robust stability analysis method for delayed neural networks of neutral type. By constructing a new Lyapunov functional, a novel delay-dependent criterion for the stability is derived in terms of LMIs (linear matrix inequalities). A less conservative stability criterion is derived by using nonlinear properties of the activation function of the neural networks. Two numerical examples are illustrated to show the effectiveness of the proposed method.

  4. 2010 NOAA Ortho-rectified Near-Infrared MHW Mosaic of South Carolina: Hilton Head to St. Helena Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of BEAUMONT, ORANGE, PORT AUTHUR (NODC Accession 0074380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of BEAUMONT, ORANGE,...

  6. 2011 NOAA Ortho-rectified Mosaic of Hampton Harbor to Frost Point, New Hampshire (Mean Lower Low Water)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2014 NOAA NGS Ortho-rectified Mean Low Low Water Near-Infrared Mosaic of Venice Inlet ICW, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2016 NOAA NGS Ortho-rectified Mean High Water Color Mosaic of South Venice to Marco Island, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. 2014 NOAA Ortho-rectified Mean High Water Near- Infrared Mosaic of Cedar Key to Tarpon Springs, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. NOAA Ortho-rectified Mosaic from Color Aerial Imagery of CHOCTAWHATCHEE BAY, FL, 2009 - 2010 (NODC Accession 0086137)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of CHOCTAWHATCHEE BAY....

  11. 2012 NOAA Ortho-rectified Near-Infrared MLLW Mosaic of Alabama: Bon Secour Bay and Weeks Bay NERR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators

    Science.gov (United States)

    Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.

    2016-01-01

    Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial

  13. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.

    Science.gov (United States)

    Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T

    2016-06-15

    Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel

  14. US Mains Stacked Very High Frequency Self-oscillating Resonant Power Converter with Unified Rectifier

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Mønster, Jakob Døllner

    2016-01-01

    This paper describes a Very High Frequency (VHF) converter made with three Class-E inverters and a single ClassDE rectifier. The converter is designed for the US mains (120 V, 60 Hz) and can deliver 9 W to a 60 V LED. The converter has a switching frequency of 37 MHz and achieves an efficiency...

  15. Calcium currents in a fast-twitch skeletal muscle of the rat

    OpenAIRE

    1983-01-01

    Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calci...

  16. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  17. THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS

    International Nuclear Information System (INIS)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; De Rosa, G.; Martini, Paul; Kochanek, C. S.; Zu, Y.; Shappee, B.; Beatty, T. G.; Salvo, C. Araya; Bird, J. C.; Horne, Keith; Bentz, M. C.; Denney, K. D.; Siverd, R.; Sergeev, S. G.; Borman, G. A.; Kaspi, S.; Bord, D. J.; Che, X.

    2013-01-01

    We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C 120, and PG 2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the Hβ emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C 120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II λ4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG 2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C 120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.

  18. THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; De Rosa, G.; Martini, Paul; Kochanek, C. S.; Zu, Y.; Shappee, B.; Beatty, T. G.; Salvo, C. Araya; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 W 18th Ave, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, Fife, KY16 9SS Scotland (United Kingdom); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Denney, K. D. [Marie Curie Fellow at the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Siverd, R. [Department of Physics and Astronomy, Vanderbilt University, 5301 Stevenson Center, Nashville, TN 37235 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 98409 (Ukraine); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Bord, D. J. [Department of Natural Sciences, The University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128 (United States); Che, X. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 41809 (United States); and others

    2013-02-10

    We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C 120, and PG 2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the H{beta} emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C 120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II {lambda}4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG 2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C 120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.

  19. Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays.

    Science.gov (United States)

    Popa, Călin-Adrian

    2018-06-08

    This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays, and distributed delays, for which the states, weights, and activation functions belong to the normed division algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity of the quaternion algebra, the Cayley-Dickson construction is used to decompose the OVNNs into 4 complex-valued systems. By using appropriate Lyapunov-Krasovskii functionals, with double and triple integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities, delay-dependent criteria are established for the exponential stability of the considered OVNNs. The criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effects of travel time delay on multi-faceted activity scheduling under space-time constraints : a simulation study

    NARCIS (Netherlands)

    Rasouli, S.; Timmermans, H.J.P.

    2014-01-01

    This paper presents the results of a study, which simulates the effects of travel time delay on adaptations of planned activity-travel schedules. The activity generation and scheduling engine of the Albatross model system is applied to a fraction of the synthetic population of the Rotterdam region,

  1. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    International Nuclear Information System (INIS)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-01-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  2. Towards Rectifying Performance at the Molecular Scale.

    Science.gov (United States)

    Zhang, Guang-Ping; Xie, Zhen; Song, Yang; Hu, Gui-Chao; Wang, Chuan-Kui

    2017-10-24

    Molecular diode, proposed by Mark Ratner and Arieh Aviram in 1974, is the first single-molecule device investigated in molecular electronics. As a fundamental device in an electric circuit, molecular diode has attracted an enduring and extensive focus during the past decades. In this review, the theoretical and experimental progresses of both charge-based and spin-based molecular diodes are summarized. For the charge-based molecular diodes, the rectifying properties originated from asymmetric molecules including D-σ-A, D-π-A, D-A, and σ-π type compounds, asymmetric electrodes, asymmetric nanoribbons, and their combination are analyzed. Correspondingly, the rectification mechanisms are discussed in detail. Furthermore, a series of strategies for modulating rectification performance is figured out. Discussion on concept of molecular spin diode is also involved based on a magnetic co-oligomer. At the same time, the intrinsic mechanism as well as the modulation of the spin-current rectification performance is introduced. Finally, several crucial issues that need to be addressed in the future are given.

  3. Delay-related cerebral activity and motor preparation

    NARCIS (Netherlands)

    Mars, R.B.; Coles, M.G.H.; Hulstijn, W.

    2008-01-01

    Flexible goal-oriented behavior requires the ability to carry information across temporal delays. This ability is associated with sustained neural firing. In cognitive terms, this ability has often been associated with the maintenance of sensory material online, as during short-term memory tasks, or

  4. Self-Oscillating Resonant Gate Drive for Resonant Inverters and Rectifiers Composed Solely of Passive Components

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Pedersen, Jeppe Arnsdorf; Knott, Arnold

    2014-01-01

    to improve the performance of the gate drive and how the gate drive can be implemented in a class E inverter, a class DE inverter and in class E inverter with a synchronous class E rectifier. The paper shows practical implementations of all the proposed inverters and converters operating in the Very High...

  5. Working memory delay period activity marks a domain-unspecific attention mechanism.

    Science.gov (United States)

    Katus, Tobias; Müller, Matthias M

    2016-03-01

    Working memory (WM) recruits neural circuits that also perform perception- and action-related functions. Among the functions that are shared between the domains of WM and perception is selective attention, which supports the maintenance of task-relevant information during the retention delay of WM tasks. The tactile contralateral delay activity (tCDA) component of the event-related potential (ERP) marks the attention-based rehearsal of tactile information in somatosensory brain regions. We tested whether the tCDA reflects the competition for shared attention resources between a WM task and a perceptual task under dual-task conditions. The two tasks were always performed on opposite hands. In different blocks, the WM task had higher or lower priority than the perceptual task. The tCDA's polarity consistently reflected the hand where the currently prioritized task was performed. This suggests that the process indexed by the tCDA is not specific to the domain of WM, but mediated by a domain-unspecific attention mechanism. The analysis of transient ERP components evoked by stimuli in the two tasks further supports the interpretation that the tCDA marks a goal-directed bias in the allocation of selective attention. Larger spatially selective modulations were obtained for stimulus material related to the high-, as compared to low-priority, task. While our results generally indicate functional overlap between the domains of WM and perception, we also found evidence suggesting that selection in internal (mnemonic) and external (perceptual) stimulus representations involves processes that are not active during shifts of preparatory attention. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance.

    Science.gov (United States)

    Adam, Kirsten C S; Robison, Matthew K; Vogel, Edward K

    2018-01-08

    Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.

  7. Rectifying the Optical-Field-Induced Current in Dielectrics: Petahertz Diode.

    Science.gov (United States)

    Lee, J D; Yun, Won Seok; Park, Noejung

    2016-02-05

    Investigating a theoretical model of the optical-field-induced current in dielectrics driven by strong few-cycle laser pulses, we propose an asymmetric conducting of the current by forming a heterojunction made of two distinct dielectrics with a low hole mass (m_{h}^{*}≪m_{e}^{*}) and low electron mass (m_{e}^{*}≪m_{h}^{*}), respectively. This proposition introduces the novel concept of a petahertz (10^{15}  Hz) diode to rectify the current in the petahertz domain, which should be a key ingredient for the electric signal manipulation of future light-wave electronics. Further, we suggest the candidate dielectrics for the heterojunction.

  8. Chemical profile of sugarcane spirits produced by double distillation methodologies in rectifying still

    Directory of Open Access Journals (Sweden)

    André Ricardo Alcarde

    2011-06-01

    Full Text Available The objective of this study was to determine the chemical profile of sugarcane spirits produced by different double distillation methodologies in rectifying still. Fermented sugarcane juice was distilled in rectifying still according to three double distillation methodologies: the methodology used for cognac production; the methodology used for whisky production; and the 10-80-10 percentage composition methodology, referring to the volumes of head, heart and tail of the distillate fractions from the second distillation. For comparison purposes, a simple distilled spirit was also produced. The distillates were analyzed for concentrations of ethanol, copper, volatile acidity, furfural and hydroxymethylfurfural, aldehydes, esters, methanol and higher alcohols. The spirits were also evaluated on the sensory attributes of aroma, taste and preference. Compared to simple distillation, double distillation improved the chemical quality of the spirits, since it has reduced the concentrations of acids, aldehydes, esters, methanol, higher alcohols and, consequently, their coefficient of congeners. Regardless of the methodology employed, the double distillation improved the sensory quality of the spirits since they obtained higher sensory acceptance in relation to spirits produced by simple distillation. Among double distilled spirits, the one produced according to whisky methodology obtained the best scores from appraisers on the aroma and flavor parameters and it was also the most preferred.

  9. Impact of Dielectric Constant on the Singlet-Triplet Gap in Thermally Activated Delayed Fluorescence (TADF) Materials

    KAUST Repository

    Sun, Haitao; Hu, Zhubin; Zhong, Cheng; Chen, Xiankai; Sun, Zhenrong; Bredas, Jean-Luc

    2017-01-01

    Thermally activated delayed fluorescence (TADF) relies on the presence of a very small energy gap, ΔEST, between the lowest singlet and triplet excited states. ΔEST is thus a key factor in the molecular design of more efficient materials. However

  10. Novel low harmonics 3-phase rectifiers for efficient motor systems; Novel low harmonics 3-phase rectifiers for efficient motor systems. Konzeptstudie - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pietkiewicz, A.; Melly, S.; Tucker, A.; Haeberle, N. [Schaffner EMV AG, Luterbach (Switzerland); Biner, H.-P. [Haute Ecole Specialisee de Suisse occidentale, HES-SO Valais, Sion (Switzerland)

    2010-07-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a concept study made concerning novel low harmonics 3-phase rectifiers for efficient motor systems. The harmonic distortions which are produced by these systems are discussed and ways of minimising them are examined. The authors discuss novel, passive, multi-pulse current splitters that are considered to be cost efficient, compact and highly-reliable harmonics mitigation concepts for three-phase loads. According to the authors, functional prototypes for a nominal load of 4 kW proved, in laboratory tests, the outstanding properties of multi-pulse current splitters with respect to harmonics cancellation and robustness against voltage asymmetry. The design process, prototype construction and application tests are discussed, as are energy-saving potentials and marketing aspects.

  11. Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue

    DEFF Research Database (Denmark)

    Lewin, Peter A.; Jensen, Leif Bjørnø

    1981-01-01

    One of the mechanisms often suggested for the biological action of ultrasonic beams irradiating human tissues is concerned with the presence in the tissues of minute gaseous bubbles which may, under the influence of the ultrasonic field be stimulated to grow to a size at which resonance or collap...... of calculations for typical (transient) exposure conditions from pulse-echo equipment are presented, indicating that rectified diffusion and stable cavitation are improbable phenomena in these circumstances....

  12. Multistability of neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays.

    Science.gov (United States)

    Nie, Xiaobing; Zheng, Wei Xing

    2015-05-01

    This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart.

    Science.gov (United States)

    Hassinen, Minna; Haverinen, Jaakko; Hardy, Matt E; Shiels, Holly A; Vornanen, Matti

    2015-12-01

    Electrophysiological properties and molecular background of the zebrafish (Danio rerio) cardiac inward rectifier current (IK1) were examined. Ventricular myocytes of zebrafish have a robust (-6.7 ± 1.2 pA pF(-1) at -120 mV) strongly rectifying and Ba(2+)-sensitive (IC50 = 3.8 μM) IK1. Transcripts of six Kir2 channels (drKir2.1a, drKir2.1b, drKir2.2a, drKir2.2b, drKir2.3, and drKir2.4) were expressed in the zebrafish heart. drKir2.4 and drKir2.2a were the dominant isoforms in both the ventricle (92.9 ± 1.5 and 6.3 ± 1.5%) and the atrium (28.9 ± 2.9 and 64.7 ± 3.0%). The remaining four channels comprised together less than 1 and 7 % of the total transcripts in ventricle and atrium, respectively. The four main gene products (drKir2.1a, drKir2.2a, drKir2.2b, drKir2.4) were cloned, sequenced, and expressed in HEK cells for electrophysiological characterization. drKir2.1a was the most weakly rectifying (passed more outward current) and drKir2.2b the most strongly rectifying (passed less outward current) channel, whilst drKir2.2a and drKir2.4 were intermediate between the two. In regard to sensitivity to Ba(2+) block, drKir2.4 was the most sensitive (IC50 = 1.8 μM) and drKir2.1a the least sensitive channel (IC50 = 132 μM). These findings indicate that the Kir2 isoform composition of the zebrafish heart markedly differs from that of mammalian hearts. Furthermore orthologous Kir2 channels (Kir2.1 and Kir2.4) of zebrafish and mammals show striking differences in Ba(2+)-sensitivity. Structural and functional differences needs to be taken into account when zebrafish is used as a model for human cardiac electrophysiology, cardiac diseases, and in screening cardioactive substances.

  14. Electrical and Optical Properties of Rectifying ZnO Homojunctions Fabricated by Wet Chemistry Methods

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Tiagulkyi, Stanislav; Grym, Jan; Černohorský, Ondřej

    2018-01-01

    Roč. 215, č. 2 (2018), č. článku 1700592. ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA17-00546S; GA ČR(CZ) GA15-17044S Institutional support: RVO:67985882 Keywords : Rectifying ZnO homojunctions * Photoluminescence * N-type nanorods Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 1.775, year: 2016

  15. A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures

    KAUST Repository

    Chen, Xiankai; Tsuchiya, Youichi; Ishikawa, Yuma; Zhong, Cheng; Adachi, Chihaya; Bredas, Jean-Luc

    2017-01-01

    In the traditional molecular design of thermally activated delayed fluorescence (TADF) emitters composed of electron-donor and electron-acceptor moieties, achieving a small singlet-triplet energy gap (ΔEST ) in strongly twisted structures usually

  16. Creation of anticorrosion coatings for contact devices of rectifying columns

    Directory of Open Access Journals (Sweden)

    KATAMANOV Vladimir Leonidovich

    2018-02-01

    Full Text Available Today the main corrosion protection methods applied in contact devices of rectifying oil processing equipment, in particular, in mesh nozzles made of stainless steel, under relatively high temperatures (150–250оC and in the presence of aggressive components in oil raw materials (hydrogen sulfide, sulfides, mercaptans, other sulphurous compounds, chloride ions, organochlorine connections, water are to use special alloys as protecting covers as well as corrosion inhibitors that reduce corrosion action of hostile environment. At the same time, the disadvantages of the majority of these methods concern high operational costs, insufficient efficiency or protection ability designed only for a certain factor, but not for combination of them. In this regard corrosion resistance of mesh contact devices made of stainless steel (brand SUS 321 has been studied on three types of samples: alloy wire, welded grid, thin leaf. Titanium nitride (TiN and metallic coatings from nickel (Ni, titanium (Ti and chrome (Cr were used as anticorrosion coatings for the mentioned samples. These coverings were applied on samples in two ways: by means of electrolytic method and vacuum ion-plasma dusting. It was determined that optimal coating thickness is 10–15 microns as it is the thickness at which the produced films possess sufficient plasticity and do not exfoliate from the surface of the corresponding corrosion-proof alloy. The research of corrosion of samples of stainless steel SUS 321 with applied coverings and without them was performed by immersing the samples into compositions that contain oil as well as into the modeling hostile oil-containing environment. As a result of the conducted researches it was determined that the protecting covers of chrome and titanium nitride applied with vacuum ion-plasma dusting method are the most effective coatings from the point of view of anticorrosive protection for mesh contact devices of stainless steel used in rectifying

  17. Delay-active damage versus non-local enhancement for anisotropic damage dynamics computations with alternated loading

    International Nuclear Information System (INIS)

    Desmorat, R.; Chambart, M.; Gatuingt, F.; Guilbaud, D.

    2010-01-01

    Anisotropic damage thermodynamics framework allows to model the concrete-like materials behavior and in particular their dissymmetric tension/compression response. To deal with dynamics applications such as impact, it is furthermore necessary to take into account the strain rate effect observed experimentally. This is done in the present work by means of anisotropic visco-damage, by introducing a material strain rate effect in the cases of positive hydrostatic stresses only. The proposed delay-damage law assumes no viscous effect in compression as the consideration of inertia effects proves sufficient to model the apparent material strength increase. High-rate dynamics applications imply to deal with wave propagation and reflection which can generate alternated loading in the impacted structure. In order to do so, the key concept of active damage is defined and introduced within both the damage criterion and the delay-damage evolution law. At the structural level, strain localization often leads to spurious mesh dependency. Three-dimensional Finite Element computations of dynamic tensile tests by spalling are presented, with visco-damage and either without or with non-local enhancement. Delay-damage, as introduced, regularizes the solution in fast dynamics. The location of the macro-crack initiated is found influenced by non-local regularization. The strain rate range in which each enhancement, delay-damage or non-local enhancement, has a regularizing effect is studied. (authors)

  18. Lateralized delay period activity marks the focus of spatial attention in working memory: evidence from somatosensory event-related brain potentials.

    Science.gov (United States)

    Katus, Tobias; Eimer, Martin

    2015-04-29

    The short-term retention of sensory information in working memory (WM) is known to be associated with a sustained enhancement of neural activity. What remains controversial is whether this neural trace indicates the sustained storage of information or the allocation of attention. To evaluate the storage and attention accounts, we examined sustained tactile contralateral delay activity (tCDA component) of the event-related potential. The tCDA manifests over somatosensory cortex contralateral to task-relevant tactile information during stimulus retention. Two tactile sample sets (S1, S2) were presented sequentially, separated by 1.5 s. Each set comprised two stimuli, one per hand. Human participants memorized the location of one task-relevant stimulus per sample set and judged whether one of these locations was stimulated again at memory test. The two relevant pulses were unpredictably located on the same hand (stay trials) or on different hands (shift trials). Initially, tCDA components emerged contralateral to the relevant S1 pulse. Sequential loading of WM enhanced the tCDA after S2 was presented on stay trials. On shift trials, the tCDA's polarity reversed after S2 presentation, resulting in delay activity that was now contralateral to the task-relevant S2 pulse. The disappearance of a lateralized neural trace for the relevant S1 pulse did not impair memory accuracy for this stimulus on shift trials. These results contradict the storage account and suggest that delay period activity indicates the sustained engagement of an attention-based rehearsal mechanism. In conclusion, somatosensory delay period activity marks the current focus of attention in tactile WM. Copyright © 2015 the authors 0270-6474/15/356689-07$15.00/0.

  19. Dynamics of Nonlinear Time-Delay Systems

    CERN Document Server

    Lakshmanan, Muthusamy

    2010-01-01

    Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...

  20. Control of SiC Based Front-End Rectifier under Unbalanced Supply Voltage

    DEFF Research Database (Denmark)

    Maheshwari, Ramkrishan; Trintis, Ionut; Gohil, Ghanshyamsinh Vijaysinh

    2015-01-01

    A voltage source converter is used as a front end converter typically. In this paper, a converter which is realized using SiC MOSFET is considered. Due to SiC MOSFET, a switching frequency more than 50 kHz can be achieved. This can help increasing the current control loop bandwidth, which is not ...... together with a positive-sequence current controller for the front-end rectifier. A gain in the feedforward term can be changed to control the negative-sequence current. Simulation results are presented to verify the theory....

  1. 2011 NOAA Ortho-rectified Near Infrared Mosaic of Hampton Harbor to Frost Point, New Hampshire (Mean Lower Low Water)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. 2010 NOAA Near Infrared Ortho-rectified Mosaic of Louisiana: Mississippi River - Baton Rouge to Southwest Pass (NODC Accession 0104414)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. 2015 NOAA Ortho-rectified Color Mosaic of Los Angeles and Long Beach, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. 2016 NOAA NGS Ortho-rectified Mean High Water Color Mosaic of St. Johns River at Mile Point Turn, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of MISSISSIPPI RIVER - BATON ROUGE TO LAPLACE (NODC Accession 0074374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of MISSISSIPPI RIVER -...

  6. Optimal Design of a Resonance-Based Voltage Boosting Rectifier for Wireless Power Transmission.

    Science.gov (United States)

    Lim, Jaemyung; Lee, Byunghun; Ghovanloo, Maysam

    2018-02-01

    This paper presents the design procedure for a new multi-cycle resonance-based voltage boosting rectifier (MCRR) capable of delivering a desired amount of power to the load (PDL) at a designated high voltage (HV) through a loosely-coupled inductive link. This is achieved by shorting the receiver (Rx) LC-tank for several cycles to harvest and accumulate the wireless energy in the RX inductor before boosting the voltage by breaking the loop and transferring the energy to the load in a quarter cycle. By optimizing the geometries of the transmitter (Tx) and Rx coils and the number of cycles, N , for energy harvesting, through an iterative design procedure, the MCRR can achieve the highest PDL under a given set of design constraints. Governing equations in the MCRR operation are derived to identify key specifications and the design guidelines. Using an exemplary set of specs, the optimized MCRR was able to generate 20.9 V DC across a 100 kΩ load from a 1.8 V p , 6.78 MHz sinusoid input in the ISM-band at a Tx/Rx coil separation of 1.3 cm, power transfer efficiency (PTE) of 2.2%, and N = 9 cycles. At the same coil distance and loading, coils optimized for a conventional half-wave rectifier (CHWR) were able to reach only 13.6 V DC from the same source.

  7. RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials

    Science.gov (United States)

    Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).

  8. Does Early Versus Delayed Active Range of Motion Affect Rotator Cuff Healing After Surgical Repair? A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Kluczynski, Melissa A; Isenburg, Maureen M; Marzo, John M; Bisson, Leslie J

    2016-03-01

    The timing of passive range of motion (ROM) after surgical repair of the rotator cuff (RC) has been shown to affect healing. However, it is unknown if early or delayed active ROM affects healing. To determine whether early versus delayed active ROM affects structural results of RC repair surgery. Systematic review and meta-analysis. A systematic review of articles published between January 2004 and April 2014 was conducted. Structural results were compared for early (repair method. A total of 37 studies (2251 repairs) were included in the analysis, with 10 (649 repairs) in the early group and 27 (1602 repairs) in the delayed group. For tears ≤3 cm, the risk of a structural tendon defect was higher in the early versus delayed group for transosseous plus single-row suture anchor repairs (39.7% vs 24.3%; RR, 1.63 [95% CI, 1.28-2.08]). For tears >3 cm, the risk of a structural tendon defect was higher in the early versus delayed group for suture bridge repairs (48% vs 17.5%; RR, 2.74 [95% CI, 1.59-4.73]) and all repair methods combined (40.5% vs 26.7%; RR, 1.52 [95% CI, 1.17-1.97]). For tears >5 cm, the risk of structural tendon defect was higher in the early versus delayed group for suture bridge repairs (100% vs 16.7%; RR, 6.00 [95% CI, 1.69-21.26]). There were no statistically significant associations for tears measuring ≤1, 1-3, or 3-5 cm. Early active ROM was associated with increased risk of a structural defect for small and large RC tears, and thus might not be advisable after RC repair. © 2015 The Author(s).

  9. Simulation of rectifier voltage malfunction on OWECS, four-level converter, HVDC light link: Smart grid context tool

    International Nuclear Information System (INIS)

    Seixas, M.; Melício, R.; Mendes, V.M.F.

    2015-01-01

    Highlights: • Floating offshore wind turbine in deep water. • DC link and voltage malfunction. • Converter topology considered is four-level. • Controllers are based on fractional-order. • Smart grid context. - Abstract: This paper presents a model for the simulation of an offshore wind system having a rectifier input voltage malfunction at one phase. The offshore wind system model comprises a variable-speed wind turbine supported on a floating platform, equipped with a permanent magnet synchronous generator using full-power four-level neutral point clamped converter. The link from the offshore floating platform to the onshore electrical grid is done through a light high voltage direct current submarine cable. The drive train is modeled by a three-mass model. Considerations about the smart grid context are offered for the use of the model in such a context. The rectifier voltage malfunction domino effect is presented as a case study to show capabilities of the model

  10. Indirect control of a single-phase active power filter

    Directory of Open Access Journals (Sweden)

    Mihai CULEA

    2006-12-01

    Full Text Available The control of shunt active power filters using PWM inverters consists in generating a reference by separating, using different methods, the harmonics to be eliminated. The methods used are time-consuming and need dedicated control and signal processing equipments. To avoid these setbacks a new method is proposed in the paper. The active power filter is a current PWM rectifier with voltage output and with a capacitor on the DC side. The PWM rectifier is controlled so that the sum of its current and the load’s current is a sinusoid. The control block as well as simulation results are presented.

  11. Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers.

    Science.gov (United States)

    Auton, Gregory; But, Dmytro B; Zhang, Jiawei; Hill, Ernie; Coquillat, Dominique; Consejo, Christophe; Nouvel, Philippe; Knap, Wojciech; Varani, Luca; Teppe, Frederic; Torres, Jeremie; Song, Aimin

    2017-11-08

    A graphene ballistic rectifier is used in conjunction with an antenna to demonstrate a rectenna as a terahertz (THz) detector. A small-area (<1 μm 2 ) local gate is used to adjust the Fermi level in the device to optimize the output while minimizing the impact on the cutoff frequency. The device operates in both n- and p-type transport regimes and shows a peak extrinsic responsivity of 764 V/W and a corresponding noise equivalent power of 34 pW Hz -1/2 at room temperature with no indications of a cutoff frequency up to 0.45 THz. The device also demonstrates a linear response for more than 3 orders of magnitude of input power due to its zero threshold voltage, quadratic current-voltage characteristics and high saturation current. Finally, the device is used to take an image of an optically opaque object at 0.685 THz, demonstrating potential in both medical and security imaging applications.

  12. The retention of radioactive noble gases in nuclear power stations by means of activated charcoal delay systems. A status report

    International Nuclear Information System (INIS)

    Schroeder, H.J.

    1983-01-01

    Since the beginning of the 1970s off-gas systems using activated charcoal have been used in BWRs and PWRs to minimize the release of radioactive noble gases and the resultant exposure of the environment. In practice, the power-related noble gas emission rate achieved is 1-10 Ci/MWa in the case of BWRs and 0.1-1 Ci/MWa for PWRs. The systems are relatively simple in design and operators state that they are easy and cheap to run. The activated charcoal used shows no signs of becoming spent and, if protected from humidity, retains its full efficiency. On the basis of the information to hand it has never been necessary to replace it. Experience to date suggests that a charge of activated charcoal can last the life of the facility as a whole. All knowledge and experience gained so far indicate that off-gas systems using activated delay systems for BWR facilities are indispensable and must therefore be considered an integral part of such facilities. Capital expenditure amounts to approximately 1% of the total cost and should, therefore, not be unacceptable. In PWRs off-gas systems using pressure vessels as delay trains are in competition with off-gas systems based on activated charcoal delay systems. The activated charcoal systems have proved themselves and their use, which involves capital expenditure equivalent to approximately of 0.5% to the overall cost, can be recommended without reservation

  13. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors.

    Science.gov (United States)

    Yang, Yan-Wei; Wang, Yun-Lu; Lu, Jia-Kai; Tian, Lei; Jin, Mu; Cheng, Wei-Ping

    2018-03-01

    The neuroprotective effect against spinal cord ischemia/reperfusion injury in rats exerted by delayed xenon post-conditioning is stronger than that produced by immediate xenon post-conditioning. However, the mechanisms underlying this process remain unclear. Activated microglia are the main inflammatory cell type in the nervous system. The release of pro-inflammatory factors following microglial activation can lead to spinal cord damage, and inhibition of microglial activation can relieve spinal cord ischemia/reperfusion injury. To investigate how xenon regulates microglial activation and the release of inflammatory factors, a rabbit model of spinal cord ischemia/reperfusion injury was induced by balloon occlusion of the infrarenal aorta. After establishment of the model, two interventions were given: (1) immediate xenon post-conditioning-after reperfusion, inhalation of 50% xenon for 1 hour, 50% N 2 /50%O 2 for 2 hours; (2) delayed xenon post-conditioning-after reperfusion, inhalation of 50% N 2 /50%O 2 for 2 hours, 50% xenon for 1 hour. At 4, 8, 24, 48 and 72 hours after reperfusion, hindlimb locomotor function was scored using the Jacobs locomotor scale. At 72 hours after reperfusion, interleukin 6 and interleukin 10 levels in the spinal cord of each group were measured using western blot assays. Iba1 levels were determined using immunohistochemistry and a western blot assay. The number of normal neurons at the injury site was quantified using hematoxylin-eosin staining. At 72 hours after reperfusion, delayed xenon post-conditioning remarkably enhanced hindlimb motor function, increased the number of normal neurons at the injury site, decreased Iba1 levels, and inhibited interleukin-6 and interleukin-10 levels in the spinal cord. Immediate xenon post-conditioning did not noticeably affect the above-mentioned indexes. These findings indicate that delayed xenon post-conditioning after spinal cord injury improves the recovery of neurological function by reducing

  14. Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs.

    Science.gov (United States)

    Nikolaenko, Andrey E; Cass, Michael; Bourcet, Florence; Mohamad, David; Roberts, Matthew

    2015-11-25

    Efficient intermonomer thermally activated delayed fluorescence is demonstrated for the first time, opening a new route to achieving high-efficiency solution processable polymer light-emitting device materials. External quantum efficiency (EQE) of up to 10% is achieved in a simple fully solution-processed device structure, and routes for further EQE improvement identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Precision rectifier detectors for ac resistance bridge measurements with application to temperature control systems for irradiation creep experiments

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, M. G.

    1977-05-01

    The suitability of several temperature measurement schemes for an irradiation creep experiment is examined. It is found that the specimen resistance can be used to measure and control the sample temperature if compensated for resistance drift due to radiation and annealing effects. A modified Kelvin bridge is presented that allows compensation for resistance drift by periodically checking the sample resistance at a controlled ambient temperature. A new phase-insensitive method for detecting the bridge error signals is presented. The phase-insensitive detector is formed by averaging the magnitude of two bridge voltages. Although this method is substantially less sensitive to stray reactances in the bridge than conventional phase-sensitive detectors, it is sensitive to gain stability and linearity of the rectifier circuits. Accuracy limitations of rectifier circuits are examined both theoretically and experimentally in great detail. Both hand analyses and computer simulations of rectifier errors are presented. Finally, the design of a temperature control system based on sample resistance measurement is presented. The prototype is shown to control a 316 stainless steel sample to within a 0.15/sup 0/C short term (10 sec) and a 0.03/sup 0/C long term (10 min) standard deviation at temperatures between 150 and 700/sup 0/C. The phase-insensitive detector typically contributes less than 10 ppM peak resistance measurement error (0.04/sup 0/C at 700/sup 0/C for 316 stainless steel or 0.005/sup 0/C at 150/sup 0/C for zirconium).

  16. Comparing Active Delay and Procrastination from a Self-Regulated Learning Perspective

    Science.gov (United States)

    Corkin, Danya M.; Yu, Shirley L.; Lindt, Suzanne F.

    2011-01-01

    Researchers have proposed that the act of postponing academic work may be divided into a traditional definition of procrastination, viewed as maladaptive, and adaptive forms of delay. Adaptive forms of delay may be more consistent with certain facets of self-regulated learning. The current study investigated this issue by examining whether the…

  17. Dual role of delay effects in a tumour-immune system.

    Science.gov (United States)

    Yu, Min; Dong, Yueping; Takeuchi, Yasuhiro

    2017-08-01

    In this paper, a previous tumour-immune interaction model is simplified by neglecting a relatively weak direct immune activation by the tumour cells, which can still keep the essential dynamics properties of the original model. As the immune activation process is not instantaneous, we now incorporate one delay for the activation of the effector cells (ECs) by helper T cells (HTCs) into the model. Furthermore, we investigate the stability and instability regions of the tumour-presence equilibrium state of the delay-induced system with respect to two parameters, the activation rate of ECs by HTCs and the HTCs stimulation rate by the presence of identified tumour antigens. We show the dual role of this delay that can induce stability switches exhibiting destabilization as well as stabilization of the tumour-presence equilibrium. Besides, our results reveal that an appropriate immune activation time delay plays a significant role in control of tumour growth.

  18. Improved Criteria on Delay-Dependent Stability for Discrete-Time Neural Networks with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    O. M. Kwon

    2012-01-01

    Full Text Available The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.

  19. Purely organic thermally activated delayed fluorescence (TADF) materials for organic light-emitting diodes (OLEDs)

    OpenAIRE

    Wong, Michael Y.; Zysman-Colman, Eli

    2017-01-01

    We thank the University of St Andrews for support. EZ-C thanks the Leverhulme Trust for financial support (RPG-2016-047). and the EPSRC (EP/P010482/1) for financial support. The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shif...

  20. Inverse agonist-like action of cadmium on G-protein-gated inward-rectifier K+ channels

    International Nuclear Information System (INIS)

    Inanobe, Atsushi; Matsuura, Takanori; Nakagawa, Atsushi; Kurachi, Yoshihisa

    2011-01-01

    Highlights: → We examined allosteric control of K + channel gating. → We identified a high-affinity site for Cd 2+ to inhibit Kir3.2 activity. → The 6-coordination geometry supports the binding. → Cd 2+ inhibits Kir3.2 by trapping the conformation in the closed state. -- Abstract: The gate at the pore-forming domain of potassium channels is allosterically controlled by a stimulus-sensing domain. Using Cd 2+ as a probe, we examined the structural elements responsible for gating in an inward-rectifier K + channel (Kir3.2). One of four endogenous cysteines facing the cytoplasm contributes to a high-affinity site for inhibition by internal Cd 2+ . Crystal structure of its cytoplasmic domain in complex with Cd 2+ reveals that octahedral coordination geometry supports the high-affinity binding. This mode of action causes the tethering of the N-terminus to CD loop in the stimulus-sensing domain, suggesting that their conformational changes participate in gating and Cd 2+ inhibits Kir3.2 by trapping the conformation in the closed state like 'inverse agonist'.